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Abstract

Antimicrobial resistance (AMR) is an emerging global One Health issue, affect-
ing both human and veterinary medicine, as well as the environment. Previous
research revealed that clinics providing healthcare for companion animals, such
as horses, in fact represent ’hot spots’ for the local spread of multidrug-resistant
(MDR) pathogens. Equines receiving perioperative antibiotic prophylaxis (PAP),
consisting of gentamicin and penicillin, were hereby found to be frequently colo-
nized by MDR bacteria. Since the duration of antibiotic therapy influences the
local selective pressure and recovery time of the microbiome, two distinct PAP
regimens were comparatively investigated, particularly in regards to the emer-
gence of genes conferring resistance to antibiotics, biocides and metals (ARGs)
within the enteral and nasal microbiota.

Hospitalized horses subjected to colic surgery were randomized into two groups
receiving PAP, either as a single dosage prior to surgery (SSG) or across 5 con-
secutive days post-surgery, including the initial dosage (5DG). Faecal and nasal
samples were collected on days 0 (hospital admission), 3 and 10 (post-surgery).
Samples were subsequently 16S rRNA (n = 78) and metagenome shotgun (n = 64)
sequenced. Two novel computational workflows were developed for analysis of the
respective microbiome and resistome data sets (Meta16s and MetaGEN). Results
were then tested for statistical correlation with study groups, sampling time points
and taxonomic diversities.

The results display unique metagenomes associated with each of the equine pa-
tients. Beyond the impact of hospital stay and surgery, PAP caused microbiome
perturbations in both nasal and gut environments, resulting in the accumula-
tion of ARGs throughout the study period. Genes conferring resistance to beta-
lactamases and aminoglycosides increased significantly in relative abundance over
time within the 5DG, while the latter stagnated within the SSG. Taxonomic al-
pha diversity was found to be negatively correlated with the reconstructed ARGs
across the sample set. Metagenomes with low taxonomic diversity hereby illus-
trated elevated abundances of resistance genes. While ARGs were found to be
primarily associated with the family of Enterobacteriaceae, increased taxonomic
plasticity was observed towards day 10. Draft genomes of abundant bacteria

xvi



were reconstructed, revealing the presence of genotypically MDR Gram-negative
pathogens, including Acinetobacter spp., Escherichia coli and Klebsiella spp.,
among the patient set.

The study has enabled insights on the multifaceted effects of both hospitaliza-
tion and PAP on the equine microbiome. A significant increase in ARGs con-
ferring resistance to aminoglycosides and beta-lactamases, particularly within
metagenomes representing the 5DG, provides evidence for the selective effect of
prolonged PAP in hospitalized horses subjected to colic surgery. The presence
of MDR pathogens stresses the need to further strengthen antibiotic stewardship
throughout veterinary hospital environments. The presented novel computational
workflows, as well as the described data sets, will enable further studies within
the field of microbiome research.
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Zusammenfassung

Antibiotikaresistenzen (AMR) stellen eine zunehmende globale One Health-Her-
ausforderung dar, welche sowohl die Human- und Veterinärmedizin als auch die
Umwelt betrifft. Vorherige Untersuchungen haben ergeben, dass Kliniken, in de-
nen Haustiere (wie z.B. Pferde) behandelt werden, ’Hotspots’ für das Auftre-
ten und die lokale Verbreitung von multiresistenten (MDR) Infektionserregern
darstellen. Pferde, welche eine perioperative Antibiotikaprophylaxe (PAP) beste-
hend aus Gentamicin und Penicillin erhielten, wurden dabei besonders häufig mit
MDR-Bakterien besiedelt. Da die Dauer der Antibiotikatherapie den lokalen Se-
lektionsdruck und die Erholungszeit des Mikrobioms beeinflusst, wurden zwei un-
terschiedliche PAP-Schemata vergleichend untersucht, insbesondere im Hinblick
auf das Auftreten von Genen innerhalb der enteralen und nasalen Mikrobiota,
welche Resistenzen gegen Antibiotika, Biozide und Metalle (ARGs) vermitteln.

Hospitalisierte Pferde, die einer Kolikoperation unterzogen wurden, sind rando-
misiert in zwei Gruppen eingeteilt worden und erhielten entweder eine PAP be-
stehend aus nur einer einmalig Dosis vor der Operation (SSG) oder an 5 auf-
einanderfolgenden Tagen, einschließlich der initialen Dosis (5DG). Kot- und Na-
senproben wurden dabei an den Tagen 0 (Klinikaufnahme), 3 und 10 (nach der
Operation) entnommen. Die Proben wurden anschließend 16S rRNA (n = 78) und
Metagenom-Shotgun (n = 64) sequenziert. Zwei neue bioinformatische Program-
me wurden für die Analyse der jeweiligen Mikrobiom- und Resistom-Datensätze
entwickelt (Meta16s und MetaGEN). Deren Ergebnisse wurden dann auf statisti-
sche Korrelation mit den Studiengruppen, dem Zeitpunkt der Probenentnahme
und der taxonomischen Diversität geprüft.

Die Ergebnisse zeigen individuell zusammengesetzte Metagenome der Pferdeko-
horte. Neben dem Einfluss des Klinikaufenthaltes und der Operation als solches
beeinflusste die PAP das Mikrobiom sowohl des Nasen- als auch des Darmmilieus,
welches mit der Akkumulation von ARGs über den gesamten Studienzeitraum ein-
herging. Gene, welche Resistenzen gegen Beta-Laktamasen und Aminoglykoside
vermitteln, nahmen in ihrer relativen Häufigkeit im Laufe der Zeit signifikant in
der 5DG zu, während letztere für die SSG stagnierten. Zudem wurde eine negative
Korrelation zwischen der taxonomischen Alpha-Diversität und den rekonstruierten
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ARGs über den gesamten Probensatz festgestellt. Insgesamt wurde verdeutlicht,
dass Metagenome mit einer geringeren taxonomischen Vielfalt ein vergleichweise
erhöhtes Vorkommen von Resistenzgenen aufwiesen. ARGs wurden darüber hin-
aus primär mit der Familie der Enterobacteriaceae assoziiert, wobei eine erhöhte
taxonomische Plastizität gegen Tag 10 beschrieben wurde. Rekonstruierte Ganzge-
nome konnten das Vorkommen von zahlreichen genotypisch MDR Gram-negativen
Erregern, einschließlich Acinetobacter spp., Escherichia coli und Klebsiella spp.,
in der Patientengruppe aufzeigten.

Diese Studie trägt dazu bei, ein Verständnis für die multifaktoriellen Auswirkun-
gen von Hospitalisierung und PAP auf das Mikrobiom von Pferden zu entwickeln.
Eine signifikante Zunahme von ARGs welche Resistenzen gegen Aminoglykoside
und Beta-Laktamasen verleihen, primär in Metagenomen der 5DG, liefert Hinwei-
se auf die selektive Wirkung der PAP-Regime bei Kolik-operierten und hospitali-
sierten Pferden. Das Vorkommen von MDR Erregern unterstreicht die Notwendig-
keit, den Umgang mit Antibiotika im Veterinärklinikumfeld weiter zu verbessern.
Die präsentierten neuen bioinformatischen Programme, sowie die beschriebenen
Datensätze, werden hierbei weitere Studien im Bereich der Mikrobiomforschung
ermöglichen.
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Glossary

Alpha diversity: "[The] diversity measured within a particular ecosystem or
sample. It is commonly characterized by [...] richness, evenness and phylogenetic
diversity." [1]

Antimicrobial resistance gene: "[...] a gene that confers resistance to antibi-
otics when it is present or increases susceptibility [...] when it is absent." [2]

Beta diversity: "[Diversity] comparison between particular ecosystems or sam-
ples. It is commonly analysed through ecological and phylogenetic distances esti-
mated from the sample composition." [1]

Commensals: "Organisms (for example, microbes) that are involved in a form of
symbiosis in which one organism derives a benefit while the other is unaffected." [3]

Dysbiosis: "A condition in which the normal microbiome population structure is
disturbed, often through external pressures such as disease states or medications."
[3]

Diversity index: "A mathematical expression that combines species richness
and evenness as a measure of diversity." [4]

Evenness: "A measure of the homogeneity of abundances in a sample or a com-
munity." [4]

K-mers: "All possible sequences of length k from a read obtained through DNA
sequencing." [5]

Metadata: "[All] the variables and data relevant for the study providing infor-
mation about the samples included." [1]

Microbiota: "The community of microorganisms, including bacteria, viruses
and fungi, which are found within a specific environment (for example, the hu-
man gut)." [6]
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Microbiome: "The totality of microbes, their genetic information and the milieu
in which they interact. Microbiomes typically consist of environmental or biolog-
ical niches containing complex communities of microbes." [3]

Operational taxonomic unit: "A group of closely related individuals or se-
quences (often 97% sequence similarity threshold)." [5]

Probiotic: "Living microorganisms that are thought to confer a benefit to the
host." [3]

Relative abundance: "The quantitative pattern of rarity and commonness
among species in a sample or a community." [4]

Reservoir: "[...] refers to a bacterium that harbours resistance or virulence genes
[...] and serves as a source from which other bacteria may acquire these genes." [7]

Resilience: "A term in ecology indicating the capacity of a system to absorb
disturbance and to reorganize itself while undergoing change, so as to retain es-
sentially the same function, structure and identity." [3]

Resistome: "[...] the ensemble of genes encoding antimicrobial resistance in a
given microbiome [...]" [8]

Richness: "The number of species in a community, in a landscape or mari-
nescape, or in a region." [4]

Zoonoses: "[...] diseases and infections that are naturally transmitted between
vertebrate animals and man. Emerging zoonoses are [...] diseases caused either
by [...] new agents or by previously known microorganisms appearing in places or
in species in which the disease was previously unknown." [9]
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1 Background & Introduction

1 Background & Introduction

1.1 Antimicrobial Resistance

The accidental discovery of the antibiotic penicillin in 1928 significantly altered
the world we live in today [10, 11]. Many advancements of modern medicine,
including cancer chemotherapy and invasive interventions such as heart surgery,
joint replacements or organ transplants require usage of antibiotics, such as beta-
lactams, but are threatened by the emerging crisis of antibiotic resistances [12,
13]. Antibiotics are pharmaceutical drugs used to perturb essential biochemical
processes or attack molecular structures within bacteria, resulting in their death or
stagnation of growth [13–15]. The umbrella-term ’antimicrobial’ hereby generally
refers to drugs used to treat infections caused by a wider range of microorganisms,
not solely bacteria, but also protozoan parasites and fungi [14]. Antibiotics and
their accompanying resistances have ancient origins [16, 17], as they are naturally
produced by fungi [14] and have been found across all known environments, from
frozen tundras and caves to isolated populations of humans [15, 18–20].

These natural compounds have since been used to synthesize an array of pharma-
ceutical drugs over the last 100 years after their initial discovery [10, 14]. From
the 1940s to the 1960s, a total of 20 classes of antibiotics were described [14],
but the spread of newly resistant bacterial strains closely followed any large-scale
application of these drugs [14, 19]. For example, resistance to penicillin began to
emerge in the 1940s, less than 20 years after its initial discovery [21, 22]. During
this time, antibiotic usage was found to be widespread for treating injured soldiers
on the battlefields of World War 2, as well as the introduction of these drugs in
form of growth promoters for livestock [23]. For newer classes of antibiotics, the
emergence of bacterial resistances was reported up to five years after their wide-
spread distribution [14]. This proliferation of resistant strains has since begun to
turn diseases which used to be easily curable deadly once more [13]. The situation
has steadily been worsening due to the ongoing failure to discover novel antimi-
crobial drugs throughout the 21st century [13, 23, 24]. Over the last 20 years,
only two new classes of antibiotics (lipopeptides and oxazolidinones) have been
approved by international agencies [24]. In fact, the most recent drug class to
be effective against a board spectrum of pathogenic Gram-negative bacteria are
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quinolones, which were first described in the 1960s [24]. These ongoing challenges
within antibiotic research and discovery are already resulting in large implications
for public health [24].

The emergence of antimicrobial resistance (AMR) is therefore an urgent global
health issue and represents one of the greatest hazards to healthcare systems
worldwide [23, 25, 26]. With some bacterial strains already so extensively resis-
tant that they are unable to be treated with antibiotics at all [27], the ’resistance
epidemic’ [25] threatens many achievements of modern medicine [28]. AMR has
become an issue amongst almost all pathogenic bacteria associated with infectious
diseases, encompassing both Gram-positives and negatives [23, 26]. In 2019 alone,
an estimated 1.27 million deaths worldwide were directly attributed to AMR [29].
Of these, over 929,000 deaths were associated with a small range of six pathogens,
lead by the species of Escherichia coli [29]. Clinical studies outline that a ma-
jority (> 50%) of invasive infections of Escherichia coli, Klebsiella pneumoniae
and Staphylococcus aureus already illustrate some level of resistance to a range
of commonly used antibiotics [14]. In the US, multiple drug resistant (MDR)
bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), have al-
ready been estimated to cause more deaths than HIV [30]. MDR bacteria, includ-
ing Escherichia coli and Staphylococcus aureus, also remain ongoing challenges
within veterinary medicine, due to limited treatment options and the potential
for zoonotic transmission [31]. Species of Staphylococci hereby represent frequent
agents of infection across livestock animals [32]. Gram-negative pathogens are of
particular concern, since some strains have evolved resistance against nearly all
classes of antibiotics available for treatment [14].

The World Health Organization (WHO) recently performed a multicriteria deci-
sion analysis in order to allow prioritization of research and funding towards new
agents against a series of highly multidrug-resistant pathogens [24]. This list in-
cluded Mycobacterium tuberculosis as the highest extensively-resistant pathogen
and classified other priority bacteria into: critical (Acinetobacter baumannii, Pseu-
domonas aeruginosa, Enterobacteriaceae), high (Enterococcus faecium, Staphylo-
coccus aureus, Helicobacter pylori, Campylobacter spp., Salmonella spp., Neisse-
ria gonorrhoeae) and medium (Streptococcus pneumoniae, Haemophilus influen-
zae, Shigella spp.) [24]. Similar outlines have also been proposed by national
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health agencies, including the Centers for Disease Control and Prevention (CDC),
which declared Clostridium difficile, carbapenem-resistant or extended-spectrum
beta-lactamase (ESBL)-producing Enterobacteriaceae, Campylobacter spp., non-
typhoidal Salmonella and Shigella as particular threats for public health [26].
MDR bacteria, including those specifically addressed by the aforementioned agen-
cies, cause increased mortality rates, lengths of hospitalization and medical costs
when compared to infections resulting from antibiotic-susceptible strains [27, 33,
34]. MRSA infections, for example, are commonly associated with doubled death
rates and hospital expenses compared to non-resistant variants [35]. With the con-
tinuing trend of increasing resistance rates, the beginning of a post-antibiotic age
has been proposed, a time in which even minor infections may become untreatable
once more [13, 23, 28].

1.1.1 Mechanisms of Antimicrobial Resistance

Antibiotics commonly target essential functions of the bacterial cell, such as cell
wall maintenance, protein biosynthesis, DNA replication or repair mechanisms
[15]. Throughout history, microbes have developed a range of unique strategies to
alleviate these effects, including degradation of the drug through enzymes, alter-
ation of the antibiotic target molecule, differential regulation of metabolic path-
ways to circumvent the effect or mitigation of substance accumulation through
efflux pumps [15, 22, 26, 28, 34]. The development and spread of AMR are direct
results of the multifaceted genetic processes that microbes can utilize in order
to rapidly adapt to new environmental stressors [22]. Bacteria in particular pos-
sess a high level of genetic plasticity compared to humans [36]. Escherichia coli
(E. coli), for example, have been described to range in genomic sizes from 4.2 to
6.0 Mbp, with only a few hundred genes shared across the entire species [37]. In
contrast, the human genome is comparatively static in its size of 3 Gbp (haploid),
encompassing approximately 20,000 protein-encoding genes, many of which are
highly conserved [38, 39]. Both organisms differ slightly in their average muta-
tion rates, with gut-associated E. coli described to develop 6.9 × 10−7 SNPs per
nucleotide site per year [40] and humans evolving within the order of 0.5 × 10−9

per bp per year [41]. However, given that E. coli can double their population size
in 33 min under laboratory conditions, while humans span generational times of
at least 29 years [42], SNPs associated with increased fitness can rapidly emerge
and spread across microbial organisms. Drug resistance in particular can result
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from a variety of changes accumulating within the bacterial genome. For example,
polymorphisms in the chromosomal DNA can induce the upregulation of intrinsic
resistance mechanisms or render specific antibiotic components ineffective against
a bacterial strain [13]. In fact, many antibiotic resistance genes (ARGs) are be-
lieved to have evolved naturally over time in environmental microbes and were
later transferred to other species [43]. Individuals possessing such resistance mech-
anisms have the ability to survive under extreme conditions, including, but not
limited to, antibiotic exposure, and may hereby spread their corresponding genes
through vertical as well as horizontal genetic recombination (also known as hori-
zontal or lateral gene transfer, HGT) to other members of the population [44, 45].
This unique ability allows the bidirectional acquisition and exchange of additional
genetic material between non-related commensal and pathogenic individuals [26,
28, 46, 47], promoting the development of new zoonotic strains [48].

Mobile genetic elements (MGEs), such as conjugative plasmids, transposons, inte-
grons, insertion sequences or prophages [18, 26, 49, 50], frequently encode ARGs
or virulence genes [17, 50, 51]. While HGT, particularly the transfer of mobile
ARGs, is primarily constrained by phylogenetic distance, environmental condi-
tions and ecological barriers [28], the mechanisms of conjugation, transduction
and transformation are not limited to a single species [26, 49] and can enable the
exchange of genetic material even across members of different genera [22]. This
allows for competitive advantages of even distantly related bacteria throughout
times of antibiotic exposure, enabling the evolution of new MDR strains [51].
Mono-resistant strains are also likely predisposed to accumulate additional resis-
tances through the careful balancing of the increased fitness costs associated with
MDR and the positive selection of SNPs within metabolism-associated genes [27].
Clonal spread [33] and cross-selection [16, 46] in particular have been shown to
significantly affect the dissemination of resistances across the environment. In ad-
dition, resistance genes to biocides, which play an important role in disinfectants,
and antimicrobial metals, such as zinc, are frequently co-selected and co-localized
together with AMR genes [8, 16, 20, 46]. The entirety of ARGs within an envi-
ronment is referred to as the ’resistome’ [28, 52, 53], which includes many MGEs
not constrained to single individual species [22]. ARGs can be divided into two
classes: (1) taxa-specific, chromosomally encoded genes and (2) through muta-
tional processes or HGT acquired resistances [28, 54]. Intrinsic resistances (1) are
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generally common within environmental bacteria and represent genes not directly
associated with anthropogenic antimicrobial exposure [54]. While they may be
mobilized, they commonly remain confined to specific taxonomic groups [54]. In
contrast, acquired resistances (2) have the potential to disseminate across multiple
species and environments [54]. Although many ARGs have evolved naturally and
pre-date modern medicine by several millennia [13], their occurrence has drasti-
cally increased over the last 50 years due to the excessive selective pressure of
antibiotics that bacteria of the 21st century must endure [17, 43].

1.1.2 Surveillance of Antimicrobial Resistance

Today, large-scale usage of antibiotics is common practice [48, 55]. Over the
past 60 years, millions of tons of antibiotics have been produced and distributed
across various industries and sectors [14]. Combined with the continuing mis- and
overuse of therapeutic and prophylactic dosages, especially within the livestock
and healthcare sectors [23, 26, 56], resistance rates have continued to increase [48,
55]. The CDC estimated that in the US approximately 50% of prescribed antibi-
otics are not optimally utilized or needed at all [57]. Another major application
field for antibiotics lies within veterinary medicine, more specifically livestock
farming [14], which in some countries outweighs usage in human medicine [19,
51]. In the US, surveys revealed that only 52% of the general public were aware of
antibiotic application in livestock production and aquaculture [14], while almost
80% of the nation’s antibiotics were being used as growth promoters, infection
prophylaxes and direct treatments within the veterinary field [28], although this
has been turning since the ban on growth promoters within the EU (in 2006) and
the US (in 2017) [58].

However, while both humans and animals consume antibiotics, they do not me-
tabolize these substances completely, resulting in the release of remnants back into
the environment through faeces and urine [15, 50, 51, 59, 60]. Due to half-lives
ranging up to several years [15], remains of antibiotics can easily disseminate into
sewer systems and wastewater plants [51] or are directly applied to soil as contam-
inants of fertilizers [59], inducing the risk of selection for resistant bacteria within
these environments [26, 60]. On a positive note, this issue has started to gain
increasing international attention over the last decade [45], illustrated by the mul-
tiple call-to-arms action plans against AMR [23, 24, 53], resulting in antibiotics
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now being widely regarded as pollutants [16, 19, 45]. AMR has further been asso-
ciated with several socio-economic and environmental factors, such as sanitation,
antimicrobial usage and bacterial abundance [60]. National efforts have therefore
begun to increase monitoring of AMR in order to inform policy makers about
the emergence and spread of resistances [53, 61]. In Europe, multiple initiatives
are currently working on developing integrated genomic surveillance systems for
pathogens of public health importance, including the European Centre for Disease
Prevention and Control (ECDC) [62] and the Robert Koch Institute [63]. Inter-
nationally, recent adoption of the Muscat Manifesto1 by over 40 nations to reduce
antibiotic usage through improved stewardship highlights an important step in
the battle against AMR.

While additional research is needed with respect to the development of novel an-
tibiotic agents, this represents an expensive and slow progress [24]. As such, addi-
tional public health interventions must be upheld in order to address the current
healthcare burden of MDR [24]. The CDC recently outlined several strategies
to slow the emergence of resistances: preventing infections, improving antibi-
otic stewardship, developing new drugs and diagnostic tests as well as increasing
surveillance efforts [14]. In order to slow the spread of antibiotic resistance, over-
all usage of antibiotics must decrease, accompanied by prudent stewardship and
infection control [14, 64]. This is especially true for veterinary healthcare, where
alternatives to the use of antibiotics should be considered whenever possible [33].

It is important to note that while public health is of primary concern, other sectors
outside of human and veterinary medicine are also heavily affected by AMR, in-
cluding agriculture, livestock farming and aquaculture [22]. Within these sectors,
antibiotic usage remains at an all-time high, elevating rates of resistances across a
wide range of diverse environments [22]. Thus, AMR is a multifaceted, interdisci-
plinary issue affecting humans, animals, the environment and food chains [24] and
therefore falls under the concept of One Health. The One Health framework was
initially introduced in 2004 and represents a concept which interconnects public
health with animal health and environmental reservoirs [19, 23]. By spanning
across multiple sectors and industries, AMR is required to be evaluated under

1https://www.amrconference2022.om/MuscatManifesto.html
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such a shared framework in order to establish coordinated surveillance programs
for pathogens and the emergence of resistances [53, 65]. These enable the quanti-
tative assessment of AMR, including underlying factors such as the actual usage
of antimicrobials, as well as monitoring the development and spread of resistant
pathogens [66]. Combining both genomic and epidemiologic data within an in-
terconnected One Health approach allows to evaluate the real healthcare burden
of harmful bacteria and their resistances [24]. Such systems remain essential in
order to limit the global AMR burden of disease [19, 60].

With increasing rates of resistances, new methods are urgently needed in order
to enhance our understanding on the biochemical mechanisms behind AMR [48]
and to monitor these within a given community [44]. Phenotypic antimicrobial
susceptibility tests, such as minimum inhibitory concentration (MIC) assessment
[53, 55], disk diffusion assays [49, 64] and broth microdilution [67], as well as gene
targeted quantitative polymerase chain reaction (PCR) [25, 64] represent gold
standards for the in vitro assessment of bacterial resistances. While these methods
have dominated AMR surveillance over the last decades [12], new technologies are
currently emerging to tackle the expanding issue of global resistances, with one
of these represented by the field of metagenomics [25]. Metagenomics enables
culture-free, rapid characterization of clinical samples without prior knowledge
of the involved pathogens or resistances [53, 68]. It allows the identification of
ARGs disseminated across a microbial community in silico, without the need to
isolate and culture the bacteria [22, 53]. Instead, samples are taken directly from
an environmental source, DNA extraction and sequencing are performed, and the
resulting genomic data are screened for resistance profiles, which in turn enable
the identification of potential hot spots, transmission pathways [44] or natural
reservoirs of AMR [69]. This enables the characterization of resistance reservoirs
across different environments or microbial hosts, including humans and animals
[25]. With the rapid spread of resistant pathogens posing a global health threat,
methods such as metagenomics can be utilized to establish and support integrated
One Health surveillance systems for monitoring the emergence and spread of AMR
[19, 24, 53].

7



1 Background & Introduction

1.2 Metagenomics

Metagenomics represents a comparatively new discipline, primarily driven by re-
cent advancements in DNA sequencing technologies [70]. It hereby lies within
the intersection of multiple interdisciplinary research fields, including data anal-
ysis, microbial ecology and molecular genomics [71]. The prefix ’meta’ originates
from the Greek language and roughly translates to ’after’ or ’beyond’, essentially
describing metagenomics as research ’beyond a single genome’ [70]. The term
’metagenomics’ was first coined by Handelsman et al. in 1998 [36] to describe a
culture-independent, unbiased, molecular survey of genetic material present within
an environmental sample [72]. This bypasses the need to isolate and produce pure
cultures [22, 73] through bulk sequencing of samples taken directly from an en-
vironmental source [74]. These samples can be highly diverse in their origin,
ranging from soil [59, 75, 76] to water [49, 50, 77] and air samples [69], even in-
cluding anthropogenic environments, such as food sources [78], hospital surfaces
[79] or faeces [52, 80, 81]. The representation of the total genomic content of a
sample is commonly referred to as the ’metagenome’ [5, 71], encompassing many
individual organisms across their specific ecological niches and habitats [3]. While
metagenomic analyses have historically focused on studying bacterial ecosystems,
microbial communities in fact comprise of a mixture of bacteria, archaea, micro-
bial eukaryotes and viruses all co-inhabiting within a shared environment [73, 82].
With increasing sequencing depths, recent studies have therefore begun to expand
their focus towards microbial eukaryotes [5, 82] and viruses [83, 84]. Early large-
scale metagenomic projects include the Human Microbiome Project [85] and the
Global Ocean Sampling Expedition [86], with more recent initiatives studying the
spread of AMR across subway systems [87, 88].

The cutting-edge nature of metagenomics has enabled new insights across a wide
range of research fields throughout the last decade, including healthcare, microbial
ecology and infectious diseases [72, 73, 89]. Metagenomics has been described as
the method for exploring the microbial ’dark matter’ [13, 83, 90] and continues to
play a key role in unravelling novel species that cannot be obtained through cul-
ture [22, 73, 91, 92]. However, while strain culturing represents the gold standard
to this day for performing in-depth studies on a small proportion of earth’s mi-
crobes [36], a large majority of the planet’s microbial biodiversity cannot be readily
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cultured. This essentially limits the application of traditional genomic analyses,
which require the isolation and growth of a species in culture before further DNA
extraction can be performed [93]. Bacteria in particular represent a highly diverse
kingdom of life, encompassing exceptional genetic variability, such as extremely
divergent gene contents between members of even the same species [94]. Current
studies estimate that 99% of all environmental bacteria remain unculturable [15,
43, 86, 90], which results in the absence of these microorganisms from genomic
reference databases [95, 96], as well as being unable to study and monitor their
resistomes through traditional methods [15]. For example, early research on the
soil microbiome estimated that less than 0.1% of microbes can be readily cul-
tured, with a single gram of soil containing up to 10,000 undescribed prokaryotic
species [36]. The remaining 99.9% of soil-colonizing bacteria have since revealed a
world of high genetic diversity [76], spanning many new taxonomic classifications,
including several novel phyla [36]. However, even anthropogenic environments
remain highly uncharacterized, as a study of the New York City public trans-
port system concluded that 48% of the sampled DNA could not be allocated to
known reference genomes, indicating the presence of a wide range of undescribed
microbial species [97]. This holds particularly true for human microbiomes, which
represent a major frontier for molecular analyses and genetics to this day [3]. Es-
timations suggest that only 30% of gut microbiota can be readily cultivated [98]
and over 50% still lack corresponding reference genomes within current databases
[96], stressing the need of culture-free sequencing methods for further studying
these environments.

Over the recent decade, extensive research within the field of metagenomics has
enabled the expanse of the known microbial diversity across several branches of
life [92], including those widely unexplored such as the virosphere [83, 84, 99].
Metagenomics is also being utilized to characterize the interaction of a wide range
of medical conditions, including inflammatory bowel disease, obesity and diabetes,
with human microbiome compositions [100]. While the idea of isolating all mi-
crobes and trying to predict their pathogenicity is impossible in vitro, identifying
and characterizing potential pathogens in silico through unbiased metagenomic
surveys might represent a useful tool for future molecular healthcare [84]. With
the continually decreasing costs of sequencing, metagenomics may therefore even-
tually be applied throughout routine microbiological diagnostics in the future [84],
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for example to monitor changes within the gut microbiota [101, 102] or as a surveil-
lance tool for assessing the spread of AMR [103]. Since the human genome was
first published in 2001, sequencing technologies have in fact become over a mil-
lion times cheaper and faster [104]. With this rapid increase in throughput, large
quantities of metagenomic data can be easily produced, but bioinformatic analyses
remain a common bottleneck for many studies [105]. For example, numerous tax-
onomic profiling tools have been developed for the analysis of metagenomic data
[106] and while this highlights the current interest in the subject at hand [107],
additional research is required to define clear gold standards, including broadly
accepted methods, best practices and scientific guidelines [108].

Two common strategies have hereby been established to enable the culture-free as-
sessment of metagenomes: either the amplification of highly conserved gene mark-
ers (such as 16S rRNA sequencing, described in section 1.2.1) or by performing
untargeted sequencing of the entire DNA content (known as shotgun metagenome
sequencing, described in section 1.2.2) [92]. Metagenomic analyses commonly
dwarf isolate-based sequencing projects in size [109] and may even rival eukary-
otic genomic analyses in terms of complexity [36]. Through sequencing, millions of
short nucleotide strands are generated and further utilized to characterize the un-
derlying microbial population by determining the taxonomic and functional struc-
ture (composition and distribution) of a sample [72, 110, 111]. This enables, be-
yond other, to study complex relationships between a habitat/environment (i.e. a
host) and individual species through the quantification of co-habiting taxa present
within a bacterial community at the time of sequencing [73, 112]. While both 16S
rRNA and shotgun metagenome sequencing capture relative abundances of mi-
crobiota and are commonly utilized for microbiome characterization [1, 113, 114],
they strongly differ in their respective data analysis workflows and outputs due to
variations within the underlying methodologies [115]. As such, the following sec-
tions will characterize both methods in greater detail. Potential advantages and
disadvantages will be compared between these approaches, particularly in regards
to downstream analyses and technological limitations.

1.2.1 16S rRNA Sequencing

Historically, researchers have utilized the 16S ribosomal RNA (16S rRNA) since
the 1970s for molecular identification and quantification of unknown prokaryotic
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communities [92, 93, 112, 116, 117]. In both bacteria and archaea, the 16S rRNA
gene encodes a central component for the small 30S RNA subunit of the 70S ribo-
somes [3, 114, 115, 118]. The 16S rRNA hereby plays an important role within the
translational processes of the prokaryotic ribosomes [119]. As ribosomal transla-
tion represents an essential pathway for life, its components are highly conserved
across the phylogenetic tree [111, 114] and thus represent unique genetic markers
for microbial ecology [115, 120, 121]. An overview of the 16S rRNA gene is illus-
trated in figure 1.1. The 16S rRNA gene is approximately 1,600 bp in length [119]
(1,542 bp in E. coli K12 [102, 114]) and can be segmented into nine variable re-
gions (V1-V9) which are flanked by conserved sequences (C) [31, 114–118]. While
the conserved regions can be found ubiquitously across the evolutionary scale [85],
variable regions allow the distinction of 16S rRNA gene variants between different
clades of microbial taxa [111, 116, 118].

Throughout the recent decades, short-read amplicon sequencing was primarily
utilized to assess these variable regions [114, 117, 118]. Primers for 16S rRNA
gene sequencing are taxonomically universal [111] and target specific pairs of con-
served DNA surrounding a variable region of interest [5, 118, 122]. Although the
selection of primer pairs and their targeting regions have been described to vary
in taxonomic resolution and sequencing efficiency [102, 119, 123], commonly em-
ployed regions include V1-V3, V3-V4, V5-V6 or solely V4 (see figure 1.1) [114,
118]. Once primers bind to a particular conserved sequence, PCR is utilized for
further amplification of the enclosed variable regions [112, 118]. This occurs si-
multaneously across thousands of potentially unique 16S rRNA genes and taxa,
resulting in millions of copies from the targeted sequence [118].

Amplified products are then sequenced using high-throughput Next Generation
Sequencing (NGS) platforms in order to obtain short nucleotide fragments, known
as reads, corresponding to the variable 16S rRNA gene regions of choice [5, 118].
Metagenomic studies have commonly been performed on the widely adapted Illu-
mina platform [1], which utilizes sequencing by synthesis [26, 124] in order to gen-
erate billions of short reads at a comparatively low cost [107, 114]. Adapter-ligated
DNA fragments are captured by a surface of complementary sequences and are
multiplied through the process of bridge amplification [114]. Sequencing is finally
performed via the base-by-base introduction of fluorescently labelled terminator
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Figure 1.1: 16S rRNA Sequencing. Conceptional visualization of the pro-
cess for 16S rRNA amplicon sequencing. Bacterial 16S rRNA genes are ap-
proximately 1,600 bp in length (shown on top) and encode a central component
for the 30S RNA subunits of the 70S ribosomes (illustrated on the right). The
70S ribosomes consist of both small (30S) and large subunits (50S), which com-
prise of multiple rRNAs and proteins (16S, 23S, 5S). The 16S rRNA genes
can further be segmented into nine variable regions (V1-V9 in orange), flanked
by conserved sequences (in grey). V1-V9 each contain small segments of high
taxonomic-variability (hypervariable regions in red), which represent targets for
the amplicon sequencing. Primers (in dark green) hereby bind to the flanking
conserved regions, followed by subsequent amplification of the enclosed variable
regions (shown as an example for V3-V4).

sequences [114]. The resulting reads are typically 50-300 bp in length [111, 125],
with an average error rate of 0.1% per nucleotide [5, 126, 127]. Once the amplicon
regions have been sequenced, reads can be allocated to specific taxa during down-
stream analysis, commonly referred to as operational taxonomic units (OTUs)
[92, 112]. As the abundance of individual OTUs infers which microbial taxa were
present in the original sample at the time of sequencing [128], tables of OTU
counts provide the basis for all downstream microbiome analyses [114, 129].
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The major advantage of 16S rRNA sequencing is its high-throughput speed and
cost efficiency [92, 117], enabling the rapid diagnostic of potentially infectious
species [98, 116]. Analogous approaches to have also been developed for microbial
eukaryotes (18S rRNA sequencing) [1, 93, 114] and fungi (ITS sequencing) [5,
92, 111, 128]. However, these methods possess several drawbacks, including bi-
ases induced by variations in primer binding affinities, region selection, amplicon
size and the amount of utilized PCR cycles [5, 96, 102, 130]. Since 16S rRNA
sequencing focuses solely on a single genomic region for taxonomic profiling, it
has been described to be effective for microbial community characterization from
phylum- to genus-level, however lacks accuracy on the species-level [112]. This il-
lustrates another important limitation in particular: 16S rRNA gene multiplicity,
which occurs frequently across bacterial clades [96, 102, 117, 120]. These hetero-
geneous copies may differ in their respective sequences, leading to the existence
of multiple gene variants for a single organism [120], which can bias abundance
estimation towards taxa with high copy numbers [1, 117]. The average bacterial
genome possesses approximately 4 copies of the 16S rRNA gene [120], although
some taxa may carry up to 15 or more [1, 31, 73]. For some prokaryotes the
intragenomic heterogeneity of these genes are especially high (e.g. > 5% for
Halobacteriales), which may introduce further biases regarding overall phyloge-
netic assessment [120]. Several hypotheses exist as to why these bacteria carry
multiple rRNA genes within their genomes, including that these can provide a
multiplication effect for the process of translation, which in turn increases adapt-
ability to novel environments through differential expression [120]. However, due
to the nature of high-throughput sequencing, the bias induced by multiple 16S
rRNA gene copies remains comparatively small [131]. While methods exist to
correct these copy number counts, they suffer from low accuracy and are therefore
not commonly utilized within microbiome studies [1].

1.2.2 Shotgun Metagenome Sequencing

With the emergence of high-throughput sequencing platforms, the field of metage-
nomics evolved from focusing on a few selected marker genes to being able to
characterize the entire taxonomic and functional content of a sample [132]. Com-
pared to earlier amplification methods, including the aforementioned 16S rRNA
sequencing, modern technologies, such as shotgun sequencing, are not bound to
predefined regions of gene markers and allow the characterization of random frag-

13



1 Background & Introduction

ments of DNA [118]. Deep sequencing of metagenomic samples (known as shotgun
metagenome sequencing) results in billions of random short reads from a pool of
microbial communities [91]. These reads are then utilized downstream in order to
estimate the taxonomic profile of the original sample by assigning each fragment
to a microbial lineage based on similarity to available reference sequences [91].

When compared to 16S rRNA sequencing, shotgun metagenomics is not limited to
a single phylogenetic group and as such can be used to characterize bacteria, eu-
karyotes and viruses present within a microbial community [112]. This enables the
detection of microbes that otherwise would have been missed through amplicon
sequencing [111] and even allows the characterization of entirely novel sequences
[72, 84, 112]. Its independence from gene markers enables profiling at increased
taxonomic resolutions (up to species-level), resulting in improved downstream
analyses, including diversity estimations [112, 117, 121]. Shotgun metagenomics
furthermore allows the characterization of individual genes (such as ARGs) across
samples, enabling insights into the functional potential of the metagenome [112].
This method is also less prone to PCR biases [76, 99, 110, 112, 121], although it
has been described to suffer from decreased sensitivity [53] and underrepresenta-
tion of taxa-specific sequences, such as fungi [130], when compared to targeted
approaches [52]. However, the largest downside of shotgun metagenomics is that
it requires extensive data analysis and is overall more cost- and labour-intensive
when compared to 16S rRNA amplicon sequencing [112]. Shotgun metagenomics
is also much more dependent on the selection of sequencing parameters, such
as read lengths and depths, which are known to affect downstream analyses, in-
cluding taxonomic and resistance gene profiling [133, 134]. Sequencing depth
describes the total number of fragments obtained from a sample through the pro-
cess of NGS [128]. Different levels of depth can hereby influence the ability to
capture and quantify the enclosed microbial communities [135], with increasing
values enabling the detection of minority species [128]. Since metagenomes are
typically ’open’, i.e. possess no fixed point defining that they are complete, vari-
ous approximations exist to estimate the essential parameter of sequencing depth
[73], which will be presented in more detail throughout chapter 2. Regarding read
lengths, fragments are recommended to encompass approximately 300 bps in or-
der to be utilized for accurate taxonomic assignment, although this can commonly
be achieved through partial overlapping of paired-end reads post-sequencing [130].
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As illustrated by the example of sequencing parameters, there exists a wide range
of standards yet to be established throughout the field of metagenomics. With the
continuous technological advancements in NGS, thousands of new species are cur-
rently being discovered, leading to the ongoing issue of taxonomically classifying
potentially novel sequences [136]. This is particularly challenging due to intrinsic
properties of metagenomic samples, enabling the characterization of high- and
low-abundance species, while also accounting for the increased levels of sequence
variation across bacterial strains [110, 136]. Another fundamental issue of metage-
nomics is handling shared, homologous regions of DNA and correctly assigning
reads containing these to specific taxa [110]. These challenges have previously
limited our insights into the microbial world surrounding us [72], including bac-
terial ’dark matter’ [13, 83] which contains a majority of cryptic environmental
species that cannot be easily cultivated and are therefore of increasing interest,
especially in regards to the emergence of AMR [26].

1.2.3 Targeted Analysis of Metagenomes

In addition to describing the taxonomic content of a sample, metagenomic shot-
gun sequences can be utilized for characterization of the underlying microbial
functional potential, based on the abundance of well-defined gene clusters. This
commonly encompasses resistance (section 1.2.3.1), virulence (section 1.2.3.2) and
mobile genetic elements (section 1.2.3.3).

1.2.3.1 The Resistome

One collection of particular interest is represented by the ’resistome’, which de-
scribes the broad spectrum of ARGs present within an environment or habitat
[52, 137]. Patterns of resistance genes are hereby categorized and compared across
sample sets in order to gain insights into the underlying structure of the micro-
biome, including active selective pressures [20]. In wet-lab-based microbiology,
AMR can be assessed through various phenotypic tests, such as strain cultivation
and the determination of antibiotic-specific MIC values [64, 66]. However, these
approaches are less feasible within large-scale metagenome studies, as they are lim-
ited to characterizing antibiotic resistances across a few selected species [53, 60],
which represents an issue for gut microbiome studies focusing on heterogeneous
populations of uncultureable bacteria. Phenotypic tests are therefore often limited
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to detecting AMR in specific indicator organisms, for instance Escherichia coli or
Enterococcus spp., which represent members of the natural gut microbiota that
are easy to cultivate and known to potentially harbour ARGs [53, 66]. Generating
metagenomic shotgun reads can circumvent this limitation and allow an unbiased
assessment of the resistome within a microbiome of interest [47]. Resistomes are
known to vary in gene composition, associated microbiota and dissemination dy-
namics across different environments and conditions [20]. For example, the healthy
human gut microbiome harbours a wide range of ARGs, spanning several antibi-
otic classes [20, 26, 43, 53]. ARGs are not necessarily bound to a single substance
and may even induce tolerance to multiple different compounds, as frequently
seen for biocide and heavy metals resistance genes [8]. However, a majority of
ARGs hosted by intestinal bacteria are only distantly related to medically rele-
vant resistance genes and as such primarily represent immobile intrinsic features
of commensal microbes [2]. While these resistance genes should nonetheless be
monitored, their existence does not resemble an immediate threat for public health
due to the fact that only a small subset of commensal gut bacteria actually inter-
act with foreign pathogens [47]. Resistance genes of clinical significance include
ampC, ermB, ndm-1, tem1 and vanA [47]. Staphylococci, for example, utilize
active efflux pumps (such as tetK or tetL) to achieve tetracycline resistance [7].
In comparison, aminoglycoside and beta-lactamase resistances are based on en-
zymatic inactivation through operons such as bla, which are frequently mobile
and can encoded chromosomally or plasmidial [7]. Beta-lactamase resistance can
alternatively be achieved through the expression of additional penicillin-binding
proteins, such as mecA [7].

1.2.3.2 The Virulome

Pathogenic bacteria have evolved their genomic repertoire in order to invade, col-
onize and damage a host, often effectively bypassing the immune system [17].
This, combined with limited treatment options due to AMR, stresses the impact
of these bacteria on public health [17]. Virulence hereby consists of a complex
regulatory cross-talk across multiple genes and pathways [138]. Virulence factors
play an important role for the pathogenicity of bacterial strains by increasing in-
fectivity and counteracting human immune defences [17]. They often contribute
to pro-inflammatory environments, promoting a state of dysbiosis within the mi-
crobiome [17]. The totality of virulence genes within a microbiome is known as the
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’virulome’ [77]. These factors encompass a wide range of genetic elements encod-
ing, for example, additional secretion pathways such as gsp [139], or cell-surface
structures like fimbriae (fim) which enable microbes to bind to their environment
[140]. Other virulence factors are involved in the production of bacterial toxins,
siderophores or regulator genes [17]. Bacteria of the genus Staphylococcus, for
instance, may additionally possess genetic components involved in biofilm forma-
tion, as well as genes related to toxin production [7].

1.2.3.3 The Mobilome

The entirety of sequences involved in HGT within an environment are known as the
’mobilome’ [26, 53, 141]. MGEs play a key role in the adaptation of microorgan-
isms to new environmental conditions [70, 142]. The majority of these consist of
plasmids and phages [143], but may also include integrative conjugative elements,
transposons and inverted repeats [141]. These microbial sequences are commonly
underrepresented in public databases, particularly when compared to the wealth
of available chromosomal data [143]. Plasmids represent a widely abundant type
of MGEs [142], with over half of all marine bacterial species carrying at least one
plasmid [143]. They resemble fragments of additional, extrachromosomal DNA
with the ability to replicate autonomously and are frequently exchanged through
HGT [142, 144]. Plasmids primarily exist in circularized form, varying in size
from small (2-10 Kbp) to large (> 50 Kbp) [142, 145]. Their sequences include
genetic markers such as relaxases, a group of genes involved in DNA mobilization
and conjugative transfer, which have been associated with AMR conferring MGEs
[8]. They also commonly carry ’cargo genes’, including additional copies of ARGs
conferring co-resistances [87, 146].

1.3 A Brief Overview of the Mammalian Gut Microbiome

Humans and animals are host to multiple complex and diverse microbial ecosys-
tems, known as microbiomes [147]. These communities of microorganisms have
dynamically co-evolved with their hosts over millions of years [92, 135, 138, 148,
149], involving microbes in almost every facet of health [3, 115, 147, 150]. They
are commonly referred to as microbiota and evolve continuously over a lifetime
[3], varying in composition and abundance across different anatomical sites [3,
96, 135, 151]. A single human can hereby harbour 3.9 × 1013 bacteria, which
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represents a 1:1 ratio in comparison to host cells [152]. Recent advancements
in high-throughput metagenomic sequencing have enabled to study these diverse
communities and sparked interest in various host-associated environments, includ-
ing the gut and nasal microbiomes of equines [31].

Mammalian intestines contain a vast population of microbes, including bacteria,
archaea, phages, fungi and protozoa [134, 153, 154]. In humans, gut microorgan-
isms are estimated to range between 10-100 trillion individuals [85, 155], span-
ning thousands of different species [98] with a combined gene pool over 150 times
the size of the human genome [80]. These microbes consist primarily of com-
mensals and mutualists, which symbiotically aid their hosts in essential nutrient
metabolism and immune responses [17, 31, 135, 150, 153, 155–158]. They hereby
closely interact with their surrounding environment [148], occupying a wide range
of unique functional niches within their respective hosts [85].

1.3.1 The Human Gut Microbiome

One microbiome of particular relevancy to health is represented by the microbiota
colonizing the gastrointestinal tract, commonly referred to as the gut microbiome
[155, 156, 159]. Since the human gut represents one of the most well-studied host-
associated microbiomes [135], research has focused on describing the composition
and health impact of the enclosed microbiota. For example, increased age has
been linked with a decrease in microbial diversity [3, 122, 153, 156] and even the
circadian rhythm has been shown to influence the functional profile of the gut
microbiome [160]. In contrast, instability of the microbiome has been associated
with the development of various complex diseases, including diabetes, depression
and cancer [149, 156, 160, 161]. Tetracyclines and beta-lactamases in particu-
lar represent two frequently prescribed drug classes which are utilized to treat a
variety of infections, including gastrointestinal pathogens [52, 123, 162]. Their
corresponding ARGs are therefore abundant within the gut microbiota of healthy
adults [43, 52, 123, 162]. However, extensive antimicrobial usage can impact the
microbiota for months or even years following treatment [163, 164], with recovery
times being highly variable across individuals [5].

The healthy human gut microbiome has been described to be composed of few
highly abundant bacterial species and many low-abundance taxa [112]. These
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predominantly consist of the phyla Bacillota, Bacteroidota, Actinomycetota and
Verrucomicrobiota, with their abundance greatly varying across different parts of
the intestines [150, 156]. However, characterization on more specific taxonomic
levels has been challenging, as up to 50% of the species inhabiting the gut still
lack corresponding genomic reference sequences within current databases [133].
Although only 1% of the human microbiota composes of the Pseudomonadota
phylum [98], this taxonomic group includes multiple potential pathogens, such
as Escherichia, Klebsiella and Pseudomonas. Their abundance however remains
comparatively low in healthy microbiomes [150]. The conserved, intestinal micro-
biome of other mammals also contains a variety of microbial taxa, ranging up to
more than 400 unique bacterial species within pigs [66].

1.3.2 The Equine Gut Microbiome

Domesticated horses (Equus caballus) [165] are mammals with distinct physiology,
behaviour and diseases which occupy a unique niche through their close interac-
tions with humans [166]. They are both physically (as companion animals) and
culturally (as livestock) closely linked to humans [123] and have played an im-
portant role in the development of society, particularly as working animals, with
domestication starting approximately 4,000 years ago [166] and their subsequent
diversification into various breeds [167]. Encompassing a worldwide population
of 60 million, the horse remains a core component of many societies to this day,
especially as companion animals for sports, transportation and agriculture [167].

Equidae represent a family of non-ruminant herbivores, carrying both large and
complex gastrointestinal systems [157, 168], encompassing up to 1015 bacterial
cells [31]. Horses are foraging herbivores that feed on fibrous, cellulose-rich grasses
[167]. As hindgut fermenters with a particularly diverse gut microbiome [135, 168],
their microbiota plays an important role in energy production, digestion and over-
all health [157, 169]. A majority of their daily energy requirements are provided
by short-chain fatty acids, including acetate, butyrate and propionate, which are
produced through anaerobic fermentation of fibre within the large intestine [31,
153, 157, 168]. Cellulosic forage is hereby metabolized by fibrolytic microbes
within the gut [31, 168]. The resulting fatty acids provide a unique energy source
for the equine host and its microbiome [157]. The gut microbiota has furthermore
been described to symbiotically aid its host by neutralizing toxins, protecting
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against pathogens, regulating gene expression within the epithelial cells and has
been associated with the overall immune response [157]. This complex ecosystem
maintains a sensitive homeostasis through a combination of genetics, environment
and lifestyle.

The gut environment represents a dynamic microbial community [156], exhibit-
ing high individual variation in regards to taxonomic composition and metabolic
potential [31, 115, 122, 149, 159]. Even genetically identical mice differ in their
microbiota due to minor variations regarding early life exposures and environ-
mental parameters [5]. Diet and age, for example, represent two factors known to
actively affect the microbiome [156, 170]. Diet in particular represents a major
driver for gut diversity [153, 154, 171], with food intake known to impact taxo-
nomic composition [3, 163]. For equines, transitioning between distinct types of
feed has been shown to have profound influences on dominant phyla within the
gut environment [153, 157]. Age is another factor known to affect the structure of
the gut microbiome [31, 98, 167]. Increased age has also been associated with a
decrease in microbial diversity in equines, with adults (5-12 years of age) display-
ing an enriched diversity compared to elders (19-28 years) [31, 153, 157]. Contrary
to initial findings, foals are actually born with a complex intestinal microbiota,
which continues to develop until 50-60 days postpartum [31, 157, 164]. The early
gut microbiome is hereby colonized by parental (milk and birth canal), as well as
environmental microbes immediately after birth [31, 155, 164].

However, while individual variations exist, maintaining a stable microbiome is cru-
cial for the overall health of the host species [157]. Current research outlines that
the gut microbiome is inhabited by a species-rich community of microorganisms
[150] and that a sensitive homeostasis of these highly diverse microbial popu-
lations acts as a colonization resistance against foreign bacteria [3, 31]. While
the introduction or extinction of specific microbes can induce variation in the
functional profile of the microbiota [3], natural microbiomes, such as the healthy
gut, share high levels of functional redundancy across community members [85].
Multiple species hereby share the ability to engage within the same metabolic
processes, enabling the microbiome to remain comparatively resilient against tax-
onomic fluctuations induced by environmental changes [15]. While this allows the
microbiome to persist many environmental influences, it remains susceptible to
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persistent stressors such as dietary changes, lifestyle and travelling [3, 31, 154,
157]. This may explain how seemingly minor variations can have profound im-
pacts on gut composition and host health [159].

The term ’core microbiome’ is therefore introduced to represent the set of mi-
croorganisms present in all, or a vast majority, of samples within a habitat [3, 31,
85]. This typically includes the most stable, consistent populations of bacterial
species known to be involved in key functions of their habitat, exercising crucial
roles within their ecosystem [31, 157]. The mammalian core microbiome contains
bacteria such as Clostridiales and aerobic Lachnospiraceae, which are involved in
butyrate production and thus play an important role in providing a protective
function for the gut environment [31]. The core gut community of equines ap-
pears to comprise of a smaller set of bacterial species, which may indicate why
horses are increasingly susceptible to disruption of the microbiome equilibrium,
frequently resulting in the development of gastrointestinal diseases [31, 153]. Their
intestinal microbiome consists of four major phyla: Bacillota, followed in relative
abundance by Bacteroidota, Pseudomonadota and Actinomycetota [157, 167, 168].
This small group of core microbes contains taxa present across equines of different
ages, diets and treatments [153, 157]. While the species-level composition of the
horse microbiome still remains largely undescribed, microbial profiling revealed
that Staphylococcus spp. and E. coli represent two common commensals within
the equine gut and the mucosal membrane [33]. Additionally, species of the phyla
Actinomycetota, Bacteroidota and Pseudomonadota are frequently found in high
abundance across plant-associated microbiomes [172]. Microbiota are often clas-
sified as beneficial or harmful for the health of their host [150] and while this
distinction is more complex than the simple presence-absence of particular taxa,
the primary phyla of the healthy equine hindgut have been described to include
Bacillota, Bacteroidota and Verrucomicrobiota [31, 168]. Methanogenic archaea
also represent abundant inhabitants of the equine colon [31].

Dysbiosis describes a rapidly occurring imbalance within the sensitive micro-
biome equilibrium, resulting in altered microbiota composition and overall reduced
species diversity [31, 150, 164]. In equines, dysbiosis can result in inflammation of
the gut, heavily impacting the essential fermentation processes of the microbiome
[31, 164]. This increases susceptibility to foreign infections and promotes the de-
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velopment of various metabolic disorders [31, 100]. Causes for these drastic shifts
in microbiome composition include sudden waves of bacterial deaths induced by
extreme stressors such as antibiotic administration or diseases [157]. While some
of these stimuli may only persist for short periods of time, they can have profound
effects on the overall structure of the host microbiome [156]. Multiple hypotheses
exist as to how and when pathogen overgrowth occurs. On the one hand, impaired
species diversity has been associated with increased vulnerability to foreign infec-
tions and diseases [15]. On the other side, loss of individual key taxa can result
in a cascading effect causing additional extinction events [3]. The overrepresen-
tation of specific phyla, such as Bacillota and Pseudomonadota, for example, has
been linked to a disruption of the gut environment [81]. Gut health has also diag-
nostically been described through the computation of several metrics, including
the Bacteroidota/Bacillota and Bacillota/Pseudomonadota ratios [131, 169, 173].
The abundance of Bacteroidota commonly outweighs Bacillota within a healthy
gut environment, while the ratio is found to be impaired throughout dysbiosis [81,
156].

1.3.2.1 Diseases Affecting the Gut Microbiota

Diseases affecting the gastrointestinal tract represent the leading cause of mor-
tality in horses and include equine colic [168]. Large knowledge gaps hinder ef-
fective prevention and treatment options for this condition [31]. Colic is a broad
syndrome of prolonged abdominal pain caused by disruptions within the gut mi-
crobiome [157, 169, 174]. It represents one of the major causes of morbidity and
mortality in equines [157] and remains an ongoing issue throughout veterinary
medicine, with annual incidences of 4.2% in the US alone [174]. Even with im-
mediate medical attention, including operative surgery, only 63% of diagnosed
horses are able to recover from this serious health condition [31, 169, 174]. While
the development of colic remains poorly understood, it is influenced by multi-
ple risk factors, such as age, diet and environmental conditions [169]. In addition,
changes within the faecal microbiota can be observed throughout the onset of colic
[169]. Elevated abundances of Pseudomonadota, including Gram-negative bacte-
ria such as Enterobacteriales and Pseudomonadales, some of which are known to
be involved in intestinal nitrogen fixation, have been associated with episodes of
colic [31, 169]. The enteral diversity of Pseudomonadota is hereby mainly driven
through environmental intake [31].
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1.3.2.2 Impact of Antibiotics on the Gut Microbiota

Antimicrobials have had an incredible impact on human and veterinary medicine
through their ability to efficiently disable pathogens, representing one of the most
frequently prescribed drugs for the treatment and prophylaxis of clinical infections
[157]. Infectious complications following gastrointestinal surgery remain an on-
going issue throughout human and equine medicine and are associated with high
rates of mortality and morbidity [150], alongside increased recovery times and hos-
pitalization lengths [174]. To minimize the likelihood of post-surgical site com-
plications, short-term perioperative antibiotic prophylaxis (PAP) are routinely
administered in order to prevent wound infections following open surgeries [155,
163, 174, 175].

In equine medicine, a common PAP for colic surgery consists of a mixture of peni-
cillin and gentamicin, which is administered up until 5 days after the intervention
[175]. Antibiotic administration has been shown to induce various degrees of post-
operative changes within the microbiome, depending on the individual substance
and its potential for intestinal penetration [3, 163, 176]. While PAP are typi-
cally lower in dosage compared to treatments of acute infections, they can cause
effects comparable to those of antibiotic therapies [56]. Even a single periopera-
tive dosage is able to disrupt the gut microbiota composition, often outweighing
the effects of the surgical procedure [163]. For human surgery, a single dosage of
PAP is deemed sufficient for patients lacking significant risk factors, with current
guidelines establishing that any usage past the 24-hour mark yields no additional
health benefit and may even be associated with detrimental side effects, such as
increased chances of MDR bacterial infections [177, 178]. Although antibiotic
administration beyond 24 hours post-intervention has been described as being
therapeutic and lacks significant health benefits compared to single dosage PAP,
perioperative prophylaxis in equine medicine routinely spans multiple days post-
surgery [174]. This gives reason to reconsider current standardized protocols for
PAP usage within equine medicine [174].

Antibiotics hereby affect all susceptible microbiota, driving changes within the gut
microbiome on high taxonomic levels [168], while also providing new ecological
niches for resistant strains to emerge [156]. Although specifics may differ depend-
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ing on the drug, host and administration route [123], prolonged treatment with
antimicrobials has generally been shown to decrease diversity within the gut en-
vironment [5, 156], perturbing community composition and resulting in dysbiosis
[179]. Additional side effects include long-term influences on the host microbiota,
such as the loss of key species and the development of AMR [31, 157], both of
which have been associated with adverse clinical outcomes and increased rates of
pathogenic infections [135, 176, 180]. Even prophylactic dosages induce positive
selection in regards to the development of resistant strains [49]. ARG abundance
spikes sharply following successive antibiotic treatment, correlating with decreas-
ing microbiome diversity and richness [33, 59, 123]. Microbial shifts induced by
antibiotics are detectable a few days after administration, however it may take
weeks to restore the original diversity of the gut [157]. For equines, one study re-
ported the largest impact on the diversity and richness of equine faecal samples at
5 days post-administration, although the original diversity was not fully restored
by day 25-30 post-treatment [181], illustrating that oral antimicrobials can have
prolonged effects on the gut microbiome and should be used with caution [31, 157].
Specific ARGs may even remain in the microbiome for extensive periods of time
(> 34 days) [122, 123], acting as potential reservoirs long after administration has
concluded [49, 56].

1.3.2.3 MDR within the Gut Microbiota

Strains associated with MDR have quadrupled over the recent two decades [182],
with both the isolation and local spread of MDR bacterial strains being well re-
ported within equine healthcare [33, 175]. These pathogens are of serious concern,
since treatment options remain limited and they harbour the potential to zoonot-
ically infect staff, resulting in further transmission across equine patients and the
environment [175]. Veterinary healthcare clinics hereby represent hotspots for
the local spread of MDR bacteria, including Acinetobacter spp., ESBL-producing
Enterobacterales and MRSA, which remaining ongoing challenges within these
facilities [175]. Further studies identified E. coli and S. aureus as dominant noso-
comial pathogens throughout facilities providing healthcare for horses [33], which
relates to the increasing rates of carriage and faecal shedding of ESBL-producing
E. coli reported across equine clinics [175]. The gut microbiome in particular can
act as a reservoir for multiple ARGs and pathogens [167], including the afore-
mentioned bacteria, with both hospital stay and antibiotic exposure representing
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crucial risk factors for the colonization of ESBL-producing E. coli in equines [175].
Frequent contact between humans and horses, e.g. through riding schools or clin-
ics, might furthermore be linked to an enhanced risk for the zoonotic acquisition
of ESBL-producing E. coli [123].

1.4 A Brief Overview of the Mammalian Nasal Microbiome

The oral and gut microbiome of humans have been found to be closely interlinked,
indicating that the oral bacterial population contributes to seeding of the gut
environment [122]. Combined, the oral and intestinal microbiota are estimated
to contain over 45 million genes, effectively encompassing 2000-fold more genetic
material than the human genome [183]. However, in contrast to the gut, the nasal
microbiome still remains largely unexplored. Nasal swabs are hereby particularly
challenging to analyse, due to the low amount of bacterial DNA they contain [184].
Contamination of these low-biomass samples with foreign sequences is therefore
an ongoing issue for nasal microbiome analyses, requiring dedicated methodology
and careful evaluation [5, 128, 184].

1.4.1 The Human Nasal Microbiome

In humans the most abundant taxa of the nasal microbiota encompass Corynebac-
terium, Neisseria, Staphylococcus and Streptococcus [151]. A healthy microbiome
is maintained through close interactions of these bacterial groups, inhibiting the
growth of pathogens and modulating the immune system, similar to the gut equi-
librium [184]. Pulmonary diseases, such as asthma or cystic fibrosis, have also
shown to distinctively influence the microbiota in both composition, diversity and
metabolic potential [184, 185]. One particularly common microbe of the nasal
microbiome is represented by S. aureus, which asymptomatically colonizes over
a third of the human population [138]. The oral microbiota have further been
described to contain S. mitis, S. oralis, S. pneumoniae, S. salivarius and Veillon-
ella spp., but large interindividual differences exist [186]. Phages are also highly
abundant, with estimates of over 35 times more phages than bacteria within the
oral cavity of humans [143]. Opportunistic pathogens with the ability to inhabit
the nasal mucosa include highly adaptable species such as Acinetobacter bauman-
nii [34, 182, 187], which colonize poultry populations [188] and occur seasonally
within cattle [189]. Several species of Acinetobacter represent pathogens associ-
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ated with high rates of AMR [146]. A. baumannii in particular have been shown
to co-inhabit both the nasal and gut microbiomes in cases of acute infection [189].

1.4.2 The Equine Nasal Microbiome

Equidae are nostril breathers with high ventilation throughputs of over 60 l/min
at rest [184]. Their nasal microbiomes represent part of a series of distinct micro-
bial communities inhabiting the airways [184], with their composition reflecting
the general health status of the host [151]. Studies focussing on the lung micro-
biomes of equines revealed that the three major phyla include Pseudomonadota,
Bacteroidota and Bacillota [184]. The nasal microbiota is known to closely inter-
act with the environment of its host [151] and is as such easily affected by abiotic
factors, including seasonal variations [3]. The encompassed bacterial community
is further highly susceptible to environmental influences, such as dust particles,
which have been described to represent a potential reservoir for the transmission
of ESBL-producing E. coli due to their absorption by the nasal microbiome [54,
175].
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2 Materials & Methods

2.1 Study Design

Over the recent decade, metagenomic research has begun to unravel the link be-
tween microbiome composition and host health [122, 157]. Technological advance-
ments in NGS have enabled the characterization of individual taxa present within
the microbiota and assessment of environmental influences (such as PAP) on the
microbiome structure [157]. This work is part of a multiomics One Health project
to study the effect of different antibiotic prophylaxes on the nasal and gut mi-
crobiota of hospitalized horses. This chapter will first describe the general study
outline (section 2.1), as well as the corresponding sample sets which were sub-
sequently analysed (sections 2.1.1 and 2.1.2), before establishing some computa-
tional concepts regarding 16S rRNA and metagenome shotgun analyses (sections
2.2 and 2.3) and defining the overarching research goals of this thesis (section 2.4).

The presented work is part of the interdisciplinary research network #1Health-
PREVENT2, funded by the German Federal Ministry of Education and Research
(grants 01KI1727F and 01KI1727; 01KI2009D and 01KI2009F). It was further
supported by the German Research Foundation, through the NGS-CC research
infrastructure (project 407495230) within the NGS competence network (project
423957469). The funding parties did not influence data interpretation or writ-
ing of this thesis. All sequencing was performed at the Competence Centre for
Genomic Analysis in Kiel, Germany. Within this #1Health-PREVENT project,
the effect of two different PAPs on the gut and nasal microbiomes of hospital-
ized equines were comparatively investigated through a randomized, longitudinal
pilot study. Since the equine microbiome remains poorly understood, additional
research is required to determine the effects of PAP and the development of AMR
within these environments [31, 157]. Previous multiomics studies focused on de-
scribing the clinical impact of the different PAP regimes [174], the local dynamics
of ESBL-producing E. coli within the clinic environment [175] and the effect of
PAP on the gut microbiome through 16S rRNA sequencing [190]. This thesis
expands on the aforementioned results by computationally characterizing the im-

2https://www.zoonosen.net/en/forschungsnetz/verbunde-nachwuchsgruppen/1health-prevent
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pact of PAP on the gut and nasal microbiome of hospitalized equines, as well as
the effect on the resistome, through a combination of metagenome shotgun and
16S rRNA sequencing.

This cross-sectional study was conducted at a horse clinic in Germany between
January 2018 and February 2020. According to German law for research on animal
subjects, comparison of two PAP regimens does not require regulatory approval
(Landesamt für Gesundheit und Soziales, Berlin, 18.04.2017). Written consent
for study participation was acquired from the respective horse owners at hospi-
tal admission. Equine patients subjected to colic surgery were enrolled based on
strict recruitment criteria. Horses were required to be older than 1 year, with no
clinical signs of infectious diseases or antibiotic treatment prior to the interven-
tion and had to successfully recover from anaesthesia after surgery [174, 175]. In
addition, patients were excluded from participation if their hospital stay ended
prematurely or there was any deviation from the antibiotic regime [175]. Hos-
pitalized horses undergoing laparotomy received PAP either as a conventional,
continuous 5-day prophylaxis (5DG) or as a single-shot (SSG). Equine patients
were assigned their respective study group through a sealed envelope drawn prior
to surgery [175]. Both groups were intravenously administered a PAP containing
a mixture of penicillin and gentamicin, commonly utilized for equine surgery [174,
175]. While the SSG received only a single dosage of perioperative prophylaxes,
administration of antibiotics was continued for the 5DG until day 5 after the in-
tervention. In order to monitor changes within the microbiota, faecal and nostril
samples were collected longitudinally across three time points: directly upon hos-
pital admission (t0), 3 days (t1) and 10 days (t2) post-surgery [175]. In total, 63
faecal and 79 nasal swabs were collected from 31 hospitalized equine patients. A
comprehensive overview of all samples analysed within this study is illustrated in
appendix table A.2. This includes dedicated IDs for each equine patient (rang-
ing from 1 to 98), as well as identifiers for specific samples of the gut and nasal
microbiomes.

2.1.1 Faecal Samples

Faeces are frequently selected as a proxy for the analysis of the gut microbiome due
to limitations in obtaining intestinal samples [134]. Recent studies have demon-
strated that the microbial population structure of faeces do not strongly differ
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from samples taken directly from the large intestine of equines [31, 154, 168, 169].
Faecal samples therefore represent adequate, non-invasive proxies for the study
of changes occurring within the gut microbiome [167, 168]. They encode inter-
individual differences [85], while being comparatively stable against factors such
as age or equine breeds [31].

Faecal samples were directly transferred into tubes and remained cooled until ship-
ment on dry ice to the sequencing facility [175]. DNA extraction and sequencing
was performed by collaborators at the Competence Centre for Genomic Analysis
in Kiel, Germany. A total of 63 faecal samples were selected for metagenome shot-
gun sequencing based on the previously established criteria of the study. Genomic
DNA was extracted from the sample collection using a commercially available ex-
traction kit (QIAamp Fast DNA Stool Mini Kit, Qiagen, Germany), according to
the manufacturers protocol. Paired-end libraries (2 × 150 bp) were created and
subsequently sequenced on an Illumina MiSeq platform. Sequencing parameters,
such as read depth, are known to affect the ability to detect rare taxa and AMR
genes [18, 66]. Read lengths of 2 × 150 bp were selected to enable comparison
with contemporaneous studies of the microbiome [191, 192]. For metagenomic
shotgun sequencing, a depth of 1 million read pairs has been demonstrated to suf-
ficiently capture a majority of the gut microbiome diversity in humans [65, 115],
with sequencing beyond 60 million read pairs not demonstrating any further im-
provement regarding the taxonomic classification of faecal samples [134]. Samples
were therefore deeply sequenced to a sufficient depth between these two extremes,
resulting in an average of 31 million read pairs per sample. This generated a total
of 3 billion reads, encompassing over 600 billion bp of genomic gut microbiome
data for the entire sample set. Raw data has been deposited in the sequence read
archive (SRA) of the National Center for Biotechnology Information (NCBI) un-
der the BioProject ID PRJNA998844.

To additionally expand upon this collection, further literature research was per-
formed in order to identify similar, publicly available data sets. Since technical
variability from experimental methods is known to influence downstream analyses
[5, 135], samples were selected to be comparable in sequencing depth, geographic
location and methodology to the established collection. A set of five additional
equine faecal samples were identified and retrieved from the SRA of the NCBI
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using the search terms ’equine’ AND ’metagenome’ AND ’gut’ OR ’faeces’, anal-
ogous to prior research [16]. The selected samples had previously been utilized to
reconstruct a large amount of novel metagenomic draft genomes originating from
the equine gut [167], enabling enhanced classification resolution for the presented
study throughout downstream analysis. Corresponding raw data were downloaded
from BioProject PRJNA590977 in .fastq format through SRA Explorer3.

2.1.2 Nostril Swabs

In addition to studying the effects of PAP on the aforementioned gut metagenome,
the nasal microbiome was also investigated within the context of this thesis. Nos-
trils of the equine patients were hereby sampled using swabs and subsequently
sequenced. Since nasal swabs represent low-biomass samples, they are particu-
larly susceptible to foreign contamination. A majority of the samples (n = 78)
were therefore chosen to be 16S rRNA sequenced, which effectively voids the
presence of any host DNA fragments due to the absence of this gene in eukary-
otes. Metagenome shotgun sequencing was additionally performed on one sample
(J32522), representing the prolonged 5DG.

DNA extraction was hereby performed analogously to the faecal samples by col-
laborations at the Competence Centre for Genomic Analysis in Kiel, Germany.
For 16S rRNA sequencing, the selection of the variable region defines the ability to
characterize the bacterial composition of a sample [122]. An overview of the 16S
rRNA gene is visualized in figure 1.1. The V2 and V4 regions are both generally
considered to enable highly consistent estimations for taxonomic profiling [115].
Furthermore, V1-V2 and V3-V4 illustrated favourable classification results when
compared to other fragments of the 16S rRNA gene [116]. The V1-V3 region in
particular has been preferred for oral microbiome studies in humans [122]. Read
lengths above 100 bp also remain essential for 16S rRNA profiling [102], with
longer sequences resulting in increased sensitivity throughout downstream analy-
sis [45]. Nasal swabs were subsequently V3-V4 2× 300 bp amplicon sequenced on
an Illumina MiSeq platform using a commercially available primer set. Sequences
were received in the adapter-trimmed, demultiplexed .fastq format. Raw data has
been deposited in the SRA under the BioProject ID PRJNA998844.

3https://sra-explorer.info/
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2.2 16S rRNA Analysis

16S rRNA analyses, sometimes also referred to as metataxonomics, represent
methods which utilize data preprocessing (section 2.2.1), taxonomic assignment
(section 2.2.2), normalization (section 2.2.3) and diversity estimation (sections
2.2.4 and 2.2.5) to gain insight into the microbial composition of a sample by
characterizing fragments of the 16S rRNA gene [111, 118]. 16S amplicon and
metagenomic shotgun sequencing hereby share a variety of overlapping methods
and data types [92, 118]. They both heavily utilize taxonomic counts of abun-
dance tables, representing the amount of reads matching specific taxa, in order to
compute microbial compositions and diversities [118]. The following sections will
therefore describe the computational concepts utilized for 16S rRNA (section 2.2)
and metagenomic sequencing (section 2.3), respectively.

2.2.1 Data Preprocessing

Microbiome sequences generally represent a highly fragmented and noisy source
of data [43, 118]. Additional preprocessing is therefore strictly required before any
further analyses can be conducted in order to distinguish between real biological
signals and errors arising from imperfect sequencing [1, 5, 114, 131]. Quality con-
trol (QC) is performed through a combination of previously established thresh-
olds, designed to remove technical noise. Initial QC mainly consists of primer
removal and demultiplexing [183]. Next, paired-end reads are joined into longer
fragments of DNA in order to improve lengths by overlapping sequences [1, 130,
151, 193]. Finally, filtering of short sequences, reads containing ambiguous bases
and chimeric fragments is performed on the data set [118, 193].

2.2.2 OTU Clustering

Following initial QC, the next step for preprocessing 16S rRNA amplicon data
is summarizing high-quality reads into sets of representative sequences, known as
operational taxonomic units (OTUs) [1, 5, 92, 96, 127, 183]. This resolves se-
quencing errors through the merging of DNA fragments at a predefined similarity
threshold, computationally known as clustering [114, 193]. Amplicons are hereby
commonly clustered on an identity threshold of 97% [135, 151, 179, 183], meaning
that reads with minor errors are assigned to a shared consensus sequence repre-
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sented by the OTU [5, 118]. OTUs resemble groups of closely related bacterial
species [194], defined by curated 16S rRNA databases such as GreenGenes [195]
and RDP [196]. However, these databases vary in composition and nomenclature,
resulting in differences when utilized for taxonomic profiling [111, 116, 197].

Next, taxa abundances are summarized as large matrices containing the observed
number of reads per OTU across a sample set [5, 118]. Known as abundance, fea-
ture or OTU tables, columns represent samples and rows list counts of individual
taxa [183]. OTUs with low counts are commonly removed from abundance tables.
Known as singletons, these counts likely represent false-positive sequencing arte-
facts or spurious low-level contaminants and are therefore discarded [98, 119, 121,
153, 154]. Removing low-abundance features has further been shown to improve
comparative analysis, in particular statistical methods, later downstream [198].
Various count thresholds have been proposed for this filtering [98, 121, 153, 198].

2.2.3 Rarefaction Analysis

However, summarized OTU tables do not reflect absolute abundances of bacte-
rial taxa, but instead represent count data resulting from a process of random
sampling [113, 183], limited by the amount of reads produced from the sequenc-
ing platform [118]. OTU tables are of extremely high dimensionality, commonly
consisting of thousands of taxa [5], with individual counts varying greatly across
sample sets [118]. Since a majority of OTUs are only observed within a few sam-
ples [118], their distribution is often skewed [92, 199], extremely sparse (with up
90% of these matrices being zero) [5, 71, 183] and overdispersed [113, 198]. Their
raw abundances and sums reflect only a fraction of the original composition within
the environment [71, 199] and can therefore not be directly compared across dif-
ferent samples [118, 183]. Variations in sequencing depth can also heavily affect
the count data, confounding downstream analyses such as the assessment of tax-
onomic diversity [5, 128]. In order to enable comparisons across samples, further
normalization of the data remains essential [71, 118, 200].

Rarefying is a normalization method commonly used for comparing sample sets
with uneven sequencing depth [4, 153, 200]. It was initially introduced as a
method to deal with the influence of rare taxa on diversity estimation [183] and
has since been established as a standard for normalizing metagenomic data [87].
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First, a minimum sequencing depth is assessed through rarefaction analysis [112,
183]. A measure for diversity (such as the total amount of taxa) is hereby succes-
sively plotted against varying sizes of subsampled sequencing depths [1, 4, 183].
Mathematically, successive random subsampling of the data is performed and the
enclosed number of taxa are visualized [173]. At first, rarefaction curves rise ex-
ponentially due to the inclusion of highly abundant species [4]. With increasing
sequencing depth, many new taxa are added to these subsets [173, 201]. After
these common species have been recorded, rare species are discovered at a much
slower rate [4, 173]. With the rate of new taxa steadily decreasing, the curve effec-
tively levels off into a plateau [4], eventually reaching an asymptote at which no
further species are recorded [169, 173]. As the slope of this curve approaches zero
it levels out, indicating that a majority of the biological diversity has been covered
[1, 128, 168]. Once this threshold has been established, reads are randomly drawn
from the OTU table without replacement until each sample reaches a uniform
sequencing depth [183, 200]. The remaining fragments are then discarded from
further analyses [200]. For 16S rRNA analyses of the equine gut microbiome, a
depth of 10,000 reads has been described to sufficiently capture the general mi-
crobiota composition [154].

The rarefied OTU tables can then be utilized for further downstream analyses,
including the assessment of differential abundance. Differential analysis can be
performed by using parametric tools such as the edgeR package [202]. Originally
designed for transcriptomic analyses, these methods have since been established
within the field of metagenomics [8, 17, 71, 118, 186, 198]. In edgeR, count
matrices are normalized by comparing all samples to a selected reference [200].
A scaling factor is then computed by utilizing the weighted trimmed mean of log
abundance ratios after trimming the upper and lower 30% of the data [183, 200].
Observed abundances are then modelled using a negative binomial distribution
[118, 154, 183], which represents an extension of the Poisson distribution more
suitable for the comparison of count data, as it allows increased variability [183].
Under the assumption that a majority of the count data does not differ between
conditions, differential abundance is finally assessed for each taxon [71].
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2.2.4 Diversity Estimation

Diversity represents a core concept in ecology which is utilized to characterize
habitats [4], quantify their community structure [111] and assess overall ecosystem
stability [135]. It can be divided into several components: the taxonomic composi-
tion per sample (alpha diversity), the species variation across a collection of a data
sets (beta diversity) and the sum of both for an entire habitat (gamma diversity)
[201, 203, 204]. Due to the nondeterministic process of sampling through se-
quencing, it is impossible to directly assess these values for complex microbiomes.
Instead, the aforementioned diversity measurements need to be mathematically
estimated from the data through the computation of ecological indices [205]. Di-
versity indices represent statistics computed directly from a sample set [206], such
as abundance matrices of 16S rRNA or shotgun metagenome data. They encode
varying degrees of diversity based on the classification of individuals within a pop-
ulation into pre-selected groups (e.g. taxonomic levels) [206]. Using a combination
of multiple diversity indices enables in-depth insights into the underlying ecologi-
cal structure of a sample set and can reveal different facets of the data throughout
downstream analysis. The following subsections will therefore describe both, the
concepts of alpha (section 2.2.4) and beta diversity (section 2.2.5) in further detail.
In addition, various forms of statistical representations will be assessed for these
measurements. An overview of the concepts of diversity is illustrated in figure 2.1.

Alpha diversity is commonly referred to as the diversity within an individual
sample, such as a microbial population [5, 110, 118, 128]. It is calculated sample-
wise in order to compare means across different groups of individuals [168, 201].
While multiple indices exist for assessing these values, the most common mea-
sures include richness (R) [205], evenness (J) [112] and the Shannon diversity (H)
[207]. Which measure to use will depend on the aspect of diversity an analysis
will focus on: richness, evenness or a combination of both [4]. The most funda-
mental form of diversity is represented by richness (R), which plainly describes
the total amount of unique taxonomic groups (for example microbial species)
per sample [118, 130, 135, 173, 184, 205], with no regard to their abundances
[208]. In contrast, evenness (J), assesses the homogeneity of the distribution of
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Figure 2.1: Measures of Diversity. Metagenomic samples (A and B) consist
of individual microbes (circles), spanning a variety of species (colours). Alpha
diversity refers to sample-specific indices which depend on the taxonomic rich-
ness and evenness of a community. Beta diversity, in contrast, is utilized to
compare species profiles across multiple different samples. The totality of taxo-
nomic variance within a large habitat is summarized as gamma diversity, which
encompasses values of both, alpha and beta diversity.

taxa abundances within a sample [112, 118]. It is mathematically defined as:

J = H/log(R) [134]

with low values illustrating an uneven composition and large values reflecting
taxonomic equality [203]. The most commonly utilized measure for alpha diversity
is represented by the Shannon index (also known as the Shannon-Wiener index),
which combines information on both the richness and evenness of a community [4,
134, 184, 205]. It weights the amount of species by their relative evenness through
a mathematical function [73, 128, 135, 208]. The formula is based on early work in
the field of communication theory, originating from the question on how to predict
the next letters of an incoming message [205, 207]. This definition of uncertainty
is used for ecological diversity assessment to this day and is commonly represented
by the Shannon function (H):

H = −∑n
i=1 pi ln pi [134, 205, 208]
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in which for each taxon (i) within a community of species (n), its proportion (pi)
is assessed and multiplied by its natural logarithm. The total of all abundances
are then summed and sign inversed. Shannon indices directly depend on the
richness and evenness of a sample, but are, in contrast to other ecological measures,
comparably less sensitive to R and instead more directed by J [4]. A population
with many species of similar abundance is hereby more diverse when compared
to a community of few species with high variability [73]. As H starts at 0, larger
values are associated with increased diversity [128].

2.2.5 Dissimilarity Computation

As measures for alpha diversity are based on species counts and their distribu-
tion within a community, they may oversimplify the true taxonomic profile of a
sample [119]. Different samples may even share identical values for alpha diver-
sity, although their communities vary greatly in composition [208]. Additional
measures are therefore needed for directly comparing the species profiles across
multiple ecological communities, including the commonly utilized concept of beta
diversity [204, 208]. Beta diversity is often referred to as a measure for reflecting
taxonomic distances between samples of a data set [5, 118, 129, 170, 201]. Beta
diversity is calculated between the abundance profiles of each sample within a set
[128]. Mathematically, pairwise distances are computed between points of high
dimensionality and are summarized within a square matrix [5, 128, 129, 208].
Historically, this has been utilized to compare samples across different habitats or
environmental conditions [4].

Comparable to alpha diversity, there exists a wide range of ecological distance
and dissimilarity measures for quantifying beta diversity between microbial pro-
files, with limited agreement on best practices [4, 118, 208]. The specific choice of
distance metric can hereby impact the obtained outcome and should be selected
with the research question in mind [5, 129]. Pairwise distances can either be
based on the presence-absence of individual taxa or quantitative abundance data
[129]. In addition, they can be supplemented with phylogenetic information or be
applied without these [128]. One common non-phylogenetic measurement for the
beta diversity is represented by the Bray-Curtis dissimilarity index (BC) [118,
128, 209]. The BC distance metric is based on the abundance of individual taxa
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[5] and is mathematically defined as:

BCij = 1− 2Cij

Si+Sj
[116]

between samples i and j. Cij represents the sum of lesser counts for shared species,
while Si and Sj illustrate the total amount of counts per sample [116]. The re-
sulting values range between 0 and 1, with larger values representing increased
differences across samples, while small values indicate high similarity [116, 128].
These can be utilized for the visualization of dissimilarity and to compute mean
distances across groups of samples [201].

Microbiome tables typically span thousands of entries, resulting in extremely high
dimensionality, which is challenging to handle throughout downstream statistical
analyses [113]. Methods for the reduction of dimensionality, such as principal com-
ponent analyses (PCAs), are therefore commonly applied for metagenomic data
sets [5, 210]. Mathematically, these methods compress high-dimensional data
(such as OTU tables) into a reduced set of axes (principal components), which
try to retain the main features and distances between the samples [5, 118, 199].
Known as principal components, they encompass much of the original variance,
while reducing overall complexity of the target data [211]. The first components
aim to explain a majority of the variability, allowing direct comparisons of in-
dividual samples and groups based on a selected few values [211]. These are
typically utilized for visualization in 2D plots, enabling the detection of sam-
ple clusters. Groups within PCA plots can further be coloured according to the
available metadata, such as treatment groups, in order to assess the influence
of multiple parameters on sample orientation [128]. For metagenomics, PCA is
commonly performed to visualize distances of beta diversities [5, 118]. Hereby,
the most informative features are projected onto ordination plots [208], enabling
clustering of the individual data points.

2.3 Metagenome Shotgun Analysis

Metagenomic shotgun sequencing generates a rich array of data, which requires
dedicated computational methods in order to gain biological insights into the sam-
ples at hand [73, 212]. In some aspects, analysis of metagenome shotgun data is
comparable to 16S rRNA sequencing, in that NGS data preprocessing (section
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2.3.1) and taxonomic assignment (section 2.3.2) represent core components for
all downstream analyses by utilizing random short reads instead of gene marker
fragments. Metagenome shotgun analyses further expand on these with the ad-
ditional ability to perform functional assessment (section 2.3.3), (co-)assembly
(section 2.3.4) and full-length resistance gene profiling (section 2.3.5).

2.3.1 Data Preprocessing

As metagenomic shotgun sequences consist of a mixture of genomes [105], they
are subjected to the same QC metrics as traditional isolate data would be. In
silico QC remains an essential step for NGS [124] and includes the removal of
sequencing artefacts, including low-quality or contaminated reads [73, 105]. Re-
moving these greatly improves the accuracy of downstream metagenome analyses,
such as taxonomic quantification, microbial diversity assessment and assembly
[105, 111, 117]. For this, various QC metrics are evaluated based on the raw
sequencing data, including adapter abundances, base contents, duplication rates,
k-mer distributions, overrepresented sequences and quality scores [124, 213]. NGS
reads are commonly stored in the .fastq format [132], which encodes nucleotide
sequences as well as individual per-base quality values. Since quality assessment
generally depends upon the technology with little respect to the sample source
[213], tools used for the QC of NGS can commonly be applied to both, isolate
and metagenomic data. However, since metagenomic reads are generated through
random shotgun sequencing, they also commonly include off-target DNA, such as
host fragments or other contaminants [92, 111]. Raw reads therefore need to be
mapped to the host genome in order to remove these sequences prior to further
analysis [53, 56, 112, 115, 170, 214].

2.3.2 Taxonomic Profiling

One central component of metagenomic analyses is to perform in silico taxonomic
classification of the sequenced DNA fragments using a combination of statistical
and empirical models [61]. A wide range of profiling methods have been proposed
for the assessment of the taxonomic origin of random shotgun sequences [72]. As
amplicon analyses are based on partial sequencing of the 16S rRNA gene, they
are limited in resolution to the genus-level [5, 92, 115, 122, 155], due to variable
regions being near indistinguishable between individual species within a genus [96,
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102, 194]. While full-length 16S rRNA genes can provide insights into the species-
level [31, 115] and technologies exist to capture, sequence and analyse these [117,
215], they are not yet widely utilized and are still subject to ongoing research
and extensive benchmarking. In contrast, high-throughput metagenomic shotgun
sequencing has been established for over a decade, allowing the development of a
multiplicity of tools for abundance estimation at the species-level [110].

Taxonomic profiling generally assigns DNA fragments of a sample to nodes within
a phylogenetic tree based on their respective sequence similarity to a correspond-
ing reference database [110, 114, 216]. With BLAST-based approaches being
computationally infeasible for large environmental data sets, alternative rapid
lookup algorithms have been developed for the taxonomic classification of short
metagenomic reads [106, 111, 114, 121, 217]. For example, the Kraken2 software
can assign taxonomic labels to random shotgun reads without the need to utilize
pre-defined phylogenetic markers for profiling [104, 114, 134, 217, 218]. Using
exact matches of short subsequences, each read is associated with multiple nodes
within a phylogenetic tree, which are back-traced until they converge at a shared
taxonomic label, known as the lowest common ancestor [96, 97, 111, 114, 218].
This requires the construction of a specialized database from genomic reference
sequences and corresponding taxon IDs prior to analysis [116, 218]. First, low-
complexity regions of a set of input genomes are masked from further analysis
[218]. Sequences are divided into short fragments (known as k-mers) based on a
user-specified length (k), which are labelled with the taxonomic classification of
their genomic origin [46, 116]. The resulting database structure then contains all
k-mers present within the reference genome set, as well as their taxon IDs [111].
Next, a query DNA sequence is also divided into k-mer subsequences, which are
compared to the pre-computed database in order to determine their taxonomic
origin [46]. Finally, the classifications of all k-mers across a read are aggregated
into a single prediction of the sequence using a minimizer-based approach [217,
218]. Ambiguous k-mers mapping to multiple species are assigned the lowest
common ancestor of those taxa [111, 116, 121, 218]. By default, Kraken2 uti-
lizes k = 31, which represents a fine-tuned trade-off between prediction specificity
and sensitivity [104, 111]. Through this process, Kraken2 can assign taxonomic
labels to a majority of the sequencing fragments, independent of their origin or
functional association, which is of particular interest for resistance, virulence and
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MGE characterization (section 2.3.5).

However, assignments made by Kraken2 do not directly represent taxonomic abun-
dances and may instead underestimate certain species since every read is assigned
to its lowest common ancestor [116]. Taxa sharing high genomic similarities, such
as members of Bacillus, Pseudomonas and Shigella, or those prone to genera-
spanning HGT, are particularly difficult to classify with Kraken2 at species-level
[104, 111, 121, 218]. In order to address these issues, estimations provided by
Kraken2 can be extended with the Bracken software [104], which represents a
post-processing step aiming to improve classification accuracy [106, 111, 218].
Taxonomic assignments of Kraken2 are hereby re-estimated based on the overall
k-mer distribution and taxa abundance within the classification database [104,
218]. For this, Bracken utilizes a Bayesian algorithm to probabilistically redis-
tribute sequences assigned to higher nodes of the taxonomy down to species-level
counts [106, 111, 116, 218]. Reads are re-assigned to the taxon with the highest
similarity or remain unclassified [104]. Since this stochastic approach is known to
induce some technical noise, a low-abundance threshold is introduced in order to
discard counts below a specific value, 10 reads by default [104, 106, 167, 192, 215].

2.3.3 Functional Analysis

The gut microbiome contains a wide range of species that inhabit unique ecologi-
cal niches, fulfilling distinct functional roles within this complex ecosystem [4, 71].
The abundance of microbial genes known to be involved in metabolic pathways
has been linked to the development of various diseases in humans and animals
[85]. Through measuring the gene content of metagenomic samples, the over-
all biochemical potential of an environment can be assessed [36]. Metagenomes
can generally be treated as single ecological units [36], with the presence-absence
of specific pathways assumed to induce beneficial functions or have detrimental
effects on the survival of the enclosed microbial populations [72, 86]. Instead of fo-
cusing on individual strains, the fundamental goal of these approaches is to assess
the gene pool of the entire bacterial community and to characterize their genetic
traits and local dynamics [148]. Functional profiling can generate lists of thou-
sands of genes that might be difficult to investigate by themselves [219]. Further
aggregation of genes into higher-level categories (such as pathways) is therefore
commonly performed in order to gain insights into biochemical differences [159].
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Various approaches exist to determine the metabolic potential of metagenomes
[71, 220]. One comparatively straightforward method utilizes the abundances
of short k-mer sequences to identify differences in both taxonomical and func-
tional profiles across sample groups [87, 147]. The computed k-mers are hereby
assigned to biochemical categories, which are then assessed for differential abun-
dance using statistical tests, such as the Wilcoxon rank-sum [147]. Through the
presence-absence of individual fragments, co-occurrences of taxa and genes can
be determined, enabling insights into the metabolic capacity of a metagenome set
[159]. Another method for assessing functional differences is through computa-
tional workflows such as HUMAnN3, which utilizes metagenomic reads to profile
the genetic potential and relative abundance of microbial pathways within a sam-
ple [5, 80, 114, 148, 185]. HUMAnN3 first performs gene-marker-based screening
to identify the species-content of a sample in order to select an appropriate set
of reference genomes [114, 148]. These are then utilized to characterize concate-
nated input reads through mapping against the established gene catalogue, in-
cluding annotations for gene families (UniRef90), biochemical functions (KEGG)
and associated pathways (MetaCyc) [100, 115, 185, 221, 222].

2.3.4 Assembly & Binning

Metagenomic data can further be utilized to reconstruct draft genomes of en-
vironmental species through the process of reference-free de novo assembly [72,
92, 111, 191]. This is especially advantageous for poorly explored microbiomes,
which are challenging to analyse due to the absence of reference sequences within
current databases [71, 95, 111]. Additionally, since short reads frequently map to
homologous regions shared across multiple genes, they may not be discriminative
enough to fully characterize the functional content of a sample [217]. De novo
assembly represents an effective method for the reconstruction of longer genetic
features, including regions of HGT and full-length resistance genes [22, 132], en-
abling additional insights into the microbiome structure [8]. The general concept
of genome reconstruction can be applied to metagenomics as well: through the
process of assembly overlapping reads are iteratively merged into longer contigu-
ous sequences (known as contigs), which are subsequently ordered into scaffolds
[73, 90, 114, 223]. However, not all assumptions for isolate assembly hold true for
metagenomic samples, as these possess unique traits which need to be considered
accordingly [93].
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In contrast to genomic data, complex metagenomes encompass the entire genetic
heterogeneity present in a population of species at the time they were sequenced
[72], spanning thousands of unique taxa [93, 132] with different abundances [111],
consisting of dozens of related strains across billions of short fragments [109, 224].
Furthermore, metagenomic sequences vary greatly in abundance depending on the
dominance of the enclosed species, resulting in highly non-uniform read coverages
across taxa [111, 225], with some being much lower than typically required for
isolate reconstruction [109]. In addition, multiple species may share conserved
genomic regions, complicating the process of assembly even further [109, 225].
As each metagenome represents a unique snapshot of microbial communities at
the time a sample was taken, any contigs resulting from assembly do not repre-
sent a single individual or even strain [172]. With the overall quality depending
on the underlying composition of the microbiome [226], the resulting contigs are
commonly highly fragmented [221], decreased in accuracy [71] or cannot be recon-
structed at all [73, 217], compared to isolate assembly. Complex and highly diverse
microbiomes are hereby especially challenging to reconstruct [86, 217]. As such,
metagenomic assembly remains a challenging task [109] with high computational
requirements [225], especially memory usage [217]. However, various strategies
have been developed in order to improve the continuity of metagenomes [227],
including co-assembly of related samples [108, 176, 228]. Pooling read data of sev-
eral associated samples into a single assembly greatly increases sequencing depth
and completeness of the metagenome [95, 217, 228]. This enables the reconstruc-
tion of particularly low-abundance species [172, 191, 229], which are commonly
missed during individual reconstruction [217]. On the other hand, co-assembly
also drastically increases the data set size and complexity [224, 230] and may re-
sult in artefacts when merging samples from different sources [192]. In contrast,
independent reconstruction tends to generate less, but often more higher-quality,
draft genomes compared to co-assembly, primarily due to the reduced complex-
ity of the sequencing data set [95, 224]. It is therefore common to perform both,
individual and co-assembly throughout metagenomic analyses [185, 191, 224, 228].

Assembly methods used for the reconstruction of cultured isolates commonly re-
quire high and uniform read coverages, resulting in fragmented and error-prone
assemblies when applied for metagenomic data sets [109]. This is why specialized
assemblers have been developed to account for the computational requirements of
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(co-)assembling billions of short metagenomic reads [93, 109, 111, 114, 176, 225].
MEGAHIT [225] represents a frequently utilized metagenomic assembler which
illustrates good benchmarking performance [5, 90, 217, 231]. It uses De Bruijn
graphs for metagenomic reconstruction [109, 114], which decompose reads into
k-mers represented by interconnected nodes [93, 223]. The process of assembly is
then represented by traversing through the edges of this graph in order to form
long contiguous sequences from a selected path [90, 223]. Choosing an appropri-
ate k-mer step size is of particular importance as it affects the overall assembly
quality [93, 225, 232]. Increasing the value of k will generally result in longer se-
quences across regions with high depth, but will break low-coverage contigs [223].
As a result, the recovery of low-abundance genomes increases when utilizing small
k-mer sizes, while abundant taxa are more easily recovered through large k-mers
[232]. Since the selection of a specific value for k is non-trivial, MEGAHIT it-
eratively utilizes multiple k-mers through the construction of graphs from small
k-mers before moving to larger sizes in order to refine the assembly connectivity
[90, 93, 111, 114, 225, 232]. Despite this, metagenomic reconstruction remains a
challenging process. Assemblies are often highly fragmented, with average contig
lengths of 1-2 Kbp [95, 142] due to strain variation and differential coverage [43,
111]. The fraction of reads that can be assembled therefore typically remains low
across microbiome studies (< 20%) [228], requiring additional read-based analy-
ses to be performed. As downstream analyses are known to be affected by these
values [233, 234], QC also remains a crucial step throughout metagenomic re-
construction [111, 229]. Tools such as MetaQUAST can be used to validate the
quality of the metagenomic assemblies [109, 231, 232]. By mapping contigs to
a set of genomic references, MetaQUAST can evaluate various quality statistics,
including fragmentation, gene content and misassembly rate [93, 109, 111, 231].

Metagenomic reconstruction results in sets of contigs as an output [93]. The
next step focuses on the automated clustering of these sequences into groups of
similarity that represent closely related taxa [93, 111, 221, 233, 234]. Known as
binning [73], this process utilizes statistical properties of the contigs in order to
cluster these into taxonomic groups [93, 111, 114]. Binning commonly results in
thousands of genomic groups, each representing a different bacterial species with
a unique role within the ecosystem of interest [221]. Large, complete bins are
referred to as metagenome-assembled genomes (MAGs) [95] and represent draft-
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level genomes of taxa present within the data set, many of which cannot be easily
cultured in vitro [22, 229, 234]. However, binning is unable to distinguish genetic
material from closely related organisms, as the reconstructed assemblies represent
population genomes [111, 229]. Taxonomic lineages often share similarity in se-
quence composition characteristics, such as nucleotide frequencies, the presence
of specific gene markers and differential coverage, all of which have been utilized
as classification criteria for binning [5, 109, 111, 148, 229, 234]. Tetra-nucleotide
frequencies, for example, represent a fundamental characteristic of genetic DNA
[142, 235]. Contigs with similar abundances of 4-mer base combinations are
hereby more likely to be derived from the same taxon [235]. In addition, frag-
ment statistics can be assessed across multiple samples through the mapping of
reads back to the assembly and evaluation of the resulting co-abundance patterns
in order to assist throughout binning [95, 111, 224, 228]. Various methods have
been established for the classification of metagenomic sequences into bins, includ-
ing MetaBAT2 [234]. MetaBAT2 further utilizes probabilistic species-distances
derived from available reference sequences [111] to group contigs into bins with
which they correlate [234]. This process has been described to be especially ad-
vantageous when utilizing high amounts of metagenomic samples [234].

The resulting MAGs are subjected to additional QC in order to determine their
suitability for further downstream analyses [191, 216, 229]. Dereplication can be
performed through the dREP tool [224], which identifies identical MAGs from
a large data set and removes these, while retaining a high-quality representative
genome for each taxon. First, the completeness (how many conserved genes were
identified) and contamination (how many of these were single-copy) of each bin
are verified [5, 111, 228, 229]. If known genetic markers are absent from a genome,
it must be incomplete, while in contrast, if single-copy genes are identified in mul-
tiplicity within a MAG, the bin is likely contaminated [111]. Distances between
high-quality MAGs (> 75% completeness, < 25% contamination) are then as-
sessed, before the remaining assemblies are clustered and dereplicated [94, 224].

Taxonomic classification of high-quality bins can be achieved by comparing these
to a suitable reference database [95, 172]. One tool for this task is represented
by the GTDB-Tk [236], which determines the taxonomic rank of MAGs using
catalogues of gene markers and the assessment of similarity values to reference
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sequences [87, 237]. First, gene calling is performed on the set of MAGs by pre-
dicting open reading frames [236]. Identified genes are then scanned for sequence
similarity to a pre-established database of bacterial and archaeal gene markers
[221]. MAGs are then assigned to a taxonomic level based on the proportion
of the identified marker genes and assembly similarity to the closest reference
genome [96]. Taxon-specific markers are hereby multiple-sequence aligned and
stored within a multi-fasta file [236]. This can be utilized to assess phylogenetic
relationships across the MAG set [108, 148, 192].

2.3.5 Resistome, Virulome & Mobilome Profiling

The process of assembly recovers large genomic fragments which are inherently
more informative than individual reads, as they allow the characterization of full-
length gene sequences [93]. Resulting contigs can further be contextualized within
their genetic environment, essentially linking functional predictions with taxo-
nomic assignments [228]. Taxonomic assignment of contigs facilitates an improved
understanding of resistance mechanisms and can reveal the structural relation-
ships surrounding these [22]. The main advantage of metagenomics is that there
is little knowledge required a priori regarding which bacteria or genes are present
within a given sample [25]. This enables the usage of wide-range databases for
broad-spectrum screening of genotypic elements inducing pathogenicity, such as
ARGs, virulence-associated genes or MGEs [17, 50]. While the genotypic presence
of these elements does not necessarily induce true pathogenicity or phenotypic re-
sistance [50, 54, 79], their profiles can be utilized as early warning systems for the
development of these since they allow the detection of silent genes which carry
the potential to become active in the future [67]. Metagenomic contigs can be an-
notated through a variety of different computational tools [112], primarily based
on comparisons to specialized reference databases [22, 44, 212].

There exists a wide range of curated databases for in silico resistome profiling [46,
48, 67, 238]. However, one major caveat of most resistance databases is that they
primarily focus on ARGs identified within culturable, human pathogens, practi-
cally disregarding a large fraction of environmental genes [25]. This issue is ad-
dressed by MEGARes [46], an ARG database specifically designed for the analysis
of environmental data which has since been utilized for various metagenomic anal-
yses around the globe [87]. It comprises of a comparatively large gene catalogue,
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encompassing reference sequences for antibiotic, biocide and metal resistances [46].
While extensive databases, such as MEGARes, enable the identification of ARGs,
they are inherently limited to profiling known resistance genes [44, 67]. Their
predictions can therefore be extended through additional machine learning-based
tools, which have the ability to categorize novel sequences, effectively address-
ing this database-related issue [43, 44]. Trained on multiple resistome databases,
DeepARG utilizes a multi-layered model of interconnected nodes in order to map
complex sequence data to resistance gene potentials [44]. All of the aforemen-
tioned methods actively identify ARGs based on their presence-absence within
the metagenome. However, metagenomic assembly techniques also have their
own drawbacks, including the inability to reconstruct low-abundance ARGs [25,
162]. These must therefore be assessed independently, through the process of read
mapping [25, 46, 159]. As identical parts of homologous genes frequently result
in unspecific read assignments [162], aggregation to higher-level classifications re-
main essential [66, 198].

The public health risk of an individual ARG depends on multiple factors, in-
cluding the resistance it confers, its prevalence amongst human pathogens and
its potential for mobility [18, 53]. One major drawback of using metagenomic
read data for assessing resistances is its inability to distinguish between zoonotic
and immobile environmental genes [25]. This however can be addressed through
local contextualization of genes, in particular by assessing their genomic surround-
ings via assembly and subsequent binning of the sequences [25, 50]. MGEs play
an essential role in the transmission of resistances. ARGs and virulence factors
are frequently transmitted through MGEs, such as plasmids, enabling them to be
exchanged across a wide range of bacteria. Differentiating between sequences orig-
inating from chromosomal DNA and those representing plasmids is a non-trivial
task, especially within the context of metagenomics [239]. However, plasmids
generally share a selection of features that allow them to be distinguished from
chromosomal sequences, including differing nucleotide compositions, lack of pri-
mary metabolic genes and the presence of elements improving host fitness (such
as virulence or resistance genes) [142]. Specialized software, such as PlasClass
[239], can utilize these subtle changes in sequences in order to predict the source
of assembly-level contigs. PlasClass is based on a selection of classifiers trained
on k-mer frequency vectors of established plasmidial and chromosomal sequences
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[239]. These are utilized to assign a given sequence to its genomic origin under a
specified probability [142, 239].

2.4 Scientific Aims of this Thesis

The primary goals of this thesis were (1) the development of two novel and in-
novative bioinformatic workflows for the extensive, computational analysis of 16S
rRNA and metagenome shotgun sequencing data, (2) to perform in-depth char-
acterization of the equine nasal and gut microbiota, particularly in regards to
taxonomic and resistance gene profiling, in order to (3) investigate and illustrate
the effect of different PAPs on the host microbiome structure.

Metagenomics illustrates a novel method for the in silico assessment of taxo-
nomic abundances, genotypic resistances and virulence components across micro-
bial ecosystems (2) [66]. Particular challenges however include the technology
of metagenomics still being in its infancy, with limited gold standards currently
available [92, 217, 229, 232], especially in regards to computational resistome pro-
filing [65]. Due to the high complexity of these ’big data’ sets, analyses are often
time intensive [198, 221, 240], requiring substantial expertise in bioinformatics
in order to assess the most appropriate methodology, software and parameters
[133]. Turning raw sequencing data into lists of microbial populations and gene
pathways represents a non-trivial task [214, 228, 241], challenged by large bio-
logical, technical and inter-individual variation [92, 113]. While few workflows
exist for metagenomic data processing [87, 108, 132, 212, 214, 240], they have not
been specifically designed to handle high abundances of uncharacterized equine
microbiome data and as such do not encompass the full scope of analyses re-
quired throughout this study (2, 3). It therefore remained essential to design an
appropriate workflow dependent on the available data, biological characteristics
and research questions at hand and to validate different methodologies in order
to enable precise taxonomic and functional quantifications [70, 118, 211, 217, 241].

In order to meet the requirements of this work, development of customized soft-
ware solutions were necessary (1). Two completely novel software workflows were
established within this thesis: a pipeline for the characterization of 16S rRNA se-
quences (Meta16s) and a workflow for analysing shotgun metagenome data (Meta-
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GEN). Both pipelines will be presented in detail within the context of the current
literature across sections 3.1.1 and 3.1.2. Bioinformatical workflows commonly
combine multiple tools in order to obtain a comprehensive overview of a data set
[194, 221]. A variety of computational methods for analysing high dimensional
metagenomic data sets were therefore evaluated throughout this work and tested
in regards to reproducibility and robustness [242]. The Meta16s and MetaGEN
pipelines are both open-source and utilize sets of peer-reviewed, state-of-the-art
tools for individual analysis substeps. Particular focus was set on the few available
guidelines for sustainable software development regarding microbiome analyses,
including tracking of the utilized commands and software versions through a ver-
sion control system [5, 241, 243]. All code was run using the Python3 (v3.9.13)
programming language with the Snakemake (v6.7.0) framework. Statistical analy-
ses were performed through R (v4.3.1), with multiple testing corrected significance
levels of p ≤ 0.05 applied whenever appropriate. Computations were performed on
an AMD EPYC 7H12 @ 3.30 GHz workstation, containing 128 cores, 256 threads
and 504 GB of memory, running Ubuntu 20.04.4 LTS.
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3 Results

3.1 Development of Metagenomic Analysis Pipelines

Within the context of this thesis, two novel bioinformatical pipelines were de-
veloped specifically for the analysis of complex microbiome data sets. Termed
Meta16s, for utilization with 16S rRNA sequences, and MetaGEN, for the analysis
of metagenome shotgun data, both were applied to the nasal and gut equine sam-
ples collected across this study. Their full workflows will be described throughout
the following sections for Meta16s (section 3.1.1) and MetaGEN (section 3.1.2).

3.1.1 Meta16s Workflow

16S rRNA workflows are generally divided into several interconnected analysis
steps, including data preprocessing (section 2.2.1), taxonomic profiling (section
2.2.2) and downstream analyses, such as normalization (section 2.2.3), diversity
estimation (section 2.2.4), and visualization (section 2.2.5) [111, 118]. Meta16s
represents a command-line tool written in the programming languages Python3
and R, which implements several state-of-the-art methods for streamlining 16S
rRNA data analyses, based on previous research [154]. Meta16s is open-source
and available on GitHub4 under the GPLv3 licence. A full overview of the work-
flow is illustrated in figure 3.1. The following section will provide a detailed
description of the individual analysis steps applied by Meta16s.

Amplicon fragments of the 16S rRNA gene are initially merged using the fastq-join
function of the QIIME pipeline (v1.9.1) [244] with a default, minimum overlap of
6 bp, maximum of 60 bp and a maximum difference of 8% [154]. Next, reads con-
taining ambiguous bases, short sequences and low-quality fragments are removed
from the data set [118, 130, 193]. Fragments that are subsequently too short
or long after merging (e.g. < 300 bp) are removed using the Seqkit framework
(v0.16.1) [245]. Quality filtering is performed through the split_libraries function
of QIIME [244] with a Phred quality score of 20, allowing no ambiguous (N) bases
[154]. The remaining reads are then exported and utilized for taxonomic assign-
ment.

4https://github.com/SiWolf/Meta16s
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Figure 3.1: Meta16s Workflow. The workflow of Meta16s encompasses
several interconnected analysis steps. First, paired-end reads are merged into
longer sequences of DNA, which are processed based on multiple quality param-
eters (1). Next, the remaining fragments are compared against two reference
databases for improved taxonomic annotation (2). Assigned reads are then
summarized in tabular form, low-abundance hits are removed and taxonomic
labels are revised once more according to current nomenclature (3). Finally,
the computed table can be utilized for further downstream analyses, including
normalization, diversity estimation and visualization (4). OTU: Operational
Taxonomic Unit, QC: Quality Control.

The resulting, quality-controlled sequences are then subjected to OTU clustering
and subsequent taxonomic annotation. Meta16s utilizes USEARCH (v11.0.667)
[246] for clustering of the reads with the current GreenGenes reference sequences
(gg_13_8_otus) [195] based on the established 97% similarity threshold. How-
ever, due to the limited sequence specificity of short 16S rRNA gene fragments,
it is common that many OTUs cannot be sufficiently annotated, especially on
lower hierarchical levels [118]. In order to increase taxonomic resolution through-
out profiling, the Meta16s workflow employs an additional annotation step [154].
Generated OTUs are hereby taxonomically assessed through the SequenceMatch
pipeline of RDPTools5 (v2.0.3), which assigns clusters to their closest represen-

5https://github.com/rdpstaff/RDPTools

50

https://github.com/rdpstaff/RDPTools


3 Results

tative sequences within the more-recently updated RDP 11 collection [196]. Se-
quences not matching the GreenGenes database [195] are dereplicated before fur-
ther classification through SequenceMatch is conducted.

In order to ensure consistency of the Meta16s results with current research, taxo-
nomic labels assigned by RDP [196] are updated once more according to the newest
nomenclature. This primarily concerns the recent renaming of multiple bacterial
phyla [247], which still need to be adapted into current 16S rRNA databases. In
addition, Meta16s utilizes QIIME [244] to remove any low-abundance noise with
less than 4 counts across all samples [153]. This results in a revised and filtered
OTU table, which is finally exported into the BIOM format, a binary data type
that is easily accessible for downstream analysis [111].

The BIOM-formatted OTU table is then imported into a standardized data ob-
ject through the phyloseq R package (v1.43.0) [248]. Next, the rarefy_even_depth
function of phyloseq is utilized with a fixed seed (r = 1) to initiate downsampling
of the abundance matrix [96]. In order to retain as much data as possible, sub-
sampling is performed to the level of the highest shared sequencing depth, as
suggested previously [60, 153, 160, 169, 173]. Normalized subsampled data are
then utilized for further analyses, including diversity estimation and ordination
[168, 198].

While there exists a wide range of computational tools for performing alpha diver-
sity estimation [249], Meta16s utilizes the microbiome package6 (v1.21.0) through-
out its workflow. For the assessment of beta diversities, the distance function of
phyloseq [248] is used to compute Bray-Curtis distances between the taxonomic
profiles of each sample. These are then converted into 2D plots through dimension-
ality reduction of the ordinate function. Finally, Meta16s utilizes edgeR (v3.41.8)
[202] for differential abundance estimation on the family-level.

3.1.2 MetaGEN Workflow

Metagenome shotgun sequences encode a particularly rich array of biological infor-
mation, requiring large-scale computing and dedicated data management in order

6https://github.com/microbiome/microbiome
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to gain insight into the ecological structures contained within [73, 212]. Meta-
GEN represents a command-line tool implemented in the programming languages
Python3 and R, that employs state-of-the-art methods to preprocess (section
2.3.1), taxonomically profile (section 2.3.2), functionally analyse (section 2.3.3),
assemble (section 2.3.4) and assess the pathogenicity (section 2.3.5) of complex
metagenomic samples. 16S rRNA amplicon and metagenome shotgun sequenc-
ing share a variety of data types, mathematical properties and analysis require-
ments [92, 118]. MetaGEN therefore includes many of the conceptional methods
described within the Meta16s workflow (section 3.1.1), but extends these with
multiple shotgun-specific tools, which will be described in detail throughout this
section.

Workflows for shotgun metagenome analyses commonly require high-performance
clusters [221] and must therefore be scaleable to available computational resources.
MetaGEN utilizes the workflow management system Snakemake, which enables
automatic scaling of computational tasks to a set of given resources [243]. Each
analysis step of MetaGEN is implemented as a rule within the Snakemake frame-
work, strictly defining the data input, output, tools and versions to be utilized. In
order to facilitate reproducible analyses across local and remote systems, Snake-
make supports the usage of conda environments, which enable automatic installa-
tion of any required dependencies [243]. Through the utilization of this modular
system, individual components of MetaGEN can also be easily adapted and ex-
tended with novel software in the future [221]. Being aware of the potential
terabytes of data that metagenomic analyses generate, MetaGEN was designed
with emphasis on efficient storage usage, keeping as much relevant information
as possible, while retaining as little redundancy as needed. Individual tools used
within MetaGEN were selected on a variety of criteria, including applicability for
the analysis at hand, recommendations within the current literature [93, 114, 214],
benchmarking results [232], comparison to other metagenomic pipelines [1, 87, 95],
as well as overall compatibility and stability [221]. Particular focus was also set
on utilizing publicly available open-source software to enable full transparency
of the methods and programming code behind MetaGEN [134]. As parameter
choices are known to impact the results of metagenomic analyses, they have been
carefully evaluated based on current literature and benchmarkings [232]. Meta-
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Figure 3.2: MetaGEN Workflow. MetaGEN requires raw metagenome
shotgun reads as an input and performs several comprehensive analyses based
on these (colours). First, reads are preprocessed by removing adapter sequences
and host DNA (1). Next, quality-controlled reads are taxonomically profiled
(2), before functional analysis is conducted (3). In parallel, metagenomic reads
are assembled and binned to reconstruct draft genomes (4), which are further
utilized for resistome, virulome and mobilome profiling (5). Finally, results
generated by MetaGEN are statistically compared between sample groups (6)
in order to gain biological insight into the data set (7). AMR: Antimicrobial
Resistance.

GEN is open-source and freely available on GitHub7 under the GPLv3 licence.
An overview of its workflow is illustrated in figure 3.2.

MetaGEN requires a folder of .fastq files as an input, containing raw, paired-end
sequences of metagenomic samples. Next, the input data are initially prepro-
cessed using the fastp software [124]. This tool aggregates a variety of functions
for NGS data processing, such as automatic adapter detection, quality trimming
and reporting, and has subsequently been utilized throughout metagenomic stud-
ies [214]. In MetaGEN, fastp (v0.22.0) is used to trim adapter sequences as well
as any low-quality read tails. Low quality reads commonly result from the imper-
fect process of sequencing [105]. As such, reads were trimmed to a recommended
Phred quality score of > 20 using a sliding window approach [25, 47, 60, 214],
corresponding to a per-base-accuracy of 99% [97] or an error-rate of 1% [73].

7https://github.com/SiWolf/MetaGEN
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Quality statistics on the reads prior to and after processing are also exported into
.html and .json formats [124, 214]. These are utilized to generate summarized
quality reports across all samples through the MultiQC (v1.11) software [250]. In
addition, BBSplit (v38.93) is used to identify and remove any host contamina-
tion [108]. Components of the BBTools suite8 have been widely applied for the
removal of specific sequences from genomic queries [229], with BBSplit in par-
ticular enabling the mapping of reads to multiple reference genomes. MetaGEN
performs contamination removal through mapping of the metagenomic reads to a
set of reference sequences, including the current Equus caballus (RefSeq accession:
GCF_002863925.1) and Homo sapiens (telomere-to-telomere assembly, GenBank
accession: GCA_009914755.4) genomes, the latter of which can result from imper-
fect handling of the samples. Finally, quality-controlled, contaminant-free reads
are once more statistically assessed using the SeqFu (v1.6.0) package [251], before
further downstream analyses are conducted.

A variety of methods were assessed for phylogenetic classification within Meta-
GEN. Since retrieving taxonomic labels for each metagenomic read was required
throughout further downstream analysis, Kraken2 (v2.1.2) [218] was selected as
the primary software for this task. While a majority of taxonomic classifiers gen-
erate comparable results [106], Kraken2 has been described as especially suited
for gut microbiome analyses [217]. The default Kraken2 database was built us-
ing reference genomes of RefSeq for archaea, bacteria, viruses, plasmids, humans
and vector sequences (dated 10.08.2021), encompassing 51 GB in size. Kraken2
classification was then performed on read-level using a confidence threshold of 0.0
[115]. Taxonomic reports were visualized using the Krona (v2.8) software [252],
which generates interactive pie chart-like plots of the microbial community struc-
ture. Species re-estimation was enabled through Bracken (v2.6.1) [104], using a
defined read length of 150 bp [96, 115]. While actual read lengths may differ as
a result of the trimming process (section 2.3.1), a majority of fragments remain
at this length, minimizing the impact of this parameter [104]. In order to reduce
low-abundance false positives (those resulting from few, falsely mapped reads),
hits containing less than 10 counts were discarded by default [104, 216]. The re-
estimated abundances were then converted into the accessible BIOM format using

8https://sourceforge.net/projects/bbmap/
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the kraken-biom package9 (v1.0.1), which can be utilized for further visualization
through software such as MicrobiomeExplorer (v1.9.0) [249].

Next, KMC3 (v3.1.2rc1) [253] is utilized by MetaGEN for the sample-wise com-
putation of k-mer distributions across sequencing reads. Setting a specific k-
mer length remains crucial for these analyses, as short k-mers have an increased
chance to occur randomly, resulting in decreased biological relevancy [147]. Long
k-mers, on the other hand, can might miss features of interest and are com-
putationally challenging to analyse [147]. MetaGEN therefore utilizes a default
threshold of k = 25, in order to provide sufficient mappability for taxonomic
and functional profiling. Group-specific k-mers are identified and assigned to the
Swiss-Prot database10 (dated 30.05.2023) using a best-hit approach [12, 132, 228]
with BLASTX (v2.12.0) [254]. In addition, MetaGEN utilizes HUMAnN3 (v3.6)
[220] for in-depth pathway and gene abundance estimation. Its corresponding
databases (ChocoPhlAn, MetaPhlAn and UniRef90) were downloaded and setup
on the 11.04.2022. Subsequently, lists of associated pathways were statistically
compared between sample groups.

The MEGAHIT software (v1.2.9) [225] was chosen as the genomic reconstruction
tool for MetaGEN due to its ability to perform large-scale co-assemblies [114],
based on its decreased memory requirements [1, 93, 111]. It generated viable re-
sults when benchmarked against other assembly tools [90, 232] and has since been
utilized across many metagenomic frameworks [214]. Since all samples originate
from a common microbiome, their sequences share significant overlaps, allowing
comprehensive co-assembly to be performed [230]. Metagenomic reads were both
individually and co-assembled using MEGAHIT. For individual reconstruction,
the default k-mer list of (21, 29, 39, 59, 79, 99, 119, 141) was utilized, while for
the more computationally exhaustive co-assembly a customized range of (27, 37,
47, 57, 67, 77, 87) was used for MEGAHIT, as recommended throughout current
literature [191]. As binning methods require longer contigs [111], assembled frag-
ments < 1 Kbp were discarded since they provide little gene-centric information
[87, 90, 172]. The resulting contigs were re-named with sample-specific identifiers

9https://github.com/smdabdoub/kraken-biom
10https://www.uniprot.org/help/downloads
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using BBRename (v38.93) of the BBTools suite11. MetaQUAST (v5.2.0) [231] was
then utilized for assessing the overall assembly quality, limiting reference-based
comparisons to 5 taxa per sample. Next, additional taxonomic profiling was per-
formed on the remaining contigs through Kraken2 (v2.1.2) [218] with the previ-
ously established database. In addition, open reading frames were identified and
extracted using Prodigal (v2.6.3) [255]. Prior to binning, Bowtie2 (v2.4.4) [256]
was used to map the metagenomic reads to their corresponding assemblies, fol-
lowed by indexing the mapping file through SAMtools (v1.11) [257]. Bowtie2 was
utilized due to its high accuracy and speed [214]. As this study included over 60
deeply sequenced metagenome samples, MetaBAT2 (v2.12.1) [234] was selected as
the tool for defining MAGs, since it specializes on differential abundance binning, a
process which leverages coverage information from similar data sets to improve ac-
curacy [221]. It performed comparatively well throughout benchmarking [1], with
its default settings being optimized for a wide range of data sets and additional
tweaking only marginally benefitting the results [234]. Binning was subsequently
performed on both, individual and co-assemblies using only slightly modified set-
tings (--minContigLength 1000 and --minContigDepth 2) [191]. The resulting
bins were then taxonomically assessed through GTDB-Tk (v2.2.6) [236]. They
were further dereplicated into a set of high-quality MAGs using dRep (v3.4.0)
[224] for both bacteria and archaea. Finally, conserved gene-marker alignments of
dRep were utilized for phylogenetic reconstruction of the dereplicated sets through
RAxML-NG (v1.1.0) [258] and visualized within the iTOL platform [259].

Since the length of Illumina sequencing reads limits genomic contextualization
[18], assembly-level profiling of ARG and virulence genes is initially performed by
MetaGEN. ARGs are hereby characterized, assessed for mobility and quantified
[18]. For this, MetaGEN utilizes ABRicate12 (v1.0.1) in combination with the
MEGARes [46] and VFDB [260] databases, both dated 2021-Mar-27 respectively.
Scans were performed on all MAGs using stringent 90% identity and coverage
thresholds in order to limit false positives and to ensure biological relevancy of
the detected hits [28, 65, 141, 175]. ABRicate reports were generated through the
included --summary function [176]. ARG and virulence results were then sum-

11https://sourceforge.net/projects/bbmap/
12https://github.com/tseemann/abricate
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marized within count matrices and normalized by the total nucleotide count for
each metagenomic assembly [51]. Using the previously identified coding sequences
of Prodigal (v2.6.3) [255], novel ARG profiling was performed through DeepARG
(v1.0.2) [44]. Metagenomic contigs were further evaluated for mobility using Plas-
Class (v0.1.1) [239]. A sequence was described to originate from a plasmid if its
probability score was > 0.5 [239]. In order to characterize low-abundance ARGs,
which would not have been reconstructed through assembly, additional profiling
was performed via metagenomic read mapping. For this, the MEGARes database
[46] was first downloaded (dated 05.05.2023) and subsequently preprocessed. As
confirmation of SNPs on metagenomic data remains limited [46], genes requir-
ing polymorphisms for conferring resistance were removed from the collection [87,
141]. In addition, ARGs were grouped into representative sequences in order to
prevent unspecific mappings by limiting the redundancy of the database [51, 78,
261]. The remaining genes were clustered at 90% identity and coverage into a non-
redundant catalogue using MMseqs2 (v13.45111) [262]. Representative sequences
were then utilized for read-level abundance estimation through CoverM13 (v0.6.1)
[47]. Reads were required to map in proper pairs with an identity and coverage
of 90% towards the processed database [51, 60].

3.2 Computational Analysis of the Gut Microbiome

MetaGEN (v0.7.8) was then utilized for the computational analysis of the equine
gut microbiome data. Hospitalized horses subjected to colic surgery were hereby
treated with either a conventional, 5-day prophylaxis (5DG) or a single-shot
dosage (SSG) of gentamicin and penicillin [175]. Samples were collected across
three time points: on hospital admission (t0), 3 days (t1) and 10 days (t2) post-
surgery. An overview of the sample set is illustrated in appendix table A.2.

3.2.1 Data Assessment

For analysis of the equine gut microbiome, a total of 63 faecal samples were col-
lected and subsequently 2×150 bp metagenome shotgun sequenced to an average
depth of 31 million read pairs. An additional 5 compatible samples were selected
from NCBI to be included as reference sequences. The final data set consisted of

13https://github.com/wwood/CoverM
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68 samples, encompassing over 4 billion reads containing 680 billion bp of genomic
data. Before any bioinformatical analyses were performed, extensive QC of the
shotgun metagenome data were conducted through MetaGEN. Adapter clipping,
quality trimming and host DNA removal (both human and equine) was subse-
quently performed using MetaGEN as described prior (section 2.3.1). A total of
4 billion reads, composed of 650 billion bp (over 95% of the original data), re-
mained after preprocessing and were utilized for further taxonomic study (section
2.3.2). Initial abundance estimation at the phylum-level revealed highly uneven
sequencing depths (ranging from 200,000 to 80 million), as well as increased per-
centages of unclassified fragments (up to 91%) using current databases (appendix
figure A.1). Additional, database-independent methods were therefore essential
throughout later downstream analyses (sections 3.2.4 and 3.2.5). The overall se-
quencing depth was further normalized and evaluated using rarefaction analysis.
After taxonomic redistribution, profiles were randomly subsampled in order to as-
sess the ecological saturation of the sample set (figure 3.3). Re-estimated species
counts obtained from the data remained highly uneven, ranging from 200,000 to 31
million, with an average of 3.6 million across the sample set. To enable cross-group
comparisons, samples were therefore normalized to a shared minimum depth of
200,000 read counts.

3.2.2 Taxonomic Profiles

After read normalization, focus was shifted onto assessing the bacterial diversity
of the equine gut microbiome in more detail. Throughout the following section,
the microbial landscape of the equine gut will be described across the sample
set, focussing on the various time points and distinct study groups. All sam-
ples were subjected to extensive taxonomic profiling using MetaGEN as described
previously (section 2.3.2). For now, unclassified reads were excluded from fur-
ther analysis (appendix figure A.1). Raw bacterial compositions were initially
assessed through sample-wise comparisons using Krona plots (see figure 3.4 for
sample D61010). Dominant taxa were identified across multiple taxonomic levels,
including phylum (Pseudomonadota, Bacteroidota, Bacillota, Actinomycetota and
Cyanobacteria), genus (Bacteroides, Acinetobacter, Pseudomonas, Prevotella) and
species (Bacteroides fragilis, Escherichia coli, Bacteroides heparinolyticus, Bac-
teroides thetaiotaomicron, Pseudomonas putida).
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Figure 3.3: Rarefaction Analysis (Gut Microbiome). Rarefaction curve
of the equine metagenome shotgun data. Illustrated are random subsets of
differing depth for the sequencing data and the amount of taxa classifiable
throughout these. Each line represents a different sample of the collection
(n = 68). All graphs rise quickly and then stagnate within a plateau-phase,
indicating that the total diversity of the microbiome can be observed without
utilizing the full sequencing depth.

Additional aggregation of the data was required in order to compare the different
prophylaxis regimens (SSG and 5DG) across the selected time points (t0, t1, t2)
and against the additional sample set obtained from NCBI. Rarefied taxonomic
counts were therefore summarized at phylum-level and averaged across the afore-
mentioned groups to characterize differences and similarities between these. The
results were visualized in heatmaps (figure 3.5 and appendix figure A.2). Phyla
identified within the gut environment were represented in the order from highest
to lowest relative abundance by Pseudomonadota, Bacteroidota, Bacillota, Actino-
mycetota, Chordata, Spirochaetota, Euryarchaeota, Cyanobacteria and Verrucomi-
crobiota. Averaged abundances of these groups varied across the time points, with
Pseudomonadota and Bacteroidota expanding in particular from t0 to t1 across
both prophylaxis groups, before rebounding at t2. In contrast, the phyla Bacil-
lota, Actinomycetota, Chordata, Spirochaetota, Euryarchaeota, Cyanobacteria and
Verrucomicrobiota decreased at t1, before returning to their original abundances
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Figure 3.4: Krona Plot (Gut Microbiome). Pie chart-like visualization of
the bacterial content of sample D61010 using the Krona software. The presented
overview illustrates a breakdown of the most abundant phyla (inner circle) and
the composition of these on up to family-level (nested sections). Taxonomic la-
bels are visually clustered by colour according to their phylum, with species-rich
groups encompassing larger sections of the plot. Listed percentages represent
the abundance of a respective bacterial group within D61010.

towards t2. Hierarchical clustering (appendix figure A.2) revealed similarities
between the profiles of the 5DG and SSG at t0, as well as t1, with major differ-
ences identified throughout t2. However, averaged abundances of these high-level
taxonomic groups do not enable sufficient resolution to further characterize the
underlying structural compositions.

Taxonomic profiles were therefore further investigated using stacked bar charts.
The composition of each sample was hereby evaluated (figure 3.6), allowing the
assessment of individual variability, as well as the identification of potential out-
liers, illustrated by samples obtained from equine patient 33. The data were also
averaged and visualized as summarized bar charts samples of each study group
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Figure 3.5: Heatmap of Phylum-Level Abundances (Gut Micro-
biome). Taxonomic profiles were summarized at phylum-level and averaged
across the sample groups. The heatmap visualizes the abundance (log2 of
normalized counts) from low (dark red) to high (yellow) across the data set.
Columns represent the different study groups at specific time points. Rows
illustrate the 9 most abundant phyla, with minor ranks being grouped into
’other’. Phyla are clustered by their similarity to each other in the represented
abundance profiles (dendrogram on the left). REF: NCBI Group, SSG: Single-
Shot Group, 5DG: 5-Day Group.

(appendix figure A.3). These underlined the previously characterized fluctuations
on phylum-level, with Pseudomonadota and Bacteroidota expanding towards t1,
before rebounding at t2. In addition, differences between the study group samples
and NCBI references were detected. The NCBI group illustrated an increased
abundance of Pseudomonadota, as well as decreased rates of Actinomycetota,
Chordata and other (minor) phyla compared to the study group. In contrast,
samples from the hospitalized patients illustrated enhanced abundances of Bac-
teroidota, independent of the sampling time point.
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Figure 3.6: Bar Charts of Phylum-Level Compositions (Gut Micro-
biome). Stacked bar charts representing the composition of individual samples
on the phylum-level for the 9 most abundant taxonomic groups, with minor
ranks being grouped into ’other’ (colours). Individual horses (n = 26) are
clustered into the three prophylaxis groups (a) SSG, (b) 5DG and (c) NCBI
references. Samples were collected for each equine patient (top row IDs) across
three time points (t0, t1 and t2). Visualized are the percentages of phyla per
group over time. REF: NCBI Group, SSG: Single-Shot Group, 5DG: 5-Day
Group.
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Finally, the conserved set of microbes shared across all 68 samples was evaluated,
representing the ’core’ microbiota of the analysed sample collection. To character-
ize these, low-abundance taxa were first removed, based on a prevalence threshold
of 95% across the sample set. A total of 3,115 taxa were identified as the conserved
microbiota of the equine gut samples. This is in stark contrast to the preserved mi-
crobiome computed by utilizing samples of the SSG (increased to 5,358 taxa) and
5DG (restricted to 1,429 taxa) independently. Next, temporal relationships were
investigated by assessing the conserved microbiota set per time point for both the
SSG and 5DG. Venn diagrams were utilized for visualization of the corresponding
taxonomic overlaps. An overview of the preserved microbiota is provided in figure
3.7. The overlap in conserved taxa visibly shifted between the SSG and 5DG over
time, originating with 2,364 taxa at t0, increasing to 5,494 at t1 and returning to
2,304 towards t2. A majority of these differences were associated with the total
increased amount of conserved taxa within the SSG compared to the 5DG. This
characterization also enabled insights into unique species at more specific taxo-
nomic levels across the time points and sample groups, including t0 (SSG: Acine-
tobacter equi, Citrobacter farmeri, Lelliotta amnigena; 5DG: Streptococcus sp.
KS 6, Streptococcus sp. NPS 308), t1 (SSG: Bifidobacterium bifidum, Citrobac-
ter cronae, Ruminococcus bicirculans ; 5DG: Citrobacter sp., Serratia quinivorans,
Lysobacter sp.) and t2 (SSG: Streptomyces sp.; 5DG: Lelliottia nimipressuralis,
Moraxella ovis).

Next, relative abundances were further investigated at a more specific taxonomic
level (family). Differential analysis was performed using MetaGEN to identify
changes occurring within the described microbiome structure for bacterial families
of interest. An overview of statistically significant differences (p-value ≤ 0.05) is
illustrated in appendix table A.3. For samples representing the 5DG, significant
changes in abundance were observed for 47 (t0 to t1), 55 (t1 to t2) and 5 (t0 to
t2) microbial families. The microbiome of the SSG, in contrast, was significantly
altered for 45 (t0 to t1), 20 (t1 to t2) and 9 (t0 to t2) taxonomic groups. At t0

(hospital admission) variation between the SSG and 5DG was limited to 7 families.
This peaked at t1 with 66 taxa, before decreasing towards t2 with 0 differential
families. A majority of these microbial groups reduced in abundance from t0 to
t1, followed by recovery towards t2. Abundances of the Enterobacteriaceae family
heavily fluctuated throughout the study period. This group was subsequently
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Figure 3.7: Conserved Taxa (Gut Microbiome). Venn diagrams illus-
trating the conserved (’core’) microbial taxa shared between the different pro-
phylaxis groups and time points. Taxa with prevalence > 95% were compared
across the corresponding data sets. (a) Illustrates the conserved taxa shared
across all samples, while (b) and (c) represent subsets of the 5DG and SSG re-
spectively. (d)-(f) visualize the temporal component of the study, with changes
occurring in the microbiome overlap between the SSG and 5DG over time. Il-
lustrated taxa were analysed based on their presence-absence and not on their
abundance across groups. REF: NCBI Group, SSG: Single-Shot Group, 5DG:
5-Day Group.

compared across the sample set in more detail (figure 3.8). Normalized abundances
of Enterobacteriaceae increased significantly from t0 (mean SSG: 6,472; mean
5DG: 20,613) to t1 (SSG: +27,468; 5DG: +8,140) and decreased towards t2 (SSG:
−14,150; 5DG: −22,921) for both prophylaxis groups.

3.2.3 Diversity Analysis

Furthermore, similarity and diversity within (alpha diversity) and between (beta
diversity) the metagenomic samples was comparatively investigated (see section
2.2.4 for more details). First, alpha diversity indices were assessed for each sample
of the collection and subsequently averaged for further comparison (see appendix
table A.1). This primarily focused on indices regarding richness, evenness and
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Figure 3.8: Abundance of Enterobacteriaceae (Gut Microbiome). The
abundance of the family of Enterobacteriaceae was assessed and comparatively
investigated across the sample set. Individual abundances were summarized
as box plots for each prophylaxis group (SSG: n = 12, 5DG: n = 9) and
subsequently compared over time (colours) using Wilcoxon rank-sum tests. A
p-value ≤ 0.05 was defined as statistically significant. SSG: Single-Shot Group,
5DG: 5-Day Group.

diversity of each sample. On average, the gut metagenome samples contained
5,979 taxa, an evenness of 0.01 and a Shannon diversity of 6.34. Taxa ranged
from 1,545 to 6,544 across the entire set. Evenness was also highly variable, with
values ranging between 7 × 10−4 and 4 × 10−2. The computed Shannon indices
encompassed samples associated with values from 1.70 to 7.53. The lowest diver-
sity values (1.70 and 3.47, respectively) were primarily associated with samples of
the 5DG, while the highest values (7.49 and 7.53) mapped to the SSG. Significant
differences in alpha diversity were determined between prophylaxis groups and
time points through Wilcoxon rank-sum tests, visualized as box plots in figure
3.9. Compared to the diversity at t0 (mean SSG: 7.12; mean 5DG: 6.54), values
were found to be impaired at t1 (SSG: −1.71; 5DG: −1.44), with recovery follow-
ing shortly towards t2 (SSG: +1.27; 5DG: +2.09) for both the SSG and 5DG. At
t2, diversity had been re-established for both groups compared to hospital admis-
sion (SSG: 6.68; 5DG: 7.20). While evenness at t0 (mean SSG: 0.02; mean 5DG:
0.01) was also found to be impaired throughout t1 (SSG: −0.01; 5DG: −0.01)
and increased towards t2 (SSG: +0.01; 5DG: +0.02), differences were detected in

65



3 Results

Figure 3.9: Alpha Diversity (Gut Microbiome). Comparison of diversity
indices across the sample groups (SSG: n = 12, 5DG: n = 9) using box plots.
(a) Illustrates the evenness, while (b) represents the Shannon diversity over time
(colours). Both values decrease from t0 to t1 and recover towards t2. Wilcoxon
rank-sum tests were performed to infer significant differences. A p-value ≤ 0.05
was defined as statistically significant. SSG: Single-Shot Group, 5DG: 5-Day
Group.

comparison to the initial findings at hospital admission. Compared to t0, the SSG
illustrated decreased values of evenness at t2, while this measure was found to be
elevated for samples of the 5DG (SSG: 0.02; 5DG: 0.03).
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Beta diversity was assessed between the samples through computation of Bray-
Curtis distances from the normalized abundance tables at the species-level. This
was followed by subsequent principal component analysis (PCA), which was used
to characterize how the microbial community structure was influenced across
time and antibiotic prophylaxis. Individual samples were subsequently visual-
ized within PCA plots, labelled by groups and time points. Principal Component
1 (PC1) hereby accounted for 34% and Principal Component 2 (PC2) for 12.7% of
the total variance observed. An overview is illustrated in figure 3.10. PCA resulted
in multiple clusters of the samples, indicating major differences in taxonomic pro-
files between groups. A general shift in microbiome composition is detected over
time for both study groups, dominated by particularly high variability at t1. In
contrast, samples of t0 and t2 possess similarities in their taxonomic abundances
and cluster comparatively close together, although this process is also dominated
by high individuality, especially visible throughout t2.

3.2.4 Metagenome-Assembled Genomes

Metagenomics is based on the concept of comparing environmental DNA frag-
ments to characterized databases in order to deduct the underlying microbial com-
munity of a sample through sequence similarity. While this represents a sensible
approach, it remains intrinsically challenged by currently available genomic refer-
ences, which often span only a minor fraction of the entire tree of life, resulting in
limited classification accuracy throughout downstream analysis. Another method
was therefore utilized to counteract the aforementioned issue: reconstruction and
analysis of microbial draft genomes via metagenomic assembly and subsequent
binning. Described in full detail throughout section 2.3.4, sample-wise short-read
reconstruction was performed in order to generate metagenomic assemblies.

Quality-controlled sequences produced assemblies ranging in size from 11 Mbp to
1.1 Gbp, with an average of 336 Mbp per sample. Minor fragments of length < 1

Kbp were hereby discarded. The resulting assemblies remained highly fragmented
with an average N50 value of only 3.9 Kbp. In order to characterize low-abundance
microbes, additional co-assembly of the entire sample set was performed, utilizing
a total of 328 GB of equine gut microbiome data originating from the 68 samples.
The co-assembly encompassed 11 Gbp of microbial sequences and was combined
with the individual assemblies for subsequent binning.
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Binning generated a total of 10,613 genomes of varying quality, which were utilized
for additional QC and visualization. As the taxonomic classification of MAGs are
affected by values of completeness and contamination (based on the presence of
conserved, single-copy genes), a subset of high-quality draft genomes was first
extracted prior to further analysis. Quality filtering and dereplication into non-
redundant representative sequences generated 1,381 unique MAGs of high-quality
(completeness ≥ 75%, contamination ≤ 25%), consisting of 1,360 bacterial and
21 archaeal draft genomes. Together, these MAGs spanned 22 phyla, 26 classes,
56 orders, 110 families, 322 genera and 179 species, although not all could be
classified at this level. Representative genomes were then utilized for phyloge-
netic reconstruction, visualized in figure 3.11 for bacteria and 3.12 for archaea,
respectively. The bacterial tree was primarily dominated by Bacteroidota (38% of
MAGs) and Bacillota (42% of MAGs), while the archaeal phylogeny consisted of
the Methanobacteriaceae, Methanomethylophilaceae and Methanocorpusculaceae
families. Bacterial MAGs also included full draft genomes for the species Bac-
teroides fragilis, Escherichia coli and Streptococcus equinus.

3.2.5 Resistome, Virulome & Mobilome Profiles

Particular focus was set on characterization of the equine resistome, virulome and
mobilome in order to investigate the impact of antibiotic prophylaxis regimens and
hospitalization on the emergence of pathogenic bacteria, especially in regards to
MDR. Metagenomic assemblies were therefore profiled for the genotypic presence
of ARGs using the MEGARes database. A total of 2,215 genetic elements confer-
ring resistance to antibiotics, biocides and heavy metals were identified across the
sample set. These encompassed 17 different drug classes, ranging from compo-
nents inducing resistance towards aminoglycosides to trimethoprim. An overview
of the results is visualized in figure 3.13. Equines arrived at the clinic with unique
microbiomes, medical histories and resistomes (t0). The abundance of resistance
components strongly increased throughout hospitalization and prophylaxis (t1),
with the highest resistance gene counts (≥ 200) identified within samples of the
5DG. A majority of these ARGs were associated with beta-lactamases (blaEC),
metal (mdtA) and biocide (emrA) resistances. Towards t2, resistance genes di-
minished in abundance, with specific components remaining in few individuals for
longer periods of time.
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Figure 3.11: Bacterial MAGs (Gut Microbiome). Circular representa-
tion of a maximum likelihood phylogeny of bacterial MAGs visualized in iTOL.
1,360 high-quality MAGs were reconstructed from the equine gut metagenome
collection. Sequences of conserved housekeeping genes were further utilized for
the inference of the phylogenetic relationships. Bacterial MAGs were coloured
according to their taxonomic classification on phylum-level.
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Figure 3.14: Correlation of Resistance & Diversity (Gut Micro-
biome). Spearman correlation of normalized resistance components and micro-
biome alpha diversity across the sample set. Individual samples were coloured
according to their time points, with shapes illustrating the distinct study
groups. Samples with low alpha diversity were more likely to carry high amounts
of resistance elements. Most individuals with high resistance gene counts were
associated with the 5DG. AMR: Antimicrobial Resistance, REF: NCBI Group,
SSG: Single-Shot Group, 5DG: 5-Day Group.

Resistance gene counts were further normalized according to sequencing depth to
enable group-wise comparisons. Interestingly, equines with decreased values of al-
pha diversity possessed more resistance genes compared to patients with high gut
microbiome diversity. Counts of resistance components were therefore tested for
correlation with alpha diversity values. A significant, negative Spearman correla-
tion (R = −0.74, p < 2.2e−16) was identified between resistance genes and alpha
diversity across the sample set, independent of study group or time point. Visual-
ized in figure 3.14, samples with diminished microbiome diversity were more likely
to possess elevated abundances of resistance genes compared to samples with high
diversity. While many samples of t0 and t2 carried few ARGs, resistance com-
ponents were highly abundant within t1 samples and particularly associated with
samples of the prolonged prophylaxis group (5DG).
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In order to account for low-abundance resistance genes, additional mapping-based
methods were utilized for resistome profiling. These elements can generally not
be reconstructed through the assembly process and must therefore be analysed
based on the assignment of metagenomic reads. Preprocessed fragments were
hereby mapped to the dereplicated MEGARes database with stringent thresholds
(see section 2.3.5 for more details) in order to further characterize the abundance
of ARGs. Reads mapped to 239 unique genetic components, encompassing re-
sistances to a total of 35 drug classes. Hierarchical clustering resulted in three
general branches of resistance components: highly abundant (aminoglycosides,
beta-lactamases, tetracyclines), common (biocides and metals) and rare hits (bac-
itracin and phenicols) identified within the gut environment. An overview of resis-
tance genes (appendix figure A.4) and drug classes (appendix A.5) was illustrated
using heatmaps. Next, comparisons were performed on class-level counts. Count
abundances of ARGs were subsequently summarized to drug classes and assessed
across time points for the SSG and 5DG. The results were visualized as box plots
for the SSG (appendix figure A.6) and 5DG (appendix figure A.7). Findings in-
clude the significant increase of ARGs against phenicols (5DG: p = 0.013, SSG:
p = 0.092) and trimethoprim (5DG: p = 0.036, SSG: p = 1.0) within the 5DG. In
addition, ARGs associated with resistance to aminoglycosides (5DG: p = 0.058,
SSG: p = 0.84) and beta-lactamases (5DG: p = 0.0092, SSG: p = 0.0.0054) ex-
panded over time, primarily within the 5DG. Further aggregation of resistance
elements revealed insights into the individuality of ARG accumulation (appendix
figure A.8).

Genetic resistance determinants of the reconstructed draft genomes were fur-
ther assessed in regards to the characterization of MDR. Processed MAGs of
both prophylaxis groups contained up to 50 unique resistance elements, includ-
ing genes conferring resistances to biocides and metals. The latter were excluded
from further evaluation, as they do not directly induce AMR. A majority of the
metagenomic bins (97%) were found to be genotypically fully susceptible to an-
tibiotics, with few MAGs (3%) illustrating varying levels of AMR. Of all MAGs
encompassing ARGs, a total of 40 contained genes conferring resistance to more
than two antibiotic classes, indicating likely genotypic MDR for the associated
bacterial groups. These taxonomic bins were primarily represented by E. coli,
but also illustrated draft genomes classified as Acinetobacter, Flavobacterium,
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Classification # of MAGs % of MAGs
Total MAGs 10,613 100%

Susceptible (No ARGs) 10,346 97.5%
Resistant (ARGs of 1-2 antibiotic classes) 227 2.1%

MDR (ARGs of > 2 antibiotic classes) 40 0.4%

Table 3.1: MDR MAGs (Gut Microbiome). Draft genomes were profiled
for ARGs and classified based on the amount of resistance determinants towards
different drug classes. A total of 10,613 MAGs were reconstructed through bin-
ning, of which a majority (10,346, 97.5%) were genotypically susceptible to all
classes of antibiotics. 227 MAGs (2.1%) contained genes inferring resistance
towards 1-2 antibiotic classes. 40 MAGs (0.4%) encompassed resistance deter-
minants to more than 2 classes of antibiotics, representing taxonomic groups
with genotypic MDR. ARG: Antibiotic Resistance Gene, MAG: Metagenome-
Assembled Genome, MDR: Multiple Drug Resistance.

Klebsiella and Rahnella, all of which contained enrichments of resistance genes
against multiple drug classes. They commonly included ARGs conferring re-
sistance towards aminoglycosides, antimicrobial peptides, beta-lactamases, bac-
itracin and MLS. An overview of the results is illustrated in table 3.1.

Metagenomic assemblies were further profiled for virulence-associated factors. A
total of 1,343 virulence-associated genes were characterized across the sample set.
Analogously to AMR profiling, an overview heatmap was generated (appendix fig-
ure A.9). Patterns similar to those illustrated by the ARG profiles were detected,
whereby a majority of virulence genes were abundant throughout t1, while few
were individually present at t0 and t2. The highest counts of virulence factors (≥
200) were identified within samples of the 5DG at t2. Abundant virulence genes
were involved in secretion mechanisms (espL1-Y4, gspC-M) and fimbrial proteins
(faeD-J, fimA-I, focH, papB-K, sfaB-Y). Additional full-length genes were recon-
structed for factors associated with the production of exotoxins (astA, cdtA-C),
bacterial motility (flgB, fliC), capsule formation (kpsD-T), adhesion (afaA-F,
ompA) and transporter systems (fepA-G, iroB-N). Further statistical analyses
were performed and concluded that virulence abundance also significantly corre-
lated with taxonomic alpha diversity (R = −0.75, p = 3e − 13) throughout the
sample collection (appendix figure A.10).
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Taxonomic association and mobility of ARGs are of particular interest for as-
sessing the overall transferability of the aforementioned genes. One challenge is
represented by the process of accurately identifying the phylogenetic origin of
a gene, especially considering high genomic plasticity and HGT. By re-running
the metagenomic classifier Kraken2 on the assembled contigs containing ARGs,
it was possible to associate specific resistances with taxonomic groups. Kraken2
represents a method commonly utilized throughout microbiome research, which
assigns taxa based on the majority of species-specific k-mers per contig. Finally,
the putative mobility of resistance and virulence determinants were evaluated.
Contigs containing these elements were analysed for their likelihood to be car-
ried by a plasmid. Predictions with accuracy > 0.5 were labelled as potentially
mobile-associated. These mobile contigs were taxonomically characterized and
statistically compared across time points and study groups (figure 3.15).

Plasmid-associated ARGs increased significantly in abundance from t0 to t2 within
the 5DG (p = 0.014, Wilcoxon rank-sum test). While mobile virulence genes in-
creased towards t1, abundances remained non-significant between t0 and t2 for
both of the sample groups (5DG: p = 0.1, SSG: p = 0.2). Taxonomic alloca-
tion of these fragments (figure 3.16) revealed that a majority of the mobile ARGs
were associated with the bacterial family of Enterobacteriaceae (28%), followed
by Moraxellaceae (20%), Bacteroidaceae (8%) and Lachnospiraceae (6%). How-
ever, a large proportion of mobile ARGs (38%) were allocated to minor families or
could not be linked to a corresponding taxonomic label at all. Plasmid-associated
resistance genes commonly consisted of aac, tet and sul ARGs. Mobile virulence
factors were also primarily linked to the family of Enterobacteriaceae. A compre-
hensive overview of bacterial families associated with mobile ARGs is illustrated
in appendix figure A.11.

3.3 Computational Analysis of the Nasal Microbiome

Next, Meta16s (v0.1.7) was utilized for the analysis of the equine nasal micro-
biome data. This data set consisted primarily of 78 nostril swabs subjected to
16S rRNA sequencing, supplemented with an additional metagenome shotgun
sample (J32522). The latter of which was analysed using MetaGEN (v0.7.8).
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Figure 3.15: Plasmidial Resistance & Virulence Abundances (Gut
Microbiome). Abundances of plasmid-associated resistance (a) and virulence
(b) determinants were summarized per prophylaxis group and subsequently vi-
sualized as box plots (SSG: n = 12, 5DG: n = 9). Total counts were statistically
compared across prophylaxis groups and time points using Wilcoxon rank-sum
tests. A p-value ≤ 0.05 was defined as statistically significant. SSG: Single-Shot
Group, 5DG: 5-Day Group.

3.3.1 Data Assessment

16S rRNA sequencing data was processed according to section 2.2. The collection
of 78 nasal samples were hereby utilized for analysis using the Meta16s pipeline.
Raw data encompassed 424 MB of V3-V4 amplicon sequencing data. Clustering of
this data set with the GreenGenes database resulted in a total of 6,539 high-quality
OTU sequences. Samples contained on average 7,808 OTU counts, but sequencing
depth varied greatly across the data set (ranging from 987 to 30,749). Rarefaction
analysis was subsequently performed to evaluate the ecological saturation of these
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Figure 3.16: Taxonomic Association of Plasmidial Contigs (Gut Mi-
crobiome). Contigs of identified resistance (a) and virulence (b) determinants
were characterized for plasmid-association. Predictions were then summarized
in the form of pie charts for the entire data collection, based on their respective
taxonomic annotations. Colours represent the 4 major bacterial families asso-
ciated with these genetic elements. Minor taxonomic ranks are grouped into
’other’. ARGs: Antibiotic Resistance Genes, VFs: Virulence Factors.

sequences. An overview is illustrated in figure 3.17. As OTU counts were highly
uneven, downsampling was applied to enable cross-group comparisons. Through
rarefaction, samples were normalized to a shared, minimum depth of 987 OTU
counts.

3.3.2 Taxonomic Profiles

Next, taxonomic profiles were generated through annotation of the established
OTUs with the RDP database. Abundances were subsequently evaluated on mul-
tiple hierarchical levels. OTU counts were further investigated through heatmaps
and bar charts. At the phylum-level, the most abundant taxonomic groups com-
prised of Pseudomonadota, Actinomycetota, Bacillota, Bacteroidota, Cyanobacte-
ria, Fusobacteriota, Chloroflexota, Acidobacteriota and Candidatus Saccharibac-
teria. Comparative analyses revealed that the presence of these groups fluctuated
across time. While the major phyla of Pseudomonadota, Actinomycetota, Bacillota
and Bacteroidota remained comparatively stable, minor taxa fluctuated strongly
throughout time. Counts associated with Cyanobacteria and Fusobacteriota in-
creased until t2, while the phyla of Chloroflexota, Acidobacteriota and Candida-
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Figure 3.17: Rarefaction Analysis (Nasal Microbiome). Rarefaction
curve of the equine 16S rRNA data. Illustrated are random subsets of differing
depth for the sequencing data and the amount of OTUs classifiable throughout
these. Each line represents a different sample of the collection (n = 78). All
graphs rise quickly and then stagnate within a plateau-phase, indicating that
the total diversity of the microbiome can be observed without utilizing the full
sequencing depth. OTUs: Operational Taxonomic Units.

tus Saccharibacteria slowly diminished across both sample groups. Overviews of
the phylum-level are visualized in figure 3.18, with more comprehensive insights
into the individual samples provided in appendix figures A.14 and A.15.

Since phylum represents a high-level taxonomic rank, additional insights into more
specific phylogenetic classifications were required. The family-level illustrates the
highest resolution possible to achieve through OTU clustering of V3-V4 16S rRNA
fragments. Data were therefore also aggregated onto the family-level. An overview
is represented in figure 3.19 and appendix figure A.13. Insights into the individ-
ual compositions per sample are visualized in appendix figure A.16. The most
abundant families of the nasal microbiome comprised of Sphingomonadaceae, Mi-
crococcaceae, Streptococcaceae, Corynebacteriaceae, Flavobacteriaceae, Microbac-
teriaceae, Moraxellaceae, Pasteurellaceae and Chloroplast. Their abundance also
varied, with a majority of these groups increasing in counts over time. Finally,
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Figure 3.18: Heatmap of Phylum-Level Abundances (Nasal Micro-
biome). Taxonomic profiles were summarized at phylum-level and averaged
across the sample groups. The heatmap visualizes the abundance (log2 of
normalized counts) from low (yellow) to high (dark red) across the data set.
Columns represent the different study groups at specific time points. Rows
illustrate the 9 most abundant phyla, with minor ranks being grouped into
’other’. Phyla are clustered by their similarity to each other in the represented
abundance profiles (dendrogram on the left). SSG: Single-Shot Group, 5DG:
5-Day Group.

differential abundance was statistically assessed on family-level. Group-wise com-
parisons were performed for multiple families of interest. The family of Enter-
obacteriaceae increased significantly over time within both prophylaxis groups
(figure 3.20). Similar trends were also revealed for the family of Fusobacteriaceae
(appendix figure A.17). The abundance of Ruminoccocaceae only increased sig-
nificantly within the SSG (appendix figure A.18). In contrast, abundances of
Staphylococcaceae decreased significantly over time for both groups (appendix fig-
ure A.19). Streptococcaceae illustrated minor variances within the SSG, with a
significant increase at t1 and decrease towards t2, which were not identified for
samples of the 5DG (appendix figure A.20). An overview of all differential families
is listed in appendix table A.3.
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Figure 3.19: Summarized Bar Charts at Family-Level (Nasal Micro-
biome). Stacked bar charts representing the averaged composition of each
sample group on the family-level. The 9 most abundant families are visualized
as percentages of each bar, with minor ranks being grouped into ’other’. SSG:
Single-Shot Group, 5DG: 5-Day Group.

3.3.3 Diversity Analysis

Ecological indices regarding richness, evenness and diversity were assessed for the
nasal microbiome environment based on the established OTU tables (see appendix
table A.1). On average, nostril swabs contained a total of 439 distinct OTUs
(richness), with an evenness of 0.14 and an overall alpha diversity of 4.10. Shannon
indices ranged from 1.08 to 5.52. Variations in alpha diversity were primarily
driven by differences in richness and evenness. Taxonomic richness ranged from 33
to 954 OTUs for the sample collection. With values between 0.01 to 0.64, evenness
also varied greatly across the data set. The comparison of prophylaxis groups
across time was visualized in figure 3.21 and appendix figure A.21. Differences
were assessed using Wilcoxon rank-sum tests. While evenness and alpha diversity
differed between both groups at t1, variations remained mostly non-significant.
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Figure 3.20: Abundance of Enterobacteriaceae (Nasal Microbiome).
The abundance of the family of Enterobacteriaceae was assessed and compara-
tively investigated across the sample set. Individual abundances were summa-
rized as box plots for each prophylaxis group (a) and subsequently compared
over time (b) using Wilcoxon rank-sum tests (SSG: n = 15, 5DG: n = 11). A
p-value ≤ 0.05 was defined as statistically significant. SSG: Single-Shot Group,
5DG: 5-Day Group.

In addition, beta-diversity was assessed through PCA of computed Bray-Curtis
distances. Principal Component 1 (PC1) accounted for 11.1%, while Principal
Component 2 (PC2) encompassed 6.5% of the total variance observed. Visualized
in figure 3.22, clear differences between the prophylaxis groups can be described.
A general shift in microbiome structure is visible over time, whereby samples of
the SSG appear much more variable in their taxonomic composition compared to
the 5DG.
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Figure 3.21: Alpha Diversity (Nasal Microbiome). Comparison of di-
versity indices across the sample groups (SSG: n = 15, 5DG: n = 11) using box
plots. (a) Illustrates the evenness, while (b) represents the Shannon diversity
over time (colours). Both values decrease from t0 to t1 and recover towards
t2. Wilcoxon rank-sum tests were performed to infer significant differences. A
p-value ≤ 0.05 was defined as statistically significant. SSG: Single-Shot Group,
5DG: 5-Day Group.
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3.3.4 Resistome, Virulome & Mobilome Profiles

Finally, a representative sample of the 5DG (J32522) was metagenome shotgun
sequenced in order to gain insights into the resistome of the nasal environment.
Analysis of this sample was conducted using MetaGEN. Taxonomic profiles on
family-level differed slightly from the aforementioned results (see appendix figure
A.12), whereby groups of Hymenobacteraceae and Methylobacteriaceae were iden-
tified as highly abundant in addition to those characterized through the previous
16S rRNA sequencing. Metagenome sequences encompassed multiple resistance
genes, including aac3, carbB, ermC and sulII, many of which have been associ-
ated with plasmids. De novo resistome profiling revealed additional ARGs con-
ferring reduced susceptibility towards aminoglycosides, diaminopyrimidines, fluo-
roquinolones, fosfomycins, glycopeptides, MLS and tetracyclines. An overview of
the identified resistance determinants are listed in appendix table A.4. Further
taxonomic annotation revealed these to be hosted by multiple bacterial species,
including Acinetobacter nosocomialis, Escherichia coli and Staphylococcus aureus.
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4 Discussion

Microbiomes represent complex, dynamic ecosystems influenced by environmental
conditions and host regulation [92]. The enclosed microbiota sense and respond to
changes within their habitats, reflected through adaptations in gene content and
expression patterns [185]. However, the complex processes behind the adaptability
and dissemination of bacteria remain poorly understood, especially in regards to
colonization resilience and the emergence of MDR within microbiomes dominated
by species which cannot be cultured under current laboratory conditions [22, 92].
High-throughput metagenomics enables collective insights into these processes at
a community level [185], furthering our understanding on how external factors can
influence the host microbiome composition.

4.1 Novel Pipelines for Metagenomic Analyses

With the rapid progression of metagenomics over the recent decade, microbiome
studies in particular have represented an ongoing ’hot topic’ within genomics and
science [31, 135, 154]. As technologies continue to evolve, novel methods are es-
sential for gaining comprehensive insights into these complex NGS data. Metage-
nomic sequencing generates enormous amounts of ’big data’, which require precise
computational analyses in order to gain biological insights [26]. Due to the rapid
advancements in this active field of research, there currently exists little consensus
on gold standards regarding study designs and computational analyses [92, 183,
217, 232]. However, the quality of metagenomic analyses are known to be strongly
influenced by experimental, biological, environmental and computational factors
[92], in particular sample handling, sequencing methodology and bioinformatics
workflow [53, 66]. Different bioinformatic approaches can hereby have major im-
pacts on the filtering, clustering, taxonomic assignment and binning processes
of microbiome data [92]. Few computational workflows exist for the analysis of
metagenomic sequences [87, 108, 132, 212, 214]. However, these pipeline solutions
have not been specifically designed to handle high abundances of uncharacter-
ized equine microbiome data and do not encompass the full scope of analyses
required throughout this study (described in section 2.1), particularly large-scale
co-assembly (section 2.3.4), as well as high- and low abundance resistome profil-
ing (section 2.3.5). It therefore remained essential to develop appropriate analysis
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workflows based on the presented equine patient sets, in order to gain biological
insights into the data at hand. Due to this, two novel pipelines were designed and
implemented within the context of this thesis, termed MetaGEN and Meta16s, en-
abling comprehensive analyses of metagenomic shotgun and 16S rRNA sequencing
data.

4.1.1 Meta16s for 16S rRNA Data

Meta16s utilizes the well-established approach of clustering 16S rRNA gene reads
into sets of OTUs, representing DNA fragments of high similarity [1, 5, 92, 96,
183]. While there exist alternative methods to group 16S rRNA fragments based
on their similarity [127, 193], OTU assignment was selected as the primary method
for Meta16s in order to remain comparable to previous studies of the equine mi-
crobiome [154]. Due to the high technical noise of amplicon sequencing, including
sequencing artefacts and low-quality variants, rigorous data preprocessing was fur-
ther conducted to ensure true presence of the 16S rRNA fragments. Thresholds
were hereby selected based on established research, including the overlapping of
read pairs and removal of any ambiguous reads [154]. Quality-controlled fragments
were then utilized for OTU clustering. Each OTU is assigned a taxonomic label,
based on the utilized reference database. Historically, the GreenGenes database
[195] represents one of the most frequently utilized databases for 16S OTU cluster-
ing, however it remains limited in taxonomic resolution due to its deprecated up-
dates. This represents the primary reason why another source, the RDP database
[196], was chosen for re-annotation of the identified OTU clusters. First, clustering
was performed with the GreenGenes database, followed by additional annotation
using RDP 11. This enables increased taxonomic resolution across the sample set,
through the improved nomenclature of the RDP. The resulting abundance table is
then cleaned for singletons, rarefied and utilized throughout downstream analysis,
including taxonomic profiling and diversity estimation. Meta16s hereby enables
the automized transformation of raw 16S rRNA reads into cleaned, applicable
abundance tables, which represent the foundation for further microbiome analy-
ses. These are then utilized for in-depth diversity estimation and visualization.
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4.1.2 MetaGEN for Metagenome Shotgun Data

MetaGEN extends the capabilities of Meta16s through additional analysis steps
specific to shotgun metagenome data. Particular focus was set on expanding the
limitations of 16S amplicon sequencing through functional profiling, metagenomic
assembly, and resistome annotation, all of which require shotgun data as an in-
put. This enables characterization of metagenome-assembled draft genomes and
full-length resistance determinants alongside taxonomic and functional results.
Since a majority of the equine gut microbiome remains unclassified by current
databases, additional reference-free approaches are utilized by MetaGEN. This
includes large-scale metagenomic binning for the reconstruction of high-quality
draft genomes, which expanded the known diversity of the microbiomes with
thousands of annotated MAGs. As the collected dataset represents the largest
equine gut metagenome sample set currently available, computationally expen-
sive co-assembly was performed to utilize the full genomic capacity. This enabled
the reconstruction of additional, low-abundance species which otherwise would
have been missed by other pipelines. The resulting MAGs were further scanned
for resistance and virulence determinants in order to gain deep insights into the
distribution of these pathogenic elements across the taxonomic profiles.

Both, the Meta16s and MetaGEN pipelines represent standardized workflows for
reproducible in-depth analyses of complex microbial communities, extending the
capabilities of currently available software tools. Given an appropriate set of ge-
netic references, such as equines and humans within the context of this study,
these tools enable the flexibility to analyse a variety of host-associated micro-
biomes. MetaGEN14 and Meta16s15 are both open-source and freely available on
GitHub under the GPLv3 licence. While individual (sub)tools might become ob-
solete in the future, the general workflow on how to analyse complex microbiome
’big data’ and the types of biological results which can be generated from these
represent essential resources for future studies within the field of metagenomics.
Throughout this thesis, MetaGEN and Meta16s were both applied to a range of
microbiome data sets in order to investigate the influence of hospitalization and
antibiotic prophylaxes on the gut resistome of colic horses.

14https://github.com/SiWolf/MetaGEN
15https://github.com/SiWolf/Meta16s

88

https://github.com/SiWolf/MetaGEN
https://github.com/SiWolf/Meta16s


4 Discussion

4.2 Characterization of the Equine Microbiome

The microbiome represents an important health-associated indicator across all
mammalian species. The findings outlined within this thesis illustrate how the
multifaceted processes of surgery, hospitalization and perioperative prophylaxis
affect the gut and nasal microbiota of equines. Throughout surgery and hospital
care, equine patients were subjected to multiple environmental stimuli and inter-
nal changes (i.e. pain) known to influence their microbiomes. It hereby remained
essential to distinguish between factors which affected all study participants (the
process of hospitalization, surgery and PAP) and group-specific differences (in-
duced by the differing lengths of prophylaxes). Within the following chapter, the
established results will be discussed in light of the aforementioned aspects. This
provides new insights into how both hospitalization and PAP affected the equine
microbiome, particularly in regards to the accumulation of MDR.

4.2.1 At Hospital Admission

Equines arrived at the clinic with individual, unique microbiota compositions, re-
sistance and virulence gene profiles (t0), indicating that their microbiomes were
primarily shaped through the individual backgrounds of the patient set. Varia-
tions in geographic origins, feed or stable conditions, as well as previous diseases
and medical-histories represent a selection of discrete factors contributing to these
observations [171]. PCA revealed insights into the diverse microbiomes for both
the nasal (figure 3.22) and gut (figure 3.10) samples at the time of hospitaliza-
tion. However, while microbiome compositions of the equine patients were driven
by high individuality, they also possessed a multiplicity of similarities. A ma-
jority of samples hereby clustered together tightly with minor distances in beta
diversity. This reveals the existence of a baseline microbiome composition, which
underlines the suitability of the presented methods for further comparisons across
multiple taxonomic levels over time. However, although the gut microbiome was
represented comparatively well through PCA (with a total of 46.7% of taxonomic
variability visualized using PC1 and PC2), the nasal microbiome could not be
described as clearly through dimensionality reduction (only representing 17.1% of
the variance). These results indicated that the equine nasal microbiome data is
particularly multidimensional and cannot be fully captured using this approach
[211]. Additional analyses were therefore required in order to gain insight into
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the underlying taxonomic shifts occurring throughout the microbiome. While 3
of the 5 samples from NCBI (R1-R3, see appendix table A.2) appeared similar to
the gut microbiomes of the equine patients, R4 and R5 represented outliers with
vastly different taxonomic compositions compared to the collection. Given that
these sequences were matched on a best-hit basis, external factors such as geo-
graphic distance or other environmental parameters, including differences in living
conditions (stables vs free-range), likely contributed to the observed distances, as
discussed previously [171]. However, this is particularly interesting, since the
NCBI sequences represented healthy horses with no recent history of antibiotic
usage [167], indicating that, while major taxonomic groups remain comparatively
stable across the equine gut microbiome, variance in abundances and the presence-
absence of minor taxa play a key role in overall host health and the onset of disease.

Comparing nasal and gut communities of the same individuals revealed insights
into the fundamental differences in structural composition between these micro-
biomes. At hospital admission, the gut microbiome consisted of 2,304 conserved
taxa shared by the entire equine patient collection (figure 3.7). While this was
primarily dominated by Pseudomonadota, Bacteroidota and Bacillota (appendix
figure A.2), high individuality was present even on phylum-level (figure 3.6). The
nasal microbiomes encompass unique microbiota, clearly differing from those as-
sociated with the gut, as illustrated by the only few taxa shared between both
environments. While similarities exist between these microbiomes on high taxo-
nomic levels, the nasal microbiome was additionally inhabited by Actinomycetota,
a phylum encompassing genera such as Corynebacterium, which represent com-
mon colonizers of the mucosa of humans and animals [151]. In addition, taxonomic
composition of the nasal environment fluctuated even more strongly across indi-
viduals compared to the gut microbiota (appendix figure A.14), with biodiversity
persistently increased within the faecal samples compared to the nasal swabs (av-
erage of 6.34 vs 4.10), primarily due to elevated values of richness (5,979 vs 439).
Furthermore, high levels of evenness were detected within the nasal samples (0.14
vs 0.01).

Equines possess large and complex digestive tracts, for which a wide range of
microbes play essential roles in food processing and energy production [157, 168].
They therefore host extremely diverse bacterial communities [135, 168], which
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encompass high levels of functional redundancies in order to remain stable in
metabolic potential over time [85]. While healthy gut environments are compar-
atively resilient against pathogen overgrowth, they can still be heavily affected
by external stimuli, such as antibiotic prophylaxis [15]. In contrast, the nasal
microbiome illustrates a much more transient environment, dominated by com-
paratively few taxonomic groups (5,979 vs 439). It thereby hosts a less diverse,
but more evenly populated microbiota, heavily fluctuating through the direct sur-
roundings of the equine patients.

A limited amount of resistance and virulence genes were reconstructed at t0 (figure
3.13 and appendix figure A.9) for the equine patient data set. While a majority of
these could be associated with the family of Enterobacteriaceae (appendix figure
A.11), and the presence of this group was also verified independently within the
gut (figure 3.8) and nasal (figure 3.20) environments, fragments containing these
genes were primarily not associated with plasmidial resistance (figure 3.15), indi-
cating passive carriage with limited HGT across these pathogens. ARG profiles at
t0 were also highly similar to the gut samples collected from NCBI, revealing com-
parable base-levels of individuality within the equine resistomes and virulomes.
The reconstructed ARGs therefore represent non-mobile resistance components
of the normal microbiota, which are present even in healthy microbiomes [20,
26, 53]. Additional insights were gained through low-abundance ARG profiling
(appendix figure A.4), which revealed the ubiquitous presence of sequences associ-
ated with sulfonamide (sulI) and tetracycline (tetQ, tetW) resistances. Stringent
thresholds and customization of the resistome database were utilized to ensure the
true presence of these fragments within the metagenomic data set (section 2.3.5).
However, since a majority of these could not be fully reconstructed through the
assembly process, fragments representing these genes are present throughout the
gut environment at a barely detectable, low-abundance level.

4.2.2 3 Days Post-Surgery

After 3 days of hospitalization and post-surgical prophylaxis (t1), clear differences
were detected in taxonomic profiles and diversity within the equine microbiomes
compared to their initial compositions at hospital admission (t0). Surgery, hospi-
talization and antibiotic prophylaxis induced large structural changes within the
microbiome of the equine gut. This resulted in sets of highly diverse and unbal-
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anced interindividual gut microbiota [153]. PCA of the gut (figure 3.10) and nasal
(figure 3.22) environments revealed increased variability across microbial profiles
throughout t1. As Bray-Curtis distances strongly increased, individuals appeared
shifted from their original ordinations within the PCA, indicating strong rear-
rangements within the underlying taxonomic compositions. High intra-individual
variability in microbiome composition clearly illustrate a form of temporal instabil-
ity [103], induced by the aforementioned processes of surgery, hospitalization and
PAP. Previous findings of the accumulation of MDR bacteria within the equine
patients further strengthen this observation [175].

By contextualizing the computed diversity values, additional insights into the
complex relationships between community members were gained and described as
follows. Throughout t1, diversity dropped below the level of the NCBI compari-
son group. Both Shannon and evenness values decreased from t0 to t1 (figures 3.9
and 3.21), representing a rapid depletion of microbial diversity within the equine
microbiome, resulting in a state of dysbiosis. However, this was primarily ob-
served within the gut microbiome and was less profound for samples of the nasal
environment. The reasons for this are likely multifactorial. Firstly, the gut micro-
biome may have been generally more susceptible to foreign influences throughout
hospitalization due to the previous colic surgery, antibiotic prophylaxis or both.
While the nasal microbiome is also visibly subject to compositional changes, it is
intrinsically less diverse compared to the gut environment and through its tran-
sient nature less prone to be affected by the aforementioned factors. Secondly, as
high variability continues to play a major role throughout the process of micro-
biome stabilization, it is clear that the presented results were also influenced to a
certain degree by individuality. The gut and nasal microbiomes of equine patient
33, for example, visibly diverged from the remaining data set through an immedi-
ate expansion of Pseudomonadota (figure 3.6b and appendix figure A.14b). This
patient was diagnosed throughout t1 as suffering from colitis, a medical condi-
tion likely associated with the observed microbiome shifts of this individual. The
Pseudomonadota phylum consists of a major pool for mobile ARGs within the
gut resistome, as it includes many clinically relevant pathogens [28].

Antibiotic-induced depletion of the gut microbiome has been shown to favour the
colonization of pathogens and the development of various gastrointestinal diseases,
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also in equines [181, 263, 264]. Exponential accumulation of genetic elements asso-
ciated with resistances and virulence was detected throughout t1 (figure 3.13 and
appendix figure A.9). Specifically, full-length genes conferring resistance against
aminoglycosides, beta-lactamases, biocides and metals all proliferated strongly
across the entire sample collection at t1. However, the effect of individuality
also remained clearly visible within the resistome profiles, with each sample en-
compassing a unique set of ARGs. These findings were further supported using
independent read mapping against the MEGARes database (appendix figure A.4).
High abundances of virulence-associated genes were also characterized across the
study period, specifically at t1. A majority of these consisted of fimbrial adhesion
proteins, such as fimA-I [140], and secretion elements, including gspC-M [139],
which are common across Gram-negative bacteria. However, full-length genes
were also reconstructed for genes involved in exotoxins (astA, cdtA-C), cell motil-
ity (flgB, fliC), capsule formation (kpsD-T) and overall adhesion (afaA-F, ompA).
Exotoxins and adhesion factors in particular increase virulence of the associated
strains, enabling enhanced connectivity towards host cells and the potential to
induce cell death [17, 187]. Additional genes involved in cell motility and capsule
formation, on the other hand, increase adaptability of the strains within changing
environmental conditions, such as those imposed throughout surgery, hospitaliza-
tion and PAP.

Co-occurring with the accumulation of resistance and virulence genes was the ex-
pansion of Enterobacteriaceae, increasing significantly in abundance from t0 to t1

across samples of both, the nasal and gut microbiome (figures 3.8 and 3.20). The
family of Enterobacteriaceae spans more than 80 different genera, including bacte-
rial species such as E. coli, which are common colonizers of the human and animal
gut habitat, but are also abundant across environmental reservoirs [65]. Enter-
obacteriaceae represented the primary microbial group associated with ARGs at
t1 (appendix figure A.11), a majority of these genes were also characterized as
being potentially plasmid-bound (figure 3.15). This underlines previous results
describing the abundance and local dynamics of ESBL-producing E. coli within
equine clinics [33, 175]. While both, putative plasmid-associated resistance and
virulence genes, increased in normalized counts over time, mobile virulence fac-
tors continued to remain too scarce to be statistically significant for samples of
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the 5DG (p = 0.75). However, a significant increase was noted within the SSG
(p = 0.0092), likely due to the enlarged sample size (SSG: n = 12, 5DG: n = 9).

4.2.3 10 Days Post-Surgery

After 10 days of hospitalization (t2), the equine microbiota shifted once more in
taxonomic composition. Both the microbiome and resistome showed decreased
variability, marking the onset of stabilization within the microbial composition.
The nasal and gut microbiota revealed clear taxonomic changes occurring through-
out time, shifting the overall structure of the microbiome from one state to an-
other. Towards day 10, their compositions diverged back towards a potentially
new stable state. Visualized through PCA (figures 3.10 and 3.22), decreased vari-
ability within the equine patient set was clearly evident. In comparison to t1, all
microbiomes illustrated signs of stabilization and potential recovery, with increas-
ing Shannon diversities and evenness towards a state comparable to t0 (figures 3.9
and 3.21). Similar dynamics have been reported through 16S rRNA sequencing of
the gut environment, revealing that PAP administration can induce fundamental
shifts in the taxonomic composition of the microbiome [190]. Hierarchical clus-
tering further revealed varying degrees of taxonomic similarities between t2 and
samples of the previous time points (t0 and t1) (appendix figure A.2), indicating
that this newfound state incorporates microbiome signatures from both previous
time points, but also remains shaped by high individuality [31, 115].

Towards t2, further resistome accumulation halted across all groups, as was ex-
pected with the offset of PAP. Full-length resistance and virulence-associated genes
reduced in abundance compared to t1 (figure 3.13 and appendix figure A.9). How-
ever, genetic components, including virulence factors and resistances against bio-
cides and metals, remained within the microbiomes at t2 and likely past the study
period (> 10 days). ARG accumulation occurring during hospitalization can
therefore have profound long-term effects on the equine resistome [31, 157, 181].
This was particularly prominent for equine patients 75 and 80, which were primar-
ily ARG-negative at hospital admission, but illustrated excessive accumulation of
resistance genes towards day 10. ARG carriage was identified across a diverse set
of hosts, dominated by few, abundant intestinal taxa. Most ARGs were found to
be associated with the genus Escherichia, in particular the aforementioned species
of E. coli.
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E. coli was identified as being highly abundant across the presented data set,
confirming its well-established role within the equine microbiome. It represents
a diverse and adaptive species [265], frequently colonizing the gut microbiome
of mammals, including humans and equines [37]. E. coli are genetically versa-
tile, possessing high genomic plasticity through an open pan-genome [37]. They
encompass both benign as well as pathogenic strains [170], with a majority rep-
resenting commensal bacteria [97]. Being part of the Escherichia genus they are
directly involved in host metabolism and defence mechanisms of the gut, but may
also act as potential reservoirs for a wide range of ARGs [59, 81]. Expansion of
pathogenic E. coli within the gut microbiome has therefore been associated with
multiple diseases and represents a potential health risk [170]. As illustrated by the
high abundance of associated ARGs, resistant strains of E. coli play a major role
in the dissemination of the aforementioned ARGs across microbiomes, including
equine hospital environments as reported previously [33, 175].

4.3 Influence of PAP Regimens on the Equine Microbiome

Changes occurring across the sample collection were primarily driven by the
processes of surgery, hospitalization and perioperative prophylaxis, as discussed
above. However, different PAP regimens (SSG vs 5DG) induced additional dis-
tinct effects upon the gut and nasal microbiomes. While both groups initially
illustrated comparable patterns of diversity, with a decrease towards t1 and sub-
sequent recovery at t2 (figures 3.9 and 3.21), major differences were identified
within the conserved taxa shared between the SSG and 5DG (figure 3.7). Most
individuals of microbial communities belong to few highly abundant species [4],
which has been described to hold true for the equine gut microbiome [153]. As the
’core’ microbiota of the patient set represent consistent microbes identified within
the studied gut samples, they are likely involved in conserved functions throughout
time points and groups. A large set of persistent microbes illustrates overall high
stability of the ecological habitat, with many taxa shared between non-related
hosts and few individually acquired. At t0, a total of 2,304 conserved taxa were
identified across both prophylaxis groups (figure 3.7d). This overlap remained sta-
ble at t1, encompassing 2,364 shared taxa (figure 3.7e), before increasing to 5,494
at t2 (figure 3.7f). Prior to this, the SSG had retained an enhanced conserved set
of taxa (figure 3.7c) compared to the 5DG (figure 3.7b), indicating overall reduced
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microbial diversity within the latter. Towards t2 both groups appear to converge
towards a new state, independent of prophylaxis group. This directly correlates
with the aforementioned results of the PCA clusterings (figures 3.10 and 3.22),
which also illustrated that samples converged towards a new, shared microbiome
state at t2. This is likely the effect of hospitalization and other coinciding factors
(such as clinical environment, feed, etc.) shaping the gut microbiome across the
study period [266].

4.3.1 Effect on the Taxonomic Profiles

Throughout hospitalization, the major taxonomic groups remained comparatively
stable, indicating that the fluctuating set of conserved taxa primarily represented
low-abundance microbes. Loss of these minor, but often important, taxa can open
up various ecological niches for the overgrowth of resistant and foreign bacteria to
emerge, changing the overall structure of the microbiome community. A reduc-
tion of conserved taxa can increase subsequent risks for health complications and
other diseases through metabolic dysfunctions [153]. Rare species (those with low
abundance) are in particular much more vulnerable to extinction [4] and therefore
likely could not survive PAP and hospitalization. These may contain specialist
species known to hold essential roles within their ecological niches with reduced
habitat ranges and greater dependence on specific environmental conditions [75,
267]. PAP can further have profound effects on slow-growing bacteria, which also
likely could not handle the short exposure times to antibiotics [15].

However, low-abundance species may also partially represent transient organisms
originating from the environment, such as food sources [3]. For example, high
abundances of Cyanobacteria were detected and clearly represent transient organ-
isms originating from feed. In addition, low levels of environmental contaminants
cannot be outruled completely, as these can easily accumulate during sample
collection [98]. Extensive data preprocessing was therefore performed in order
to remove any host-associated DNA contamination in silico, described in detail
throughout section 2.3.1. As this process is challenged by the high complexity of
metagenomic data sets, few reads could not be removed completely, as evident by
the presence of the Chordata phylum identified within the sample set. Fragments
of this phylum primarily represented Homo sapiens and could likely not be dis-
missed via the process of mapping due to the repetitive nature of their sequences.
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This issue can be circumvented in future studies through increased care during
sample collection and by utilizing longer read lengths (> 150 bp), which will im-
prove the likelihood of these fragments to be successfully mapped to a genomic
reference.

Regarding microbiome diversity, limited differences were identified between the
5DG and SSG. Potentially, this was due to both groups reaching a transient, stable
composition quickly after initial antibiotic administration, with minor variations
in microbial compositions. This has been outlined in previous studies, during
which antibiotic exposure resulted in the development of a transient state [3, 15,
268]. However, taxonomic shifts, such as those determined throughout this study
(figure 3.18 and appendix table A.3), can have important health implications for
the equine patients, as these have been described to contribute to the onset of dis-
eases [157]. Verrucomicrobiota decreased in abundance throughout hospitalization
(t1), followed by a partial recovery on day 10 (t2). The phylum of Verrucomicro-
biota represents abundant endosymbionts of the environment and their absence
from the gut microbiome has been associated with metabolic diseases in humans
[31, 81]. Due to their importance in maintenance of the mucosal layer within the
intestines [180], this group is primarily involved in gut health homeostasis [81,
123]. A decrease in Verrucomicrobiota has been associated with multiple diseases
in equines, including colitis [180]. At t1, this phylum nearly vanished completely
within equine patient 33 (figure 3.6), underlying the established link with the
condition of colitis. Bacteroidota and Pseudomonadota increased at t1 within the
gut microbiome and diminished towards t2. Elevated rates of Bacteroidota have
been associated with the general process of hospitalization [123]. Furthermore, de-
creased abundances of Bacteroidota and Bacillota, as well as higher occurrences
of Pseudomonadota have been described as a state of dysbiosis across various
species, including horses [169].

Bifidobacteria also significantly decreased in abundance over time and did not re-
cover at t2, however solely within the 5DG (appendix table A.3). In humans, Bi-
fidobacteria are known to promote overall gut health and are therefore frequently
utilized as probiotics [31, 150, 169]. They increase resistance against pathogen in-
fections through modulation of pH values via the production of short-chain fatty
acids [155]. Species of this family are also known to be involved in the production
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of butyrate, a substance associated with a healthy colonic mucosa, which is found
to be depleted in patients with inflammatory bowel disease [168]. Butyrate is an
important, calorie-rich nutrient for host metabolism that inhibits the growth of
facultative anaerobic enteropathogens, including Enterobacteriaceae [186]. Ele-
vated abundances of Bifidobacteria through probiotics have been associated with
decreased rates of E. coli colonization [150]. A reduction of butyrate-producing
taxa may therefore facilitate the overgrowth of the microbiome through pathogens,
including ESBL-producing E. coli.

However, the equine gut microbiome also contained high amounts of unclassi-
fied reads (appendix figure A.1), begging the question of which other species are
present within the sample collection. Metagenomic studies of less well-described
environments frequently possess high rates of unclassified sequences, commonly
upwards to 68% of all data [60, 134]. MetaGEN utilizes a comprehensive Kraken2
database consisting of well-characterized sequences from RefSeq. Unclassified
reads therefore originate from undefined or underrepresented microbial species
within the current RefSeq database, emphasizing the absence of many uncultured
microbiota from these reference sets [114, 157]. As more research is required to
assess this microbial ’dark matter’, future metagenome studies will be able to
annotate these using revised reference collections. This is of particular impor-
tance for the gut microbiome samples, as these contained high abundances of
uncharacterized microorganisms, for which an alternative method was utilized in
order to enable taxonomic characterization within the scope of this study [197,
228]. The complete read set was hereby subjected to metagenomic de novo as-
sembly and subsequent binning, a process which reconstructs draft genomes of
unknown, yet abundant microbes. Utilizing the most comprehensive equine gut
metagenome collection to date, a total of 10,613 MAGs were reconstructed through
(co-)assembly. MAGs included both bacteria and archaea, representing all major
phyla of the gut environment (figure 3.11). Bacterial MAGs included E. coli and
B. fragilis, but also S. equinus, a lactic acid-producing species associated with
acidosis [191]. While comparatively few archaeal MAGs were reconstructed (21 of
the 1,381 high-quality draft genomes), they represented a range of methanogenic
families (figure 3.12) known to be abundant inhabitants of the equine colon [31].
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4.3.2 Accumulation of Resistance Genes

Resistome and virulome profiling revealed strong negative correlations between
microbiome diversity and reconstructed full-length resistance genes (R = −0.74,
p < 2.2e − 16) (figure 3.14), as well as virulence components (R = −0.75,
p = 3e − 13) (appendix figure A.10). Increased microbiome diversity is often
positively associated with host health [118], as a rich, commensal microbiota can
provide protection against infectious pathogens [151]. Correlation analyses en-
able insights into whether ARG abundances are related to other factors, such as
diversity indices [25]. While it is impossible to reveal the true relationship of re-
sistome and microbiome through statistical association alone, they allow insights
into the complex ecological processes at hand. Correlation values measure the
degree of which data sets co-vary, ranging from -1 to 1, with values > 0.7 (such
as the ones computed here) being described as particularly strong effects [128].
However, identifying these relationships is only the first step which require further
follow-up studies to establish causation [5]. In this case, low microbiome diversity
co-occurred with elevated abundances of resistance and virulence elements. De-
creased microbiome diversity may enable foreign species to invade the microbiome
and to proliferate throughout antibiotic prophylaxis [185].

While it is important to evaluate rare AMR genes within the resistome, they
are notoriously challenging to identify and characterize [66]. MetaGEN utilizes a
mapping-based approach to assess low-abundance AMR genes which were missed
by metagenomic assembly. Through read-mapping, abundances of individual
antibiotic classes were further evaluated [217]. Interestingly, summarized ARG
counts illustrated unique patterns for both prophylaxis groups (appendix figure
A.8). Horses of the SSG arrived at the hospital (t0) with slightly elevated resis-
tance gene hits, before decreasing in abundance at t1 and recovering until t2. In
contrast, ARG fragments within the 5DG continuously increased throughout hos-
pitalization, with abundances at t2 surpassing levels at t0. While this trend was
not statistically significant, additional analyses on specific drug classes revealed
clearer changes occurring throughout the resistomes. Amongst the various antibi-
otic classes, both aminoglycosides (p = 0.058 vs p = 0.84) and beta-lactamases
(p = 0.0092 vs p = 0.0.0054) illustrated significant increases in abundance over
time within the 5DG (appendix figure A.7), while increases of resistance com-
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ponents against aminoglycosides remained limited across the SSG (appendix fig-
ure A.6). Both of these are directly associated with the prolonged penicillin-
gentamicin prophylaxis, as penicillin represents a beta-lactamase antibiotic, while
gentamicin is classified as an aminoglycoside [269]. The aforementioned increases
in resistance fragments within the 5DG, and to a lesser extent the SSG, are there-
fore likely to mirror the effect of prolonged PAP. In addition, phenicol (p = 0.013

vs p = 0.092) and trimethoprim (p = 0.036 vs p = 1.0) significantly increased
solely within the 5DG. ARGs of these classes frequently represented co-resistance
genes located on shared MGEs. This was also directly associated with the ob-
servation that plasmidial ARGs significantly increased in abundance over time
within the 5DG, but not within the SSG (figure 3.15).

ARGs associated with beta-lactamases resistance were hereby frequently identified
throughout hospitalization, including blaCMY, blaCTX, blaOXA and blaTEM
(figure 3.13). These genes are commonly located on multidrug-resistant plasmids,
indicating the presence of MGEs across the data set [56]. A majority of them
are directly linked with ESBL, which represents a diverse set of resistance mecha-
nisms against beta-lactamases shared by various Gram-negative pathogens of the
gut [141, 270]. Limited treatment options and worse clinical outcomes are com-
plicated by the known mobility of ESBL-associated genes through plasmids [141,
144]. Previously, phenotypic resistance profiling was performed for the studied
horses, revealing the presence of ESBL-producing E. coli throughout the patient
set [175]. Metagenomic analyses further supported these results, illustrating an
increase in ESBL colonization rates from t0 to t1 (figures 3.8 and 3.20). By linking
reconstructed ARGs through additional taxonomic classification, it was observed
that ESBL-genes were primarily associated with the family of Enterobacteriaceae,
in particular E. coli, stressing the importance of this bacterium as a commensal
of the gut with increased pathogenic potential.

Mobilization plays a crucial role in the adaptation of bacteria to foreign environ-
ments, through HGT and the transfer of resistances [47, 59]. Once an ARG has
been is mobilized, it can rapidly disseminate across an ecosystem [47]. AMR gene
content spiked shortly after antibiotic prophylaxis (t1), likely since MGEs (includ-
ing plasmids) were released into the microbiome, which was confirmed by assessing
the abundance of plasmid-associated resistance genes. However, plasmids often
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require specific environmental conditions or hosts to be able to proliferate suc-
cessfully [54]. Plasmid production and HGT can hereby be triggered through
various environmental factors, antibiotic exposure or host defence mechanisms
[144]. While increased antibiotic stress might act as a driver for HGT to oc-
cur frequently between bacteria, it is challenging to determine whether the noted
increase in AMR was solely based on selection pressure or how propagation of en-
vironmental ARGs may have influenced these observations [51]. Moreover, MGEs
are commonly transferred temporally and are, due to their significant maintenance
costs, lost comparatively fast after offset of the respective selection pressure [37].
However, metagenomics can only detect the presence of specific genetic material
and not whether the accompanying organism is alive or dead, further stressing that
the identification of ARGs within an environment does not necessarily indicate
an immediate health risk [51, 53]. Assessing the pathogenic potential is further
complicated within metagenomics, as no single species or strain is involved in
the transmission of AMR, but instead interactions take place across a complex
mixed community of microbes [26]. Further investigations are therefore needed
to confirm the long-term (> 10 days) preservation of these elements within the
equine microbiome, as increased levels of plasmidial sequences at day 10 (figure
3.15), particularly within the 5DG, indicated expansion of resistance-associated
elements through HGT [143]. The same holds true for ARGs, as their presence
alone indicates that resistances were present within the environment, warranting
additional research [53].

While virulence-associated elements also fluctuated throughout hospitalization,
differences in abundances remained non-significant. One reason behind this, at
least partially, was due to the underrepresentation of microbiome virulence com-
ponents within current databases. All plasmidial virulence factors were hereby
associated with the family of Enterobacteriaceae (figure 3.16), more specifically
E. coli, which represents an abundant species of public health interest as described
previously. However, it appears unlikely that no other bacterial family contained
virulence components, such as toxins or additional adhesives. More research is
therefore needed to characterize the presence of virulence factors within micro-
biome environments and to expand current reference databases.
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4.3.3 Local Dynamics of MDR Bacteria

MAGs were further profiled for resistance components. AMR profiles were cat-
egorized according to guidelines for human medicine, whereby bacteria carrying
resistances to three or more antimicrobial classes were classified as genotypically
MDR [33, 34, 56]. While a majority of genomic bins were genetically suscepti-
ble to antibiotics (97.5%), this enabled insights into a range of ARGs containing
worrisome patterns of resistances. Although archaea are known to be intrinsically
resistant to a range of antibiotics [15, 176], resistance genes were solely identi-
fied within bacterial species. Of all MAGs, ARGs against 1-2 antibiotic classes
were identified within 227 (2.1%) draft genomes, while 40 MAGs (0.4%) possessed
resistance determinants against > 2 classes of drugs, making the accompanying
species genotypically MDR (table 3.1). Metagenomic classification revealed that a
range of microbiome colonizers have the potential to carry resistance genes against
multiple drug classes. Taxonomic groups with high potential for MDR included a
range of Gram-negative, public health relevant pathogens such as Acinetobacter,
Flavobacterium, and Rahnella, but were primarily dominated by bins of E. coli.
MDR MAGs further encompassed Klebsiella, which are commonly associated with
nosocomial infections and represent a reservoir for a wide range of ARGs [155].
It is therefore likely, that strains and ARGs were acquired throughout the hos-
pitalization and proliferated within the dysbiotic microbiome [155]. These taxa
represent therapeutic challenges as they possess the ability to carry resistance
genes against multiple classes of drugs, limiting treatment options [175].

Interestingly, comparable resistance genes were identified within the gut and nasal
microbiomes. The shotgun sequenced nasal swab contained a plethora of ARGs
against aminoglycosides (described throughout section 3.3.4). Summarized with
the previous results, it seems plausible that the gut microbiome might be consis-
tently seeded with resistant bacteria from the environment [54, 175]. Since the
effect of hospitalization appeared stronger than the effect of the different PAP
regimes, it is highly likely that the equine patients acquired resistant bacteria
locally at the clinic. This would explain why highly similar patterns of ARGs pro-
liferate across the entire sample set and remain within the microbiomes for longer
periods of time even after the antibiotic prophylaxis has concluded. As the nasal
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environment illustrates a brief, transitional environment before foreign pathogens
are ingested, elevated ARG counts within the nasal swab underline this theory.

Healthcare facilitates are known to harbour a reservoir of transferable resistance
genes, thus stressing the need to further improve hygiene concepts in order to pre-
vent the spread of infections [19]. In human healthcare facilities, microbes may
circulate for years, sustaining a consistent reservoir of AMR, while persistently
causing opportunistic infections [79]. Several hypotheses exist as to how these
reservoirs continue to exist, including evidence of repetitive seeding from new
patients, as well as high selective pressure through hospital hygiene and cleaning
interventions [79]. While resistant bacteria may revert to a susceptible state in the
absence of antibiotic pressure [146], this is naturally challenged due to constant
environmental exposure. Previous research illustrated that veterinary clinics also
represent hotspots in regards to the accumulation and local dynamics of MDR
bacteria, such as ESBL-producing E. coli [175]. This not only represents a health
threat for patients, but also staff, as close interactions with animals poses risks
towards colonization with resistant bacteria through zoonotic transmission events
[28, 78]. Equine patients arriving at the clinic may already partially be colonized
with ESBL-producing Enterobacteriaceae [174], which is also supported through-
out the presented work (figure 3.13). Close spatio-temporal relationships can then
result in the local spread of these pathogens [175]. Sources of local transmission
include other hospitalized horses or the environment, such as contaminated sta-
bles, floors and medical equipment [175]. As equines require special needs in
regards to their housing, keeping pathogenic bacteria at bay throughout these
environments is particularly challenging, calling for strict hygiene management
through consistent cleaning protocols [174]. Additional efforts should therefore
be aimed towards improving hospital hygiene via routine resistance profiling in
order to further reduce the spread and development of AMR within these clinical
settings.

Antibiotic stewardship represents one pillar in the ongoing fight against the emerg-
ing MDR pandemic. Increased selection pressure caused by antibiotics favours
the evolution and transfer of resistance determinants [51]. Even marginal levels
of antibiotics can result in AMR, virulence and HGT within an affected bacterial
population [15]. It is therefore pivotal to reduce this ecological pressure in order
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to limit the risk of MDR-associated outbreaks. As such, the aim of this study was
to assess the prevalence of ARGs in the equine gut microbiome as well as their
dynamics throughout antibiotic prophylaxes and hospitalization. Previous results
outlined that a reduced PAP duration in equine surgery did not increase the oc-
currence of adverse post-operative effects [174]. Based on this, it was hypothesized
that the enhanced antibiotic prophylaxis of the 5DG would vastly promote the
development of a resistome compared to the SSG.

While taxonomic shifts were expected to occur throughout the continuous 5-day
prophylaxis group, results illustrate that even a single-shot dose disrupts the sen-
sitive equilibrium within the gut (figure 3.9). Antibiotic prophylaxis was charac-
terized by a moderate degree of gut microbiome dysbiosis, including a decrease
in the abundance of health-promoting bacteria (Bifidobacteria) and an increase
in various resistance and virulence-associated genes, as well as proliferation of op-
portunistic pathogens, such as ESBL-producing E. coli. Antibiotic treatment has
been associated with a reduction of diversity and the depletion of commensal gut
bacteria [180]. Overall, diversity decreased during hospitalization, independent
of prophylaxis groups, however resistance gene counts increased predominantly
within the 5DG. Reducing the usage of antibiotics will therefore also result in
decreased selection pressure within this environment, enhancing the safety of the
animal patients and staff members [175]. Prudent usage seems sufficient to inhibit
the development of surgical site infections and represents one step in the ongo-
ing battle against MDR amongst bacteria inhabiting skin and mucosal surfaces
[174]. Thus, shortening the length of perioperative prophylaxes in equine surgery
is advisable, as antibiotics are known to disrupt the gut microbiome and deplete
beneficial bacteria, allowing the expansion of pathogenic strains [123]. Since total
ARG abundance was decreased within the SSG compared to the 5DG, the po-
tential benefit of reducing antibiotic prophylaxis with no clinical impairment has
been demonstrated.

4.4 Limitations of this Study

It is important to note that this study has several limitations. For one, patient
participation remains a major challenge in equine research. While the presented
sample size is comparable to previous research on the equine microbiome [168],
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specific methods, such as machine learning techniques, require more samples, and
currently remain unfeasible with the included data set [147]. Causative conclusions
and directionality therefore need to be evaluated with care and require additional
validation. Increasing the amount of subjects in future studies will enhance the
ability to detect variations and help to differentiate between the natural, com-
plex microbiota and the antibiotic-states through additional, statistical power.
However, although colic surgery represents a well-established intervention within
equine medicine, it remains challenging to increase the amount of studied cases
within a clear period of time due to the low success rate of the intervention [31,
169, 174]. The equine population included in this study therefore also spanned a
broad range of different age groups, breeds, dietary habits, medical records and
previous managements. While these factors likely had limited effect on the gut
microbiome [154, 180], the airway microbiota is known to be heavily influenced
through environmental conditions such as weather or seasonal effects [184], which
cannot be outruled entirely [31, 155, 189]. These variations might have hampered
the detection of otherwise statistically significant differences, as has previously
been described by others [157, 168]. Upcoming surveys should therefore extend
sampling to incorporate healthy control horses, in order to establish a baseline for
any comparative analysis. While this was possible within the context of this the-
sis through the inclusion of equine gut microbiome samples from NCBI, the nasal
microbiome remains largely undescribed, with limited data currently available.
Furthermore, although additional follow-up between clinic discharge and recovery
outside might prove challenging, this may reveal potential long-term associations
induced by the hospitalization.

While this study primarily focused on the technology of metagenome shotgun
data, 16S rRNA sequencing was performed for the accompanying nasal swabs. In
order to identify shared resistance determinants across these environments, ad-
ditional shotgun sequencing was conducted for a subset of nasal swabs. Nasal
samples represent low biomass samples, known to be particularly susceptible to
foreign contamination, with sequencing remaining a challenge. While 16S rRNA
sequencing was able to successfully capture a wide range of taxonomic diversity
within the nasal microbiome, shotgun sequences primarily consisted of host DNA
(> 99.9%) and were thus unusable for further microbial analysis (data not shown).
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Focus was therefore set on characterizing the nasal resistome of one representative
sample for the 5DG (J32522).

Regarding the identification of ARGs, different members of the microbiome may
encode for the same resistance genes, inhibiting the identification of the respon-
sible taxon [49]. In addition, as not all individuals of a species may be resistant,
difficulties arise during ARGs profiling across the population [49]. Both of these
issues were largely addressed via mapping-based approaches, however true pheno-
typic resistance can only be assessed using laboratory validation. Furthermore, it
is likely that metagenomic sequencing did not unravel the full richness of AMR
genes present within the samples, as these might only be recovered at > 200 mil-
lion reads per sample [65]. This represents another reason why culture-dependent
and in silico prediction methods must be utilized to complement each other [31].

Finally, using metagenomic data alone is limited in the assessment of the total
bacterial load, as this method cannot distinguish between alive and dead mate-
rial [49, 53, 76, 96, 98]. By supplementing metagenomics with gene expression
or protein data, further insights can be gained into the complex symbiotic dy-
namics of microbiome and host [53, 92, 147]. Metagenomic RNA-Sequencing is
one such method which can be applied to samples in order to evaluate the true
functional activity of microbiome communities and their hosts [5, 92], as well as
the transcriptomic mechanisms behind infections of identical bacteria resulting in
different clinical outcomes [241].

In summary, the presented results will act as a foundation for future analyses.
Based on the aforementioned findings, future studies are strongly recommended
to increase sample sizes and focus on standardizing protocols, in particular sample
handling and bioinformatical analyses. Additional culture-based methods can be
applied to confirm the results presented throughout these studies [60, 123].
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5 Outlook & Conclusion

As the world slowly recovers from the SARS-CoV-2 pandemic, we can reflect on
the major contributions NGS has enabled in regards to the characterization of
novel variants and the rapid development of vaccines [125]. The integrated ge-
nomic surveillance of microbial pathogens has never been as relevant as today
[63] and metagenomics may contribute to this throughout the current decade
[87]. Metagenomics represents a versatile, molecular tool that will continue to
be utilized for environmental AMR surveillance and microbiome characterization,
contributing to disease prevention and clinical diagnostics in the future. It can be
implemented as an additional tool for the passive analysis of complex microbial
ecosystems, supplementing existing whole genome surveillance systems [53]. Fu-
elled by interdisciplinary research, metagenome-based epidemiology enables new
opportunities for outbreak detection and risk assessment [53], but also person-
alized medicine, particularly in regards to gut microbiome transplants and the
prevention of acute dysbiosis [31, 122].

Current high-throughput sequencing technologies already enable metagenomic
surveying in a timely manner, but elaborate downstream analyses are often still
required, spanning a wide range of specialized software and algorithms in order
to gain insights into the data at hand. However, given the pace at which this
rich field is progressing, many of the ongoing issues will likely be overcome within
the foreseeable future [241], particularly in regards to in silico ARG prediction.
AMR represents a global One Health issue, not bound to single key pathogens,
but instead affecting a wide range of different sectors, environments and habi-
tats. As sequencing costs continuously fall, read depths and lengths will further
increase. With the field of metagenomics continuing to evolve, new bioinformat-
ical methods will therefore achieve even better representations of environmental
ARGs. Future studies of microbiome resistomes will hereby be able to detect
rarer AMR genes with greater accuracy. While computational approaches for the
prediction of AMR have been in development for decades, newest research in the
field artificial intelligence, including machine learning methods such as deep learn-
ing [147], have the potential to overcome existing databases issues and to predict
novel resistance genes [22] through their ability to recognize subtle patterns of
data with little prior knowledge [92]. Given sufficient training data sets, these
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approaches have the potential to predict future states of microbiome composi-
tions prior to any treatment [5]. Additionally, recent advancements in long-read
sequencing will fuel the development of new standards for metagenomics and sub-
sequent analysis methods [215, 230, 233]. However, all of the aforementioned in
silico methods require further validation through established microbiological lab-
oratory approaches, such as bacterial culturing or PCR for ARG detection, before
their results can be applied within clinical contexts [49].

Throughout this work, the advantages of both 16S rRNA and metagenome shot-
gun sequencing have further been highlighted. While amplicon 16S rRNA se-
quencing is comparatively straightforward to analyse and yields deep insights into
the microbiome composition, it is intrinsically limited in taxonomic resolution and
cannot be utilized for functional profiling, including genotypic resistome analysis.
Metagenome shotgun sequencing, on the other hand, enables insights into the
entirety of the microbiome gene content, allowing characterization of resistance,
virulence and plasmid-associated genes. However, analysing metagenome shotgun
data is challenged by high dimensionality and requires bioinformatic expertise in
order to gain biological insights. Mixing both of these methods will therefore
remain essential throughout future studies. Particularly for the analysis of low-
biomass samples, such as nasal swabs, 16S rRNA seems preferable compared to
metagenome shotgun analyses, as it voids sequencing of eukaryotic host DNA. For
functional microbiome analyses however, 16S rRNA data must be supplemented
with metagenome shotgun sequencing in order to gain insights into abundant
pathways and resistance determinants.

This study combined the advantages in high-throughput sequencing of 16S rRNA
with the advanced resolution of shotgun metagenomics in order to describe the
equine gut microbiome and to characterize its association with hospitalization,
antibiotic prophylaxis and resistance accumulation in great detail. The results
presented throughout this thesis illustrate a useful resource for future metage-
nomic analyses regarding exploration of the effect of antibiotic prophylaxes on
host microbiomes. Millions of gene sequences were recovered across thousands of
genomic bins, representing the largest catalogue of equine gut microbiome data
available to date. In particular, the data set presented throughout this work
can be utilized to generate new hypotheses and act as a starting point for further
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comparative studies on the effect of antibiotic prophylaxes within equine medicine.
Coupled with the open-source workflows developed for metagenomic (MetaGEN)
and 16S rRNA (Meta16s) analyses, new research will enable the unravelling of
the complex interactions between host microbiomes and antibiotic usage. Both
MetaGEN and Meta16s were developed specifically for the reproducible analysis
of metagenomic sequences and are already being utilized throughout further stud-
ies. As their frameworks are completely modular, they can be easily expanded
with new bioinformatic software in the future. Combining a wide range of metage-
nomic tools within a customized, reusable framework was essential, as it allowed
to uncover a wide range of mechanistic insights within the equine microbiome,
which would have been missed using alternative workflows.

Focus was set on characterizing the impact of antibiotic prophylaxes on the com-
position and resistance profiles within the equine gut and nasal microbiomes.
Results illustrate that hospitalization and perioperative prophylaxes significantly
alter the equine microbiome. A single dosage of PAP and sustained hospitaliza-
tion has already been described to induce long-lasting changes within the microbial
gut community [163], including the emergence of AMR genes. ARGs conferring
resistance to the classes of aminoglycosides and beta-lactamases were highly abun-
dant across the sample set, particularly within the prolonged prophylaxis group.
A range of pathogens were identified as genotypically MDR, including Gram-
negative bacteria such as Acinetobacter, Flavobacterium, Klebsiella, Rahnella and
E. coli. Resistant pathogens were further introduced throughout the hospital stay,
driven by the proliferation of ESBL-producing E. coli. Increased resistance and
virulence factors, as well as an overall diminished microbiome diversity were ob-
served within the sample set, particularly the 5DG. While differences between the
SSG and 5DG lacked frequent statistical significance, and were likely outweighed
by the effect of hospitalization [175], results outline that the latter is linked with
strong adverse effects on the microbiome structure and should therefore be re-
considered throughout future treatments. The presented findings demonstrate
local ARG accumulation and expansion across equine patients under the selective
pressure of antibiotics within a hospital environment, representing an ongoing
challenge for hygiene management and work-place safety, especially in regards
to the spread of MDR and zoonotic pathogens [175]. This thesis illustrates a
starting point for further research on antibiotic stewardship and hospital hygiene,
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providing an expansive data set for metagenome-wide association studies and the
identification of additional biomarkers.

While the development of resistances is driven by extensive antibiotic usage, avoid-
ing antimicrobials in general is not feasible as many infections can solely be treated
through these drugs [156]. This is one of the reasons why attention must be shifted
into the development of new strategies to counteract the negative side effects of
antibiotic administration [156]. The observed results illustrate a potentially ben-
eficial relationship between high microbiome diversity and decreased counts of
AMR and virulence-associated genes. This appears plausible based on early mi-
crobiome research indicating a beneficial effect of high diversity microbiota [3,
15]. Representing a healthy gut environment, increased microbial diversity has
been described as a protective mechanism against pathogen and ARG overgrowth
[19]. However, the identified correlation does not necessarily equal causation.
This relationship may be the result of few highly abundant taxa which proliferate
strongly within the diminished microbiome and also tend to carry resistance and
virulence genes (such as E. coli). Furthermore, metagenomic studies are limited
to the assessment of relative abundances of microbial communities, as their re-
sults do not allow insights into the absolute bacterial or resistance gene loads.
Additional studies are therefore required to supplement the proposed findings and
to characterize the underlying effects of both decreased microbiome diversity and
increased resistance gene abundance. The usage of targeted microbiome therapy
through probiotics and bacterial load estimation can enable additional insights
into this complex relationship. Probiotics are already being utilized to reduce
unfavourable effects on the gut microbiome across humans [150, 156, 176] and
equines [31]. Given further research, these may present another supplement to
increase antibiotic stewardship through a reduction of excessive PAP usage.

Translating the results of microbiome studies into clinical solutions presents an
ongoing effort [92]. A single dosage of perioperative antibiotics combined with hos-
pitalization can already yield long-term impacts on the gut microbiome, including
diminished diversity and elevated ARG carriage. This complements the results
of previous studies on the gut microbiome [163]. Importantly, using a reduced
prophylaxis (SSG) compared to the current prolonged regimen (5DG) does not
have a significant impact on neither the clinical outcome [174] nor does it have a
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worse effect on the microbiome composition, as illustrated within this thesis. This
is in line with previous research, demonstrating that a reduced PAP timeframe
did not influence the clinical outcome of equine patients [175, 190]. The results
indicate that a single-shot dosage is as effective as a conventional 5-day prophy-
laxis, while limiting negative impacts on microbiome and resistome of the equine
patients. Since prolonged antibiotic prophylaxes lacks proof of superiority regard-
ing patient outcomes [174], current protocols should be revised accordingly. The
presented results further raise important questions in regards to the local spread of
ARGs within healthcare settings, their prevention and the usage of metagenomics
as a molecular tool for surveillance. As additional research is needed to assess the
influence of the clinical setting on the gut microbiome and to establish differences
past day 10, future studies should take the presented microbiome analysis results
into account accordingly.
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Figure A.1: Taxonomic Quality Control (Gut Microbiome). Visu-
alized are stacked bar charts illustrating read counts for each sample of gut
metagenome data set (n = 68) and coloured according to the abundance of
the 5 major phyla. Minor ranks are grouped into ’other’, while reads un-
able to be typed are represented by ’unclassified’. (a) Illustrated are the raw
count abundances for the major taxonomic phyla across samples produced by
Kraken2. Samples visibly differ in sequencing depth and taxonomic content,
requiring additional normalization through rarefaction before further analyses
can be conducted. (b) Relative abundances in percentages of the composition
per sample. These were computed sample-wise by normalizing absolute counts
through the corresponding sequencing depth. A majority of all reads cannot be
directly assigned to a taxonomic rank (unclassified).
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Figure A.2: Clusters of Phylum-Level Abundances (Gut Micro-
biome). Taxonomic profiles were summarized at phylum-level and averaged
across the sample groups. The heatmap visualizes the abundance (log2 of
normalized counts) from low (dark red) to high (yellow) across the data set.
Columns represent the different study groups at specific time points. Rows illus-
trate the 9 most abundant phyla, with minor ranks being grouped into ’other’.
Phyla are clustered by their similarity to each other in the represented abun-
dance profiles (dendrogram on the left). Columns are additionally grouped by
similarity across these (dendrogram on top). REF: NCBI Group, SSG: Single-
Shot Group, 5DG: 5-Day Group.
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Figure A.5: Resistance Class Abundances (Gut Microbiome).
Heatmap of resistance gene abundances, summarized to the level of drug classes.
These include ARGs, as well as genes conferring resistance against biocides and
heavy metals. Samples (right) are divided horizontally by groups and time
points (left). Columns represent individual resistance classes (bottom), clus-
tered by similarity in abundance profiles (dendrogram). The scale from black
(less than 500 fragments) to yellow (over 5000 fragments) illustrates the overall
abundance of resistance elements within the gut samples. Additional metadata,
including alpha diversity and IDs of the equine patients are plotted alongside
the heatmap (left and right). AMR: Antimicrobial Resistance, REF: NCBI
Group, SSG: Single-Shot Group, 5DG: 5-Day Group.
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Figure A.6: Resistance Classes SSG (Gut Microbiome). Differential
analysis of resistance gene classes across time for equine patients of the SSG
(n = 15). Resistance gene abundances were summarized to class level and tested
for significant changes over time (colours) per class (each box plot comparison).
Wilcoxon rank-sum tests were performed to infer significant differences. A p-value
≤ 0.05 was defined as statistically significant. AMR: Antimicrobial Resistance,
TMM: Trimmed Mean Of M Values.
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Figure A.7: Resistance Classes 5DG (Gut Microbiome). Differential
analysis of resistance gene classes across time for equine patients of the 5DG
(n = 11). Resistance gene abundances were summarized to class level and tested
for significant changes over time (colours) per class (each box plot comparison).
Wilcoxon rank-sum tests were performed to infer significant differences. A p-value
≤ 0.05 was defined as statistically significant. AMR: Antimicrobial Resistance,
TMM: Trimmed Mean Of M Values.
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Figure A.8: Total Resistance Abundance (Gut Microbiome). Total
resistance abundance within the gut metagenome samples. Mapped gene frag-
ments were summarized to total resistance hits. (a) These were first visual-
ized patient-wise over time and (b) statistically compared between time points
(colours) for each prophylaxis group (SSG: n = 12, 5DG: n = 9). Wilcoxon
rank-sum tests were performed to infer significant differences. A p-value ≤ 0.05
was defined as statistically significant. AMR: Antimicrobial Resistance, SSG:
Single-Shot Group, 5DG: 5-Day Group.
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Figure A.10: Correlation of Virulence & Diversity (Gut Microbiome).
Spearman correlation of normalized virulence components and microbiome al-
pha diversity across the sample set. Individual samples were coloured according
to their time points, with shapes illustrating the distinct study groups. Samples
with low alpha diversity were more likely to carry high amounts of virulence el-
ements. Most individuals with high virulence gene counts were associated with
the 5DG. REF: NCBI Group, SSG: Single-Shot Group, 5DG: 5-Day Group.
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Figure A.11: Resistance-Associated Families (Gut Microbiome). Bub-
ble plots visualizing the abundance of resistance genes across bacterial families.
Families containing the highest counts of resistance genes were visualized for the
5DG (a) and comparatively for the SSG (b). The size of the bubbles correlates
to the normalized resistance genes counts (top) and as percentages (bottom).
ARG: Antibiotic Resistance Gene, SSG: Single-Shot Group, 5DG: 5-Day Group.
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Figure A.12: Taxonomic Quality Control (Nasal Microbiome). Vi-
sualized are stacked bar charts illustrating read counts for the nasal shotgun
metagenome sample (J32522) and coloured according to the abundance of the
5 major taxonomic groups. Minor ranks are grouped into ’other’, while reads
unable to be typed are represented by ’unclassified’. (a) Bar chart visualization
for the phylum-level, (b) for the family-level based on raw counts produced by
Kraken2. A majority of all reads cannot be directly assigned to a taxonomic
rank (unclassified).
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Figure A.13: Heatmap of Family-Level Abundances (Nasal Micro-
biome). Taxonomic profiles were summarized at family-level and averaged
across the sample groups. The heatmap visualizes the abundance (log2 of
normalized counts) from low (yellow) to high (dark red) across the data set.
Columns represent the different study groups at specific time points. Rows
illustrate the 9 most abundant families, with minor ranks being grouped into
’other’. Families are clustered by their similarity to each other in the repre-
sented abundance profiles (dendrogram on the left). SSG: Single-Shot Group,
5DG: 5-Day Group.
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Figure A.14: Bar Charts of Phylum-Level Compositions (Nasal Mi-
crobiome). Stacked bar charts representing the composition of individual
samples on the phylum-level for the 9 most abundant taxonomic groups, with
minor ranks being grouped into ’other’ (colours). Individual horses (n = 26)
are clustered into the two prophylaxis groups (a) SSG and (b) 5DG. Samples
were collected for each equine patient (top row IDs) across three time points
(t0, t1 and t2). Visualized are the percentages of phyla per group over time.
SSG: Single-Shot Group, 5DG: 5-Day Group.
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Figure A.15: Summarized Bar Charts at Phylum-Level (Nasal Mi-
crobiome). Stacked bar charts representing the averaged composition of the
samples over different groups on the phylum-level. The 9 most abundant phyla
are visualized as percentages in composition for (a) the prophylaxis groups and
(b) across the time points. Minor taxonomic ranks are grouped into ’other’.
SSG: Single-Shot Group, 5DG: 5-Day Group.
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Figure A.16: Bar Charts of Family-Level Compositions (Nasal Mi-
crobiome). Stacked bar charts representing the composition of individual
samples on the phylum-level for the 9 most abundant taxonomic groups, with
minor ranks being grouped into ’other’ (colours). Individual horses (n = 26)
are clustered into the two prophylaxis groups (a) SSG and (b) 5DG. Samples
were collected for each equine patient (top row IDs) across three time points
(t0, t1 and t2). Visualized are the percentages of families per group over time.
SSG: Single-Shot Group, 5DG: 5-Day Group.
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Figure A.17: Abundance of Fusobacteriaceae (Nasal Microbiome).
The abundance of the family of Fusobacteriaceae was assessed and compara-
tively investigated across the sample set. Individual abundances were summa-
rized as box plots for each prophylaxis group (a) and subsequently compared
over time (b) using Wilcoxon rank-sum tests (SSG: n = 15, 5DG: n = 11). A
p-value ≤ 0.05 was defined as statistically significant. SSG: Single-Shot Group,
5DG: 5-Day Group.
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Figure A.18: Abundance of Ruminococcaceae (Nasal Microbiome).
The abundance of the family of Ruminococcaceae was assessed and compara-
tively investigated across the sample set. Individual abundances were summa-
rized as box plots for each prophylaxis group (a) and subsequently compared
over time (b) using Wilcoxon rank-sum tests (SSG: n = 15, 5DG: n = 11). A
p-value ≤ 0.05 was defined as statistically significant. SSG: Single-Shot Group,
5DG: 5-Day Group.
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Figure A.19: Abundance of Staphylococcaceae (Nasal Microbiome).
The abundance of the family of Staphylococcaceae was assessed and compara-
tively investigated across the sample set. Individual abundances were summa-
rized as box plots for each prophylaxis group (a) and subsequently compared
over time (b) using Wilcoxon rank-sum tests (SSG: n = 15, 5DG: n = 11). A
p-value ≤ 0.05 was defined as statistically significant. SSG: Single-Shot Group,
5DG: 5-Day Group.
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Figure A.20: Abundance of Streptococcaceae (Nasal Microbiome).
The abundance of the family of Streptococcaceae was assessed and comparatively
investigated across the sample set. Individual abundances were summarized as
box plots for each prophylaxis group (a) and subsequently compared over time
(b) using Wilcoxon rank-sum tests (SSG: n = 15, 5DG: n = 11). A p-value
≤ 0.05 was defined as statistically significant. SSG: Single-Shot Group, 5DG:
5-Day Group.
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Figure A.21: Temporal Alpha Diversity (Nasal Microbiome). Com-
parison of diversity between sample groups (colours) across time points using
box plots (SSG: n = 15, 5DG: n = 11). (a) Illustrates the evenness, while (b)
represents the Shannon diversity over time. Both values decrease from t0 to
t1 and recover towards t2. Wilcoxon rank-sum tests were performed to infer
significant differences. A p-value ≤ 0.05 was defined as statistically significant.
SSG: Single-Shot Group, 5DG: 5-Day Group.
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Microbiome Group Time point Diversity Evenness Richness
(Shannon) (Simpson) (Chao1)

Gut

5DG
t0 6.54 0.019 5,721
t1 5.10 0.009 5,347
t2 7.20 0.033 6,222

SSG
t0 7.13 0.029 6,216
t1 5.41 0.009 6,016
t2 6.69 0.022 6,098

NCBI - 6.26 0.018 6,213

Nasal

5DG
t0 4.38 0.159 559
t1 4.59 0.207 386
t2 4.29 0.146 453

SSG
t0 4.07 0.125 520
t1 3.65 0.130 363
t2 3.90 0.105 377

Table A.1: Diversity Indices (Gut & Nasal Microbiome). All
metagenome shotgun and 16S rRNA sequences were analysed for ecological
diversity using MetaGEN and Meta16s, respectively. Diversity measures were
averaged for the specific groups and time points and summarized within this
table. SSG: Single-Shot Group, 5DG: 5-Day Group.
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HorseID Group Time point Day
Gut Nasal Nasal

(WGS) (16S) (WGS)
1 5DG t0 0 H25290 DL218 -
1 5DG t1 3 H25286 DL214 -
1 5DG t2 10 H25296 N00678 -
3 SSG t0 0 - DL215 -
3 SSG t1 3 - N00641 -
3 SSG t2 10 - N00671 -
5 SSG t0 0 - N00656 -
5 SSG t1 3 - N00627 -
5 SSG t2 9 - N00648 -
7 5DG t0 0 H25289 N00682 -
7 5DG t1 3 H25288 N00683 -
7 5DG t2 10 H25297 N00684 -
15 SSG t0 0 - N00657 -
15 SSG t1 3 - N00647 -
15 SSG t2 10 - N00675 -
25 SSG t0 0 H25294 N00685 -
25 SSG t1 3 I12276 N00686 -
25 SSG t2 10 H25287 N00687 -
29 SSG t0 0 F11029 N00628 -
29 SSG t1 3 F11031 N00649 -
29 SSG t2 10 F11033 N00637 -
32 5DG t0 0 I12282 N00688 -
32 5DG t1 3 I12281 N00689 -
32 5DG t2 10 I12280 N00690 J32522
33 5DG t0 0 I12278 N00691 -
33 5DG t1 3 I12277 N00692 -
33 5DG t2 10 I12279 N00693 -
37 SSG t0 0 I12272 N00694 -
37 SSG t1 3 I12273 N00695 -
37 SSG t2 10 I12271 N00696 -
38 SSG t0 0 - N00673 -
38 SSG t1 3 - N00661 -
38 SSG t2 10 - N00645 -
41 SSG t0 0 D61001 - -
41 SSG t1 3 D61002 - -
41 SSG t2 10 D61003 - -
42 SSG t0 0 F11032 DL213 -
42 SSG t1 3 F11034 N00667 -
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42 SSG t2 10 F11036 N00655 -
45 SSG t0 0 F11021 N00622 -
45 SSG t1 3 F11024 N00666 -
45 SSG t2 10 F11027 DL129 -
46 SSG t0 0 F11035 N00606 -
46 SSG t1 3 F11037 N00669 -
46 SSG t2 10 F11022 N00617 -
49 SSG t0 0 F11025 N00676 -
49 SSG t1 3 F11028 N00677 -
49 SSG t2 10 F11030 N00672 -
51 5DG t0 0 D61004 - -
51 5DG t1 3 D61005 - -
51 5DG t2 10 D61006 - -
61 5DG t0 0 - N00616 -
61 5DG t1 3 - DL207 -
61 5DG t2 10 - N00679 -
63 SSG t0 0 J10522 N00668 -
63 SSG t1 3 J10523 N00644 -
63 SSG t2 10 J10524 N00640 -
69 5DG t0 0 - N00621 -
69 5DG t1 3 - N00681 -
69 5DG t2 10 - N00614 -
72 5DG t0 0 - N00639 -
72 5DG t1 3 - DL202 -
72 5DG t2 10 - N00660 -
73 5DG t0 0 - N00659 -
73 5DG t1 3 - N00610 -
73 5DG t2 10 - N00653 -
75 SSG t0 0 J10525 N00658 -
75 SSG t1 3 J10526 DL203 -
75 SSG t2 10 J10527 N00643 -
80 SSG t0 0 J10528 DL144 -
80 SSG t1 3 J10529 DL209 -
80 SSG t2 10 J10530 N00601 -
82 SSG t0 0 F11038 DL210 -
82 SSG t1 3 F11023 DL217 -
82 SSG t2 10 F11026 DL128 -
87 5DG t0 0 D61007 - -
87 5DG t1 3 D61008 - -
87 5DG t2 10 D61009 - -
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88 5DG t0 0 D61010 - -
88 5DG t1 3 D61011 - -
88 5DG t2 10 D61012 - -
89 5DG t0 0 D61013 - -
89 5DG t1 3 D61014 - -
89 5DG t2 10 D61015 - -
92 5DG t0 0 - DL146 -
92 5DG t1 3 - DL211 -
92 5DG t2 10 - DL204 -
95 5DG t0 0 - DL206 -
95 5DG t1 3 - N00626 -
95 5DG t2 10 - DL133 -
98 5DG t0 0 J10519 N00602 -
98 5DG t1 3 J10520 DL219 -
98 5DG t2 10 J10521 N00652 -
R1 NCBI - - SRR10505693 - -
R2 NCBI - - SRR10505694 - -
R3 NCBI - - SRR10505695 - -
R4 NCBI - - SRR10505696 - -
R5 NCBI - - SRR10505697 - -

Table A.2: Overview of the Sample Collection (Gut & Nasal Micro-
biome). Details of the equine patients, as well as an overview of all samples
utilized for the characterization of the gut and nasal microbiomes. While faecal
and nasal samples were collected from every equine patient across three time
points (t0, t1, t2), only those selected for sequencing and analysis are listed
within this table. A large amount of nasal swabs were collected for 16s rRNA
amplicon sequencing, with refined subsets chosen for metagenome shotgun se-
quencing. Raw data has been deposited in the SRA under the BioProject
ID PRJNA998844. Sequences from NCBI were received from BioProject PR-
JNA590977. SSG: Single-Shot Group, WGS: Whole Genome Sequencing, 5DG:
5-Day Group.
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MBO Group Time Family logFC FDR
Gut 5DG t0 vs t1 Aeromonadaceae 2.17 0.000
Gut 5DG t0 vs t1 Alloherpesviridae 4.46 0.002
Gut 5DG t0 vs t1 Autographiviridae 5.94 0.000
Gut 5DG t0 vs t1 Bacteriovoracaceae 0.70 0.035
Gut 5DG t0 vs t1 Bacteroidaceae 6.53 0.000
Gut 5DG t0 vs t1 Bruguierivoracaceae 2.88 0.000
Gut 5DG t0 vs t1 Budviciaceae 2.53 0.000
Gut 5DG t0 vs t1 Candidatus Methanomethylophilaceae 1.64 0.012
Gut 5DG t0 vs t1 Caulobacteraceae 1.63 0.046
Gut 5DG t0 vs t1 Chromatiaceae 1.49 0.000
Gut 5DG t0 vs t1 Clostridiaceae 1.29 0.039
Gut 5DG t0 vs t1 Coriobacteriaceae -2.62 0.000
Gut 5DG t0 vs t1 Demerecviridae 4.16 0.034
Gut 5DG t0 vs t1 Eggerthellaceae -0.95 0.039
Gut 5DG t0 vs t1 Enterobacteriaceae 5.50 0.000
Gut 5DG t0 vs t1 Enterococcaceae 1.60 0.004
Gut 5DG t0 vs t1 Erwiniaceae 6.55 0.000
Gut 5DG t0 vs t1 Flavobacteriaceae 1.94 0.000
Gut 5DG t0 vs t1 Fusobacteriaceae 1.37 0.035
Gut 5DG t0 vs t1 Hafniaceae 2.83 0.000
Gut 5DG t0 vs t1 Halieaceae 0.60 0.047
Gut 5DG t0 vs t1 Herelleviridae 4.55 0.000
Gut 5DG t0 vs t1 Inoviridae 3.37 0.015
Gut 5DG t0 vs t1 Jonesiaceae 1.58 0.003
Gut 5DG t0 vs t1 Lachnospiraceae 2.28 0.001
Gut 5DG t0 vs t1 Microviridae 5.95 0.000
Gut 5DG t0 vs t1 Moraxellaceae 9.12 0.000
Gut 5DG t0 vs t1 Morganellaceae 1.51 0.000
Gut 5DG t0 vs t1 Myoviridae 7.80 0.000
Gut 5DG t0 vs t1 Neisseriaceae 1.24 0.003
Gut 5DG t0 vs t1 Oceanospirillaceae 0.63 0.039
Gut 5DG t0 vs t1 Odoribacteraceae 2.97 0.000
Gut 5DG t0 vs t1 Oleiphilaceae 0.95 0.014
Gut 5DG t0 vs t1 Oxalobacteraceae 4.98 0.000
Gut 5DG t0 vs t1 Pasteurellaceae 2.21 0.000
Gut 5DG t0 vs t1 Pectobacteriaceae 3.53 0.000
Gut 5DG t0 vs t1 Peribunyaviridae 2.86 0.012
Gut 5DG t0 vs t1 Podoviridae 5.63 0.000
Gut 5DG t0 vs t1 Pseudomonadaceae 7.10 0.000
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Gut 5DG t0 vs t1 Siphoviridae 2.83 0.001
Gut 5DG t0 vs t1 Sphingobacteriaceae 1.74 0.001
Gut 5DG t0 vs t1 Staphylococcaceae -2.41 0.000
Gut 5DG t0 vs t1 Tannerellaceae 4.55 0.000
Gut 5DG t0 vs t1 Veillonellaceae 2.35 0.031
Gut 5DG t0 vs t1 Weeksellaceae 4.61 0.000
Gut 5DG t0 vs t1 Xanthomonadaceae 1.97 0.037
Gut 5DG t0 vs t1 Yersiniaceae 4.58 0.000
Gut 5DG t0 vs t2 Atopobiaceae -1.73 0.013
Gut 5DG t0 vs t2 Coriobacteriaceae -2.57 0.000
Gut 5DG t0 vs t2 Fortieaceae -9.24 0.001
Gut 5DG t0 vs t2 Muribaculaceae -2.35 0.007
Gut 5DG t0 vs t2 Staphylococcaceae -2.17 0.002
Gut 5DG t1 vs t2 Aeromonadaceae -2.30 0.000
Gut 5DG t1 vs t2 Alcanivoracaceae -0.58 0.049
Gut 5DG t1 vs t2 Alloherpesviridae -4.17 0.000
Gut 5DG t1 vs t2 Autographiviridae -5.24 0.001
Gut 5DG t1 vs t2 Bacteroidaceae -8.24 0.000
Gut 5DG t1 vs t2 Bruguierivoracaceae -2.79 0.000
Gut 5DG t1 vs t2 Budviciaceae -2.36 0.000
Gut 5DG t1 vs t2 Candidatus Methanomethylophilaceae -1.69 0.006
Gut 5DG t1 vs t2 Caulobacteraceae -1.78 0.021
Gut 5DG t1 vs t2 Chromatiaceae -1.48 0.000
Gut 5DG t1 vs t2 Chromobacteriaceae -0.77 0.023
Gut 5DG t1 vs t2 Chuviridae -2.85 0.001
Gut 5DG t1 vs t2 Closteroviridae -2.04 0.039
Gut 5DG t1 vs t2 Clostridiaceae -1.35 0.023
Gut 5DG t1 vs t2 Dissulfurispiraceae 0.83 0.025
Gut 5DG t1 vs t2 Drexlerviridae -7.26 0.010
Gut 5DG t1 vs t2 Endozoicomonadaceae -0.76 0.049
Gut 5DG t1 vs t2 Enterobacteriaceae -8.80 0.000
Gut 5DG t1 vs t2 Enterococcaceae -1.70 0.002
Gut 5DG t1 vs t2 Erwiniaceae -6.44 0.000
Gut 5DG t1 vs t2 Flavobacteriaceae -1.56 0.007
Gut 5DG t1 vs t2 Fortieaceae -9.49 0.000
Gut 5DG t1 vs t2 Hafniaceae -2.94 0.000
Gut 5DG t1 vs t2 Herelleviridae -4.53 0.000
Gut 5DG t1 vs t2 Hytrosaviridae -2.11 0.023
Gut 5DG t1 vs t2 Inoviridae -3.79 0.000
Gut 5DG t1 vs t2 Jonesiaceae -1.52 0.005
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Gut 5DG t1 vs t2 Lachnospiraceae -2.05 0.004
Gut 5DG t1 vs t2 Lipothrixviridae -2.70 0.004
Gut 5DG t1 vs t2 Microviridae -4.45 0.000
Gut 5DG t1 vs t2 Moraxellaceae -5.97 0.002
Gut 5DG t1 vs t2 Morganellaceae -1.35 0.002
Gut 5DG t1 vs t2 Muribaculaceae -1.95 0.008
Gut 5DG t1 vs t2 Myoviridae -6.22 0.000
Gut 5DG t1 vs t2 Narnaviridae -2.70 0.001
Gut 5DG t1 vs t2 Neisseriaceae -1.42 0.000
Gut 5DG t1 vs t2 Odoribacteraceae -3.45 0.000
Gut 5DG t1 vs t2 Oleiphilaceae -0.93 0.021
Gut 5DG t1 vs t2 Oxalobacteraceae -3.41 0.000
Gut 5DG t1 vs t2 Pasteurellaceae -1.87 0.002
Gut 5DG t1 vs t2 Pectobacteriaceae -3.54 0.000
Gut 5DG t1 vs t2 Peribunyaviridae -3.25 0.000
Gut 5DG t1 vs t2 Phenuiviridae -1.92 0.027
Gut 5DG t1 vs t2 Podoviridae -5.87 0.000
Gut 5DG t1 vs t2 Polydnaviridae -3.31 0.001
Gut 5DG t1 vs t2 Pseudomonadaceae -6.73 0.000
Gut 5DG t1 vs t2 Rudiviridae -2.47 0.032
Gut 5DG t1 vs t2 Secoviridae -1.85 0.040
Gut 5DG t1 vs t2 Siphoviridae -2.18 0.021
Gut 5DG t1 vs t2 Sphingobacteriaceae -1.63 0.003
Gut 5DG t1 vs t2 Tannerellaceae -5.12 0.000
Gut 5DG t1 vs t2 Tobaniviridae -2.33 0.006
Gut 5DG t1 vs t2 Weeksellaceae -4.59 0.000
Gut 5DG t1 vs t2 Xanthomonadaceae -2.08 0.021
Gut 5DG t1 vs t2 Yersiniaceae -4.60 0.000
Gut SSG t0 vs t1 Ackermannviridae 5.35 0.000
Gut SSG t0 vs t1 Alcaligenaceae 0.96 0.049
Gut SSG t0 vs t1 Anaeromyxobacteraceae -0.64 0.049
Gut SSG t0 vs t1 Bacteroidaceae 3.19 0.001
Gut SSG t0 vs t1 Bicaudaviridae 3.46 0.000
Gut SSG t0 vs t1 Bogoriellaceae 1.06 0.037
Gut SSG t0 vs t1 Caulobacteraceae 2.55 0.000
Gut SSG t0 vs t1 Cellulomonadaceae 2.60 0.000
Gut SSG t0 vs t1 Comamonadaceae 2.97 0.000
Gut SSG t0 vs t1 Cyclobacteriaceae 0.66 0.023
Gut SSG t0 vs t1 Enterobacteriaceae 3.96 0.000
Gut SSG t0 vs t1 Fortieaceae -10.69 0.000
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Gut SSG t0 vs t1 Gordoniaceae 1.02 0.033
Gut SSG t0 vs t1 Kiritimatiellaceae -0.90 0.049
Gut SSG t0 vs t1 Marinifilaceae 0.72 0.031
Gut SSG t0 vs t1 Methanocorpusculaceae -2.18 0.049
Gut SSG t0 vs t1 Methanomicrobiaceae -1.38 0.013
Gut SSG t0 vs t1 Methanoregulaceae -1.89 0.001
Gut SSG t0 vs t1 Methanospirillaceae -1.69 0.011
Gut SSG t0 vs t1 Microbacteriaceae 1.74 0.000
Gut SSG t0 vs t1 Micrococcaceae 2.28 0.000
Gut SSG t0 vs t1 Microscillaceae 2.93 0.003
Gut SSG t0 vs t1 Mycobacteriaceae 1.08 0.026
Gut SSG t0 vs t1 Myoviridae 3.96 0.001
Gut SSG t0 vs t1 Nocardiaceae 4.94 0.000
Gut SSG t0 vs t1 Nocardioidaceae 1.69 0.001
Gut SSG t0 vs t1 Nostocaceae -1.27 0.039
Gut SSG t0 vs t1 Picornaviridae -3.21 0.001
Gut SSG t0 vs t1 Pithoviridae -2.89 0.006
Gut SSG t0 vs t1 Planococcaceae 1.38 0.049
Gut SSG t0 vs t1 Podoviridae 3.66 0.001
Gut SSG t0 vs t1 Porphyromonadaceae 0.99 0.033
Gut SSG t0 vs t1 Prolixibacteraceae 0.68 0.031
Gut SSG t0 vs t1 Promicromonosporaceae 1.98 0.000
Gut SSG t0 vs t1 Sanguibacteraceae 1.67 0.001
Gut SSG t0 vs t1 Saprospiraceae 0.84 0.024
Gut SSG t0 vs t1 Siphoviridae 2.19 0.005
Gut SSG t0 vs t1 Sphingobacteriaceae 1.39 0.005
Gut SSG t0 vs t1 Succinivibrionaceae 1.70 0.001
Gut SSG t0 vs t1 Tannerellaceae 2.37 0.003
Gut SSG t0 vs t1 Tolecusatellitidae 1.97 0.020
Gut SSG t0 vs t1 Tsukamurellaceae 0.88 0.044
Gut SSG t0 vs t1 Veillonellaceae 2.60 0.003
Gut SSG t0 vs t1 Virgaviridae 2.51 0.005
Gut SSG t0 vs t1 Xanthomonadaceae 3.62 0.000
Gut SSG t0 vs t2 Drexlerviridae -6.05 0.032
Gut SSG t0 vs t2 Fortieaceae -10.77 0.000
Gut SSG t0 vs t2 Methanoregulaceae -1.65 0.023
Gut SSG t0 vs t2 Methanospirillaceae -1.78 0.023
Gut SSG t0 vs t2 Picornaviridae -3.29 0.004
Gut SSG t0 vs t2 Planococcaceae 1.76 0.023
Gut SSG t0 vs t2 Rhabdoviridae 3.13 0.023
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Gut SSG t0 vs t2 Salinivirgaceae 1.05 0.023
Gut SSG t0 vs t2 Veillonellaceae 3.25 0.001
Gut SSG t1 vs t2 Ackermannviridae -3.46 0.028
Gut SSG t1 vs t2 Alcaligenaceae -1.15 0.018
Gut SSG t1 vs t2 Bogoriellaceae -1.31 0.009
Gut SSG t1 vs t2 Caulobacteraceae -2.68 0.000
Gut SSG t1 vs t2 Cellulomonadaceae -2.90 0.000
Gut SSG t1 vs t2 Comamonadaceae -3.24 0.000
Gut SSG t1 vs t2 Dietziaceae -1.00 0.018
Gut SSG t1 vs t2 Drexlerviridae -6.61 0.009
Gut SSG t1 vs t2 Gordoniaceae -1.17 0.017
Gut SSG t1 vs t2 Microbacteriaceae -1.95 0.000
Gut SSG t1 vs t2 Micrococcaceae -2.43 0.000
Gut SSG t1 vs t2 Mycobacteriaceae -1.31 0.006
Gut SSG t1 vs t2 Nocardiaceae -5.10 0.000
Gut SSG t1 vs t2 Nocardioidaceae -2.04 0.000
Gut SSG t1 vs t2 Promicromonosporaceae -2.31 0.000
Gut SSG t1 vs t2 Pseudomonadaceae -2.26 0.031
Gut SSG t1 vs t2 Sanguibacteraceae -1.92 0.000
Gut SSG t1 vs t2 Tsukamurellaceae -1.18 0.005
Gut SSG t1 vs t2 Virgaviridae -2.28 0.023
Gut SSG t1 vs t2 Xanthomonadaceae -3.93 0.000
Gut SSG vs 5DG t0 Atopobiaceae 1.50 0.020
Gut SSG vs 5DG t0 Coriobacteriaceae 2.42 0.000
Gut SSG vs 5DG t0 Enterobacteriaceae 2.91 0.046
Gut SSG vs 5DG t0 Moraxellaceae -5.54 0.020
Gut SSG vs 5DG t0 Muribaculaceae 2.54 0.000
Gut SSG vs 5DG t0 Staphylococcaceae 2.23 0.000
Gut SSG vs 5DG t0 Streptococcaceae 2.25 0.001
Gut SSG vs 5DG t1 Aeromonadaceae 1.84 0.000
Gut SSG vs 5DG t1 Alloherpesviridae 2.36 0.011
Gut SSG vs 5DG t1 Autographiviridae 4.59 0.000
Gut SSG vs 5DG t1 Bacteroidaceae 5.30 0.000
Gut SSG vs 5DG t1 Bogoriellaceae -1.52 0.002
Gut SSG vs 5DG t1 Brachyspiraceae 0.71 0.011
Gut SSG vs 5DG t1 Bruguierivoracaceae 2.37 0.000
Gut SSG vs 5DG t1 Budviciaceae 1.93 0.000
Gut SSG vs 5DG t1 Cellulomonadaceae -2.91 0.000
Gut SSG vs 5DG t1 Chromatiaceae 1.46 0.000
Gut SSG vs 5DG t1 Chuviridae 2.53 0.000
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Gut SSG vs 5DG t1 Clostridiaceae 2.01 0.000
Gut SSG vs 5DG t1 Comamonadaceae -1.80 0.022
Gut SSG vs 5DG t1 Demerecviridae 3.30 0.017
Gut SSG vs 5DG t1 Dermabacteraceae -0.71 0.047
Gut SSG vs 5DG t1 Dietziaceae -1.26 0.001
Gut SSG vs 5DG t1 Enterobacteriaceae 4.45 0.000
Gut SSG vs 5DG t1 Enterococcaceae 1.25 0.016
Gut SSG vs 5DG t1 Erwiniaceae 6.03 0.000
Gut SSG vs 5DG t1 Flavobacteriaceae 1.48 0.004
Gut SSG vs 5DG t1 Fortieaceae 9.22 0.000
Gut SSG vs 5DG t1 Gordoniaceae -1.43 0.002
Gut SSG vs 5DG t1 Hafniaceae 2.62 0.000
Gut SSG vs 5DG t1 Herelleviridae 4.06 0.000
Gut SSG vs 5DG t1 Hominidae 1.16 0.005
Gut SSG vs 5DG t1 Hydrogenophilaceae 0.78 0.050
Gut SSG vs 5DG t1 Hytrosaviridae 1.78 0.020
Gut SSG vs 5DG t1 Inoviridae 2.05 0.014
Gut SSG vs 5DG t1 Jatrophihabitantaceae -0.89 0.019
Gut SSG vs 5DG t1 Ktedonosporobacteraceae -0.72 0.039
Gut SSG vs 5DG t1 Kytococcaceae -1.03 0.005
Gut SSG vs 5DG t1 Lachnospiraceae 2.78 0.000
Gut SSG vs 5DG t1 Lipothrixviridae 2.39 0.002
Gut SSG vs 5DG t1 Microbacteriaceae -2.03 0.000
Gut SSG vs 5DG t1 Micrococcaceae -2.44 0.000
Gut SSG vs 5DG t1 Microviridae 7.01 0.000
Gut SSG vs 5DG t1 Morganellaceae 1.27 0.001
Gut SSG vs 5DG t1 Mycobacteriaceae -1.15 0.021
Gut SSG vs 5DG t1 Narnaviridae 2.38 0.001
Gut SSG vs 5DG t1 Neisseriaceae 0.93 0.018
Gut SSG vs 5DG t1 Nimaviridae 1.92 0.009
Gut SSG vs 5DG t1 Nocardiaceae -5.00 0.000
Gut SSG vs 5DG t1 Nocardioidaceae -2.01 0.000
Gut SSG vs 5DG t1 Nostocaceae 1.29 0.035
Gut SSG vs 5DG t1 Nudiviridae 2.49 0.014
Gut SSG vs 5DG t1 Odoribacteraceae 2.99 0.000
Gut SSG vs 5DG t1 Oxalobacteraceae 4.45 0.000
Gut SSG vs 5DG t1 Pasteurellaceae 1.44 0.009
Gut SSG vs 5DG t1 Pectobacteriaceae 3.20 0.000
Gut SSG vs 5DG t1 Peribunyaviridae 2.92 0.000
Gut SSG vs 5DG t1 Phenuiviridae 1.58 0.029
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Gut SSG vs 5DG t1 Phycodnaviridae 2.60 0.001
Gut SSG vs 5DG t1 Pithoviridae 3.19 0.002
Gut SSG vs 5DG t1 Podoviridae 2.97 0.008
Gut SSG vs 5DG t1 Polydnaviridae 3.01 0.000
Gut SSG vs 5DG t1 Promicromonosporaceae -2.50 0.000
Gut SSG vs 5DG t1 Pseudomonadaceae 4.65 0.000
Gut SSG vs 5DG t1 Sanguibacteraceae -1.74 0.001
Gut SSG vs 5DG t1 Secoviridae 1.52 0.044
Gut SSG vs 5DG t1 Succinivibrionaceae -1.53 0.011
Gut SSG vs 5DG t1 Tannerellaceae 2.90 0.000
Gut SSG vs 5DG t1 Tobaniviridae 1.99 0.005
Gut SSG vs 5DG t1 Tsukamurellaceae -1.20 0.004
Gut SSG vs 5DG t1 Weeksellaceae 3.59 0.000
Gut SSG vs 5DG t1 Xanthomonadaceae -1.80 0.040
Gut SSG vs 5DG t1 Yersiniaceae 3.98 0.000
Gut SSG vs 5DG t2 - - -

Nasal 5DG t0 vs t1 Bacillaceae 2 3.43 0.043
Nasal 5DG t0 vs t1 Bacillales incertae sedis XI 3.90 0.012
Nasal 5DG t0 vs t1 Bifidobacteriaceae -3.92 0.006
Nasal 5DG t0 vs t1 Carnobacteriaceae 4.77 0.004
Nasal 5DG t0 vs t1 Fusobacteriaceae 4.81 0.025
Nasal 5DG t0 vs t1 Geobacteraceae -1.72 0.035
Nasal 5DG t0 vs t1 Labilitrichaceae -1.89 0.023
Nasal 5DG t0 vs t1 Marinilabiliaceae -2.64 0.006
Nasal 5DG t0 vs t1 Pasteurellaceae 6.55 0.004
Nasal 5DG t0 vs t1 Promicromonosporaceae -2.21 0.048
Nasal 5DG t0 vs t1 Rhizobiales incertae sedis -2.07 0.006
Nasal 5DG t0 vs t1 Rhodobiaceae -2.17 0.005
Nasal 5DG t0 vs t2 Aeromonadaceae -2.31 0.018
Nasal 5DG t0 vs t2 Bifidobacteriaceae -4.53 0.002
Nasal 5DG t0 vs t2 Brucellaceae -2.27 0.042
Nasal 5DG t0 vs t2 Campylobacteraceae -3.17 0.002
Nasal 5DG t0 vs t2 Coxiellaceae 2.36 0.003
Nasal 5DG t0 vs t2 Gaiellaceae 2.47 0.008
Nasal 5DG t0 vs t2 Halomonadaceae 4.58 0.001
Nasal 5DG t0 vs t2 Marinilabiliaceae -2.53 0.008
Nasal 5DG t0 vs t2 Methylocystaceae -2.09 0.015
Nasal 5DG t0 vs t2 Neisseriaceae 3.24 0.015
Nasal 5DG t0 vs t2 Nitrosomonadaceae 4.46 0.000
Nasal 5DG t0 vs t2 Porphyromonadaceae -2.87 0.008
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Nasal 5DG t0 vs t2 Rhizobiales incertae sedis -1.93 0.012
Nasal 5DG t0 vs t2 Rhodobiaceae -1.71 0.022
Nasal 5DG t0 vs t2 Solirubrobacteraceae 2.71 0.002
Nasal 5DG t0 vs t2 Thermoactinomycetaceae 1 2.26 0.042
Nasal 5DG t1 vs t2 Neisseriaceae 3.43 0.035
Nasal 5DG t1 vs t2 Nitrosomonadaceae 4.46 0.000
Nasal 5DG t1 vs t2 Solirubrobacteraceae 2.41 0.017
Nasal SSG t0 vs t1 Bacillales incertae sedis X -4.70 0.000
Nasal SSG t0 vs t1 Leptotrichiaceae -2.43 0.013
Nasal SSG t0 vs t1 Micrococcaceae 2.26 0.047
Nasal SSG t0 vs t1 Nocardiaceae 2.12 0.034
Nasal SSG t0 vs t1 Sporichthyaceae -2.30 0.001
Nasal SSG t0 vs t1 Succinivibrionaceae -4.02 0.000
Nasal SSG t0 vs t2 Acidaminococcaceae 1.69 0.035
Nasal SSG t0 vs t2 Bacillaceae 1 -3.02 0.017
Nasal SSG t0 vs t2 Bacillales incertae sedis X -4.58 0.000
Nasal SSG t0 vs t2 Bacillales incertae sedis XII -2.07 0.011
Nasal SSG t0 vs t2 Bacteroidaceae 2.41 0.047
Nasal SSG t0 vs t2 Bogoriellaceae 2.12 0.035
Nasal SSG t0 vs t2 Burkholderiaceae -1.67 0.014
Nasal SSG t0 vs t2 Chitinophagaceae -1.92 0.035
Nasal SSG t0 vs t2 Chromatiaceae 2.73 0.003
Nasal SSG t0 vs t2 Clostridiales incertae sedis III -1.79 0.014
Nasal SSG t0 vs t2 Cryomorphaceae 1.96 0.035
Nasal SSG t0 vs t2 Dermatophilaceae 4.48 0.000
Nasal SSG t0 vs t2 Dietziaceae 2.32 0.035
Nasal SSG t0 vs t2 Enterococcaceae -2.45 0.019
Nasal SSG t0 vs t2 Fusobacteriaceae -3.27 0.036
Nasal SSG t0 vs t2 Gaiellaceae -2.07 0.011
Nasal SSG t0 vs t2 Gemmatimonadaceae -1.54 0.042
Nasal SSG t0 vs t2 Geodermatophilaceae 2.71 0.004
Nasal SSG t0 vs t2 Halomonadaceae 2.92 0.006
Nasal SSG t0 vs t2 Lactobacillaceae -2.83 0.025
Nasal SSG t0 vs t2 Leptotrichiaceae -2.48 0.004
Nasal SSG t0 vs t2 Micrococcaceae 2.13 0.025
Nasal SSG t0 vs t2 Oligosphaeraceae 1.50 0.037
Nasal SSG t0 vs t2 Rikenellaceae 2.78 0.001
Nasal SSG t0 vs t2 Sandaracinaceae 2.77 0.000
Nasal SSG t0 vs t2 Sanguibacteraceae 2.16 0.018
Nasal SSG t0 vs t2 Sphingobacteriaceae -1.93 0.035
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Nasal SSG t0 vs t2 Sporichthyaceae -2.26 0.001
Nasal SSG t0 vs t2 Streptomycetaceae -2.39 0.003
Nasal SSG t0 vs t2 Succinivibrionaceae -3.08 0.002
Nasal SSG t1 vs t2 Christensenellaceae -2.38 0.006
Nasal SSG t1 vs t2 Chromatiaceae 3.77 0.000
Nasal SSG t1 vs t2 Dermatophilaceae 3.44 0.000
Nasal SSG t1 vs t2 Paenibacillaceae 1 -2.31 0.015
Nasal SSG t1 vs t2 Sandaracinaceae 2.66 0.000
Nasal SSG t1 vs t2 Sphingobacteriaceae -2.25 0.032
Nasal SSG vs 5DG t0 Acetobacteraceae 1.77 0.031
Nasal SSG vs 5DG t0 Acholeplasmataceae 1.85 0.036
Nasal SSG vs 5DG t0 Bacillaceae 1 -3.11 0.031
Nasal SSG vs 5DG t0 Bacillales incertae sedis X -4.42 0.000
Nasal SSG vs 5DG t0 Bacillales incertae sedis XI -3.22 0.021
Nasal SSG vs 5DG t0 Bacillales incertae sedis XII -2.27 0.015
Nasal SSG vs 5DG t0 Bacteroidaceae -2.84 0.039
Nasal SSG vs 5DG t0 Burkholderiaceae -2.36 0.003
Nasal SSG vs 5DG t0 Campylobacteraceae 2.57 0.003
Nasal SSG vs 5DG t0 Carnobacteriaceae -4.34 0.003
Nasal SSG vs 5DG t0 Clostridiales incertae sedis III -1.84 0.023
Nasal SSG vs 5DG t0 Clostridiales incertae sedis XII 1.77 0.021
Nasal SSG vs 5DG t0 Cryomorphaceae 2.28 0.018
Nasal SSG vs 5DG t0 Enterococcaceae -2.67 0.025
Nasal SSG vs 5DG t0 Family IV 1.55 0.037
Nasal SSG vs 5DG t0 Fibrobacteraceae 1.97 0.023
Nasal SSG vs 5DG t0 Fusobacteriaceae -7.87 0.000
Nasal SSG vs 5DG t0 Geobacteraceae 1.81 0.015
Nasal SSG vs 5DG t0 Labilitrichaceae 2.18 0.003
Nasal SSG vs 5DG t0 Marinilabiliaceae 3.08 0.000
Nasal SSG vs 5DG t0 Methylocystaceae 1.79 0.018
Nasal SSG vs 5DG t0 Micromonosporaceae 1.55 0.037
Nasal SSG vs 5DG t0 Pasteurellaceae -7.85 0.000
Nasal SSG vs 5DG t0 Phyllobacteriaceae 1.79 0.044
Nasal SSG vs 5DG t0 Planctomycetaceae 1.87 0.037
Nasal SSG vs 5DG t0 Polyangiaceae 1.51 0.030
Nasal SSG vs 5DG t0 Porphyromonadaceae 2.31 0.014
Nasal SSG vs 5DG t0 Promicromonosporaceae 1.74 0.039
Nasal SSG vs 5DG t0 Pseudonocardiaceae 1.59 0.045
Nasal SSG vs 5DG t0 Rhizobiales incertae sedis 1.61 0.018
Nasal SSG vs 5DG t0 Rhodobiaceae 1.67 0.011
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Nasal SSG vs 5DG t0 Rikenellaceae 2.02 0.031
Nasal SSG vs 5DG t0 Sanguibacteraceae 1.94 0.037
Nasal SSG vs 5DG t0 Sporichthyaceae -2.00 0.011
Nasal SSG vs 5DG t0 Succinivibrionaceae -3.65 0.002
Nasal SSG vs 5DG t0 Veillonellaceae -2.80 0.015
Nasal SSG vs 5DG t0 Xanthobacteraceae 1.56 0.031
Nasal SSG vs 5DG t1 - - -
Nasal SSG vs 5DG t2 Bacteroidaceae -4.21 0.003
Nasal SSG vs 5DG t2 Bogoriellaceae -3.69 0.002
Nasal SSG vs 5DG t2 Burkholderiales incertae sedis 1.90 0.023
Nasal SSG vs 5DG t2 Coriobacteriaceae -2.12 0.038
Nasal SSG vs 5DG t2 Coxiellaceae 2.32 0.001
Nasal SSG vs 5DG t2 Cytophagaceae 3.20 0.002
Nasal SSG vs 5DG t2 Dermatophilaceae -4.38 0.000
Nasal SSG vs 5DG t2 Dietziaceae -4.06 0.002
Nasal SSG vs 5DG t2 Gaiellaceae 2.85 0.000
Nasal SSG vs 5DG t2 Lactobacillaceae 3.08 0.023
Nasal SSG vs 5DG t2 Neisseriaceae 2.72 0.022
Nasal SSG vs 5DG t2 Nitrosomonadaceae 4.42 0.000
Nasal SSG vs 5DG t2 Sandaracinaceae -2.61 0.003
Nasal SSG vs 5DG t2 Solirubrobacteraceae 2.69 0.000
Nasal SSG vs 5DG t2 Sphingobacteriaceae 2.11 0.038

Table A.3: Differential Families (Gut & Nasal Microbiome). List of
differential taxa calculated between the SSG and 5DG across all time points
using edgeR. The overview contains all significant hits with adjusted p-value
(FDR) ≤ 0.05. FC: Fold Change, FDR: False Discovery Rate, MBO: Micro-
biome, SSG: Single-Shot Group, 5DG: 5-Day Group.
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Software ARG ARG Class ID
COV/
PROB

ABRicate aac3 aminoglycoside 99.87 100.00
ABRicate aac3 aminoglycoside 100.00 100.00
ABRicate aph2-dprime aminoglycoside 100.00 100.00
ABRicate aph3-dprime aminoglycoside 99.63 100.00
ABRicate aph4 aminoglycoside 99.90 100.00
ABRicate aph6 aminoglycoside 100.00 100.00
ABRicate carb beta-lactam 99.67 100.00
ABRicate ermc MLS 100.00 100.00
ABRicate suli sulfonamide 100.00 100.00
ABRicate sulii sulfonamide 100.00 100.00
ABRicate dfrg trimethoprim 100.00 94.00
DeepARG mdtb aminocoumarin 58.80 0.36
DeepARG abes aminoglycoside 57.40 0.57
DeepARG acra aminoglycoside 51.40 0.19
DeepARG acrb aminoglycoside 58.50 0.20
DeepARG acrb aminoglycoside 55.70 0.26
DeepARG adea aminoglycoside 59.20 0.26
DeepARG arlr aminoglycoside 50.40 0.29
DeepARG dfra3 aminoglycoside 50.30 0.19
DeepARG dfra3 aminoglycoside 50.90 0.19
DeepARG emrb aminoglycoside 50.00 0.25
DeepARG mexe aminoglycoside 53.00 0.22
DeepARG mtra aminoglycoside 66.80 0.59
DeepARG ompr aminoglycoside 50.20 0.07
DeepARG ompr aminoglycoside 50.60 0.07
DeepARG oprm aminoglycoside 51.50 0.13
DeepARG qach aminoglycoside 59.60 0.58
DeepARG smed aminoglycoside 53.70 0.11
DeepARG vans aminoglycoside 55.30 0.35

DeepARG mexe
aminoglycoside

66.40 0.33
aminocoumarin

DeepARG dfrg diaminopyrimidine 100.00 0.78
DeepARG baca fluoroquinolone 65.50 0.42
DeepARG baca fluoroquinolone 51.00 0.26
DeepARG emrb fluoroquinolone 54.00 0.07
DeepARG emrb fluoroquinolone 56.50 0.07
DeepARG emre fluoroquinolone 52.30 0.63
DeepARG lrfa fluoroquinolone 52.00 0.35
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DeepARG qach fluoroquinolone 71.90 0.35
DeepARG qach fluoroquinolone 58.90 0.67
DeepARG fosa5 fosfomycin 57.10 0.78
DeepARG carb glycopeptide 100.00 0.28
DeepARG mexd MLS 58.00 0.10
DeepARG acra multidrug 51.40 0.37
DeepARG acrb multidrug 58.50 0.72
DeepARG acrb multidrug 55.70 0.37
DeepARG adea multidrug 59.20 0.35
DeepARG aph(3”)-i multidrug 100.00 0.04
DeepARG baca multidrug 50.40 0.25
DeepARG baca multidrug 51.00 0.35
DeepARG dfra22 multidrug 51.10 0.14
DeepARG emrb multidrug 50.00 0.34
DeepARG emre multidrug 52.30 0.24
DeepARG mdtb multidrug 58.80 0.64
DeepARG mtra multidrug 66.80 0.26
DeepARG oprm multidrug 51.50 0.72
DeepARG rbpa multidrug 52.60 0.23
DeepARG smed multidrug 53.70 0.64
DeepARG vans multidrug 55.30 0.32
DeepARG aac(3)-iiia peptide 59.70 0.04
DeepARG abes peptide 57.40 0.17
DeepARG baca peptide 65.50 0.15
DeepARG baca peptide 50.40 0.22
DeepARG carb peptide 100.00 0.28
DeepARG cpxr peptide 51.80 0.29
DeepARG cpxr peptide 52.60 0.07
DeepARG dfra22 peptide 51.10 0.34
DeepARG dfra3 peptide 50.30 0.30
DeepARG dfra3 peptide 50.90 0.30
DeepARG dfrg peptide 100.00 0.12
DeepARG emrb peptide 54.00 0.50
DeepARG emrb peptide 56.50 0.51
DeepARG fosa5 peptide 57.10 0.19
DeepARG mexe peptide 53.00 0.23
DeepARG qach peptide 71.90 0.25
DeepARG qach peptide 58.90 0.11
DeepARG qach peptide 59.60 0.13
DeepARG rbpa peptide 52.60 0.26
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DeepARG vatf peptide 68.30 0.04
DeepARG lrfa tetracycline 52.00 0.15
DeepARG mexe tetracycline 66.40 0.31
DeepARG arlr unclassified 50.40 0.34
DeepARG cpxr unclassified 51.80 0.28
DeepARG cpxr unclassified 52.60 0.74

DeepARG.potential aac(3)-ii aminoglycoside 68.50 1.00
DeepARG.potential aac(3)-ii aminoglycoside 100.00 1.00
DeepARG.potential aac(3)-iiia aminoglycoside 59.70 0.88
DeepARG.potential aac(3)-iv aminoglycoside 100.00 1.00
DeepARG.potential aadk aminoglycoside 61.30 1.00
DeepARG.potential aph(2”)-iii aminoglycoside 100.00 1.00
DeepARG.potential aph(3”)-i aminoglycoside 100.00 0.87
DeepARG.potential aph(3’)-i aminoglycoside 99.60 1.00
DeepARG.potential aph(3’)-i aminoglycoside 67.90 1.00
DeepARG.potential aph(4)-i aminoglycoside 99.70 1.00
DeepARG.potential aph(6)-i aminoglycoside 100.00 1.00
DeepARG.potential emre aminoglycoside 61.30 0.98
DeepARG.potential kdpe aminoglycoside 51.60 0.99
DeepARG.potential ksga aminoglycoside 80.00 1.00
DeepARG.potential ksga aminoglycoside 53.10 1.00
DeepARG.potential baca bacitracin 69.30 0.99
DeepARG.potential ctx-m beta-lactam 50.80 0.97
DeepARG.potential oxa beta-lactam 57.30 1.00
DeepARG.potential tem beta-lactam 100.00 0.97
DeepARG.potential rosa fosmidomycin 60.10 1.00
DeepARG.potential brp(mbl) glycopeptide 58.30 0.99
DeepARG.potential brp(mbl) glycopeptide 57.90 0.99
DeepARG.potential vanr glycopeptide 61.30 1.00
DeepARG.potential vanr glycopeptide 68.90 1.00
DeepARG.potential vanr glycopeptide 64.70 1.00
DeepARG.potential ermc MLS 100.00 1.00
DeepARG.potential vatf MLS 68.30 0.89
DeepARG.potential acra multidrug 50.80 1.00
DeepARG.potential acrb multidrug 53.20 0.92
DeepARG.potential gols multidrug 56.30 1.00
DeepARG.potential marr multidrug 84.50 1.00
DeepARG.potential mexd multidrug 58.00 0.85
DeepARG.potential mexe multidrug 51.20 1.00
DeepARG.potential mexe multidrug 50.30 0.99
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DeepARG.potential mexe multidrug 51.00 0.92
DeepARG.potential mexf multidrug 52.80 0.96
DeepARG.potential ompr multidrug 65.80 1.00
DeepARG.potential ompr multidrug 50.20 0.86
DeepARG.potential ompr multidrug 50.60 0.86
DeepARG.potential ompr multidrug 50.40 0.99
DeepARG.potential ompr multidrug 52.70 0.99
DeepARG.potential ompr multidrug 56.10 0.99
DeepARG.potential ompr multidrug 52.70 0.99
DeepARG.potential rpob2 multidrug 69.50 1.00
DeepARG.potential chloramphenicol_exporter phenicol 100.00 1.00
DeepARG.potential sul1 sulfonamide 100.00 0.99
DeepARG.potential sul2 sulfonamide 100.00 0.97
DeepARG.potential teta(48) tetracycline 50.60 0.92

Table A.4: Resistance Components (Nasal Microbiome). Overview
of resistance elements identified within the nasal shotgun metagenome sam-
ple (J32522). Both ABRicate and DeepARG were utilized for AMR profiling.
This table includes the software used to infer genotypic resistances, the identi-
fied AMR genes, their corresponding resistance classes, as well as the identity
and likelihood of each hit (coverage/probability). ABRicate determines the
identity and coverage as percentages of each hit compared to the MEGARes
database, while DeepARG does not infer coverage and instead provides proba-
bilities. DeepARG also provides novel resistance elements (labelled as potential
within the table). ARG: Antibiotic Resistance Gene, ID: Identity, COV: Cov-
erage, PROB: Probability.
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