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A B S T R A C T   

Comprehenders are known to generate expectations about upcoming linguistic input at the sentence and 
discourse level. However, most previous studies on prediction focused mainly on word-induced brain activity 
rather than examining neural activity preceding a critical stimulus in discourse processing, where prediction 
actually takes place. In this EEG study, participants were presented with multiple sentences resembling a 
discourse including conditional sentences with either only if or if, which are characterized by different semantics, 
triggering stronger or weaker predictions about the possible continuation of the presented discourses, respec
tively. Results revealed that discourses including only if, as compared to discourses with bare if, triggered an 
increased predictive neural activity before the expected critical word, resembling the readiness potential. 
Moreover, word-induced P300 brain responses were found to be enhanced by unpredictable discourse contin
uations and reduced in predictable discourse continuations. Intriguingly, brain responses preceding and 
following the critical word were found to be correlated, which yields evidence for predictive activity modulating 
word-induced processing on the discourse level. These findings shed light on the predictive nature of neural 
processes at the discourse level, critically advancing our understanding of the functional interconnection be
tween discourse understanding and prediction processes in brain and mind.   

1. Introduction 

In everyday social interaction, conversational partners frequently 
adjust their expectations about the forthcoming actions and linguistic 
input (Federmeier, 2007; Heilbron, Armeni, Schoffelen, Hagoort, & de 
Lange, 2020; Huettig & Janse, 2016; Pickering & Garrod, 2013; Van 
Petten & Luka, 2012; Willems, Frank, Nijhof, Hagoort, & van den Bosch, 
2016). Prediction mechanisms have been shown to facilitate language 
processing at different levels of linguistic representations, including 
phonological (e.g. DeLong, Urbach, & Kutas, 2005; Nicenboim, 
Vasishth, & Rösler, 2020), morpho-syntactic (e.g. Lau, Stroud, Plesch, & 
Phillips, 2006; Szewczyk & Schriefers, 2013; Wicha, Moreno, & Kutas, 
2004), semantic (Altmann & Kamide, 1999; Federmeier & Kutas, 1999; 
Weber, Lau, Stillerman, & Kuperberg, 2016), as well as discourse level 
processing (Nieuwland & Van Berkum, 2006; Otten & Van Berkum, 

2008; Rohde & Horton, 2014; Rohde, Levy, & Kehler, 2011; Scholman, 
Rohde, & Demberg, 2017; Schwab & Liu, 2020; Xiang & Kuperberg, 
2015). A range of electrophysiological experiments have explored neu
ral markers underlying predictive processes during the comprehension 
of sentences with words of varying predictability. A well-known event- 
related brain potential (ERP) component that is strongly modulated by 
prediction is the N400, a negative-going response that peaks about 400 
milliseconds after the target word onset. For example, in a sentence like 
“I want an ice cream with bacon”, the unpredictable word bacon would 
elicit a stronger N400 response as compared to a more predictable word 
such as chocolate. Thus, the N400 effect has been interpreted as an index 
of semantic violation or prediction error (e.g. Rabovsky, Hansen, & 
McClelland, 2018; see Kutas & Federmeier, 2011, for a review). Beyond 
the sentence level, Xiang and Kuperberg (2015), for example, show that 
the discourse connective even so reverses comprehenders' expectations 

* Corresponding author at: Leibniz Institute for the German Language (IDS), Mannheim, Germany. 
** Corresponding author at: Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, Berlin, Germany. 

E-mail addresses: barthel@ids-mannheim.de (M. Barthel), Tomasello.r@fu-berlin.de (R. Tomasello).   
1 Both authors contributed equally to this work. 

Contents lists available at ScienceDirect 

Cognition 

journal homepage: www.elsevier.com/locate/cognit 

https://doi.org/10.1016/j.cognition.2023.105635 
Received 14 December 2022; Received in revised form 4 October 2023; Accepted 5 October 2023   

mailto:barthel@ids-mannheim.de
mailto:Tomasello.r@fu-berlin.de
www.sciencedirect.com/science/journal/00100277
https://www.elsevier.com/locate/cognit
https://doi.org/10.1016/j.cognition.2023.105635
https://doi.org/10.1016/j.cognition.2023.105635
https://doi.org/10.1016/j.cognition.2023.105635
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cognition.2023.105635&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Cognition 242 (2024) 105635

2

about the forthcoming sentence, so that unlikely events (e.g. “I failed my 
history exam. (Even so), I went home and celebrated wildly.”) become 
more expected, leading to an attenuated N400 after coherent versus 
incoherent target words (e.g. celebrated). Furthermore, more vs. less 
predictable input has also been related to a positive going response that 
peaks about 300 milliseconds after word onset, the so-called P300 
component, in oddball paradigms (see Picton, 1992 for a review) as well 
as in memory updating or revision of the mental representation of the 
upcoming stimulus (context updating) (see Polich, 2007 for a review). 
Such an effect was particularly observed when the (un)expected target 
word played a crucial role in performing a categorization task with a 
binary choice (Alday & Kretzschmar, 2019). Thus, the N400 and P300 
components in the time window between 250 and 500 ms appear to be 
crucial word-induced brain indicators of contextual predictability and 
information processing after word onset. Nevertheless, the relationship 
between P300 and N400 as well as their specific relations to cognitive 
processes are far from clear (Alday & Kretzschmar, 2019; Arbel, 
Spencer, & Donchin, 2011; Kutas & Hillyard, 1980). These general 
questions, although relevant, are beyond the scope of the current paper. 

While brain responses in reaction to linguistic stimuli seem to be 
modulated by predictability, they have been argued to be only an in
direct measure of prediction and possibly reflect processes of lexical 
access or integration during language comprehension (Baggio & 
Hagoort, 2011; Pickering & Gambi, 2018). Recently, a few experimental 
studies have addressed this problem and discovered a more direct 
neurophysiological measure of prediction that occurs prior to the up
coming predictive information: the so-called Prediction Potential, a 
slowly building negative electroencephalographic signature resembling 
the readiness potential that increases right before the target word (Gri
soni, Miller, & Pulvermüller, 2017; Grisoni, Tomasello, & Pulvermüller, 
2021; León-Cabrera, Flores, Rodríguez-Fornells, & Morís, 2019; León- 
Cabrera, Rodríguez-Fornells, & Morís, 2017). For example, Grisoni et al. 
(2021) documented anticipatory brain activity for words that were 
highly predictable from previous sentence fragments (e.g., “The emblem 
of Germany is the eagle.”), whereas it was absent when the sentence- 
initial fragment was not a strong predictor of the sentence-final word 
(e.g., “The emblem of my family is the eagle.”). Less predictable sentence 
endings led to a larger N400 than more predictable ones and, impor
tantly, the amplitudes of the Prediction Potential and the N400 were 
inversely correlated, with higher Prediction Potentials leading to 
attenuated N400 responses. This suggests that N400 responses are 
related to brain activity prior to the presentation of the predicted in
formation in a sentence. Although these recent results shed light on 
novel brain correlates of prediction, most work has examined prediction 
and related comprehension processes at the level of sentences presented 
in isolation. Less work has looked at the neurobiology of prediction 
spanning multiple sentences, where various semantic and pragmatic 
processing steps are at work to accurately predict the possible contin
uation of an ongoing discourse. 

To investigate predictive processes in discourse comprehension, we 
used conditional sentences of the form ‘If the flowers are beautiful, he'll 
pick them.’, which express the dependency relation between the condi
tion or antecedent proposition P (the flowers being beautiful) and the 
consequent Q (he picking them). Their comprehension involves se
mantic as well as contextual-pragmatic integration. Central to the pre
sent study, depending on the contextual situation and on which kind of 
conditional is used, more or less precise predictions can be generated. 
For instance, conditionals with only if like ‘Only if the flowers are beau
tiful, he'll pick them’, entail that the falsity of the antecedent, i.e., not-P 
(the flowers not being beautiful), is a sufficient condition for the falsity 
of the consequent, i.e., not-Q (him not picking them) (Barthel, Toma
sello, & Liu, 2022; Herburger, 2015, 2019; Liu & Barthel, 2021). In 
contrast, bare if conditionals like ‘If the flowers are beautiful, he'll pick 
them’ do not carry such an entailment, that is, in the same context of not- 
P (‘the flowers are not beautiful’), it is unclear whether Q will follow or not 
(‘he'll pick them’ vs. ‘he won't pick them’). Hence, if the antecedent is 

known to be false (‘the flowers are not beautiful’), as in the critical ma
terials of this study, only if conditionals give rise to a strong expectation 
of a false consequent to follow (‘he won't pick them’), creating a pre
dictable scenario. In bare if conditionals, on the other hand, the truth or 
falsity of the consequent is not strongly predictable, with a binary 
possible continuation of speaker actions (picking the flowers or not), 
which creates a less predictable scenario. 

Following these reflections, in our previous study (Barthel et al., 
2022), we presented short stories in German containing if vs. only if 
conditional sentences, followed by a sentence that negated the ante
cedent of the conditional (‘If P, Q. Not P.’), as described above. In a final 
sentence, the consequent of the conditional was presented as being 
either true or false (‘Q.’ / ‘Not Q.’). Reading times of the critical words in 
negated consequents (i.e., the negative quantifier none in ‘Not Q.’) were 
found to be shorter after only if conditionals than after bare if condi
tionals. This finding supports previous analyses of the meaning differ
ences between if and only if conditionals and provides first evidence for 
repercussions of these differences on the online processing of discourse 
continuations after conditionals. Specifically, the observed difference in 
reading times was attributed to a stronger prediction about the discourse 
continuation triggered by contexts in which only if conditionals were 
used, as compared to contexts in which bare if conditionals were used. 
Yet, these behavioral data are only indirect measures of the underlying 
neural processes involved in discourse prediction. Thus, a neurophysi
ological approach using electroencephalographic recordings (EEG) is 
needed, allowing for direct monitoring of predictive brain processes 
with high time resolution. 

Previous studies already shed light on the brain correlates of 
expectation in discourse continuation across multiple sentences guided 
by discourse markers, referential expressions, or logical connectives 
(Bonnefond et al., 2012; Bonnefond & Van der Henst, 2009; Brilmayer & 
Schumacher, 2021; Carter & Nieuwland, 2022; Drenhaus, Demberg, 
Köhne, & Delogu, 2014; Nieuwland & Van Berkum, 2006; Rasenberg, 
Rommers, & van Bergen, 2020; Scholman et al., 2017; Van Berkum, 
Brown, Zwitserlood, Kooijman, & Hagoort, 2005). However, these 
studies focused on the effects of prediction on the site of what was (or 
was not) predicted, that is, they investigated effects occurring after the 
predicted information had been presented or they investigated differ
ences in the time frequency domain in brain activity related to predic
tion (e.g., Gisladottir, Bögels, & Levinson, 2018; León-Cabrera, Piai, 
Morís, & Rodríguez-Fornells, 2022; Lewis, Wang, & Bastiaansen, 2015; 
Rommers, Dickson, Norton, Wlotko, & Federmeier, 2017; Terporten, 
Schoffelen, Dai, Hagoort, & Kösem, 2019; Wang, Zhu, & Bastiaansen, 
2012). Although there has been extensive discussion on brain pre- 
activation related to prediction before the expected word (e.g., Feder
meier, 2007; Szewczyk & Schriefers, 2013; Van Berkum et al., 2005), 
less work has been conducted at the level of ERPs appearing before the 
predicted critical words (i.e., Prediction Potential). 

To close this gap, we measure predictive brain activity in scenarios 
with if vs. only if conditionals, contrasting more or less predictable dis
courses containing everyday courses of action spanning multiple sen
tences, while keeping syntactic, semantic, and lexical contexts 
maximally equal across conditions. Building on our previous results 
(Barthel et al., 2022) that revealed differences in reading times between 
scenarios containing these conditionals, we present discourses contain
ing a conditional (If / Only if P, Q.) followed by a sentence negating the 
antecedent of the conditional (Not P.; see Section 2.2 for an example). In 
these scenarios, discourses containing only if conditionals are expected 
to be more predictable regarding the scenario continuation than bare if 
conditionals, with ‘Not Q' being a highly predictable continuation in only 
if scenarios but not in bare if scenarios. Consequently, we expect larger 
anticipatory neural activity, the Prediction Potential, before the scenario 
conclusion in only if scenarios than in bare if scenarios. Furthermore, in 
only if scenarios, as compared to in bare if scenarios, we expect atten
uated word-induced brain responses in the N400/P300 time window 
after the negative critical word in the negated consequents (Not Q.). It is 
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worth noting that P300 effects have also been found in response to 
surprising physical properties of visually presented words (Arbel et al., 
2011; Kutas & Hillyard, 1980). However, in the present design, if such 
P300 effects were to emerge, it could not be related to differences in the 
presented verbal material, as we compared ERP responses to identical 
word forms (the quantifiers one and none) across the different condi
tional scenarios that were embedded within the same discourses. 
Finally, discourse processing can be hypothesized to be easier with ex
pected discourse continuations than with unexpected continuations 
(Schumacher, 2014; Xiang & Kuperberg, 2015; Zwaan & Radvansky, 
1998). Thus, if predictive activity preceding the predicted discourse 
ending has an influence on word-induced discourse processing, we 
should observe a correlation of ERP activation before the critical word 
(indicating prediction) and word-induced ERP activation (indicating 
input processing and integration). 

2. Methods 

2.1. Participants 

Thirty-eight healthy right handed volunteers (mean age in years =
25.5 (SD = 4.8), min: 20; max: 35) took part in the study. All subjects 
were German native speakers with normal or corrected to normal vision 
who had no neurological or psychiatric condition and were paid for their 
participation. All subjects were right-handed, as assessed with the 
Edinburgh Handedness Inventory test (Oldfield, 1971; mean laterality 
quotient (SD) = +80.7 (21.3)). One participant's data had to be dis
carded due to technical failure during recording and another partici
pant's data was not analyzed as they were not following or 
understanding the task instructions. Ethics approval was obtained from 
the ethics committee of Osnabrück University. All participants gave 
their informed consent prior to the experiment. 

2.2. Materials and design 

192 short stories consisting of four German sentences (S1-S4) were 
constructed, partly taken from a previous self-paced reading study 
(Barthel et al., 2022). 144 stories served as critical items and 48 as filler 
items. All story items were constructed in four conditions, with a 2 × 2 
study design with Conditional Connective (if / only if) and Quantifier 
(positive / negative) as factors. 

The critical items were constructed as follows: S1 introduced the 
situational context in either six or seven words, always using the 
structure “proper name + VP + ‘and thought:’”. S2 contained a condi
tional of the form ‘If / Only if P, Q.’ with either the conditional con
nective ‘Wenn’ (if) or ‘Nur wenn’ (only if), expressing a possible future 
action in the consequent (Q) and its condition in the antecedent (P). S3 
negated the antecedent of the conditional (Not P.). S4 revealed the story 
conclusion, with the consequent of the conditional either being 
confirmed and the action executed (Q), or negated and the action not 
executed (Not Q). Whether the action was executed or not was always 
revealed by a quantifier referencing the object of the conditional. A 
positive quantifier (‘ein’ / ‘eine’ / ‘einen’ (one)) in S4 confirmed the 
consequent (Q), while a negative quantifier (‘kein’ / ‘keine’ / ‘keinen’ 
(none)) negated the consequent (Not Q). Sentences in S2 to S4 always 
used the same structure and were always of the same length, namely 
nine to ten words for S2, depending on the conditional connective used, 
eight words for S3, and nine words for S4. Note that the presented dis
courses were exactly the same between conditions and only differed in 
the respective conditional connectives (if vs. only if) and quantifiers (one 
vs. none) used. See an example of a critical item below. 

Example: 

S1. Leon besuchte seine Eltern und dachte sich: (Leon visited his parents 
and thought:) 

S2. Wenn / Nur wenn die Blumensträuße hübsch sind, nehme ich einen 

mit. (If / Only if the bouquets are pretty, I will take one with me.) 

S3. Wie sich zeigte, waren die Blumensträuße nicht hübsch. (As became 
apparent, the bouquets were not pretty.) 

S4. Von denen brachte er einen / keinen mit und ging weiter. (Of those he 
took one / none with him and went on.) 

In summary, the different types of conditionals (if / only if) in S2 
allowed for stronger or weaker predictions about the continuation of the 
discourse in S4. The quantifiers (one / none) in S4 revealed the 
continuation of the discourse and served as the critical words for our 
measures of predictive and word-induced brain activity. 

As for the filler items, the story and sentence structures were iden
tical to critical scenarios, except that in fillers S3 confirmed the ante
cedent of the conditional (P; e.g. ‘Wie sich zeigte, waren die Blumensträuße 
hübsch.’ (As became apparent, the bouquets were pretty.)). Fillers were 
included to increase variation and thus keep participants' attention to 
the stories continuously high throughout the experiment. Brain re
sponses to fillers were not analyzed. 

Four counterbalanced experimental lists were produced, with each 
item appearing only once per list and in different conditions across lists. 
Each subject was tested in only one of the lists, and thus presented with 
36 trials in each of the four critical conditions plus 48 filler trials. 

2.3. Procedure 

Items were presented with Presentation (v. 23; Neurobehavioral 
Systems) on a 21-in. screen with a 1024 × 768 pixels resolution. Subjects 
were seated approximately 80 cm away from the screen and instructed 
to attentively and silently read the presented stories without any 
vocalization. A trial started with a fixation cross at the center of the 
screen for 500 ms. Subsequently, S1 to S3 were presented visually as 
complete sentences in the center of the screen for 1600 ms each, with an 
interstimulus interval of 600 ms showing a black screen. S4 was pre
sented visually word by word in the center of the screen for 150 ms each, 
with an interstimulus interval of 500 ms (varying randomly by ±10 ms) 
showing a black screen. Right before the critical word (the positive or 
negative quantifier), a black screen was presented for 1000 ms. The 
longer break, which was equally present in all conditions, was necessary 
to separate the neurophysiological responses of the previous sentence 
segment from the critical words, thus allowing for an improved signal to 
noise ratio (see e.g., Grisoni et al., 2021; León-Cabrera et al., 2019). 

The 192 trials were divided into 4 counterbalanced blocks of 48 trials 
each. Trials in each block were presented in random order. Each block 
lasted about twelve minutes and was followed by a short break. The 
experiment was preceded by twelve practice trials that were not 
analyzed. In order to assess whether subjects were reading the scenarios 
attentively during the main experiment, participants ran a surprise 
memory test after the EEG recording in which they were asked to 
categorize 64 scenarios into read / not read (32 scenarios were actually 
contained in the experiment, 32 were not contained; e.g. “Did someone 
visit their parents?”) by pressing one of two buttons on a response box 
using their index fingers. 

2.4. EEG data recording and pre-processing 

The EEG was recorded via 32 active electrodes (Brain Products 
GmbH, Munich, Germany). 26 electrodes were embedded in a cloth cap, 
distributed across the scalp, and 6 electrodes were assigned as EOG 
electrodes, 4 placed above and below the left and right eyes and 2 to the 
left and right outer canthus to measure the vertical and horizontal 
electro-oculograms. All electrodes were referenced to an electrode 
placed on the tip of the nose. Data were amplified and recorded using the 
Brain Vision Recorder (version 1.20.0601; Brain Products GmbH), with 
a passband of 0.01–500 Hz, sampled at 1000 Hz and stored on disk. 
Impedances of all active electrodes were kept below 10 KΩ. 
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The following offline pre-processing analyses were carried out with 
EEGLAB 2021.1 (Delorme & Makeig, 2004). Raw, unsegmented EEG 
data were down-sampled to 500 Hz and high-pass filtered at 0.1 Hz 
along with a notch filter around 50 Hz using the finite impulse response 
(FIR) filter. To obtain the vertical EOG, the difference between the upper 
and lower left eye electrodes were calculated, and the horizontal EOG 
was computed from the average of the latter two minus the potential at 
the right outer canthus. Afterwards, independent component analysis 
(ICA) with the algorithm runica (Bell & Sejnowski, 1995) was used to 
derive 26 components from the data. Components that correlated with 
either vEOG or hEOG with r < − 0.3 or r > 0.3 were removed from the 
data, reducing eye-related artefacts (see Groppe, Makeig, & Kutas, 2009; 
Hanna, Kim, & Müller-Voggel, 2020; Tomasello, Grisoni, Boux, Samm
ler, & Pulvermüller, 2022, for previous work applying this method). On 
average, 4.38 (SD = 1.77) components were removed from each subject 
dataset after ICA. 

The data were then epoched into smaller segments for the predictive 
response (i.e., the Prediction Potential analysis), starting 700 ms before 
critical word onset and ending at critical word onset. As a slow wave 
potential, the so-called Prediction Potential, appeared at about 500 ms 
before word onset, we used the time window from − 700 ms to − 600 ms 
as a baseline period, following the same procedure described in previous 
studies investigating the Prediction Potential component (Boux, Toma
sello, Grisoni, & Pulvermüller, 2021; Grisoni et al., 2021; Kilner, Vargas, 
Duval, Blakemore, & Sirigu, 2004; León-Cabrera et al., 2019). Epochs 
with signals exceeding − 100 and 100 μV were discarded, leading to the 
rejection of two data sets (i.e., subjects) with <50% of remaining trials. 
Two more subjects were removed due to technical reasons or due to 
misunderstanding the task of the experiment, respectively. Hence, data 
from 34 subjects entered the final EEG analysis. In this sample, the 
average trial rejection rate was 6.9%, with very similar sample sizes 
remaining across conditions (only if / negative: M = 31.9, SD = 3.98; 
only if / positive: M = 30.7, SD = 5.04; if / negative: M = 31.6, SD =
5.26; if / positive: M = 31.4, SD = 4.13; a two-way ANOVA showed that 
rejection rates did not differ between conditions (all ps > 0.4)). The same 
pre-processing procedure was carried out on the word-induced brain 
response analysis, starting 100 ms before critical word onset and ending 
650 ms after critical word onset. For baseline correction, the 100 ms pre- 
stimulus interval before critical word onset (− 100 ms to 0 ms) was used. 
We applied such a baseline to obtain directly comparable results to 
previous neurophysiological studies that commonly adopted this pro
cedure to investigate post-stimulus brain responses (e.g., Federmeier, 
Wlotko, De Ochoa-Dewald, & Kutas, 2007). Data from the same 34 
subjects entered the final EEG analysis, with an average trial rejection 
rate of 8.9%, again with very similar sample sizes remaining across 
conditions (only if / negative: M = 32.9, SD = 3.22; only if / positive: M 
= 32.4, SD = 3.73; if / negative: M = 32.8, SD = 4.27; if / positive: M =
32.3, SD = 3.62; a two-way ANOVA showed that rejection rates did not 
differ between conditions (all ps > 0.4)). 92.8% of the set of trials 
analyzed for predictive brain activity before word onset were present in 
the set of trials analyzed in the word-induced analysis, making the data 
sets suitable for further analyses. 

2.5. ERP analysis 

2.5.1. Predictive brain activation 
Previous work reported predictive brain activity, the so-called Pre

diction Potential, appearing before the onset of the expected word 
(Grisoni et al., 2017, 2021; León-Cabrera et al., 2019). To examine if this 
brain indicator appears prior to the expected discourse continuation (i. 
e., the critical quantifier one / none) and whether it is modulated by the 
different types of conditionals (if vs only if), we applied two-tailed (non- 
parametric) Monte Carlo Cluster Based Permutation Tests as imple
mented in FieldTrip toolbox for MATLAB (Oostenveld, Fries, Maris, & 
Schoffelen, 2011). Specifically, the statistical analyses were run on two 
time windows from − 300 ms to − 150 ms and from − 150 ms to 0 (i.e., 

quantifier onset) on 24 fronto-central-parietal-occipital electrodes (F3, 
FC5, P7, PO9, FC1, C3, P3, O1, FP1, FP2, Fz, Cz, CP1, CP2, Pz, Oz, F4, 
FC2, FC6, C4, P4, P8, O2, PO10). The time window of − 150 ms to 0 ms 
was motivated by previous studies showing that the predictive brain 
activity has the greatest amplitude and highest signal-to-noise ratio right 
before word onset (Grisoni et al., 2017; León-Cabrera et al., 2019). The 
time window of (− 300 ms to − 150 ms) was included to test if any effect 
of prediction appeared even before word onset. Note however, that all 
the main analyses in the present study were run on the first time window 
(− 150 ms to 0 ms), in accordance with previous studies mentioned 
above. Since predictive neural markers are expected to be stronger in 
only if trials than in if trials, a one-tailed test was applied to test for 
significant clusters. Cluster-based permutation tests were calculated by 
randomly interchanging the data between the two stimulus conditions 
for 10.000 permutations and finding the maximum positive and nega
tive clusters of each permutation. The cluster based permutation test 
was complemented with a linear mixed-effects regression model (LMM) 
built with lme4 (Bates, Mächler, Bolker, & Walker, 2015) in R (v. 4.1.3; R 
Core Team, 2021), modeling average brain potentials of single trials 
within a time window spanning the 150 ms immediately before the 
onset of the critical quantifier (− 150 ms to 0 ms). For a more fine- 
grained examination of the effects in the LMM, the 24 electrodes were 
coded for their scalp location into 6 regions of interest (ROIs) defined by 
two factors of location: Laterality (3 levels: left (F3, FC5, P7, PO9, FC1, 
C3, P3, O1), middline (Fp1, Fp2, Fz, Cz, CP1, CP2, Pz, Oz), right (F4, 
FC2, FC6, C4, P4, P8, O2, PO10)); and Antpost (2 levels): anterior (Fp1, 
Fp2, F3, F4, Fz, FC1, FC2, FC5, FC6, C3, C4, Cz), posterior (CP1, CP2, P3, 
P4, P7, P8, Pz, O1, O2, PO9, PO10, Oz)). All models contained the 
maximal fixed-effects structure, with the deviation coded factors Con
nective (if / only if), Laterality (left, midline, right), and Antpost (ante
rior and posterior) as well as all their interactions as predictors. Both by- 
subject and by-item random intercepts were modeled to vary. Addi
tionally, random slopes of Connective were modeled to vary by subject, 
with freely varying correlations, accounting for inter-subject variability. 
Type III anova tests of significance were conducted with Kenward-Roger 
approximations of degrees of freedom using the R package car (Fox & 
Weisberg, 2019; Halekoh & Hojsgaard, 2014; Kenward & Roger, 1997). 
Post-hoc tests for significance of simple effects causing significant in
teractions were based on F-tests comparing estimated marginal means of 
factor levels (Searle, Speed, & Milliken, 1980) that were conducted 
using the R package emmeans (v. 1.8.0; Lenth, 2019) and corrected for 
multiple comparisons by using the multivariate t-distribution with the 
same covariance structure as the estimates to determine applicable 
adjustments. 

2.5.2. Word-induced brain activation 
To investigate word-induced brain responses of the critical quanti

fiers, two two-tailed cluster-based permutation tests parallel to those 
described above for the analyses of predictive brain activation were 
performed across the 24 electrodes described above. In these cluster- 
based permutation tests, word-induced brain responses to positive and 
negative quantifiers were analyzed separately, comparing responses 
from 200 ms to 600 ms after critical word onset in if vs. only if scenarios. 
The time window was chosen based on previous ERP studies showing 
that unexpected words trigger stronger brain activation than expected 
words (e.g. Bornkessel-Schlesewsky et al., 2015; Federmeier, 2007; 
Grisoni et al., 2017; Kutas & Federmeier, 2011). To investigate the 
timing and location of peaks of brain responses in more detail and at the 
level of single trials, the cluster based permutation tests were com
plemented with Linear mixed Models (LMMs) modeling average brain 
potentials in two more narrow time windows. To define the time win
dows for these analyses, the Root Mean Square (RMS) of all pooled trials 
in all conditions was computed across all scalp electrodes and all sub
jects. Time windows were chosen based on visual observation of the 
peaks and amplitudes of the RMS. The same topographical factors Lat
erality (3 levels) and Antpost (2 levels) that were used in the analysis of 
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anticipatory brain activation before word onset were included. Model 
structures were also parallel to the analyses on the data from the pre
dictive brain activity, but with Quantifier (positive / negative) as an 
additional factor, including interactions with all other factors. As in the 
predictive analysis, both by-subject and by-item random intercepts were 
modeled to vary. Additionally, random slopes of both Connective and 
Quantifier were modeled to vary by subject, with freely varying corre
lations, accounting for inter-subject variability. Tests of significance 
were conducted as in the analysis of predictive brain activation. 

2.5.3. Correlation analysis 
To test for a functional link between brain signatures before and after 

critical word onset, Pearson correlation tests were conducted using the 
stats package in R on single trials. Specifically, for only if trials (where we 
expect subjects to predict the upcoming quantifier revealing the 
discourse continuation), Pearson correlations of the mean Prediction 
Potentials (i.e., from − 150 ms to 0 ms before critical word onset) and the 
mean word-induced potentials (from 220 ms to 480 ms past critical word 
onset) were computed. Correlations were computed separately for pos
itive and negative quantifiers. Driven by the obtained data, we ran the 
correlation tests on a subset of electrodes that showed both the Predic
tion Potential activity as well as the word-induced activities (FC5, FC6, 
C3, C4, CP1, CP2, P3, P4, O1, O2, see Section 3.2). To statistically 
compare correlation coefficients obtained for the different quantifiers, 
Z-Fisher transformations have been used, computing z-scores for each 
condition from the respective correlation coefficients and the conditions' 
sample sizes and comparing these z-scores, yielding a p-value for the 
probability of the compared correlations being statistically equal. 

To make sure that the correlation analysis described above is not 
affected by the word-induced baseline correction before word onset, 
where much anticipatory activity is found, we ran another correlation 
analysis as described above, this time between the Prediction Potential 
and a very early P100 response (95 ms to 145 ms after word onset; 
computed around the RMS peaks collapsed over all conditions and 
subjects). The reasoning behind this control analysis is that if a corre
lation between the Prediction Potential and the P300 was due to base
line correction or continuous activity of the Prediction Potential 
affecting post-word brain responses, a significant correlation should be 
also present with the early P100 response. Note that this control time 
window is suitable as it does not correlate with processes of discourse 
prediction, since recognizing the critical word would not yet be com
plete, and it is of the same polarity as the P300 component, thus not 
including any confound related to polarity. A similar control analysis 
following the same reasoning was previously performed by a study 
examining pre- and post-word induced activation during language 
processing and prediction (Grisoni et al., 2021). Additionally, we also 
run the correlation analysis on the bare if conditional, where no signif
icant correlation is expected, to further check for the specificity of the 
correlation between the Prediction Potential and the P300 in the only if 
condition. Moreover, we ran the initial correlation analysis again, this 
time using an earlier time window of the Prediction Potential from 
− 300 ms to − 150 ms before word onset, instead of the last 150 ms 
directly before word onset, in order to examine any possible correlation 
effects in the earlier time window of the prediction potential. 

To further account for potential effects driven by inter-subject vari
ability, we built a linear mixed effects regression model modeling 
average word-induced potentials (from 220 ms to 480 ms past critical 
word onset). The model included the average Prediction Potential (from 
− 150 ms to 0 ms before critical word onset) and Quantifier (positive / 
negative) as well as their interaction as fixed effects and varying in
tercepts and slopes for Quantifier by-subject and by-item as random 
effects. As an additional analysis, we ran a parallel model using average 
Prediction Potentials in the earlier time window (from − 300 ms to 
− 150 ms before word onset instead of from − 150 ms to 0 ms) as a 
predictor. For both models, tests of significance were conducted as in the 
analyses of predictive and word-induced brain activation. 

3. Results 

3.1. Behavioral results 

The results of the memory test after the EEG experiment, where 
participants had to decide whether a story was part of the experiment or 
not, showed that they were paying attention to the stimuli during the 
experiment. Due to a technical glitch, only 13 subjects were presented 
with the complete list of 64 memory questions (32 questions about 
stories that had been presented during the main experiment and 32 
questions about novel stories), with an average correct rate of 71% (SD 
= 4.8%). The remaining 21 subjects were only presented with the 32 
questions about stories that had actually been presented in the main 
experiment and not with the questions about the novel stories, which 
made the task considerably more difficult but still resulted in an average 
correct rate above chance level (mean = 59%; SD = 13%), thus indi
cating that they also paid attention to the stimuli during the experiment. 

3.2. EEG results 

3.2.1. Predictive neural signature of pre-activation 
Scenarios with only if conditionals elicited a clear slow negative- 

going potential (i.e., the Prediction Potential), starting at about 500 
ms before the onset of the critical quantifier, whereas scenarios 
including bare if conditionals did not show such a brain potential 
(Fig. 1A). The cluster-based permutation tests run on the time range 
from 150 ms to 0 ms before the critical quantifiers showed a highly 
significant negative cluster (p = .009), indicating differences in brain 
responses between the two types of conditionals. Specifically, only if 
scenarios elicited a larger Prediction Potential as compared to if 
scenarios. 

To explore whether the difference in Prediction Potential is reliable 
even longer before the critical word, additional cluster-based permuta
tion tests were run on a time window of 300 ms to 150 ms before word 
onset, also showing a significant negative cluster (p = .029). This result 
indicates that Prediction Potentials were significantly different already 
in this earlier time window, with the brain responses in only if trials 
being more negative before the critical word than in bare if trials. 

In order to investigate the topography of these effects in more detail, 
and complementing the results of the permutation tests, a linear mixed- 
effects regression model (LMM) was built to model average brain re
sponses in the time window of the last 150 ms before critical word onset, 
where significant differences were found in the permutation tests. The 
model showed a main effect of Connective (�2 = 8.285; p = .003), with 
stronger negative brain responses in only if (β = − 0.835, CI = [− 1.543, 
− 0.128]) as compared to if scenarios (β = − 0.013, CI = [− 0.681, 
0.655]), confirming the results of the permutation tests described above. 
This effect of Connective did not significantly interact with any topo
graphical factor (all p's > 0.7; a parallel model on the time window of 
− 300 ms – -150 ms yielded the same pattern of results; see Table S1 for 
full model output). 

3.2.2. Word-induced brain activation 
Cluster-based permutation tests were performed on the word- 

induced brain activation separately for the negative (none) and posi
tive (one) quantifiers, thus comparing the same quantifier across the 
different conditional scenarios (if vs. only if) from 200 ms to 600 ms after 
word onset. A significant negative cluster was found for the negative 
quantifier (p = .020), indicating significant differences between if and 
only if conditionals in the processing of negative quantifiers (none). No 
significant clusters were found for the positive quantifier (Fig. 2). 

To further investigate the temporal and spatial effects of the differ
ences between negative quantifiers appearing in the different condi
tional scenarios, we ran LMMs on two different critical time windows 
within the large time window examined with the cluster-based permu
tation tests, and also in a very early control time window. The time 
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windows were defined around peaks in RMS amplitude pooled over all 
trials and electrodes, which were located at 120 ms, 251 ms and 426 ms 
after critical word onset, respectively. The very early control time 
window ranged from 95 ms to 145 ms, the first critical time window 
ranged from 220 ms to 270 ms and the second critical time window 
ranged from 340 ms to 480 ms after the onset of the critical quantifier. 
These time windows had a positive polarity and, based on their latency, 
we labeled them P100, early P300 and late P300 responses, respectively. 

3.2.2.1. Control P100 time window – 95 ms – 145 ms. The LMM on the 
P100 control time window, run to investigate if the results are affected 
by baseline correction, yielded only a significant main effect of Later
ality (�2 = 30.051; p < .001), with higher amplitudes in left electrodes 
than in midline electrodes (p = .001) and right electrodes (p < .001). The 
model showed no significant interaction of Connective × Quantifier (�2 
= 0.165; p = .684) and no main effects of either Connective (�2 = 0.022; 
p = .880) or Quantifier (�2 = 0.001; p = .997; see Table S2 for full model 
output). 

3.2.2.2. Early P300 time window – 220 ms – 270 ms. The LMM on the 
early time window of the P300 response yielded a significant main effect 

of Laterality (�2 = 97.952; p < .001), with amplitudes being higher in 
left as compared to midline electrodes (p = .021) and again higher in 
midline as compared to right electrodes (p < .001). Additionally, a 
significant main effect was found for Anteriority (�2 = 13.016; p < .001), 
with amplitudes being higher in posterior electrodes than in anterior 
electrodes. Importantly, the model showed a significant interaction ef
fect of Connective × Quantifier (�2 = 30.084; p < .001). To investigate 
the origin of this interaction, estimated marginal means were compared 
using the R package emmeans. In reaction to negative quantifiers, 
significantly larger deflections were observed in if than in only if sce
narios (F = 6.778; p = .009, d = − 0.069 (SE = 0.026)), while in reaction 
to positive quantifiers, no significant effect of Connective was observed 
(F = 0.007; p = .934, d = 0.002 (SE = 0.026)) confirming the results of 
the cluster-based permutation tests described above. Topographical 
factors did not significantly interact with Connective or Quantifier or 
both (all p's > 0.37; see Table S3 for full model output). 

3.2.2.3. Later P300 time window – 340 ms – 480 ms. The LMM on the 
later time window of the P300 also yielded a significant main effect of 
Laterality (�2 = 96.203; p < .001), with higher amplitudes in left elec
trodes than in midline electrodes (p = .007) and higher amplitudes in 

Fig. 1. A. Predictive brain activity (preceding word onset). Event-related potentials for only if conditionals in red and for if conditionals in blue. Bar plots show mean 
amplitudes in μV for the two types of conditionals. Asterisks and highlighted areas indicate significant differences between conditions revealed by statistical analysis. 
On the x-axis, 0 marks the onset of the critical quantifier (one/none). B. Topographic CSD (Current Source Density) maps, which estimate cortical activity after 
removal of volume-conduction effects, show differences of ERP distributions between conditions (only if – if) in the two tested time windows. C. Single trial cor
relations of mean predictive brain activity (− 150 ms to 0 ms before critical word onset) and word-induced brain activity (220 ms to 480 ms after critical word onset) 
in only if scenarios. Trials with larger (more negative) Prediction Potentials prior to word onset lead to attenuated P300 responses when the expected negative 
quantifiers (none) appeared, whereas they lead to an increased P300 response when the unexpected positive quantifiers (one) appeared. Margins of error in gray 
represent one standard deviation from the mean. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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midline electrodes as compared to right electrodes (p < .001). The model 
showed a significant interaction of Connective × Quantifier (�2 =

42.432; p < .001). Comparing estimated marginal means in negative 
Quantifiers showed a similar result as in the early P300 time window, 
namely significantly larger deflections in if than in only if trials (F =
11.618; p < .001, d = − 0.073 (SE = 0.021)), while no significant effect 
of Connective was observed in reaction to positive quantifiers (F =
0.087; p = .767, d = 0.006 (SE = 0.021)). Topographical factors did not 
significantly interact with Connective or Quantifier or both (all p's >
0.45; see Table S4 for full model output). 

3.2.3. Correlation results 
To determine whether the observed Prediction Potential that man

ifested in only if conditionals before the onset of the critical quantifier 
relates to reduced P300 word-induced activation, Pearson correlations 
of the mean Prediction Potentials from − 150 ms to critical word onset 
and the mean P300 word-induced potentials in the time window ranging 
from 220 ms to 480 ms past critical word onset were computed using 
single trials. These analyses were performed on a subset of fronto-central 
and parietal electrodes (FC5, FC6, C3, C4, CP1, CP2, P3, P4, O1, O2). 
Correlations of the Prediction Potentials and the P300 potentials 
differed significantly between positive and negative quantifiers (z =
− 3.489, p < .001) (Fig. 1C). Particularly, a positive correlation was 
found for the expected negative quantifiers (none) (r = 0.065, p = .030), 
while a negative correlation was found for the unexpected positive 
quantifiers (one) (r = − 0.085, p = .005). In other words, larger negative 
Prediction Potentials prior to word onset are followed by reduced P300 
responses after the expected negative quantifiers, but by more enhanced 
P300 responses after the unexpected positive quantifiers. This same 
pattern of results was obtained for correlations of the Prediction Po
tential with two smaller time windows centered around the individual 
local peaks from 220 ms to 270 ms and from 340 ms to 480 ms after 
word onset, respectively. For both time windows, correlations of the 
Prediction Potentials with the word-induced potentials of positive and 
negative quantifiers differed significantly (early time window (220 ms – 
270 ms): z = − 3.004, p = .002; late time window (340 ms – 480 ms): z =
− 3.271, p = .001). Running the same initial correlation analysis using an 
earlier Prediction Potential time window from − 300 ms to − 150 ms 
before word onset and the P300 time window ranging from 220 ms to 
480 ms past critical word onset, correlations were also found to differ 
significantly between positive and negative quantifiers (z = − 3.191, p =
.001) in the same way as found when using the later Prediction Potential 
time window of the last 150 ms preceding word onset. 

To check whether the observed correlation is indeed specific to the 
Prediction Potential and the P300 responses and as well to make sure 
that it is not driven by the P300 baseline correction, we ran an additional 
correlation analysis between the Prediction Potential and a very early 
P100 brain response in the time window from 95 ms to 145 ms. This time 
window is suitable, because it is not assumed to correlate with processes 
of discourse prediction, since recognizing the word would not yet be 
complete, and because it is of the same polarity as the P300 component 
(see Section 2.5.3 above for more detail). The correlations between the 
Prediction Potentials and the early pre-lexical P100 responses of positive 
and negative quantifiers did not differ significantly (z = − 1.532, p =
.125), indicating that the size of the Prediction Potentials did not affect 
these very early induced brain responses. 

In order to compare the correlations in the control time window (95 
ms – 145 ms) to a critical analysis time window of the same size, we 

conducted an additional correlation analysis between the Prediction 
Potential and the first peak of the P300 responses (220 ms – 270 ms). 
The results were consistent with the previous findings on the larger time 
window, with correlations between the Prediction Potential and the 
word-induced potentials differing significantly between positive and 
negative quantifiers (z = − 3.004, p = .002). Parallel results were also 
found using an analysis time window around the second peak of the 
P300 response (340 ms – 480 ms: z = − 3.271, p = .001). 

To check whether the observed correlation is specific to the only if 
condition, we ran the same correlation tests on the bare if trials, where 
either no or a weaker Prediction Potential is expected, since in bare if 
trials participants are not expected to generate strong predictions about 
the upcoming discourse continuation. Indeed, in bare if trials, correla
tions of the Prediction Potentials with the P300 potentials (from 220 ms 
to 480 ms after word onset) of positive and negative quantifiers did not 
differ significantly (z = 0.706, p = .480), confirming that the correlation 
results are specific to only if trials. 

As an alternative analysis to assess the relationship between the 
Prediction Potential and word-induced ERP potentials in only if trials, we 
ran a linear mixed effects regression model modeling mean word- 
induced potentials from 220 ms to 480 ms, with mean Prediction Po
tential from − 150 ms to 0 ms and Quantifier plus their interaction as 
predictors and random effects by subject and by item. Consistent with 
the results obtained in the Pearson correlation tests, the model output 
shows a significant interaction effect of Prediction Potential and Quan
tifier (�2 = 37.589; p < .001; see Table S5 for full model output). More 
negative Prediction Potentials are being followed by smaller word- 
induced brain responses in expected negative quantifiers (β = 0.012, 
CI = [− 0.003, 0.028]) but by greater word-induced brain responses in 
unexpected positive quantifiers (β = − 0.057, CI = [− 0.073, − 0.041]). 
An additional model using an earlier time window of the Prediction 
Potential from − 300 to − 150 ms as a predictor, else keeping all model 
specifications the same, also found a consistent significant interaction of 
Prediction Potential and Quantifier (�2 = 28.057; p < .001; see Table S6 
for full model output). Again, more negative Prediction Potentials are 
being followed by smaller word-induced brain responses in negative 
quantifiers (β = 0.042, CI = [0.024, 0.060]) but by greater word- 
induced brain responses in positive quantifiers (β = − 0.057, CI =
[− 0.044, − 0.008]). In parallel models on bare if trials, the interaction 
effects of Prediction Potential and Quantifier are non-significant, both 
using the mean Prediction Potential from − 150 ms to 0 ms (�2 = 0.618; 
p = .431) and using the mean Prediction Potential from − 300 ms to 
− 150 ms (�2 = 1.497; p = .221), again finding consistent results to the 
Pearson correlations tests. 

4. Discussion 

It is broadly agreed among linguists and neuroscientists that pre
dictions drawn from prior knowledge or contextual information can 
facilitate and enhance language understanding processes. Most previous 
work using ERP component analysis focused mainly on word-induced 
brain activity (i.e., brain activity observed after the critical word’s 
onset, e.g., Szewczyk & Schriefers, 2013; Wicha et al., 2004; DeLong 
et al., 2005; Freunberger & Roehm, 2016), rather than on brain activity 
preceding the critical stimulus (see e.g., Van Berkum et al., 2005 and 
Federmeier, 2007, for discussions). Recently, a more direct brain indi
cator of prediction was discovered in studies finding highly predictive 
scenarios to evoke a slowly building negative ERP response that was 

Fig. 2. Word-induced brain activity. A. Grand average event-related potential (ERP) waveforms of negative quantifiers (none) in the if conditionals in blue and of only 
if conditionals in red. Highlighted time windows represent time windows of analysis. Asterisks indicate significant differences between the two types of conditionals. 
B. ERP waveforms of positive quantifiers (one) in if conditionals in gray and only if conditionals in black. C. On the left, topographic CSD (Current Source Density) 
maps, which estimate cortical activity after removal of volume-conduction effects, show differences of ERP distributions between conditions (if – only if) in each time 
window. On the right, bar graphs show mean ERP amplitudes by condition and time window. Error bars signify mean standard errors. Individual topographies are 
shown in Fig. S1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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observable prior to predictive linguistic input, the “Prediction Potential” 
(Pulvermüller & Grisoni, 2020). However, previous work has observed 
the emergence of the Prediction Potential only before predictable 
stimuli at the end of sentences and at the semantic level (Grisoni et al., 
2017, 2021; León-Cabrera et al., 2019, 2017). A critical open question 
was whether such a predictive brain index can also be attested before 
predictable endings of discourses that span multiple sentences, where 
additional semantic and pragmatic processing steps are undertaken 
during comprehension. Furthermore, there has been little work on the 
relationship between the anticipatory Prediction Potential and word- 
induced brain potentials related to input processing, which the current 
paper takes the first step to address at the discourse level. 

To close this gap, we conducted EEG recordings to examine differ
ences in brain responses related to the prediction of discourse continu
ations, contrasting scenarios containing only if conditionals and bare if 
conditionals preceded and followed by identical context (If / Only if P, Q. 
Not-P.). Only if and if conditionals have distinct lexical and composi
tional semantics (Herburger, 2015, 2019) such that the used conditional 
scenarios containing only if would trigger stronger predictions about the 
continuation of the discourse than those containing bare if. Specifically, 
upon encountering a conditional statement like “Only if the bouquets are 
beautiful, will I take one”, comprehenders can expect the unfolding 
discourse to contain one of two potential continuations, either one of the 
bouquets will be taken by the speaker or not. Lacking other information, 
these two continuations initially have approximately equal probabili
ties. If in the course of the unfolding discourse the antecedent of the 
conditional is negated (“The bouquets are not beautiful”), the probabili
ties of the two continuations included in the discourse prediction shift, 
as more precise expectations about the discourse continuation can be 
generated, with a strong preference for a negated story conclusion (“I 
took none.”). To generate this prediction, both the semantic interpreta
tion of only if and the contextual situation are taken into account. 
Finally, upon encountering the conclusion of the story (i.e., whether the 
speaker took one of the bouquets or not), comprehenders update their 
discourse representations again by integrating the novel information 
contained in the input. In cases where the input matches the adjusted 
predictions about the discourse continuation, processing costs for 
updating the discourse representations are reduced. If, on the other 
hand, the input does not match the expected discourse continuation, 
processing costs are increased due to the mismatch of generated ex
pectations and encountered input. The present findings show that such 
an expectation about the discourse continuation is reflected in a slow 
negative potential, the Prediction Potential, building up in predictable 
scenarios (containing only if conditionals) from about 500 ms before the 
predicted critical word, and being strongest right before the onset of the 
predictive stimulus that encodes the discourse continuation. The emer
gence of a Prediction Potential in scenarios containing only if reflects 
conditional-induced prediction about the discourse continuation, which 
is much stronger than in the same scenarios containing bare if condi
tionals, where we found significantly weaker Prediction Potentials. This 
work is in line with previous examinations of predictive brain activity 
before the predicted upcoming word at the level of single sentences (e.g., 
Grisoni et al., 2021). However, our research expands on these findings 
by demonstrating that such predictive brain activity is also triggered by 
predictions at the discourse level, where understanding processes 
involve multiple sources of semantic and contextual-pragmatic infor
mation to generate robust predictions. 

The observed Prediction Potential effect (higher predictive brain 
activity in only if as compared to bare if scenarios before discourse 
conclusions) is in line with the observed effects in word-induced brain 
responses. In if contexts, triggering weak predictions, the negated 
quantifier none, revealing the scenario conclusion, elicited an enhanced 
P300 brain response between 220 and 480 ms after word onset. In 
contrast, only if contexts, triggering strong predictions, showed reduced 
P300 responses (Fig. 2). The direction of this P300 effect mirrors the 
predictability of the respective discourse continuations, with the 

expected negated quantifier none revealing the scenario conclusion, 
being more strongly expected in only if scenarios as compared to bare if 
scenarios, resulting in reduced P300 activation. These results are in line 
with previous work showing differential activation of the P300 
component in relation to integration of new information and updating of 
memory representations (see Polich (2007) and Nieuwenhuis, 
Aston-Jones, and Cohen (2005) for reviews). A more detailed analysis of 
the larger time window after word onset revealed two main activation 
peaks, one in an earlier time window from 220 ms to 270 ms after word 
onset and one in a later time window from 340 ms to 480 ms. While 
potentially different cognitive processes might be related to each of 
these two peaks, the statistical analyses of the present data showed the 
same pattern of results in both main effects and interactions of the fac
tors of interest (Connective × Quantifier) for both time windows. We 
thus treated the two activation peaks as behaving similarly and cannot 
draw any major conclusions about differential underlying processes 
here. Overall, the P300 was attenuated in only if scenarios in predictable 
discourse continuations (Not Q.) relative to the same continuations in 
bare if scenarios, indicating that predictable discourse continuations 
lead to facilitation in discourse continuation processing. The 
word-induced brain responses elicited by the positive quantifier one 
were not found to differ between the types of conditionals. 

These findings complement evidence of previous work using similar 
materials, which found differences in reading times of the scenario 
conclusion between the different types of conditionals during self-paced 
reading (Barthel et al., 2022). In that study, negated quantifiers 
revealing the scenario conclusion (Not Q., e.g. “He took none.”) were read 
faster in only if scenarios than in bare if scenarios. The obtained EEG 
results match these previous findings and support previously proposed 
linguistic analyses of the meaning of only if vs. if conditionals (Her
burger, 2015, 2019), suggesting that readers interpret only if condi
tionals as entailing ‘If not P, not Q.’, e.g. “If the flowers are not beautiful, he 
won't take them.”. This is reflected in reduced processing effort in com
prehending a negated conclusion (Not Q.) in only if scenarios as 
compared to in bare if scenarios that contained the negation of the 
conditional's antecedent (Not P., e.g. “The flowers were not beautiful.”). 
Bare if scenarios, on the other hand, are generally interpreted as ‘If P, 
Q.’, e.g. “If the flowers are beautiful, he'll take them.”, not allowing for a 
strong prediction of a scenario conclusion after the presentation of a 
negated antecedent of the conditional (Not P.). Our results confirmed 
this, as scenarios containing bare if conditionals showed no predictive 
brain activation prior the word onset and an enhanced P300 response, 
suggesting more effortful processing during the comprehension of the 
scenario conclusion, which aligns with the prolonged reading times re
ported in the self-paced reading study (Barthel et al., 2022). 

A remaining critical question is whether the reduced processing 
effort in the integration of the presented discourse conclusion, as sug
gested by the reduced P300 effect, is indeed due to the presence of 
predictive activity before the onset of the critical word, or put differ
ently, whether the observed Prediction Potential and the word-induced 
P300 are functionally related. To address this point, we examined the 
relationship between the two ERP components in only if scenarios using 
correlation analysis on single trial data. The results reveal that larger 
anticipatory Prediction Potentials lead to decreased P300 word-induced 
activation when encountering expected negative quantifiers (none). 
Notably, for unexpected, positive quantifiers (one), on the other hand, 
larger Prediction Potentials lead to increased P300 word-induced acti
vation (Fig. 1C). These findings suggest that stronger predictions of 
discourse continuation, reflected in the preactivation of neural traces of 
a discourse continuation before the expected word, facilitate the pro
cessing of the encountered input, as reflected in a reduction of the P300 
word-induced responses. This correlation is in line with a previous study 
showing such a functional relationship between pre- and post-word 
neural processing (Grisoni et al., 2021). However, here we critically 
add and show that larger Prediction Potentials lead to reduced P300 
responses when the input matches the prediction, indicating facilitated 
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processing and integration. In cases where the input does not match the 
prediction, on the other hand, larger Prediction Potentials lead to 
increased P300 responses, suggesting higher processing costs. 

The functional relationship between these brain indicators of pre
diction and discourse processing finds further support by additional 
control analyses showing that the correlation is specific to the P300 
component, as it was found to be absent between the Prediction Po
tential and the very early P100 component, a finding that is consistent 
with a previous study on semantic processing (Grisoni et al., 2021). The 
absence of a correlation with the early P100 component further 
strengthens the case for the relationship of the Prediction Potential and 
word-induced discourse processing, since any potential spurious in
fluences of baseline corrections or possible extensions of the slow wave 
Predictive Potential into post-word regions should also be evident in the 
P100 component, as it is directly adjacent to the Prediction Potential. 
Furthermore, a significant correlation was only found for only if sce
narios but not for if scenarios, further speaking to the specificity of the 
relationship between the Prediction Potential and word-induced pro
cessing. Overall, this evidence for a direct link between pre-activation of 
expected discourse continuations and reduced costs of input processing 
sheds light on the functional role of different neural signatures of pre
diction in language comprehension, demonstrating that the mental 
processes of discourse understanding are functionally interconnected 
with processes of discourse prediction. Future research is required to 
scrutinize this relationship across various linguistic tasks and di
mensions, including semantics, syntax, and phonology, to determine 
whether the patterns observed in the present study manifest consistently 
across these different levels of language processing. 

A final observation that could be tackled by further studies is the 
presence of word-induced P300 effect instead of a (similarly conceiv
able) N400 effect, which is typically observed in case of semantic 
violation or low predictability. A possible reason for the absence of an 
N400 effect is that the ERPs in the present study were time-locked to 
functional words, whereas N400 effects found in language processing 
typically involve processing difficulty of lexical (content) words (e.g., 
Holcomb, Kounios, Anderson, & West, 1999; Kutas & Federmeier, 2011; 
Kutas & Van Petten, 1994; Lau et al., 2006; Nieuwland & Van Berkum, 
2006). In our study, both contrasted discourse continuations (positive 
and negative quantifiers) are both syntactically and semantically well- 
formed. The built-in congruence and incongruence between the crit
ical final sentence and discourse requires the processing of 1) the se
mantics of the negative quantifier (none), 2) the compositional 
semantics and truth value of the sentence (Not Q.), and 3) the discourse 
context (If / Only if P, Q. Not P.). All the three processes can give rise to 
processing costs, and since negation out of context is known to be costly 
(Kaup & Dudschig, 2020), any potential differences in the N400 window 
due to 3) might have been diminished by the costs of 1) and/or 2). Note 
also that effects in the P300 component have been shown to be elicited 
by the absence or presence of a prediction match, specifically when the 
target words play a crucial role in performing a categorization task with 
a binary choice (Alday & Kretzschmar, 2019). This parallels the pro
cessing and binary categorization of discourse continuations in the 
conditional scenarios used here, and might be a further explanation why 
a P300 and not a N400 was observed in the present study. While these 
serve as possible explanations, additional studies are needed to further 
clarify under which precise conditions a P300 effect or an N400 effect 
can be expected to be more likely in discourse-level language prediction 
research, as well as whether and how they might be related. 

5. Conclusion 

Short stories with more versus less predictable continuations, 
depending on the kind of conditional connective (if vs. only if) they 
contained, triggered more versus less predictive brain activity prior to 
their conclusion. Specifically, highly predictable stories that contained 
only if conditionals triggered a clear brain response prior to the onset of 

the critical word, the so-called Prediction Potential. In contrast, such a 
Prediction Potential was absent in less predictable stories containing 
bare if conditionals. Furthermore, word-induced brain activity triggered 
by the presentation of the critical word showed an enhanced P300 
component in less predictable discourses as compared to highly pre
dictable ones. Intriguingly, these brain indicators of predictive and 
word-induced activities were found to be correlated, with stronger 
predictive activity leading to reduced word-induced brain activity in 
predictable discourse continuations and to increased word-induced 
brain activity in unpredictable discourse continuations. The present 
findings deepen our understanding of language processing and predic
tion at the discourse level, highlighting the functional link between 
discourse understanding and prediction processes. 
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