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How honeybees respond to heat stress
from the individual to colony level
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A honey bee colony functions as an integrated collective, with individuals
coordinating their behaviour to adapt and respond to unexpected disturbances.
Nest homeostasis is critical for colony function; when ambient temperatures
increase, individuals switch to thermoregulatory roles to cool the nest,
such as fanning and water collection. While prior work has focused on bees
engaged in specific behaviours, less is known about how responses are coordi-
nated at the colony level, and how previous tasks predict behavioural
changes during a heat stress. Using BeesBook automated tracking, we follow
thousands of individuals during an experimentally induced heat stress, and
analyse their behavioural changes from the individual to colony level. We
show that heat stress causes an overall increase in activity levels and a spatial
reorganization of bees away from the brood area. Using a generalized frame-
work to analyse individual behaviour, we find that individuals differ in their
response to heat stress, which depends on their prior behaviour and correlates
with age. Examining the correlation of behavioural metrics over time suggests
that heat stress perturbation does not have a long-lasting effect on an individ-
ual’s future behaviour. These results demonstrate how thousands of
individuals within a colony change their behaviour to achieve a coordinated
response to an environmental disturbance.
1. Introduction
Collective systems coordinate their behaviour to enable properties that are
beyond the limits of any single individual [1]—from flocks of birds evading a
predator [2], to army ant trails that self-assemble [3], to epithelial cells sealing
wounds [4]. In social insects, individual workers perform different tasks that
contribute to colony function, creating a superorganism: a cooperative unit to pro-
pagate their genes [5–7]. Workers in these colonies can be organized according to
age, experience, genes, physiology, social interactions or some combination
[8–15]. There is a long history of research into task allocation in the social insects
(reviewed in [16,17]), but recent methodological advances have enabled investi-
gators to track thousands of individuals throughout their entire lives [18–23].
These automated-tracking tools have been employed on colonies in a stable
state [18,24–28] or in response to the introduction of foreign stressors such as
pesticides or disease [29,30]. However, fewer studies have examined how
colony organization adapts to environmental disturbances; previous research in
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this area has relied on limited or manual observations to exam-
ine subpopulations or changes in the behaviours of specific
individuals [31,32].

Social insects have a range of preferred temperatures,
and a colony can adapt its behaviour to counteract changes
in ambient temperature to maintain nest homeostasis [33,34].
The ability of social insects to regulate and maintain a stable
nest temperature is considered a major selection pressure for
social evolution [34] because temperature fluctuations have
a negative impact on brood development, which reduces
colony fitness [35,36]. As a result, social insects have developed
different adaptations for maintaining a steady temperature
profile. In termites, the mound structure allows effective air
circulation, thus facilitating both gas exchange and heat loss
during bouts of extreme heat [37]. In ants, workers transport
brood to different nest regions to develop at suitable tempera-
tures, choosing locations to account for seasonal and even daily
variations in nest temperature [38]. Honeybees, however, rear
their brood in hexagonal cells where the brood cannot be
relocated at will [39,40]. Therefore, honeybees use a suite of
behavioural responses to actively modify nest temperature to
maintain homeostasis.

Honeybee brood is carefully maintained at 34.5 ± 1.5°C
[41]. When ambient temperatures drop, workers vibrate
their thoracic muscles to generate heat and cluster tightly
together to conserve heat. When ambient temperatures
rise, workers use a diverse set of behaviours to cool the
nest: fanning air to increase air circulation, collecting and
spreading water for evaporative cooling, heat shielding to
dissipate heat and even evacuating the nest [32,42–46]. As
long as the colony has access to water, workers can maintain
nest homeostasis even when ambient temperatures reach
as high as 60°C [42]. Although a colony must forage for
water to cool their nest when temperature increases, this
does not affect the colony’s rate of nectar intake [44]. A pre-
vious study on colony and individual responses to heat
stress found task switching to be essential for coping with
heat stress, though the role of inactive workers, or ‘reserve
labour’, was unclear [46]. Overall, these results suggest that
colonies adapt to environmental stressors in a way that
does not entirely disrupt other colony processes. Further-
more, while the different behavioural responses to heat
stress are well recognized, it is unknown how colony-scale
reorganization takes place during a heat stress; for example,
the roles and distributions of task specialists, generalists
and reserved labour remain unclear. At an individual level,
it is not known how a bee’s previous role predicts their
response to heat stress, and whether there are distinct behav-
ioural groupings structured by age or experience across the
entire colony.

In this study, we use automated tracking of individually
tagged honeybees to examine how a colony responds
to heat stress at both the individual level and the colony
level. We experimentally induced an ambient heat stress by
heating the room in which the colony was housed. Using
continuous tracking data of several thousand honeybees,
we examine how the in-nest placement and movement
characteristics of bees in the colony change in response to
the heat stress. After analysing the colony-wide behavioural
changes, we use a generalized analysis framework based
on behavioural metrics to label and describe changes in
the behaviour of individual bees, and to ask how previous
behaviour relates to subsequent behavioural changes during
the heat stress. These results describe how individual bees
respond to a heat stress, and how individual behavioural
changes are organized across thousands of bees in the colony.
2. Methods
2.1. Overview
The goal of this experiment was to observe how a collective system
responds to a heat stress at both the individual level and the colony
level. Using an observation hive stockedwith individuallymarked
honeybees (see below), we heat stressed the colony between 10.00
and 13.00 on five non-consecutive dates in 2019 (Trial 1: 08–23,
Trial 2: 08–25, Trial 3: 08–31, Trial 4: 09–06, Trial 5: 09–09). The
day prior to each heat stress trial was used as a control to measure
and compare individual- and colony-level behaviour, with the
exception of Trial 3, where other manipulations were performed
on this day; we therefore omit this day in control versus heat
stress comparisons. The heat stress was induced by raising the
temperature of the observation hive room from approximately
25°C to approximately 45°C using a personal heater (Bomann Ker-
amik-Heizlüfter HL 1097 CB). Temperature was logged every 10 s
using K-type thermocouples (Omega Engineering), which were
placed in the observation hive room, and embedded into the nest
(honey frame, brood frame and exit frame; figure 1a). Thermo-
couples were connected to ARDUINO UNO 3 boards equipped
with a four-channel thermocouple interface (CN0391-ARDZ
shield, Analog Devices) running with a custom script to log the
temperature of four thermocouples into a csv-file once per minute.

2.2. Observation hive and data processing
This study was conducted at the University of Konstanz, Germany
(47.6894°N, 9.1869° E) using colonies of thewestern honeybeeApis
mellifera carnica. On 10 May 2019, we installed a honeybee colony
(4000 unmarked workers and a single queen) into a three-frame
observation hive (observation hive dimensions: 490 × 742 mm;
‘Deutsche-Normal’ frames: 395 × 225 mm). From 14 May to 23
September 2019, every 4–5 days, we individually marked 250–
400 newborn workers with BeesBook tags [20,21] and introduced
them to the observation hive (as in [28]). To create maps of the
nest contents (as in [28,47]), we manually outlined the following
nest regions onto plastic sheets which were then digitized: honey
storage, pollen storage, brood nest, empty comb, wooden frames,
peripheral galleries and dance floor (defined by where waggle
dances were observed).

The observation hive was recorded at 3 frames s−1 from 5 June
to 23 October 2019 using 4 Basler acA4112-20um cameras fitted
with Kowa LM25XC lenses. The entire experimental apparatus
(observation hive, cameras, lighting, temperature loggers, heaters
and structural support) was kept in the dark to mimic the lighting
conditions of a natural nest; to capture images, we used infrared
light (850 nm 3W LEDs), which the bees cannot perceive [48]. By
using the BeesBook tracking system [20,21], we processed the
raw images from the video recordings to detect and decode each
individually marked bee in the observation hive. For each bee,
we obtain tag ID, ID detection confidence, XY position in the
nest, bee orientation and time of detection. All data were stored
in a PostgreSQL database. To determine the death date for each
individual, we used a Bayesian changepoint model (as in [15]).

2.3. Behavioural metrics, principal component analysis
and clustering

As in our previous work [28], we used behavioural metrics calcu-
lated over a specific time bin to quantify the behaviour of each
bee throughout the heat stress. These metrics represent space use
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Figure 1. Nest contents, temperature and colony-level response to heat stress. (a) Nest contents across all five experimental trials, showing both sides of the three-
frame observation hive. The nest entrance is located at the lower right on the exit frame. The X symbols show the locations of the thermocouples for temperature
measurements inside the nest. (b) Temperature readings in the observation hive room and inside the nest during the heat stress trials. The heat stress was conducted
between 10.00 and 13.00 (pink-shaded area). (c) Colony-level averages before, during and after the heat stress for all five trials (line colours denote trial and pink-
shaded area denotes the heat stress). The top row shows the average fraction of time individual bees spent on brood, honey and the exit frame. The bottom row
shows the fraction of the total tracked bees estimated as outside of the hive, as well as the average speed and dispersion of tracked bees. See also electronic
supplementary material, figure S1 for analogous plots of average metrics on control days.
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within the nest (time spent on honey, brood or exit frame; distance
from nest exit), detection (time observed, time outside and number
of outside trips) and movement/spatial localization (speed, dis-
persion and fraction of nest visited). See [28] for further details on
how these metrics are calculated from trajectory data. The metrics
included here are the same as in [28], but with two differences
due to the experimental manipulations. Firstly, instead of using
‘time spent on the dance floor’ as a space-use metric, we instead
used ‘time spent on the exit frame’, which does not assume that
dances are occurring. Therefore, we also omit ‘number of dance
floor visits’. Secondly, we do not include ‘speed circadian coeffi-
cient’ because this metric is defined using data over an entire day,
and here, we compare data for specific periods within the same
day (e.g. before, during and after the heat stress). After filtering
the raw trajectory data (detection confidence threshold greater
than or equal to 0.8; minimum of 10 detections within the time
bin), we calculated behavioural metrics averaged over time bins
of different sizes, including 1min, 5min and 1 h.

A bee’s barcode is not always detected when it is in the
observation hive, for example if the bee is upside-down or in a
dense crowd of other bees. Therefore, we used both detection
and exit distance to estimate when a bee was outside [28]. This
procedure uses 1min binned values of time observed and
median exit distance to estimate when a bee exited and sub-
sequently returned to the nest; this time scale is fine enough to
resolve when bees enter/exit but long enough to obtain reliable
detections when a bee is in the nest. A bee is estimated to have
exited the nest in a time bin texit if the time observed in texit is
less than a threshold of tobs = 2 s, and if the median exit distance
in time bin texit− 1 is less than a threshold dexit = 18.75 cm (1500
pixels). The bee is considered to have re-entered in bin tenter if
the time observed in tenter is greater than or equal to tobs. The
threshold values used here for tobs and dexit are the same as
used in our previous work [28]. After applying this procedure
to estimate whether each bee was inside or outside of the nest
for each 1min time bin, we averaged the results and saved in
the 5min and 1 h binned data structures.

We used data averaged in 5min bins to plot trends over time
(figure 1), and data averaged in 1 h bins to compare behaviour
before, during and after the heat stress in subsequent figures.
Including all heat stress and control days, we included data
from a total of 2974 unique tracked bees.

To perform principal component analysis (PCA), we con-
structed a data matrix Aij, where each row i represents one
behavioural hour (i.e. the behavioural metrics for a single tracked
bee during a single hour), and the columns j = 1,…, 10 are the
different metrics (e.g. time spent on brood). Aij includes data
for the hour of the morning period (9.00–10.00 am), i.e. before
the heat stress, and the hour of the midday period (12.00–
13.00), i.e. during the heat stress, for all heat stress experimental
days. Note that it is possible that a bee is still alive but not
detected during an entire hour, so the total number of behaviour-
al hours with data for the morning and the midday periods were
slightly different. However, this rarely occurred (3.3% of bees
were observed during one period and not the other), so we
simply include all data for the PCA and clustering steps.

Following standard procedures, we normalized the data
matrix A so that the column mean is zero and the column
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standard deviation is 1. We then performed PCA on the resulting
matrix to obtain the components.

We use clustering to create a simplified description that
captures the primary behaviour differences among individual
bees during the morning and heat stress periods. Each cluster
represents bees with similar behaviour during the associated
time period. We perform Ward hierarchical clustering using the
package scipy.cluster.hierarchy in Python. To examine
changes in behaviour from before to during the heat stress, clus-
tering is performed separately on behavioural hours from the
morning (before the heat stress) and the midday (during
the heat stress). This is done by selecting data, i.e. Aij(hour =
9.00−10.00) to obtain the morning hour clusters M* and Aij-

(hour = 12.00−13.00) to obtain the heat stress clusters H*. The
full dendrogram structure for clustering applied to each period
is shown in electronic supplementary material, figure S2. To
facilitate analysis along the main axes of variation, five clusters
are used for the morning period and four clusters for the heat
stress period.

To calculate the per cent difference of cluster assignments
from morning to heat stress, we formed a matrix Fij where each
entry is the fraction of bees in the morning cluster i that were
also in the heat stress cluster j (electronic supplementary
material, table S1 shows the counts of bees from the morning
to heat stress clusters). To generate a null expectation for this
overlap between clusters, we calculated F�ij ¼ mih j, where mi is
the fraction of observed bees in cluster i in the morning and hj
is the fraction of observed bees in cluster j during the heat
stress. The per cent difference is then calculated as ðFij � F�ijÞ=F�ij.

2.4. Correlation of behaviour over time
To determine how long the behavioural changes associated with
the heat stress lasted, we computed changes in the correlation
coefficient for behavioural metrics of individual bees over time.
To calculate the correlation across all behaviour metrics (rather
than just for individual metrics), we use a vector generalization
of the Pearson correlation coefficient. Consider an hour h1 with
corresponding data Xij, and an hour h2 with corresponding
data Yij, where the index i represents an individual bee and j
each behavioural metric. Before calculating the correlation
coefficient, each behavioural metric j in both Xij and Yij is
first normalized using common factors; for this, we use the
per-metric mean and standard deviation of the matrix Aij.
The correlation coefficient Ci for bee i in hours h1 and h2 is
then calculated as follows:

Ci(h1, h2) ¼
P

j XijYijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j XijXij

� � P
j YijYij

� �r : ð2:1Þ

This correlation is calculated for bees i that have data in both Xij

and Yij. We used h1 = 9.00–10.00 for both control days and treat-
ment days, and then h2 in hour increments until 9.00 the
following day. The correlation coefficient Ci(h1, h2) varies between
1 and−1; positive values represent a positive correlation, zero is no
correlation and negative values are a negative correlation. This cal-
culation allows us to determine how quickly and for how long the
behaviour of a colony deviates during a heat stress, relative to the
behaviour on days without a heat stress.
3. Results
Following [15,28,49], we introduced barcode-tagged bees into
an observation hive and tracked their behaviour continuously
over an entire summer. Between 23 August and 9 September
2019, we conducted five heat stress trials. During this time of
year, the colony’s nest structure contained honey in the upper
frames, brood care areas in the middle frames and empty
comb in the lower frames (figure 1a). On each experimentally
induced heat stress day, room heaters were switched on at
10.00 and off at 13.00. This led to a quick increase in the ambient
room temperature, which was followed by an increase in nest
temperature (figure 1b). Note that in the absence of a heat
stress, there are temperature differences among nest areas:
while honey and exit frame areas are similar to ambient temp-
erature, brood ismaintained at a higher, consistent temperature
of approximately 35°C (see time before the heat stress in figure
1b). During the heat stress, the temperature on all nest areas—
including honey, brood and the exit frame—increased to a
maximum of approximately 40°C. However, the brood area
temperature increased at a slower rate compared with the
honey and exit frame. Given that the brood area temperature
was higher than other areas before the heat stress, the overall
change was comparatively less during the heat stress than
other nest regions.
3.1. Colony-level behavioural changes
We observed overall changes in nest use and movement
characteristics among bees in the colony during the heat
stress. Workers spent less time on central brood areas and
more time on honey areas at the top of the nest, and as temp-
erature increased, the number of bees that exited the hive
increased (figure 1c). In addition, we saw large changes in
movement characteristics during the heat stress: on average,
bees moved faster and were less localized (figure 1c). The
latter is demonstrated by the increase in dispersion, which
quantifies a bee’s range regardless of its nest location [28].
Although response trends were similar each day, more bees
exited the nest during Trial 2 in comparison with other
trials, and in the late afternoon after the heat stress during
Trial 1, there was an additional short time period with an
increase in speed and dispersion. These colony-level patterns
demonstrate that bees responded to our experimental manip-
ulations by altering both where and how they move within
the nest, and that similar changes were seen during each
heat stress trial (figure 1).
3.2. Distributions of individual movement
and space use

We next examine in further detail how bees responded to the
heat stress using the distributions of metrics for hour-long
periods at different times of the day—morning (9.00),
midday (12.00) and afternoon (15.00)—for both heat stress
and control days. Control days include days prior to the
heat stress days (see §2), and on these days, we see only
small changes in overall space use (figure 2a) and the distri-
butions of behavioural metrics at different times of day
(figures 2c; electronic supplementary material, S1). During
the heat stress, figure 1c shows that there were large changes
in the average space use and movement characteristics
among bees in the colony. However, a change in average
values can be caused by either a small number of individuals
making large changes or a large number of individuals
making smaller changes. The large shift in the distributions
of the movement metrics of speed and dispersion demon-
strates that the latter is true; nearly all bees changed their
behaviour during the heat stress (figure 2d ).
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Figure 2. Spatial positioning and movement during heat stress. (a,b) The distribution of bees in the nest, showing histograms for hour-long periods in the morning
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We also ask where the queen went during the heat
stress. Although limited to a single individual, the detected tra-
jectory points for the queen before, during and after the heat
stress period are shown in electronic supplementary material,
figure S6. Similar to the overall trendswe observed forworkers,
during the heat stress, the queen became more active and
moved away from the brood area, without exiting the nest
(electronic supplementary material, figures S6 and S7).

On control days and in the morning time prior to the heat
stress, the distributions of time on brood, honey and the exit
frame have a ‘U-shape’, with the highest representation of
values for time fractions near 0 or 1 (note, however, that there
are many more values near 0 than 1). We use the terminology
‘specialists’ to refer to bees who spend nearly all their time on
a specific nest substrate (i.e. time fractions near 1 for a certain
substrate). Note that as in our previouswork [28], this definition
is basedon spatial location in thenest andnot onobservations of
performing particular tasks. For example, brood specialists
spend nearly all of their time on the brood area. By using this
definition, we see that while the average time on honey areas
increased during the heat stress, the number of brood and
honey specialists decreased during the heat stress. Note that
because we use ‘specialist’ to refer to bees that spend a large
fraction of time on a particular substrate, the decrease in the
number of specialists during the heat stress is linked to
the increase in dispersion; if bees are ranging around more
of the nest (i.e. higher dispersion values), then they are less
likely to remain on a single nest area, and this is exactly what
we observe during the heat stress (i.e. fewer specialists).

While figure 1c shows that on average, more bees exit the
hive during the heat stress, figure 2d shows that this increase is
accounted for by some bees spending more time outside, while
the majority of bees remained inside the nest during heat
stress. By 15.00 in the afternoon, i.e. after the heat stress, we see
a decrease in dispersion and a re-emergence of both brood and
honey specialists, but that the distributions of all behavioural
metrics have not yet returned to their pre-heat stress levels.

Given the large shift in the distribution of individual
speeds during the heat stress (figure 2d ), we further examine
the relationship between speed and substrate occupancy in
the nest. By using the midday hour, figure 2e compares the
distribution of speed conditional on the fraction of time
spent on either brood, honey or the exit frame for control
versus heat stress days. On control days, bees spending a
high amount of time on brood tend to be more active (i.e.
higher average speed over time) than other individuals
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working inside the nest (figure 2e). Previous work saw a
similar trend, where a greater proportion of time spent on
brood was associated with higher median speed values
(see fig. 4D and cluster 5 in [28]). During the heat stress, how-
ever, there is no longer a clear association between substrate
occupancy and movement speed. This reinforces the general
conclusion that, during heat stress, all bees move faster and
range over a larger area and are less likely to spend all
their time on a specific substrate.

3.3. Generalized behavioural responses to heat stress
using principal component analysis and clustering

To build upon the previous sections, we next take a general-
ized approach that combines all behavioural metrics using
PCA and clustering, to investigate how individuals change
their behaviour during the heat stress [28,50]. PCA extracts
the dominant axes of behavioural variation, i.e. the relative
weightings of the behavioural metrics that explain the largest
percentage of variance in the data, and reduces data by pro-
jecting onto these dominant (orthogonal) axes. Positive/
negative PCA weightings indicate greater/lesser values of a
metric relative to an average that includes both morning
and heat stress hours (see §2).

The first three PCA components explain 69.8% of the var-
iance across all metrics, with the first two components
accounting for 54.7%. Figure 3a shows the weightings of the
metrics in first three PCA components. PCA 1 represents
location in the nest, with positive projections representing bees
close to the exit and/or going outside. PCA 2 represents
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differences in activity levels,withpositive projections associated
with higher speed, dispersion and fraction of nest visited. PCA3
represents specific in-nest spaceuse, andpositive projections are
strongly weighted by increased time spent on brood areas.
Beyond these, the fraction of variance explained by the sub-
sequent components is [10, 6.4, 4.7, 3.7, 1.9, 1.4, 1:8� 10�28%].
Note that the heuristic ’Kaiser rule’ suggests that the first three
PCA components are significant to retain, with the fourth com-
ponent as marginal since its variance explained is equal to that
of a single input variable [51]; we therefore plot only the first
three components. We see differences in the distributions of
the first three PCA components during the heat stress, but
most noticeably in PCA2,where the increase of the average pro-
jection represents the general increase in activity levels (see also
figures 1 and 2).We also see a decrease in themedian projection
onto PCA 1, which reflects the general shift of bees spending
timeonhoneyareas, far from thenest exit, during the heat stress.

We use clustering to form a simplified description that
captures the main differences in behaviour among individual
bees during the morning and heat stress periods. Clustering
is applied separately to the morning and heat stress data
(i.e. assignments are based on bee behaviour during the
respective time periods), and we use a four-cluster division
for the morning and a four-cluster division for the heat
stress (electronic supplementary material, figure S2). This
allows us to identify links between morning and heat stress
behaviours by mapping which bees belonged to which clus-
ters in the morning and during the heat stress. Note that, as in
our prior work [28], the clustering approach is used as a
descriptive tool to describe the space of continuous variation
in individual behaviour.

During the morning period (M), the five-cluster division
defines the following behavioural groups: (M1) near the
exit, (M2) going outside, (M3) on honey stores and far from
the nest exit, (M4) other nest regions and peripheral areas
and (M5) mainly on brood (figure 3c,d ). During the heat
stress period (H), the four-cluster division defines: (H1)
near the exit, (H2) going outside, (H3) mostly on honey
stores and (H4) high dispersion (figure 3c,d ). Note that
because the M* and H* clusters are defined independently,
bees from any of the morning clusters can be subsequently
observed in any of the heat stress clusters (e.g. bees in M1
can be in any of the clusters H1 through H4).

We use the cluster representation to map behaviour
between the morning and the heat stress period, and identify
how an individual’s earlier behaviour affects their role during
the heat stress. Bees that were near the exit (M1) or already
going outside (M2) tended to have similar space use during
the heat stress (i.e. a tendency to belong to heat stress clusters
H1 or H2; figure 4). Bees in these clusters (M1 and M2; H1
and H2) tended to be older than bees in other clusters
(figure 3e). Bees that were on brood areas in the morning
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(M3) moved to the top of the nest during the heat stress
(figure 4a), with a tendency to belong to heat stress cluster
H3 (on honey areas) (figure 4e). The clusters (M5 and H3)
tended to include the youngest bees (figure 3e). Bees in the
other morning clusters (M3 and M4) tended to move towards
honey areas at the top of the nest (figure 4a), but with weaker
predictability for which heat stress cluster they would join.
M4 bees, for example, were nearly equally likely to be in
any of the four heat stress clusters (figure 4e).

We can also use the four heat stress behavioural clusters
(H1–H4) to examine the details of where these individuals
were before the heat stress (figure 4b). Bees that were near
the exit during heat stress (H1) or went outside (H2) tended
to be closer to the exit during the morning period than
other bees; comparing these two clusters, however, H2 bees
were the closest to the exit and spent the most time outside
in the morning period. Bees mostly on honey stores during
the heat stress (H3) tended to be on brood areas during the
morning period. Bees in H3 as well as those that had high
dispersion during the heat stress (H4) tended to spend little
time on the exit frame in the morning period.

In the behavioural clusters, we see differences in themedian
ages of bees. In the morning period, M5 (brood workers)
tends to include younger bees, M3 and M4 tend to include
middle-aged bees and M1 and M2 have the highest median
age. During the heat stress, median ages representing young,
middle-aged and old bees are represented by clusters H3, H4,
and H1 and H2, respectively. Looking at the PCA, we see that
PCA 1 is clearly linked to age (electronic supplementary
material, figure S3). This demonstrates that there is overlap
in the ages of bees between the morning and heat stress
behavioural clusters and age differences are indeed linked to
behavioural differences both before and during the heat stress.

To summarize, we see that the bees that evacuate during a
heat stress tend to be older and were already present close to
the nest exit or outside of the nest before the heat stress (M1
and M2 → H1 and H2). In addition, we see that bees that
were engaged in brood care in the morning (M5) move
towards the top of the nest, thereby clearing out the brood
nest, but not evacuating the nest entirely.

3.4. Colony recovery after the heat stress
To determine how long the behavioural changes associated
with the heat stress lasted, we computed the correlation
coefficient for behavioural metrics of individual bees between
a starting hour h1 and a later hour h2. We set h1 to be the
morning hour (9.00–10.00) of a particular day, and increase
h2 for successive hour periods until the next day (see §2).
We use this correlation coefficient to compare how behaviour
changes over time on control days versus heat stress days.

Even without a heat stress, bees change their behaviour
over time, and therefore, we see a decrease in the behavioural
correlation coefficient on control days (black line, figure 5). On
heat stress days, however, the correlation coefficient decreases
rapidly, with median values becoming negative at hour 12.00
(red line, figure 5). Once the heat stress ends, the correlation
increases as the bees ‘recover’ from the heat stress and resume
their typical behavioural repertoires. By the evening on the
heat stress days (approx. 21.00), the correlation coefficient is
no different than on control days (figure 5). This suggests that
while bees do change their behaviour dramatically during the
heat stress, the perturbation does not have a long-lasting effect
on their future behavioural trajectories.
4. Discussion
In this study, we used automated tracking to examine how
a colony coordinates its response to heat stress at both the
individual level and colony level. At the colony level, the
heat stress induced bees to move away from brood areas
and towards honey areas at the top of the nest, as well as
some bees to exit the nest. Nearly all bees increased their
average activity levels during the heat stress. The increase
in activity and individual dispersion led to a temporary
loss of ‘specialists’ (used here to refer to individuals who
spend nearly all of their time on a specific nest substrate)
during the heat stress [28]. By using PCA and clustering,
we described the dominant behavioural groups and used
these groups to link individual behaviour before and
during the heat stress. This revealed that individual bees
engaged in brood care in the morning moved towards the
top of the nest during the heat stress and that the bees that
evacuated the nest during the heat stress tended to be older
and were already spending time close to the nest exit or out-
side of the nest before the heat stress. Following the heat
stress, the overall trends of bee substrate occupancy and
activity levels soon began to return to their pre-heat stress
levels, suggesting that their behavioural states or tendencies
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are retained (i.e. are not completely modified due to the heat
stress). We quantified this using the correlation coefficient of
all behavioural metrics over time, which shows that while
bees do change their behaviour dramatically during the
heat stress, the perturbation does not have a long-lasting
effect on the future behaviour of individuals.

During a heat stress, bees take on different activities such as
water collection, fanning, heat dissipation and nest evacuation.
Typically, fanning happens near the exit to increase airflow into
and out of the nest [43,52]. Because of their proximity to the
exit, it is possible that H1 cluster bees participated in fanning.
Bees in the H4 cluster had the highest dispersion values;
among other activities, these bees may have been active in
receiving and dispersing water [32,44]. As in [31,32], we
found that the number of bees outside of the nest increased
during the heat stress. Although we did not attempt to dis-
tinguish between pollen, nectar and water foragers, the
increase in bees outside of the nest is consistent with pollen
and nectar foragers continuing their work alongside a set of
water foragers during the heat stress [44,53].

Prior research suggests that ‘task switching’ functions as a
primary driver of bees adopting thermoregulation-related
tasks, though the role of recruitment of reserved labour is
not clear [31,54]. In [31], the proportion of bees standing
still inside the nest was used as a proxy for inactivity. Johnson
found that during the heat stress, the proportion of inactive
bees did not change, and in subsequent days, the inactive
bees were not consistently inactive—leaving their role ambig-
uous. In our experiments, however, we observed that the
average activity of nearly all bees increased during the heat
stress, which suggests a general colony-level response and a
potential role for inactive or ‘reserved’ individuals in mitigat-
ing heat stress. These differences could potentially be due to
the higher temperatures reached in our experiments or
simply due to the timescale of our analysis—we examined
behaviour averaged over a (relatively) long period using con-
tinuous tracking, instead of an instantaneous distribution of
specific metrics among bees at a given time.

Automated barcode tracking enables the long-term identi-
fication and tracking of individual bees. While we used
trajectory data to calculate behavioural metrics, a promising
direction for future research is to combine barcode tracking
with supervised machine learning techniques to automati-
cally detect specific behavioural events [22,25]. Combining
these methods would facilitate not only the analysis of indi-
vidual behavioural changes over extended time periods but
also the identification of specific behaviours such as fanning
or standing still. These additional data could be used, for
example, to examine switching dynamics between beha-
viours, or how fanning behaviour spreads among bees as
temperature increases in the nest [55].

At the colony level, a sufficient number of bees must be
assigned to each task to ensure an adequate overall response
that maintains safe nest temperatures for the developing
brood. One proposed mechanism for achieving this is the
‘frequent quitting/task switching’ model, in which bees fre-
quently quit their current task and seek out another [54].
Simulations demonstrated that this simple mechanism can
effectively allocate bees to tasks that require more attention, if
the bees are attracted to these tasks by stimuli [54]. To describe
the response of different individuals, previous studies with
social insects have employed a threshold model in which indi-
viduals in a group differ in their response threshold levels
[16,49,56,57]. The effective individual threshold for a bee to
engage in fanning behaviour has been shown to depend on
social context (i.e. the number of other bees present) as well
as on the rate of temperature increase [58,59]. In addition, it
was seen that fanning activity spreads across individuals,
and bees previously engaged as fanners were more likely to
initiate the spread of fanning to other surrounding bees [55].
This emphasizes that not only external stimuli but also inter-
actions with other bees contribute to an individual’s decision
of what to do next [15].

Future research could use targeted manipulations to inves-
tigate how the age distribution and within-nest structure affect
the general distribution of response behaviours among bees in
the colony. For example, removing all or a proportion of older
or younger bees, systematically, and observing how the
distribution of individual responses changes highlight such
differences between individual and collective action. While
the observation hive had honey on the top frames and brood
in the middle frames during our trials, manipulations could
systematically vary these placements to see how this influences
the overall response. Although we observed bees move
onto honey areas, repeating the experiment after swapping
the honey frames to the lower part of the nest could answer
whether the redistribution of bees is specific to honey areas
or if it is driven by other thermoregulatory factors that favour
movement to comb areas far from the exit, regardless of what
they contain. Furthermore, while we investigated behaviour
by using age-matched cohorts, future research could evaluate
or change individual aspects other than age that are related
to a bee’s heat response, such as gene expression [60] or
neuromodulatory factors [61] or previous tasks performed
and thermoregulatory experience. In summary, by using data
from thousands of individually marked bees, we showed
how a colony’s organization changes and adapts to rapidly
changing environmental condition within their nest.
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