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Abstract
We consider the deformation of a geological structure with non-intersecting faults that can be represented by a layered system
of viscoelastic bodies satisfying rate- and state-depending friction conditions along the common interfaces. We derive a
mathematical model that contains classical Dieterich- and Ruina-type friction as special cases and accounts for possibly large
tangential displacements. Semi-discretization in time by a Newmark scheme leads to a coupled system of nonsmooth, convex
minimization problems for rate and state to be solved in each time step. Additional spatial discretization by a mortar method
and piecewise constant finite elements allows for the decoupling of rate and state by a fixed point iteration and efficient
algebraic solution of the rate problem by truncated nonsmooth Newton methods. Numerical experiments with a spring slider
and a layered multiscale system illustrate the behavior of our model as well as the efficiency and reliability of the numerical
solver.

Keywords Rate- and state-dependend friction · Multibody coupling · Mortar methods · Nonsmooth multigrid
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1 Introduction

Stress accumulation and release in geological fault networks
play a crucial role in earthquake dynamics. The phenomenol-
ogy of faults is ranging from subduction zones like the Nasca
plate and strike-slip faults like the San Andreas fault to mul-
tiscale fault systems like the Atacama zone. Strongly varying
time scales between the occurrence and duration of slip
events suggest to complement experimental studies in the
field (or in the lab [38]) by numerical simulations.

In the underlyingmathematical description, theDieterich-
Ruina model of rate- and state-dependent friction (RSF) [40]
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has become a standard for the frictional behaviour along
the faults [7, 35, 37]. It can be regarded as an extension of
simple Tresca friction with rate- and state dependent fric-
tion coefficient μ = μ(V , θ) that is increasing/decreasing
with increasing/decreasing sliding velocity or slip rate V
involving some relaxation effect as expressed by the state
θ . The variational structure of RSF has been identified and
first exploited by Pipping et al. [33]

The simulation of rupture and slip events in seismic haz-
ard analysis has quite a history (cf., e.g., [3, 8, 21, 25] and the
references cited therein). Utilizing a discontinuous Galerkin
(DG) scheme in space in connectionwith arbitrary high-order
(ADER) time integration, de la Puente et al [10] developed a
numerical method for the dynamic simulation of slip events.
This method was later generalized to three space dimen-
sions [29] and cast into the software package SeisSol that
was successfully utilized for the simulation, e.g., of the 2016
Kaikōura earthquake cascade [45]. More recently, a different
approach based on a diffuse representation of faults was first
applied to subduction zones [19, 44, 46] and later extended to
strike-slip faults [9]. This approach has the potential to allow
for much more complicated fault systems because the faults
have to be no longer resolved exactly by the underlying finite
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elementmesh. However, this advantage currently comeswith
high computational cost due to a lack of efficient algebraic
solution techniques.

In this paper, we extend a variational approach to the sim-
ulation of subduction zones [32] to a layered fault system
with RSF. More precisely, we consider the deformation of
a geological structure with non-intersecting faults that can
be represented by I viscoelastic bodies undergoing small
viscoelastic deformations and large tangential displacements
with RSF contact conditions. Assuming existence of a suf-
ficiently regular contact mapping, we formulate a general
mathematical model that contains Dieterich–Ruina friction
as a special case. Fault opening is forbidden for notational
convenience, but could be included in a straightforward way.

Time discretization is performed by a classical Newmark
scheme, resulting in a coupled system of nonsmooth, convex
minimization problems that has to be solved in each time
step. Decoupling this system by a fixed point iteration leads
to a problem for the velocity (and thus for the rate) with given
state, and an independent state problemwith given rate. Both
the rate and the state problem can be rewritten as convexmin-
imization problems admitting unique solutions. For a related
coupled problem with unilateral contact, as arising from the
mathematical description of subduction zones, existence and
uniqueness of solutions was established by Pipping et al. [30,
33] using fixed point arguments.

Spatial discretization of the rate problem is performed by a
mortar method in the spirit of Krause andWohlmuth [24, 48,
49]. This approach has the advantage that it provides nodal
block separation of the nonsmooth nonlinearity which allows
for direct application of globally convergent Truncated Non-
smooth Newton Multigrid (TNNMG) methods [14–16]. The
state problem is discretized by piece-wise constant finite
elements. For given rate, the resulting algebraic problem
decouples into independent scalar problems for each of the
nodal values, which can be solved, e.g., by simple bisection
or even explicitly.

While both our mathematical model and our numerical
solution methods are applicable in d = 2, 3 space dimen-
sions, our numerical experiments are restricted to d = 2 for
reasons of computational complexity. We consider a spring
slider with I = 2 bodies and a layered network with I = 5
bodies separated by 4 faults subject to prescribed velocities
at the upper boundary. We perform self-adaptive time step-
ping to efficiently resolve strongly varying velocities during
loading, rupture, and sliding. Spatial discretization is based
on triangulations as obtained by adaptive refinement concen-
trated at the faults. The associated hierarchy of finite element
spaces is used for the algebraic TNNMG solver of the rate
problems with given state as arising in the fixed point itera-
tion mentioned above.

For the spring slider we observe the periodic occurrence
of mostly unilateral slip events, similar to related simulations

of subduction zones [32]. These slip events are nicely cap-
tured by adaptive time stepping, while the number of outer
fixed point iterations and inner multigrid iteration remains
almost the same for all time steps. Simulation of the layered
network exhibits an interesting coincidence of periodic slip
events along the upper fault with loading phases and oscilla-
tory behavior on the others. We observe essentially the same
efficiency of time stepping, fixed point iteration, and multi-
grid as for the spring slider which illustrates the robustness
of our numerical solution procedure, also with respect to the
number of faults.

2 Mathematical modelling

In the following section we will introduce the mathematical
model for layered fault systems with multiple faults and rate-
and state-dependent friction. To this end we will extend the
variational approach introduced in [32] for the case of two
faults. The introduced model is based on the assumption that
each layer undergoes small viscoelastic deformations, while
the relative tangential displacement between different layers
can be large.

2.1 A layered fault systemwith rate- and
state-dependent friction

We consider a geological structure containing a system of
faults which is represented by a deformable body with ref-
erence domain Ω ⊂ R

d , d = 2, 3, that, along the faults, is
decomposed into I subdomains Ωi , i = 1, . . . , I ,

Ω =
I⋃

i=1

Ω i .

We assume that these subdomains are non-empty, bounded
Lipschitz domains, do not penetrate each other and are lay-
ered in the sense that at most two subdomains are in contact
at any point in R

d (see Fig. 1).
Then, the subdomains can be ordered such that there is a

common interface Γ F
i,i+1 = Ω i ∩ Ω i+1, i = 1, . . . , I − 1,

and all other intersections of subdomains are empty. Setting
Γ F
0,1 = Γ F

I ,I+1 = ∅ for notational convenience, the boundary
∂Ωi of Ωi is disjointly decomposed according to ∂Ωi =
Γ D
i ∪ Γ N

i ∪ (Γ F
i−1,i ∪ Γ F

i,i+1), into a Dirichlet, a Neumann,
and a contact boundary, respectively. We set

Γ D =
I⋃

i=1

Γ D
i , Γ N =

I⋃

i=1

Γ N
i , Γ F =

I−1⋃

i=1

Γ F
i,i+1.

For v = (v1, . . . , vI ) with vi : Ωi → R
d , i = 1, . . . , I ,

we define the restrictions vT = (vT ,1, . . . , vT ,I−1) and
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Fig. 1 A fault system Γ F with I = 4 subdomains and I − 1 = 3
layered faults

vB = (vB,1, . . . , vB,I−1) of v to Γ F with

vT ,i = vi+1|Γ F
i,i+1

, vB,i = vi |Γ F
i,i+1

i = 1, . . . , I − 1,

denoting the restrictions from the top Ωi+1 and the bot-
tom Ωi , respectively (see Fig. 1). It is convenient to identify
vT = (vT ,1, . . . , vT ,I−1) and vB = (vB,1, . . . , vB,I−1) with
functions vT and vB defined on Γ F by vT |Γ F

i,i+1
= vT ,i and

vB |Γ F
i,i+1

= vB,i , i = 1, . . . , I − 1. Let n = (n1, . . . , nI )

where ni ∈ R
d stands for the outer normal toΩi , i = 1, . . . I .

Note that ni is an inward normal to Ωi+1 on Γ F
i,i+1. In par-

ticular, nT = (nT ,1, . . . , nT ,I−1) and nB = −nT are top and
bottom normals on Γ F , respectively. In the following, most
quantities will be defined in terms of the bottom side.

We suppose that a body force f acts on all ofΩ and surface
forces f N act on the Neumann boundary Γ N . On the Dirich-
let boundary Γ D the velocity u̇(t) of the displacement field
u(t) of the deformable body Ω is fixed at all time instants
t > 0. We set u(t) = u̇(t) = 0 on Γ D for convenience,
though all further considerations can be generalized to the
case of inhomogeneous boundary conditions in a straightfor-
ward way.

We assume that the boundary forces are compressive in the
sense that no fault opening occurs. This means that neighbor-
ing bodies Ωi and Ωi+1, i = 1, . . . , I −1, remain in contact
throughout the evolution.

We consider a deformation field

u = (u1, . . . , uI ) ∈ H1(Ω1)
d × · · · × H1(ΩI )

d

where ui is the deformation of the subdomain Ωi . Through-
out the paper we assume that the deformations ui within
each subdomain Ωi are small, while the relative displace-
ment between different subdomains can be large. Thus we
will use a (geometrically) linear elastic approach inside of
the subdomains Ωi while the coupling conditions have to
take care of potentially large deformations.

Large deformation coupling conditions will be defined
in terms of the deformed subdomains. Given the deforma-

tion fields ui the associated displacements are given by
Id+ui leading to the deformed subdomains (Id+ui )(Ωi ).
The actual contact surface of the deformed subdomains is
then given by Cu = (Id+uB)(Γ F ) ∩ (Id+uT )(Γ F ). In the
following, we assume that each Id+ui is injective, i.e. that
each ui is regular enough to avoid self-penetration of Ωi .
Furthermore, we assume that deformations are small, such
that different surfacesΓ F

i,i+1 do not get in contact after defor-
mation. Then, the deformed contact boundary can be pulled
back to the bottom and top reference domain according to

Γ
F,u
B = (Id+uB)−1(Cu) ⊂ Γ F ,

Γ
F,u
T = (Id+uT )−1(Cu) ⊂ Γ F .

In the following, we will parameterize the top reference
domain Γ

F,u
T over the bottom one Γ

F,u
B by the bijective con-

tact mapping

πu : Γ
F,u
B → Γ

F,u
T , πu = (Id+uT )−1 ◦ (Id+uB),

which maps each bottom point x ∈ Γ
F,u
B to the unique top

point y ∈ Γ
F,u
T , such that the corresponding displaced points

(Id+uB)(x) and (Id+uT )(y) coincide. As a consequence,
the deformed contact boundary Cu can be parametrized both
over Γ

F,u
B using Id+uB = (Id+uT ) ◦ πu and over Γ

F,u
T

using Id+uT = (Id+uB) ◦ (πu)−1.
Now, consider any piecewise defined scalar or vector field

v = (v1, . . . , vI ) ∈ H1(Ω1)
k × · · · × H1(ΩI )

k

with k = 1 or k = d. Then, we define the jump of v across
the deformed contact boundary Cu on the contact reference
domain Γ

F,u
B according to

[v]u = vB − vT ◦ πu on Γ
F,u
B . (1)

Contact conditions and friction laws will be stated in
terms of normal and tangential components on the deformed
contact boundary Cu . To this end, let i = 1, . . . I and
denote by nu(x) an outer normal to (Id+ui )(Ωi ) at the point
(Id+ui )(x), x ∈ Γ F

i,i+1 ∩ Γ
F,u
B , i.e. nu is the pullback of

an oriented normal field of the deformed contact boundary
Cu = (Id+uB)(Γ

F,u
B ) to Γ

F,u
B using the map Id+uB . Then

we can decompose any vector field on Γ
F,u
B according to

its normal and tangential components with respect to the
deformed configuration as

v = vt + vnn
u, vn = v · nu, vt = v − vnn

u .

It is important to note that the tangential and normal compo-
nent are defined in terms of the u-dependent normal field nu
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that is defined (piecewise) on the deformed bottom subdo-
mains (Id+ui )(Ωi ) and not with respect to the normal field
of the reference subdomains Ωi .

We state a closed-fault condition (no penetration and no
fault opening) by prescribing that the relative motion of the
deformed subdomainsΩi andΩi+1 is tangential to the actual
contact surface Cu , i.e.

0 = [u̇]n · nu . (2)

As a consequence, the jump of the relative tangential velocity
satisfies

[u̇]nt = [u̇]n − ([u̇]n · nu)nu = [u̇]n on Γ
F,u
B .

The closed-fault condition is complemented by the bal-
ance of normal forces

(σ (u)n)B = −ωu(σ (u)n)T ◦ πu (3)

onΓ
F,u
B ,whereσ (u)denotes the stress tensor onΩ .Note that

the normal force (σ (u)n)T is a force per surface area, such
that the change of the area element induced by the pullback to
Γ

F,u
B using πu has to be compensated by the weighting fac-

tor ωu = √
det((Dπu)T Dπu + nB ⊗ nB), while the minus

sign compensates for the change of the normal direction on
opposing sides. Note that the balance of normal forces Eq.
3 can alternatively be phrased as a jump condition with a
transformed weighting factor ωu ◦ (πu)−1.

Utilizing [u̇]ut = [u̇]u , we prescribe a rate- and state-
dependent friction law of the form

−σt ∈ ∂[u̇]uφ([u̇]u, α) on Γ
F,u
B . (4)

Here, we used the decomposition (σ (u)n)B = σt + σnnu of
the stress field (σ (u)n)B on the bottom side into its normal
and tangential components

σn =σ n(u) = (σ (u)n)B · nu,
σt =σt (u) = (σ (u)n)B − σ(u)nu,

respectively, and ∂[u̇]uφ([u̇]u, α) denotes the subdifferential
of a state-dependent convex functionalφ(·, α) to bedescribed
below. Note that the stress vector (σ (u)n)B is computed with
respect to the referencenormalnB ,while its decomposition in
tangential and normal components is computed with respect
to the deformed configurationwith the corresponding normal
nu . This reflects the fact that we assume small deformations
within the subdomains while the relative deformations of
subdomains can be large.

For given relative slip rate |[u̇]u |, the evolution of the state
α is given by

− α̇ = ∂αψ(α,
∣∣[u̇]u∣∣) on Γ

F,u
B ,

−α̇ = 0 on Γ F \ Γ
F,u
B (5)

with a second convex functional ψ(·, |[u̇]u |). Note that the
state α remains constant on Γ F \ Γ

F,u
B where no contact

occurs.
Assuming a visco–elastic Kelvin–Voigt material law, and

fixing some final time T0 > 0, we are now ready to state the
following formal description of the deformation of a bodyΩ

with a layered fault systemΓ F and rate- and state-dependent
friction.

Problem 1 (Layered fault system with rate- and state depen-
dent friction) Find

u : Ω × [0, T0] → R
d and α : Γ F × [0, T0] → R

such that

σ (u) = Aε(u̇) + Bε(u) in Ω \ Γ F

(Kelvin–Voigt material) (6)

div σ (u) + f = ρü in Ω \ Γ F

(balance of momentum) (7)

with boundary conditions,

u = u̇ = 0 on Γ D (Dirichlet condition)

σ (u)n = f N on Γ N (Neumann condition)

frictional contact conditions,

[u]u · nu = 0 on Γ
F,u
B

(closed-fault condition) (8)

(σ (u)n)B = −ωu(σ (u)n)T ◦ πu on Γ
F,u
B

(balance of normal forces) (9)

−σt ∈ ∂[u̇]uφ([u̇]u, α) on Γ
F,u
B

(state-dependent friction law) (10)
contact state condition,

− α̇ ∈ ∂αψ(α,
∣∣[u̇]u∣∣), on Γ

F,u
B

(rate-dependent state law) (11)

and non-contact interface conditions

−α̇ = 0 on Γ F \ Γ
F,u
B (non-contact state condition) (12)

(σ (u)n)B = 0 on Γ F \ Γ
F,u
B (bottom Neumann condition) (13)

(σ (u)n)T = 0 on Γ F \ Γ
F,u
T (top Neumann condition) (14)
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holds for all t ∈ [0, T0]. Here, ρ > 0 is a constant material
density, A and B stand for the viscosity and elasticity tensor,
respectively, and ε(v) = 1

2 (∇v + (∇v)T ) is the linearized
strain or strain rate tensor. In addition, we impose initial con-
ditions on the displacement u, velocity u̇, and state α.

Throughout the following,we assume that the tensor fields
A und B have the symmetry properties

Ai jkl = Akli j , Ai jkl = A j ikl ,

Bi jkl = Bkli j , Bi jkl = B j ikl

such that the stress tensorσ (u) and the bilinear forms induced
by A and B are symmetric.

Note that Problem 1 provides an extension of the model
presented in [33] that describes unilateral frictional contact
of a deformable body with a rigid foundation. The tangen-
tial velocity relative to the fixed rigid foundation appearing
in [33] is now replaced by the relative tangential velocity of
adjacent deformable bodies.

A further extension to fault opening can be performed by
replacingEq. 8 by the non-penetration condition [u]u ·nu ≤ 0
together with dynamical freezing and thawing of rate- and
state-dependent friction Eqs. 10, 11 in case of opening or
closing faults.

For ease of notation we will skip the superscript and
mostly write [·] = [·]u in the sequel.

2.2 The Dieterich–Ruinamodel

The current form of the Dieterich–Ruina model of rate- and
state-dependent friction goes back to [40] (see also [1, 6, 11,
27, 36, 43] and the papers cited therein). It is based on the
following ansatz for the friction coefficient

μ∗(V , θ) = μ0 + a log

(
V

V0

)
+ b log

(
V0θ

L

)
(15)

that depends on the rate V = |[u̇]| and involves positive
parameters μ0, V0 a, b, and L .

It is complemented by a suitable evolution of the state
θ > 0. Here, most popular choices are

θ̇ = 1 − V

L
θ (Dieterich’s law) (16)

and

θ̇ = −V

L
θ log

(
V

L
θ

)
(Ruina’s law). (17)

Following [33], we briefly sketch how this completely phe-
nomenological frictionmodel translates into a corresponding
state-dependent friction lawEq. 10 and a rate-dependent state

evolution Eq. 11 as postulated above. Starting from collinear-
ity of relative tangential velocity and stress

−σt | [u̇] | = [u̇] |σt |,

we postulate the state equation |σt | = μ∗(V , θ)|σn| with
normal stress σn = σn(u) to obtain

−σt = |σn|μ∗(V , θ)
[u̇]

| [u̇] | . (18)

In analogy to Tresca friction, we now replace the solution
dependent normal stress |σn| = |σn(u)| by a given parameter
|σ̄n| [33].

As μ∗(V , θ) becomes negative and thus meaningless for

0 ≤ V < Vm(θ) = V0 exp

(
−μ0 + b + log(θV0/L)

a

)

we replace μ∗(V , θ) by its regularization

μ(V , θ) =
{

μ∗(V , θ) if V ≥ Vm(θ)

0 otherwise
.

Then elementary calculations show that Eq. 18 takes the form
Eq. 10with the convex functionalφ∗(·, θ) : R

d → R defined
by

φ∗(v,θ)

=
{
a|σ̄n|

(
|v|log( |v|

Vm (θ)
)−|v|+Vm(θ)

)
if |v|≥Vm(θ)

0 otherwise
. (19)

It remains to show that the rate evolutions Eqs. 16 and 17
can be rewritten according to Eq. 11. Introducing the trans-
formed state α = log θ , Dieterich’s law Eq. 16 takes the form
Eq. 11 with the scalar convex function

ψDieterich(α, V ) = V

L
α + e−α. (20)

Ruina’s law Eq. 17 is recovered in terms of Eq. 11 by the
same transformation and the scalar convex function

ψRuina(α, V ) = V

L

(
1

2
α2 + log(V /L)α

)
. (21)

Inserting the transformed state θ = eα into Eq. 19, we obtain
the corresponding rate functional

φ(·, α) = φ∗(·, eα). (22)
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2.3 Weak formulation

We consider the Hilbert space H = H1(Ω1)
d × · · · ×

H1(ΩI )
d with the canonical inner product (v,w)H =∑I

i=1(vi , wi )H1(Ωi )
d , vi , wi ∈ H1(Ωi ), i = 1, . . . , I , and

introduce the closed linear subspace

H0 = {v ∈ H | v = 0 on Γ D}

of admissible displacements respecting the Dirichlet bound-
ary conditions. The normal jump condition is incorporated
in the closed affine subspace

Hu
0 = {v ∈ H0 | [v]u · nu = 0}. (23)

With the tensors A, B taken from Eq. 6, we introduce the
bilinear forms

a(v,w) =
∫

Ω\Γ F
Aε(v) : ε(w) dx,

b(v,w) =
∫

Ω\Γ F
Bε(v) : ε(w) dx, v, w ∈ H0, (24)

involving the linear strain tensor ε(v) = 1
2 (∇v + (∇v)T ),

together with the linear functional

(v) =
∫

Ω

f v dx +
∫

Γ N
f Nv ds, v ∈ H0. (25)

To ensure that the bilinear forms are well defined, we assume
that the tensor fields A und B are uniformly elliptic in the
sense that the bilinear forms inducedby A(x) and B(x)on the
space of symmetric d×d matrices are elliptic with constants
independent of x ∈ Ω .

By inserting the stress–strain relation Eq. 6 into the bal-
ance of momentum Eq. 7, testing with v − u̇, integrating by
parts, and exploiting the symmetry of σ (u) together with the
boundary conditions onΓ D andΓ N we then formally obtain

〈ρü, v − u̇〉 + a(u̇, v − u̇) + b(u, v − u̇) − (v − u̇)

=
∫

Γ F
(σ (u)n)B · (v − u̇)B ds

+
∫

Γ F
(σ (u)n)T · (v − u̇)T ds (26)

for all v ∈ H0 and t ∈ (0, T0). Here 〈·, ·〉 stands for the
pairingof H0 with its dual H∗

0 .Using the boundary conditions

Eqs. 13 and 14, integral transformation from Γ
F,u
T to Γ

F,u
B ,

and the normal force balance Eq. 9 we can rewrite the right
hand side in Eq. 26 as

∫

Γ
F,u
B

(σ (u)n)B · (v − u̇)B ds +
∫

Γ
F,u
T

(σ (u)n)T · (v − u̇)T ds

=
∫

Γ
F,u
B

(σ (u)n)B ·
(
[v − u̇]u + (v − u̇)T ◦ πu

)
ds

+
∫

Γ
F,u
B

ωu
(
(σ (u)n)T · (v − u̇)T

)
◦ πu ds

=
∫

Γ
F,u
B

(σ (u)n)B · [v − u̇]u ds.

For given state α, we introduce the convex functional �u

on H0 according to

�u(·, α) =
∫

Γ
F,u
B

φ([·]u, α) ds (27)

with the convex functional φ taken from the friction law Eq.
10. Now let v satisfy the closed-fault condition Eq. 8, i.e. v ∈
Hu
0 ⊂ H0. Then, utilizing the decomposition (σ (u)n)B =

σt + σnnu together with the friction law Eq. 10, the closed-
fault condition [v − u̇]u · nu = 0 on Γ

F,u
B , and the definition

of subdifferentials, we find that

∫

Γ
F,u
B

(σ (u)n)B · [v − u̇]u ds ≥ �u(u̇, α) − �u(v, α). (28)

Now we insert Eq. 28 into Eq. 26, in order to obtain the
desired weak form of the rate equation

〈ρü, v−u̇〉+a(u̇, v−u̇)+b(u, v−u̇)+�u(v, α)−�u(u̇, α)

≥ (v − u̇) ∀v ∈ Hu
0 . (29)

Similarly, for given velocity u̇ ∈ Hu
0 and thus given rate

|[u̇]u |, we define the convex functional �u on L2(Γ F ) by

�u(·, u̇) =
∫

Γ
F,u
B

ψ(·, ∣∣[u̇]u∣∣) ds (30)

with the convex functionalψ taken from the state law Eq. 11,
and test the state evolution Eq. 11with β ∈ L2(Γ F ) to obtain
the weak formulation

(α̇, β−α)L2(Γ F )+�u(β, u̇)−�u(α, u̇) ≥ 0 ∀β ∈ L2(Γ F ).

(31)

This formulation automatically satisfies the non-evolution
condition Eq. 12 for the state α on the non-contact boundary
Γ F \Γ F,u since �u is defined on L2(Γ F ) but only depends
on values of α on the contact boundary Γ F,u .

We are now ready to state the weak formulation of
Problem 1
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Problem 2 (Weak formulation) Find

u ∈ H1((0, T0), H0) ∩ H2((0, T0), H
∗
0 ) and

α ∈ H1((0, T0), L
2(Γ F ))

such that u̇ ∈ Hu
0 and

〈ρü, v−u̇〉+a(u̇, v−u̇)+b(u, v−u̇)+�u(v, α)−�u(u̇, α)

≥ (v − u̇) ∀v ∈ Hu
0 , (32)

(α̇, β − α)L2(Γ F ) + �u(β, u̇) − �u(α, u̇)

≥ 0 ∀β ∈ L2(Γ F ) (33)

holds for almost all t ∈ (0, T0) together with initial condi-
tions

u(0) = u0, u̇(0) = u̇0, α(0) = α0 (34)

with given u0 ∈ Hu0
0 and u̇0 ∈ Hu0

0 and α0 ∈ L2(Γ F ).

It is natural to start the evolution out of an equilibrium con-
figuration, i.e., with an initial displacement u0 that solves the
stationary problem

u0 ∈ Hu0
0 : b(u0, v) = (v) ∀v ∈ Hu0

0 . (35)

In our numerical experiments to be reported below, Eq. 35 is
solved iteratively by a fixed point iteration over the geometric
nonlinearity, i.e., starting with u00 = 0, a new iterate uν+1

0 is
computed as the (up to tangential rigid bodymotions) unique

solution of the corresponding linear problem on H
uν
0

0 .
To our knowledge, existence and uniqueness of solutions

of Problem 2 is widely open. In case of unilateral frictional
contact with a rigid foundation and Dieterich’s law Eq. 16,
long-time existence of solutions was established by Pip-
ping [31].

3 Semi-discretization in time

Based on the variational approach introduced in the previous
section we will now consider the discretization in space and
time. To this end we introduce a semi-discretization in time
in the present section, while the next section will be devoted
to extending this by a spatial discretization. For the temporal
discretization we first investigate two time-discrete subprob-
lems for the rate u̇ with given state α and vice verse, that are
then combined to a coupled time-discrete problem.

Utilizing Rothe’s method [20, 39], we perform a time dis-
cretization of Problem 2 leading to a sequence of continuous
spatial problems to be (approximately) solved in each time
step. To this end, the time interval [0, T0] is partitioned into
time steps 0 = t0 < · · · < tN = T0 with given step size
τn = tn+1 − tn > 0, and we write τ = τn for notational
convenience.

3.1 Rate problemwith given state

We first consider the rate problem Eq. 29 for given state α ∈
L2(�F ). Following [33], we apply the classical Newmark
scheme

u̇n = u̇n−1 + τ
2 (ün−1 + ün)

un =un−1 + τ u̇n−1 + (
τ
2

)2
(ün−1 + ün)

, n = 1, . . . , N ,

(36)

which is well-known to be energy-conserving, consistent
with second order, and unconditionally stable [17]. Utiliz-
ing Eq. 36, we eliminate

ün = 2
τ

(u̇n − u̇n−1) − ün−1,

un = un−1 + τ
2 (u̇n + u̇n−1),

, n = 1, . . . , N , (37)

from Eq. 29 at fixed time t = tn and freeze the solution
dependence in the closed-fault condition and in the friction
law at un−1 to obtain the spatial variational inequality

u̇n ∈ Hun−1
0 :

an(u̇n, v − u̇n)+�un−1(v, α) − �un−1(u̇n, α)

≥ n(v − u̇n), ∀v ∈ Hun−1
0 , (38)

for n = 1, . . . , N . Here, we have set

an(v,w) = 2
τ
(ρv,w) + a(v,w) + τ

2b(v,w) (39)

with (·, ·) denoting the canonical scalar product in L2(Ω)

and

n(v) = (v) + (ρün−1, v) + 2
τ
(ρu̇n−1, υ) − τ

2b(u̇n−1, υ)

−b(un−1, υ).

Note that ü0 is not given as an initial condition in the contin-
uous Problem 2. Assuming initial acceleration towards equi-
librium, ü0 is therefore computed from the auxiliar problem

ü0 ∈ H0 : (ρü0, υ) + b(u0, v) = (υ) ∀υ ∈ H0. (40)

Note that the jump terms [·]u , the contact boundary Γ F,u ,
and the contact mapping πu are all taken with respect to the
last deformed state (Id+un−1)(Γ

F ) of the contact boundary.
This eliminates the geometric nonlinearity associated with
large (relative) deformations of the contact boundary, and we
are left with the variational inequality Eq. 38 on the affine
subspace Hun−1

0 of H0 to be solved in each time step.
Asan(·, ·) is symmetric and positive definite and�(·, α) is

convex, the variational inequality Eq. 38 can be equivalently
written as the minimization problem

u̇n ∈ Hun−1
0 : J (u̇, α) ≤ J (υ, α) ∀υ ∈ Hun−1

0 (41)
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for the corresponding energy functional

J (υ, α) = 1
2an(υ, υ) + �un−1(υ, α) − n(υ).

The following lemma [12][Theorem 6.49] will be useful to
show existence and uniqueness of a solution.

Lemma 1 Assume that g : Γ F × R
s → R, s ∈ N, is a non-

negative function, such that g(x, ·) is lower semicontinuous
for almost all x ∈ Γ F . Then the induced functional

∫

Γ F
g(x, ·) dx : L2(Γ F ) → R ∪ {+∞}

is lower semicontinuous.

The convex functional�un−1(·, α)defined inEq. 27 for the
Dieterich–Ruina model Eq. 22 is proper and lower semicon-
tinuous by Lemma 1. Furthermore, by the assumptions on A
and B, the bilinear form (A(x)+ τ

2 B(x))(·) : (·) on the sym-
metricd×dmatrices is symmetric anduniformly ellipticwith
respect to x ∈ Ω . The following existence result therefore
follows fromKorn’s second inequality and [13][Lemma 4.1].

Proposition 1 Let f ∈ L2(Ω) and f N ∈ L2(Γ N ). Assume
that un−1, n = 1, . . . , N, avoids self-penetration so that
the contact mapping πun−1 and thus Hun−1

0 are well-defined.
Then the spatial rate problem Eq. 38 has a unique solution
u̇n ∈ Hun−1

0 and any given state α ∈ L2(Γ F ).

As a consequence of Proposition 1, the solution operator
R : L2(Γ F ) → Hun−1

0 ,

L2(Γ F ) � α �→ R(α) = u̇n ∈ Hun−1
0 , (42)

of the spatial rate problem Eq. 38 is well-defined, if no self-
penetration occurs in preceding time steps. This is a strong
assumption, as the contact conditions are taken explicitly.
Sufficient conditions for non-penetration as well as possible
extensions of the model to infinitesimal penetrations are of
interest and a topic of future research.

3.2 State problemwith given rate

Discretizing the state problem Eq. 33 with given velocity
u̇n ∈ Hun−1

0 by the implicit Euler method and freezing the
state law at un−1 yields the variational inequality

αn ∈ L2(Γ F ) :
(αn, β − αn)L2(Γ F ) + τ�un−1(β, u̇) − τ�un−1(αn, u̇)

≥ (αn−1, β − αn)L2(Γ F ) ∀β ∈ L2(Γ F ) (43)

which can be equivalently expressed as the minimization
problem

αn ∈ L2(Γ F ) : E(αn, u̇n) ≤ E(β, u̇n) ∀β ∈ L2(Γ F )

(44)

for the associated energy

E(β, u̇) = 1
2 (β, β)L2(Γ F )+τ�un−1(β, u̇)−(αn−1, β)L2(Γ F ).

Both for Dieterich’s law Eq. 20 and Ruina’s law Eq. 21, the
functional �(·, u̇) defined in Eq. 30 is convex, proper and,
by Lemma 1, lower semicontinuous (see the proof of [33]
[Proposition 4.4] for details). Hence, existence and unique-
ness again follows from [13] [Lemma 4.1].

Proposition 2 Both for Dieterich’s law Eq. 20 and Ruina’s
law Eq. 21, the spatial state problem Eq. 43 has a unique
solution αn ∈ L2(Γ F ) for n = 1, . . . , N and any given
velocity u̇ ∈ Hun−1

0 .

Proposition 2 gives rise to the solution operator S : Hun−1
0 →

L2(Γ F ),

Hun−1
0 � u̇ �→ S(u̇) = αn ∈ L2(Γ F ), (45)

of the spatial state problem Eq. 43.

3.3 Coupled spatial problem

Combining Eqs. 38 and 43, the time discretization of Prob-
lem 2 now reads as follows.

Problem 3 (Semi-discretization in time) Find u̇n ∈ Hun−1
0

and αn ∈ L2(Γ F ) satisfying

an(u̇n, υ − u̇n) + �un−1(υ, αn) − �un−1(u̇n, αn)

≥ n(υ − u̇n), ∀υ ∈ Hun−1
0

(αn, β − αn)L2(Γ F ) + τ�un−1(β, u̇n) − τ�un−1(αn, u̇n)

≥ (αn−1, β − αn)L2(Γ F ) ∀β ∈ L2(Γ F )

for n = 1, . . . , N with ün computed from Eq. 37 and
the auxiliary problem Eq. 40, and given initial conditions
u0, u̇0 ∈ Hu0

0 , α0 ∈ L2(Γ F ).

Recall, that Hun−1
0 is well-defined only if un−1 avoids self-

penetration, because the contact map πun−1 is not available
otherwise. This drawback could be overcome by introducing
an approximate contact map π̃ as in the spatial discretization
below.

For an unilateral version of Problem 3, i.e., a subduc-
tion zone with rigid foundation and Dieterich’s law, such
difficulties do not occur and existence and uniqueness have
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been shown in [30][Proposition 3.6.] based onBanach’s fixed
point theorem. In case of Ruina’s law, existence (but possi-
bly no uniqueness) was established utilizing Schauders fixed
point theorem (see [30][Corollary 3.8.] or [33][Theorem
5.14]).

4 Discretization in time and space

The semi-discretization in time given by Problem 3 forms
the basis of a full discretization in space and time to be intro-
duced in the present section. Individual layers are discretized
using a finite element ansatz and the non-penetration between
layers is enforced weakly using a mortar approach with dual
mortar test functions. Again we will first consider two sub-
problems:A rate problemwith given state and a state problem
with given rate. For the coupled, fully discrete problem we
then propose a fixed point iteration where each step can be
decomposed into these two subproblems.

For each i = 1, . . . , I we assume that the subdomain Ωi

is polygonal and denote by Ti a triangulation, i.e., a shape-
regular, simplicial partition, of Ωi with vertices N ∗

i . We
introduce the associated vector-valued, linear finite element
space

Si =
{
υ ∈ C(Ωi )

d | υ is linear on all T ∈ Ti and υ|Γ D
i

=0
}
.

Assuming that the Dirichlet boundary Γ D
i is resolved by

Ti , we define the set of nodesNi = N ∗
i \ Γ D

i . The resulting

partition T = ⋃I
i=1 Ti of Ω leads to the associated product

space

S=S1×· · ·×SI =span{λpe j | p ∈ N , j =1, . . . , d}⊂H0

with the nodes N = ⋃I
i=1Ni , the nodal basis functions

λp ∈ Si , p ∈ Ni , and the unit vectors e j ∈ R
d , j = 1, . . . , d.

We emphasize that the triangulations Ti and Ti+1 do not need
to match at the common interface Γ F

i,i+1, i = 1, . . . I − 1,

in the sense that the sets Ni ∩ Γ F
i,i+1 and Ni+1 ∩ Γ F

i,i+1
in general do not coincide. For ease of notation, we even
assume Ni ∩ N j = ∅ for i �= j so that we do not need to
distinguish shared nodes and unshared nodes in the following
presentation.

4.1 Mortar discretization of rate problemwith given
state

We consider the spatial rate problem Eq. 38 with given state
α ∈ L2(Γ F ).

In order to incorporate non-penetration and tangential
friction along the fault system Γ F , we first introduce its tri-
angulation

T F =
I−1⋃

i=1

T F
i , T F

i = {F = T ∩ Γ F
i,i+1 | T ∈ Ti },

with the nodes N F = ⋃I−1
i=1 N F

i , N F
i = Ni ∩ Γ F

i,i+1,
together with the corresponding trace space

SF = (υ1, . . . , υI−1) ⊂ L2(Γ F )d , υi ∈ SF
i = Si |Γ F

i,i+1
,

spanned by the nodal basis λpe j |Γ F , p ∈ N F , j = 1, . . . , d.

Note that the triangulation T F
i and the associated finite ele-

ment trace space SF
i on Γ F

i,i+1 are inherited from Ωi (the
bottom non-mortar side), and do not coincide with corre-
sponding traces from Ωi+1 (the top mortar side).

Mimicking the continuous case, the discretization of
non-penetration condition and friction law is based on an
approximation π̃ : Γ̃ F

B → Γ̃ F
T of the contact mapping

of πun−1 from the preceding time step with corresponding
approximations Γ̃ F

B ⊂ Γ F , and Γ̃ F
T ⊂ Γ F of Γ

F,un−1
B ,

and Γ
F,un−1
T , respectively. The approximations π̃ and Γ̃ F

B
come into play, because the top and bottom interfaces of
the deformed subdomains (Id+un−1,i )(Ωi ) may not match
due to discretization errors that arise from enforcing non-
penetration for un−1. In the following, we assume that the
non-mortar contact boundary Γ̃ F

B is resolved by a sub-
set of the fault triangulation T F . We refer to [5, 42] and
the references cited therein for algorithms to compute such
approximations of non-matching discrete intersections.

In analogy to Eq. 1 the jump of υ ∈ S across the discrete
deformed contact boundary is then defined by

[̃υ] = υB − υT ◦ π̃ on Γ̃ F
B .

In the spirit of [49], the non-penetration condition appearing
in Eq. 23 and the (tangential) jumps appearing in the func-
tionals �un−1 and �un−1 of the Dieterich–Ruina model will
be incorporated in a weak sense with respect to a discrete test
space spanned by dual mortar basis functions as introduced
by Wohlmuth [47].

To this end,wefirst introduce the set of non-mortar contact
nodes

Ñ F = N F ∩ Γ̃ F
B

as well as the deformed contact set

C̃ = (Id+un−1,B)(Γ̃ F
B ),
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and we work with the pullback of the L2(C̃) inner product to
Γ̃ F
B

〈v,w〉C̃ = (v ◦ (Id+un−1,B)−1, w ◦ (Id+un−1,B)−1)L2(C̃)
.

Then the dualmortar basis functionsϕq , q ∈ Ñ F , are defined
to be piecewise linear onT F , have the same support asλq |Γ F ,
and satisfy the bi-orthogonality property

〈λp|Γ F , ϕq〉C̃ = δp,q ∀p, q ∈ Ñ F (Kronecker-δ).

Note that dual mortar functions are typically discontinuous
and therefore not contained in SF . We refer to [47, 48] for
details about the construction.

We now define the linear projection � : S → S, compo-
nentwise according to

(�v) j =�v j =v j −
∑

p∈Ñ F

〈[̃v j
]
, ϕp〉C̃λp, j = 1, . . . d.

Observe that here and in the following we denote by � the
projection of both scalar and R

d -valued functions. The pro-
jection � gives rise to the direct splitting

S = V ⊕ W

of S into the image V = im� and the kernel W = ker� of

�. Utilizing the fact that
[̃
λp

] = λp for p ∈ Ñ F , we find
that these spaces can be written as

V =
{
υ ∈ S

∣∣∣ 〈[̃υ], ϕp〉C̃ = 0 ∀p ∈ Ñ F and j = 1, . . . , d
}

= span
{
μpe j

∣∣∣ μp = �λp, p ∈ N \ Ñ F and j = 1, . . . , d
}

and

W =
{
υ ∈ S

∣∣∣ υ(p) = 0 ∀p ∈ N \ Ñ F
}

= span
{
λpe j

∣∣∣ p ∈ Ñ F and j = 1, . . . , d
}

.

Thus, V consists of all functions in S which are weakly con-
tinuous across the deformed contact boundary with respect
to the pullback L2 scalar product 〈·, ·〉C̃ and the associated
dual mortar space (notice that point-wise continuity does not
hold in general).

Correspondingly, the basis functionsμp = �λp spanning
V are the usual hat functions λp on the mortar side, which
are extended in a weakly continuous way to the non-mortar
side, while the basis functions λpe j of W involve the usual
hat functions λp, p ∈ Ñ F on the non-mortar side which drop
down to zero across Γ̃ F

B .

Both normal and tangential jumps of v ∈ V are weakly
zero. As a consequence, both (weak) normal and tangential
jumps can be represented in terms of the incremental space
W . To this end, we define a nodal approximation nS of the
normal to the deformed contact set C̃ by

nS =
∑

p∈Ñ F

n pλp|Γ̃ F
B

, n p =
∑

F∈T F
p
nF

| ∑F∈T F
p
nF | , (46)

where T F
p denotes the set of simplices F ∈ T F

i with com-

mon vertex p ∈ Ñ F , and nF is an approximate normal to the
deformed face (Id+un−1)B(F), e.g. the average of the nor-
mal on (Id+un−1)B(F). We also introduce the approximate
tangent space TpC̃ = (span{n p})⊥ ⊂ R

d to the deformed
contact set C̃ associated with the nodal approximate normal
n p in p ∈ Ñ F . Similar to the continuous case, the discrete
normal field nS to C̃ is parametrized over Γ̃ F

B .
Next, we further split W into its normal and tangential

part

W = Wn ⊕ Wt ,

with

Wn =
{
λpx

∣∣∣ p ∈ Ñ F , x ∈ span{n p}
}

,

Wt =
{
λpx

∣∣∣ p ∈ Ñ F , x ∈ TpC̃
}

.

Excluding normal jumps, we now define a (non-conforming)
finite element counterpart of the solution space Hun−1

0
according to

Sun−1
0 = V ⊕ Wt . (47)

Such a mortar approach to non-penetration has been sug-
gested and first analyzed in [47].

The splitting suggests the unique decomposition

υ = υV + υW , υ ∈ Sun−1
0 (48)

where

υV = Πv =
∑

N \Ñ F

v(p)μp ∈ V

and

υW = (Id−Π)υ =
∑

p∈Ñ F

[υ]p λp ∈ Wt ,

denoting the weak nodal jump of v at p ∈ Ñ F by

[υ]p = (υ − Π(υ))(p) = (〈[̃υ j
]
, ϕp〉C̃)dj=1 ∈ R

d .
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Thenodal vectors [υ]p clearly satisfy [υ]p ·n p = 0 for all p ∈
Ñ F . Hence, vW can be regarded as a nodal approximation of
the tangential jump of v along C̃ pulled back to Γ̃ F

B . Inserting
this approximation into Eq. 27 and replacing the integrand
φ([υ]u, α) by its nodal interpolation in SF , we obtain the
approximate functional �S : Sun−1

0 → R,

�S(υ, α) =
∑

p∈Ñ F

φp([υ]p),

φp([υ]p) = φ([v]p , α(p))
∫

Γ̃ F
B

λp ds. (49)

At this point,α is required to be continuous in a neighborhood
of each node p ∈ Ñ F to guarantee that nodal interpolation
makes sense.

The mortar discretization of the rate problem Eq. 38 with
given, sufficiently regular state α ∈ L2(Γ F ) now reads as
follows

u̇n,S ∈Sun−1
0 : an(u̇n,S , υ − u̇n,S) + �S(υ, α)

−�S(u̇n,S, α)≥n,S(υ−u̇n,S), ∀υ ∈Sun−1
0 , (50)

for n = 1, . . . , N . Here, the bilinear form an(·, ·) is taken
from Eq. 39 and we have set

n,S(υ) = (υ) + (ρün−1,S , υ) + 2
τ
(ρu̇n−1,S , υ)

− τ
2b(u̇n−1,S , υ) − b(un−1,S , υ)

with ün−1,S , u̇n−1,S , un−1,S taken from preceding time
steps, by discrete analogues of Eq. 37, by suitable finite ele-
ment approximations u̇0,S , u0,S ∈ S of the initial conditions
u̇0, u0 ∈ Hu0

0 , or a finite element approximation ü0,S ∈ S of
the auxiliary problem Eq. 40. Existence and uniqueness of
discrete spatial solutions u̇n,S ∈ Sun−1

0 , n = 1, . . . , N , fol-
lows under the same conditions and by the same arguments
as in Proposition 1.

This mortar approach to (frictional) non-penetration
directly extends elastic frictional contact problems, i.e., to
fault opening. We refer to [22, 24] for further information
and to [48] for a detailed survey.

4.2 Piecewise constant discretization of state
problemwith given rate

We consider the state problem Eq. 43 with a given defor-
mation rate. Let CF = {Cp ⊂ Γ F | p ∈ N F } be a dual
partition of the triangulation T F of Γ F . We introduce the
subspace BF ⊂ L2(Γ F ) of functions that are constant on
each cell Cp ∈ CF , p ∈ N F , and the resulting piecewise

constant discretization

αn,B ∈ BF :
(
αn,B, β − αn,B

)
L2(Γ F )

+ τ�B(β, u̇) − τ�B(αn,B, u̇)

≥ (
αn−1,B, β − αn,B

)
L2(Γ F )

∀β ∈ BF (51)

of the state problem Eq. 43 with given u̇ ∈ Sun−1
0 . Here, the

nodal approximation �B : BF → R,

�B(β, u̇) =
∑

p∈Ñ F

ψ(β(p), | [u̇]p |) ∣∣Cp
∣∣ , β ∈ BF ,

(52)

of the functional �(·, u̇) is obtained in the same way as the
nodal approximation �S(·, α) of �(·, α) in Eq. 49.

Existence and uniqueness of discrete spatial solutions
αn,B ∈ BF , n = 1, . . . , N , follows in the same way as in
Proposition 2.

4.3 Fully discretized coupled spatial problem

Combining Eqs. 50 and 51, the discretization of the coupled
Problem 2 in time and space now reads as follows.

Problem 4 (Discretization in time and space) Find u̇n,S ∈
Sun−1
0 and αn,B ∈ BF satisfying

an(u̇n,S , υ − u̇n,S ) + �S (υ, αn,B) − �S (u̇n,S , αn,B)

≥ n,S (υ − u̇n,S ) ∀υ ∈ Sun−1
0(

αn,B, β − αn,B
)
L2(Γ F )

+ τ�B(β, u̇n,S ) − τ�B(αn,B, u̇n,S )

≥ (
αn−1,B, β − αn,B

)
L2(Γ F )

∀β ∈ BF

for n = 1, . . . , N with given initial conditions u0,S , u̇0,S ∈
Sun−1
0 , α0,B ∈ BF .

Iterative solution of Problem 4 can be obtained from the
fixed point iteration

u̇ν+1
n,S = RS

(
ωαν+1

n,B + (1 − ω)αν
n,B

)
,

αν+1
n,B = SB

(
u̇ν
n,S

)
, ν = 0, 1, . . . , (53)

with initial iterate (u̇0n,S , α0
n,B) = (u̇n−1,S , αn−1,B) and suit-

able relaxation parameter ω ∈ (0, 1]. Here, SB : Sun−1
0 →

BF and RS : BF → Sun−1
0 denote the solution operators of

the state problem with given rate Eq. 51 and the rate problem
with given state Eq. 50, respectively. Note that state func-
tions α ∈ BF are continuous in a neighborhood of each node
p ∈ N F and thus satisfy the regularity assumptions made
for nodal interpolation Eq. 49.
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Extension of the convergence proof given in [30, 33] for
an unilateral version of Problem 4 to the actual discretized
multi-body problem is a subject of future research.

5 Algebraic solution

We will now discuss the algebraic solution of the coupled
fully discrete Problem 4. After decoupling the problem using
a fixed point iteration we are left with a sequence of discrete
rate and state subproblems. While the state problems can be
solved explicitly, we will adapt the Truncated Nonsmooth
Newton Multigrid (TNNMG) methods [14–16] for the non-
smooth nonlinear rate subproblems.

5.1 Fixed point iteration and state problemwith
given rate

The iterative solution of the coupled Problem 4 is performed
by the fixed point iteration Eq. 53. The state problem with
given rate Eq. 51 arising in each iteration step fully decouples
into scalar algebraic problems for αn,B(p) and p ∈ N F that
can be solved explicitly or, e.g., by bisection.

The rate problemwith given state Eq. 50, however, is a dis-
cretized frictional contact problem, and its iterative solution
is more involved.

5.2 Truncated Nonsmooth Newtonmultigrid for the
rate problemwith given state

We now concentrate on the robust and efficient algebraic
solution of the mortar-discretized rate problem Eq. 50 with
given state α ∈ BF . First, recall that the splitting Eq. 48
provides the basis representation

υ =
∑

p∈N \Ñ F

vpμp +
∑

p∈Ñ F

vpλp (54)

of all v ∈ Sun−1
0 with coefficients υp = υ(p), p ∈ N \ Ñ F

and υp = [υ]p, p ∈ Ñ F . We identify each υ ∈ Sun−1
0 with

its coefficient vector (υp)p∈N . Then the discrete nonlinear
functional

�S(υ, α) =
∑

p∈Ñ F

φp(vp)

introduced in Eq. 49 has a separable structure in the sense
that the coefficients vp ∈ R

d are decoupled with respect to
the nonlinearity φp.

The variational inequality Eq. 50 can be equivalently
rewritten as the minimization problem

u̇n,S ∈ Sun−1
0 : JS(u̇n,S) ≤ JS(υ) ∀υ ∈ Sun−1

0 (55)

denoting

JS(υ) = 1
2an(υ, υ) − n,S(υ) +

∑

p∈Ñ F

φp(vp).

This formulation allows to construct and analyze globally
convergent nonlinear Gauß–Seidel relaxation methods [13].
Based on the splitting

Sun−1
0 =

∑

p∈N
Vp, Vp =

{
{μpx | x ∈ R

d } for p ∈ N \ Ñ F ,

{λpx | x ∈ TpC̃} for p ∈ Ñ F

and some enumeration N = {p1, . . . , pM }, a new iterate is
computed by successive subspace minimization: Given an
iterate u set w0 = u and compute wi , i = 1, . . . , M by
solving

wi ∈ wi−1 + Vpi : JS(wi ) ≤ JS(w) ∀w ∈ wi−1 + Vpi ,

i = 1, . . . , M, (56)

to obtain the new iterate u = wM . However, such iterative
schemes are well-known to suffer from rapidly deteriorating
convergence rates for decreasing mesh size.

The basic idea of Truncated Nonsmooth Newton Multi-
grid (TNNMG)methods [14–16] is to complement nonlinear
Gauß–Seidel smoothing Eq. 56 by additional line search into
the Newton-type search direction δu, as obtained from the
linear system

J ′′
S (ū)|W (ū)×W (ū)δu = −J ′

S(ū)|W (ū) (57)

on a suitable subspace W (ū) ⊂ Sun−1
0 . Accounting for non-

smoothness of φp, p ∈ Ñ F , we select the reduced subspace

W (ū) = V + span{λpx |
x ∈ TpC̃, | [ū]p | �= Vm(α(p)), p ∈ Ñ F }.

By freezing ū(p) at those p where φp(ū p) is not smooth
enough, the restriction JS |W (ū)×W (ū) to W (ū) is twice
differentiable. Note that global convergence of nonlinear
Gauß–Seidel smoothing Eq. 56 is preserved by any correc-
tion ρδu such that ρ ∈ [0,∞) is providing non-increasing
energy

JS(ū + ρδu) ≤ JS(ū). (58)

In TNNMG methods, all three substeps, i.e., nonlinear
Gauß–Seidel relaxation Eq. 56, evaluation of the Newton-
type search direction Eq. 57, and monotone line search
Eq. 58, are typically performed inexactly. A TNNMG
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iteration step applied to a given iterate uν ∈ Sun−1
0 thus reads

as follows

ūν = P(uν),

δuν = MG(J ′′
S (ūν)|W (ūν )×W (ūν ),J ′

S(ūν)|W (ūν )),

uν+1 = ūν + ρ(ūν, δu
ν)δuν, (59)

with corresponding inexact solution operators P , MG, and
ρ.

More precisely, inexact Gauß–Seidel relaxation P is
obtained as follows. For each convex (d − 1)-dimensional
nonsmooth minimization problem Eq. 56 on the local tan-
gent space Vpi associated with the node pi ∈ Ñ F , the
quadratic part (i.e., the i-th diagonal block of the stiffness
matrix corresponding to the bilinear form an(·, ·) and the
basis representation Eq. 54) is replaced by a scalar upper
bound, e.g. its maximal eigenvalue. Then the resulting prob-
lem is rotationally symmetric in Vpi and thus reduces to a
scalar problem that can be solved by bisection or even by an
explicit formula (cf. [16][Example 5.2]). The same local pre-
conditioning approach is used for the linear d-dimensional
problems in Vpi for pi ∈ N \ Ñ F . We emphasize that global
convergence of nonlinear Gauß–Seidel relaxation Eq. 56 is
preserved in this way [16].

Since JS is strongly convex, the coefficient matrix
J ′′
S (ūν)|W (ūν )×W (ūν ) of the linear problem Eq. 57 is sym-

metric and positive definite on the subspace W (ūν). Hence,
its inexact solution MG can be simply performed by one or
more steps of a standard linear multigrid method with minor
modifications to deal with the special basis used in Eq. 54 and
the restriction toW (ūν). For details on the choice of suitable
coarse grid spaces or, equivalently, suitable restriction and
prolongation operators we refer, e.g., to [15, 41].

Inexact line search providing a damping factor ρν ∈
[0,∞) that guarantees monotonically decreasing energy Eq.
58 is finally performed by bisection.

The following convergence result is obtained as a special
case of the abstract result [16] [Corollary 4.5] by making
use of [16] [Theorem 5.6 and Lemma 5.8] to incorporate the
inexact pre-smoothing P explained above.

Proposition 3 Forany initial iterate u0 ∈ Sun−1
0 the sequence

uν ∈ Sun−1
0 , ν = 1, . . . , generated by the TNNMG method

Eq. 59 converges to the unique solution of the mortar-
discretized rate problem Eq. 50 with given state α ∈ BF .

The same convergence result applies, if more than one
nonlinear pre-smoothing step or additional nonlinear post-
smoothing is utilized. Note that TNNMG methods allow for
straightforward extensions to fault opening by incorporat-
ingnon-penetration into the nonlinearGauß–Seidel smoother
and enforcing feasibility of coarse corrections δuν by an addi-
tional projection step.

6 Numerical experiments

The characteristic behaviour of the introduced variational
multi-layer model and the performance of the proposed
numerical methods will now be investigated using two
numerical experiments. After introducing the general setup,
we first consider a spring slider with two bodies and then
a layered fault system with five bodies. For both experi-
ments we discuss the behaviour of the model in terms of
the observed slip events and the numerical performance of
the adaptive time stepping scheme, the fixed point iteration,
and the nonlinear multigrid method.

6.1 General setup

While both our mathematical model and our numerical
solution methods have been derived for d = 2, 3 space
dimensions, we only concentrate on d = 2 for reasons
of computational complexity. Indeed, in spite of satisfy-
ing solver performance (see, e.g., Fig. 6 below), substantial
numerical experiments in d = 3 space dimensions would
require parallelization and other supercomputing techniques
to achieve reasonable computing times, cf., e.g., [18, 26, 28].

6.1.1 Problem description

In our two numerical experiments, we consider a rectangular
deformable body in d = 2 space dimensions that is decom-
posed into I = 2 (spring slider) or I = 5 (layered fault
system) rectangular bodies by 1 or 4 planar faults, cf. Fig. 2.

In the spring slider experiment, the 2 bodies are both of the
size 5m×1m. They are associatedwith the reference domains
Ω1 = (−2.5, 2.5)×(−1, 0),Ω2 = (−2.5, 2.5)×(0, 1)with
the interface

Γ F = (−2.5, 2.5) × {0}.

This setup corresponds to the one presented in [33], but fea-
tures a deformable instead of a rigid foundation.

The bodies of the layered fault system have the size 5m×
1m, 5m × 0.3m, 5m × 0.09m, 5m × 0.3m, and 5m × 1m.
They are associated with the reference domains

Ω1=(−2.5, 2.5)×(−1.345,−0.345), Ω2 =(−2.5, 2.5)×(−0.345, −0.045),

Ω3=(−2.5, 2.5) × (−0.045, 0.045), Ω4 =(−2.5, 2.5) × (0.045, 0.345),

Ω5=(−2.5, 2.5) × (0.345, 1.345)

with the interface Γ F ,

Γ F = (−2.5, 2.5) × {−0.345} ∪ (−2.5, 2.5) × {−0.045}
∪ (−2.5, 2.5) × {0.045} ∪ (−2.5, 2.5) × {0.345}.
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Fig. 2 Initial triangulations T (0)
i , i = 1, . . . , I , for the spring slider with I = 2 bodies (left) and a layered fault system with I = 5 bodies (right)

The bodies consist of St. Venant Kirchhoff material and
are subject to gravity, i.e., the body force is constant and given
by f = −ρg · e2 with g denoting the gravitational constant.
We impose homogeneous Neumann boundary conditions
f N = 0 at the vertical boundary Γ N of the associated ref-
erence configurations Ωi , i = 1, . . . , I . The system is fixed
by homogeneous Dirichlet conditions u(·, t) = u̇(·, t) = 0,
0 ≤ t ≤ T0 at the foundation Γ D

1 . At the upper Dirichlet
boundary Γ D

I , I = 2, 5, the condition u̇(·, t) = vD ξ(t) · e1
prescribes a smooth transition from zero velocity to constant
loading speed vD = 2 × 10−4m/s with

ξ(t) =
{

1
2 (1 − cos(4π t/T0)), if t ≤ T0/10

1 otherwise.
(60)

At the interfaces, Γ F = ⋃I−1
i=1 Γ F

i,i+1 we impose rate-and-
state friction conditions with Dieterich’s aging law.

The initial deformation u(·, 0) is obtained by approximat-
ing the equilibrium configuration, i.e., the solution of the
stationary problem Eq. 35, by one step of the associated fixed
point iteration. The initial velocity field is set to zero,which is
consistent with the Dirichlet conditions, and the initial state
field is chosen to be α(·, 0) = −10 on Γ F .

We consider the time interval [0, T0] with final time
T0 = 60s, and the remainingmaterial parameters are given in
Table 1.

6.1.2 Discretization and algebraic solution

In order to efficiently resolve strongly varying dynamics
ranging from slow interseismic loading to fast coseismic
periods, corresponding time step sizes are automatically
selected according to the following adaptive strategy. For
given approximate solution at tn of the coupled spatial Prob-
lem 3 at time tn ∈ [0, T0), as computed by the old time step
size τn−1,we choose τ ∗

n = τn−1 forn ≥ 1 and τ−1 = 10−4 T0
as an initial guess for the new time step size τn . Then, we
compute approximate solutions (u̇(1)

n+1, α
(1)
n+1) at tn + 2τ ∗

n by

one step with step size 2τ ∗
n and (u̇(2)

n+1, α
(2)
n+1) by two time

steps with step size τ ∗
n . If the criterion

‖α(1)
n+1 − α

(2)
n+1‖L2(Γ F ) ≤ δτ m

1/2 (61)

holds with a suitable threshold δτ , then we allow for coars-
ening: With the new guess τ ∗

n := 2τ ∗
n the above procedure

is repeated until Eq. 61 is violated and we set τn := τ ∗
n /2 in

this case. If the criterion Eq. 61 is already violated by the ini-
tial guess τ ∗

n = τn−1, then we require refinement: Successive
bisection τ ∗

n := τ ∗
n /2 is applied until Eq. 61 is met and we set

τn := τ ∗
n in this case. The threshold δτ is selected in accor-

dance with the accuracy of the inner fixed point iteration to
be specified below.

The spatial problems occurring in each time step are dis-
cretizedwith respect to triangulationsTi = T (K )

i , as resulting

from K refinement steps applied to initial triangulations T (0)
i

of the subdomainsΩi , i = 1, . . . , I . Note that the associated

Table 1 Material parameters Bulk parameter Value Friction parameter Value

Bulk modulus E 4.12 × 107 Pa ref. velocity V0 1 × 10−6m/s

Poisson ratio ν 0.3 ref. friction coeff. μ0 0.6

mass density ρ 5 × 103kg/m2 a 0.010

gravity g 9.81N/kg b 0.015

charact. slip dist. L 1 × 10−5m
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hierarchy of finite element spaces is utilized for the algebraic
TNNMG solver to be specified later on. For the spring slider
and the layered fault system, the initial triangulations T (0)

i ,
i = 1, . . . , I , are shown in the left and in the right picture of
Fig. 2, respectively.

For both geometries, refinement is concentrated at the
interfaces by the following adaptive procedure. Starting with
T (0)
i , we perform regular (red) refinement of all triangles

T ∈ T (k)
i , k ≥ 0, with diameter hT violating the criterion

hT < (1 + 80 d(T , Γ F )) hmin. (62)

Here, d(T , Γ F ) stands for the distance of T to Γ F and
hmin = 6.25 cm. Then, triangles with two or three bisected
edges as emerging through this procedure are also refined reg-
ularly until only triangles with no or with only one bisected
edge are left from T (k). The latter ones are then refined by
connecting the midpoint of this edge with the opposite ver-
tex to obtain conforming refined triangulations T (k+1)

i . In
order to preserve shape regularity, these (green) closures are
removed in advance of the next refinement step [2]. Refine-
ment terminates with K = k, once the criterion Eq. 62 is met
by all triangles T ∈ T (k)

i and all i = 1, . . . , I .
The resulting final triangulations are depicted in Fig. 3.

For the spring slider (left), the final triangulations T (K )
i are

resulting from K = 5 adaptive refinement steps, have 1274
vertices in total, and 4.4 cm ≤ hT ≤ 70.8 cm holds for
the diameters hT of all T ∈ T (K )

i , i = 1, 2. For the layered

fault system (right), the final triangulationsT (K )
i are obtained

after K = 5 refinement steps, have 4057 vertices in total, and
3.2 cm ≤ hT ≤ 70.8 cm holds for the diameters hT of all
T ∈ T (K )

i , i = 1, . . . , 5.
In the fixed point iteration Eq. 53, providing the decou-

pling of rate and state, we use the relaxation parameter

ω = 1/2. The iteration is stopped, once the criterion

‖αν
n,B − αν−1

n,B ‖L2(Γ F ) ≤ 10−1δτ m
1/2 (63)

is satisfied. Here, the parameter δτ is the same as in the time
step selection criterion Eq. 61. This choice aims at compara-
ble accuracy of fixed point iteration and time stepping, and
the actual value δτ = 10−5 is motivated by systematic trial
and error, cf. [32][Subsection 3.3].

The algebraic solution of the discrete state problem Eq. 43
with Dieterich’s aging law and given rate is approximated by
pointwise bisection. The iteration is stopped, once the error in
each node is uniformly bounded by the threshold 10−12m1/2.

Starting with the final iterate u̇0n,S = u̇
νstop

n−1,S from the
preceding time step, the algebraic solution of the discrete
rate problem Eq. 50 with given state is performed by a Trun-
cated Nonsmooth Newton Multigrid (TNNMG) method as
described in Section 5.2. In each iteration step, the (trun-
cated) linear correction is obtained by 5 steps of a classical
multigrid V-cycle with 3 pre- and 3 post-smoothing steps.
Here, we utilize the grid hierarchy provided by successive
refinement described above. The iteration is terminated, once
the stopping criterion

‖u̇ν − u̇ν−1‖n ≤ 10−8W1/2m1/2 (64)

is satisfied with the time-dependent energy norm ‖ · ‖n =
an(·, ·)1/2 and an(·, ·) defined in Eq. 39. This stopping cri-
terion is selected to reduce the error of the inner multigrid
iteration some orders of magnitude below the error of the
outer fixed point iteration which is intended to be in the range
of the discretization error.

The discretization and algorithms are implemented using
the Dune framework [4] making use of the dune-grid-glue
library [5] for the mortar coupling.

Fig. 3 Adaptively refined final triangulations T ∈ T (K )
i , i = 1, . . . , I with K = 5 and 1274 vertices for the spring slider (left) and K = 5 and

4057 vertices for the layered fault system (right)
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Fig. 4 Spring slider: Evolution
of the mean value of relative
velocities over Γ F from the
initial loading phase to slip
events (top) and zoom into the
slip events (bottom)

6.2 Spring slider

6.2.1 Simulation results

In order to illustrate the behavior of the deformed bodies
along the fault Γ F = (−2.5, 2.5) × {0}, the top picture
of Fig. 4 shows the mean value of the approximate rela-
tive velocitiy | [u̇n,S ]un−1,S | over Γ F for the corresponding
time instants tn , n = 1, . . . , N = 107659. After a loading
phase of about 20s, we observe 26 almost periodic peaks
in the relative velocity, indicating the occurrence of cor-

responding slip events. Observe that periodicity is slightly
perturbed in comparison with related numerical results for a
rigid foundation [33]. A zoom into the first 6 slip events as
shown in the bottom picture of Fig. 4 reveals a highly oscil-
latory behavior of the approximate velocity. This is partly
due to the well-known lack of stability of the Newmark
scheme [23], but also occurs for the highly dissipative back-
ward Euler method [34] and sufficiently fine time steps.

Figure 5 shows the level lines of approximate relative
velocities along the fault Γ F (horizontal axis) evolving over
time (vertical axis) for six time intervals associated with

Fig. 5 Spring slider: Level lines (101µm/s green, 102µm/s blue, 103µm/s orange, 104µm/s red) of the approximate relative velocity alongΓ Fover
time intervals associated with the first 6 slip events

123



Computational Geosciences (2024) 28:1–21 17

the first six slip events (top left to bottom right). The first
(bilateral) slip event originates from the midpoint of Γ F , the
next one has two symmetric precursors on the left and right
hand side, and the third one features foreshocks with a slight
emphasis towards the right hand side of Γ F , but ruptures the
entire fault nonetheless. We then observe a sequence of three
further bilateral slip events beginning in the middle of the
fault.

All slip events are preceded by small foreshocks indicating
the origin of the later event, as well as small aftershocks
typically occurring at the right or left side ofΓ F or in its very
center.Note that these results considerably differ from related
computations for a subduction zonewith rigid foundation that
showed pure periodic behavior [32].

6.2.2 Adaptive time stepping and performance of the
algebraic solver

Wenowdescribe the performance of adaptive time step selec-
tion and of the algebraic solver consisting of the fixed point
iteration Eq. 53 for the decoupling of rate and state and
the TNNMG method for the rate problem as explained in
Section 5.2. The upper picture of Fig. 6 shows the automat-
ically selected time step sizes τn over corresponding time
instants tn taken from the time interval that begins shortly
before the end of the initial loading phase. Observe that the
occurrence of slip events is nicely reflected by the reduc-
tion of the time step size by about 2 orders of magnitude.
According to the second picture, usually 2 - 4 fixed point
iterations are required to match the stopping criterion Eq. 63
for the actual spatial problem with adaptively selected time
step. The third picture shows the sum of all inner multigrid
iterations as needed to reach the stopping criterion Eq. 64 in
each of these outer fixed point iteration steps. This sum often,
but not always, increases and decreases with the number of

required outer fixed point iterations and is ranging fromabout
5 to 29.

6.3 Layered fault system

6.3.1 Simulation results

Figure 7 indicates quite interesting stress accumulation and
release along the different faults. The four pictures show the
mean value of the relative velocity on the faults Γ F

4,5, Γ F
3,4,

Γ F
2,3, andΓ F

1,2 (top to bottom) over time. In the first picture for

the upper faultΓ F
4,5,we observe a sequence of almost periodic

slip events with almost the same period and amplitude as for
the spring slider, again after an initial loading phase of about
26 s. In both of the next two pictures, however, showing the
average relative velocities over the next two faults Γ F

3,4 and

Γ F
2,3, we see a highly oscillatory loading phase that seems to

depict slip events several orders of magnitude smaller than
on the top fault Γ F

4,5 and might have saturated after a small
jump at about 47 s or lead to later slip events. It is not clear
at the moment whether the occurance and amplitude of these
oscillations are physical or due to numerical artifacts which
would motivate future numerical and experimental investi-
gations. As shown in the fourth picture, this jump of average
relative velocity also occurs at the lowest fault Γ F

1,2, this time
preceded by a rather stable loading phase.

Figure 8 shows the level lines of approximate relative
velocities along the upper fault Γ F

4,5 (horizontal axis) evolv-
ing over six time intervals (vertical axis) associated with the
first six slip events (top left to bottom right).All events exhibit
bilateral characteristics, i.e. ruptures nucleating towards the
center of the fault and spreading towards both edges, pre-
ceded by small foreshocks occurring in the middle of Γ F

4,5.
In most (but not all) cases the slip events are followed by
small aftershocks. These observations are in strong analogy

Fig. 6 Spring slider: Adaptive
time step selection and
performance of the algebraic
solver
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Fig. 7 Layered fault system:
Evolution of the mean value of
relative velocities over the faults
Γ F
i,i+1, i = 1, 2, 3, 4, from Γ F

4,5

(top) to Γ F
1,2 (bottom)

Fig. 8 Layered fault system: Level lines (101µm/s green, 102µm/s blue, 103µm/s orange, 104µm/s red) of the approximate relative velocity
along Γ F

34 over time intervals associated with the first 6 slip events
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Fig. 9 Layered fault system:
Adaptive time step selection and
performance of the algebraic
solver

with the results of the spring slider experiment as depicted
in Fig. 5.

6.3.2 Adaptive time step selection and performance of the
algebraic solver

The performance of adaptive time step selection and of the
algebraic solver as illustrated in Fig. 9 hardly differs from
the spring slider experiment. Again, the slip events on Γ F

4,5
are well-captured by adaptive time stepping that is reducing
the time step by about 2 orders of magnitude. The number
of outer fixed point iterations still ranges from 2 to 4 and the
sum of all inner multigrid iterations in each of these steps is
bounded by 25, apart from slightly larger values at the end of
the loading phase. This strongly confirms the efficiency and
robustness of our solution approach.

7 Conclusions

In the present paper we showed how the variational approach
to problems with rate- and state-dependent friction intro-
duced in [32] can be generalized to layered fault systems. By
combining a linearized strain rate tensor and large deforma-
tion contact conditions, the variationalmodel allows for small
viscoelastic deformations within and large relative displace-
ments between layers. The considered variational friction
model includes Dieterich- and Ruina-type friction.

Thanks to the variational structure of the model, the pro-
posed discretization using a Newmark scheme and a mortar
finite element ansatz leads to a sequence of discrete coupled
minimization problems, that can be decoupled using a fixed
point method. Despite beeing nonlinear and nonsmooth the
resulting sequence of minimization problems can be solved
efficently by combining a dual mortar ansatz with the Trun-
cated Nonsmooth Newton Multigrid method.

In the presented numerical experiments for a spring slider
problem we observed the periodic occurrence of mostly
unilateral slip events. For the numerical experiments for a
layered network we observed an interesting coincidence of
periodic slip events along the upper fault with loading phases
and oscillatory behavior on the others. For both types of
experiments slip events are captured nicely by an adaptive
time stepping scheme, while the computational complexity
in each time step remains bounded. This illustrates the robust-
ness of the presented numerical solution procedure, also with
respect to the number of faults.

In view of the observed robusteness and efficiency the
presented approach looks promissing for the application in
more complicated application settings to be considered in
future work.
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