
Chapter 4

Web Presentation Layer
Architecture

In this chapter we provide a discussion of important current approaches to
web interface programming based on the Model 2 architecture [59]. From the
results we derive how to improve web presentation layer architecture. Enabling
technology for this is the NSP concept of typed server side calls to server pages.
The concept of higher order server pages is introduced, which enables even more
flexible design.

The central architectural questions concerning web based system interfaces
are located on the server side. We review current web application frameworks
for building dynamic web pages. Web application frameworks consider only
the presentation layer in a multi-tiered web application. Our considerations are
based on an analysis of the problem addressed by these frameworks. Special
attention is paid to proposed composition mechanisms. In that comparison we
can analyze the technological contributions as well as the shortcomings of these
approaches.

4.1 Model 2 Architecture

In practice the tight coupling of code with layout has become a drawback for
server pages technology. Therefore, separation of business logic processing and
presentation generation, called processing/presentation separation in the follow-
ing for short, became a goal.

In the discussion on how to reach processing/presentation separation, Sun
has become influential by proposing several server side architectures, therein
the ”redirecting request” application model - coined Model 2 architecture after-
wards [143]. This model has become commonly known as following the Model
View Controller paradigm. We will in due course outline that it is a miscon-
ception about Model View Controller if the Model 2 architecture is subsumed
under this pattern. We therefore give an evaluation of the Model 2 approach

39



40 CHAPTER 4. WEB PRESENTATION LAYER ARCHITECTURE

Client

Java Servlet

Java Server Page

request

dispatching

access

server-side

objects

requ
est

create/update

response

C

V

M

Front

Presentation

Figure 4.1: Model 2 Architecture. The figure visualizes the ”redirecting request”
application model coined Model 2 architecture. The model has become com-
monly known as following the Model View Controller paradigm. The server side
objects are considered as model (M), the front components as controllers (C),
and the presentation components as views (V).

without relying on the MVC argument.
The Model 2 architecture uses a threefold design in which the request is first

directed to a front component, typically a servlet, which triggers the creation of
a content object, typically a Java bean (Figure 4.1). The bean is then passed
to a presentation component, typically a scripted server page where the data
within the bean is embedded in HTML/XHTML. For Model 2 architecture
some good practices are established on how to partition the request processing
between the three parts. The most important recommendation is related to
the use of the server pages: the server pages shall be used only for presentation
purposes. Model 2 architectures can achieve a reuse of presentation components.
If several front components generate under certain conditions the same output
page, this page can be used from both components. Model 2 also allows separate
maintenance of totally different response pages that may be generated from the
same front component under certain conditions.

The Struts [50] framework is widely accepted as the open source reference im-
plementation of the model 2 architecture. Struts proposes functional decompo-
sition based on a proprietary composition approach in which business processing
units do inform the controller object about the next processing step. Parameter
passing between processing units is not established by the Java method pa-
rameter passing mechanism, but by emulating a parameter passing mechanism
through transferring bean objects.

It is important to clarify a serious misunderstanding in architecture proposals
for web site development. The web application frameworks following the Model



4.1. MODEL 2 ARCHITECTURE 41

2 approach do not follow the Model View Controller paradigm. Model View
Controller (MVC) [104] was introduced in Smalltalk and is a completely different
concept. It only has superficial similarities in that it has three components from
which one is related to the user interface, another to the application. However,
the problem solved by the MVC paradigm is totally different. MVC is related
to event notification problems within a GUI that provides different views on the
same data, which have to be synchronized. MVC is renamed within the pattern
community as observer pattern [75] and became an accepted general pattern
for event model design problems1. The misnomer is even more astounding if
one considers that the property of GUI’s which makes MVC necessary, namely
view update, i.e. push technology, is well known to be absent in the pull based
approach of HTML/XHTML browsers.

The fact that web application frameworks rely on a misconception of the
MVC paradigm does not necessarily imply that these frameworks have a bad
design. But the argument for this architecture, namely that it follows a proven
good design, is flawed. Only by recognizing that this argument is invalid the way
is free for a new evaluation of the architecture and a recognition of advantages
as well as drawbacks.

The Model 2 architecture defines a fixed decomposition combined with an
intended separation of concerns. The incoming request is performed on the
business model, then data are presented to the user in response. The difficulty
with the approach lies not in the proposals for separation of concerns, but with
the composition mechanism offered. The question is which semantics governs
the interplay between the components: after you know how to divide, you have
to know how to conquer.

The Model 2 architecture offers a complex communication mechanism based
on the passing of beans. Beans are attached to a hashtable by the generating
unit and retrieved from the hashtable by the target unit. In that way data is
transmitted from the servlet to the scripted page. This mechanism is nothing
more than a parameter passing mechanism, but without static type safety. The
semantics of the composition paradigms of presentation and business logic is
only conceivable by direct reference to the components found in the running
system. In contrast, we will later use our NSP approach, where simple method
call semantics is sufficient and allows for a sound architecture. Hence in the
Model 2 architecture a considerable part of the architecture redefines a parame-
ter passing mechanism which delivers no added value beyond method invocation.
The Model 2 architecture therefore is still interwoven with a legacy technology
driven design pattern that is far from creating a clear cut abstraction layer.

1The Java Beans component model relies on an observer pattern based event model. The
GUI event model of the first Java version 1.0 followed the ”chain of responsibility” design
pattern [80], today it follows the observer pattern.



42 CHAPTER 4. WEB PRESENTATION LAYER ARCHITECTURE

Σ

Σ2

aServlet

setP1(p1:Type1)

setPN(pn:Typen)

aBean

getPM1():Typem1

getPMN():Typemn

condition1 m()

output
generation

getPN1():Typen1

getPNN():Typenn

condition2 n()

parsing

request(p:(String x String)*)

aJSP1 aJSP2

Σ1

output
generation

business logic

aNSP2aNSP1aNSP

request(p:Σ)

business logic

condition1

m(p1:Σ1)

condition2 n(p2:Σ2)

output
generation

output
generation

Next Server Pages

Model 2 Architecture

request
dispatching

request
dispatching

Figure 4.2: Model 2 Architecture versus NSP Functional Decomposition. The
figure shows a typical control and data flow in a Model 2 architecture system up
to details of request dispatching and the improvement of a counterpart system
build on Next Server Pages technology by an interaction diagram.



4.2. NSP FUNCTIONAL DECOMPOSITION 43

4.2 NSP Functional Decomposition

NSP is open with respect to architectural decisions. NSP distinguishes between
server pages that may be called across the net by a form or a link and server
pages that may be called by another NSP server page on the server side in order
to be included. The latter server pages has been termed dialogue submethods
before. The NSP call mechanism for dialogue submethods has identical seman-
tics as the Java method call with respect to parameter passing. It is the only
composition feature that is needed to build sound and well understood web
application architectures. NSP does not force the user into a specific design.
With NSP no early decision between Model 1, Model 2 or other architectures is
necessary.

The NSP approach to design can be seen as generalization of another proposal
of the JSP specification, named ”including requests” [143].

In order to call a server page from within another server page, the call-element
is used2. The opening call-tag has a callee-attribute. Upon call the targeted
server page generates a document fragment that replaces the respective call-
element in the calling document. The output of the dialogue submethod must
be a valid content element with respect to the context of the respective call
element. Actual parameters are given to the called dialogue submethod by
actparam-elements. The opening actparam-tag has a param-attribute, which
has the same purpose as the the param-attributes of the NSP control elements.
For each formal parameter of a dialogue submethod exactly one actual param-
eter must be given in every targeting call-element. Call elements may only
contain actparam-elements, especially they cannot contain dynamic code3.

The example in listing 4.1 consists of a main page and two dialogue sub-
methods. The first dialogue submethod receives a String parameter and an int
parameter and produces a message with respect to these parameters. The sec-
ond dialogue submethod is called inside a table element and receives an array
of Article objects. An Article object has three String properties x,y, and z. The
dialogue submethod generates a table row for each object. A row contains three
table data cells, one for each object property.

In the JSP technology parameter passing to a JSP differs fundamentally
whether the JSP is called across the net or called on the server side. In the
first case, parameters come as raw string data, as it is inherited from the old
CGI mechanism. However, if a server page is called locally, it is established
coding practice to pass the parameters by a bean object attached to the request
parameter. Hence, a page must be designed either to be callable from the net
or to be callable from the server and in both cases the developer has to face a
parameter passing mechanism different from any reasonable parameter passing

2Listing 4.1, line 8-11, line 14-16
3The call element provides the NSP equivalent to the JSP request dispatching include

mechanism. Analogously NSP supports redirect and server-side redirect, i.e. forward, by
appropriate elements in the same way as the call element.



44 CHAPTER 4. WEB PRESENTATION LAYER ARCHITECTURE

Listing 4.1

01 <nsp name="mainPage">

02 <html><head><title>Some Page</title></head>

03 <body><java>

04 String customer;

05 int age;

06 Article[] articles;

07 // get data for variables customer, age, and articles </java>

08 <call callee="prelude">

09 <actparam param="customer">customer</actparam>

10 <actparam param="age">age</actparam>

11 </call>

12 <table>

13 <tr> <td>X</td> <td>Y</td> <td>Z</td> </tr>

14 <call callee="tableContent">

15 <actparam param="articles">articles</actparam>

16 </call>

17 </table>

18 </body>

19 </html>

20 </nsp>

21

22 <nsp name="prelude">

23 <param type="String" name="customer"></param>

24 <param type="int" name="age"></param>

25 <include>

26 Hello Mr. <javaexpr>customer</javaexpr> !

27 <!-- other ouptut with respect to customer and age -->

28 </include>

29 </nsp>

30

31 <nsp name="tableContent">

32 <param type="Article[]" name="articles"></param>

33 <include><java>

34 for (i=1;i<articles.lentgth;i++) {</java>

35 <tr>

36 <td><javaexpr>articles[i].getX()</javaexpr></td>

37 <td><javaexpr>articles[i].getY()</javaexpr></td>

38 <td><javaexpr>articles[i].getZ()</javaexpr></td>

39 </tr><java>

40 }</java>

41 </include>

42 </nsp>



4.2. NSP FUNCTIONAL DECOMPOSITION 45

login

validate

show

home

mail1
mail2
mail3

exit

user logged in ?

inbox

business logic presentation

mymail

userid
passwd
store ID

error

to new user...

show page

home page

correct userid/passwd

SERVERBROWSER

new user

submit

mailnumber

user already logged in

else

else

Figure 4.3: Example Interaction Diagram. The figure shows the login dialogue
of a web based mail account. The user logs in and views her inbox. If she stores
her password, for a certain time no login is necessary.

mechanism4. In NSP in contrast parameter passing is identical whether the page
is called over the net or within the server. In both cases the parameter passing
mechanism is essentially identical to the parameter passing encountered in Java.
The parameters of a page in NSP behave identical to local variables in the Java
code, in fact they are local variables initialized by the actual parameters. The
difference is visualized in Figure 4.2. It follows from the explanation of the NSP
implementation in chapter 5 that this transparency in the parameter passing
mechanism comes at virtually no additional cost compared to the approaches
in web application frameworks.

NSP allows for arbitrary application architectures based on functional de-
composition. NSP frees the developer from considering the implementation
details of the parameter passing mechanisms. Hence all special runtime entities
that are needed in NSP to deliver the method call semantics are hidden from
the developer. Processing/presentation separation is in first place a pattern
for source code organization. NSP allows to solve the challenges in process-

4In the Servlet request dispatching mechanism, it is possible to attach new name/value pairs
to the request object URL before invoking another Servlet. The JSP technology provides a
JSP standard action, i.e. the param-action, for attaching new arguments for included server
pages. However both of these are no parameter passing mechanisms, because only string
parameters can be attached in an uncontrolled manner.



46 CHAPTER 4. WEB PRESENTATION LAYER ARCHITECTURE

ing/presentation separation without referring to system architecture. In con-
trast, in NSP the functional decomposition mechanism allows for the desired
separation of concerns. In Figure 4.3 we give an interaction diagram which
shows the login dialogue of a web based mail tool. The user logs in and views
her inbox. If she stores her password, for a certain time no login is necessary.
In the given example the depth of decomposition is adapted according to the
complexity of the respective functionality. The login screen is used for the initial
login screen as well as for the login screen after an invalid login attempt. View-
ing a mail is realized as a simple server page call. The example demonstrates
the openness of NSP for different architectures.

4.3 Higher Order Server Pages

NSP formal server page parameters may receive server pages again. This intro-
duces the notion of higher order server pages. The higher order server pages con-
cept can be exploited to foster system maintainability and system part reusabil-
ity.

NSP introduces the Page type as single proprietary type to be used for a
formal parameter in addition to the types of the amalgamated programming
language. Formal parameters of Page type may be used as callee-attributes
of opening forms, links, and calls. For a formal Page parameter of a dialogue
method either one hidden control, single select menu or at least two radio but-
tons must be provided in every form targeting the method. The value provided
by the control must be the name of an existing server page that belongs to
the system or again a formal Page parameter. A web signature with a formal
Page parameter may be equally targeted by a hyperlink or, if the web signature
belongs to an include server page, by a server-side call, with appropriate usage
of hidden parameters respective actparam-elements.

Listing 4.2 gives a simplified example of a typical dialogue cycle:

input page - server-side validation - error page

A registration page includes a registration form by a server-side call. The
registration form offers a text input field. The default value of this field is a
parameter of the registration form submethod. The registration page chooses
an empty string as default for the input field. Importantly the form provides
its encompassing include server page as actual parameter. It is used by the
targeted server page as error page. On submit the targeted server page first
checks a business rule concerning the customer name. If no error occurred,
the customer name is processed and the dialogue is continued by forwarding
to another server page. Otherwise the form that targeted the server page is
redisplayed and serves as a simple error page. This time the last user’s input for
the customer name is the default value for the input field. The example given in
listing 4.2 is an instance of a more general, common design problem that can be
given a reusable, flexible solution based on a higher order server page concept.
Consider the case that several forms target the same dialogue method, which



4.3. HIGHER ORDER SERVER PAGES 47

registration

new Customer

A

registration

B

registration

C

somewhere

errorPage

B

error and registrationA along()

error and registrationC along()

error and registrationB along()

not er
ror

Figure 4.4: Example Form Chart Diagram. The user dialogue given by a form
chart in this figure poses a typical design problem that can be given a reusable,
flexible solution based on a higher order server page concept.

processes the data and branches the dialogue flow, whereas the next page in the
dialogue depends on the form that triggered the server page. Without higher
order server pages the developer must explicitly keep track of the dialogue and
must switch to the correct next page accordingly, which is an instance of a design
that suffers an ”ask what kind” antipattern5. Figure 4.4 shows a feature [58]
containing three registration pages similar to the one given in listing 4.2. The
feature is visualized as a form chart [60][61]. The server action for processing
new customer data validates submitted user entry and presents an error page to
the user if necessary. In the case that the action has been triggered by the first
or third registration page, the respective page is redisplayed6. In the case that
the action has been triggered by the second registration page, a specific error
page is presented to the user.

5Our view of ”don’t ask what kind” is discussed in 8.1.2.
6Dialogue Constraint Language [60] is used to express the so called flow conditions in

Figure 4.4.



48 CHAPTER 4. WEB PRESENTATION LAYER ARCHITECTURE

Listing 4.2

01 <nsp name="Registration">

02 <html>

03 <head><title>Registration</title></head>

04 <body>

05 <call callee="RegistrationForm">

06 <actparam name="defaultCustomer"> "" </actparam>

07 </call>

08 </body>

09 </html>

10 </nsp>

11

12 <nsp name="RegistrationForm">

13 <param name="defaultCustomer" type="String"></param>

14 <include>

15 <form callee="NewCustomer">

16 <input type="String" name="customer">defaultCustomer</input>

17 <hidden name="errorPage">RegistrationForm</hidden>

18 </form>

19 </include>

20 </nsp>

21

22 <nsp name="NewCustomer">

23 <param name="customer" type="String"></param>

24 <param name="errorPage" type="ServerPage"></param>

25 <java>import myBusinessModel.CustomerBase;</java>

26 <html>

27 <head><title>NewCustomer</title></head>

28 <body><java>

29 if (CustomerBase.validate(customer)) {

30 CustomerBase.createCustomer(customer);</java>

31 <forward callee="Somewhere"></forward><java>

32 } else {</java>

33 <call callee="errorPage">

34 <actparam name="defaultCustomer"> customer </actparam>

35 </call><java>

36 }</java>

37 </body>

38 </html>

39 </nsp>


