
Chapter 2

Next Server Pages
Preliminaries

The Next Server Pages technology (NSP) [57][62][127] is presented by the con-
crete amalgamation of NSP concepts with the programming language Java [79].
In the NSP approach a server page is considered to be code of a programming
language with defined syntax and defined type system. In contrast, Java Server
Pages (JSP) [143][20] code is just a convenient notation for Java Servlets [49].
It is essentially a mix of HTML and Java code, which may occur inside special
opening respective closing scriptlet signs1. The semantics of a JSP server page
is given by the effect of a preprocessor that yields a Java Servlet by placing
the HTML parts of the server page into output statements and adding these
statements to the Java code that occurs inside the scriptlet signs.

2.1 A Motivating Example

The improvements of the Servlet API over raw CGI [38] programming, support
for retrieving values and a session mechanism, are available to JSP developers as
a matter of course, anyway JSP technology has the same disadvantages as other
CGI based technologies, as described in the introduction: JSP based systems
may lack client page description and type safety. JSP does not offer a natural
server-side call to server scripting code2.

As an instructive example consider the system that comprises the two server
pages given in listing 2.1 and listing 2.2. The first server page generates a
registration client page that contains a form for gathering a customer’s name

1Actually beyond being a convenient notation JSP technology offers some sophisticated
mechanisms like tag libraries and JSP actions , especially such for supporting the integration of
Java Beans into a server page. Furthermore JSP is intended to foster techniques for separating
content from layout. But all these issues are orthogonal to the current discussion.

2The combination of the JSP actions jsp:include and jsp:param does not provide a usual
type-safe parameter passing mechanism, it just provides a convenient notation for the low
level Java Servlet include mechanism.

7

8 CHAPTER 2. NEXT SERVER PAGES PRELIMINARIES

Listing 2.1

01 <html>

02 <head>

03 <title>Registration</title>

04 </head>

05 <body> <%

06 int j;

07 boolean c;

08 // computation of the variables j and c

09 for (int i=0; i<j; i++) { %>

10 <form action="http://localhost:8080/NewCustomer.jsp"> <%}%>

11 Name: <%

12 if (c) { %>

13 <input type="text" name="customer">
 <%

14 } %>

15 Age: <input type="text" name="age">

16 <input type="submit">

17 </form>

18 </body>

19 </html>

and age. This form targets a server page, that stores the received data to a
database and forwards the request to another server page. Several dynamic
errors may occur. First of all, the opening form tag in line 10 of listing 2.1
occurs inside a loop body. Only if the variable j has value 1 before the loop is
entered, a valid HTML document is sent to the browser. The input capability
for the customer name occurs underneath a control structure in line 13. Only
if the boolean variable c evaluates to true the input capability will actually
occur on the registration page. Listing 2.3 shows the result page for the case
that variable j has value 3 and variable c evaluates to false. The fact that
the form tag occurs three times in the client page is actually tolerated by some
of the ubiquitous web browsers, nevertheless it must be considered a dynamic
client page description error. For example, in the case that variable j has value
0 even a tolerant browser cannot recover from the error, because together with
the form tag the vitally information about the targeted page is missing.

As an example for a dynamic client page type error, assume that the cus-
tomer parameter of the business logic method in line 16 of listing 2.2 must not
be a null object, i.e. the targeted server page relies on the reception of a cus-
tomer name. However, it is not guaranteed that an input capability for the
customer name is offered to the user by the registration page. If no such input
capability occurs as in listing 2.3, no respective value is sent on submitting the
form and consequently the effort to retrieve such a value in line 10 of listing 2.2
will result in yielding a null object.

Even more obviously, the developer would like to have a tool that gives a
warning with respect to line 09 in listing 2.2, because a value bound to name

2.2. THE NSP DOCUMENT STRUCTURE 9

Listing 2.2

01 <html>

02 <head>

03 <title>NewCustomer</title>

04 </head>

05 <body> <%!

06 import myBusinessModel.CustomerBase; %> <%

07 String customer;

08 int age;

09 String foobar = request.getParameter("foobar");

10 customer = request.getParameter("customer");

11 try {

12 age = Integer.parseInt(request.getParameter("age"));

13 } catch(NumberFormatException e){

14 // error handling

15 }

16 CustomerBase.createCustomer(customer,age);

17 // further business logic %>

18 <jsp:forward page="Somewhere.jsp"/>

19 </body>

20 </html>

foobar will never be provided by a form of the registration page3.
Another kind of dynamic type error may occur with respect to the customer

age parameter. A user may enter a value that is not a number, which is an
event that must be caught by the developer. Appropriate error handling code,
either through client-side or server-side scripting, must be provided, which is a
tedious and error prone task.

2.2 The NSP Document Structure

NSP modifies and augments XHTML [172] due to the special needs of developing
parameterized strongly typed server pages. The modifications and augmenta-
tions are succinctly defined by an XML DTD of Core NSP in appendix C.1.
Most importantly, an implementation of NSP, be it a full fledged container or a
reference implementation that compiles NSP code to JSP code, will always only
send XHTML to the browser, and consequently NSP technology can be used
immediately with existing standard browsers, i.e. no plug-ins are needed4.

3The JSPick tool presented in chapter 6 is able to detect such sources of error.
4Though NSP is an XML document that is interlaced with imperative code, its objectives

must not be confused with that of Extensible Server Pages (XSP) [117], a dynamic XML
technology. XSP is an integral part of the XML publishing framework Cocoon [39], which
targets separation of concerns between content, logic, and style of web publishing applications.
In contrast, the NSP approach is not oriented too much towards building information archi-
tectures [155] for the time being, but towards improving the stability of enterprise information

10 CHAPTER 2. NEXT SERVER PAGES PRELIMINARIES

Listing 2.3

01 <html>

02 <head>

03 <title>Registration</title>

04 </head>

05 <body>

06 <form action="http://localhost:8080/NewCustomer.jsp">

07 <form action="http://localhost:8080/NewCustomer.jsp">

08 <form action="http://localhost:8080/NewCustomer.jsp">

09 Name:

10 Age: <input type="text" name="age">

11 <input type="submit">

12 </form>

13 </body>

14 </html>

The name NSP/Java is used for the concrete language that results from
merging NSP concepts with the programming language Java. If it is obvious
from the context that not only the entirety of NSP technology concepts is meant
the term NSP is used for NSP/Java, too. An NSP server page consists of a
signature definition, a java definition block and a core document. There are
NSP server pages that may be called across the net by a form or a link, others
may be called by another NSP server page on the server side in order to be
included. For NSP server pages that may be called across the net the core
document consists of a head and a body, for the other kind of server page the
core document content is enclosed in include tags. A first example is given in
listing 2.4 and listing 2.5,which shows the NSP counterpart of the customer
registration system, which has been discussed in section 2.1.

The signature of a server page is defined with appropriate parameter tags.
Attributes are used for specifying the name and the type of a formal parameter.

Definition 2.2.1 (Web signature) A web signature is a record type which
consists of the several specified formal parameters of an NSP server page as
labeled components.

We coin another term for the concept of web signature, namely formal su-
perparameter. Analogously, an actual superparameter is the entirety of actual
parameters provided by a form or a link targeting an NSP server page with
respect to a given formal superparameter.

Definition 2.2.2 (Web server page) A web server page is an NSP server
page that may be called across the net by a form or a link.

Definition 2.2.3 (Include server page) An include server page is an NSP
server page that may be called for inclusion into another NSP server page.
systems [102] with a tiered ultra-thin client architecture.

2.2. THE NSP DOCUMENT STRUCTURE 11

Listing 2.4

01 <nsp name="Registration">

02 <html>

03 <head>

04 <title>Registration</title>

05 </head>

06 <body><java>

07 boolean c;

08 // computation of the variable c </java>

09 <form callee="NewCustomer"><java>

10 if (c) {</java>

11 <input type="String" param="customer"></input><java>

12 } else {</java>

13 <hidden param="customer">"DefaultName"</hidden><java>

14 } </java>

15 Age: <input type="int" param="age"></input>

16 <submit></submit>

17 </form>

18 </body>

19 </html>

20 </nsp>

The web server pages are the front components of a tiered system’s pre-
sentation layer, therefore we use the term dialogue method synonymously for
such server pages throughout the dissertation, especially to distinguish them
from business methods. Similarly we use the term dialogue submethod for NSP
include server pages.

In NSP server pages Java code is be placed inside java tags. Some Java code
may be placed between the signature definition and the server page core. It
is called Java declaration in accordance with JSP terminology and hosts code
that is intentionally independent from the single server page invocation, like e.g.
import declarations or definition of state that is shared by all the several sessions.
Java code that occurs in the server page core is executed upon invocation of the
server page. The server page parameters are accessible in the inline Java code.
In addition to the tags it is possible to use java expression tags as a controlled
variant of direct, i.e. Java coded, writing to the output stream5.

In NSP no special non-XML syntax for expression scripting elements like
the JSP <%= and %> signs is available. Because of that it is not possible

5Note that a static type system like NSP’s cannot prevent such dynamic errors that result
from using the output stream to send computed description languages tags to the browser
directly. Generally, using the output stream for sending description language is considered
bad style and may lead to dynamic errors. It is an NSP rule that the output stream must
not be used in a way that corrupts the otherwise type and description safe NSP system. For
example, if a corrupted form that is caused by a prohibited use of the output stream contains
invalid input capabilities or a wrong number of input capabilities, this is considered just as a
dynamic error, like division by zero.

12 CHAPTER 2. NEXT SERVER PAGES PRELIMINARIES

Listing 2.5

01 <nsp name="NewCustomer">

03 <param name="customer" type="String"></param>

04 <param name="age" type="int"></param>

05 <java>import myBusinessModel.CustomerBase;</java>

06 <html>

07 <head>

08 <title>NewCustomer</title>

09 </head>

10 <body>

11 <java>

12 CustomerBase.createCustomer(customer,age);

13 </java>

14 <forward callee="Somewhere"></forward>

15 </body>

16 </html>

17 </nsp>

to generate NSP tag parts, especially attribute values may not be generated.
Element properties that may have to be provided dynamically are supported
by elements instead of attributes in NSP. As a result an NSP server page is
a completely block structured document and therefore it is possible to give a
precise convenient definition for the syntax of NSP, which is the essential basis
for detection and exploration of further concepts of syntax analysis and syntax
manipulation. Moreover an NSP server page is a valid XML [19] document.
Therefore NSP will benefit immediately from all new techniques developed in
the context of XML. In particular, NSP can be used in combination with XML
style sheet technologies [34][126].

NSP Forms and Hyperlinks

An NSP form specifies the targeted dialogue method via a callee attribute.
Somewhat similar to the parameter passing mechanism in ADA [171], a targeted
formal parameter of a called method is explicitly referenced by its name. For
this purpose the tags in line 13 and 15 of listing 2.4 have parameter attributes.

In the present simple example the form provides actual parameters exactly
for the formal method parameters, either by user input or hidden parameters.
In general the overall notion of type-safe calls of NSP methods demands for
sophisticated guidelines and rules for writing forms presented in chapter 3 and
a new innovative widget set presented in section 2.3.

The syntax of NSP hyperlinks follows the NSP form syntax, listing 2.6 pro-
vides an example. Therefore the NSP hyperlink syntax is very natural, i.e. no
low-level, tedious handling with special signs is needed in order to use hyperlinks
with parameters. An NSP link element must not contain any other code than
hidden controls and one linkbody element that gives the link text, in fact it must

2.3. NSP INTERACTION CONTROLS 13

contain exactly one hidden control of correct type for every formal parameter
of the targeted dialogue method.

Listing 2.6

01 <link callee="NewCustomer">

02 <hidden param="customer">

03 "John Q. Public"

04 </hidden>

05 <hidden param="age"> 32 </hidden>

06 <linkbody> underlined link name </linkbody>

07 </link>

A Motivating Example

All the code of the lines 7 to 15 of listing 2.2, which is needed for the reception
of parameters, becomes a two-line web signature declaration in listing 2.5.

In listing 2.1 the opening form tag is a loop body, which may lead to dynamic
errors. In NSP this is prevented from the outset by NSP syntax. An element
may only occur as a whole, i.e. with both opening and closing tag underneath
a control structure.

It is not ensured that the registration page generated by listing 2.1 offers an
input control for the customer name. In contrast, in the NSP code in listing 2.4
it is for example not allowed to omit line 13 without violating the NSP coding
guidelines, i.e. without provoking an error message at compile time.

Obviously faulty requests to non-existent parameters like in line 9 of list-
ing 2.2 are not possible in NSP code, because NSP is strongly typed and all
formal server page parameters have to be declared.

Furthermore in an NSP system it is statically ensured, that data provided
by the user is dynamically checked. That is, a server side dynamic error like
the one described for the age parameter in listing 2.2, would not be possible in
an NSP system because of the concept of active controls, which is introduced
in section 2.3.1 and 2.3.3.

2.3 NSP Interaction Controls

NSP supports the usual HMTL/XHTML controls, but they are confined and
elaborated further due to the special needs of a type-safe server pages technol-
ogy. Each control is supported by its own element. Each control has a param
attribute6, which is used to directly specify the name of the targeted formal pa-
rameter. Another usage of the param attribute is specifying a field of a complex
actual parameter of form message type as explained in section 3.5.

6The param-attribute replaces the name-attribute of HTML/XHTML controls.

14 CHAPTER 2. NEXT SERVER PAGES PRELIMINARIES

2.3.1 NSP Active Direct Input Controls

In NSP the input tag is used for a direct input field only7. NSP provides
different direct input fields for different programming language types. That
is NSP is typed already on the level of controls8. The type attribute is used
to specify the type of a direct input field9. The direct input controls of NSP
are active input controls in the following sense. A form that contains a direct
input field cannot be submitted if the user has entered data that is not type-
correct with respect to the field’s type. Instead of that an error message is
presented to the user. Furthermore in NSP a formal parameter can be specified
to be required by the developer. Then a form that contains a direct input field
that targets this formal parameter cannot be submitted if the user has entered
no data in this field. Again an appropriate error message is presented to the
user. Dynamic type checking of data provided by the user and dynamically
ensuring data entry are ubiquitous problems in web interface development. The
developer must provide solutions by either client-side scripting with one of the
ECMAScript [70][96] derivatives or server-side scripting, a tedious and error-
prone task. With the NSP notion of active direct input controls it is possible
to statically ensure the desired dynamic checks.

In NSP/Java the Java types int, Integer, String and the type Date of the
JDBC API [186] are supported by direct input fields. If data entry for a formal
parameter is optional and no data is entered by the user, a null object is passed
as actual parameter on submit. The single exception to this rule is the type
String: if no data is entered in a field for an optional parameter the empty
string is sent instead of a null object. For formal int parameters data entry
is implicitly required10. There are two further direct input capabilities for the
type String, i.e. a text area and a password field.

Related Work

The XForms standard [69] allows for specifying constraints on data gathered
by a form. Type correctness and entry requirements are important instances of
possible constraints. But the XForms approach goes beyond these. It is possi-
ble to specify arbitrary calculations and validations on the gathered data. An
event model allows for the appropriate reaction on the violation of the given
constraints. Similarly the PowerForms technology [16] defines a declarative lan-

7In HTML/XHMTL the input tag is used for a couple of conceptually unrelated controls,
like direct text input, radio buttons, check boxes etc. Every of these controls has its specifics,
especially the behavior of non-direct input controls differs fundamentally from the behavior
of direct input controls. Therefore in NSP every control type becomes a markup language
element.

8In HMTL/XHTML controls always only yield text, i.e. pure string data.
9In HMTL/XHTML the type attribute is used to specify a widget kind.

10The type int is a Java primitive type and no null object is available for signalizing that no
data has been entered. Alternatively it would be possible to select a certain int value to take
over the role of the null object, most probably zero. But then the receiving dialogue method
cannot distinguish between an actually entered data and the event, that no data has been
entered.

2.3. NSP INTERACTION CONTROLS 15

guage for expressing input formats and interdependencies between input fields.
Then client side code is generated for ensuring the declared constraints. Both
technologies allow for sophisticated constraints, however the notion of NSP ac-
tive controls is different. In XForms and PowerForms constraints can be given
with respect to forms. But it is not ensured, that all forms targeting a critical
server side action actually prevent the same errors from occurring. In contrast,
in NSP, strictly based on the typing of server pages, the constraints are given
for formal parameters of dialogue methods. This way it is possible to statically
ensure the desired dynamic checks, that is NSP active direct input controls are
dynamically type safe in the sense that they make NSP based systems type safe
with respect to dynamically entered data11.

2.3.2 Actual Object Parameters

In the NSP approach arbitrary objects can be passed virtually across the web,
i.e. passed to the user agent and passed to a dialogue method on submit in the
sequel. An object can be passed this way as hidden parameter, item of a select
menu, or value of a radio button or check box12. A value of primitive type is
just copied to the user agent and to the dialogue method on submit, thereby
preserving its present type. But NSP supports passing of objects of arbitrary
non-primitive types. Thereby, somewhat similar to the RMI parameter pass-
ing mechanism [164], two different parameter passing semantics are supported.
First, as a default, a reference to the object in quest is passed to the receiving
dialogue method. As an alternative, if the passed object is serializable [165], the
object is copied and a reference to this copy is passed to the receiving dialogue
method. Based on the semantics of serialization arbitrary deep copies of object
nets can be passed as parameters. At the extreme, choosing to pass an object
net as a completely deep copy fully coincides with the notion of message in the
sense of [178], i.e. data dictionary objects.

A hidden parameter, select menu item, radio button or check box value
must be given as a Java expression. This expression must have the type of
the encompassing control. The encompassing tags implicitly switch to a Java
expression modus, i.e. no additional expression tags are needed in order to
explicitly signalize a Java expression. Furthermore this rule applies wherever
appropriate in order to give a Java object as a certain desired property of a
control. For example a default value may be given for direct input fields. For
this purpose input field tags may contain a type-correct Java expression13 14.
Again the input field tags implicitly switch to a Java expression modus.

11A programming language is dynamically type safe, if untrapped errors are prevented [27].
12In HTML/XHTML only text, i.e. string data, can be passed as hidden parameter, item of

a select menu, or value of a radio button or check box. The JSP expression scripting element
supports implicit coercion for data that is convertible to String in order to send it to the user
agent. However the data is received as string value by the targeted server pages.

13The default value of a direct input field must match the input field’s type or it must be
the empty String.

14In HTML/XHTML the tag’s value attribute is used for specifying the default value.

16 CHAPTER 2. NEXT SERVER PAGES PRELIMINARIES

2.3.3 NSP Active Single Select Controls

NSP supports single select menus and multiple select menus, which are distin-
guished as usual by a multiple attribute. A select element has option content
elements. The NSP option element has no value attribute, instead of this it has
a value content element and a label content element. The value tags contain
a Java expression for a selectable data item. The label tags contain a Java
String expression that is displayed in the select menu control and denotes the
respective data item. In NSP the radio button is supported by an element.

Single select menus and radio buttons are conceptually equal. If a single
select control targets a formal parameter that is not an array parameter, it
must be ensured that the user actually chooses one of the items. Therefore
NSP select menus and radio buttons are active again: a form encompassing
such a control cannot be submitted unless the user has finally chosen one of the
items15.

2.3.4 Auxiliary NSP Interaction Controls

NSP supports hidden parameters. Hidden parameters offer a way to overcome
the stateless nature of the hypertext transfer protocol [72]. More importantly16

hidden parameters enable arbitrary reuse of a dialogue method in contexts where
only a part of its web signature data should be determined by user interaction.

NSP distinguishes between two check box concepts, that reflect the two
different ways in which the HTML/XHTML check boxes are used. First, the
check box element yields an actual boolean parameter, true for a checked check
box, false for an unchecked check box. Second, a set of value check box elements
can be used to offer the user a choice of items. In the value check box tags a
selectable data item is given as a Java expression. Assume a set of value check
boxes that target the same formal parameter. Such a value check box set is
conceptually equal to a multiple select menu, because the user may check a
couple of the offered alternatives. A value check box set yields a value array on
submit.

15Both NSP radio buttons and NSP select menu options have checked attributes. Instead
of employing activity for radio buttons and select menus the NSP approach could rely on
the request for comment document on HTML [12] that specifies: if no radio button resp.
select option is checked, the user agent chooses the first one as pre-selected. Unfortunately a
lot of ubiquitous browsers do not implement this behavior. For this reason even the HTML
specification [150] differs from [12] in this point. As a result a set of radio buttons or a single
select menu may yield no actual parameter as a result. But exactly this must be prevented,
if a formal parameter is targeted that requires data entry. There are two other solutions to
this problem than active controls. First, an NSP container could dynamically ensure that
a checked attribute is added when needed, that is it could simulate the behavior demanded
by [12]. Second, the NSP type system could be extended by checks that forces the author
to ensure that checked entities always are provided. Anyway single select capabilities with
no pre-selected items are desired, simply in all situations where all of the items are equal
candidates.

16Hidden parameters allow for maintaining state between client/server exchanges. Other
opportunities for this are techniques based on client state persistence [105] and URL-rewriting.
Anyway today’s APIs offer high-level session-tracking mechanisms.

2.3. NSP INTERACTION CONTROLS 17

2.3.5 NSP Submit Button

In HTML/XHMTL the submit button can also specify a name/value pair17.
This is an important facility that is used in web applications to offer the user
a choice between different functionalities for the same form18. For this pur-
pose the values that represent different functionalities must be defined and the
targeted script must switch to the correct alternative on submit. The respec-
tive code quickly becomes fault-prone, it’s design suffers an ”ask what kind”19

antipattern. In contrast, in the NSP approach it is possible to specify a tar-
geted dialogue method for each submit button. The NSP submit element has
an optional callee attribute for this purpose. If no callee-attribute is given
for a submit-element, the callee-attribute of the encompassing form is inher-
ited. Furthermore a submit-element can contain hidden-parameters, again NSP
gains from its solid theoretical basis: a form can target a variety of different
dialogue methods providing different functionality and possessing different web
signatures. This allows for flexible and at the same time robust design.

17In HTML/XHMTL the submit button is subsumed under the input element.
18A form is allowed to have several submit buttons.
19We take a generalized view of ”don’t ask what kind” as explained in 8.1.2.

18 CHAPTER 2. NEXT SERVER PAGES PRELIMINARIES

