
Chapter 3

NSP Coding Guidelines

This chapter defines the NSP support for gathering array data and data of user
defined type. The NSP coding guidelines and rules are elaborated.

The object of the NSP coding guidelines and rules are dynamic document
fragments with respect to the generated user interface description. There are
two kinds of coding guidelines and rules. The parameter guidelines and rules are
dealing with client page type safety, the structure guidelines and rules are deal-
ing with client page description safety. The guidelines are declarative character-
izations of valid NSP code, they are informal descriptions of demands placed on
NSP code. The NSP coding guidelines are accompanied by NSP coding rules
that define how to achieve these demands. The resulting notion of correctness
can be checked statically and guarantees client page type and description safety.

The NSP parameter guidelines and rules contribute the adaptation of typed
programming discipline to the context of server pages development.

The NSP coding guidelines target the developer: correct NSP code is very natu-
ral and the NSP coding guidelines are easy to learn. The NSP coding guidelines
and rules are formalized in chapter 7 by a Per Martin-Löf style type system.

In the discussion of coding guidelines passive NSP code is considered as
generated code. Such passive NSP code is a variant of XHTML code. It is
ensured that generated NSP tags will cause the generation of valid XHTML
eventually. The mapping of NSP tags to valid XHTML is given canonically and
described further in chapter 5.

3.1 The Object of Parameter Guidelines

In a typed programming language the call to a method must fit exactly the
method signature. This notion is picked up but elaborated further due to the
special needs of programming a web interface based on a server pages technology.
In order to understand the type system of NSP one has to realize that in a

19

20 CHAPTER 3. NSP CODING GUIDELINES

scripted server page typically a whole block in the scripting language generates
one form in the output. In NSP the static typing rules apply to the whole form,
because within the NSP paradigm the whole form is the analogue of only a
single method call. As an instructive example for this, have a look at the code
fragment in listing 3.1.

Listing 3.1

01 {

02 int x;

03 for(int i=0; i<3; i++){

04 x = 810;

05 }

06 m(x);

07 }

08

09 void m(int x){}

This is a correct program, though lines 3 and 5 are superfluous and actually
can be deleted from an optimizing compiler. In NSP a similar form declaration
has to be considered wrong; in the form generated by listing 3.2 the user may
enter three int data, however the targeted server page expects exactly one int
value. That is, in NSP user interface description code that is created dynami-
cally by a form declaration, cannot be considered just as a block for computing
actual parameters comparable to line 3, 4 and 5 in the above code fragment.
Instead of this it is considered as an editable method call offered to the user as
a whole. It is comparable to line 6 in the above example. Precisely in this sense
the form has to support the signature of the called method.

Listing 3.2

01 <form callee="m"><java>

02 for(int i=0; i<3; i++){</java>

03 <input type="int" param="x"></input><java>

04 }</java>

05 <submit></submit>

06 </form>

07

08 <nsp name="m">

09 <param name="x" type="int"></param>

10 <html>

11 ...

12 </html>

13 </nsp>

The object of the parameter guidelines is dynamic NSP code that generates
form content.

3.2. BASIC PARAMETER GUIDELINES 21

Definition 3.1.1 (NSP Parameter Guideline) An NSP parameter guide-
line describes, what kind of and how many controls must be provided for what
kind of formal parameter. The statement that a certain kind and number of
control must be provided for a certain kind of formal parameter means: the body
of every form targeting a web signature that encompasses such a formal param-
eter will always only generate the specified kind and correct number of controls.
These controls are said to target the formal parameter in quest.

In section 3.3 so called parameter rules are given for the parameter guidelines.
The NSP parameter rules are the coding rules that help to achieve the parameter
guidelines. They describe the effect of conditional control structures, loops, and
sequencing of document parts on the guaranteed number of a certain kind of
control.

The first fundamental NSP parameter guideline is independent from the type
of the targeted formal parameter: a generated control must not target a formal
parameter that does not belong to the targeted web signature.

3.2 Basic Parameter Guidelines

In this section the NSP parameter guidelines for formal parameters of basic
type are given. NSP distinguishes between basic types, array types and form
message types. The notion of form message type is introduced in section 3.5:
a user defined type may be explicitly defined as a form message type; then
NSP offers tag support for gathering composed data of form message type. In
NSP/Java the basic types encompass the Java primitive types and every object
type, i.e. every user defined type or arbitrary Java API type. The parameter
guidelines explained in this section are summarized in Figure 3.1. Parameter
guidelines for arrays are explained in section 3.4.

Formal Parameters of Primitive Type

For a formal int parameter either one type-correct input control, hidden control,
single select menu or at least two type-correct radio buttons must be provided.

A form encompassing a type-correct input control cannot be submitted, if
the data entered by the user is not a number. Similarly a formal int parameter
implicitly requires an entry by the user. The necessary concept of active direct
input controls has been explained in section 2.3.1. A hidden control may target
a formal int parameter, as long as its contained expression has int as type;
such an expression cannot evaluate to a null object, because int is a primitive
Java type. For the same reason a single select menu may target a formal int
parameter. Alternatively a set of radio buttons may target the parameter. It
must contain at least two radio buttons. An int radio button set or single select
menu always produces a unique value, because of the concept of NSP active
single select controls introduced in section 2.3.3.

A formal int parameter may be constrained to be targeted by an interactive
widget. The param tag has a widget attribute, which may be set to required

22 CHAPTER 3. NSP CODING GUIDELINES

for this purpose. If a widget is required, the targeting control must not be a
hidden parameter. Despite this exception the parameter guideline is the same.
Requiring an interactive widget is a powerful concept that allows for the precise
specification of a dialogue method as editable method call offered to the user
by means of a web signature.

The int type is the only NSP/Java instance of the general notion of an NSP
direct input supported primitive type. Other language amalgamations may
support more primitive types by a direct input widget in a way that follows the
parameter guidelines just introduced.

The dual notion of an NSP direct input supported primitive type is that of
an NSP ordinary primitive type. The float type is an example for such a type.
For a formal float parameter either exactly one type-correct hidden control,
single select menu or at least two type-correct radio buttons must be provided.

Formal boolean Parameters

The boolean type needs specific parameter guidelines. It is supported by an
instance of the check box mechanism as explained in section 2.3.4. The boolean
type is an NSP specific primitive type.

For a formal boolean parameter either exactly one check box or one type-
correct input hidden control must be provided. If the widget attribute is set to
required, the formal parameter must be targeted by exactly one check box. It is
not allowed to use other controls like direct input or a select menu for targeting
a boolean formal parameter. We feel that with respect to user interaction the
boolean type is inextricably connected to the notion of check box and this is
expressed by the current parameter guideline.

Formal Object Type Parameters

Every non-primitive Java type is termed object type. For a formal parameter
of object type at most one type-correct hidden control, single select menu or
at least two type-correct radio buttons must be provided. Most importantly
it is allowed not to provide any control for a formal parameter of object type.
If no control is provided, the system will fill in a null object on submission
automatically.

For a formal parameter of object type the widget attribute may be set to
required, too. Then exactly one type-correct single select menu or at least two
type-correct radio buttons must be provided. It is not longer allowed just to
omit any kind of control: the purpose of the required widget attribute is to
ensure that an interaction capability is offered to the user. In general there is
no direct input capability for an object type and possible interaction capabilities
are single select menus or a set of radio buttons. However, as opposed to formal
parameters of primitive type, requiring a widget does not guarantee valuable
data on submission, because nothing prevents a data item provided by e.g. a
select menu to be a null object. This leads to another kind of NSP object type.

3.3. NSP PARAMETER RULES 23

As for primitive types, it is distinguished between direct input supported ob-
ject types and ordinary object types. Examples for direct input supported object
types in NSP/Java are the Integer type and the JDBC API type Date [186]. For
a formal parameter of such type the above parameter guidelines are applicable,
except for the possibility to additionally target a parameter by the type-correct
input control. Beyond this for such types the formal parameter tag has an entry
attribute. This entry attribute may be set to required. Then for a formal pa-
rameter exactly one type-correct input control must be provided. Furthermore
the system statically ensures that every targeting input control dynamically en-
sures data entry. As discussed above, only this can prevent a null object from
being submitted.

Formal String Parameters

The Java type String is another example for an object type that is supported
by an active direct input control. Actually it has three such controls, the usual
input field, a password field and the text area control. The parameter guidelines
are the same as the ones for types like Integer or Date, up to the additional
input controls that are handled the same way as the input field. The only
subtle difference concerning the input controls has already been described in
section 2.3.1: no null object will be transmitted anytime.

Furthermore it can be specified that a formal String parameter must be
targeted by the specific password control or by the specific text area control.
The widget attribute is used for this purpose. If it is set to password exactly
one password field must be provided, and analogous for the text area widget.

3.3 NSP Parameter Rules

An NSP parameter guideline is a demand on the kind and number of controls
generated by a piece of NSP code that targets a certain kind of formal parameter.
This section gives rules that define how to achieve these demands.

Determining the number of a certain control in a static part of an NSP
document is trivial. But NSP code is a mixture of static and dynamic parts.
However, in a valid NSP document only Java code and control tags are relevant
with respect to the parameter rules1, because all the tags concerning layout
and the tags that switch between active and passive document parts have no
influence on the control number.

Indeed only a Java subset is relevant; the parameter rules can be given with
respect to just a few concepts, i.e. sequencing, switch structures and loops.

Consider the NSP code fragment in listing 3.3. Lines 1 to 6 generate four
hidden parameters that target the formal parameter p1. Thereby it does not
matter that the first two hidden parameters are provided merely by composition
of document parts, whereas the latter are interlaced by sequences of Java code.

1The object tags explained in section 3.5 are relevant with respect to the parameter rules,
too.

24 CHAPTER 3. NSP CODING GUIDELINES

Table 3.1: Valid Controls. This table visualizes the NSP parameter guidelines
for formal parameters of basic type by specifying kind and number of valid
controls for each formal parameter type. For every type only the fields that
are filled out are the valid controls. A formal parameter of a certain type must
be targeted by one of the valid controls, whereas the specified number must be
accomplished. The types int, float and Integer are representatives for the classes
of NSP direct input supported primitive types, NSP ordinary primitive types
and direct input supported object types, respectively. ObjectType stands for
every ordinary object type.

in
pu

t
fie

ld

hi
dd

en

si
ng

le
se

le
ct

m
en

u

ra
di

o
bu

tt
on

va
lu

e
ch

ec
k

bo
x

se
le

ct
m

en
u

pa
ss

w
or

d

te
xt

ar
ea

ch
ec

k
bo

x

int 1 1 1 ≥2
int widget=required 1 1 ≥2
float etc. 1 1 ≥2
boolean 1 1
boolean widget=required 1
Integer (Date) 0,1 0,1 0,1 0,≥2
Integer widget=required 1 1 ≥2
Integer data=required 1
String 0,1 0,1 0,1 0,≥2 0,1
String widget=required 1 1 ≥2 1
String data=required 1 1
String widget=password 1
String widget=textarea 1
ObjectType 0,1 0,1 0,≥2

ObjectType
widget=required 1 ≥2

3.3. NSP PARAMETER RULES 25

Furthermore the switch control structure and the loop must to be taken into
account. However selectors, branching conditions, and loop conditions cannot be
considered at compile time; the parameter rules must be independent from them.
Altogether we need to determine the number of generated controls with respect
to the NSP code skeleton in listing 3.4, which consists of relevant structure
and elements only. Sure, it is not possible to determine the exact numbers in
general, but it is safe, that exactly four hidden parameters are generated that
target p1, at most one input control is generated that targets p22, at most one
input control is generated that targets p3, and an arbitrary number of input
controls is generated that target p4.

In Java there exist three different kinds of conditional control structure,
i.e. the if-structure, the if-else-structure, and the switch structure. For the
purpose of NSP parameter rules it is necessary to distinguish between com-
pleted switches and uncompleted switches. A completed switch is one that is
ended by a default branch while an uncompleted switch is the opposite. The
if-structure can be construed as a uncompleted switch with just one branch.
The if-else-structure can be construed as a completed switch with two branches,
whereas the else branch becomes the default branch of the switch. As a coding
convention, in NSP code it is forbidden to end a switch branch without a break
statement3. There are three different kinds of loops in Java, the for-loop, the
while-loop and the do-while-loop. From the viewpoint of the NSP parameter
rules the different kinds of loops are the same. Furthermore the NSP parame-
ter rules do not distinguish between sequencing of NSP blocks that stems from
Java code sequencing and such sequencing that stems from composing document
parts.

Definition 3.3.1 (NSP parameter rule) The NSP parameter rules describe
how many controls of a certain kind are generated by a piece of NSP code. The
number of generated controls is described by a lower and an upper bound on
the exact number of generated controls. The NSP parameter rules are given
in terms of building blocks and sequences of building blocks. The basic build-
ing blocks are the controls in quest. The only further building blocks are com-
pleted switch structures, uncompleted switch structures and loop structures. A
completed switch is a switch that is ended by a default branch. All case branches
and the default branch together are named the branches of the switch. An un-
completed switch is a switch that is not ended by a default branch.

2At most one input control is generated that targets p2. This is an example for a type
error: if a formal int parameter is targeted it must be ensured that exactly one appropriate
control is provided.

3No doubt, it is possible to elaborate rules for switches with a fallthrough facility, but
they are unnecessarily complicated. We argue that mixtures of branches that end with a
fallthrough and branches that end with a break lay in a gray area between structured and
unstructured code. We argue that there are no urgent examples that rely on the use of
fallthrough. Interesting examples that rely on fallthrough live in the world of code bumming
like e.g. Duff’s device [153] (interestingly Duff’s device is no valid Java Code [79] anyway).
Convenient NSP parameter rules can only be given in terms of completely structured code. For
example in every language amalgamation goto statements would be forbidden [54]. Anyway
in Java no goto statement is realized (though goto is a reserved keyword).

26 CHAPTER 3. NSP CODING GUIDELINES

These are the parameter rules:

• Single control. A single control of a certain kind generates exactly one
control of this kind in the output user interface description language.

• Sequence of building blocks. Assume that every building block is safe to
generate at least a specific lower bound of a fixed certain kind of control.
Then it is safe, that the sequence will generate at least as much controls as
the sum of all these single lower bounds. Analogously for upper bounds.

• Completed switch structures. Assume that every branch is safe to generate
at least a specific lower bound of a fixed certain kind of control. Then the
switch structure is only safe to generate as least as much controls as the
smallest of all these single lower bounds. Analogously, if it is safe that
every branch generates at most a specific upper bound of a fixed certain
kind of control, then it is only safe that the switch structure generates at
most as much controls as the highest of all the single upper bounds.

• Uncompleted switch structures. With respect to upper bounds on the
number of generated controls the parameter rule for uncompleted switch
structures is the same as the parameter rule for completed switch struc-
tures. With respect to lower bounds it must differ. Nothing can be as-
sumed about the number of controls of any kind that will be generated at
least by an uncompleted switch structure, because in general it is always
possible, that none of the branches is selected.

• Loop. If it is safe that a loop body does not generate a certain kind of
control, the loop trivially will not generate this control, too. If it is safe
that the loop body generates at least one control of a certain kind, it is
safe that the loop will generate an arbitrary number of this kind of control.
Nothing more can be assumed about the number of controls generated by
a loop, i.e. the lower bound is zero and no upper bound can be determined.

From the NSP parameter rules the NSP developer can derive compound
rules that define how to achieve the complex demands described by the NSP
parameter guidelines. As an example we define how to write code for a form that
targets a formal int parameter. The respective parameter guideline prescribes,
that such code must always generate either one type-correct input control, hid-
den control, single select menu or at least two type-correct radio buttons.

If the code is a sequence of blocks, there are three valid possibilities. The
first is that exactly one of the blocks generates one type-correct input control,
hidden control or single select menu. The second is that at least one of the
blocks generates at least two radio buttons. The third is that at least two blocks
generate at least one radio button. If the code is a completed switch, all branches
of it must provide the correct number of valid controls. Controls targeting the
formal parameter in quest must not occur in a branch of an uncompleted switch
that is contained in the code, because it is not decidable whether such a switch
generates the control or not. Similarly such a control must not occur inside a

3.3. NSP PARAMETER RULES 27

loop that is contained in the code. The latter might seem to be the most severe
constraint, but we argue that it does not prevent the developer from writing
code for all reasonable applications. Placing a control inside a loop obviously
has the reason of gathering array data; NSP parameter guidelines for arrays are
given in section 3.4.

Listing 3.3

01 <hidden param="p1">new Person();</hidden>

02 <hidden param="p1">new Person();</hidden><java>

03 x:=1;</java>

04 <hidden param="p1">new Person();</hidden><java>

05 x:=2;</java>

06 <hidden param="p1">new Person();</hidden><java>

08 switch (y) {

09 case (y==1) : </java>

10 <input type="int" param="p2">

11 </input><java>;break;

12 case (y==2) : </java>

13 <input type="Integer" param="p3">

14 </input><java>;break;

15 case (y==3) : for (int i=0; i<fooBound; i++) {</java>

16 <input type="String" param="p4">

17 </input><java>

18 };break

19 }</java>

Listing 3.4

01 <hidden param="p1">new Person();</hidden>

02 <hidden param="p1">new Person();</hidden>

03 <hidden param="p1">new Person();</hidden>

04 <hidden param="p1">new Person();</hidden>

05 switch () {

06 case () : <input type="int" param="p2">

07 case () : <input type="Integer" param="p3">

08 case () :

09 for () {

10 <input type="String" param="p4">

11 }

12 }

28 CHAPTER 3. NSP CODING GUIDELINES

3.4 Parameter Guidelines for Arrays

A web signature may encompass formal array parameters. A formal array pa-
rameter may be targeted by an arbitrary mix of controls, as long as all controls
are type-correct and valid with respect to the contained items’ type. The valid
controls for a formal array parameter encompass the controls that are valid for a
completely unconstrained formal parameter4 of the respective contained items’
type. Furthermore type-correct value check boxes and select menus are valid
controls for array parameters. The number of controls is not constrained for
all kinds of controls, except for radio buttons. If a radio button targets a for-
mal array parameter there must be at least a second radio button targeting the
same parameter. The valid controls for the several array types are summarized
in Figure 3.2.

For example, a formal int array parameter may be targeted by an arbitrary
mix and number of type-correct input controls, hidden controls, single select
menus value check boxes, select menus and perhaps a set of at least two radio
buttons.

A formal parameter of array type is optional. If no control targets the
parameter the system will automatically pass a null to the dialogue method on
submit. It is not possible to give requirements for a formal array parameter. The
emphasis of the NSP array mechanism is on the support for gathering array data
in forms. If a constrained dynamic data structure is desired, complex message
types and their respective facilities described in section 3.5 may be used.

NSP offers sophisticated support for gathering array data in forms. List-
ing 3.5 shows a form that targets a dialogue method that excepts an Integer
array x and an int array y. Nine input fields are generated for the parameter
x. Input widgets for Integer values are optional by default. If the user does
not enter a value into a field this field is just ignored. All fields that have been
received valid user data together provide the submitted actual array parameter.
If the user did not enter any data a null object will be provided by the system
for the parameter x on submission. Another nine input fields are generated for
the parameter y. Input widgets for int values are required by default. The user
must enter valid data in all the fields, otherwise the form cannot be submitted.
The submitted array is guaranteed to have a length of nine.

As a second opportunity it is possible to explicitly specify the index of an
array item. For this purpose the input field tag may contain an index element.
The content of such an index element must be a Java int expression. If explicit
definition of array element indexes is chosen, the specification should be unique.
Furthermore the specification should be complete. Array items, that have a
redundant index or don’t have an explicit index are attached arbitrarily to the
array.

Listing 3.6 is oriented towards the example from listing 3.5. A loop generates
nine input fields for the parameter x. This time fields not filled out by the user,

4An unconstrained formal parameter is a parameter for which no widget is required or
specified and no entry is explicitly required.

3.4. PARAMETER GUIDELINES FOR ARRAYS 29

Listing 3.5

<form callee="N"><java>

for {int i=0; i<9; i++){</java>

<input type="int" param="x"></input><java>

}

for {int i=0; i<9; i++){</java>

<input type="Integer" param="y"></input><java>

}</java>

<submit></submit>

</form>

cannot simply be ignored. Instead of this a null objects are inserted at the
specified positions. Another input field is generated behind the loop. It has
index 10. There is no input field with index 9 targeting the parameter x. If
the form is submitted, again a null object will be inserted as ninth element.
Another ten input fields are generated for the parameter y. These fields must
be filled out. Again there is no input field with index 9 targeting the parameter
y. If the form is submitted, this will result in an dynamic type error, because
the system must fail to insert an appropriate value for this missing element of
primitive type.

Listing 3.6

<form callee="N"><java>

for {int i=0; i<9; i++){</java>

<input type="Integer" param="x">

<index> i </index>

</input><java>

}</java>

<input type="Integer" param="x">

<index> 10 </index>

</input><java>

for {int i=0; i<9; i++){</java>

<input type="int" param="y">

<index> i </index>

</input><java>

}</java>

<input type="int" param="x">

<index> 10 </index>

</input>

<submit></submit>

</form>

30 CHAPTER 3. NSP CODING GUIDELINES

Table 3.2: Valid Controls. This table visualizes the NSP parameter guidelines
for formal array parameters.

in
pu

t

hi
dd

en

si
ng

le
se

le
ct

m
en

u

ra
di

o
bu

tt
on

va
lu

e
ch

ec
k

bo
x

se
le

ct
m

en
u

pa
ss

w
or

d

te
xt

ar
ea

ch
ec

k
bo

x

int [] × × × × × ×
float [] etc. × × × × ×
boolean [] × ×
Integer [] (Date) × × × × × ×
String [] × × × × × × ×
ObjectType [] × × × × ×

3.5 Parameter Guidelines for Form Messages

In NSP objects of user defined types can be used as hidden parameters, select
menu items, and radio button or check box values. But NSP offers tag support
for gathering data of user defined type in forms, the so called NSP form message
mechanism. Input or selection capabilities for the single attributes of an object
or of a complex object net may be offered to the user. Thereby a special object
element, that resembles the with construct in MODULA-2 [187], enables the
construction of data records5.

In order to be supported in the way described above a user defined type
must be explicitly marked as a form message type6. In general a form message
is a record of attributes. The attributes are the fields that are supported by
the form message mechanism. The user defined type underlying a form message
type may have auxiliary fields7. Therefore, for every programming language
amalgamation a naming convention must be defined for form message types,
that distinguishes attributes from auxiliary fields. In NSP/Java the naming
convention of the Java Beans [85] component model is chosen. A form message
type is a Java Bean. A form message type attribute is a Java Bean property.

In this chapter we visualize form message types as UML class diagrams [13].
These diagrams are drawn within a defined perspective, which is a kind of
specification perspective in the sense of [74][41]. The perspective abstracts away

5Similarly the group element of the XForms[69] technology enables the construction of
semi-structured data entered by the user.

6In a concrete language amalgamation marking a user defined type as a form message type
may be defined by a naming convention or as implementing a marker interface.

7So far visibility mechanisms are not an issue, they must be considered with respect to
concrete programming language amalgamations only.

3.5. PARAMETER GUIDELINES FOR FORM MESSAGES 31

Person

name:String
age:int

Address

street:String
zip:int

0..1

address

Figure 3.1: Example Form Message Type.

from possible concrete naming conventions. Only form message type attributes
occur in the diagram, i.e. auxiliary fields are not visualized. Attributes that
have form message type are visualized as associations, all other form message
type attributes are visualized as UML object attributes. The associations are
navigated and carry the attribute’s name as role name. No methods occur in
the diagrams. For instance, with respect to the NSP/Java naming convention,
a class denotes a Java Bean, object attributes and associations denote Java
Bean properties. In the diagrams all associations are compositions in order to
emphasize, that all object nets gathered by the user are trees8.

A first introductory example is given by the form message type Person in
Figure 3.1 and the form in listing 3.7. The example is already sufficient in
order to state the NSP parameter guidelines for form message types. The form
targets a web signature that consists of a formal parameter customer of type
Person. Within the form data for an object net consisting of a Person object
and an Address object may be entered; on submit the respective object net is
constructed9. A formal parameter of form message type must be targeted by
at most one object element. Like the control tags, the opening object tag has
a param attribute for this purpose. The object element contains controls and
possibly further object elements for the attributes of the targeted parameter.
Thereby the NSP parameter guidelines apply recursively, i.e. from a form’s
viewpoint a form message type can be understood as a nested formal parameter
type.

The form in listing 3.8 targets a web signature that consists of a formal array
parameter customers, the array items’ type is again the type Person given in
Figure 3.1. A formal array parameter of form message type may be targeted
by an arbitrary number of object elements10, as long as the NSP parameter
guidelines are fulfilled recursively for each object element. The single object nets
may be explicitly indexed. An object element may contain an index element for

8Following [156] aggregations may form cycles, but constrain the respective link relation-
ship to be transitive and antisymmetric. Compositions are aggregations with an additional
constraint: a part may only be part of one composite.

9More concrete, on submit a Person object and an Address object are created, thereby a
pointer to the Address object is created which automatically becomes the address attribute
of the Person object.

10Figure 3.8, line 3, line 9

32 CHAPTER 3. NSP CODING GUIDELINES

Listing 3.7

01 <form callee="target">

02 <object param="customer">

03 <input type="String" param="name"></input>

04 <input type="int" param="age"></input>

05 <object param="adress">

06 <input type="String" param="street"></input>

07 <input type="int" param="zip"></input>

08 </object>

09 </object>

10 </form>

11

12 // web signature of target

13 <param name="customer" type="Person"></param>

this purpose11.
An object element may be given a uniquely identifying name with the op-

tional id attribute12. Then controls and object elements for gathering data for
form message type attributes can occur anywhere. They have to reference the
object element they belong to by its identifying name. Opening control13 and
object tags14 have an optional in-attribute for this purpose. Identifying and ref-
erencing object elements provides a convenient way for allowing arbitrary form
layout. With object element nesting only, some desired occurrences of controls
that contradict the rigid structure of layout elements could not be realized15.
Listing 3.8 yields an example. Data for two object nets are gathered. Data for
the attributes of a each object net are gathered in one table column at each
case. Thereby the referencing mechanism just introduced is needed16.

A formal parameter of form message type is optional. It is possible not to
provide an object element for it. On submit the system will pass a null object to
the receiving dialogue method. Again it becomes important, that the notion of
form message type attribute is subsumed under the notion of formal parameter.
For example the first object element in line 3 of listing 3.8 possesses an object
element for the Address attribute in line 7, whereas the second object element
in line 9 does not posses an object element for this attribute. Most importantly,
though a formal parameter of form message type is optional, this is not carried
over to its contained attributes. An object element may not be provided, but if
it is provided, the NSP parameter guidelines apply to the contained attributes,

11Figure 3.8, line 4, line 10
12Listing 3.8, line 3, line 9
13Listing 3.8, e.g. line 18
14Listing 3.8, line 7
15The XForms technology even introduces decoupling of controls from forms [69] for similar

reasons. The respective attributes are the id-attribute and the ref-attribute.
16A solution based on nested tables cannot achieve the same layout effect. If the data cells

of the given minimal example contain more information, so that data cells of a row have
different heights, correct alignment is not ensured any more.

3.5. PARAMETER GUIDELINES FOR FORM MESSAGES 33

Listing 3.8

01 <form callee="target">

02 <table>

03 <tr><td><object param="customers" id="first">

04 <index>1</index>

05 <input type="String" param="name"></input>

06 </object>

07 <object param="adress" id="firstPart" in="first"></object>

08 </td>

09 <td><object param="customers" id="second">

10 <index>2</index>

11 <input type="String" param="name"></input>

12 </object>

13 </td>

14 </tr>

15 <tr><td><input type="int" param="age" in="first"></input></td>

16 <td><input type="int" param="age" in="second"></input></td>

17 </tr>

18 <tr><td><input type="String" param="street" in="firstPart"></input>

19 </td>

20 <td></td>

21 </tr>

22 <tr><td><input type="int" param="zip" in="firstPart"></input>

23 </td>

24 <td></td>

25 </tr>

26 </table>

27 </form>

28

29 // web signature of target

30 <param name="customers" type="Person[]"></param>

for example an int attribute would be required.
For formal parameters data entry may be specified as required with the data-

attribute17. For a parameter of form message type this enforces that exactly
one object element for it is provided.

The fact that formal parameters of form message type are optional enables
the support of cyclic user defined data in forms. The form in listing 3.9 targets a
web signature that consists of a formal parameter of type ParticipantList. The
type ParticipantList, which is a dynamic data structure, is given in Figure 3.2.
In the example form input capabilities for three list elements are given. On
submit an object net of three list elements is created. For the next-pointer of the
third element a null object is filled in. Dynamic creation of input capabilities for
dynamic data structures in a statically type-safe manner is possible by recursive

17Listing 3.10, line 2

34 CHAPTER 3. NSP CODING GUIDELINES

ParticipantList

name:String

next
0..1

Figure 3.2: Example Cyclic Form Message Type.

definitions of dialogue submethods, which are introduced in section 4.2.

Listing 3.9

01 <form callee="target">

02 <object param="participant">

03 <input type="String" param="name"></input>

04 <object param="next">

05 <input type="String" param="name"></input>

06 <object param="next">

07 <input type="String" param="name"></input>

08 <object param="next">

09 <input type="String" param="name"></input>

10 </object>

11 </object>

12 </object>

13 </object>

14 </form>

// web signature of target

<param name="participants" type="ParticipantList"></param>

NSP defines a fine granular mechanism for putting constraints on the at-
tributes of user defined data. For this purpose a parameter-element that defines
a formal parameter of form message type may contain constraints-elements.
Each of the constraints-elements must uniquely refer to a form message type
that is involved as a part in the definition of the formal parameter type. A
constraints-element contains a param-element for every attribute of the form
message type it refers to. The param-element can be used to pose on the
attributes one or several of the constraints that have been introduced in sec-
tion 3.21819.

Listing 3.10 gives examples for constraints on user defined data attributes.
18data=required, widget=required, widget=password, widget=textarea
19The mechanism is not recursive. The param-elements of a constraint specification must

not contain further constraints-elements.

3.6. DOCUMENT STRUCTURE GUIDELINES AND RULES 35

ParticipantList

next
0..1

Person

name:String
age:int

Address

street:String
zip:int

1

address

1participant

Figure 3.3: Example Complex Form Message Type.

Consider the form message type given in Figure 3.3. Again it is ParticipantList
- like in Figure 3.2 - but this time the type’s attribute has a form message
type. The attribute’s type is Person, which already served as an example be-
fore (Figure 3.1), but this time the cardinality of the address-association has
changed from 0..1 to 1, which depicts that the address attribute is required this
time. In listing 3.10 a formal parameter of type ParticipantList is defined. The
constraint specification in line 3 to line 6 causes, that the participant-attribute
is required. That is, whenever an object element for gathering data for a list
element for the actual parameter is generated, it must contain an object ele-
ment for its participant-attribute. There is no additional constraint posed on
the next-attribute. The next-attribute must be optional, because it forms a
cycle in the class diagram. Further constraint specifications ensure for example,
that for every Person object, the user has to enter a name, a street and a zip
code. Note that it would not be sufficient to constrain the street-attribute and
zip-attribute of the type Address to be required in order to achieve this20. The
address-attribute of the type Person must be required for this purpose, too21.
Without requiring the address-attribute, the whole address is optional. Requir-
ing street and zip code only, just enforces that these are required in the case
that an object element for the address is actually generated.

3.6 Document Structure Guidelines and Rules

The NSP coding guidelines for ensuring client page type safety has been de-
scribed in sections 3.2 to 3.5, this section completes the discussion by describing
remaining coding guidelines and rules concerning client page description safety.

20Listing 3.10, line 13, line 14
21Listing 3.10, line 10

36 CHAPTER 3. NSP CODING GUIDELINES

Listing 3.10

01 // web signature of target

02 <param name="participants" type="ParticipantList" data="required">

03 <constraints type="ParticipantList">

04 <param name="participant" data="required"></param>

05 <param name="next"></param>

06 </constraints>

07 <constraints type="Person">

08 <param name="name" data="required"></param>

09 <param name="age"></param>

10 <param name="address" data="required"></param>

11 </constraints>

12 <constraints type="Address">

13 <param name="street" data="required"></param>

14 <param name="zip" data="required"></param>

15 </constraints>

16 </param>

The first basic structure guideline demands that an NSP server page always
only generates well-formed XML. The corresponding coding rule for NSP code
states the following: the NSP document must be a well-formed XML document
and the Java block structure must be compatible with the XML block struc-
ture. The latter means that for every XML tag the corresponding dual tag
must occur in the same block, whereas as a necessary exception to this the Java
tags are ignored. Java tags must be considered merely as switches between the
programming language and the markup language with respect to the document
structure22 23.

The second structure guideline demands that an NSP server page always only
generates valid passive NSP/Java code. That means that an active NSP doc-
ument fragment must only generate valid content elements with respect to its
directly encompassing tags. Passive NSP code is essentially XHTML up to the
following differences:

• some element properties are supported by content elements instead of
attributes,

• some elements, e.g. the form element and the control elements, are mod-
ified,

• some new elements are introduced, e.g. the param element and the call
element,

22In technical terms java opening and closing tags are go-betweens of different lexical states.
23Alternatively the given coding rule can be reformulated more concisely in the following

way: The document must be well-formed XML. Then Java tags are ignored, instead every Java
block is considered a new document element. The document in quest must be well-formed
with respect to the resulting element set.

3.6. DOCUMENT STRUCTURE GUIDELINES AND RULES 37

• some content elements are not required, though their counterparts are
required in XHTML.

The first three differences pose no problems. The introduced modifications
are resolved when the final page, i.e. the XHTML page that is sent to the
browser, is generated. The fourth difference is discussed in the sequel, thereby
the coding guideline must be discussed with respect to the finally called page.

In XHMTL [172] some elements require that a certain kind of content ele-
ment appears at least once. In NSP these demands are dropped for pragmatic
reasons, not for technical reasons. For example in XHTML a list must contain
at least one item. A table must contain at least one row. A table row must
contain at least one table data cell. A select list must contain at least either one
option or one group of option. However most of these constraints are artificial24,
because browsers can, and current browsers do, cope with violations of these
constraints in a natural sensible way. For example, lists without items, tables
without rows and table rows without data cells are just not displayed. In NSP
it would be possible to define coding rules that ensure validity with respect to
the aforementioned constraints, but this would lead to unjustifiably complex
demands on the NSP code. For example, list items are typically provided by a
loop and in such a case the developer would have to add for example an initial
list item by sequencing. Therefore the NSP concept of client page description
safety is weaker than full XHTML validity25.

The coding rule for the second structure guideline is given, though a bit
verbose, with respect to sequencing, switch structures, and loops again. The
demands are irrespective of the parameter guidelines and rules given so far. Pure
Java code is considered neutral. In a sequence of document parts, all document
parts must be neutral or generate valid elements. In a loop the body must be
neutral or generate valid elements. In a switch structure all branches must be
neutral or generate valid elements.

24Moreover some of these constraints are ineffectual. For example though an item is required
for a list, it is not required that a list must not be empty. As another example, an interesting
constraint for table rows is not that a row contains at least one data cell, but that all rows of a
table contain the same number of data cells up to grouping with the column-span mechanism.

25Note that NSP client page description safety is partly stronger than XHTML validity as
well, e.g. at least two radio buttons are needed in order to form a valid composed radio button
control in the NSP approach.

38 CHAPTER 3. NSP CODING GUIDELINES

