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Abstract

Rare earths are technologically important and scientifically highly interesting elements.

The description of the volume collapse exhibited by some rare earth metals poses a

great challenge to density-functional theory (DFT) since local/semi-local functionals

(LDA/GGA) only partially capture the associated phase transitions. In this work

this problem is approached by treating all electrons at the same quantum mechanical

level, using both hybrid functionals (e.g. PBE0 and HSE06) and exact-exchange

plus correlation in the random-phase approximation (EX+cRPA). The performance

of recently developed beyond RPA schemes is also assessed.

The isostructural α-γ phase transition in cerium is the most studied. The

exact exchange contribution in PBE0 and HSE06 is crucial to produce two distinct

solutions that can be associated with the α and γ phases. The two solutions

emerge in bulk as well as in cluster calculations. Most notable is their presence in

the cerium dimer. However, quantitative agreement with the extrapolated phase

diagram requires EX+cRPA. So far the EX+cRPA correction can only be applied to

cerium clusters and not to the bulk. A cluster of 19 atoms cut from the fcc crystal

structure (the same that characterizes the α and γ phases) was therefore determined

as representative. (EX+cRPA)@PBE0 for Ce19 provides good agreement with the

extrapolated transition pressure to zero temperature. We predict that a pressure

induced phase transition should exist at or close to zero. A finite temperature phase

diagram can be drawn in reasonable agreement with experiment by adding entropic

effects.

The cerium neighbors are also studied: lanthanum, which has no f electrons,

praseodymium, with three f electrons and a volume collapse, and neodymium, with

four f electrons and no volume collapse. Multiple solutions are also present for these

f electron elements, confirming the importance of exact-exchange for f electron

systems.





Zusammenfassung

Seltene Erden sind technologisch wichtige und wissenschaftlich hchst interessante

Elemente. Die Beschreibung des Volumenkollapses den einigen Seltenen Erden

aufweisen stellt eine grosse Herausforderung an die Dichte-Funktional-Theorie (DFT)

dar, weil lokale/semilokale Funktionale (LDA/GGA) nur teilweise die damit ver-

bundenen Phasenübergänge erfassen. In dieser Arbeit wird dieses Problem durch

die Beschreibung aller Elektronen auf der gleichen quantenmechanischen Ebene

behandelt, wobei Hybridfunktionale (zB. PBE0 und HSE06) und exakter-Austausch

plus Korrelation in der Random-Phase Approximation (EX+cRPA) zum Einsatz

kommen. Die Nützlichkeit von Methoden, die über RPA hinausgehen wird ebenfalls

bewertet.

Hauptaugenmerk wird auf den isostrukturellen α-γ Phasenübergang in Cerium

gelegt. Der Beitrag vom exakten Austausch in PBE0 und HSE06 ist entscheidend

um zwei unterschiedliche Lösungen zu generieren, die jeweils der α und γ Phase

zugeordnet werden können. Die beiden Lösungen entstehen sowohl unter periodischen

Randbedingungen als auch bei Cluster Rechnungen. Bemerkenswerterweise tritt

eine zweifache Lösung bereits beim Cerium Dimer auf. Allerdings erfordert eine

quantitative Übereinstimmung mit dem extrapolierten Phasendiagramm EX+cRPA.

Da sich bislang die EX+cRPA Korrektur einer Anwendung unter periodischen

Randbedingungen entzieht, werden Cerium Cluster studiert. Es zeigt sich, dass ein

Cluster von 19 Atomen der aus der FCC-Kristallstruktur (jener, der die α und γ

Phasen charakterisiert) repräsentativ ist. (EX+cRPA)@PBE0 für Ce19 liefert eine

gute Übereinstimmung mit dem auf Nulltemperatur extrapoliert Übergangsdruck.

Unsere Ergebnisse sagen wir einen Druck-induzierten Phasenübergang in der Nähe

des Nullpunktes voraus. Unter Berücksichtigung von entropischen Effekten kann

ein Phasendiagramm bei endlichen Temperaturen emittelt werden, welches in guter

experimenteller Übereinstimmung ist.

Die Cerium Nachbarn werden ebenfalls untersucht: Lanthan, das keine f -

Elektronen besitzt, Praseodym mit drei f -Elektronen und das ebenfalls einen Volum-

skollaps aufweist, und Neodym, mit vier f -Elektronen und ohne Volumskollaps.

Auch hier für diese Elemente werden mehrdeutige Lösungen gefunden, welches die

Bedeutung des exakten Austausches für die Beschreibung von f -Elektronensystemen

bekräftigt.





Contents

Abstract V

Zusammenfassung VII

Contents IX

Introduction 1

I Background: experiments and theory 5

1 Rare earths and Cerium 7

1.1 Lanthanides and actinides . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Rare earth metals and volume collapse . . . . . . . . . . . . . . . . . 9

1.3 Cerium α-γ phase transition . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Theoretical models for the α-γ phase transition . . . . . . . . . . . . 24

1.5 Cerium clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Theoretical Methods for Electronic Structure Calculations 35

2.1 The many-body problem . . . . . . . . . . . . . . . . . . . . . . . . . 35

IX



2.2 Hartree-Fock Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Density-Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Exchange-Correlation Functionals . . . . . . . . . . . . . . . . . . . . 45

2.5 Orbital-dependent approaches . . . . . . . . . . . . . . . . . . . . . . 49

2.6 Hybrid functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.7 Many-Body Perturbation Theory . . . . . . . . . . . . . . . . . . . . 59

II Ab initio description of the α-γ transition in cerium 67

3 Previous Ab initio studies of the α-γ transition 69

4 First principle calculations for cerium systems 75

4.1 Computational settings . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Convergence of the SCF cycle . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Multiple solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Cerium dimer 83

5.1 Local and semi-local functionals: LDA and PBE . . . . . . . . . . . . 84

5.2 (EX+cRPA)@PBE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Hartree-Fock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Hybrid functionals: PBE0 . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Fraction of exact-exchange . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 (EX+cRPA)@PBE0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.7 Beyond RPA methods . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Cerium clusters 103

X



6.1 PBE and PBE0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 EX+cRPA: the α-γ phase transition . . . . . . . . . . . . . . . . . . 111

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Cerium bulk 117

7.1 Hybrid functionals and the α and γ phases . . . . . . . . . . . . . . . 117

7.2 Spin unpolarized results . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3 Magnetic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.4 Role of Exact-exchange . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8 Phase diagram for the α-γ transition 143

8.1 Toward the bulk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.2 Finite temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

9 Beyond cerium 159

9.1 Hybrid functional calculations for La, Pr, and Nd . . . . . . . . . . . 160

9.2 Many-body functional calculations of the dimers: La2, Pr2, and Nd2 167

9.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

10 Summary and Outlook 175

10.1 The α-γ phase transition . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Appendices 181

A Crystal structures 183

XI



B Computational details 185

B.1 Numerical atom centered orbitals . . . . . . . . . . . . . . . . . . . . 185

B.2 Basis set superposition error . . . . . . . . . . . . . . . . . . . . . . . 188

B.3 Convergence with respect to the basis set . . . . . . . . . . . . . . . . 190

B.4 Convergence with respect to the frequency points . . . . . . . . . . . 193

B.5 k-point convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Publications 197

Curriculum Vitæ 199

Acknowledgements 205

Bibliography 207

XII







Introduction

In winter in Berlin, the snow lays thick on the ground. As winter comes to an end,

the temperature increases. We will watch the snow melt away, but few of us will

think twice about it. Likewise, we never wonder about ice melting in our cocktail or

water becoming steam when we boil it for pasta.

Phase transitions are a familiar part of our everyday lives, and yet we do

not consider them as direct proof of the microscopic nature of matter. We do not

normally ask, “Why does water in its liquid form spread into the air in the form

of steam as it approaches T=100◦C?” The answer is not simple. Nowadays, we

understand this process in terms of the balance between the system’s internal energy

and its entropy. These quantities are macroscopic observables which ultimately

represent the arrangement and motion of electrons and nuclei in a macroscopic body

in thermodynamic equilibrium

During a phase transition, a system alters some physical properties, often

discontinuously, in response to changes in certain external conditions, such as tem-

perature or pressure. Some have speculated that the universe itself originated from

a succession of phase transitions. It possessed a large number of symmetries in its

hot and primitive state and cooled with symmetry-breaking phase transitions; these

transitions developed order and led to matter, made of electrons, protons, neutrons

and so on.

Cerium metal has its own special phase transition. Cerium belongs to the

lanthanide elements, which are included among rare earth elements. The rare earth

elements are the “Wild West” of the natural elements. This group was discovered

relatively recently compared to the other elements –starting from 1794– and has since

1



2

attracted the scientific community’s attention. Even though rare earth elements

already have applications in several fields – from nuclear power and weapons to

medical tools, from communication technology to catalysis – their properties and

behavior are not fully understood.

The rare-earth elements are characterized by the presence of localized f electrons

at high energy. With only one 4f electron, cerium is the most studied of the rare

earth elements. At ambient pressure and above room temperature cerium behaves

like a normal metal. Its volume gradually decreases under compression or as the

temperature is lowered, but at room temperature and 1 atm, it suddenly collapses

by around 15%. This is the well-known α-γ phase transition. This transition, the

magnetic properties of the metal are modified, but the lattice structure is preserved.

This indicates that the volume collapse is not due to a displacement of the atoms.

Numerous experimental and theoretical studies have investigated the α-γ phase

transition, but a consensus concerning the driving mechanism of the volume collapse

has not yet been reached. The most prevalent explanations are based on models,

which involve the f electrons as main actors. Notable are the Mott transition [1] and

the Kondo volume collapse [2, 3], to which a quadrupolar alignment of the charge

density [4] has been added recently. No overwhelming evidence has emerged in favor

of one or another model. Overall, the transition could be very complex and different

mechanisms may cooperate.

In this context, theoretical ab initio approaches provide a unique perspective.

Beginning with the fundamental laws of physics (i.e., from first principles) ab initio

approaches seek solutions to the equations of quantum mechanics without any prior

assumptions. This cannot be done analytically even for very simple systems, and

computational techniques and numerical algorithms come to our aid. A never-ending

search for the right balance between the approximations introduced in the problem

and the computational tractability makes ab initio methods an extremely active area

of research.

Many authors studied the α-γ phase transition with ab initio methods. However,

none of the previous studies has been able to describe the structural properties of

both phases within a single theoretical framework. This has introduced doubts

about the quantum nature of the transition, posing the question whether the volume
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collapse could survive at zero temperature or not.

In this thesis, I approach the α-γ phase transition in Ce in view of newly-

developed first principle methods. Using hybrid functionals and the random-phase

approximation, I show that the volume collapse survives at zero temperature, and

both the α and γ phases can be described within a single theoretical framework.

Moreover, I provide evidence that the finite temperature behavior of the phase

transition is obtainable beginning with the ground state structural and energetic

properties of the two phases. These findings are extended to other lantanide elements.

The thesis is organized into two parts. In Part I, Chapter 1 reports on the

experimental evidence of the α-γ phase transition and previous theoretical studies

of the volume collapse. Chapter 2 summarizes theoretical methods important for

understanding this work. Part II presents ab initio studies of the α-γ phase transition.

Chapter 3 summarizes previous works. Chapter 4 describes relevant computational

details and techniques. In Chapter 5, local and semi-local functionals (LDA and

PBE) and hybrid functional (PBE0 and HSE06) calculations for the cerium dimer

are presented. Exact-exchange combined with correlation in the random-phase

approximation (EX+cRPA) is also computed for the dimer based on the PBE and

PBE0 results. The outcome of renormalized second order perturbation theory (rPT2)

is also discussed. Next, in Chapter 6 cerium clusters are studied with the same

approaches, and in Chapter 7 bulk results are presented for the LDA, PBE, PBE0

and HSE06 functionals. Finally, the cerium phase diagram, reported in Chapter

8, is established based on the (EX+cRPA)@PBE0 results. Chapter 9 is dedicated

to other lanthanide elements, namely lanthanum, praseodymium and neodymium,

for which hybrid functional and EX+cRPA calculations are reported. Chapter 10

discusses insights that emerged during the course of this research and potential future

developments.





I Background: experiments and

theory
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1 Rare earths and Cerium

1.1 Lanthanides and actinides

Rare earth elements distinguish themselves from all other elements by the presence of

partially filled 4f and 5f orbitals. Rare has historical origins, because those elements

were discovered and analyzed relatively late. Their presence in the earth crust is

however significant, as illustrated in Figure 1.1, and some of them are even more

abundant than commonly used metals. Unlike the other elements in the periodic

table, which share much of their chemical properties among columns, the rare earths

are arranged in rows according to their physical characteristics, and are divided in

two subgroups: lanthanides and actinides.

Lanthanides are soft metals of silvery color and have partially filled 4f orbitals.

The only exception is lanthanum that, even if it does not posses any f electrons,

still shows physical properties characteristic for the all row. In lanthanum a 5d

orbital becomes occupied before a 4f one. Lanthanum shares This anomaly only

with cerium. The latter has peculiar characteristics linked to the presence of only

one 4f electron in addition to the 5d filled state, and will be the main subject of

the present study. The f orbitals have an energy that is comparable to the outer 6s

and 5d electrons, but are strongly localized around the core (Figure 1.3). Therefore,

they shield the outer states (6s and 5d) from the nucleus. As they fill up across the

series the screening of the outer electrons becomes increasingly important, leading to

a decrease of atomic volume along the row, that is generally known as lanthanide

contraction.

Actinides are marked by the presence of filled 5f orbitals. They are dense

7



8 Chapter 1. Rare earths and Cerium

metals and are characterized by radioactive behavior. Only three actinide elements,

out of the fourteen total, can be found in nature. The others, after uranium, can be

synthesized as nuclear products. The existence of transuranium elements was first

suggested by Enrico Fermi in 1934 and marked the beginning of rare earth research.

While the first lanthanides were already discovered in the eighteenth century, a real

interest in their properties only developed with the advent of nuclear fission, that

lead to the development of nuclear power and nuclear weapons.

Nowadays actinides are still actively studied for nuclear applications, such as

medical tools, weapons, and as fuel in nuclear reactors. Lanthanides on the other

hand are used for a wide range of applications. The high probability of electronic

transitions between the 4f states makes them suitable for optoelectronic applications,

such as lasers, fluorescent materials, and optical-fibers for communication systems.

They are also added in sunglasses and lenses in order to deflect ultraviolet and infrared

radiation. Moreover, they are suitable for explosives and, e.g., lighter flints, because

they are highly reactive and burn easily when exposed to air. In compounds the

range of applicability grows further. Lanthanide oxides are used in superconductors,

magnets, electronic polishers, batteries, etc. Other applications emerge in medicine,

where lanthanides are used as anti-tumor agents and in kidney dialysis. For example

gadolinium is employed in magnetic resonance imaging as a contrasting agent, and

europium compounds are used in molecular genetics to mark specific strands of DNA.

Cerium finds application as a catalytic converter for the reduction of CO emissions

in diesel fuels, in the coloring of glasses and enamels, in steel manufacturing for the

reduction of free oxygen and sulfur, etc. Its oxides are particularly important for the

photo-stability of pigments, are used as components of glass polishing powders and

are employed as hydrocarbon catalyst in self cleaning ovens.

Although the properties of the lanthanide and actinide elements have been

investigated in depth only after the discovery of the first transuranium element, they

have become increasingly important for practical use. Nevertheless the behavior

of rare earths is still far from being fully understood. Despite the diverse range of

properties that industry and experimental physicists are able to harness, some of

their peculiar characteristics remain unexplained and somehow mysterious. The

best of all examples is the volume collapse that is present in some of the lanthanide
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and actinide elements [5] and continues to intrigue researchers from several fields of

modern physics.

Figure 1.1: Abundance of the chemical elements in earth’s upper continental crust as a
function of atomic number. Major industrial metals are labeled in bold, while precious
metals in italic. From Ref. [6].

1.2 Rare earth metals and volume collapse

Under compression, or by lowering temperature, some of the rare-earth metals display

an unusual behavior. In general, the lanthanides follow a structural change that goes

from hexagonal closed packed (hcp) to double hexagonal closed packed (dhcp), to

face centered cubic (fcc) and then to some distorted fcc structures, like distorted

fcc (dfcc) and α-uranium (α-U)1. But more interestingly a number of trivalent

lanthanides undergo a first-order phase transition, when temperature is decreased

or pressure increased, that is accompanied by a volume collapse and a change in

magnetic properties [7]. Such phase transitions were observed in the actinides series

too [8]. The most interesting elements in this regard are cerium (Ce), with a volume

1See Appendix A for a schematic representation of the different structures.
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collapse of 15% at room temperature [9, 10], praseodymium (Pr), with 9% [11, 12, 13],

gadolinium (Gd), with 5% [14], and dysprosium (Dy), 6% [15].

The volume collapse is evident in the room temperature pressure-volume curves

of Figure 1.2, where data for the first six elements with f electrons are reported.

While the symbols indicate the structural change, the thick gray horizontal lines

for Ce, Pr and Gd mark the jump in volume. For instance, praesidium displays an

abrupt change of the unit cell volume when transforming from the d-fcc structure to

the α-U one. Cerium shows the same behavior between two fcc phases that have

different magnetic properties. An isostructural phase transition accompanied by a

volume collapse is a very special and unexpected property for materials in general,

but even unique among metals and will be extensively examined in the next section.

Figure 1.2: Pressure-volume data for Ce, Pr, Nd, Pm, Sm, Gd. Different symbols identify
different crystal structures, while lines are guides to the eye. The volume collapse is marked
with orizontal thick lines. Under the label “cmplx” several closed packed structures are
included that are not further specified here. For clarity, the data and curves are shifted in
volume by the numbers (in Å3/atom) shown at the bottom of the Figure. From Ref. [5].

The mechanism of such an anomalous volume collapse was extensively discussed

in the past [16, 17, 1, 2], but has not been fully understood. After first attempts

from different perspectives, the general opinion has converged towards a mechanism

connected to a change in the behavior of the 4f electrons [18]. As already mentioned,
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and depicted in Figure 1.3, the f electrons are found with a much higher probability

in regions close to the nucleus than the 6s and 5d ones, and at the same time they

are very close in energy to them. A direct proof of this can be found in the way in

which orbitals are filled up along the lanthanide series. While La has one 5d electron,

Ce accommodates one electron in the 5d orbitals and one in the 4f ones, so that the

f electron appears before the 5d shell is fully filled. The next is Pr, which loses the

5d electron and switches to a configuration with three 4f occupied orbitals2. The

next element in which a 5d state is added again is found at the end of the series.

The energy of the f electrons with respect to the valence electrons, together

with their spatial distribution, gives rise to intricate phenomena such as, for example,

the lanthanides contraction (see Section 1.1). The theoretical speculations around

the nature of the volume collapse lead to the common understanding that an abrupt

change in 4f electron correlation, mediated or not by the s and d electrons, would

happen under compression and the f orbitals would turn from a localized state

in the low-pressure, high-temperature regime, to a bonding-like state in the high-

pressure one. The terms “itinerant” and “localized” are often used to describe the

nature of the electrons in the low and the high volume phases. But these labels

are only pictorial, as the description of the f states and the reasons of their abrupt

change in behavior from one phase to the other are still a matter of debate. The

suppositions around the mechanism of the transition will be discussed in Section

1.4, where it will become more clear that a deep understanding of the intuitive

localization-delocalization concept permeates the extensive investigations of the f

electron metals, representing for instance one of the biggest challenges for electronic

structure theory nowadays, and, quite important here, a strong motivation for this

thesis.

1.3 Cerium α-γ phase transition

Cerium was discovered by the Swedish chemists Jöns Jacob Berzelius and Wilhem

von Hisinger and independently by Matin Heinrich Klaproth, a German chemist, in

2It is interesting to note that there is no element in the periodic table with nominally two 4f
electrons.
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Figure 1.3: Radial densities of the 4f , 5d, and 6s valence shells in atomic cerium from
Dirac-Hartree-Fock calculations. From Ref. [19].

1803. It is the most abundant rare earth element and one of the most fascinating

members of the periodic table. Cerium is a malleable and ductile metal and its

phase diagram, shown in Figure 1.4, counts seven known distinct solid regions. The

different phases exhibit various crystal and magnetic structures. Some phases, like

the high pressure α′ phase, display superconductivity.

Cerium has 58 electrons. It is the second element in the lanthanide row and

has one 4f electron. Its atomic orbital configuration is 6s25d14f 1 in the ground state.

The presence of a single 4f electron makes cerium a case study for the understanding

of all f electron systems.

In the phase diagram the low-pressure, high-temperature β and γ phases, display

closed packed dhcp and fcc crystal structures, and a localized magnetic moment that

is close to the value of the free atom [9], 1 µ0. In the β phase antiferromagnetic

order arises below 300 K [21]. The α phase is also found in an fcc configuration

in the interval 0 ≤ T ≤ 200, but with a magnetic susceptibility that is essentially

temperature independent –in contrast to the other two phases. This implies that

there is no localized magnetic moment. At high pressures, the superconducting α′
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Figure 1.4: Cerium metal: phase diagram. Regions α, γ: face-centered cubic (fcc); β:
double hexagonal close packed (dhcp); δ: body-centered cubic (bcc); α′: α-U structure,
C-centered (based) orthorhombic; α′′: monoclinic; ε: body-centered tetragonal (bct); upper
region: liquid. CP denotes the critical point. From Ref. [20].

phase appears, accompanied by two other phases with complex –i.e. monoclinic and

body-centered tetragonal– crystal structure. The δ phase, squeezed between the γ

region and the liquid state, has a body-centered cubic (bcc) crystal structure.

Despite the richness of the cerium phase diagram, the most known and dis-

tinctive feature remains the so called α-γ phase transition: At room temperature

and pressure of around 1 GPa, the γ phase collapses into the denser α phase with

a volume change of 15% [9]. One key feature of this first order phase transition

is that the crystal structure is preserved (fcc in both states) despite the volume

collapse, and the magnetic properties of the two phases are different. First order

isostructural phase transitions with a volume collapse are very unusual, even for

lanthanides and actinides where, as mentioned in Section 1.2, a volume collapse can

occur, but it is accompanied by a structural change. Also distinctive is the presence

of a solid-solid critical point at pressure pc ' 1.5 GPa and temperature Tc ' 480 K

[9]. At the other extreme, the α-γ phase transition ends in a triple point, where the

β phase appears at low temperatures and low pressures. When the γ transforms

to the β phase no appreciable volume collapse is found and the γ and β regions

display similar magnetic properties. The collapse emerges instead when β-Ce turns

to α-Ce. The γ-β transition is similar to the one in lanthanum, where no f -electrons
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are present but the fcc phase transforms to the dhcp phase upon cooling. A possible

explanation is that the γ-β transition is a shear transformation dictated by the d

electrons, whereas the f electrons drive the γ-α and β-α phase transitions.

Hysteresis effects play an important role in the transitions between the γ, β and

α regions and complicate the study of the different phases. Two structures can easily

coexist, therefore phase identification methods like magnetism or conductivity mea-

sures are not suited for the problem and diffraction techniques are usually employed.

A temperature-pressure diagram that takes account of hysteresis contributions is

reported in Figure 1.5. In the following paragraphs a description of the physical

properties of α- and γ-Ce will be provided, for a better understanding of the α-γ

phase transition, along with an overview of the experiments that were performed

until the present time. As close neighbor to the two phases, properties for β-cerium

will also be discussed whenever relevant.

Figure 1.5: Non-equilibrium phase diagram of cerium. Arrows indicate the transition
direction: γ → α, transition boundary for the γ to α transformation; α → γ, transition
boundary for the α to γ transformation; γ → β, boundary for the γ to β transformation;
β → γ, boundary for the β to γ transformation. From Ref. [9].
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1.3.1 Number of f electrons

The first estimation of the number of 4f electrons in the α and γ phases was

provided by Gustafson et al. [22] by means of positron annihilation. When a

positron is placed into a metal it annihilates with a conduction electron emitting a

photon. By measuring the lifetime of the positron and the angular correlation of the

resulting photon it is possible to derive the number of conducting electrons and their

momentum distribution. Results from positron annihilation measurements showed

no change in the number of f electrons going from one phase to the other. This

invalidated the early hypothesis that the f electron would be promoted to d or s

states. The results were then partially confirmed by Compton scattering and neutron

scattering measurements [23, 24], which found 〈nf〉 ' 1 for γ-Ce and 〈nf〉 ' 0.8 for

α-Ce. In the latter study the authors also claimed to have evidence, from spectral

response analysis, for a localized nature of the f electrons in the α phase, suggesting

the presence of Kondo3 physics in the system and estimated the Kondo temperature

to be around 2000 K.

1.3.2 Magnetism

The magnetic susceptibility of α-Ce as a function of temperature and pressure has

been measured by several authors [25, 26, 27]. All studies agreed that the α phase

is essentially a Pauli paramagnet. That means the susceptibility of the material

is weak and reflects that of conduction band electrons. However, the value of the

susceptibility is 4.5 times higher than the expected Pauli susceptibility calculated

from heat capacity results.

The γ phase of cerium is also a paramagnet. The magnetic susceptibility obeys

however the Curie-Weiss law, as indicated by early studies [28, 21, 29]. In 1995

Naka et al. [30] measured the magnetic susceptibility of cerium as a function of

temperature and external magnetic field and deduced that the γ phase susceptibility

follows the expression

χ(T ) = χ0 +
Cγ

T − θp
, (1.1)

3See Section 1.4 for an introduction to Kondo physics.
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where χ0 is a constant suceptibility, , Cγ the Curie constant and θp the paramagnetic

Curie temperature, confirming the Curie-Weiss law. The pressure dependence of χ0

was found to be small (χ0 = 1.18× 10−4 emu/mol), and comparable to the one of

lanthanum, which has no f electrons. The value of θp (-57 K), on the other hand,

varied strongly with pressure, determining a suppression of the susceptibility with

increasing pressure [30].

To interpret the change in magnetic properties across the α-γ phase transition

the following localization-delocalization process is typically invoked. In γ-cerium the

4f electron would reside close to the nucleus. It would be unpaired and therefore

display spin degrees of freedom. In the α phase, on the other hand, the f electron

would be delocalized, hybridized with other f electrons or with conduction states

that would screen its spin. In this picture the discrepancy from the ideal Pauli

paramagnetism in the α phase could be attributed to a Stoner exchange enhancement

arising from a non-complete delocalization of the 4f states and a persistence of

localized magnetic moments. Stoner suggested in 1934 that an attractive contribution

Eex = −I/4(N↑ − N↓)
2 (where N↑ and N↓ are the number of spin up and down

electrons, respectively, and I is a material dependent parameter) should be considered

in order to describe the effect that localized electrons, when close to each other,

prefer to align their spin in opposite directions. Following this procedure the usual

Pauli susceptibility of a metal χp is increased according to the expression

χ =
µB

1− IN(EF)
χp (1.2)

where N(EF) is the density of states at the Fermi level.

The susceptibility of the β-phase also follows the Curie-Weiss law showing an

antiferromagnetic ordering of the local moments. The β and γ phases have often

been associated with each other mainly on the base of this difference with respect

to α-Ce. This follows following the hypothesis that in both phases the 4f electron

should be localized, and the delocalization of the f states would drive both the γ-α

and β-α volume collapse. In 2005, however, a study from Murani et al. [31] argued

that the magnetic form factor measured in neutron scattering would correspond to a

Ce3+ electronic configuration in all three phases, suggesting a persistence of the f

electron localization in α-Ce too. While there is a fair agreement on the observed
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magnetic properties of cerium, the debate on the existence of an experimental proof

for the localization-delocalization process is still ongoing and a consensus has not

been reached.

1.3.3 Electrical resistivity/conductivity.

Resistivity measurements for α-Ce are found in a number of studies by different

authors [32, 26, 33, 34, 35] but, as it is often the case for cerium, the results

are conflicting. The main dispute is whether the resistivity would follow a “T 2”

dependence at low temperature or not. A T 2 dependence is typical for metals with

exchange enhancement –see previous section–, and is expected as a consequence of

spin fluctuations in the low temperature regime [36]. A second expected feature for

exchange enhancement, the departure from a T law at higher temperature [37], was

not observed in any experiment. The discrepancy between different studies could be

attributed to the incomplete transformation from β- to α-cerium in some samples,

but no definitive conclusion has been reached. In the pressure range close to the

α′, α′′ phase (' 2.0 GPa), α-Ce is superconducting at extremely low temperatures

(' 20 mK), as emerges in high pressure studies [38].

The electrical resistivity of β-Ce has been measured by Gshneidner et al. [39]

and Burgardt et al. [40] from 300 to 100 K. The temperature dependence of the

resistivity is unusual. It decreases slightly between 300 K and 50 K, and then drops

suddenly below 20 K. The effect could not be explained by existing models for metals.

The authors noted that the high temperature resistivity could be fitted to a Kondo

model4 for scattering of conduction electrons from magnetic impurities. The rapid

drop would then be connected to a quenching of Kondo scattering by the magnetic

ordering in β-Ce. The electrical resistivity in γ-Ce was found to display nearly the

same temperature dependence as that of β-Ce, in the temperature range of stability,

but reduced by around 10%. Below 100 K however the γ transforms to the α phase,

and no information could be provided. Similarities between the two phases would

suggest that γ-Ce may also exhibit Kondo scattering, however no further analysis is

found in the literature.

4See Section 1.4 for an introduction to the Kondo physics.
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In 2001 Van der Eb et al. [41] studied the optical properties of cerium using

ellipsometry and grazing incidence reflectometry. They observed significant changes

in the optical conductivity, the dynamical scattering rate, and the carrier effective

mass between α- and γ-cerium. In γ-Ce the charge carriers showed a large scattering

rate in the far infrared and a carrier mass characteristic of 5d band electrons. In

the α-Ce, a Fermi-liquid frequency-dependent scattering rate was obtained, with

an effective mass of the carries about twenty times that of an electron: three times

larger than in the γ phase.

1.3.4 Spectral properties - occupied states

It has already emerged in the previous paragraphs that the valence electronic structure

of cerium has been a subject of uncertainty and controversy for a long time. In this

regard photoemission spectroscopy (PES) has been the most applied experimental

technique in characterizing the α and γ phases, because it gives direct access to

the electronic structure of materials. Numerous experimental studies have been

carried out by means of photoelectron spectroscopy [42, 43, 44, 45, 46, 47, 48],

X-ray absorption [49], X-ray photoemission spectroscopy [50, 51, 52], and inverse

photoelectron spectroscopy for the unoccupied states [52, 46, 53]. The reason for

the remarkable amount of studies can be found in the difficulty to extract the 4f

component from the spectra. As a consequence, the contribution of the f states

is ambiguous. The main subject of debate has been if 4f electrons are present at

the Fermi level (EF), and if yes, whether they would show distinctive features of

Kondo physics, as e.g. a clear peak at the Fermi level. In fitting the data to the

Kondo model, however, neither a simple one-electron band nor a pure core-level

description of the f states suits the case of cerium, and the processing of the results

strongly influences their interpretation [54]. Moreover, electron spectroscopies are

highly surface sensitive and this further complicates the understanding of the bulk

properties of cerium, where the surface is believed to be of a γ nature even in the α

phase [47].

Early measurements of the α and γ phase were performed in 1984 by Jensen et

al. [55] by means of angle resolved photoemission spectroscopy on cerium crystals.

The authors observed the presence of two main peaks, one at the Fermi level and



1.3. Cerium α-γ phase transition 19

one at around 2 eV binding energy. Several other experiments followed and in 1992

Liu et al. made a first attempt to reconcile all the available results in a unique

framework [46]. Nowadays the results obtained in 1991 by Weschke et al. [44] are

generally taken as the reference for the cerium PES spectra. In previous studies, two

spectra taken with incident photon energies of He I and He II (hν = 21.2 eV and

hν = 40.8 eV respectively) were subtracted in order to extract the bulk contribution

of the emission. Weschke et al. instead, being aware of the fact that low photon

energy emission carries a big contribution from the valence band electrons and it

is surface sensitive, performed resonant photoemission measurements at incident

photon energies of hν = 120 eV and hν = 884 eV, the 4d→ 4f and 3d→ 4f energy

resonances, respectively. The outcome, shown in Figure 1.6, confirmed the presence

of the two main peaks, and a splitting of the peak next to the Fermi level, that the

authors assigned to spin orbit splitting.

Figure 1.6: 4d → 4f resonant photoemission spectra of γ- and α-Ce. The inset shows
the region close to the Fermi level. The total energy resolution is 40 meV. The splitting of
peak A is evidenced in the inset. For comparison a normalized off-resonance spectrum of
α-Ce metal is included. From Ref. [44].
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1.3.5 Spectral properties - unoccupied states

Only few inverse photoemission spectroscopy (IPES) studies are available for cerium.

This is unfortunate, because the main part of the 4f states resides above the Fermi

level. Nevertheless, some results were acquired by Wuilloud et al. [52] from a sample

of polycrystalline cerium undergoing a temperature driven α-γ phase transition, and

by Grioni et al. [53], who performed resonant inverse photoemission spectroscopy

(RIPES) on thin films.

Figure 1.7: Left: combined PES and IPES spectra for the α and γ phases from Weschke
et al. [44] and Wuilloud et al.[52]. The spectra are characterized by a three peak structure,
typical for cerium. Right: RIPES spectra of α-Ce (solid symbols) and γ-Ce (empty symbols)
measured at the maximum of the high energy peak resonance by Grioni et al. [53].

The combination of IPES results from Wuilloud et al. and PES data from

Weschke et al. [44] is shown in Figure 1.7. What emerges is a significant difference

between the spectra of the α and γ5 phase near the Fermi level. The basic structure

of all spectra is similar. It shows three peaks located at around -2 eV, the Fermi level,

and 4 eV. The largest difference is in the central peak, and is even more pronounced

than observed in photoemission spectroscopy. As in the PES studies the authors

associated this behavior with a Kondo resonance emerging from the hybridization

of f and conduction states. However, we will show in Section 1.4 that this is not

the only explanation. The results from Grioni et al.6 confirm the observation of

5The γ phase was measured at room temperature and the α phase at 80 K. The pressure was
kept at 1× 10−11 Torr for the whole experiment.

6The γ phase was measured at 300 K and the α phase at 20 K. The pressure was kept at
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Wuilloud et al., but, even if the two spectra are similar, the one from Grioni et al.

has an increased spectral weight at the Fermi level and displays a contribution to

the peak at Ef also in the γ phase.

In 2004 Dallera et al. [56] and Rueff et al. [57] performed bulk-sensitive x-ray

absorption (XAS), resonant x-ray emission (RXES) and resonant inelastic x-ray

scattering (RIXS) measurements, confirming the presence of the three-peak structure

in the spectra. As already observed in IPES, the estimated ratio between the peak at

high energy and the one at the Fermi level has a sharp drop across the α-γ transition.

1.3.6 Symmetry change

In 2008 and 2011 two studies from Lipp et al. [58] and Decremps et al. [59] analyzed

the volume collapse in cerium using high precision x-ray diffraction techniques. The

two studies agree on the isomorphism of the α-γ phase transition, excluding a change

from the fcc to distorted-fcc structure that is observed in other lanthanides. They

performed measurements from room temperature up to 600-800 K, and confirmed

the presence of a solid-solid critical point at Tc ' 460 K and pc ' 1.5 GPa. The

results from Decremps are presented in Fig. 1.8. They show a clear hysteresis region.

The inset displays the different contributions to the free energy that are derived from

the experimental data.

Based on previous theoretical works [4, 62, 63] that propose a change in

symmetry between the α and γ phases, in 2010 Tsvyashchenko et al. [64] measured

the electric field gradient (EFG) of 111Cd probe nuclei in solid Ce using time-

differential perturbed angular correlation spectroscopy (TDPACs). TDPACs is a

nuclear spectroscopy method in which the electric quadrupole hyperfine interaction

(QHI) is determined by introducing 111In/111Cd probe nuclei into the sample under

examination. From the QHI, the EFG can be directly obtained at a lattice site

and the nuclear quadrupole frequency can be determined. Tsvyashchenko et al.

found that the value of EFG in the α phase is four times larger than in the γ phase.

The results were interpreted as evidence for quadrupolar electronic charge-density

ordering in the α phase and symmetry lowering in the γ-α transition. In this case

1× 10−10 Torr for the whole experiment.



22 Chapter 1. Rare earths and Cerium

Figure 1.8: Pressure vs temperature phase diagram of cerium with hysteresis effects
(dotted lines, as guides for the eye). Black solid curve: thermodynamic transition line.
Filled squares: data from reference [58]. Filled triangles: data from reference [60]. Inset:
temperature dependence of the volume collapse (right scale, triangles) and energetic terms
(left scale). From Ref. [59]. The energetic terms are obtained using the continuity of the
Gibbs free energy at the transition and the Clausius-Clapeyron relation as described in
Ref. [61] and Section 1.3.7.

the nuclei would remain in face-centered cubic structure in both phases, but the

symmetry of the α phase would be lower than the symmetry of the fcc crystal. The

underlying mechanism and the implications of this outcome will become clear later

and will be explained in Section 1.4.5.

1.3.7 Entropic contributions

The role of entropy in the α-γ phase transition was first pointed out by Amadon et

al. [61] in 2006. Based on experimental data, the authors gave an estimation of the

change in Gibbs free energy considering the internal energy (here ∆E, for consistency

with the authors), as well as entropic (T∆S) and volume (p∆V ) contributions.

Taking dp/dT and ∆V from experiments, they derived the different terms using the

Clausius-Clapeyron relation
dp

dT
=

∆S

∆V
(1.3)
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and the continuity of the Gibbs free energy

∆E − T∆S + p∆V = 0. (1.4)

The results are reported in Figure 1.9. Very similar conclusions were reached later

by Decremps et al. [59] (Figure 1.8). Noticing that at room temperature entropic

effects dominate, the authors concluded that a study of only the electronic properties

of the system would not be sufficient for understanding the driving mechanism of

the transition.

Figure 1.9: Variation of different contributions to the entropy between the α and γ phases
across the transition (dotted lines are extrapolations based on the exact limit at Tc). From
Ref. [61]. The data are compiled from experimental values taken from [60] (circles) and
[65] (squares).

The entropic change across the transition includes two different contributions,

that arise from both lattice and electronic degrees of freedom. The role of phonons

in the α and γ phases was estimated in several studies. In 2004, high-pressure X-ray

and neutron diffraction measurements on polycrystalline cerium by Jeong et al. [66]

suggested a vibrational contribution ∆Sγ−αvib ≈ 0.75 kB –at room temperature–, that

would account for half of the energy change across the transition. The value agreed

with earlier estimations of ∆Sγ−αvib [9] but was in contradiction with the inelastic

neutron scattering results of Manley et al. on a Ce0.9Th0.1 alloy [67], where the
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change in entropy was suggested to be negligible. Further analysis was provided

by ultrasonic investigations [68, 69], where the vibrational contribution to the total

entropy change was estimated to be on the order of 15%, and by a combined

high-pressure and high-temperature X-ray diffraction study [58], which suggested

∆Sγ−αvib /∆Sγ−αtot ≈ 50%. Both values refer to room temperature. In 2011, Krisch et al.

[70] provided results based on inelastic X-ray scattering. The lattice contribution to

the phase transition was found to be around 0.33 kB. Using the Clausisus-Clapeyron

relation dP/dT = ∆Sγ−αtot /∆V γ−α, this would account for around ≈ 50% of the

entropy variation.

Despite this uncertainty, one thing is clear: phononic degrees of freedom account

for only half of the energy change at most; the other half has to be of electronic

nature. This motivates the effort that is put in to the study of the f electrons. A

deep understanding of the f electron behavior would clarify the driving mechanism

of the α-γ transition. Several theoretical models have been formulated, and are

presented in the next section. Starting from the very basics of quantum mechanics,

ab initio calculations are used to investigate materials from a different perspective

than model studies. The ab initio study of cerium will be the main subject of this

thesis.

1.4 Theoretical models for the α-γ phase

transition

The nature of the transformation in cerium metal from the γ to the α phase has

been a matter of debate for a long time and different theories have been applied to

understand its behavior. In general, the intuitive picture of 4f electrons undergoing

a localization-delocalization process has always been prevalent, but the mechanism

that would drive this change has been connected to different scenarios and still no

conclusion has been reached. In the following, we will provide a summary of the

most important theoretical models.
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1.4.1 Promotional model

In 1947 and 1950 Pauling [16] and Zacharisen [17] suggested independently that the

localization-delocalization process in cerium could be connected to a promotion of 4f

electrons to the conduction band, (5d6s)34f 1 →(5d6s)44f 0. The model accounts for

the large volume collapse because the 4f electron in α-Ce would no longer shield

the valence electrons from the nuclear charge and therefore make them more tightly

bound, reducing the volume in the process. Simultaneously, the promotion would

transform the solid from trivalent to tetravalent and the magnetic moment connected

with the 4f electrons would be lost. An extension of this picture was given by Ramirez

and Falicov [71], who included the Coulomb interaction between the localized f states

and the conduction band states in the model, and Coqblin and Blandin (1968) [72],

who added a compensation of the spin of the 4f electron by the conduction electrons

with increasing pressure.

The models fit some experimental observations, but were eventually abandoned

when new findings emerged. In particular positron-annihilation experiments (see

Section 1.3.1) suggested that the 4f orbitals would not change their occupation

much across the transition (1.0 → 0.8). Moreover, the promotional model would

require the 4f level to lie very close to the Fermi energy, so that the energy needed

to promote the 4f electron would be on the order of the energy gain in the phase

transition. This is in contradiction with photoemission experiments, which place the

4f states at around 2 eV below the Fermi energy, and would imply that the work

needed to compress the γ into the α phase would be around two orders of magnitude

higher than the measured value.

1.4.2 Mott transition

A localization-delocalization model that does not require a change in the number of

f electrons was suggested in 1974 by Johansson [1]. According to the Johansson,

the behavior of the f electrons in cerium could be associated to that of the valence

electrons in a Mott metal-insulator transition [73, 74]. The transition would take

place as follows. In the high volume, low pressure γ phase the f electrons feel an

inter-site Coulomb repulsion due to their localized nature, sit close to the nuclei and
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display a magnetic moment. Upon compression the energy cost of on-site double

occupation due to the Coulomb interaction is compensated by the gain in kinetic

energy by the formation of a conduction band. The f states subsequently hybridize

with each other and the system relaxes into a state of lower volume and vanishing

local spin moment.

This mechanism was formulated mathematically by Hubbard in 1963 [75] for

interacting particles on a lattice. The so called Hubbard model (expressed in second

quantization) reads as follows

H = −t
∑
ij,σ

(c†i,σcj,σ + h.c.) + U
N∑
i

ni,↑ni,↓ (1.5)

where i and j are nearest neighbors of an N site lattice, c†i,σ and ci,σ the creation and

annihilation operators, ni,σ the density operator, t the hopping coefficient and U the

on-site repulsion term. Each site can be empty, singly occupied or doubly occupied.

The Hamiltonian therefore has two main features: a kinetic term that describes the

hopping of particles from one site to the other, with probability proportional to the

coefficient t, and an on-site repulsion term that accounts for the energy cost of double

occupation U . The physics of the problem is dictated by the balance between U

and t, the latter being proportional to the bandwidth W . In the infinite separation

limit, the energy levels of a single site are simply ε and ε + U , representing single

and double occupation. When the sites are brought together, as atoms in a solid for

instance, the two energy levels form distinct bands, that are commonly called lower

and upper Hubbard bands. Upon compression the bandwidth W increases, and the

on-site U shrinks, the two Hubbard bands come closer and eventually overlap. The

usual band model is then recovered and the equivalent of a Mott metal-insulator

transition is realized.

According to the Mott transition model, the 4f orbitals are slightly localized at

well separated lattice sites in the γ phase, and in the α phase they form delocalized

bands. In the first case, magnetic states emerge, while in the second the system

follows a Pauli paramagnetic behavior, as is observed in experiment. In the work by

Johansson, the estimated Coulomb interaction produced a bandwidth that was too

small compared to the experimental photoemission bandwidth. However, practical
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calculations for cerium are complicated by the presence of a conduction band already

filled with three 6s5d electrons in both phases and close in energy to the 4f states.

The presence of the 6s5d electrons could reduce the intra-atomic repulsion U due

to screening effects, and also affect the 4f wave functions radial distribution. The

interplay between the two effects would then be very difficult to describe. In other

lanthanides the screening of outer electrons has already been proven to drive the

lanthanide contraction (see Section 1.1). The idea of Johansson was adopted and

developed in a number of theoretical papers, some of which have calculated the P -T

phase diagram explicitly [76, 77, 78], with satisfactory agreement with experimental

data.

1.4.3 Kondo volume collapse

In 1964 Jun Kondo introduced a model to explain the minimum in the resistivity-

temperature curve observed experimentally in several dilute magnetic alloys [79]. He

associated the behavior of the resistivity with the presence of localized magnetic

moments of impurity atoms and formulated a theory in terms of the scattering

probability for the spin of conduction electrons and impurities. The outcome was

a temperature dependent resistivity with an attractive interaction between the

conduction and localized electrons, favoring antiparallel spins. The model predicts a

logarithmic dependence of the resistivity on temperature, which originates in the

dynamical character of the localized spin system.

The Kondo physics can be approximated by the periodic Anderson model [80].

The Hamiltonian is similar to the Hubbard model

H =
∑
k,σ

εkc
†
k,σck,σ + V

∑
i,σ

(c†i,σfi,σ + h.c.) + U
N∑

i∈{f}

ni,↑ni,↓ (1.6)

but now the kinetic energy has two contributions: one from the localized f and

the other from the conduction electrons c. f and conduction electrons hybridize

with a strength proportional to V . The periodic Anderson model connects Mott-like

problems to a band of itinerant electrons.

The idea of Kondo was taken and adapted to the case of cerium by Allen and
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Martin, and Lavagna et al. in 1982 [2, 81, 3], who formulated what is now known as

Kondo volume collapse (KVC). In the KVC model the localized states are identified

with the 4f orbitals, and the itinerant ones with the conduction sd electrons. The

α-γ phase transition is then explained by a rapid change of the Kondo temperature

(TK) of the system. The Kondo temperature is the critical parameter of the model.

Above TK the hybridization between the localized states and the conduction band is

small. It is dictated by scattering processes and the conductivity displays a strong

logarithmic temperature dependence. Below TK, the localized magnetic moments

become completely screened by the delocalized states and Kondo singlets (couples of

one spin up and one spin down electrons) are formed. According to the model, a rapid

variation of the hybridization between the f and sd wave functions under pressure

(or decreasing temperature) would cause the Kondo temperature of cerium to change

from TK ≈ 70 K in the γ phase to TK ≈ 1700 K in the α phase [82]. Around

ambient conditions the material would be unstable with respect to the formation of

Kondo singlets: while in the γ phase it would lie well above its Kondo temperature,

the opposite would happen in the α phase. By temperature decrease, the sudden

formation of Kondo singlets would remove the contribution of spin fluctuations to the

entropy, causing the free energy to decreases abruptly with the subsequent volume

collapse. The main argument in favor of the KVC model comes from spectroscopy

experiments [83, 84, 46]. The increased spectral weight just above the Fermi level

(the Kondo peak), that is observed in photoemission in the α phase and not in the γ

phase, would be the signal of a typical Kondo resonance of virtually bound f and sd

electrons.

1.4.4 Mott transition versus Kondo volume collapse

The main difference between the Mott transition and the Kondo volume collapse is

that in the Mott picture the 4f electrons are localized in the γ phase and delocalized

in the α phase, while in the KVC the f states remain localized in both phases, and

only contribute to cohesion through the interaction with the conduction electrons.

Johansson [76] has criticized the Kondo volume collapse model because the

transition line in the P -T phase diagram bends upward, in contrast to the linearity

that has been observed experimentally [9] and that is obtained in the framework of
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the Mott transition. The Mott picture, on the other hand, suffers from inconsistent

energy scales. The delocalization of f orbitals would require energy changes across

the transition on the order of the Coulomb repulsion U , that is estimated from

photoemission experiments to be about two orders of magnitude greater than the

free energy change.

The Kondo scenario, while being motivated and supported by the interpretation

of several spectroscopic data sets [54, 52, 46], was criticized in subsequent photoemis-

sion studies which revealed discrepancies between the data and the fitting procedures

[45, 85, 86]7. Probing heavy-fermion compounds containing cerium –which are be-

lieved to approximate cerium metal reasonably well and for which the different phases

can be explored in wider temperature ranges–, Joyce et al. in 1992 [45] performed

measurements on the localized phase at lower temperatures than the ones available

for γ-Ce and observed that the spectral weight of the feature near EF, the Kondo

resonance, does not scale with TK as expected. However, the conclusions from the

authors were criticized by Patthey et al. [88] in 1993, who suggested agreement of the

same data with the KVC. The temperature invariance of photoemission spectra was

also observed in Yb-based Ce compounds [89]. As evidenced by Andrew et al.[85],

against the KVC also stands the amplitude variation with momentum k in the 4f

bands, because, within the impurity model, the Kondo peak has no k dependence by

construction [85]. The k -dependence of the 4f bands can instead be explained by a

Mott-like interpretation of the α-γ transition [90, 91, 92]. In 1998 a study by Wesche

et al. [47] further complicated the situation, showing that, at low temperatures, the

photoemission spectra of Ce, characterized by the peak at the Fermi energy, is very

similar to that of lanthanum, that has no 4f electrons.

Despite the numerous attempts to support one or the other model, it appears

that a conclusive interpretation of the results has not yet been achieved. The last

diatribe on the analysis of the same set of data is recent and dates back to 2009.

Lipp et al. [58] and subsequently Johansson et al. [93] were able to reproduce the

same P -T phase diagram and the same temperature dependence of the bulk modulus

as derived from X-ray diffraction for both the Kondo volume collapse and the Mott

transition model.

7We refer to [87] for a review of successes and failures of the KVC in describing photoemission
experiments.
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The Mott and Kondo volume collapse models have always been considered

mutually exclusive, but in the last ten years the opinion has slightly changed. For

instance, numerical results from dynamical mean field theory (DMFT)8 have revealed

strong analogies between the Hubbard and the periodic Anderson model [94], see

Figure 1.10. In 2010, Streltsov et al. [95] remarked on the importance of the inclusion

of inter-site f -f Hubbard-like hybridization in the Anderson impurity calculations

for cerium. They argued that, while for cerium containing heavy fermion compounds,

such as CeCu2Si2, the f -f hybridization can be neglected and the periodic Anderson

model gives reasonable results, for cerium metal the f -f hybridization, introduced by

the kinetic hopping term of Equation 1.5, is comparable to the hybridization between

4f and conduction band electrons. They therefore remarked that the best way of

approaching cerium would be through the most general Hamiltonian combining both

the Hubbard and the Anderson model.

1.4.5 Quantum charge density fluctuations

Based on the observation that electron interactions of quadrupolar origin drive

symmetry lowering phase transitions in many lanthanide and actinide compounds

[96], and following an idea of Eliasbergh and Capellmann [97], Nikolaev and Michel

suggested a new driving mechanism for the α-γ phase transition in a series of works

[4, 62, 63]. Eliasbergh and Capellmann initially pointed out that a first order phase

transition should imply a symmetry change according to Landau theory. This would

be connected to a not yet observed change in lattice structure from fcc to distorted-fcc

between the two phases of cerium. However, X-ray diffraction measurements did not

provide evidence for such a symmetry breaking, and, in 2008, this hypothesis was

excluded by Lipp et al. [58]. Nikolaev and Michel then suggested that the phase

transition could be accompanied by a special symmetry change from the Fm3m to

the Pa3 space group. According to the authors, the atomic centers of mass remain in

the fcc structure in both phases, while the symmetry of the electron density changes

across the transition. As depicted in Figure 1.11, the orientational order is of a

quadrupolar nature, where α-Ce represents the ordered phase. While in γ-Ce the

quantum oscillations between degenerate localized f states lead to charge density

8Refer to Section 2.5.3 for an introduction to DMFT.
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Figure 1.10: Spectral function of the periodic Anderson model according to DMFT
calculations (solid line) in the (a) localized and (b) delocalized regime. Dashed lines are
results from quantum Monte Carlo simulations. In the inset the results for the Hubbard
Hamiltonian for the same parameters are reported. The similarities between the two models
are remarkable. From Ref. [94].

fluctuations, which manifest as a repulsive Coulomb interaction. In the α phase

the repulsive contribution suddenly drops because of the charge alignment, and the

volume of the fcc crystal consequently collapses.

This mechanism would predict a linear increase of the transition temperature

with pressure, fixing for instance one of the failures of the Kondo volume collapse

model. However, while presenting an attractive alternative to the Mott and Kondo

models, the symmetry change alone would estimate the transition energy to be two

orders of magnitude smaller than the observed experimental one [62]. Nikolaev and

Michel therefore refined the theory, adding an on-site Hubbard-like repulsion term

for the f electrons and hybridization between f and conduction states in the spirit

of the Anderson impurity Hamiltonian [62, 63]. They suggested that the change in
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Figure 1.11: The Pa3 fcc structure of the ordered α phase which gives rise to four distinct
sub-lattices (n1-n4). Grey dark quadrupoles correspond to inner 4f electron densities and
white quadrupoles to outer conduction electron densities with opposite sign. From Ref.
[62].

symmetry could be the “real” driving force of a further energetic stabilization coming

from Mott-KVC contributions. The model found partial support in the experiments

of Tsvyashchenko et al. in 2010 [64], who measured the value of the electron field

gradient in the α phase to be four time larger than the one in the γ phase9.

Still there is no consensus about which of the scenarios discussed above is

the one that fully describes the α-γ phase transition. It could be that the com-

plete explanation of the volume collapse would require ingredients from all of the

approaches.

1.5 Cerium clusters

The importance of understanding the behavior of f electrons and their role in the

α-γ phase transition has been stressed in the previous sections. It has also been

pointed out that cerium, with its single 4f electron, is the easiest system for studying

the behavior of f electrons. An interesting question to ask in this context is then if

the phase transition persist on the nanoscale, i.e., for cerium clusters.

9Refer to Section 1.3, “Symmetry change”, for more details.
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By studying clusters instead of bulk, the role of 4f electrons in the formation

of chemical bonds could become clearer, for better understanding of bond formation

in the solid. Although experimental studies on lanthanide and actinides clusters are

scarce, due to the difficulties in the synthesis of these elements, some investigations

can be found in the literature [98]. They are mainly focused on the simplest system:

the dimer.

The cerium dimer has been studied by resonance Raman spectroscopy in an

Ar matrix [99] and ionization potentials and spectroscopic data were collected. A

stretching frequency of ωc = 245.4± 4.2 cm−1 was reported, but no further extensive

investigations were performed. The topic was addressed with theoretical methods

only in recent years, and some proposals on the structure and nature of the bonding

were provided by quantum chemical calculations [100, 101]. In 2010, Nikolaev et

al. [102] attempted an analytical solution in a valence bond model with two 4f

electrons localized at two cerium sites. The authors mainly confirmed the outcome

of previous calculations, assuming a triple chemical bond of the 6s and 5d states in

a (6sσg)
2(5dπu)4 configuration, and several almost degenerate states available to the

localized f electrons.

The study of rare earth clusters constitutes a new interesting challenge for

both experiment and theory. In particular for cerium, it would be of great interest

to know whether the volume collapse is an intrinsic property of electron bonding,

that carries from the dimer to the bulk, or, for example, is caused by collective

phenomena, like the interaction between the electronic structure and the vibrational

degrees of freedom of the lattice.

An eventual volume-collapse at the nano-scale would also be a great finding per

se. It could open the way for new and unique nano tools. Cerium clusters assembled

as nano-towers could become, for example, optically switchable length actors or

grouped as rings around nano-capillaries they could act as optically activated valves.
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1.6 Summary

Rare earth are heavy elements characterized by the presence of f electrons. Despite

their historic name, they are abundant in the earth crust and increasingly used for

practical applications. Their properties and their physical behavior are not yet well

understood, and subject of intensive research from both the experimental and the

theoretical point of view.

Among the features that characterize rare earth metals, the presence of a phase

transition accompanied by a volume collapse is surely one of the most intriguing.

Most notably, in cerium the transition involves two phases that share the same

crystal structure. The cerium isostructural α-γ phase transition is accompanied

by a volume collapse of around 15% at room temperature and a change in the

magnetic properties of the material. Experimental characterizations of the α-γ phase

transition have been carried out for many decades now, but only partial consensus

on the physical properties of the two phases has been reached. In this context a large

debate concerns the interpretation of photoemission data. This hinders a complete

understanding of the phase transition. Different theoretical models were proposed to

address the driving mechanism of the volume collapse, and are found in agreement

with one or the other experimental evidence. The Mott transition and the Kondo

volume collapse are the most popular models and underlined the role of f electrons.

However, these models contain adjustable parameters, and only describe the physical

phenomena that are explicitly included in the theory.

Nevertheless, an ongoing discussion on which theory would better describe the

differences between the α and γ phases makes cerium one of the most studied elements

among the rare earth. Calculations that do not rely on model assumptions and are

based on a description of the system from the first-principles of quantum mechanics

also tried to address the problem. An additional advantage of first-principles methods

over theoretical models is that they are transferable. If they work for cerium, for

instance, other lanthanides can be studied with the same approach. As it will be

shown in the next chapters, this thesis intends to contribute further in this direction.



2 Theoretical Methods for

Electronic Structure

Calculations

2.1 The many-body problem

Any relevant physical property of real materials can in principle be described ab

initio by the laws of quantum mechanics. In a non-relativistic regime the bahavior of

any system of interest is governed by a Hamilton operator (Ĥ) and a wave function

(Φ) that, entering the corresponding Schrödinger equation, represent “the problem

to be solved”. The Schrödinger equation is a complex differential equation that leads

to the energy (E) and the spatial probability distribution (|Φ|2) of the ensemble of

electrons and nuclei in a given system. Neglecting the spin of electrons and nuclei it

assumes the general form

ĤΦ({Rα}, {ri}) = EtotΦ({Rα}, {ri}) (2.1)

where Φ is the many body wave function that depends on the spatial coordinates

of the nuclei ({Rα}, α = 1, ...,M for M atoms in the system) and of the electrons

({ri}, i = 1, ..., N , with N being the total number of electrons).

35
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The Hamilton operator in the absence of external fields1 is

Ĥ =−
N∑
i=1

1

2
∇2
i −

M∑
α=1

1

2Mα

∇2
α +

1

2

N∑
i 6=j

N∑
j

1

|ri − rj|
+

1

2

M∑
α 6=β

M∑
β

ZαZβ
|Rα −Rβ|

−
N∑
i

M∑
α

Zα
|ri −Rα|

(2.2)

where Mα is the mass of nucleus α and the first two terms represent the kinetic energy

of electrons and nuclei, respectively. The third term is the Coulomb interaction

between electrons, the forth the Coulomb interaction between the nuclei and the last

term the electron-nuclei interaction.

The Schrödinger Equation 2.1 with the Hamiltonian 2.2 is actually impossible

to solve exactly for most of systems of interest. A series of approximations and

methods were therefore developed in the past to reduce the complexity of the problem.

This chapter summarizes those approaches that proved to be useful in the course of

this thesis.

The contribution of non-adiabatic coupling to the electronic properties is

neglected in what follows. Considering that the nuclei are much heavier than the

electrons –the proton mass is approximately 2000 times larger than the electron

mass– the motion of electrons and their response to excitations is a few orders of

magnitudes faster than that of the nuclei. Therefore, a simplification to the problem

is to assume that it is possible to decouple the dynamics of electrons and nuclei. This

assumption is referred to as Born-Oppenheimer approximation [103]. The original

Schrödinger equation can hence be separated into two coupled equations

Ĥ ′(r,R)Ψ(r,R) = ERΨ(r,R) (2.3)[
ĤN(R) + ER

]
Γ(R) = EtotΓ(R). (2.4)

The ionic potential occurs only parametrically in the first equation, that describes the

motion of electrons in an external field generated by frozen nuclei, and the electronic

contribution in Equation 2.4 is the adiabatic term ER, which acts as an attractive

1And in atomic units ~ = me = e2 = 1, ε0 = 1/4π.
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potential on the lattice of ions.

Equations 2.3 and 2.4 do not always apply. For example they are not satisfied

in a metal-superconductor phase transition, where electrons form Cooper pairs due

to the interaction between electrons and lattice vibrations. Superconductivity is a

well known phenomena in which the electron-phonon coupling becomes important

and the Born-Oppenheimer approximation breaks down. However, for many systems

of interest, the Born-Oppenheimer approximation works, and evaluating Equations

2.3 and 2.4 produces meaningful physical results.

In condensed matter physics Equation 2.4 is usually rewritten in a classical

flavor, because the De Broglie wave length associated to nuclei is much smaller than

the inter-atomic distances. Equation 2.3 then becomes “the problem to be solved” in

cases where the electronic behavior is crucial for the understanding of the system’s

properties, as in the case for instance in cerium and the α-γ phase transition. It

is still a very complicated expression, where the term describing the interaction

between electrons would require the knowledge of 3N variables for a system of N

electrons. Handling such a vast number of variables explicitly for real systems is

computationally not tractable and approximated methods have been introduced to

deal with the problem. The most important and also more relevant for this work

will be discussed in the next Sections.

In general, these methods are build on the independent particle approximation,

in which the electronic Hamiltonian takes the form

Ĥ ′ =
∑
i

Ĥi (2.5)

and the electrons wave function can be written as products of single particle wave

functions. This leads to a separation similar to the one already achieved between

electrons and nuclei. To perform such a separation, the initial Hamiltonian

Ĥ ′ = −
N∑
i=1

1

2
∇2
i −

N∑
i

M∑
α

Zα
|ri −Rα|

+
1

2

N∑
i 6=j

N∑
j

1

|ri − rj|

= T̂e + V̂ ext +
1

2

∑
i 6=j

vij(|ri − rj|)
(2.6)
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is reformulated in terms of an additional one-body potential Ωi such that

Ĥ ′ =

(
T̂e + V̂ ext +

∑
i

Ωi

)
︸ ︷︷ ︸

Ĥ0

+

(
1

2

∑
i 6=j

vij(|ri − rj|)−
∑
i

Ωi

)
︸ ︷︷ ︸

Ĥres

= Ĥ0 + Ĥres

=
∑
i

Ĥ0
i + Ĥres

(2.7)

where a convenient choice of Ωi can provide a small Ĥres, that can be treated as a

perturbation or neglected.

2.2 Hartree-Fock Theory

The fermionic nature of the electrons imposes the Pauli exclusion principle as an addi-

tional constraint. One possible way that automatically produces a Hamiltonian of the

form 2.7, is to construct the many-body wave function in an anti-symmetric fashion.

This is achieved by writing the electronic wave function as a Slater determinant of

single-particle wave functions

Ψ(r1, r2, ..., rN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1(r1) ψ1(r2) . . . ψ1(rN)

ψ2(r1) ψ2(r2) . . .
...

. . .

ψN(r1) . . . ψN(rN)

∣∣∣∣∣∣∣∣∣∣
. (2.8)

Taking the expectation value of the Hamiltonian in Equation 2.6 with respect to the

newly introduced wave function leads to an energy functional that can be minimized

variationally. Additionally, constraining the single-particle orbitals to be normalized
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(i.e. 〈ψi(ri)|ψj(rj)〉 = δij) gives the single particle Hartree-Fock2 (HF) Equations

ĤHF
i ψi(ri) =

[
−∇

2

2
+ vext(ri) + vH(ri) + v̂EX(ri)

]
ψi(ri)

= εiψi(ri)

(2.9)

where the kinetic energy term T̂e and the external potential V̂ ext are unchanged

from Equation 2.6, now just divided in the single particle contributions, with V̂ ext =∑N
i=1 v

ext(ri). The third term in 2.6, the interaction among electrons, produces two

additional operators vH and v̂EX. The first is called the Hartree potential and reads

vH(ri) =
N∑
j=1

∫
|ψj(rj)|2

|ri − rj|
drj

=

∫
n(rj)

|ri − rj|
drj,

(2.10)

where

n(r) = N

∫
dr2, ..., drN |Ψ0(r1, r2, ..., rN)|2. (2.11)

It takes account of the mean-field Coulomb interaction between the ith electron and

the total electron density n(r) as defined in 2.10. The second can be written in its

integral form

v̂EX(ri)ψi(ri) =
N∑
j=1

∫
drjψ

∗
j (rj)

1

|ri − rj|
ψj(ri)ψi(rj). (2.12)

It is known as exchange potential and takes account of the antisymmetric nature of the

total wave function. When two particles have the same coordinates the Hartree and

exchange potential cancel each other, so that the spurious self-interaction, formally

build into the Hartree potential by summing over all electrons, is eliminated.

The solution of the Hartree-Fock equation are the HF orbitals. However,

the orbitals are also part of the equation and the problem must then be solved

self-consistently. Starting from an initial guess for the orbitals the density and

2From Hartree [104], who first postulated the factorization of the wave function in single particle
states in 1928, and Fock [105], who refined the method by introducing the Slater determinant.
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the potentials are derived. The equation is solved, new orbitals and hence a new

density are obtained, and the process is iterated until the latter do not vary anymore

according to determined convergence criteria.

The exchange operator v̂EX(ri) is usually referred to as a non-local operator,

in view of the fact that calculating its mean value on a state ψi(ri) requires the

knowledge of ψi not only at position ri but throughout all space. Evaluating v̂EX

is already a non trivial task but the HF equations approximate the full many-body

electronic problem in a way that leaves out important contributions. What is not

considered is usually referred to as correlation –that here represents Ĥres of Equation

2.7– and, even if normally small compared to the total energy of the system, its

contribution can be crucial for many of the systems. The correlation contribution

to the Hamiltonian takes mainly account of the fact that one electron is screened

by others from the interaction with the nuclei and more distant electrons. The HF

method therefore is usually suitable for systems in which particles do not “feel” each

other much, and they are quite separated in energy, like in atoms, molecules and

insulators. HF performs badly when electrons are large in number and close in

energy, like metals.

2.3 Density-Functional Theory

Another widely used way of approaching the problem presented in Section 2.1 is

density-functional theory (DFT) [106, 107, 108]. As the name suggests it is a method

in which the total energy of the system is written as a functional of the electronic

density rather than the single particle states. A significant difference with respect to

Hartree-Fock approach is that, while the HF Slater determinant is an approximate

solution to the Schrödinger equation, DFT allows for an exact mapping of the full

many-body Hamiltonian to single particle effective wave functions. The outcome is

therefore not approximated, but drastically reduced in the number of variables to be

handled. Approximations are of course entering the problem, but at a subsequent

stage, as we will see in the next paragraphs.
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2.3.1 The Hohenberg-Kohn Theorem

Considering a system of N interacting, spinless, identical fermions, with a non-

degenerated ground state Ψ0, the associated density is defined by Equation 2.11.

The Hamiltonian Ĥ of the system takes the form of Equation 2.6, switching the

notation Ĥ ′ → Ĥ,

Ĥ =
∑
i

−1

2
∇2
i +

∑
i

vext(ri) +
1

2

∑
i 6=j

vij(|ri − rj|)

= T̂ + V̂ ext + V̂

(2.13)

where T̂ is the kinetic energy term, V̂ ext the interaction with an external field, usually

the potential due to the nuclei, and V̂ the full electron-electron interaction. For such

a system Hohenberg and Kohn (HK) [109] established the following theorem:

1. There is a one-to-one correspondence between external potential vext(r) and

electron density n(r).

2. Given an external potential, the ground state expectation value of any physical

observable O of a many-electrons system is a unique functional of the electron

density n(r)

〈Ψ0|O|Ψ0〉 = O [n] (2.14)

where Ψ0 is the many-body ground state wave function. In particular the total

energy functional can be expressed in terms of a universal functional of the

density

E [n] = 〈Ψ|T̂ + V̂ |Ψ〉+

∫
drvext(r)n(r)

= FHK [n] +

∫
drvext(r)n(r),

(2.15)

and FHK [n] has a minimum, with respect to the variation of the density, in

correspondence with the ground state density.
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The Hohenberg-Kohn theorem implies that FHK [n] does not depend on the external

potential and

min
Ψ∈Π
〈Ψ|T̂ + V̂ ext + V̂ |Ψ〉 = 〈Ψ0|Ĥ|Ψ0〉 = min

n∈N
E [n]V ext (2.16)

where Π represents the space of all wave functions and N the ensemble of all electron

densities. Equation 2.16 moves the minimization problem from the wave function

to the density and holds for all those densities that are called v-representable, for

which it is always possible to find a corresponding external potential. This is a non

trivial requirement, as there is a wider class of densities that do not correspond

to a unique external potential. The latter belong to the N -representable ensemble,

which contains the v-representable one3. One should note that, when approaching

practical calculations, a drawback emerges from the HK theorem. The theorem

proves the existence of a universal functional, but the functional itself is unknown.

This leads to the consequence that the minimization of the energy functional is in

practice impossible. The HK theory was therefore reformulated by Kohn and Sham,

who suggested an efficient scheme to apply the HK theorem in the spirit of the

self-consistent approach already introduced for the Hartree-Fock equations in Section

2.2.

2.3.2 The Kohn-Sham method

Kohn and Sham [111] suggested to reformulate the many-body problem by introducing

an auxiliary system of non-interacting particle, whose ground state density would be

the same as that of the interacting particles system. If such a system would exists

it would be unique according to the HK theorem. The original and the auxiliary

systems would then be described by the Hamiltonians

Ĥ = T̂ + V̂ ext + V̂ , (2.17)

3More details about the N -representable functionals can be found in [110, 107]. The HK
theorem has been extended subsequently to its formulation to a wider group of systems, such as
N -representable functionals, degenerated ground state problems, bosons, spin-polarized systems,
superconductors, relativistic systems, etc.
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from Equation 2.13, and

Ĥ ′ = T̂ ′ + V̂ eff (2.18)

where T ′ assumes the general form of the kinetic energy, and V̂ eff , called Kohn-Sham

(KS) potential, represents an effective potential for a single particle. The energy

functionals for the two systems could then be written as

E [n] = FHK [n] +

∫
drvext(r)n(r)

= T [n] + V [n] +

∫
drvext(r)n(r),

(2.19)

and

E ′ [n] = T ′ [n] +

∫
drveff(r)n(r) (2.20)

where T [n], V [n] and T ′ [n] are expectation values of the operators in Equation 2.17

and 2.18. The electron-electron interaction can be approximated by the Hartree

potential of Equation 2.10. Adding and subtracting from Equation 2.19 the quantity

T ′ [n] + EH [n] , (2.21)

where EH [n] is evaluated as

EH [n(r)] = 〈Ψ|V̂ H(r)|Ψ〉, (2.22)

one obtains the expression

E [n(r)] = T ′ [n] +

∫
drvext(r)n(r) + EH [n(r)] + Exc [n(r)] , (2.23)

where

Exc [n(r)] = T [n]− T ′ [n] + V [n]− EH [n] (2.24)

is called exchange-correlation energy. One can see that Eex [n] comprises two con-

tributions. The first one is the difference in kinetic energy between the original

many-body system and the the new auxiliary system of non-interacting particles,

while the second takes all electronic exchange and correlation effects into account,

which are not included in the Hartree term.
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Imposing then the stationary condition δE [n] = 0 on Equation 2.23 and

Equation 2.20 one obtains

δT ′ [n(r)]

δn(r)
+

∫
drvext(r) +

∫
drdr′

n(r′)

|r− r′|
+
δExc [n(r)]

δn(r)
= 0 (2.25)

where EH has now been put into the integral form of eq 2.10 and

δT ′ [n(r)]

δn(r)
= −

∫
drveff(r). (2.26)

Substituting Equation 2.25 in Equation 2.26 it is possible to finally obtain an

expression for the KS potential

veff(r) = vext(r) + vH(r) + vxc(r) (2.27)

where vxc [n(r)] = δEex [n(r)] /δn(r). According to Equation 2.20 one can now rewrite

the problem in terms of N exact single particle Schrödinger-like equations[
−1

2
∇2
i + veff(r)

]
ψi(r) = εiψi(r) (2.28)

{ψi} being the set of one-electron orbitals that define the electronic density. Equations

2.26, 2.27 and 2.28 are known as the Kohn-Sham equations, and {ψi} the Kohn-

Sham orbitals. According to Equation 2.27, veff depends on n(r). Therefore the KS

equations must be solved self-consistently, like in Hartree-Fock. At the very last step

the total energy can be calculated according to Equation 2.23

E =
N∑
i=1

εi −
1

2

∫
drdr′

n(r)n(r′)

|r− r|
+

∫
drvext(r)n(r)−

∫
drvxc(r)n(r) (2.29)

where the first term contains the kinetic energy and the second is the Hartree energy.

Finally one problem is left: the exchange-correlation (xc) functional Exc. Find-

ing suitable expressions for Exc is the main challenge in DFT, and the next sections

will provide an introduction to the problem.
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2.4 Exchange-Correlation Functionals

Since the introduction of the Kohn-Sham method a great number of approximate

exchange-correlation functionals have been introduced. Their quality depends on the

problem at hand and, of course, their level of complexity. Sophisticated functionals

are usually also very computationally demanding. For this reason a never ending

search for the right balance between sophistication and tractability is being pursued.

A useful way of categorizing the numerous exchange-correlation functionals is

the so called Jacob’s ladder, introduced by John Perdew [112]. At each rung of the

ladder sits a family of functionals. The different families are organized according to

the level of approximation they introduce. The Hartree approach is on the ground and

the exact xc functional “on heaven”. The functionals that belong to the first rungs of

the ladder are quite simple, and the most used ones due to their low computational

cost. They perform well in a wide range of situations, as explained in the next

paragraphs.

2.4.1 Local-Density approximation

Despite sitting on the first rung of the Jacob’s ladder, the local-density approximation

(LDA) [109] proved to be a very useful approximation to the xc-functional. LDA

assumes that the functional dependence of Exc on the density can be approximated

by a local relation

ELDA
xc [n] '

∫
drn(r)εhomxc [n(r)] (2.30)

where εhomxc [n(r)] is the exchange-correlation energy per electron in a homogeneous

electrons gas of density n(r). In the homogeneous electrons gas limit the exchange

energy is known analytically and takes the form

εhomx [n] = −3

4

(
3

π

) 1
3
∫
drn4/3(r) (2.31)

while the correlation energy εhomc [n(r)] can be fit to solutions of the many body

problem or Quantum Monte Carlo (QMC) data. Among the commonly used LDA
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functionals are the Perdew-Zunger (PZ) [113], which parametrizes the QMC results

of Ceperley and Alder, the Perdew-Wang (PW) [114], used in this thesis, and the

Vosko-Wilk-Nusair (VWN) [115].

Due to its construction, LDA is perfectly suited for systems in which the electron

density has very small spatial variations and the electron-electron interaction is well

screened. Its success, however, extends to systems, like atoms and molecules, much

beyond the initial expectations. This is partially due to a fortuitous cancellation

of errors between exchange and correlation [107], and due to the fact that ELDA
xc

satisfies the xc-hole sum rule [116]. The latter asserts that LDA can reproduce the

spherical average of a hole (the depletion of charge caused by one electron at point r

on all other electrons at point r′) even if the exact hole is not well reproduced.

Various problems, however, still require different treatments of the exchange-

correlation functional. For strongly inhomogeneous systems such as surfaces, inter-

faces and clusters, and for weekly bonded systems, for which Van der Waals forces

become important, LDA gives unsatisfactory results.

2.4.2 Generalized Gradient approximation

After the introduction of the LDA approximation it was suggested that the gradient

of the density could also be incorporated into the exchange-correlation functional in

order to deal with situations in which the density changes more rapidly in space. An

initial guess was to include gradient corrections following a power expansion |∇n(r)|,
|∇n(r)|2, |∇2n(r)|. This was called gradient-expansion approximation (GEA). It was

readily seen that high order gradient contributions are too complicated to calculate,

and the inclusion of only low order contributions did not improve the results with

respect to LDA, and often made them worse [117].

Subsequently, an intensive search started, aimed at finding suitable functionals

that would include the density gradient in a general form together with the density.

The functionals would follow the general expression

EGGA
xc [n] =

∫
drfGGA [n(r),∇n(r)] (2.32)
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where GGA labels the approach, that is commonly referred to as generalized gradient

approximation [118, 119, 120]. In GGA the parameters can either be constructed

to satisfy as many exact constrains as possible or are fit to experimental data. For

these reasons a large number of possible formulations have been developed during

the years. In general, the GGA exchange energy functional is expressed as

EGGA
x [n] =

∫
drn(r)εhomx [n]FGGA

x (s) (2.33)

where εhomx [n] is the energy functional of Equation 2.31, and FGGA
x (s) is an enhance-

ment factor for the exchange energy over the LDA value. The variable s is a reduce

gradient of the form

s =
|∇n(r)|

2(3π2)1/3n(r)4/3
. (2.34)

A very popular approximation is to express FGGA
x (s) as

F PBE
x (s) = 1 + κ− κ

(1 + µs2/κ)
(2.35)

where κ and µ are parameters obtained from physical, non-empirical, considerations.

Accordingly, also the correlation energy is then expressed as a function of s. This is

the well known Perdew-Burke-Ernzerhof (PBE) approximation [121], after the name

of the authors that introduced it.

GGAs belong to the second rung of the Perdew’s ladder. They are usually

referred to as semi-local approaches, because the evaluation of the energy gradient at

a point r in space requires the density at points in the immediate vicinity. Climbing to

the third rung of the Perdew’s ladder one then encounters the meta-GGA approaches.

In the same spirit of the GGA methods, they incorporate also the second derivative

of the density, and kinetic energy density contributions. They will not be presented

here and we refer the reader to [122, 123, 124] for a general introduction.

2.4.3 Self-Interaction error

One of the major intrinsic drawbacks of LDA and GGA is the so called self-interaction

error [113, 125]. In the Hartree energy the sum runs over all electrons, although
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in principle it should only run over the N − 1 other electrons. This introduces a

spurious self-interaction (SI). The exchange-correlation functional should cancel this

term exactly. However, in practical applications of DFT which require approximated

xc functionals, the cancellation is generally not exact, and problems are encountered

for example in the estimation of dissociation limits, energy barriers to chemical

reactions, long range interactions etc.

It is of interest for this thesis that local and semi-local functionals also encounter

large problems in the description of electron localization effects. The SI tends in fact

to delocalize electrons. For example the Mott transition, that has been suggested as

driving mechanism of the α-γ phase transition –see Section 1.4.2–, is impossible to

study within LDA and GGA.

A first step in the direction of correcting self-interaction requires of course

a definition of it. This could be formulated in a simple fashion by making the

correspondence between orbital-densities

niσ = fiσ|ψiσ(r)|2, (2.36)

where fiσ are the occupation numbers4, and accordingly define an interaction energy

for a single electron

δiσ = EH [niσ] + EKS
xc [niσ, 0] . (2.37)

EKS
xc [ni↑, ni↓] represents the approximate exchange-correlation functional.

While for the exact functional all δiσ would vanish, this is not necessarily

true for approximate functionals. It is, however, possible to define a functional

EKS
xc [ni↑, ni↓] free from the SI problem if it satisfies the more general condition

Nσ∑
i=1

∑
σ=↑,↓

δiσ = 0. (2.38)

But such a definition raises a problem: In a many-electron system there is no unique

4Here a spin degeneracy for the orbital i has been introduced through the spin index σ.
The local/semi-local approximated xc functional includes therefore the spin coordinate. For a
generalization of the approaches introduced in Section 2.4 to spin-dependent systems the reader
can refer to [115].
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way of defining a density for a single electron [107]. A quantification of self-interaction

in a many-electron system should be invariant under unitary transformation, i.e.

a transformation that changes the individual orbital densities but leaves the total

density unchanged. For common density functionals Equation 2.38 does not have

this property [113]. An attempt to introduce a self-interaction correction according

to Equation 2.38 was developed in the past, and proved to be useful in some cases.

It is presented in the next Section.

2.5 Orbital-dependent approaches

To extend the applicability of DFT, intensive research was carried out in the last

decades towards new functionals that would cancel, or reduce, the self-interaction

error. In the following, some important functionals that rely on orbital dependent

contributions are presented. Even if they were not applied during the course of

this thesis, they assumed an important role since the beginning of ab initio studies

of cerium, and they are most useful in order to understand the problems that are

hidden in the f electron behavior and how these difficulties were faced in the past.

2.5.1 Self-Interaction Correction - SIC

In 1981, Perdew and Zunger [113] suggested to add a self-interaction correction

(SIC) to the local and semi-local energy functionals. The idea was to subtract the SI

contribution, as defined in Equation 2.38, directly from the functional expression.

The exchange-correlation functional would then become

ESIC
xc = EKS

xc [n↑, n↓]−
Nσ∑
i=1

∑
σ=↑,↓

δiσ

= EKS
xc [n↑, n↓]−

Nσ∑
i=1

∑
σ=↑,↓

(
EH [niσ] + Exc [niσ, 0]

) (2.39)

where Exc [n↑, n↓] is the usual xc functional in a local/semi-local approximation. The

most obvious consequence of the approach is that the newly defined energy functional
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depends explicitly on the orbital occupations rather than on the total density. This

implies equations that are more complicated to solve and carries a problem: As

common functionals are not invariant under unitary transformation there is no unique

definition of ESIC
xc for a given system. In addition, the usual procedure of minimizing

the total energy with respect to the density cannot be applied.

Nevertheless Perdew and Zunger suggested a direct minimization with respect

to the orbitals. Even if not formally correct in the Kohn-Sham sense, this is possible

and leads to a single-particle equation[
−1

2
∇2 + veff

iσ (r)

]
ψPZ
iσ (r) = εiσψ

PZ
iσ (r), (2.40)

with an effective potential

veff
iσ =

[
vext [n] + vH [n] + vxc,σ [n↑, n↓]

]
−
[
vH
iσ [ni,σ] + vxc,iσ [niσ, 0]

]
= vKS

eff,σ − vSIC
eff,iσ

(2.41)

that substitutes the one of Equation 2.27. Here vKS
eff,σ is the standard effective potential

in the LDA/GGA approximation and vSIC
eff,iσ vanishes for extended states. If the KS

equations are solved according to the definition of the new effective potential in

Equation 2.41, then the set of KS orbitals also solve Equation 2.38, leading the newly

defined energy functional ESIC [niσ(r)] to a local minimum. However, this does not

exclude the existence of other sets of orbitals that would give lower total energies.

This deficiency, related to the unitary invariance problem, has been the subject of

recent studies by Kümmel et al., who suggested alternative approaches based on the

optimized effective potential [126].

The orbital dependence of the SIC method is computationally more costly than

local/semi-local functionals. The usual practice is therefore to choose a subspace of

relevant orbitals to which the self-interaction correction can be applied. The latter

approach is also used in another method that will be presented in the next section,

where computational effort is reduced at the cost of formal consistence.
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2.5.2 DFT +U

A way to partially remove the self-interaction error in systems that are problematic in

the local/semi-local approximation is to add an energetic contribution that is generally

called Hubbard-U repulsion energy. The U term is borrowed from the Hubbard model

introduced in Section 1.4.2, where the Hamiltonian describes particles moving on

a discreet space. In the Hubbard Hamiltonian two terms with opposite effects

contribute to the system energy. The first one is called hopping term. It represents

the kinetic energy, and gives the probability that the particles would hop from one

site of the lattice to another. The second is called on-site repulsion, and penalizes the

particles for sitting on an already occupied site. The latter is, in fact, a coefficient,

and is usually known as U .

The purpose of adding a U term to LDA/GGA approaches is to localize specific

orbitals that are believed to be particularly affected by the self-interaction error.

While retaining the orbital-independent one-electron potential for the delocalized

orbitals, a repulsion term of the form5

EU [ni] =
1

2
U
∑
i 6=j

ninj (2.42)

is added to a specific subset of pathological orbitals with occupancies ni. One can

now assume a total number Nl =
∑
ni of localized electrons. The resulting DFT+U

energy functional is then expressed as

EDFT+U [ni] = EDFT [n]− Edc [n] + EU [ni] . (2.43)

where the double counting term Edc describes the contribution from Equation 2.42

that is already included in the DFT Hamiltonian, and has to be subtracted in oder

to avoid double counting. It can be evaluated by considering the sum in Equation

2.42 in a mean-field spirit similar to that of Kohn-Sham DFT. The energy expression

then reads

Emeanfield
U [n] = Edc [n] =

1

2
UNl (Nl − 1) . (2.44)

5The expression for EU can be obtained by treating the interaction among electrons in a
Hartree-Fock-type fashion with an effective screened Coulomb interaction [127, 128].
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Edc is subtracted from the usual KS energy functional so that the contribution from

Equation 2.42 can be introduced in its orbital dependent form. This is very similar

to Equation 2.39, but now it is not the full Hartree term that is subtracted, but

only a reduced contribution of it, estimated by the parameter U on the orbitals of

interest. The orbital eigenvalues can be calculated from Equation 2.43 as

εi =
∂EDFT+U

∂fi
= εDFT

i + U

(
1

2
− fi

)
. (2.45)

If the double counting contribution is evaluated according to Equation 2.44, the

above formula shifts the KS orbital energies by −U/2 for occupied states (fi = 1),

and by +U/2 for unoccupied states (fi = 0). The result is the formation of the

so-called Hubbard bands above and below the Fermi energy. As illustrated in Figure

2.1, the physics of particular systems, the Mott-Hubbard insulators for instance, can

be qualitatively reproduced within the DFT+U approach [129].

Figure 2.1: Schematic of the spectral function of a metal and a Mott insulator. In a
metal the band crosses the Fermi level, the electrons are delocalized and usually local or
semi-local functionals give a good description of the system. In a Mott insulator the band
gap can be reproduced by adding a U contribution to the standard functionals and it
becomes proportional to U and the band width W .

The parameter U has crucial importance for the method, and its determination

has attracted growing interest in recent years. U can be treated as a coefficient and

adjusted to the system under study in order to reach agreement with experimental

data or it can be determined from first principles. In the latter case the most

widely used approach is the constrained DFT formalism [130], but also approaches

based on linear-response [131, 132] and the constrained random-phase approximation

[133, 134] were suggested.
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The DFT+U scheme is, from a formal point of view, less sophisticated than

SIC, as it does not take into account exchange and correlation in a consistent way.

Nevertheless it proves very useful in practice.

2.5.3 Dynamical Mean Field Theory - LDA+DMFT

The same many-body problem formulated in the DFT+U (LDA+U) approach –

Equation 2.43– can be solved with the LDA+DMFT method [135, 136, 137, 138], that

combines LDA with dynamical mean field theory (DMFT). Both approaches augment

the LDA Hamiltonian with local Coulomb correlation but, while LDA+U solves

the problem in a Hartree-Fock-type fashion without taking into account electronic

correlations beyond HF, the LDA+DMFT approach relies on DMFT, as explained

in the following paragraphs.

DMFT finds its roots in a concept introduced in 1989 by Metzner and Vollhardt

[139] with reference to the Hubbard model in the limit of infinite dimensions. In

the limit of infinite dimensions every site on a periodic lattice has an infinite num-

ber of neighboring lattice sites. The relation between kinetic energy and Coulomb

interaction is maintained, but the momentum dependence drops, leading to con-

siderably simplified calculations. As a consequence, the Coulomb interaction U

yields a strictly local frequency-dependent (i.e. dynamic) interaction, while the

non-local density-density interactions are reduced to the Hartree term, which is

frequency-independent.

Georges and Kotliar [140] subsequently showed that a Hubbard-like Hamiltonian

in the limit of infinite dimensions has local Feynman diagram contributions that are

equivalent to the ones of an Anderson impurity model6. This means, a Hamiltonian

like in Equation 1.5

Ĥ = −t
∑
ij,σ

(c†i,σcj,σ + h.c.) + U
N∑
i

ni,↑ni,↓ (2.46)

can be mapped into an auxiliary Anderson impurity model –see Equation 1.6– in

6Provided that the on-site interaction has the same form as the original Hamiltonian. Refer to
Section 1.4 for an introduction to the periodic Anderson model.
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the infinite dimension limit:

Ĥ =
∑
ν,σ

εbathν nbathν,σ +
∑
σ

ε0,σ + U (n0,↑n0,↓) + Vν
∑
ν,σ

(
f †0,σc

bath
ν,σ + h.c.

)
. (2.47)

It describes an impurity with energy level ε0,σ in a bath of electrons with energy

εbathν . The electrons can hop in and out the impurity via the hybridization Vν . In

Figure 2.2 a sketch of the DMFT mapping is shown.

Figure 2.2: DMFT maps the lattice of atoms and electrons with in-site interaction U (a)
into a single-site impurity that interacts with a bath of electrons (b). The bath electrons
are dressed by the self-energy Σ and interact with the impurity via the hybridization
coefficient Vν . Adapted from Ref. [138].

The above considerations imply that the DFT+U Hamiltonian of Equation

2.43 can be mapped onto an auxiliary Anderson impurity problem with the same

Green function and self-energy. The parameters εbathν and Vν can be combined in

what is generally known as hybridization function,

∆(ω) =
∑
ν

|Vν |2

ω − εbathν

, (2.48)

which acts as a dynamic mean field. In this case the problem can be solved by

guessing an hybridization function for the Anderson impurity model, that gives the
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self-energy and the Green function according to the following expressions

Σ [∆(ω)] = ∆(ω)− 1

G [∆(ω)]
+ ω, (2.49)

G [∆(ω)] =
∑
k

(ω − Σ [∆(ω)]− tk)−1 , (2.50)

where the coefficient tk represents the Fourier transform of the hopping matrix

elements tij of the original system.

The essence of the DMFT method is the self-consistent determination of the

hybridization function. After the initial guess, which leads to the self-energy and

Green function of both original and auxiliary systems, the impurity model’s non-

interacting Green function is calculated according to

G0 = (G−1 + Σ−1)−1. (2.51)

The lattice problem is then reduced to a single-site problem with some effective

parameters, and can be solved with a variety of analytic and numerical techniques,

such as self-consistent perturbation theory [141], the non-crossing approximation

[142, 143], quantum Monte Carlo [144, 145], exact diagonalization [146] and numerical

renormalization groups [147]. A new hybridization function is then derived, the

original self-energy and Green function are replaced, and the cycle is repeated until

convergence is reached. The net result is a KS-type equation of the form

ELDA+DMFT [n(r), G] = T [n(r), G] + Eext [n(r)] + EH [n(r)] + Exc [n(r), G] (2.52)

where now the kinetic energy is no longer that of a free electron system because it

involves the local Green function G.

With respect to DFT+U , LDA+DMFT can account for local correlations.

There are, however, some problems arising in practical calculations. A first one is

intrinsic and is connected to the locality of the interaction that is taken into account:

LDA+DMFT completely neglects the non-local part of the correlation. But there

are also computational difficulties. The main one is that the approximated methods

employed in solving the impurity problem are often very demanding and for this
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reason, as for the case of Quantum Monte Carlo, restricted to the “high” temperature

regime. This hinders the study of some interesting regions of the phase diagram, as

for example for cerium.

A further development of the DMFT method is given by “cluster DMFT”. The

Hubbard model can be mapped on a multi-site impurity (cluster) problem. This adds

some spatial dependence to the impurity self-energy. Cluster DMFT is applied for

example to non-trivial paramagnetic insulators (e.g. frustrated magnets), to preserve

short range correlation (e.g. antiferromagnetic fluctuations), or to add systematic

corrections beyond the mean field in Mott transitions.

2.6 Hybrid functionals

As the name suggests hybrid functionals, that sit on the fourth rung of the Jacob’s

ladder, combine the local/semi-local treatment of exchange and correlation with

a fraction of exact-exchange. In the simplest formulation, hybrid functionals are

expressed as

Ehyb
xc = EDFT

c + aEEX
x + (1− a)EDFT

x (2.53)

where correlation is retained at the level of KS-DFT and exchange is balanced

between Hartree-Fock and standard xc functionals through the parameter a. The

latter depends on the employed KS-functional and can be determined either from a fit

to experimental data [148], from high-level quantum-chemistry results for molecules,

or from considerations linked to the adiabatic connection (AC) theorem [149, 110, 150].

According to the AC theorem, an exchange-correlation functional can be expressed as

an adiabatic connection between the fully interacting system and the non-interacting

Kohn-Sham system. The Coulomb interaction between electrons is adiabatically

switch on going from one system to the other and the two situations are linked to the

extreme values of a coupling constant 0 6 λ 6 1. In this picture, the HK functional

of Equation 2.15 can be expressed as

Fλ [n] = 〈ψλ|T + λV |ψλ〉 (2.54)
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where V is the full many body electron-electron interaction and the ψλ are normalized,

antisymmetric wave functions that minimize Fλ [n]. The coupling λ determines the

percentage of electron-electron correlation that is included in the problem. Following

Equation 2.24 the xc energy functional can then be written in terms of Equation

2.54 as

Exc [n] = F1 [n]− F0 [n]− EH [n]

=

∫ 1

0

∂Fλ [n]

∂λ
dλ− EH [n]

=

∫ 1

0

Exc,λ [n] dλ,

(2.55)

Equation 2.55 serves as a definition for a new density functional of a fictitious system

with scaled Coulomb interaction

Exc,λ [n] = 〈ψλ|V |ψλ〉 − EH [n] . (2.56)

Considering that HF provides an exact treatment of exchange, Becke [149]

suggested in 1993 to approximate the integral according to the trapezoidal integration

rule between λ = 0 and λ = 1, with exact exchange used to represent the first and

LSDA7 the latter. The result reads

Exc = 0.5EEX
x + 0.5ELSDA

xc [n] . (2.57)

This approach did not considerably improve the description of systems over standard

GGA functionals, but opened a way to explore a new class of methods in DFT. It

was in fact discovered that it would help to separate the exchange and correlation

parts in the form of Equation 2.53. In 1996, Perdew, Ernzerhof, and Burke suggested

to express the integrand of Equation 2.55 as

Ehyb
xc,λ = EKS

xc,λ + (EEX
x − EKS

x )(1− λ)n−1 (2.58)

which lead to a = 1/n. They then suggested that an appropriate choice would be

n = 4, as fourth order Møller-Plesset perturbation theory yields small atomization

7Local spin density approximation. Generalization of LDA to spin dependent systems [115].
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errors for n = 4 [151]. The performance of this formulation was of course related to

the GGA functional in use, but it turned out that for the PBE functional a = 0.25

was actually a very good estimation. The method, now labeled PBE0 [121], became

very popular and largely contributed to improve results for a wide range of systems.

For many materials, PBE0 improves the description of energetic and structural

properties when compared to PBE [152]. As it will become clear in the second part

of this thesis, PBE0 also proved to be a good choice for the description of cerium

and the α-γ phase transition. This can be related to the fact that hybrid functionals,

containing a fraction of exact exchange, often handle localized states well, despite

the fact that they are not rigorously self-interaction-free [153, 154, 155].

The variety of hybrid xc approximations has grown considerably during time,

and found application in a variety of problems. Further implementations of Ehyb
xc

involve more than one parameter, the determination of which is usually deduced

by fits to experimental data sets or high-level quantum-chemistry calculations. The

most popular functionals of this group are the B3PW91 and B3LYP [156] functionals,

and the meta-GGA based formulations MPWB1K [157] and PW6B95 [158]8. B3LYP,

that is fit to the G1 data9, produces excellent results for a wide range of systems,

and is nowadays the most widely used functional in chemistry.

Additional flexibility was introduced in hybrid functionals by the partition of

the exchange term into short-range (SR) and long-range (LR) contributions. This

lead to screened hybrid functionals of the form

Ehyb
xc,λ = aESR,EX

x + (1− a)ESR,DFT
x

+ bELR,EX
x + (1− b)ELR,DFT

x

+ EDFT
c .

(2.59)

By setting b = 0 the long range part of exact exchange can be scaled down completely,

leading to the approach that is generally known as HSE functional [161, 162, 163].

8The reader can refer to reference [125] for a review of the most used methods nowadays.
9Gaussian-1 database of Pople and co-workers [159, 160].
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2.7 Many-Body Perturbation Theory

Another rung in the Jacob’s ladder is climbed when the description of physical

systems is improved over the hybrid functional approach. The new approaches

are based on many-body perturbation theory. The main characteristic of all these

methods is that many-body contributions beyond the semi-local approximation apply

not only t exchange, as in hybrid functionals, but also to correlation.

In the following some of the most popular methods, that were employed in

this thesis, will be presented. As for the case of the random-phase approximation

(RPA), adding many-body effects to the study of cerium turned out to be decisive

for a better description of the system, as will be demonstrated in Chapter 5.

2.7.1 Random-phase approximation - RPA

The random-phase approximation was introduced already in the 50’s, in the context

of the homogeneous electron gas. In a series of papers published by Bohm and Pines

[164, 165, 166, 167] it was suggested that a good estimation of correlation in the

homogeneous electron gas could be obtained by separating the collective degrees of

freedom from the single-particle degrees of freedom. This leads to an inclusion of

the long-range Coulomb interaction in the collective behavior of the system, while

the single-particle interaction is reduced to a short-range screened interaction. The

RPA neglects the coupling between the collective and the single-particle degrees of

freedom.

The idea has proved to be of great utility, and it led to a series of developments

[168, 169, 170, 171, 172, 173]. In particular Gell-Mann and Brueckner noticed in

1957 that a sum of all Feynman ring diagrams in the perturbative expansion of the

correlation energy would remove some divergence problems intrinsic to order-by-order

expansions. The Gell-Mann and Brueckner result sets the foundation for modern

applications of RPA, especially in the field of DFT, where it can be introduced in

the framework of the adiabatic-connection fluctuation-dissipation theorem (ACFD)

[174, 175, 176].
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It can be shown10 that Equation 2.55 in Section 2.6 can be rewritten as

Exc =
1

2

∫ 1

0

dλ

∫
drdr′

nλxc(r, r
′)n(r)

|r− r′|
(2.60)

where

nλxc(r, r
′) =

〈ψλ|δn̂(r)δn̂(r′)|ψλ〉
n(r)

− δ(r− r′), (2.61)

δn̂(r) = n̂(r)− n(r), (2.62)

n̂(r) =
N∑
i=1

δ(r− r′). (2.63)

nλxc(r, r
′) is the so called xc hole at coupling strength λ. This is a less intuitive

formulation, but it is useful to introduce the fluctuation δn̂(r) of the density operator

n̂(r) around its expectation value n(r). The density-density correlation of Equation

2.62 can then be linked to the response properties (dissipation) of the system through

the zero-temperature fluctuation-dissipation theorem [178, 179]. The theorem states

that the response of a system in thermodynamic equilibrium to a small external

perturbation is the same as its response to the spontaneous internal fluctuations in

the absence of the perturbation. It can be shown that the following relation holds

〈ψλ|δn̂(r)δn̂(r′)|ψλ〉 = − 1

π

∫ ∞
0

dωImχλ(r, r′, ω) (2.64)

where χλ(r, r′, ω) is the density-response function of the system. Combining equations

2.60 and 2.64 one can obtain a new formulation for the exchange-correlation functional,

with v(r, r′) = 1/|r− r′|,

Exc =
1

2

∫ 1

0

dλ

∫
drdr′v(r, r′)

[
− 1

π

∫ ∞
0

dωχλ(r, r′, iω)− δ(r, r′)n(r)

]
, (2.65)

where now the problem of estimating the xc energy translates to the computation of

the response function of the λ-interacting systems along the adiabatic-connection

10See Ren et al. [177] for a recent review on the RPA.
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path. The RPA consists in approximating the response function as

χλRPA(r, r′, iω) = χ0(r, r′, iω) +

∫
dr1dr2χ

0(r, r1, iω)λv(r1 − r2)χλRPA(r2, r
′, iω)

(2.66)

with χ0(r, r1, iω) being the independent-particle response function of the KS reference

system at λ = 0

χ0(r, r′, iω) =
∑
ij

(fi − fj)ψ∗i (r)ψj(r)ψ∗j (r
′)ψi(r

′)

εi − εj − iω
. (2.67)

A very insightful property of Equation 2.66 is that, when inserted into Equation 2.65,

it produces two terms EEX
x and ERPA

c with:

ERPA
xc = EEX

x + ERPA
c . (2.68)

The explicit expression of the two contributions to the RPA xc energy is given by

EEX
x =

1

2

∫
drdr′v(r, r′)

[
− 1

π

∫ ∞
0

dωχ0(r, r′, iω)− δ(r, r′)n(r)

]
= −

∑
ij

fifj

∫
drdr′ψ∗i (r)ψj(r)v(r, r′)ψ∗j (r

′)ψi(r
′),

(2.69)

where in the last line the known formulation of χ0(r, r′, iω) in terms of the KS orbitals

with occupation numbers fi has been substituted, and

ERPA
c =

1

2π

∫
drdr′v(r, r′)

∫ ∞
0

dω

[∫ 1

0

dλχλRPA(r, r′, iω)− χ0(r, r′, iω)

]
=

1

2π

∫ ∞
0

dωTr
[
ln(1− χ0(iω)v) + χ0(iω)v

]
,

(2.70)

where the following convention is used

Tr[AB] =

∫ ∫
drdr′A(r, r′)B(r′, r). (2.71)

In this expression for the Exc functional the exact-exchange energy of Hartree-Fock

theory is readily recognized in the first term EEX
x , and the second term ERPA

c can be
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computed from the charge susceptibility.

Equation 2.68 has some great advantages over conventional ways of treating

exchange and correlation in KS-DFT. The exact-exchange energy cancels the spurious

self-interaction error present in the Hartree energy and the RPA correlation is fully

non-local. In Figure 2.3 the RPA is illustrated in terms of Goldstone diagrams [180].

It can be shown that it takes the form of a sum of ring diagrams to infinite order. This

selected summation to infinite order avoids divergences, which makes RPA applicable

to small-gap or metallic systems where finite-order many-body perturbation theories

break down.

The success of the random-phase approximation in DFT has been demonstrated

in a series of works on e.g. molecular properties [181, 182, 183, 184], periodic systems

[185, 186, 187], and adsorption problems [188, 189, 190, 191]. The RPA correction

includes long-range van der Waals interactions automatically, so it improves the

description of weakly bonded molecules substantially over conventional DFT and

hybrid functionals [192, 193, 183]. For example, the performance of RPA on the S22

test set [192], which contains 22 weakly bound molecular complex of different size

and bonding type, has been analyzed by Ren et al. [183], who reported a reduction

of around 70% on the mean absolute error for the binding energy with respect to

PBE. Likewise, RPA showed remarkable performance for the prediction of barrier

heights in chemical reactions [194, 195], which are substantially underestimated by

PBE. Concerning atomization energies instead, RPA does not improve considerably

over PBE. The dissociation of H2 in RPA, for example, preserves the positive “bump”

at intermediate bond distances [177], typical of local/semi-local functionals. Several

authors reported RPA calculations on crystalline solids (on e.g. Si [196, 197, 198],

NaCl [197], rare-gas solids [187], graphite [186, 199]) reaching the general agreement

that RPA performs better than LDA and PBE for the description of lattice constants

and bulk moduli, while it can worsen results [185] for atomization energies, as for the

case of molecules. It has been shown [186, 190], for example, that RPA can correct

the known failure of LDA and GGA in predicting the right adsorption site for CO

on Cu(111) surface.

The major drawback of the RPA approach remains, however, the high com-

putational cost, that still hinders a widespread use. On the other hand several
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improvements beyond the RPA have been proposed recently, which make RPA-based

methods an active field of research. In the next paragraphs some of of them will be

presented.

2.7.2 Second order screened exchange - SOSEX

Recently, Ren et al. [195] demonstrated that an alternative derivation of the RPA

is obtained by employing a perturbation theory on top of the non-interacting KS

problem. This also automatically provides two further correction terms, called single

excitations and second order screened exchange. The Hamiltonian of the system can

be partitioned according to

Ĥ(λ) = Ĥ0 + λĤ1(λ) (2.72)

where Ĥ0 is a mean-field Hamiltonian and Ĥ1(λ) the rest. The total energy can then

be expressed as

E = E0 +

∫ 1

0

dλ〈ψλ|Ĥ1|ψλ〉. (2.73)

Expanding Equation 2.73 according to second-order Rayleigh-Schrödinger perturba-

tion theory, one obtains a first-order correction

E(1) =

∫ 1

0

dλ〈ψ0|Ĥ1|ψ0〉

= EH + EEX
x − EMF

(2.74)

where the first two terms are known and EMF = 〈ψ0|vMF|ψ0〉 is a double-counting

correction to the mean-field contributions included in Ĥ0. If Ĥ0 = ĤHF the sum

E0 + E(1) gives the Hartree-Fock energy, while if Ĥ0 6= ĤHF it adds exact-exchange

contributions to the total energy. All higher order contributions take account of

correlation in the system. For instance the second-order energy is given by

E(2) =
occ∑
i

unocc∑
a

|〈ψ0|Ĥ1|ψai 〉|2

E0 − E(0)
i,a

+
occ∑
ij

unocc∑
ab

|〈ψ0|Ĥ1|ψabij 〉|2

E0 − E(0)
ij,ab

(2.75)
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where the ψn correspond to the excited states of the system with energy E
(0)
n =

〈ψn|Ĥ0|ψn〉. The wave functions ψn can be divided into single- and double-excited

states, ψi,a and ψij,ab respectively. Higher orders excitations do not contribute due

to the nature of Ĥ1, that contains only one- and two-particles operators.

The double-excitation contribution can be split into two terms, generally

addressed as second-order direct and exchange. RPA corresponds to a renormalization

of the direct term. As it turns out, one can apply the same renormalization also to

the second order exchange term. The result is the inclusion of screened second-order

exchange (SOSEX) processes [200, 201, 202] that takes the diagrammatic form in

Figure 2.3.

Figure 2.3: Goldstone diagrams for the RPA and SOSEX correlation energy. Solid lines
denote particle (up arrows) and hole (down arrows) states without frequency dependence.
Dashed lines correspond to the bare Coulomb interaction v. From Ref. [177].

The combination of the RPA with SOSEX can perform better than the RPA

alone in some cases. For example it has success for atomization energies. The

improvement is however not systematic. This is the case for the dissociation of

covalent diatomic molecules [202].
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2.7.3 Single-excitations

Equation 2.75 also introduces the contribution of single excitations. It can be shown

[177] that the single excitation energy can be expressed according to

ESE
c =

occ∑
i

unocc∑
a

|〈ψ0|Ĥ1|ψai 〉|2

E0 − E(0)
i,a

=
∑
ia

|〈ψi|v̂HF − v̂MF|ψa〉|2

εi − εa
,

(2.76)

where v̂HF is the self-consistent Hartree-Fock potential and v̂MF is the mean field

potential associated with the reference Hamiltonian. ESE
c vanishes if Ĥ0 is the

Hrtree-Fock Hamiltonian. As for RPA and SOSEX, single-excitations can also be

renormalized by a sum to infinite order –renormalized single excitations (rSE). The

rSE contribution is illustrated in terms of Goldstone diagrams in figure 2.4, where

the dashed lines denote the matrix elements ∆vpq = 〈ψp|v̂HF − v̂MF|ψq〉. The first

diagram in Figure 2.4 represents the single-excitations..

Figure 2.4: Goldstone diagrams for renormalized single-excitation contributions. From
Ref. [177].

The combination of rSE, RPA and SOSEX is known as renormalized second-

order perturbation theory (rPT2). rPT2 is a new method, but holds great promise.

For example rSE improves the accuracy of weakly bonded molecules [183], as well as

the atomization energies of covalent molecules and insulating solids [195], compared

to RPA.





II Ab initio description of the α-γ

transition in cerium
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3 Previous Ab initio studies of

the α-γ transition

In Section 1.3.7 we have alluded to the fact that entropic effects are suspected to play

a significant role in the α-γ phase transition. This motivated a number of authors to

apply first-principle methods. The advantage of approaching complex problems, like

the α-γ phase transition, with ab initio techniques is that no assumptions have to

be made. However, first-principles DFT-based calculations for Ce have so far been

unable to produce a double minimum in the total energy versus volume curve at

zero temperature within a single theoretical framework. Such a double minimum

would be a direct indication of the phase transition.

LDA and GGA1 calculations of Ce were reported by various authors [203, 204,

205, 206]. An unchanged number of f electrons at the two experimental volumes for

α and γ phases was reported by all authors, together with the observed experimental

change in magnetic properties. However, no signature of the volume collapse was

encountered in the total energy versus volume curve. Based on the localization vs.

delocalization interpretation of the phase transition, the failure of LDA and GGA

was mainly attributed to the well known self-interaction problem intrinsic in these

theories –see Section 2.4.3. The self-interaction has a tendency to delocalize electrons.

Local and semi-local approaches found a minimum in the cerium cohesive energy

versus volume curve only in correspondence with the α phase, where the f electrons

are believed to be delocalized, whereas no stable solution was found for the γ phase.

Following the failure of standard LDA and PBE approaches, a number of authors

1Refer to Chapter 2 for an introduction of the different methods: LDA/GGA, Section 2.4;
SIC-LSD, LDA+U , LDA+DMFT Section 2.5.
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Figure 3.1: Cohesive energy versus volume curves of cerium α and γ phases according to
the calculations by Johansson et al. [76].

employed ab initio methods. They assumed that the 4f electrons would be localized

in γ-Ce, and delocalized in α-Ce [204, 207, 208, 76, 77, 78, 209, 210, 211, 212],

following the Mott transition model suggested by Johansson [1]. In 1995, Johansson

et al. [76] obtained two cohesive energy versus volume curves in GGA calculations.

In one case the α-Ce 4f electrons were retained in the valence shell, while in the

other case the γ-Ce 4f electrons were frozen in the core. The results by Johansson

et al., reported in Figure 3.1, are representative of most of the ab initio studies on

cerium: two separated curves are obtained with different approaches.

The self-interaction corrected local spin density approximation (SIC-LSD), was

applied in the same spirit. Good results for the γ phase were obtained by Szotek

et al. [207] and Svane [208]. The downside of the approach is that SIC-LSD can

only capture the localized phase. So the authors relied on LSD (the spin polarized

variant of LDA) to describe α-Ce. Combining total energy curves from the two

theories, Figure 3.2, produced a satisfactory estimation of the transition pressure

with a difference between the two phases on the order of some meVs, as observed

in experiment. Lüders et al.[209] further extended the SIC-LSD study of cerium by

incorporating temperature effects through entropic contributions, and obtained a

slope of the phase transition line in the P-T phase diagram in agreement with the

experimental one.

LDA+U calculations by Shick et al.[210] and Amadon et al.[211] also reproduced
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Figure 3.2: Cohesive energy versus volume curves of cerium α and γ phases according to
LSD and SIC-LSD calculations. The arrows correspond to the position of the experimental
volumes of the two phases. From [208].

the physical properties of the γ phase, by accounting for localization of the f electrons.

They also predicted a magnetically polarized configuration of the system, in agreement

with experiments, and a lattice constant close to the one of γ-Ce. Interestingly,

during the search of the ground state, the authors found multiple metastable energy

minima in the total energy versus volume curve. Multiple stable solutions also found

in our work will be extensively discussed in the next chapters. Wang et al.[212]

extended the previous LDA+U studies. Following the SIC-LSD approach of Lüders et

al., they associated LDA and LDA+U results to the α and γ phases, respectively, and

added an estimation of the entropic contributions to reproduce the phase diagram of

cerium. The outcome of their study, and the comparison with SIC-LSD results, will

be discussed in Chapter 8 along with the results of this thesis.

LDA+DMFT offered a way to approach the problem from a different perspective.

Also adding a localizing contribution for the f electrons to LDA, LDA+DMFT studies

[214, 215, 213, 216, 217, 61, 218, 219] aimed to account for the description of both

phases within a single level of theory. The main result of LDA+DMFT is the

prediction of an increased spectral weight at the Fermi level going from the γ to

the α phase. As discussed in Section 1.3.5, the photoemission spectrum of cerium

shows, in the low-volume phase, a typical three-peak structure, which several authors

considered as the proof for the presence of Kondo physics in the α-γ transition.

SIC-LSD and LDA+U cannot reproduce this three peak structure. LDA+DMFT
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Figure 3.3: Left: total energy versus volume curve as obtained by Held et al. [213] in spin
polarized Hartree-Fock and DMFT+LDA calculations at different temperatures ; a negative
curvature appears in the LDA+DMFT curve in correspondence with the experimental α
and γ volumes. Right: internal energy curve from Amadon et al.[61] where no negative
curvature is observed at temperatures below the ones reached by Held at al. (T = 0.054
eV ≈ 630 K); free energy curves derived from experiments are also reported in order to
emphasize the role of entropy in the α-γ phase transition.

studies were able to obtain the three-peak structure in agreement with experiment,

and supported, in this sense, the Kondo volume collapse mechanism. The nature of

the three peaks and its link to the Kondo physics has been, however, a matter of

everlasting controversy –see section 1.4.4 for a more detailed analysis of the topic.

The modern solvers that enter the DMFT scheme automatically include tem-

perature effects (i.e. thermal broadening of the Fermi function) in the LDA+DMFT

approach, and this provides direct access to the finite temperature phase diagram

of the system. However, for the case of cerium, the temperatures that were usually

reported were on the order of the critical temperature of the α-γ transition, or slightly

lower. Low temperature calculations were hindered by computational requirements

of the Quantum Monte Carlo solvers. As a consequence of this limitation, different

authors reported different LDA+DMFT results. Held et al. [215] in 2001 reported a

free energy curve with slight negative curvature. This would be a signature of the

phase transition, but in 2006 Amadon et al. [61], with a different implementation
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of the DMFT method, suggested that no negative curvature would emerge, even

reaching temperatures below the ones reported in the previous study –Figure 3.3. As

mentioned in Section 1.3.7 Amadon et al. subsequently claimed that the electronic

degrees of freedom would not play a role in the phase transition.





4 First principle calculations for

cerium systems

Motivated by the intriguing properties of cerium and by the apparent deficiencies of

available ab initio approaches, one objective of this thesis was to test the performance

of new first-principle approaches for f electron systems. The choice fell readily on

hybrid functionals, which often handle localized states well, as stated in Section 2.6,

despite the fact that they are not rigorously self-interaction-free. The self-interaction

error has been pointed out as the main cause of the failure of DFT methods for cerium

-Chapter 3. This chapter will describe how to overcome some of the computational

difficulties that can be encountered in DFT and hybrid functional calculations for

cerium. In the next chapters it will be shown how hybrid functionals may be able in

fact to properly describe cerium systems, and to ultimately capture the physics of

both the α and γ phases of cerium at zero temperature within a single approach.

4.1 Computational settings

All calculations presented here were performed with the all-electron code FHI-aims

(Fritz-Haber-Institut ab initio molecular simulations) [220, 221]. If not otherwise

specified, the calculations were carried out with a tier 3 numeric atom-centered

orbitals basis –see Appendix B.1. Relativistic effects were treated at the level of the

scaled zero-order regular approximation (ZORA)1.

1Details about the scaled ZORA can be found in Ref. [222]. For a description of the implemen-
tation in FHI-aims and on the performance of the method refer to Ref. [220].
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For periodic systems and hybrid functionals we employed tier 1 basis functions.

All calculations were carried out with a 6× 6× 6 k point sampling of the Brillouin

zone, which gives energies that are converged to within 5 meV2. We considered fcc

crystal structures throughout and magnetic effects were taken into consideration in

a ferromagnetic arrangement.

4.2 Convergence of the SCF cycle

In cerium the large number of almost degenerate low-lying states makes the ground

state assignment difficult, and the convergence of the self-consistent field (SCF) cycle

can be difficult to achieve. During this thesis a significant amount of time was spent

on producing converged calculations. Special care was devoted to hybrid functionals.

Unlike LDA and PBE, they exhibit several local minima that are difficult to converge.

In the following paragraphs we will describe how to aid the convergence of the SCF

cycle for f electron systems, and in the next Section we will show how to obtain

multiple solutions within hybrid-functional calculations.

The difficult convergence of the SCF can be partially avoided with appropriate

computational techniques. The optimal parameters involved in the calculations

depend strongly on the system under study, nevertheless the following consideration

may help.

� The settings for the electron density mixing algorithm have to be chosen

carefully. In the FHI-aims code the default and most robust mixing scheme

is the Pulay mixer. The two parameters that determine the behavior of the

mixer are the number of past iterations that are kept in memory, and the linear

factor. The product of the latter with the density change determines the new

density.3. Increasing the number of past iterations over, e.g., 10 and reduce

the linear factor below, e.g., 0.05 can greatly help the convergence of the SCF

cycle. However, if the parameters are too large in the first case and too small

in the second –this depend on the system– the number of SCF cycles increases

2We refer the reader to Appendix B.3 and B.5 for a detailed description of the convergence
tests on the basis functions and the on k meshes.

3See [220] for further references and for the exact mathematical details.
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dramatically.

� Especially for periodic systems, a preconditioner may help. The Kerker precon-

ditioner [223, 220], which damps long range oscillations in the mixing procedure

stronger than short ranged ones, is the preconditioner of choice in the FHI-aims

code.

� Introducing a finite electronic temperature increases the stability in systems

with a large number of available states close to the Fermi level –like metals or

cerium clusters. In this thesis a Gaussian broadening scheme was applied [224].

It turned out to be crucial for the convergence of the SCF. The effect of the

broadening will be more extensively discussed in the next Section.

� Hybrid-functional calculations achieve much faster convergence if they are

restarted from previous PBE results. The multi-solution behavior –see Section

4.3– combined with the convergence problems is difficult to handle in practical

calculations. PBE can serve as starting point for other methods.

� In extreme cases, especially if the density mixer has been set to follow a safe

but slow convergence, it is useful to restart the same calculations several times

from previously computed electronic structures. This helps if the system is

already heading toward convergence. In this case, the history of the density

mixer can be the source of problems. The restart clears all past configurations

in the Pulay mixer and speeds up the convergence process.

4.2.1 Simulated annealing

In Kohn-Sham calculations with (nearly) degenerate ground states, a finite electronic

temperature is usually introduced to accelerate the convergence of the electronic

minimizer. In cerium however, the large number of almost degenerate states near

the Fermi energy causes instabilities in the SCF cycle. Increasing the electronic

temperature helps the convergence, but too high temperatures produce a too large

contribution of the electronic entropy. Therefore, the recipe that was applied in this

thesis was to initialize the calculations at a given bond distance with a high electronic

temperature (T ≈1000 K) and to subsequently reduce it. The initial broadening
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of the one-electron energy levels allows the valence electrons to populate all the

low lying excited electronic states. In subsequent calculations for the same bond

distance, the temperature is gradually reduced until the ground-state is stabilized

at T = 0 K. This procedure facilitates an initial sampling of all almost degenerate

configurations, and a final choice of only the most stable ones. This approach is

reminiscent of the generalized simulated annealing [225] techniques used in several

fields of research, from thermodynamics [226] to genetics [227], to fitting procedures

[228], to optimization of molecular geometries [229].

In this thesis we employed a Gaussian occupation function [224] of the form

fl = 0.5

[
1− erf

(
εl − εF
w

)]
, (4.1)

where εl are the KS eigenvalues, εF is the Fermi level, and fl are the occupation

numbers of the KS states. w is a rational number. In calculations for cerium systems,

the value of w should be in the range 0.05-0.1, depending on the system. These

values are still large enough to allow convergence of the SCF, and only introduce an

electronic entropy on the order of 10−3 eV or smaller.

In Figure 4.1 the total energy of the cerium dimer is reported as a function

of bond distance for different values of the broadening at the Fermi level. The

calculations are done within PBE, a polarization of one, a tier 1 basis set, and

default settings for the density mixer. The SCF limit was set to a maximum of 100

iterations, with convergence thresholds of 10−6 for the charge density change, 10−4

for the change of the sum of eigenvalues, and 10−6 for the total energy change –see

[220] for more details about the convergence criteria.

The curves in panel (a) correspond to direct calculations, i.e. they are not

restarted form previous results. The SCF convergence is reached for large values

of w. For large distances and small broadening the total energy can be subject to

serious instabilities.

Panel (b) of Figure 4.1 exemplifies the simulated annealing approach. All

calculations for w < 0.6 are restarted from previous calculations. From w = 0.6 the

value of the broadening is reduced in several steps. At each step the calculations

are initialized with the electronic structure of the previous step. The outcome is a
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Figure 4.1: PBE total energy of the cerium dimer. Spin polarization is taken into account,
restricted to one. A tier 1 basis set and default settings for the Pulay mixer are employed.
Curves are shifted in energy for readability, while raw data –i.e. not shifted– are reported
in the inset. Not converged calculations are marked with “x”. Panel (a): direct calculations
for values of the broadening w (from top to bottom): 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.08, 0.06,
0.04. Panel (b): starting from w = 0.6 the broadening is gradually reduced, and at each
step the SCF is restarted from the electronic structure of the previous result. Inset: raw
total energy data for the direct calculations, and dependence of the total energy with w at
2.4 Å.

considerably improved convergence of the SCF and the curves are smooth.

4.3 Multiple solutions

More than one stable solution is found in hybrid functional PBE0 and HSE06

calculations for cerium systems. The multi-solution behavior is a known phenomenon

when electronic configurations are close in energy [230]. This is often the case for

open shell systems. Approaches that are based on the density matrix rather than

the density are more susceptible to local minima in the potential-energy landscape

of the electrons. If the orbital symmetry is broken the system initialization can
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bias the outcome of the SCF cycle: filled orbitals are energetically favored over

empty ones, they are pushed down in energy, and it is energetically benefical for

the system to keep the initial orbital occupations. This is a known issue in Hartree-

Fock calculations [230], and is generally found in all approaches that create orbital

anisotropy, like DFT+U [210, 231] and SIC-LSD [209]. It was reported [232] that

also hybrid functionals exhibit this behavior. We will show in the remainder of the

thesis that the presence of multi-solutions in hybrid functionals turned out to be

decisive for the study of the α-γ phase transition.

Some authors have employed simulated annealing techniques to locate the

multiple SCF solutions in HF caculations [233, 234, 235]. Our approach of gradually

reducing the electronic temperature follows the same spirit. For a given distance

between the atoms, the calculations are initialized at a high temperature, and

subsequently restarted at lower temperatures with the previously obtained electronic

structure. At different distances the system is initialized in different configurations,

that the Hartree-Fock exchange potential tends to preserve. The sampling happens

therefore not on all available states, as in simulated annealing, but only on those

configurations that are similar to the initial electronic structure. As a consequence,

the system can fall into several different solutions when scanning a range of distances.

In our calculations an additional random sampling that comes from the change of the

distance between the atoms –i.e. the initialization of the electronic configuration– is

introduced with respect to the simulated annealing technique. The different solutions

are energetically stable, so we can restart calculations at neighbouring distances

with the previously computed electronic structures and generate full curves. This

combined approach provides an assessment of multiple solutions but it does not

guarantee in general that the real ground state of the system is reached.

An exemplification of the procedure is presented in Figure 4.2 for the dimer.

Spin polarized PBE0 calculations were performed with a tier 3 basis set, keeping

ten iterations in the Pulay density mixer and performing 200 SCF cycles. The data

corresponding to the highest value of the Gaussian broadening are obtained directly.

All other calculations are restarted from previous results as explained in Section

4.2.1.

At small bond distances the SCF convergence is achieved for all values of w,
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Figure 4.2: PBE0 total energy of the cerium dimer. Spin polarization is taken into
account, restricted to one. A tier 3 basis set is employed and 10 iterations are kept in the
Pulay mixer history. Curves are shifted in energy for readability, original data are reported
in the inset. The curves correspond to values of the broadening w (from top to bottom):
0.8, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.08, 0.06, 0.04. The lowest curve is generated with direct
calculations with w = 0.04 for comparison. Inset: raw total energy data and dependence
of the total energy with w at 2.2 Å.

while large distances are more problematic. Decreasing w from 0.8 helps to stabilize

the calculations at 2.7, 2.8, and 2.9 Å, but no stable configuration can be reached at

other bond lengths. Finally, for w = 0.04, two solutions emerge, corresponding to the

converged points. From those data, restarting the calculations at nearest distances

generates full cohesive energy curves. The full curves are displayed in Figure 5.5,

Section 5.4.

The importance of the simulated annealing procedure becomes clear when

looking at the lowest curve in figure 4.2. The curve corresponds to direct calculations

with w = 0.04. Although convergence is achieved for small distances, and results

coincide with the “annealed” solution, large bond lengths are extremely pathological

and lead to unreliable binding energies.





5 Cerium dimer

In this thesis we employed LDA, PBE, and hybrid PBE0 and HSE06 functionals,

and higher level EX+cRPA, rPT2 corrections for the study of cerium. We started

from the dimer, and we increased the dimension of the system to larger clusters, and,

at last, to cerium bulk.

In cerium, the radial distribution of the valence electrons, combined with their

energetic proximity, creates a interplay between different contributions. As discussed

in Section 1.2, the 4f states lie in the vicinity of the Fermi level but, being close to

the nucleus, they shield other valence electrons from the interaction with the inner

charge of the atom and at the same time they are shielded from the environment.

As a result, it is not clear how much they contribute to the cohesive properties of

cerium metal, and if they remain localized in an atomic-like configuration. It will be

shown in the remainder of this thesis that already from the dimer it is possible to

obtained meaningful results about the behavior of the f electrons in the metal.

Not many studies are available for the cerium dimer. Shen et al. [99] performed

resonant Raman spectroscopy and reported a vibrational frequency of ωe = 245.4±4.2

cm−1. They calculated the dissociation energy with the third law method, and found

De = 2.57 eV. In 2003 Cao and Dolg [100] carried out calculations at the level of the

complete active space self-consistent field (CASSCF) and multireference configuration

interaction (MRCI). CASSCF/MRCI found a ground-state that corresponds to a

4f 14f 1(6sσg)
2(5dπu)4 configuration in a possible spin singlet or spin triplet alignment,

attributing therefore a core-like nature to the f states. The authors reported

Re = 2.62± 0.02 Å for the equilibrium distance, De = 1.73± 0.4 eV for the bonding

energy and ωe = 201±13 cm−1 for the vibrational frequency. Subsequently Roos et al.

[101] used a multiconfigurational wave function approach with dynamic correlation

83
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included using second-order perturbation theory (CASSCF/CASPT2). They found

six different almost degenerate configurations with the s and d orbitals forming

the bonding states (6sσg)
2(5dπu)

4 and the f electrons being core-like or lying in

possible (4fφg)
2, (4fφg)(4fφu), (4fφu)

2 molecular orbitals. They found similar

equilibrium distance, bonding energy and vibrational frequency for all configurations:

Re = 2.63 − 2.66 Å, De = 2.61 − 2.68 eV, ωe = 166 − 189 cm−1. Nikolaev et al.

[102] suggested in 2011 an analytical solution in a valence bond model with two 4f

electrons localized at two cerium sites. The authors mainly confirmed the outcome

of previous calculations, assuming a triple chemical bond of the 6s and 5d states in

a (6sσg)
2(5dπu)4 configuration, and several almost degenerate states available to the

localized f electrons.

5.1 Local and semi-local functionals: LDA

and PBE

LDA and PBE calculations with the FHI-aims code for the cerium dimer are reported

in Figure 5.1. The calculations were performed with spin polarization taken into

account. In both LDA and PBE the system takes a value of the spin S=1, as found

by Roos et al. within high level quantum chemistry calculations. The spin is constant

with respect to the change in the bond distance.

The results show a smooth behavior for the binding energy curves with respect

to the distance between the two atoms. The binding energy is evaluated as De =

2Ea−Etot, where Ea is the atomic reference and Etot is the total energy of the dimer.

The binding energy and bond distance for the LDA spin triplet configuration are

Re = 2.35 Å and De = 3.75 eV respectively, while in PBE the values are Re = 2.40

Å and De = 2.51 eV. The results are summarized in Table 5.1.
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Figure 5.1: LDA and PBE results for the cerium dimer. The dimer has in both cases a
spin S=1. The spin is constant with respect to the distance between the atoms.

Table 5.1: Equilibrium distance, bonding energy and vibrational frequency for the cerium
dimer as obtained from different level of theories and experiments discussed in the main
text. Re represents the bond distance, De the binding energy and ωe the vibrational
frequency.

Re (Å) De (eV) ωe (cm−1)

LDA (This work) 2.35 3.75 234
PBE (This work) 2.40 2.51 208
CASSCF/MRCIa 2.62 1.73 201
CASSCF/CASPT2b 2.63/2.66 2.61/2.68 166/189
Exp.c – 2.57 245.4

aReference [100].
bReference [101].
cReference [99].
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5.2 (EX+cRPA)@PBE

Exact-exchange plus correlation in the random-phase approximation –see Section

2.7.1– has been applied to cerium systems as a post processing correction. The

EX+cRPA correction is based on the Kohn-Sham orbitals as output of PBE results,

therefore all computational specification for the method that goes under the abbre-

viation (EX+cRPA)@PBE were unchanged with respect to PBE calculations. An

additional parameter that enters the evaluation of cRPA, the number of frequency

points, was involved in the accuracy of the calculations as described in Appendix B.4.

For methods that involve a large number of states –i.e. empty states– expressing the

basis functions in terms of atom centered orbitals leads to a large basis set superpo-

sition error (BSSE) –see Appendix B.2. Therefore, a counterpoise correction was

always considered in the evaluation of the cohesive properties in (EX+cRPA)@PBE.
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Figure 5.2: PBE (black) and (EX+cRPA)@PBE (green) calculations for the cerium
dimer. Both spin unpolarized and spin S=1 configurations are reported.

In Figure 5.2 the (EX+cRPA)@PBE cohesive energy of the dimer is reported for

the spin unpolarized –i.e. where the spin component is not taken into account– and

spin S=1 configurations. (EX+cRPA)@PBE shows a characteristic double minimum
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behavior between 2.1 and 2.7 Å. For both spin configurations, the binding energy of

the minimum at small bond distance is higher than the one at large bond length

–which would be closer to the experimental bond length. The vibrational frequencies

of both solutions are distant from the experimental values.
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Figure 5.3: (EX+cRPA)@PBE spin unpolarized calculations for the cerium dimer. All
contributions are appropriately shifted in energy to facilitate a comparison.

The spin unpolarized results clarify that the appearance of the double minimum

is not related to spin effects. For the dimer case, the introduction of the spin

component only accentuates the distinctive features of the spin unpolarized binding

curve. The double minimum can be traced back to a change in the exact-exchange

contribution to (EX+cRPA)@PBE. The change in EX and the different contributions

to the (EX+cRPA)@PBE spin unpolarized results are addressed in Figure 5.3. The

correlation energy varies with the distance between the atoms. It is almost constant

at small distances and lowers by around 0.5 eV after 2.4 Å. The exact-exchange

contribution has a bump between 2.35 and 2.6 Å, that strongly influences the

(EX+cRPA)@PBE energy. In fact, substituting EX for PBE exchange already
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produces the double-well behavior that characterizes the (EX+cRPA)@PBE results.

The presence of the double-well in (EX+cRPA)@PBE reflects a change in the

binding properties of the dimer. It signals a readjustment of the electronic states

when the atoms are pulled apart. EX+cRPA is able to capture changes in the wave

functions and occupations of the orbitals even if they do not manifest in the PBE

cohesive energy. This means that the effects of the interplay between f and valence

band electrons are already present in PBE, but they are hidden. The analysis in this

Section illustrates that EX+cRPA has a non-trivial effect on the electronic structure

of the dimer. This is indicative of the fact that perturbation theory is breaking down.

Ideally EX+cRPA should be applied self-consistently. However, this is unfortunately

not possible in FHI-aims at the moment. Since the EX contribution is at least an

order of magnitude larger than cRPA, it will likely be the driving force. We will

thus apply exchange self-consistently. We will show in the next Sections that hybrid

functionals provide a remarkable description of the cerium dimer and larger cerium

systems.
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5.3 Hartree-Fock

Hartree-Fock calculations were performed as a first step toward hybrid functionals.

The technique of gradually decreasing the electronic temperature, that resulted

in smooth curves for LDA and PBE, was also applied to HF. However, the result

was significantly different. As introduced in Section 4.3 and shown in Figure 5.4,

gradually reducing the fractional occupation for the KS orbitals indeed favors the

convergence of the SCF, but the converged results fall on multiple solutions.
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Figure 5.4: Hartree-Fock results for the cerium dimer. Different solutions are stabilized
through the SCF cycle at different distances. They can correspond to equal or different
spin configurations.

The different solutions correspond to different spin states and occupation of the

valence orbitals. One S=1 solution is characterized by a 6s15d64f 1 valence occupation,

and the other by 6s25d54f 1 valence occupation. The S=0 solution has 6s25d54f 1

occupation and the S=4 curve lies in a 6s25d24f 4 configuration. All solutions find

that the dimer is not bound.
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5.4 Hybrid functionals: PBE0

The presence of multi-solutions in hybrid functional calculations is an important

outcome of our study. Also in PBE0 the cerium dimer displays the multi-solution

behavior encountered in Hartree-Fock. However, the result is considerably different,

as reported in Figure 5.5. In PBE0 the system relaxes into two low-lying solutions

for each spin configuration and, while in HF the dimer is not bound, the dimer

is actually stable. The binding energy of the lowest solution is close to the PBE

one and to experiment one. Table 5.2 also compares the PBE0 results to accurate

quantum chemistry methods. While PBE leads to a slightly better agreement for

the binding energy, the 25% exact-exchange in PBE0 improves the bond length.
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Figure 5.5: PBE0 results for the cerium dimer. Two stable solutions appear for each
spin configuration.

The vibrational frequencies in Table 5.2 were obtained from a fit to the potential

energy curve, without taking anharmonicity into account. The fit is done with a

quadratic polynomial in a range of approximately 0.2 Å around the equilibrium

distances. The contribution of anharmonicities will be investigated in future studies

in the context of molecular dynamics simulations and experiment.
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Table 5.2: Equilibrium distance, bonding energy and vibrational frequency for the cerium
dimer as obtained from different level of theories and experiments discussed in the main
text. Re represents the bond distance, De the binding energy and ωe the vibrational
frequency.

Re (Å) De (eV) ωe (cm−1)

PBE (This work) 2.40 2.51 208
PBE0 (b) (This work) 2.54 2.18 212
CASSCF/MRCIa 2.62 1.73 201
CASSCF/CASPT2b 2.63/2.66 2.61/2.68 166/189
Exp.c – 2.57 245.4

aReference [100].
bReference [101].
cReference [99].

The fact that two solutions are present in both spin configurations implies

that there is indeed a difference between their electronic structure, and the multiple

solutions do not emerge from a change in the magnetic properties of the dimer.

The spin unpolarized solutions (a) and (b) correspond to the occupations 6s15d54f 2

and 6s25d44f 2 respectively. While the S=1 PBE0 curves have both a 6s25d44f 2

configuration. Spin polarization further stabilizes the energy of the spin unpolarized

dimer. This will become more clear when we analyze the bulk system in Section 7.2.

The difference of the two S=1 solutions in Figure 5.5 can be understood by

plotting the density of the highest occupied KS-orbitals. The left column of Figure

5.6 contains the spin up orbital densities of the (a) solution in Figure 5.5. The orbitals

are listed according to their binding energy, with the highest occupied molecular

orbital (HOMO) at the top. Similarly the right column corresponds to the (b) curve

in Figure 5.5. For both solutions the difference between spin up and spin down states

is the presence of the 4f orbitals. The (b) solution is in agreement with the results

reported from CASSCF/MRCI and CASSCF/CASPT2 calculations: the 6s and 5d

orbitals participate in the bonding and give rise to the (6sσg)
2(5dπu)

4 configuration

while the 4f states remain localized near the core. This is a noticeable achievement

for hybrid functionals. While in quantum chemistry calculations the 4f electrons

are manually placed in several orbital arrangements, in this thesis the arrangement

is an outcome of the simulated annealing approach. The orbital arrangement of
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the (a) solution is different from the (b) solution and has not previously been

studied in quantum chemistry calculations. Its orbital structure corresponds to a

(6sσu)
2(5dπu)

4(4fδg)
1(4fσg)

1 configuration1. Going from (b) to (a) the 6sσ state

remains the HOMO but changes its nature from bonding to antibonding. The 5dπ

molecular orbitals are instead unchanged. Finally one 4fσu molecular orbital changes

its nature going from anti-bonding to bonding (4fδg), partially compensating the

loss of binding energy arising from the change in the 6s states.

1The 6sσ orbital is ungerade because the sign of the wave function giving rise to the orbital
density is not symmetric for reflection with respect to all coordinates.
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Figure 5.6: PBE0 electronic densities of the five spin up occupied orbitals closest to the
Fermi level for solution (a) –left–, and solution (b) –right–, of Figure 5.5. Each orbital
accomodates one electron. The energies of the orbitals for solution (a) are: 6sσu -2.51 eV;
4fδg -3.14 eV; 5dπu -3.62 eV (the two 5dπu have the same energy); 4fσg -3.88 eV. The
spin down valence configuration –not sown– of solution (a) is (6sσu)1(5dπu)2, with energies:
6sσu -4.25 eV; 5dπu -4.50 eV. The energies of the orbitals for solution (b) are: 6sσu -3.32
eV; 5dπu -3.62 eV; 4fσu -4.19 eV; 4fσu -5.05 eV. The spin down valence configuration of
solution (b) is (6sσg)

1(5dπu)2, with energies: 6sσg -3.35 eV; 5dπu -3.51 eV.
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5.5 Fraction of exact-exchange

In PBE0 only a fraction of exact-exchange –see Section 2.6– is introduced. This

corrects the nonphysical behavior of HF, where the dimer is not bond. PBE0 is a

widely used functional, and the 25% of EX finds some justification in perturbation

theory. However, the fraction of exact-exchange that should be included to better

describe the cerium dimer is unknown.
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Figure 5.7: Variation of the binding energy for the Ce dimer with respect to the change
in the fraction of exact-exchange a included in the PBE0 functional. a varies in steps of
0.05 for 0 ≤ a ≤ 0.25 (0.25 corresponds to PBE0) and in steps of 0.1 for 0.25 ≤ a ≤ 1.

In Figure 5.7 we report the variation of the binding energy with respect to the

amount of exchange (in terms of the parameter a). All calculations that include a

percentage of EX different than a = 0.25 –the PBE0 value– are restarted from the

two initial PBE0 solutions. For a = 0 the curves correspond to PBE. However, a = 1

does not correspond to Hartree-Fock, because correlation is still retained at the PBE

level.

With increasing a the two PBE0 curves move apart. Eventually better agree-

ment with experiments can be found for solution (b). For example, imposing a = 0.35
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gives a binding energy of 2.46 eV, and a = 0.4 gives a binding energy of 2.64 eV. Both

energies are closer to the experimental value 2.57 eV than the PBE0 energy. However,

avoiding adjustable parameters is one of the main purposes of this thesis. The mixing

factor in the hybrid functionals that controls the fraction of exact exchange may

be regarded as a simplified screening function, which is replaced by a physical and

system-dependent screening in EX+cRPA. We decided therefore to proceed in a

more rigorous way, and we applied the EX+cRPA correction to PBE0 –Section 5.6.

5.6 (EX+cRPA)@PBE0

Having seen that PBE0 qualitatively changes the electronic structure of the Ce

dimer, we will now apply EX+cRPA again. In Figure 5.8 we show the PBE0 and

(EX+cRPA)@PBE0 results for the cerium dimer with spin S = 1.
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Figure 5.8: PBE0 and (EX+cRPA)@PBE0 calculations for the cerium dimer in the spin
polarized configuration. Both (a) and (b) solutions have total spin S = 1.

The EX+cRPA correction lowers the PBE0 cohesive energy curves. As sum-

marized in Table 5.3, solution (a) changes its binding energy from 1.40 to 2.18 eV
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while solution (b) moves from 2.18 to 2.39 eV. At the same time also the bond

distance is changed, by 0.09 Å for (a) and 0.07 Å for (b). This brings the equilibrium

distance, bonding energy and vibrational frequency of the most stable solution into a

remarkable agreement with quantum chemistry calculations. In particular the bond

length is very close to the CASSCF/MRCI results of Cao and Dolg [100] and to the

CASSCF/CASPT2 results by Roos et al [101]. The binding energy is underestimated

with respect to experiment by only 0.18 eV. On the other hand, all values for the vi-

brational frequencies are underestimated as in previous calculations. The vibrational

frequency of the (EX+cRPA)@PBE0 (b) configuration is again very close to the

one reported by Roos et al. [101]. The similar binding energy, bond distance, and

molecular orbital arrangement strengthen the accuracy of the (EX+cRPA)@PBE0

approach. And the fact that EX+cRPA does not bring significant changes to the (b)

solution with respect to PBE0 is an indication that the underlying physics of the

cerium dimer can already be captured by PBE0 –as also evidenced in Section 5.4.

Table 5.3: Equilibrium distance, bonding energy and vibrational frequency for the cerium
dimer obtained from different levels of theory and from experiment. Re represents the
bond distance, De the binding energy and ωe the vibrational frequency.

Re (Å) De (eV) ωe (cm−1)

PBE0 (a)a 2.32 1.40 255
PBE0 (b)a 2.54 2.18 212
(EX+cRPA)@PBE0 (a)a 2.41 2.17 220
(EX+cRPA)@PBE0 (b)a 2.61 2.39 192
CASSCF/MRCIb 2.62 1.73 201
CASSCF/CASPT2c 2.63/2.66 2.61/2.68 166/189
Exp.d – 2.57 245.4

aThis work.
bReference [100].
cReference [101].
dReference [99].

The (EX+cRPA)@PBE0 results of Figure 5.8 are compared in Figure 5.9 to

the spin unpolarized results. EX+cRPA lowers the spin unpolarized PBE0 cohesive

energy by around 1 eV, and the curves are close to the (EX+cRPA)@PBE0 spin

polarized cohesive energy curve of solution (a), as it was also found for PBE0.
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Figure 5.9: (EX+cRPA)@PBE0 calculations for the cerium dimer in the spin unpolarized
(black) and polarized (blue) configuration.

Similarly to PBE0, spin polarization provides a stabilization of the dimer electronic

structure for (EX+cRPA)@PBE0, giving the lowest cohesive energy –solution (b).

It has been suggested that the PBE0 α solution has delocalized f electons

with respect to the γ solution in the periodic system, with higher charge density in

the interstitial region. In the same way the PBE0 (a) configuration for the dimer

arrange the two f electrons in a bonding state, whereas a 4f antibonding orbital

is formed in the (b) configuration. This signals the possibility of tracing the α-γ

phase transition back to the dimer size. The (EX+cRPA)@PBE0 solutions for the

dimer are very close in energy, as expected for the α and γ phases, and they are

characterized by a different configuration of the f electrons, as it is believed to be for

the α-γ phase transition. This provides an indication that the α-γ phase transition

might be directly linked to the change in the 4f wave functions.

The dimer solution that is found at small bond distances actually represents a

stable state, Figure 5.10, and has not been observed in any of the previous theoretical

and experimental works. But the accuracy with which the most stable solution –i.e.

solution (b)– has been reproduced with respect to quantum chemistry calculations
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Figure 5.10: (EX+cRPA)@PBE0 data of Figure 5.8. The inset reports the range of
stability of the (a) solution in a small energy scale. The cohesive energy is calculated for
both (a) and (b) solutions with respect to the bond distance in steps of 0.01 Å. A stable
state is confirmed for the (a) configuration.

suggests that (EX+cRPA)@PBE0 is a reliable approach. The reason why solution

(a) has not been observed until present is probably related to the subspace of orbitals

that is normally included in quantum chemistry calculations. The experimental

confirmation of the existence of solution (a) would be a success for electronic structure

methods, and, as described more extensively in the Outlook of this thesis, motivated

a collaboration with the research group Prof. Wöste at the Freie Universität Berlin

and the submission of a DFG joint research project on this topic.
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5.7 Beyond RPA methods

Before proceeding to the results for clusters, we will briefly address beyond RPA

schemes. At the time of this thesis, the beyond RPA schemes second order screened

exchange and single excitation corrections (SOSEX+rSE) [177] have appeared as

promising beyond RPA methods2. Due to the high computational requirements, the

cerium dimer was the only system to which a post-processing SOSEX correction

could be applied. The results are reported in Figure 5.11.
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Figure 5.11: (EX+cRPA)@PBE0 cohesive energy for the (a) and (b) solutions compared
to (EX+cRPA+SOSEX)@PBE0, (EX+cRPA+rSE)@PBE0 and rPT2@PBE0 results.

As for EX+cRPA, also SOSEX and rSE change the energy of the two so-

2Refer to Section 2.7.2 and 2.7.3 for a brief introduction to the beyond-RPA schemes.
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lutions by a different amount. Adding only the SOSEX correction reduces the

(EX+cRPA)@PBE0 cohesive energy by around 0.5 eV in solution (b) and in-

creases the cohesive energy of solution (a) by around 0.2 eV. On the contrary,

(EX+cRPA+rSE)@PBE0 stabilizes the (a) configuration by around 1.4 eV, while

curve (b) is left almost unchanged. The net effect is that SOSEX causes the energy

shift in solution (b) while rSE is responsible for the energy shift of solution (a).

The energy contributions are summarized in Table 5.4. A noticeable feature of

SOSEX+rSE is a strong stiffening of the vibrational frequency of solution (a), that is

accompanied by an anomalous bump between 2.3 and 2.5 Å. This is not observed for

solution (b) and could be an non-physical phenomena connected to computational

issues. As mentioned above, the SOSEX+rSE correction is in active development

and accurate tests, especially on metallic and f electron systems, are required in the

future.

Table 5.4: Equilibrium distance, bonding energy and vibrational frequency for the cerium
dimer obtained from different levels of theory and from experiment. Re represents the
bond distance, De the binding energy and ωe the vibrational frequency.

Re (Å) De (eV) ωe (cm−1)

PBE0 (a)a 2.32 1.40 255
PBE0 (b)a 2.54 2.18 212
(EX+cRPA)@PBE0 (a)a 2.41 2.17 220
(EX+cRPA)@PBE0 (b)a 2.61 2.39 192
(EX+cRPA+SOSEX)@PBE0 (a)a 2.23 1.81 598
(EX+cRPA+SOSEX)@PBE0 (b)a 2.58 2.88 219
(EX+cRPA+rSE)@PBE0 (a)a 2.26 3.88 698
(EX+cRPA+rSE)@PBE0 (b)a 2.6 2.40 190
rPT2@PBE0 (a)a 2.24 3.64 765
rPT2@PBE0 (b)a 2.59 2.85 198
CASSCF/MRCIb 2.62 1.73 201
CASSCF/CASPT2c 2.63/2.66 2.61/2.68 166/189
Exp.d – 2.57 245.4

aThis work.
bReference [100].
cReference [101].
dReference [99].
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5.8 Summary

In this chapter we have reported calculations for the cerium dimer with the LDA,

PBE and PBE0 functionals, and we have added to PBE and PBE0 the EX+cRPA

correction. The importance of the EX+cRPA approach is proved by the dra-

matic change in the (EX+cRPA)@PBE binding curve with respect to the PBE

one. The (EX+cRPA)@PBE result is however not satisfactory, and suggests that

exact-exchange should be included in a self-consistent way. This is done in PBE0,

even if EX is included only for one fourth in the exchange part. PBE0 produces two

binding curves, that correspond to different stable configurations of the dimer. The

PBE0 and (EX+cRPA)@PBE0 results for the dimer are in good agreement with

experiment and quantum chemistry calculations.





6 Cerium clusters

Proceeding towards the study of cerium metal, we considered cerium clusters of

increasing size with the PBE and PBE0 functionals, and EX+cRPA corrections. The

clusters were cut from the face-centered cubic crystal structure, which characterizes

both α and γ phases, in order to mimic the periodic environment. They were built

with one atom in the center surrounded by shells of first, second and third nearest

neighbors. This procedure leads to configurations of thirteen, nineteen and forty-three

atom clusters as illustrated in Figure 6.1. The fcc structure and the configuration

with one atom in the central position were preferred over other possible ones –for

instance the one cut from the fcc structure with a first tetrahedral shell and a total

of fourteen atoms– in order to recreate the bulk system environment on the central

atom.

Figure 6.1: Cerium clusters cut from the fcc crystal structure with a total number of,
going from left to right, 13, 19 and 43 atoms.

In order to reduce edge effects the expression for evaluating the effective cohesive

energy of clusters was used [237, 238]. The formula assigns a weight –the second
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term in Equation 6.1– to each atom depending on the number of nearest neighbors.

Atoms that are in the inner region of the cluster are more important. The central

atom for instance, for which the shell of first nearest neighbors is complete, has

weight one. All other atoms have a weight smaller than one. The cohesive energy

can then be expressed as1

Ecoh = −

[
E −

12∑
c=1

(NcE
atom
c )

](
12∑
c=1

Nc

√
c

12

)−1

(6.1)

where E is the total energy, Nc the number of atoms in the cluster with c nearest

neighbors, and Eatom
c the atomic total energy for a c-fold-coordinated atom2.

6.1 PBE and PBE0

In clusters, the assignment of a spin constraint can be difficult and sometimes

misleading. Edge effects play an important role and atoms in different positions

can display a completely different magnetic behavior. We decided therefore to

perform unrestricted spin polarized calculations, which means that the system had

no constraint on the spin value. This approach, combined with the simulated

annealing technique, guarantees that the systems relaxes into one of the lowest –if

not the lowest– states, with the corresponding optimal spin configuration. Concerning

all other specifications the calculations were carried out following the procedures

already used for the dimer and described in the previous section. The outcome for

the cohesive energy is reported in Figure 6.2, 6.3 and 6.4. The energy is plotted

with respect to the distance between the atoms that would correspond to the lattice

constant (a0) in an fcc environment.

All three clusters show similar features. The PBE functional gives a smooth

curve for the cohesive energy. The magnetic moment of the central atom is zero

1Note that the sum runs from 1 to 12, as 12 is the maximum number of nearest neighbors for
an atom in the fcc environment.

2For the PBE and PBE0 functional, for which the BSSE –see Appendix B.2– can be neglected,
Eatom

c is always the energy of the free atom. For (EX+cRPA)@PBE/PBE0 the atomic reference
must be calculated explicitly at each atom position.
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Figure 6.2: PBE and PBE0 cohesive energy for the cerium cluster of thirteen atoms.

around the equilibrium position and increases with increasing lattice constant3.

Similar to the dimer, PBE0 results instead give two stable configurations. They

both lie at higher energies compared to the PBE curve and they are separated by

approximately 1 eV. Curve (a) is stable at a lattice constant that is close to the PBE

one and has the same magnetic properties4. At the equilibrium position the spin

value of solution (a) is almost zero. The minimum of solution (b) is found at a larger

distance, and the spin of the central atom approaches one half5.

An analysis of the PBE and PBE0 solutions reveals that the different functionals

preserve specific trademarks of the electronic structure in all clusters. In Figure

6.5 and 6.6 the density of Kohn-Sham states projected onto the central atom is

plotted, for PBE and PBE0 respectively, with respect to the energy for all clusters.

The density of states (DOS) for negative energies represents occupied levels, zero

3A similar change of the magnetic moment with the lattice constant is found for cerium bulk.
See Figure 6.7 for the explicit volume dependence of the spin.

4For a summary of lattice constant, cohesive energy and magnetic moment values for the
different clusters and a comparison with experiment refer to Figure 8.1 and 8.2 in Section 8.1.

5The spin on each atom is calculated according to the Mulliken charge partitioning scheme
[239].



106 Chapter 6. Cerium clusters

3.5 4 4.5 5 5.5 6 6.5
a0 (Å)

5.00

4.00

3.00

2.00

1.00

E
co

h (
eV

)

Ce
19PBE, spin unrestricted

PBE0, spin unrestricted (b)

PBE0, spin unrestricted (a)

Figure 6.3: PBE and PBE0 cohesive energy for the cerium cluster of nineteen atoms.

corresponds to the Fermi energy (EF), and the empty states are found at positive

energies. The DOS in the plots is the sum of the spin up and spin down DOS. A

Gaussian smearing6 of 0.2 is applied to the KS-DOS. For PBE0, all states below -4

eV are identical in both solutions.

A characteristic that emerges from Figure 6.5 and Figure 6.6 is the presence

of a prominent peak in the unoccupied states –a comparison with photoemission

experiments will follow, in the next Chapter, for bulk cerium. For all cluster sizes, the

peak of PBE and the PBE0 (a) solution lies between 1 and 2 eV whereas in solution

(b) it is moved to around 4 eV. In both cases it arises from a clear contribution of the

4f states. The number of electrons resolved for orbital components and projected on

the central atom is reported for all the clusters in Table 6.1.

In both PBE and PBE0 the similarities between Ce19 and Ce43 are remarkable.

The spectra is dominated by the d and f states. In PBE and the PBE0 (a) solution

the 5d levels have peaks mainly around -2 and -3 eV and just above the Fermi energy.

In the PBE0 (b) solution the 5d states, occupied and empty, are close to EF. The

6See Section 4.2.1, Equation 4.1, for the definition of Gaussian smearing.
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Figure 6.4: PBE and PBE0 cohesive energy for the cerium cluster of forty-three atoms.

position of the occupied and empty 4f states is similar between the PBE and PBE0

(a) solutions, where the empty 4f states are close to EF. In PBE0 (b) instead, the

empty states lie at higher energies –around 4 eV. A closer look around the Fermi

energy reveals that there is a removal of f spectral weight from EF going from PBE,

PBE0 (a) to PBE0 (b). The f levels are pushed away from the Fermi level, while

the occupied and empty d states come closer. The change in electronic structure

arises therefore from the interplay between the 5d and 4f states.

Because of the similarity of the two solutions in the clusters –reflected in e.g.

the equilibrium lattice constant, magnetic moment and density of KS-state– with

the two phases of cerium –see Section 8.1–, the two hybrid functional solutions will

be labeled with the letters “α” and “γ” in the remainder of this thesis to simplify

the notation.
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Figure 6.5: PBE density of Kohn-Sham states (sum of spin up and down DOS) of the
cluster results of Figure 6.2, 6.3 and 6.4. Zero is the Fermi energy. The DOS is plotted
at the equilibrium distances. The different colors label total (black), s (red), p (green), d
(blue) and f (orange) DOS.
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Figure 6.6: PBE0 density of Kohn-Sham states (sum of spin up and down DOS) of the
(a) and (b) solution at the equilibrium distances. They correspond to the cluster results of
Figure 6.2, 6.3 and 6.4. The different colors label total (black), s (red), p (green), d (blue)
and f (orange) DOS.
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6.2 EX+cRPA: the α-γ phase transition

In this Section it will be shown that hybrid functionals combined with quantum

many-body perturbation techniques are in fact a promising choice for the description

of the α-γ transition. Our results not only constitute the first investigation of the

phase change without adjustable parameters, but also provide insight on the nature

of the phase transition.

We first discuss (EX+cRPA)@PBE results. In Figure 6.7 the (EX+cRPA)@PBE

cohesive energy of Ce19 is reported. The nineteen-atom cluster is the biggest one

that could be study with high level quantum many body techniques. The restriction

comes from the computational cost of computing RPA.

For both spin unpolarized and spin unresctricted PBE calculations the EX+cRPA

correction causes a shift by around 4.5 eV to lower energies. At the same time the

bulk modulus is considerably increased, as it was also observed for the vibrational

frequency in the dimer. On the other hand the equilibrium lattice constants are

close to the PBE values, 4.35 and 4.30 Å for the PBE and (EX+cRPA)@PBE spin

unpolarized results respectively, and 4.40 and 4.26 Å for spin unrestricted results.

In the same Figure the magnetic moment of spin unrestricted calculation is also

plotted along with its 4f component. The spin component of the system is mainly

dictated by the f electrons. For spin unpolarized results the EX+cRPA cohesive

energy display a smooth behavior with distance. Instead, (EX+cRPA)@PBE for the

spin unrestricted results display a region of negative curvature in correspondence

with a change in magnetic properties.

Ce19 is representative of the other clusters –see e.g. the density of KS-states

in Figure 6.5. However, the PBE description of Ce19 is not representative of the

PBE bulk results reported in Section 7.1. This will be analyzed in Section 8.1 with

a comparison of cluster and bulk properties. Although, one could associate the two

minima with the α and γ phases of cerium, we will show that this is not the case. In

Section 5.2 and 7.2 we show that the double minimum and the volume collapse is

accompanied, but not driven, by a change in the magnetic properties. The absence of

a double minimum or kink in the spin unpolarized (EX+cRPA)@PBE indicates that

the wave functions do not change appreciably. In other words, there is no signature
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of f -electron localization with increasing lattice constant. The structure in the spin

polarized (EX+cRPA)@PBE curve therefore arises from the strange behavior of the

magnetic moment in PBE and only coincidentally produces a double minimum.
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Figure 6.7: PBE (black) and (EX+cRPA)@PBE (green) cohesive energy for the 19-atom
fcc-cerium cluster as a function of the lattice constant. Both the spin unrestricted and
the spin unpolarized configurations are reported. The total magnetic moment (gray curve,
open circles) and the 4f contribution to the magnetic moment (gray curve, filled diamonds)
is shown for the spin unrestricted data and refers to the axes on the right.

(EX+cRPA)@PBE suggests that PBE is not a good starting point for higher

level methods for cerium. This was also concluded from the cerium dimer results, and

in the next paragraphs we will show that PBE0 constitutes instead a good ground

to describe the α-γ phase transition.

The (EX+cRPA)@PBE0 cohesive energy for Ce19 is reported in Figure 6.8. It

will be explained in Section 8.1 that Ce19 is representative of the PBE0 bulk result.

It is therefore one of the main achievements of this thesis that EX+cRPA reverts

the energetic ordering of the two PBE0 solutions, and brings the difference in energy

between the PBE0 α and γ phases in agreement with experiment. At variance with

PBE, PBE0 spin unpolarized calculations capture a change of the system properties

with distance. We refer the reader to the bulk calculations of Section 7.2 for a
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discussion of this result.
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Figure 6.8: Calculated (EX+cRPA)@PBE0 cohesive energy for the 19-atom fcc-cerium
cluster as a function of the lattice constant. The dashed line illustrates the Gibbs con-
struction for the transition pressure in good agreement with the extrapolated experimental
Pt ' −0.8GPa [59]. Arrows on the energy axes: experimental cohesive energy from
reference [240].

The EX+cRPA corrections to the PBE0 results are similar to those observed

for the dimer, but the effect on the cohesive energy is more pronounced. The γ-like

(EX+cRPA)@PBE0 solution is moved down in energy with respect to PBE0 by 0.8

eV, while the α-like solution lowers by as much as 1.8 eV. The energy shifts can

be ascribed to the improved description of screening effects in the RPA correction.

The α phase is more affected by the cRPA correction as the screening is higher for

delocalized electrons7. It can also now be linked more directly to the KS density

of states reported in Figure 6.6. The low-volume phase is shifted more in energy

because the number of states near the Fermi level is higher in the α phase with

respect to the γ phase. This cause the contribution from the polarizability –Equation

7Refer to Chapter 7 for a discussion of localization/delocalization in hybrid functional results for
cerium. Note that the density difference plot reported in Figure 7.6 –which provides an indication
of the delocalization of f electrons in the α-like phase with respect to the γ phase– displays the
same characteristic when obtained from the densities of the two Ce19 solutions.
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2.67, Chapter 2– to grow, with a subsequent increase in the RPA energy –Equation

2.70.

According to the extrapolation of experimental data to zero temperature

[61, 59], the difference in internal energy (∆U) between the two phases should lie

between 20 and 30 meV, while the (EX+cRPA)@PBE0 value for Ce19 amounts to

∆U ' 45 meV. Although the difference is larger than the experimental estimation

of the maximum energy difference between the two phases, it is comparable to the

experimental findings –see Figure 1.9, Chapter 1. This leaves room for the estimated

entropy contribution T∆S to play a role in the phase transition. The calculated

lattice constants for the α- and γ-like phases are 4.45 and 5.03 Å, respectively. In

other words the lattice constant of the α phase is underestimated (4.83 Å at 77

K), but the agreement with the experimental value for the γ phase is good (5.16 Å

at room temperature). Consequently, the estimated volume collapse is ' 30% at

zero temperature, instead of the 15% observed experimentally at ambient conditions

[9]. The common tangent to the (EX+cRPA)@PBE0 cohesive energy curves leads,

through the Gibbs construction, to a transition pressure of Pt ' −0.74 GPa at

zero temperature. This is in good agreement with the extrapolated experimental

Pt ' −0.8 GPa.
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6.3 Summary

Proceeding toward the study of cerium bulk, PBE, PBE0 and high level EX+cRPA

calculations were performed on cerium clusters cut from the fcc crystal structure.

The occurrence of two distinct solutions in PBE0, that was seen for the cerium dimer,

is also confirmed for larger clusters. The two solutions preserve distinctive features

–i.e. equilibrium lattice constant, magnetic moment, density of KS-states– along all

the clusters, and can be associated to the α and γ phases of cerium.

Signatures of the two phases can eventually be found already in PBE. The spin

unrestricted PBE cohesive energy curve for the nineteen atom cluster, for example, is

smooth, but the magnetic moment changes around the experimental lattice constant

of the α and γ phases. The (EX+cRPA)@PBE cohesive energy is largely affected by

this change, leading to the characteristic double-well behavior sought in the ab initio

study of the phase transition.

As for the dimer, PBE0 seems however to provide a better starting point

for EX+cRPA and the two solutions are preserved also in (EX+cRPA)@PBE0

calculations. The cohesive energy of the most stable solution in, e.g., Ce19 changes by

0.8 eV from PBE0 to (EX+cRPA)@PBE0 –to be compared with 4.5 eV from PBE

to (EX+cRPA)@PBE–, and, most notably, the energy hierarchy is reversed: the

solution compatible with the α phase is moved to lower energy and the α-γ transition

pressure becomes in remarkable agreement with the extrapolated transition pressure

to zero temperature.





7 Cerium bulk

7.1 Hybrid functionals and the α and γ phases

After the interesting results obtained for the clusters, the cerium atom was placed

in a periodic environment1. It is one of the main achievements of this thesis that,

as reported in Figure 7.1, the presence of the two hybrid-functional solutions was

confirmed in cerium bulk.

In Figure 7.1 the cohesive energy (Ecoh) obtained from LDA, PBE, PBE0,

and HSE06 are presented as a function of the lattice constant. The experimental

lattice constants of the α and γ phases of cerium, at 77 and 273 K, are also

reported. The LDA and PBE results are in agreement with previous calculations

[76, 77, 209, 211, 212] and exhibit only one minimum. The associated volume is

consistent with the α phase, although the actual value is underestimated. In contrast,

in PBE0 and HSE06 two stable solutions are found. One solution has a minimum

approximately coinciding with the LDA or PBE minimum, while the second reaches

its equilibrium position at a much larger lattice constant, consistent with the one of

the γ phase. The magnitude of the cohesive energy systematically reduces from LDA

to PBE, and from PBE to PBE0. PBE0 and HSE06 results are almost identical, and

will be considered as equivalent for the remainder of the Chapter and of the thesis.

In Table 7.1 the values for the equilibrium lattice constant, cohesive energy, bulk

modulus and magnetic moment are reported for bulk PBE and PBE0 calculations

together with experimental reference values and previous calculations.

In LDA and PBE the system does not show a magnetic moment at the equi-

1Refer to Section 4.1 for the computational details.
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Figure 7.1: Cohesive energy [Ecoh = −(E −
∑
Eatom)] of cerium for spin unrestricted

calculations as a function of the lattice constant (a0). Dashed lines show HSE06 results.
The spin moment increases with volume for the LDA and PBE solutions, while in PBE0
and HSE06 it remains approximately constant at zero and one-half for the α- and γ-
like solutions, respectively. Experimental lattice parameters for the two phases at finite
temperature [9] are marked by black arrows.

librium lattice constant. A finite value for the spin only develops when the lattice

constant is increased –Figure 7.12, 7.13. One should remember that the γ phase

of cerium metal –see Section 1.3.2– displays localized magnetic moments but does

not assume ferromagnetic order. In this sense the spin component present in our

calculations only approximates the real behavior of the system. We believe the

approximation to be reasonable, as it can be deduced from the negligible ener-

getic difference –at the equilibrium lattice constant– between ferromagneitc and

antiferromagnetic calculations, Figure 7.13.

The two PBE0 solutions differ in their electronic structure as reflected in the

density of states, in Figure 7.2, and the magnetic moment (m), see Section 8.1. m of
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Table 7.1: Comparison of the computed equilibrium lattice constants, bulk moduli and
cohesive energies for the α and γ phases with those of other calculations and experiments.
In reference [76], LDA and GGA (Becke-Perdew gradient correction) calculations for the α
and γ phases were modeled by retaining the f electrons in valence shell –α phase– and
inert core –γ phase–. In the SIC-LSD and LDA+U the α phase results refer to LDA and
LSD calculations.

α-Ce γ-Ce

Method a0 (Å) Ecoh (eV) B (GPa) a0 (Å) Ecoh (eV) B (GPa)

LDA (This work) 4.50 5.84 64.1 – – –
PBE (This work) 4.68 4.93 36.6 – –
PBE0 (This work) 4.63 3.76 50.5 5.22 4.35 28.3
LDAa 4.61 – 47.7 5.12 – 31.2
GGAb 4.80 – 39.1 5.30 – 28.8
SIC-LSDb 4.69 – 44.3 5.14 – 34
LDA+U c 4.52 – 59 5.04 – 34
Expt.d 4.83 4.3 27 5.16 – 19

aReference [76]
bReference [77].
cReference [211].
dReference [10, 240, 66].

the low volume phase lies around 0.2 µ0, while in the high volume phase m is close

to one2. Also the number of f electrons is approximately one in both phases, as

suggested by positron annihilation experiments –Section 1.3.1.

The density of states is plotted in Figure 7.2 at the equilibrium distances of

the two phases and it is reminiscent of the cluster DOS reported in Figure 6.6. The

reported DOS is the sum of the spin up and spin down DOS. Direct and inverse

photoemission data are also shown for comparison. The PBE0 γ phase displays some

peaks below the Fermi energy, of which the peak around -3 eV arises mainly from an

f contribution and the others accommodate d electrons. The region of the empty

states is instead dominated by a major peak between 3 and 4 eV. The α-like phase is

characterized by a strong peak between 1 and 2 eV. Also the PBE DOS is reported.

PBE reproduces the experimental central peak. Going from PBE to the PBE0 α

phase solution the spectral weight is shifted away from EF: the occupied orbitals are

2The spin is calculated according to the Mulliken charge partitioning scheme [239].
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Figure 7.2: Density of Kohn-Sham states of the α- and γ-like solutions of Figure 7.1.
Zero is the Fermi energy. Direct (*) and inverse (**) photoemission experiments are taken
from reference [42] and [52] respectively.

moved to lower energy, the empty ones to higher energy.

As described in Section 1.3.4, for a long time the experimental spectrum of the

α phase has been a matter of controversy. In particular, the characteristic three-peak

structure has been observed in all measures, but the nature of the peaks –if they

are of an f nature or not– remained uncertain. Moreover, in cerium the surface

contributions play an important role and the surface is believed to preserve γ-like

features also in the α phase. Consequently, the peak at around 4 eV could belong to

the γ-like surface. From the theoretical point of view, both the Mott transition and

the Kondo volume collapse models predict a three-peak structure in the intermediate

temperature regime, but result in a broad central peak at the Fermi level at zero

temperature –see Figure 1.10. It is therefore not certain whether the PBE and PBE0

α-like density of states are missing some features or they describe the cerium spectra

as they would be if measured at 0 K without surface effects.

In this regard, one should therefore consider that the functionals that were

employed in the calculations are derived from ground state theories, and that the KS

eigenvalues enter the SCF cycle only as Lagrange multipliers. DFT is a ground state

theory that can in principle be exact, but this does not mean that the Kohn-Sham
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Figure 7.3: Cohesive energy of cerium bulk within PBE spin unrestricted and restricted
calculations. Experimental lattice parameters for the two phases at finite temperature
[9] are marked by black arrows. The gray line represents the magnetic moment of the
unrestricted solution are refers to the scale on the right.

spectrum has to agree with the photoemission spectrum. As a consequence, the

usual practice of comparing the KS spectra with the experimental one, even if it

often proves useful, is not formally justified and the cohesive properties of a system

can in principle be correctly described within KS-DFT even if the spectral function

is not.

The fact that the two hybrid functional solutions display a different magnetic

moment, that remains constant as the volume changes, would suggest that also the

PBE functional would give rise to two distinct solutions if the s.c.f. cycle would be

constrained into local minima by fixing the spin value. This is in fact the case, and

the result of spin constrained PBE calculations is reported in Figure 7.3.

The spin unrestricted curve is the same as in Figure 7.1. The gray curve, on

the other hand, represents the change of magnetic moment of the spin unrestricted

solution with respect to the lattice constant. The abrupt emergence of a magnetic

moment around the experimental lattice constant of the γ phase is representative of
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the observed change in magnetic properties along the α-γ phase transition and was

already observed in earlier DFT studies [203]. A different curve can be generated by

constraining the spin of the system to the extreme case in which both the magnetic

moments of the 4f and the 5d electrons are aligned, m = 2 µ0. The two PBE

solutions now have lattice constants and magnetic properties that are compatible

with the experimental values for the α and γ phases, respectively. Eriksson et al.,

however, already pointed out that this approach to describe both phases and the

phase transition within LDA/GGA fails for the energy of the system [204]. Johansson

et al. [76] managed to produce two different solutions in LDA or GGA calculations

by freezing or unfreezing the f electrons in the core. This is in practice similar to

imposing a finite value of the spin to the system. However the authors had to apply

an arbitrary shift to the curves in order to obtain a reasonable transition pressure.

Also in the present calculations the energy of the solutions is an issue. With 0.5

eV the energy difference is more than an order of magnitude larger than what has

been measured in experiment. In view of the (EX+cRPA)@PBE cluster results of

Chapter 6, one can now state that PBE does not represent a good starting point for

the description of the α-γ phase transition even if it is able to capture some features

of the phase change, as e.g. the change in the magnetic properties.

The band energy of the PBE spin unrestricted and restricted solutions is

presented in Figure 7.4 along the main directions through the Brillouin zone of the

fcc structure. The bands are generated at the equilibrium lattice constants of 4.6 and

5.2 Å, respectively. Only the spin up component of the bands is reported. In PBE

spin unrestricted calculations the magnetic moment at the equilibrium position is

zero, so the spin up and down bands are equivalent. For spin restricted calculations

the spin down bands correspond to a rigid upward shift of the spin up bands and are

therefore omitted from the discussion.

The comparison between the two sets of bands evidences the similarities

between the two types of calculations. In both cases the two bands below the

Fermi level –of mixed d and f character– show a large dispersion, and they strongly

hybridize around the X point and along the ∆ and Z directions. At and above the

Fermi level lie a number of dispersionless f bands. Their band width is smaller

in restricted calculations, but this is also observed for unrestricted calculations by
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Figure 7.4: PBE band structure for spin unrestricted (a) and restricted (b) calculations.
The band structure refers to the spin up component and it is taken at 4.6 in (a) and 5.2 Å
in (b). Zero is the Fermi energy. The DOS is reported in the right panel.

increasing the lattice constant. The overall agreement with previously computed

bands [241, 242, 209] is good.

The band structure of the PBE0 solutions is reported in Figure 7.5. Only

the spin up component is shown. The spin down bands of the α phase solution

are like the spin up bands, but shifted up by a small amount. In the α phase the

two occupied bands hybridize strongly around the X point and along the ∆ and Z

directions, similarly to what was observed in PBE, while the unoccupied f bands are

moved to higher energies by around 1 eV with respect to PBE. In the PBE0 γ phase

the dispersionless empty bands are shifted by around 3 eV with respect to PBE.
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Figure 7.5: PBE0 band structure for spin unrestricted (a) and restricted (b) calculations.
The band structure refers to the spin up component and it is taken at 4.6 in α and 5.3 Å
in γ. Zero is the Fermi energy. Red arrows indicate the band that becomes dispersionless
and occupied in γ. The DOS is also reported on the right panel.

However, major differences are observed for the occupied states. A flat band of f

character is occupied at around 3 eV below EF. The spin down bands for the γ phase

are similar to the spin up ones, but the flat f band is shifted to around 4 eV above

EF. The band indicated by the red arrows in Figure 7.5 becomes dispersionless and

fully populated going from the α to the γ phase. A 4f peak in the DOS appears for

the occupied states in correspondence to the flat band. This feature is also observed

in the SIC-LSD calculations of Lüders et al. [209]. It emerges in correspondence

to the appearance of a magnetic moment close to one in the γ phase, and can be

associated to the localization of one 4f electron when going from the α to the γ
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PBE0 solution. The 4f peak in the occupied states is characteristic of photoemission

studies –Figure 7.2– and it can not be reproduced within PBE.

The number of electrons per atom, resolved for orbital components, and the

respective magnetic moments are reported in Table 7.2 for the PBE and PBE0 bulk

calculations.

Table 7.2: Number of electrons –resolved for angular momentum– and magnetic moment
for periodic PBE and PBE0 calculations calculated at the equilibrium lattice constants of
4.6 Å for PBE unrestricted, 5.2 Å for PBE restricted, 4.6 Å for PBE0 α phase and 5.3 Å
for PBE0 γ phase. The atomic orbital components and magnetic moments of the electronic
density are calculated according to the Mulliken charge analysis [239].

Electron number m (µ0)

Total s p d f Total s p d f

PBE unrestricted 58.0 10.2 23.9 22.7 1.2 0.0 0.0 0.0 0.0 0.0
restricted 58.0 10.5 24.0 22.2 1.2 2.0 0.1 0.0 0.8 1.1

PBE0 α phase 58.0 10.3 23.8 23.0 0.9 0.2 0.0 0.0 0.0 0.2
γ phase 58.0 10.6 24.1 22.3 1.0 1.1 0.0 0.0 0.1 1.0

The f electron localization process in hybrid functionals can be visualized in

a more pictorial way by plotting the difference between the electron density of the

PBE0 α- and the γ-like solutions, nα(r)− nγ(r), shown in Figure 7.6.

The density difference is projected onto the [100] plane –but it is equivalent

for the [010], [001] planes– at the lattice constant of 4.6 Å, where the two solutions

have almost equal cohesive energy. The green ball marks the Ce atom in the unit

cell. Blue colors indicate a surplus of electron density in the α phase and red in the

γ phase. The plot shows that the interstitial region between the cerium atoms in the

periodic environment is colored in blue, while the red color resides mainly on lobes

around the atomic sites. This implies that the α-like phase has a higher density in

the interstitial region with respect to the γ phase solution. This result provides an

indication that the degree of electron localization/delocalization in the two phases is

significantly different.

Furthermore, by plotting a three-dimensional isosurface with a cutoff at negative

values of the density difference (i.e. where the γ-like phase has a larger number of
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Figure 7.6: Difference between the bulk Ce electron densities of the α and γ phases at
the same lattice constant of 4.6 Å, at which both phases have the same energy. The density
difference is projected onto the [100] plane –the [010], [001] planes are equivalent. The α
phase has a larger contribution in the interstitial region, whereas the γ phase density is
more localized around the nuclei. The green ball marks the position of a Ce atom.

electrons with respect to the α-like phase) one obtains a surface with the shape of

an f orbital of xyz or z(x2 − y2) symmetry. This provides a strong indication that

the delocalized electrons in the interstitial region are actually 4f in nature, and that

it is the balance between localization and delocalization of the f electrons that plays

a key role in the emergence of the double minimum in the cohesive energy curve3.

This observation supports the picture that the driving mechanism of the α-γ phase

transition is connected to a change in the behavior of the 4f electrons, that would

participate in the bonding in α-Ce and would not in γ-Ce. This is also what was

assumed in previous calculations on cerium by means of SIC-LSD and LDA+U . In

our study however it appears not as an a priori constraint of the system, but it

arises naturally from calculations in which all electrons have been treated on the

same quantum mechanical level.

3In section 7.2 we will show that the different magnetic properties of the two phases only
stabilize an underlying difference in the electron wave function.
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Figure 7.7: Isosurface with negative cutoff on the density difference between the α- and
γ-like phases. The isosurface resembles an f orbital of xyz, z(x2 − y2) symmetry. The
projection onto the [100] plane of Figure 7.6 is also reported.

7.2 Spin unpolarized results

Regarding our results for the cohesive energy, DOS, and electron density, it seems

quite plausible to associate the two PBE0 solutions to the α and γ phases of cerium.

But some uncertainty remains on whether this achievement is due to an increased

sophistication of the hybrid functional method with respect to local or semi-local

functional or it is an artifact of the multi-solution behavior in Hartree-Fock. A main

concern, for example, is that the system could be trapped in the two solutions due

to the different spin values, and that the electronic structures would just correspond

to a relaxation of the orbitals with respect to the different magnetic alignments.

For this reason it proved useful to perform spin unpolarized calculations, and in

Figure 7.8 the HSE06 results of Figure 7.1 are reported along with spin unpolarized

calculations.

The spin unpolarized HSE06 direct calculations display a discontinuity between

5.3 and 5.5 Å in the cohesive energy curve. However, the two branches of the curve are

not as stable as the spin polarized solutions. Restarting the calculations from large to

small lattice constants with the previously calculated electronic structure produces a

continuous curve, that overlaps with the original one around the equilibrium position.

Nevertheless, the net result is that the cohesive energy of the spin unpolarized hybrid

functional, even if it does not show a double minimum, exhibit a region of negative
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Figure 7.8: HSE06 cohesive energy curves for the spin polarized (blue) and unpolarized
(back) solutions.

curvature4.

More insight is gained by plotting the density of KS states for the direct and

restarted calculations at different values of the lattice constant, see Figure 7.9. For

lattice constants of up to 5.1 Å the DOS of the two curves overlaps, which means

that the restarted solution really falls onto the original one when decreasing the

volume of the fcc unit cell. At 5.2 Å the system’s total and orbital resolved density

of states are slightly different in the two cases, but in both situations a small peak of

mixed f and d contribution crosses the Fermi level and the main f peak lies just 1

eV above EF. By further increasing the lattice constant, however, the f contribution

differs in the two situations: direct calculations display a main peak that moves

toward the Fermi energy and incorporates the small peak at EF, while the restarted

solution leaves the mixed f/d state unchanged at EF, and shifts the large f spectral

weight towards 2 eV. At 5.5 Å the direct calculations experience the discontinuity.

4Here HSE06 results are reported, but a similar picture can be eventually reproduced in the
PBE0 framework, see Section 7.3. In addition, it was found that also spin unpolarized PBE0
calculations for cerium clusters display a region of negative curvature in the cohesive energy curve.
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Figure 7.9: Density of KS states of the direct and restarted spin unpolarized calculations
of Figure 7.8. The plots report the total and the orbital resolved DOS at different values
of the lattice constant.

This is the point at which the other solution is then restarted. The two DOS are

therefore identical by construction.

Figure 7.9 shows that from one original electronic configuration a different

behavior of the system can be derived by smoothly varying the arrangement of the f

states. The underling s, p and d structure is very similar in both situations, but the

f states can be accommodated in different ways. This is further seen in the band

structure of the two HSE06 solutions, see Figure 7.10. The two sets of bands are

similar, but some differences are present in the f bands above the Fermi energy. The

empty f states are shifted to higher energy by around 1 eV in the restarted solution.

The band that is flat and fully occupied in the PBE0 γ phase does not show the

same properties for unpolarized calculations. However, we will show in the next

paragraphs that trademarks of the γ phase are present in the restarted calculations.
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Figure 7.10: HSE06 band structure for spin unpolarized (a) and spin unp. restart (b)
calculations. The band structure is taken at 5.4 Å. Zero is the Fermi energy. The DOS is
also reported in the right panel.

Figure 7.11 exemplifies the differences between the two HSE06 spin unpolarized

solutions. In the first row of Figure 7.11 the density difference between the HSE06

direct and restarted calculations in the spin unpolarized configuration is projected

onto a volume slice –parallel to the [100] plane– that is approaching the cerium

atom –green ball– from behind. The volume slice is moved, going from left to right,

from the center of the f -shaped lobes to a position closer to the atom. Similarly,

in the second row the difference is taken, at the same lattice constant and steps

for the volume slice, between the HSE06 direct spin unpolarized solution and the

ferromagnetic γ-like HSE06 solution of Figure 7.8.
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Figure 7.11: Volume slices –parallel to the [100] plane– at a lattice constant of 5.3 Å of
the density difference between: direct (ud) and restarted (ur) spin unpolarized solutions
(upper panels), direct spin unpolarized (ud) and γ-like spin polarized (fg) solutions (lower
panels). Going from left to right the volume slice is approaching the cerium atom from
behind: in the first column the slice is placed at 0.6 Å behind the atom position, in the
second column 0.5 Å and in the third column 0.4 Å.

In the top-right figure the density difference between the two unpolarized

solutions displays similar features to the bottom right figure and to the spin polarized

density difference of Figure 7.6. It also shares with the spin polarized PBE0 results

the same three-dimensional f -shaped isosurface for negative values of the cutoff

(not shown here). This confirms that a wave function change must happen when

going from one spin unpolarized solution to the other. We can then conclude that

exact-exchange provides wave functions that are suitable for the descriprion of the α

and γ phases, and that the spin polarization only stabilizes the solutions energetically.

Another element that provides insights to the results arises from the top-left

panel, from which it becomes more clear that, in the two HSE06 spin unpolarized

configurations, the spatial arrangement of the electrons –f electrons according to

the isosurfece plots– follows a different symmetry. In that figure a discrimination

between localization and delocalization becomes more difficult and it is instead more
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interesting to focus on the change in the preferred directions along which the f

electrons are arranged. This change could be linked to the symmetry lowering, going

from the γ to the α phase, suggested by Nikolaev and Michel –see Section 1.4.5– as

a mechanism for the phase transition. As discussed in the Outlook of this thesis, a

study of such a symmetry change will be the subject of future work.

By comparing the two rows in Figure 7.11 one can finally conclude that the

magnetic degrees of freedom help stabilizing the solutions that are already inherent

in spin unpolarized calculations. Going from left to right the volume slice approaches

the atomic centers from behind. This evidences that the red lobes have reduced

spatial extension in the second row, even if they share the same characteristics in

both sets of plots. When a finite value of the magnetic moment is allowed, the

electronic configuration of the α and γ phases relaxes: the α solution is stable with

respect to the introduction of the spin component, but the magnetic moment greatly

favors localization of the f states in the γ phase, and the red regions collapse towards

the atomic centers.
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7.3 Magnetic properties

During this thesis the fcc crystal structure of cerium was studied in different magnetic

configurations. The motivation was to address the change in the magnetic ordering

–see Section 1.3.2– that the system undergoes across the α-γ phase transition.
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Figure 7.12: LDA cohesive energy of cerium bulk. The different curves correspond to the
different spin alignments: unpolarized, calculations performed ignoring the spin component;
FM unrestricted, the spin component is taken into account in a ferromagnetic alignment
but the system if free to relax to the most stable spin value; FM m = 1, ferromagnetic
alignment and total magnetic moment constrained to one; FM m = 2, ferromagnetic
alignment and total magnetic moment constrained to two. The gray curve refers to the
axis on the right and represents the magnetic moment of the FM unrestricted calculations.

In LDA and PBE spin unrestricted calculations the cohesive energy does not

show the double-well behavior characteristic of an isostructural volume collapse,

Figure 7.12-7.13, and the curves are smooth. Nevertheless a finite value for the

magnetic moment m appears for large lattice constants. In particular, around the

experimental equilibrium volume of the γ phase, LDA and PBE display a magnetic

moment in agreement with the observed experimental spin configuration. The spin

unrestricted calculations for the local and semi-local functionals always result in
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Figure 7.13: PBE cohesive energy of cerium bulk. For an explanation of the magnetic
configurations see caption of Figure 7.12. AF stands for anti-ferromagnetic alignment. As
for the fcc crystal structure antiferromagnetism can be implemented in two configurations,
the curves for the two and four atoms arrangements are reported. The gray curve refers
to the axis on the right and represents the magnetic moment of the FM unrestricted
calculations.

a magnetic configuration that is the most stable one at a given lattice constant.

Nevertheless different curves can be obtained imposing spin constrains, as discussed

in Section 7.1.

In all calculations that develop a magnetic moment, the magnetic alignment was

considered as ferromagnetic (FM). This was dictated by computational constraints

and seemed to be a reasonable approximation, even if not correctly simulating

the observed disordered local moments in γ-Ce. As another possibility also anti-

ferromagnetic (AF) configurations were tested within PBE and HSE06. The outcome,

in Figure 7.13 and 7.15, suggested no significant differences between the FM and

the stable AF configuration. The AF constraint is also a test for the structural

properties of the β-phase within PBE and HSE06. In view of the vicinity between

the γ and β phases in the cerium phase diagram and the similarities between the

two closed packed structures double-hcp (β-Ce) and fcc (γ-Ce), AF calculations



7.3. Magnetic properties 135

0.00

0.50

1.00

1.50

2.00

m
 (

µ
0)

3 4 5 6 7

a0 (Å)

4.00

3.00

2.00

1.00

E
co

h (
eV

)

unpolarized
FM unrestricted
FM m=1
FM m=2
FM un. restart

FM unrestricted

FM un. restart

PBE0

Figure 7.14: PBE0 Cohesive energy of cerium bulk. For an explanation of the magnetic
configurations see caption of Figure 7.12. FM un. restart means that the electronic
structure of the FM unrestricted solution at lattice constant 5.8 Å is used to restart
calculations at left nearest neighbour lattice constants. Calculations are initialized with
the suggested electronic structure but follow an independent SCF cycle.

on the fcc crystal structure could be representative, to first approximation, of the

β-phase. The outcome however did not provide evidence for a stabilization of the

antiferromagnetic structure with respect to the fcc one.

Hybrid functional calculations on the fcc structure are subject to the multi-

solution behavior. Figure 7.14 illustrates how an instability region around a0 = 5.2 Å

emerges in unrestricted spin-polarized calculations. For smaller lattice constants the

magnetic moment is close to zero (see gray curves) but when the system develops a

finite value of the spin with increasing volume, the cohesive energy lowers considerably.

For small lattice constants, where the system spontaneously chooses a paramagnetic-

like behavior, it is possible to calculate the cohesive energy with the initial electronic

structure obtained for large volumes. As the system is stable enough, the SCF

preserves the electronic properties, and this leads to the appearance of more than

one solution. Different solutions are also obtained if the spin is restricted to a finite

value. The curves with spin constraints show the same discontinuity as the spin
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Figure 7.15: HSE06 Cohesive energy of cerium bulk. For an explanation of the magnetic
configurations see caption of Figure 7.12 and 7.14. The curves unpolarized restart, FM
m=1 restart r and FM m=1 restart l are obtained as described for the FM un. restart
calculations. r and l refere to the right and left nearest neighbours to which the electronic
structure has been passed. AF results only partially satisfy the convergence criterion
imposed by the SCF cycle.

unrestricted solution. Therefore, the magnetic moment does not appear to be the

driving mechanism of the multi-solution behavior, as argued in Section 7.2. PBE0

and HSE06 results of Figure 7.14 and 7.15 prove that there is indeed a change in the

wave functions under variation of the lattice constant of the fcc crystal. The freedom

of assuming a finite spin value only allows the system to relax in the most stable

state at each lattice constant.
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7.4 Role of Exact-exchange

The idea of applying hybrid functionals to cerium systems came from previous work

–Chapter 3– which suggested that the failure of LDA and GGA in describing the α-γ

phase transition would be closely related to the self-interaction error. This was then

supported by the dimer and cluster results of Chapter 5 and 6. (EX+cRPA)@PBE

results suggest that at least a fraction of exact-exchange should be included in a

self-consistent way in the calculations. We have shown in this and previous Chapters

that the outcome of PBE0 and HSE06 calculations confirms this assumption. Not

only hybrid functionals provide better agreement with experiment than local/semi-

local functionals in some cases –i.e. for the dimer and the bulk– , but also the α and

γ phases can be reproduced within a single level of theory, and (EX+cRPA)@PBE0

gives remarkable agreement with experimental findings.

Supported by the charge density analysis of Section 7.1, the appearence of two

phases in hybrid functionals can be interpreted in terms of localization-delocalization

of the f electrons. Within LDA/GGA the intrinsic self-interaction error is not

corrected, and valence electrons are therefore delocalized. In PBE0/HSE06 the self-

interaction error is partially corrected. The fraction of exact-exchange –see Section

2.6– that is introduced brings the system into an intermediate regime in which the

valence s and d electrons still form a conduction band and the f states can change

their nature from delocalized to localized without changing the energy of the systems

significantly. The amount of EX therefore acts as “localizing” factor, but how much

EX should be included? The question was already raised in Section 5.5, and to

address this problem further we report in Figure 7.16 the variation of the cohesive

energy with respect to the amount of exchange (in terms of the parameter a). As in

Section 5.5, all calculations that include a percentage of EX different than 0.25 –the

PBE0 value– are restarted from the two initial PBE0 solutions. For a = 0 the curves

correspond to PBE. However, a = 1 does not correspond to Hartree-Fock, because

correlation is still retained at the PBE level. The discovery of two solutions would

not be guaranteed without restarting the calculations from the PBE0 solutions.

The variation of a affects the α phase to a greater extent than the γ phase.

The cohesive energy of α-Ce changes by more than 1.5 eV, around double of what is
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Figure 7.16: Variation of the cohesive energy for the α and γ phases of Ce with respect
to the change in the fraction of exact-exchange a included in the PBE0 functional. a
varies in steps of 0.05 for 0 ≤ a ≤ 0.25 (0.25 corresponds to PBE0) and in steps of 0.1 for
0.25 ≤ a ≤ 1.

found for γ-Ce, between a = 0 and a = 1. Increasing a from the original PBE0 value

of 1/4 shifts the α solution to lower energies, while decreasing it moves the curves to

higher energy, until the PBE solution is recovered for a = 0. The opposite is true for

the γ solution. Values larger than 1/4 cause the cohesive energy to increase. For

smaller values the cohesive energy does not change appreciably. Exceptions are a = 0

and a = 0.05, for which the trend in the cohesive energy is reversed. The γ solution

is lowered with respect to PBE0, until a perfect agreement with PBE results is again

reached.

One would be tempted to think that the α-γ transition could be described

considering an amount of EX of 0.05. However, manually changing a in order to

recover the correct transition is not a proper theoretical approach and also introduces

arbitrariness and loss of predictive power. A more rigorous theoretical approach

should be used to make robust conclusions. This is be provided by higher level

theories as the EX+cRPA correction. At the time being RPA cannot be computed

for periodic systems in the FHI-aims code, but in the next Chapter we will show



7.4. Role of Exact-exchange 139

that one can rely on the (EX+cRPA)@PBE0 results for the nineteen-atom cluster

to produce a finite temperature phase diagram of cerium in fair agreement with

experiment.
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7.5 Summary

The description of the volume collapse in cerium poses a great challenge to density-

functional theory since local/semi-local functionals fail to produce the associated α-γ

phase transition. Methods that introduce orbital dependent corrections have been

applied to cerium in the past in order to overcome this failure. However, approaches

like SIC-LSD or LDA+U have only been able to describe the structural properties

of the γ phase, and they have accounted for the α phase only within LDA/GGA. No

study has reported a double minimum in the total energy versus volume curve at

zero temperature, that would be a signature of the volume collapse, within a single

theoretical framework. DMFT calculations reproduce the experimentally observed

three-peak structure in photoemission spectra, but the results remained limited to

high temperatures, and an ongoing debate between different studies remains whether

the spectral properties manifest on two minima in the total energy curve or not.

Based on the DMFT results, some authors emphasize the importance of including

dynamical correlation in order to face the cerium problem.

In this chapter the cerium challenge was approached in a periodic environment

by treating all electrons on the same quantum mechanical level (including the f

electrons) using LDA, PBE and the hybrid functionals PBE0 and HSE06. PBE0

and HSE06 exhibit a multi-solution behavior and two distinct solutions are always

obtained. Based on their magnetic, spectral and structural properties it seems

reasonable to associate them with the α and γ phases of cerium. An analysis of

the band structure and the electronic density distribution of the two solutions for

different magnetic configurations proved that hybrid functional can indeed capture

a change in the f wave functions around the region of the experimental α and γ

lattice constants.

It is one of the main achievements of this thesis that both phases can be

reproduced, at zero temperature, within a single theoretical framework. A first

consequence of this result is that the debate whether the α-γ phase transition would

survive at low temperature or not could be resolved in favor of the former hypothesis.

Even if potentially accounting for the volume collapse, the hybrid functional

description of the two phases however provide a wrong energetic order of the two
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solutions compared to the experimental phase diagram. It will be shown in Chapter

8 that the EX+cRPA approach is then essential to rectify this failure, and with the

aid of cluster results it is possible to achieve good agreement with the experimental

phase diagram at finite temperature.





8 Phase diagram for the α-γ

transition

Hybrid functional calculations on cerium provide a new perspective for DFT methods

in the description of the α-γ phase transition. In both PBE0 and HSE06 two solutions

are found for clusters and the bulk. The double well observed in the cohesive energy

versus volume curve shows the occurrence of a T = 0 K phase transition accompanied

by a volume collapse that has not been obtained before in ab initio calculations. The

two solutions display specific characteristics of the α and γ phases, including a good

description of the change in magnetic and structural properties associated with the

volume collapse. They also support the already suggested localization-delocalization

process as a mechanism for the phase transition. However, the relative energetic

order differs from what is expected according to the extrapolated experimental phase

diagram at zero temperature, Section 1.3.

In Chapter 6 it was shown that already for cerium clusters cut from the fcc

structure PBE0 produces two distinct solutions that can be associated with the

α and γ phases. Exemplified by the case of the nineteen-atom cluster we showed

that the EX+cRPA correction to hybrid functional brings the two solutions close

in energy and recovers the right energetic order of the two solutions. This provides

agreement between the calculated transition pressure and the experimental data

extrapolated to zero temperature. In this Chapter we will show that relying on the

cluster results –at the time being RPA is not available in the FHI-aims code for

periodic systems– and adding entropic contributions, the temperature-pressure phase

diagram of cerium can be reproduced with satisfactory accuracy.

143
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8.1 Toward the bulk

Looking at the electronic properties of the clusters –e.g. reflected in the density

of states–, we realized that cerium clusters cut from the fcc crystal structure can

describe cerium bulk. The PBE DOS of the central atom converges to the PBE bulk

DOS with increasing cluster size –Figure 6.5 and 7.2. The same happens in PBE0,

where the two phases maintain their distinctive features for all the clusters –Figure

6.6–, and the cluster DOS projected on the central atom is representative of the bulk

DOS –Figure 7.2–. From Figure 8.1 and 8.2 it becomes clear that there is indeed a

trend in the physical observables of the two solutions when increasing the dimension

of the system.
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Figure 8.1: PBE results for cerium clusters and corresponding bulk values for (a) the
cohesive energy Ecoh, (b) the lattice constant a0, and (c) the magnetic moment on the
central atom m. Experimental results marked on the right axis are taken from Ref. [9]
and [240].
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Figure 8.2: PBE0 results for cerium clusters and corresponding bulk values for (a) the
cohesive energy Ecoh, (b) the lattice constant a0, and (c) the magnetic moment on the
central atom m. All clusters exhibit two solutions that converge to the calculated bulk
limit. Experimental results marked on the right axis are taken from Ref. [9] and [240].

Figure 8.1 and 8.2 report the values of the cohesive energy, the equilibrium

lattice constant, and the magnetic moment (on the central atom) for all clusters and

the bulk. Experimental data are also included for comparison. In PBE and PBE0,

all properties move towards the bulk limit with increasing cluster size. The bulk

PBE lattice constant and magnetic moment approximate the measured values for the

α phase well, even if the cohesive energy is overestimated. The two PBE0 solutions

for the bulk are in agreement with the experimental lattice constant and magnetic

moments of the α and γ phases. It is also evident from Figure 8.1 (c) and 8.2 (c)

that in both PBE and PBE0 the spin component of the system mainly arises from

the f electrons. In Section 6.2 we evidenced that PBE calculations for the nineteen
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atom cluster are not representative of PBE bulk results. However, it can be stated

that PBE0 captures for Ce19 the essential physics of the two bulk phases, and that,

as a consequence, (EX+cRPA)@PBE0 results for Ce19 would be representative of

the periodic system. We therefore based our finite temperature analysis of the phase

transition on the (EX+cRPA)@PBE0 calculations for Ce19. The result is presented

in the next Section.

8.2 Finite temperature

In Section 6.2 a pressure induced phase transition at zero temperature was related to

the (EX+cRPA)@PBE0 calculations for the nineteen-atom cluster. Here we extend

the results to finite temperature by adding entropic effects to the ground state energy

[76, 77, 206, 209, 212]. The first entropic contribution is configurational entropy.

This is based on the assumption that the phase that is metastable at a given volume

and pressure may become thermally populated as temperature is increased. We

therefore adopt a “pseudo-alloy” model for the transition [76], where the α and γ

phases coexist with concentrations xα and xγ but do not interact1.

In order to obtain a description of the system at finite temperature the total

Helmholtz free energy

F (V, T ) = U(V )− TS (8.1)

is required, where U is the internal energy, T the temperature, V the volume of the

unit cell and S the entropy. The free energy can be obtained from the partition

function, that is an additive quantity for all the non-interacting components of the

system, for which the following relation holds

Z = e−βF (V,T ) =
∑
σ

Zσ =
∑
σ

e−βF
σ(V,T ), (8.2)

where β = 1/(kBT ), kB is the Boltzmann constant, σ = {α, γ}, and F σ is the free

1A coexistence of the two phases is generally observed in experiments, see e.g. Decremps et al.
[59].
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energy of the α or γ phase. One can now define two quantities

xσ =
Zσ
Z

(8.3)

in order to rewrite the free energy as

F (V, T, xσ) = −kBT lnZ

= −kBT
∑
σ

Zσ

Z
lnZσ + kBT

∑
σ

Zσ

Z
lnZσ − kBT

∑
σ

Zσ

Z
lnZ

=
∑
σ

xσF σ + kBT
∑
σ

xσ lnxσ

=
∑
σ

xσF σ − TSconf .

(8.4)

The quantity xσ represents the contribution of one or the other phase to a determined

state of the system and Sconf = −
∑

σ x
σ lnxσ is the entropic contribution that arises

from the coexistence of the two phases.

The free energy of a single phase can then be computed from

F σ(V, T ) = Uσ(V )− T (Sσel + Sσmag + Sσvib) (8.5)

where Uσ is the internal energy, Sσel is the entropy arising from electronic degrees of

freedom, Sσmag is the entropic contribution of the magnetic moment at each cerium site,

and Sσvib is the entropy associated with lattice vibrations. The (EX+cRPA)@PBE0

calculations reported in the previous section proved to be a reasonable estimation of

the two contributions Uα and Uγ according to the extrapolation of experimental data

to zero temperature. Consequently, in the following analysis Uσ(V ) will be associated

to −Eσ
coh(V ), with the latter obtained from a fit of the (EX+cRPA)@PBE0 results

to the Birch-Murnaghan equation of state [243]

Eσ
coh(V ) = Eσ

0 +
Bσ

0V

B′σ0

(
(V σ

0 /V )B
′σ
0

B′σ0 − 1
+ 1

)
− Bσ

0V
σ

0

B′σ0 − 1
, (8.6)

where Eσ
0 is the energy at equilibrium, V σ

0 the equilibrium volume, Bσ
0 the bulk

modulus and B′σ0 the derivative of the bulk modulus. As it turned out in the
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present study, the bulk modulus of the nineteen-atoms cluster, according to the

Birch-Murnaghan fit, largely overestimates the experimental reported values. This is

probably due to the still too small dimension of the system and affects the estimation

of the α-γ phase diagram considerably. Instead, periodic PBE0 calculations produce

values of the bulk modulus close to the experimental findings. It was therefore

assumed that the bulk modulus Bσ
0 , derived from a fit to Equation 8.6, would

represent the physical situation better than the cluster Bσ
0 . For this reason, we

replace Bσ
0 in Equation 8.5 by the PBE0 bulk value, but we leave all other variables

at their (EX+cRPA)@PBE0 values.

In principle, the contribution Sσel can be calculated by either integrating over the

T = 0 K Kohn-Sham DOS following the Fermi-Dirac distribution, or by introducing

electronic temperature effects directly in (EX+cRPA)@PBE0. However, in the

temperature range of interest –i.e. T < 2000 K– none of the two approaches produce

a noticeable change of the results. The electronic degrees of freedom where therefore

neglected in the present analysis, as also suggested by other authors [76, 77, 209].

Concerning the entropy arising from the magnetic moment of the cerium atoms,

a state with total angular momentum J adds an entropic contribution to the free

energy

Sσmag = kB ln(2J + 1). (8.7)

assuming that for the temperatures of interest only the ground state multiplet is be

populated. The (EX+cRPA)@PBE0 α phase displays no magnetic moment, and the

γ phase has a spin component arising from a localized 4f state, i.e. J = 5/2. So

Equation 8.7 results in Sαmag = 0 and Sγmag = kB ln 6. However, based on crystal field

splitting considerations, Lüders et al. [209] suggested that Sγmag = kB ln 8 would be

more appropriate to describe the localized f states, and the latter assumption was

also adopted in the present study.

The contribution of lattice vibrations to the total free energy has minor effects

at the temperatures of interest so it has been generally neglected in previous studies.

However, estimates have been provided by some authors, for example by considering

the Debye-Grüneisen model [76] or by fitting to experimental data [77]. In this thesis

the vibrational entropy as calculated from phonon theory by Wang et al. [212] was

included in terms of the difference between the two phases. The authors reported a
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temperature-independent difference between the phononic contributions of the two

phases. So the vibrational entropy was considered to be

∆Svib = 0.94kB. (8.8)

Finally, considering that only two phases are present in the system, and that

therefore their concentrations can be expressed as relative percentages xγ = xeq and

xα = (1− xeq), Equation 8.1 can be evaluated as follows

F (V, T, xeq) = (1− xeq)Uα(V ) + xeqU
γ(V )− xeqT (Sγmag + Sγvib)− TSconf

= (1− xeq)Uα(V ) + xUγ(V ) (8.9)

−kBT [xeq ln 8 + 0.94xeq − (1− xeq) ln(1− xeq)− xeq lnxeq] .

The quantity xeq in Equation 8.3, that represents the relative percentage of the

two phases at equilibrium for a given volume and temperature, can also be obtained

[76, 77, 209] by making the substitution xeq → x in Equation 8.9 with 0 ≤ x ≤ 1, and

minimizing the free energy with respect to x. In Figure 8.3 the Helmholtz free energy

of cerium as calculated by adding entropic contributions to the (EX+cRPA)@PBE0

results of Ce19 is reported as a function of volume and relative concentration x of the

α and γ phases for six temperatures of interest. For each panel also the value xeq is

reported as a function of volume. The value of x that minimizes the free energy is

in fact xeq. As reported in Figure 8.3, at T = 0 K the entropic contribution is zero

and the free energy is minimized at each volume by the α and γ internal energies

in their range of stability. Consequently, xeq is flattened to zero for small volumes

and approaches one at larger volumes. As the temperature grows, a mixing of the

two phases starts to take place in the region between the two equilibrium lattice

constants. The relative concentration xeq moves to intermediate values until at high

enough temperatures there is no volume for which the system is in a pure α phase.
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Figure 8.3: Calculated Helmholtz free energy as a function of volume and relative
concentration of the α and γ phases at six temperatures of interest. For each panel also
the equilibrium concentration xeq is plotted as a function of volume. xeq corresponds to
the minimum of the free energy.
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Following Equation 8.9, in Figure 8.4 the free energy of the pseudo-alloy is

plotted as a function of volume for different values of the temperature. At T = 0 K

the free energy coincides with the curves in Figure 6.8, except that here the values

of the bulk modulus are taken from periodic PBE0 calculations. This produces a

slightly different transition pressure –obtained from the double tangent to the curve–

of -0.79 GPa, still close to the previous value, and in better agreement with the

experimental extrapolation to zero temperature Pt ' −0.8 GPa.
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Figure 8.4: Calculated Helmholtz free energy as a function of volume for six temperatures
of interest and relative equilibrium concentration xeq. In each panel the transition pressure
as obtained by the Gibbs construction is also reported. The double tangent to the curves
is present until Tc = 1095 K. Above that temperature no volume collapse is registered.
Tc = 1095 K, Pc = 4.84, GPa represents the critical point.

As the temperature grows, the transition pressure moves towards positive
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values, until at T = 187 K it equals zero. The transition temperature at Pt = 0 GPa

is a quantity of interest, as it represents the lowest point at which direct experimental

estimates are available. As discussed in Chapter 1, it was observed that hysteresis

effects play an important role in the α-γ phase transition. Moreover, the presence of

the β phase further complicates the landscape. Nevertheless, considering the similar-

ities between the γ and β phases, and that the γ-β transition involves a structural

change that is generally understood in terms of the d electrons rearrangement [9],

the β-α transition temperature at 0 GPa is accepted as a reasonable estimation for

the α-γ phase diagram. As summarized in Table 8.1, T0 = 187 K is not far from the

experimental estimation T0 = 141 K [9].

The inclusion of entropic effects in the free energy allows to make an estimate

of the volume collapse associated with the α-γ phase transition at room temperature.

As reported in Table 8.1, the approach followed in this thesis results in a 28 % volume

collapse.

Table 8.1: Results from the present and previous theoretical works and experimental data
for the α-γ phase transition. T0: transition temperature at 0 GPa. Pc: critical pressure. Tc:
critical temperature. ∆Vγ−α: volume collapse associated with the transition at T = 300 K.

Present
work

Previous works Experiments

T0 (K) 187 135a, 169b 141±10c

Pc (GPa) 4.84 3.86a, 5.6b, 4.7d,
2.22e

1.96±2c, 1.8f, 1.5g,
1.44h

Tc (K) 1095 980a, 1377b, 1300d,
476e

600±50c, 485f, 480g,
460h

∆Vγ−α (300 K) (%) 28 20a, 20.5b, 23.4d,
16.5e

14.7f, 14h

aJohansson et al., GGA [76]
bLüders et al., SIC-LSD [209]
cKoskenmaki et al., exp. [9]
dSvane et al., SIC-LSD [77]
eWang et al., LDA+U [212]
fSchiwek et al., exp. [65]
gLipp et al., exp. [58]
hDecremps et al., exp. [59]

In the phase diagram of cerium the α-γ transition line terminates in the β phase



8.2. Finite temperature 153

at low pressure and in a critical point (C.P.) at Tc = 460 K and Pc = 1.44 GPa [59].

Also in the present calculations a C.P. manifests. The critical temperature coincides

with the disappearance of a negative curvature region in the free energy curve, that,

from Figure 8.4, appears for Tc = 1095. The calculated critical pressure is Pc = 4.84

GPa. Previous analysis based on electronic structure theory also reported values

close to the ones obtained in this thesis. Johansson et al. found Tc = 980 K and

Pc = 3.86 GPa by means of GGA calculations in which the f electrons were retained

in the valence shell in the α phase and in the inert core in the γ phase. Using

SIC-LSD Svane et al. reported Tc = 1300 K and Pc = 4.7 GPa and Lüders et al.

obtained Tc = 1377 K and Pc = 5.6 GPa. By means of LDA+U calculations, Wang

et al. found Tc = 476 K and Pc = 2.22 GPa, but the description of the γ phase

was adjusted to the experimental reference through the tunable U parameter. Our

approach differs from the previous ones by the starting point. In our calculations

the internal energy at T = 0 K is obtained within a single level of theory and no

adjustable parameters have been introduced. DMFT studies, which intrinsically

include temperature effects, did not report a phase diagram for cerium.

From Equation 8.9 it is possible to obtain, at constant T and optimal mixing

xeq, the pressure dependence of the volume as

P (V, T, xeq) = −∂F (V, T, xeq)

∂V

= −(1− xeq)
∂Uα(V )

∂V
− (xeq)

∂Uα(V )

∂V
.

(8.10)

By inserting Equation 8.6 in 8.10 through the equivalence Uσ(V ) = −Eσ
coh(V ),

one can further express the pressure explicitly in terms of the coefficients of the

Birch-Murnaghan equation of state

P (V, T, xeq) = (1− xeq)
Bα

0

B′α0

[(
V0

V

)B′α0
− 1

]
+ xeq

Bγ
0

B′γ0

[(
V0

V

)B′γ0
− 1

]
. (8.11)

The isoterms that correspond to Equation 8.11 are reported in Figure 8.5. At

each temperature the transition pressure is estimated via the Gibbs construction as

reported in Figure 8.4. The discontinuities in the P − V curves are indicative of the

volume collapse at different temperatures and delimit a region of instability generally
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known as miscibility gap. The jump in volume between the two phases gradually

shrinks with increasing temperature, until at Tc = 1095 K the isoterm becomes

smooth and the volume varies continuously with pressure. This determines the

critical point of the phase transition, at the associated transition pressure Pc = 4.84.

Figure 8.5: Pressure versus volume isoterms for temperatures between 0 K –lowest curve–
and 1600 K, in steps of 100 K. The results for T = 187 K (in green) and T = 1095 K (red
curve) are also reported as they represent the transition temperature at 0 GPa and the
critical point temperature respectively. C.P. is the critical point.

Finally, by plotting the transition temperature as a function of pressure, the

phase diagram of the α-γ phase transition can be drawn, Figure 8.6. With respect to

the experimental phase diagram, the transition line is extended to negative pressures.

This is a natural consequence of the fact that in our calculations the phase transition

can be described at T = 0 K. Due to the lack of experimental references the survival

of the phase transition in the negative pressure region has been a matter of debate.

A first problematic aspect is the presence of the β phase. Based on the sequence of

structural changes that is found in lanthanum, that has no f electrons, the crystal

modification from fcc (γ phase) to dhcp (β phase) can been understood in terms of a

rearrangement of d electrons. As discussed in Section 1.3, in this case one would think
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Figure 8.6: Temperature-pressure phase diagram of cerium (black crosses) as obtained
by adding entropic contributions to the (EX+cRPA)@PBE0 results. C.P. is the calculated
critical point (black square). The green cross indicates the transition temperature at Pt = 0.
Experimental results for C.P., identified by the blue symbols, are from Koskenmaki et al.
[9, 10] (open circle), Schiwek et al. [65] (open square), Lipp et al., Decremps et al. [59]
(open triangle), [58] (open diamond, obscured by the triangle). Previous theoretical data
are reported in red from Johansson et al. [76] (filled circle), Lüders et al. [209] (filled
square), Svane et al. [77] (filled diamond), Wang et al. [212] (filled triangle).

of the f and d electrons as if they would act independently on the properties of the

material, the d states not undergoing major changes across the α-γ, α-β transitions,

but causing the structural change between the γ and β regions. The f electrons,

on the other hand, remain localized in the γ and β phases and are delocalized

in the α phase. However, in view of the mutual influence that f and d electrons

have on each other –as discussed throughout the course of this thesis– the above

considerations cannot be taken for granted. In addition, some authors suggested

other possible reasons for the disappearance of the phase transition. De Medici et

al. for example proposed that delocalization of f electrons via a Mott transition

mechanism would be suppressed by Kondo screening at low enough temperatures

[244]. The present calculations show, however, that a phase diagram can be produced

in close resemblance to experiment by adding entropic contributions to the T = 0 K

internal energy.
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The estimated position of the C.P. is quite distant from the one reported in

experiments. Nevertheless, it is a considerable achievement that the experimental

critical points fall on the calculated transition line. This is also expected from the

fact that the extrapolated transition pressure to zero temperature agrees well with

the calculated one. We find that the transition line displays a linear behavior, which

is also observed experimentally and constituted the main argument of Johansson et

al. –see Section 1.4.4– against the Kondo volume collapse interpretation of the phase

transition –as the KVC does not result in a linear dependence. In this sense the

present outcome further strengthen the conclusion of Section 7.1 that the difference

of the α phase with respect to the γ phase can be understood in terms of “direct”

delocalization of f electrons.
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8.3 Summary

In Chapter 6 and 7 it was shown that hybrid functionals provide two solutions

that can be associated with the α and γ phases of cerium. However, their relative

energetic order is incorrect. In Chapter 6 we also showed that a proper description

of the electronic screening among the electrons can in fact overcome this deficiencies

of hybrid functionals. This is achieved through (EX+cRPA)@PBE0 calculations,

which incorporate exact-exchange and correlation at the level of the random-phase

approximation

At the time being, the RPA correction is not available in the FHI-aims code

for periodic systems, but in this Chapter we showed that the main characteristic of

hybrid functional calculations on cerium bulk are already present in cerium clusters

cut from the fcc structure. In particular the nineteen-atom cluster provides a good

foundation for reproducing the cerium phase diagram, that is obtained by adding

entropic contributions and allowing the two phases to mix at finite temperature.

The calculated finite temperature phase diagram is in reasonable agreement with

experimental evidence.





9 Beyond cerium

In the previous chapters we addressed the α-γ phase transition in cerium in detail. We

explained the volume collapse in terms of localization versus delocalization of the 4f

electrons. Subsequently, based on PBE0 results for cerium clusters, we reproduced the

phase diagram of the α-γ phase transition, by applying a post-processing EX+cRPA

correction to the PBE0 solutions, and including entropic effects in a pseudo-alloy

model.

Our approach provides a consistent description of cerium metal, therefore it

is fundamental to validate our methodology with calculations for other lanthanide

elements. In order to address different scenarios we chose the cerium neighbours.

Lanthanum is the first of the series, and has no f electrons. Cerium is the second,

and its neighbour is praseodymium, which is characterized by the presence of three

4f electrons. Praseodymium, similar to cerium, also displays a first-order phase

transition accompanied by a volume collapse. Unlike in cerium, The phase transition

is not isostructural. Instead it occurs between a d-fcc and an orthorhombic α-U

structure with a 9% volume change at room temperature1. The fourth is neodymium,

with four filled f states and no volume collapse. We point out that there is no

element in the periodic table with two nominal 4f electrons. This anomaly is due to

the presence of a 5d electron in La and Ce. After Ce the 5d electron is turned into a

4f one, and it reappears only in lutetium, which has a closed 4f shell.

Despite the presence or absence of a volume collapse, and the different number

of f electrons, all four elements follow a general structural sequence under pressure,

1Refer to Appendix A for an overview of the closed packed crystal structures that characterize
lanthanide elements.
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which goes from hcp to dhcp, to fcc (d-fcc), to orthorhombic 2. Because the sequence

is found also in La and, for example, Y [245], which have no f electrons, the

occurrence of the structural changes is interpreted to be independent from the f

electrons [246, 247]. On the other hand, the volume collapse is characteristic of rare

earths. This is in agreement with our findings that in cerium the f electrons drive

the abrupt volume change.

Consequently, we decided to perform calculations for La, Pr and Nd only for

the fcc crystal structure. The hcp, fcc and orthorhombic structures are all close

packed, and are therefore quite similar. Assuming that the structural changes are not

dictated by the f electrons, the effect of the crystal environment should be minor on

the f electron properties. Considering only the fcc structures considerably simplifies

periodic hybrid functional calculations, and also provides a consistent scenario to

compare the response of the different lanthanides, in particular if there is a double

minimum or not in the energy versus volume curves and a volume collapse (that

could be accompanied by a structural transition, but might not be driven by it).

9.1 Hybrid functional calculations for La,

Pr, and Nd

The study of La, Pr, and Nd bulk systems was carried out with the same computa-

tional details as for cerium metal –see Section 4.1. We performed PBE and HSE06

calculations in both the spin unpolarized and polarized configurations.

In Figure 9.1 the cohesive energy of lanthanum is reported with respect to the

fcc lattice constant. The behavior of the system is unchanged whether or not spin

polarization is taken into account. Spin unpolarized and polarized results almost

coincide, and the value of the magnetic moment is always zero. The curves are

smooth. In particular, HSE06 shows no signal for the multi-solution behavior that

characterizes cerium. At room temperature La has a dhcp crystal structure, with

lattice constant a0 = 3.773 Å and c/a0 ratio of 3.201 [248]. The volume of the dhcp

unit cell would approximately correspond to the volume of an fcc unit cell with

2We refer the reader to Section 1.2 and Figure 1.2 for more details about the structural changes.
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Figure 9.1: PBE and HSE06 cohesive energy of lanthanum. The calculations are
performed both spin polarized and unpolarized. The results do not show a significant
dependence in the spin configuration.

lattice constant 5.33 Å. PBE gives a0 = 5.3 Å, and HSE06 gives a0 = 5.4 Å. The

cohesive energy is 4.46 eV and 4.11 eV, respectively. The bulk modulus is 28.3 GPa

in PBE and 27.4 GPa in HSE06, to be compared with the experimental value 24.3

GPa [240].

The results for praseodymium, Figure 9.2, are reminiscent of those of cerium.

In PBE the spin polarized solutions lies at lower energy with respect to the unpo-

larized one. The magnetic moment increases with lattice constant, and around the

equilibrium distance lies between 2 and 3 µ0, consistent with an alignment of the

three f electrons. It is a strong validation of the results presented in the previous

chapters that HSE06 displays two stable solutions. As for cerium, one solution lies

at high energy and is close to the spin unpolarized results. Here, however, solution

(a) shares the magnetic behavior with solution (b). As for PBE, a finite value of the

spin sets in with increasing lattice constant. The structural and energetic properties

of the different calculations are summarized in Table 9.1.

The two HSE06 solutions are nested and have similar lattice constant, at
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Figure 9.2: PBE and HSE06 cohesive energy for praseodymium. HSE06 spin polarized
results are characterized by the presence of two solutions. Gray curves show the value of
the magnetic moment for PBE (open diamonds), HSE06 (a) (open squares), and HSE06
(b) (filled squares) spin polarized solutions. Gray curves refer to the left axis. The dashed
lines at the bottom mark the experimentally observed transitions. Shaded region: volume
collapse.

variance with the hybrid functional calculations for cerium –see Figure 7.1. It means

that no double tangent between the curves exists, and that no isostroctural volume

collapse is predicted. This agrees with the experimental observation that the volume

collapse is linked to a structural change.

Next, the neodymium cohesive energy is reported in Figure 9.3. The overall

behavior of the system reflects that of Pr, albeit with some differences. The spin

unpolarized and polarized PBE curves are more distant in energy with respect to

Pr. The magnetic moment around the equilibrium lattice constant is approximately

4 µ0. The spin unpolarized HSE06 solution lies at very high energy, while the two

polarized solution are now quite close. The system is then stable at different lattice

constants, and a double tangent could be eventually drawn. Again, the two HSE06

solutions have similar magnetic properties. The structural and energetic properties

of the different curves are summarized in Table 9.1.
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Figure 9.3: PBE and HSE06 cohesive energy for neodymium. HSE06 spin polarized
results are characterized by the presence of two solutions. Gray curves represent the value
of the magnetic moment for PBE (open diamonds), HSE06 (a) (open squares), and HSE06
(b) (filled squares) spin polarized solutions. Gray curves: are referred to the vertical left
axis. The dashed lines at the bottom denote transitions.

In Nd no volume collapse is observed in experiment. However, our HSE06

results show that at least two configurations are close to the ground state. During

this thesis, we showed the intrinsic complexity of the α-γ phase transition in cerium,

and we discussed how different contributions could eventually cooperate. It is most

likely that also in other f electron elements several factors may contribute to the

structural properties of the system. In this context, our results suggest that the

behavior of the f electrons may change with pressure –for example from localized to

delocalized-, even if no volume collapse is observed. This supports recent findings

for Nd, which suggest that the Nd α-U structure has delocalized f electrons, and is

reached under pressure from the fcc structure (with localized electrons) in a relatively

continuous fashion (through the d-fcc structure), without any phase transition [249].

Specific trademarks of the f electron behavior across the four elements become

apparent from the density of states. In Figure 9.4 the DOS of spin polarized HSE06
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Figure 9.4: Density of states for La, Ce, Pr, Nd, obtained from HSE06 spin polarized
calculations. The DOS is the sum of the spin up and down component and it is taken at
the equilibrium lattice constant of each solution.

calculations are reported for La, Ce, Pr, and Nd. The DOS is the sum of the spin

up and down components. Only one solution is found for lanthanum, so only one

panel is presented. The other three elements display two solutions, and the DOS is

taken at the equilibrium lattice constant of each solution.

In lanthanum the f states are empty, and lie well above the Fermi level (EF,

denoted by zero in Figure 9.4). The (a) and (b) solutions of cerium correspond to the

α and γ phases of Figure 7.1, respectively. The important peak in the unoccupied

f states moves towards the Fermi energy from La to the Ce (a) solution, where a

small f contribution is also found below the Fermi level. Adding 4f electrons in
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Pr –solution (a)– seems to cause a splitting of the large peak. Three contributions

are distinguishable, of which one crosses EF. In the Nd (a) solution the peak at

lower energy is not present, but the two main peaks of Pr seem to be preserved. The

contribution from occupied states is now pushed to lower energies and the one from

empty states to higher.

The similarities among the (b) solutions of Ce, Pr, and Nd are even more

apparent than for the (a) solutions. In all three elements there are two peaks, one

below and one above EF. The two spectral contributions are reminiscent of the

Hubbard bands that describe the occurrence of localized states –we showed that this

is in fact the case for the (b) solution of cerium. The spectral weight of the peak

below EF systematically increases with increasing number of 4f electrons, while the

opposite is true for the peak in the unoccupied states. At the same time the two

peaks are shifted simultaneously to lower energies going from Ce to Pr, to Nd.

Interestingly, cerium is the only element that does not show appreciable f-

electron occupations in both solutions. In Ce only solution b) exhibits an f-peak

below the Fermi level, but in Pr and Nd both solutions show large f state occupations.

This difference could explain why the volume collapse is isostructural in Ce, but

not in Pr and why it is not present in Nd at all. In Pr and Nd the f-electrons

are more tightly bound than in Ce and therefore more localized from the outset.

Delocalizing just one f-electron would thus not have such a drastic effect as it does in

Ce. Moreover, unlike Ce, Pr and Nd have a high density of states at the Fermi level.

In many other systems, the reduction of this density of states is a driving force for

structural phase transitions. Which of these features is ultimately responsible for the

different behaviors of the lanthanide elements will be investigated in future work.
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Table 9.1: Comparison of the computed equilibrium lattice constants, bulk moduli and
cohesive energies for La, Ce, Pr, Nd, with those of other calculations and experiments.
The reported LDA calculations include effects for orbital polarization of the f states.
LDA+DMFT results are obtained at 632 K.

Method a0 (Å) Ecoh (eV) B (GPa)

La PBE (This work) 5.29 4.46 23.5
HSE06 (This work) 5.39 4.11 24.1
GGA a 5.34 – 24.3
Expt.b 5.33 – 24

Ce HSE06 (This work) α 4.63 3.76 50.5
Expt.c 4.83 4.3 27
HSE06 (This work) γ 5.22 4.35 28.3
Expt.c 5.16 – 19

Pr PBE (This work) 4.76 3.13 22.4
HSE06 (This work) (a) 5.16 1.69 24.2
HSE06 (This work) (b) 5.16 2.94 22.3
LDAd (orb. pol.) 5.14 – 34.5
LDA+DMFTe (632K) 5.16 – 31.0
Expt.f 5.16 – 26-37

Nd PBE (This work) 5.18 2.66 16.0
HSE06 (This work) (a) 5.19 2.78 25.4
HSE06 (This work) (b) 5.72 2.35 12.3
LDAd (orb. pol.) 5.11 – 37.1
LDA+DMFTe (632K) 5.09 – 32.9
Expt.f 5.15 – 28-32

aReference [250].
bReference [248][240].
cReference [10, 240, 66].
dReference [204].
eReference [216].
fReference [251, 252].
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9.2 Many-body functional calculations of

the dimers: La2, Pr2, and Nd2

As shown before, the calculations for cerium systems with many-body-based methods

produces results in remarkable agreement with experiment. (EX+cRPA)@PBE0

for the nineteen atom cluster gives a transition pressure for the α-γ phase transi-

tion close to the extrapolated experimental value to zero temperature. Similarly,

(EX+cRPA)@PBE0 produces an equilibrium distance, a bonding energy and a vi-

brational frequency in good agreement with experiment. It is important to address

which is the impact of this finding to the smallest molecular unit, i.e. the dimer.

Therefore we studied the La, Pr, and Nd dimers with the same approach.
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Figure 9.5: PBE, PBE0, and (EX+cRPA)@PBE0 binding energy, De, for La2. The
magnetic moment is identified by m, and placed next to the curves (in units of µ0).

In Figure 9.5 the binding energy curve of PBE, PBE0 and (EX+cRPA)@PBE0

is reported for the lanthanum dimer. The curves are smooth and they are all

characterized by the absence of magnetic moment, even if the calculations include

spin polarization. From all the three functionals we obtain similar equilibrium
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Figure 9.6: PBE, PBE0, and (EX+cRPA)@PBE0 binding energy, De, for Pr2. The
magnetic moment is identified by m, and placed next to the curves (in units of µ0). Two
solutions are present in PBE0, denoted by (a) and (b).

distance, bonding energy and vibrational frequency, and PBE0 gives a De and a

vibrational frequency in good agreement with experiment –Table 9.2. The EX+cRPA

correction reduces the cohesive energy by 0.52 eV, on the other hand moves the bond

length to 2.67 Å, closer to the value reported by quantum chemistry calculations

–2.70 Å [100]–, the reference method in this case.

The calculations for the praseodymium dimer confirm the existence of multiple

solutions for PBE0 in the presence of f electrons, Figure 9.6. Similarly to Ce2, the

two solutions are stable at different bond lengths, and are close in energy. The

magnetic moment is however considerably increased with respect to the cerium dimer.

Also the effect of the EX+cRPA correction is sensibly increased. Both solutions have

larger binding energy in (EX+cRPA)@PBE0 with respect to PBE0. This could be

related to a not good description of the dimer structural properties in PBE0, Table

9.2. It is difficult to understand which of the two (EX+cRPA)@PBE0 solutions

would correspond to the experimental configuration. The binding energy of solution

(b), 1.56 Å, is in better agreement with the experimental 1.31 Å, however, solution
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Figure 9.7: PBE, PBE0, and (EX+cRPA)@PBE0 binding energy, De, for Nd2. The
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solutions are present in PBE0, denoted by (a) and (b).

(a) has a vibrational frequency –249 cm−1– that is closer to the observed 245 cm−1.

PBE, PBE0, and (EX+cRPA)@PBE0 calculations on Nd2 preserve previously

observed features. PBE0 is characterized by two solutions which are stable at different

bond lengths and are close in energy. All functionals produce small vibrational

frequencies, in agreement with the softening of the vibrational modes observed

in experiment, Table 9.2. Only exception is the (EX+cRPA)@PBE0 (a) solution.

For Nd2, the difficulties of PBE0 and PBE in reproducing the correct equilibrium

distance, bonding energy and vibrational frequency is probably further accentuated

with respect to Pr2. The EX+cRPA correction tries to overcome this deficiency and

results in a binding energy of 0.88 eV for solution (a), to be compared with the

experimental 0.82 eV. However, this brings to a large vibrational frequency of 324

cm−1, while the measured value is 93 cm−1.

The PBE0 description of the dimer spectral constants worsens with increasing

number of f electrons. However, the orbital charge density obtained from PBE0

preserve specific features across the elements. The charge density of the highest
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occupied orbitals for La2, Pr2, and Nd2 is reported in Figure 9.8. It refers to the

spin up electrons. Each orbital is occupied by one electron. For all the three dimers

the highest spin down orbitals are two 5dπu and one 6sσg states. This means that

the value of the magnetic moment for each configuration is obtained by subtracting

three to the number of rows in Figure 9.8. By comparing Figure 9.8 with Figure 5.6

we note that the stable configuration for Ce2 is that of La2 plus two f -type orbitals.

The 5dπu orbitals are also maintained for all the other solutions of Pr2 and Nd2.

Solution (a) of the praseodymium dimer closely resembles solution (a) of cerium.

The relative ordering of the orbitals changes, but the highest occupied states share

the same characteristics. The additional f electrons in Pr are placed at lower energy.

Their charge density is localized at the atomic positions, and their orbital shape

reminds of the 4f atomic orbitals. As for cerium, the most relevant change from

the (b) to the (a) solution of Pr2 is that an f molecular orbital goes from the 4fδg

bonding configuration to the 4fσu antibonding state. In Nd2 there are no f bonding

states. This explains the much reduced binding energy with respect to the other

dimers.
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Figure 9.8: Charge density of the highest occupied spin up orbitals for the La, Pr, and
Nd dimers.
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Table 9.2: Equilibrium distance, bonding energy and vibrational frequency for the cerium
dimer obtained from different levels of theory and from experiment. Re represents the
bond distance, De the binding energy and ωe the vibrational frequency.

Re (Å) De (eV) ωe (cm−1)

La2 PBEa 2.59 3.03 220
PBE0a 2.58 2.50 225
(EX+cRPA)@PBE0a 2.67 2.02 180
B3LYPb 2.91 1.70 150
CASSCF/MRCIc 2.70 2.31 186
Exp.d – 2.52 236

Pr2 PBEa 2.67 1.09 108
PBE0 (a)a 2.61 0.70 153
PBE0 (b)a 2.90 0.65 103
(EX+cRPA)@PBE0 (a)a 2.61 2.03 249
(EX+cRPA)@PBE0 (b)a 2.68 1.56 180
CASSCF/MRCIc 2.55 1.19 213
Exp.d – 1.31 245

Nd2 PBEa 2.75 0.31 122
PBE0 (a)a 2.87 -0.07 75
PBE0 (b)a 3.11 -0.17 90
(EX+cRPA)@PBE0 (a)a 2.51 0.88 324
(EX+cRPA)@PBE0 (b)a 2.98 -0.61 73
Exp.d – 0.82 93

aThis work.
b[253]
cReference [100].
dReference [99].
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9.3 Summary

In this chapter we moved beyond cerium and we approached its neighbouring elements.

We considered La, which has no f electrons, Pr, characterized by the presence of

three 4f electrons and a volume collapse, and Nd, which has filled 4f states but does

not undergo a phase transition.

For all the elements we performed the calculations in an fcc environment, that

is believed to be representative of the various close packed structures in which the

elements are found at different external conditions.

Hybrid functional calculations always predict the occurrence of multiple so-

lutions in the presence of f electrons. The multiple solutions are a signal that the

ground state assignment of the system can be difficult, and that the f electrons

can arrange in several almost equivalent ways. Despite the presence of two stable

configurations, no isostructural phase transition is found for Pr, in agreement with

experiment. For Nd, instead, a double tangent can be traced between the two PBE0

solutions. At the level of HSE06 however, it is difficult to quantitatively examine the

relative stability of the solutions. In this regard, we learned from cerium that the

EX+cRPA correction is of crucial importance for a correct description of the energetic

properties of the system. In addition, further calculations should be performed for

the experimentally observed crystal structures. This constitutes a future step that

we intend to accomplish.

Finally, we studied the La, Pr, and Nd dimers with (EX+cRPA)@PBE0.

The multi-solution behavior is confirmed for Pr and Nd, but not for La. We

note that the PBE0 description of the equilibrium distance, bonding energy and

vibrational frequency progressively worsen with increasing number of f electrons.

The EX+cRPA correction tends to overcome this deficiency, but the remarkable

agreement of (EX+cRPA)@PBE0 with experiment that is found for the cerium dimer

is not always reproduced in the other dimers. On the other hand, the electronic

structure of the two solutions of Ce2 finds specific trademarks in all other dimers,

further proving the reliability of our approach.
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10.1 The α-γ phase transition

The presence of a phase transition accompanied by a volume collapse is one of the

most intriguing features that characterizes rare earth metals. Due to its isostructural

nature, the cerium α-γ phase transition is by far the most mysterious. Experimental

characterizations of the α-γ phase transition have been carried out for many decades

now, but only partial consensus on the physical properties of the two phases has

been reached.

Different theoretical models have been proposed to address the driving mech-

anism of the volume collapse. The most notable are the Mott transition and the

Kondo volume collapse, which highlight the role of f electrons. Recently, a symmetry

breaking from the γ to the α phase has been suggested. This implies a quadrupolar

alignment of the charge density from one phase to the other and does not exclude a

change in hybridization of the f electrons suggested by the other models. However,

all models only describe the physical phenomena that are explicitly included in

the theory. Many studies approach the α-γ phase transition from first principles,

avoiding a priori assumptions. These are mainly based on density-functional theory.

Despite the effort, no study has been able to reproduce the structural properties of

both the α and γ phases within a single theoretical framework and to understand

the mechanism that dictates the volume collapse.

Motivated by the open challenge that the cerium α-γ phase transition poses

to theoretical physicists, I approached the problem ab initio, in view of the newly-

developed hybrid functionals PBE0 and HSE06 and many-body methods like EX+cRPA.
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I studied cerium systems of increasing complexity, from the atom to bulk, and found

that PBE0 and HSE06 always exhibit a multi-solution behavior. This behavior, a

known feature of Hartree-Fock based calculations, has physical relevance for cerium,

because the α and γ phases can be recognized in both bulk solutions. The analysis of

the electronic density reveals, that hybrid functionals can indeed capture a change in

the f electron wave functions around the region of the experimental α and γ lattice

constants, and that it is not the only magnetic moment that discriminates the two

solutions.

A proper description of the electronic screening among the electrons proved

to be essential for a quantitative description of the phase transition. The already

accurate description of the equilibrium distance, bonding energy and vibrational

frequency for the cerium dimer is improved by incorporating exact-exchange and

correlation at the level of the random-phase approximation. Likewise, EX+cRPA

provides the correct energetic order for the two solutions in larger systems. Hybrid

functional solutions show specific characterisitcs in all the systems under examination.

I therefore performed (EX+cRPA)@PBE0 calculations for the Ce19 cluster, because

the higher-level, many-body methods are available in FHI-aims for finite systems. I

found a transition pressure for the α-γ phase transition that is in agreement with

the extrapolation of the experimental values to zero temperature. Based on my zero

temperature results for the electronic structure I was able to reproduce the cerium

phase diagram by adding entropic contributions in a pseudo-alloy model.

Due to the success with cerium, I tested this approach on other lanthanide

elements with (La) and without (Pr, Nd) f electrons. The outcome of the calculations

for the dimers and for bulk systems validated my results for cerium. The multi-

solution behavior only appears in conjunction with the presence of f electrons.

Moreover, hybrid functionals predict no isostructural phase transition for Pr and Nd,

as observed experimentally.

Hybrid functional results appear consistent with a Mott transition scenario, in

particular, with the Mott interpretation of localized and delocalized f states in the

γ and α phases, respectively. However, we know that the transition is complex, and

different mechanisms may cooperate. These results do not rule out the importance

of Kondo physics at finite temperatures. They suggest, rather, that the driving
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mechanism of the volume collapse should already occur at zero temperature, and

therefore could be more directly related to the hybridization between f states. At the

same time, these conclusions do not exclude a quadrupolar charge density alignment

in the α phase. My work emphasizes the importance of ab initio methods. Models are

important, as they can aid the interpretation of scientific results and suggest physical

processes to include in our theories. However, to have an unbiased description of

complex phenomena such as the α-γ phase transition, we need to start from first

principles.

10.2 Future directions

10.2.1 The cerium dimer

One unexpected result that emerged during the course of this thesis is the presence

of a scale-spanning volume collapse – from the macroscale of bulk cerium to the

nanoscale, in particular the cerium dimer. (EX+cRPA)@PBE0 calculations for the

dimer produce an equilibrium distance, a bonding energy and a vibrational frequency

for the ground state that are in agreement with experiment. This implies that my

calculations predict that the cerium dimer should be stable in two different bond

lengths at low enough temperatures. So far, this has not been observed experimentally

nor have other theoretical studies addressed it. Similarly, the large Ce19 and Ce43

clusters that I investigate display similar characteristics. I did, however, constrain

these two clusters to an fcc geometry, and it is not clear if the double minimum

is still present after a full geometric relaxation. Thus, three important questions

emerge. First, is the volume collapse are present at the nanoscale, and second, can it

be observed experimentally? Third, if the volume collapse cannot be found for the

smallest clusters, at which cluster size approaching the macroscale will it set in?

To address these questions, we began a collaboration with Prof. Wöste’s

research group at the Freie Universität in Berlin. A joint funding project has been

submitted to the German Science Foundation (DFG) and is currently under review.

The first objective of the project is to map the potential energy surfaces of the

cerium dimer experimentally and to test if two stable solutions (i.e., a bond-length
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isomer) do indeed exist. For the experimental setup, the neutral as well as charged

dimers are required to mass-select the dimers from the initial laser vaporization or

sputtering source. My (EX+cRPA)@PBE0 calculations show that the ionic species

also have two stable solutions (cf Fig. 10.1). The minima are deep enough to capture

at least one vibrational mode and should therefore be stable enough for experimental

detection. However, the barrier between the left and the right solution of the neutral

dimer is relatively small. This might be an artifact of the (EX+cRPA)@PBE0

approach. To test this, higher-level theories should be applied to the ground state

potential energy surface of the cerium dimer.
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Figure 10.1: (EX+cRPA)@PBE0 binding energy of the cerium dimer in different charge
states. The two bond-length isomers are conserved even when the dimer is positively or
negatively charged (red and green curves).

A second goal of the proposed DFG project is to establish an optical link

between the different bond-length isomers such that, depending on the irradiated

light fields, the pathway can be switched toward one or the other bond-length isomer.

This assumes that optically-excited states (gray curves in Figure 10.2 –only plotted

as guides for the eye, not calculated) facilitate a transition from one minimum to

another. To achieve the optical link, the anionic dimers would be irradiated with

a series of electronic excitations, which could finally lead to the cationic electronic
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ground state of the chosen isomer – Figure 10.2 a). Alternatively, the pathway

to the desired isomer could also be directed to the electronic ground state of the

corresponding neutral species, as shown in Figure 10.2 c).

Figure 10.2: Experimental concept for connecting different bond-length isomers via
sequenced electronic excitation by irradiating optimized pulse sequences: a) connects the
isostructural transition from the anion to the cation vertically, b) connects one bond-length
isomer of the anion to the other of the cation, c) connects one bond-length isomer of the
anion to either one of the neutral ground states, which then is monitored by a multi-photon
ionization (MPI) step to the cation. The gray curves are guides for the eye, not calculated.

If the first two goals can be accomplished, then larger clusters could be explored.

Subsequently, the highly-reactive cerium clusters could be embedded within a flexible

and transparent ligand shell that would passivate them without losing their optome-

chanical function. This would pave the way for new and unique nanotools. For

example, optically-switchable length actors are conceivable if the passivated clusters

could be assembled as nanotowers. If grouped as rings around nanocapillaries, they

could act as optically-activated valves or peristaltic pumps.

10.2.2 The volume collapse

My spin unpolarized hybrid functional calculations for cerium bulk demonstrate that

the emergence of the two solutions is connected to a change in the wave functions.

In addition, the charge density difference between the solutions shows that there are
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preferred directions along which the f electron density tends to align. One future

goal is therefore to increase the dimension of the unit cell. This would allow the

system to explore more degrees of freedom in the quantum mechanical calculations

and might provide the first ab initio indication for the quadrupolar symmetry of the

charge density suggested by Nikolaev et al. [62].

Further, whether other crystal structures of cerium, like double hcp, also exhibit

a double minimum is an interesting area of research. This may reveal more about

the behavior of f electrons in lanthanides. The relative stability of the β phase with

respect to the α and γ phases also creates further benchmarking opportunities for

our computational approaches. In my study, I assumed that the change from the γ

to the β phase is mainly driven by the rearrangement of 5d electrons. Additional

calculations could test this hypothesis.

10.2.3 Other lanthanides

In the last part of my thesis, I present preliminary calculations for three other

lanthanide elements. I chose lanthanum (no f electrons), praseodymium (3 f

electrons) and neodymium (34 f electrons). For simplicity, I restricted my calculations

to fcc structures and did not consider the other, close-packed crystal structures that

these metals adopt. In principle, this should provide a reasonable first estimate,

since fcc is itself close-packed, and the physics behind the f electrons should also be

captured in a slightly different crystal environment. However, we know that several

factors contribute to the structural properties of the system in lanthanide elements.

A possible future step is therefore to perform hybrid functional and EX+cRPA

calculations for other crystal structures. Then the study should be extended to the

whole lanthanide series to develop a comprehensive picture of the 4f metals. An

interesting remaining question is why some of the lanthanide elements display a

volume collapse and others do not? Ab initio calculations across the lanthanide series

could illuminate this fascinating problem.
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A Crystal structures

The rare earth metals are characterized by some complex crystal structures. Other

than the fcc and hcp structures, the most relevant ones are double-hcp (dhcp),

distorted fcc (d-fcc) and α uranium (α-U). As they do not belong to spacegroup

representations, they are schematized in Figure A.1, A.2, A.3.

Figure A.1: The hcp and dhcp crystal structures. In the latter, the unit cell is doubled.
The second B plane is rotated, and becomes a third C plane. From [254].
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Figure A.2: The d-fcc structure is put in relation to the fcc structure by: a) Periodic
modulation of the hexagonal layers along the c axis: dashed lines represent d-fcc positions.
b) The relative shifts of the hexagonal layers in the basal plane. The B and C layers are
sheared with respect to A layer, the dhcp atom positions are indicated by filled circles.
From [255].

Figure A.3: The α-U structure is put in relation to the fcc structure by a distortion of
the cubic environment and a shift of the plane containing the face-centered atoms. From
[256].



B Computational details

B.1 Numerical atom centered orbitals

All calculations in this thesis were performed with the all-electron code FHI-aims

(Fritz-Haber-Institut ab initio molecular simulation) [220, 221], that is based on

numeric atom-centered orbitals.

To solve the quantum mechanical equations numerically, a basis set has to be

introduced. The optimal choice would be to work with a basis set that spans the full

Hilbert space, but this is not possible in practice. Instead, in the FHI-aims package

numeric atom centered orbitals are used as basis functions1.

For better computing performances the FHI-aims code utilizes numerical atom

centered orbitals (NAOs) of the form

φn =
un(r)

r
Ylm(Ω) (B.1)

where the basis function φn consists of a radial part un(r) and an angular part which

is given by the spherical harmonics Ylm(Ω). The functions un(r) are obtained by a

numerical solution of a one-dimensional radial Schrödinger equation[
−1

2

d2

dr2
+
l(l + 1)

r2
+ vshape(r) + vcut(r)

]
un(r) = εnUn(r) (B.2)

where l is the angular quantum number. The potential vshape determines the main

shape of un(r) and vcut is a confining potential. The latter ensures that the wave

1Refer to [257] for a review of different basis sets that can be employed in HF and KS-DFT.

185



186 Appendix B. Computational details

function un(r) smoothly decays to zero outside a defined region r ≥ rcut and it can

be expressed in the form

vcut(r) =


0 r ≤ ronset

s
(r−rcut)2 e

w
r−ronset ronset < r < rcut

0 r ≥ rcut

(B.3)

where s and w are global scaling parameters, and ronset determines the onset of the

exponential part of vcut.

Systematic basis sets have been constructed according to equations B.2 and

B.3 with the following procedure:

1. Constructing a functional dependent minimal basis for the free atom by setting

vshape to the self-consistent radial part of the KS potential2.

2. Generating a pool of additional basis functions by solving Equation B.2 for

various choices of vshape. In FHI-aims these are hydrogen-like, atom-like or

cation-like potentials.

3. From the generated pool of additional functions select the ones that contribute

most to a pre-defined objective function. In FHI-aims the objective function is

the LDA total energy of a di-atomic dimer for a given species.

The additional basis functions obtained in step 3 are grouped together in “tiers”,

that for the case of cerium, praseodymium, and neodymium are summarized in Table

B.1. Once the radial part of the basis function is constructed, its three-dimensional

form is obtained by multiplication of 2l + 1 angular momentum functions, according

to Equation B.1.

2See reference reference [221] for HF or hybrid functionals.
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Table B.1: Standard radial basis functions for Ce, Pr, Nd. The minimal basis consists
of free atom radial functions (notation: [noble gas configuration] + additional valence
functions). The additional radial functions are of the form H(nl, z) or X2+(nl). H(nl,
z) denotes a hydrogen-like radial function for the Coulomb potential vshape(r) = z/r, in
Equation B.2, with quantum numbers n and l. X2+(nl) labels the n, l function for the
doubly positive charged ion X.

Ce Pr Nd

minimal [Xe]+6s5p5d4f [Xe]+6s5p5d4f [Xe]+6s5p5d4f

tier 1 H(4d, 4.8) H(3d, 4.9) H(3d, 5)
H(5g, 11.2) H(2p, 1.3) H(5g, 11.2)
H(4f, 7.6) H(4f, 8) H(4f, 7.6)
H(2p, 1.8) H(5g, 11.2) H(2p, 1.4)
H(3s, 2.7) Pr2+(6s) H(3s, 2.6)

tier 2 H(6h, 14.8) H(4f, 4) H(4f, 4.3)
H(4f, 5.2) H(6h, 15.2) H(6h, 15.6)
H(3d, 3) H(4d, 3.4) H(3d, 3)
H(3d, 2.2) H(5g, 7.2) H(2p, 2)
H(5g, 11.6) H(2p, 1.6) H(5g, 8.6)
H(3p, 2.8) H(4s, 3.0) H(4s, 3.6)
Ce2+(6s)

tier 3 H(6h, 15.2) H(5d, 12) H(4d, 14)
H(4f, 8.2) H(4f, 6.2) H(6h, 12.4)
H(5g, 30) H(5g, 14.4) H(4f, 6.6)
H(6d, 16.4) H(6h, 14.4) H(5g, 24.8)
H(5f, 15.6) H(5p, 8.8) Nd2+(6p)
H(5p, 17.6) H(5s, 6.0) H(1s, 0.75)
H(4s, 7.2)

tier 4 H(5g, 20) H(5f, 15.6) H(6d, 18.8)
H(4f, 16.4) H(4d, 19.2) H(5f, 16)
H(6d, 20) H(5g, 36) H(4p, 6)
H(6p, 9.2) H(3d, 1.5) H(5g, 4.9)
H(1s, 0.85) Pr2+(4f) H(3d, 4.2)
H(6h, 14) H(5g, 16.4) H(6h, 16)

H(5f, 16.4) H(5g, 12)
H(6p, 18) H(4s, 6.8)
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B.2 Basis set superposition error

Localized basis functions such as NAOs are subject to a problem known as basis set

superposition error (BSSE) [258]. When the atoms of a system approach each other

their basis functions overlap. The result is that each atom feels a larger basis set

than in the isolated configuration. This can be the source of several problems. For

example for the cohesive energy versus volume curve the effective number of basis

functions that are available to the atoms vary with the distance between them. Since

the Hilbert space is not complete the denser basis functions lead to more negative

total energies. Consequently obtaining reliable values for the total energy becomes

difficult.

In the FHI-aims code, the BSSE is efficiently reduced for LDA/GGA and HF

calculations [220], because the NAOs minimal basis is exact for the free atom for

LDA/GGA functionals and it is nearly optimal for the description of the Kohn-Sham

core orbitals. Only the contribution coming from the valence orbitals has to be

compensated, but its effect is minimal on the total energy and the BSSE can be

neglected. However, for methods that extensively involve a description of empty

states, like RPA, rSE and SOSEX, the BSSE can be severe and needs to be properly

taken into account.

In order to eliminate or partially remove the BSSE several methods have

been developed. One that is computationally effective, and has been the method

of choice in this thesis, is commonly referred to as counterpoise correction (CC).

The CC was suggested by Boys and Bernardi [259] and amounts to an a posteriori

BSSE correction. The reference atomic energies are computed in a basis set that

corresponds to the one of the full system, so that the cohesive energy arises from

a difference between total and reference atomic energies that are expressed in the

same basis set. In practice the cohesive energy EBSSE
coh is calculated according to the

following expressions

EBSSE
coh = Ecoh + ∆CC (B.4)

where

Ecoh = −

[
Esys(sys)−

∑
atom

Eatom(atom)

]
(B.5)
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and

∆CC = −
∑
atom

[
Eatom(atom)− Eatom(sys)

]
. (B.6)

Here Ex(y) represents the total energy of system x in the basis set of y. sys and

atom represent the whole system and the single atoms, respectively. With the CC

method the BSSE is avoided and the dependence of the results on the basis set only

determines the overall accuracy of the calculations.
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B.3 Convergence with respect to the basis

set

In DFT and related methods using the largest basis set available is of course the

desirable way of approximating the full Hilbert space. In practice, however, one

has to carefully measure the computational resources (i.e. cpu time and memory

requirements) dedicated to the calculations. In general a large basis set also implies

large computational requirements and a balance between accuracy and computational

constraints has to be found for each individual system. The usual way of proceeding

is to systematically increase the number of basis functions until the quantities of

interest do not vary any more.
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Figure B.1: Cohesive energy for the cerium dimer calculated with the PBE spin unpolar-
ized approach.

For the case of a cerium dimer, Figure B.1, B.2, B.3, B.4 show the change in

binding energy upon increasing the number of basis functions by adding subsequent

tiers. The convergence tests are separately performed for different functionals and

all refer to spin unpolarized calculations3.

3In RPA calculations a total of 100 frequency points for the Fourier transform are considered.
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Figure B.2: Cohesive energy for the cerium dimer calculated with the PBE0 spin
unpolarized approach.

As it shown in the plots, already the additional tier 1 basis set provide good

convergence with respect to the basis functions, and adding tier 2 and tier 3 does not

change appreciably the cohesive energy results for PBE and PBE0. In particular at

tier 2 one could safely consider the calculations converged with respect to the basis

set. A similar result is obtained when the EX+cRPA correction is applied on top of

PBE0. For the case of (EX+cRPA)@PBE it would seem that for small distances the

convergence with respect to the basis set has not yet been achieved, in view of the

other results however it is more likely that other effects are entering the problem.

As analyzed in Section 5.2 (EX+cRPA)@PBE calculations have, in fact, a singular

outcome, and need caution in the interpretation.

Calculating the cohesive energy for other cerium clusters and for the bulk

system with increasing number of basis functions confirms the results obtained for

the dimer: the tier 1 additional basis set already provides a sufficient number of

basis functions and at tier 2 the cohesive energy of the system is converged to within

30 meV.

See Section B.2 for an explanation of the frequency points usage.
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Figure B.3: Cohesive energy for the cerium dimer calculated with the (EX+cRPA)@PBE
spin unpolarized approach.
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Figure B.4: Cohesive energy for the cerium dimer calculated with the (EX+cRPA)@PBE0
spin unpolarized approach.
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B.4 Convergence with respect to the

frequency points

The frequency integration in the EX+cRPA correction in Equation 2.64 is performed,

in the FHI-aims code, on a Gauss-Legendre grid. As for the basis functions, a larger

number of frequency points leads of course to more accurate results, but also to an

increased computational cost.
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Figure B.5: Total energy as a function of the frequency points employed in the RPA
frequency integration. The total energy is arbitrarily shifted to set the result for 200 points
to zero. Inset: same plot with a higher resolution on the energy axis.

In Figure B.5 the convergence of the EX+cRPA correction with respect to

the frequency points is reported for the cerium dimer. The spin is unpolarized,

tier 3 basis functions are included, and the distance between the atoms is set to

2.4 Å, which is next to the minimum of the PBE0 (b) solution. Figure B.5 shows

that 60 points are sufficient. At 60 points the (EX+cRPA)@PBE total energy is

converged within 2 meV and the (EX+cRPA)@PBE0 total energy within 0.3 eV.

The calculations reported in Section 5.2 and 5.6 for the dimer are performed at 100

frequency points, where (EX+cRPA)@PBE0 results are converged within 0.15 meV.

For the case of the Ce19 cluster, see Section 6.2, the number of points could not

be increased above 40 due to computational reasons. While this value seems only
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acceptable for the case of PBE, one should note that, for the dimer, the same value

brings (EX+cRPA)@PBE0 results into a convergence window of 2 meV.

B.5 k-point convergence

For periodic calculations one has also to converge the sampling of the first Brillouin

zone in reciprocal space. Figure B.6 shows the convergence of the cohesive energy of

bulk cerium with respect to the number of points that are considered along each of

the three directions kx, ky, kz of reciprocal space. Both PBE and HSE06 calculations

are performed for a spin unpolarized configuration and at a lattice constant of 4.6 Å.
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total number of points is therefore k3. The insets report part of the curves with a higher
resolution on the energy axis.

At 10× 10× 10 k points PBE results are converged to within 10 meV, while

the value of the cohesive energy in HSE06 does not vary by more than 2 meV if the

k sampling is increased further to a 16× 16× 16 mesh. Moreover, it is interesting to
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note that the convergence with respect to the k sampling is largely determined by the

PBE part of the calculations because, as depicted in Figure B.7, the Hartree-Fock

exact exchange contribution that is introduced in the hybrid functional displays a

very rapid convergence. From a 4 × 4 × 4 to a 16 × 16 × 16 sampling the HSE06

cohesive energy oscillates within a 15 meV range. For most of the calculations

performed during this thesis a 6× 6× 6 mesh was therefore chosen for both PBE

and hybrid functional calculations.
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[23] U. Kornstädt, R. Lässer, and B. Lengeler, “Investigation of the γ-α phase

transition in cerium by Compton scattering,” Phys. Rev. B, vol. 21, pp. 1898–

1901, Mar. 1980.

208



[24] A. Murani, Z. Bowden, A. Taylor, R. Osborn, and W. Marshall, “Evidence for

localized 4f states in α-Ce,” Phys. Rev. B, vol. 48, no. 18, pp. 13981–13984,

1993.

[25] M. MacPherson, G. Everett, D. Wohlleben, and M. Maple, “Magnetic Suscep-

tibility of Cerium Metal Under Pressure,” Phys. Rev. Lett., vol. 26, pp. 20–23,

Jan. 1971.

[26] A. Grimberg, C. Schinkel, and A. Zandee, “The magnetic and electrical prop-

erties of pure α-cerium at atmospheric pressure,” Solid State Comm., vol. 11,

pp. 1579–1583, Dec. 1972.

[27] D. Koskimaki and K. Gschneidner, “Heat capacity and magnetic susceptibility

of single-phase α-cerium,” Phys. Rev. B, vol. 11, pp. 4463–4469, June 1975.

[28] R. Colvin, S. Arajs, and J. Peck, “Paramagnetic Behavior of Metallic Cerium

and Europium,” Phys. Rev., vol. 122, pp. 14–18, Apr. 1961.

[29] C. Burr and S. Ehara, “High-Temperature Magnetic Susceptibility of Lan-

thanum and Cerium Metals,” Phys. Rev., vol. 149, pp. 551–555, Sept. 1966.

[30] T. Naka and T. Matsumoto, “Magnetic states of α- and γ-Ce at high pressure,”

Physica B: Cond. Mat., vol. 205, pp. 121–126, 1995.

[31] A. Murani, S. Levett, and J. Taylor, “Magnetic Form Factor of α-Ce: Towards

Understanding the Magnetism of Cerium,” Phys. Rev. Lett., vol. 95, pp. 3–6,

Dec. 2005.

[32] H. Katzman and J. Mydosh, “Electrical Resistivity of Exchange-Enhanced

α-Cerium Under Pressure,” Phys. Rev. Lett., vol. 29, pp. 998–1001, Oct. 1972.

[33] M. Brodsky and R. Friddle, “Electrical Resistivity of α-Cerium,” Phys. Rev.

B, vol. 7, pp. 3255–3260, Apr. 1973.

[34] M. Nicolas-Francillon and D. Jerome, “Low temperature electrical resistivity of

α-cerium under pressure,” Solid State Comm., vol. 12, pp. 523–526, Mar. 1973.

[35] J. Leger, “Electrical resistivity of α cerium under high pressure,” Phys. Lett.

A, vol. 57, pp. 191–192, May 1976.

209



[36] A. B. Kaiser and S. Doniach, “Temperature-dependent resistivity of dilute

alloys with nearly magnetic impurities,” Int. J. Mag., vol. 1, p. 11, 1970.
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[241] R. Podloucky and D. Glötzel, “Band structure, cohesive properties, and Comp-

ton profile of γ- and α-cerium,” Physical Review B, vol. 27, pp. 3390–3405,

Mar. 1983.

229



[242] W. Pickett, A. Freeman, and D. Koelling, “Local-density-functional approach

to the isostructual γ-α transition in cerium using the self-consistent linearized-

augmented-plane-wave method,” Physical Review B, vol. 23, no. 3, pp. 1266–

1291, 1981.

[243] F. D. Murnaghan, “The Compressibility of Media under Extreme Pressures,”

Proc. Nat. Ac. Sci. USA, vol. 30, no. 9, pp. 244–247, 1944.

[244] L. de Medici, A. Georges, G. Kotliar, and S. Biermann, “Mott Transition and

Kondo Screening in f-Electron Metals,” Phys. Rev. Lett., vol. 95, pp. 5–8, Aug.

2005.

[245] Y. Vohra, H. Olijnik, W. Grosshans, and W. Holzapfel, “Structural Phase

Transitions in Yttrium under Pressure,” Phys. Rev. Lett., vol. 47, pp. 1065–1067,

Oct. 1981.

[246] J. Duthie and D. Pettifor, “Correlation between d-Band Occupancy and Crystal

Structure in the Rare Earths,” Phys. Rev. Lett., vol. 38, pp. 564–567, Mar.

1977.

[247] F. P. Holzapfel and W. B., “Novel reentrant high pressure phase transtion in

lanthanum,” Phys. Rev. Lett., vol. 70, no. 26, p. 4087, 1993.

[248] K. Syassen and W. Holzapfel, “Compression of lanthanum to 120 kbar,” Solid

State Comm., vol. 16, pp. 533–536, Mar. 1975.

[249] G. Chesnut and Y. Vohra, “α-uranium phase in compressed neodymium metal,”

Phys. Rev. B, vol. 61, pp. R3768–R3771, Feb. 2000.

[250] L. Nixon, D. Papaconstantopoulos, and M. Mehl, “Electronic structure and

superconducting properties of lanthanum,” Phys. Rev. B, vol. 78, p. 214510,

Dec. 2008.

[251] K. A. Gschneidner, “Physical properties of the rare earth metals,” Bulletin of

Alloy Phase Diagrams, vol. 11, pp. 216–224, June 1990.

[252] W. Grosshans and W. Holzapfel, “Atomic volumes of rare-earth metals under

pressures to 40 GPa and above,” Phys. Rev. B, vol. 45, pp. 5171–5178, Mar.

1992.

230



[253] Z. Wu, J. Shi, S. Zhang, and H. Zhang, “Density-functional study of lanthanum,

ytterbium, and lutetium dimers,” Phys. Rev. A, vol. 69, pp. 1–4, June 2004.

[254] J. Jensen and A. Mackintosh, Rare earth magnetism. Oxford: Clarendon Press,

1991.

[255] Y. Vohra and V. Vijayakumar, “Structure of the distorted fcc high-pressure

phase of the trivalent rare-earth metals,” Physical Review B, vol. 143, no. 400,

pp. 6205–6207, 1984.

[256] N. Stojic, J. Davenport, M. Komelj, and J. Glimm, “Prediction of a surface

magnetic moment in alpha-uranium,” arXiv preprint cond-mat/ . . . , no. 001,

pp. 2–5, 2003.

[257] K. B. Lipkowitz, D. B. Boyd, D. Feller, and E. R. Davidson, “Basis Set for

Ab Initio Molecular Orbital Calculations and Intermolecular Interactions,” in

Reviews in Computational Chemistry (K. B. Lipkowitz and D. B. Boyd, eds.),

vol. 1 of Reviews in Computational Chemistry, ch. 1, pp. 1–43, Hoboken, NJ,

USA: John Wiley & Sons, Inc., Jan. 2007.

[258] F. B. van Duijneveldt, J. G. C. M. van Duijneveldt-van de Rijdt, and J. H.

van Lenthe, “State of the Art in Counterpoise Theory,” Chem. Rev., vol. 94,

pp. 1873–1885, Nov. 1994.

[259] S. Boys and F. Bernardi, “The calculation of small molecular interactions by

the differences of separate total energies. Some procedures with reduced errors,”

Molec. Phys., vol. 19, pp. 553–566, Oct. 1970.

231








	Abstract
	Zusammenfassung
	Contents
	Introduction
	I Background: experiments and theory
	Rare earths and Cerium
	Lanthanides and actinides
	Rare earth metals and volume collapse
	Cerium - phase transition
	Theoretical models for the - phase transition
	Cerium clusters
	Summary

	Theoretical Methods for Electronic Structure Calculations
	The many-body problem
	Hartree-Fock Theory
	Density-Functional Theory
	Exchange-Correlation Functionals
	Orbital-dependent approaches
	Hybrid functionals
	Many-Body Perturbation Theory


	II Ab initio description of the - transition in cerium
	Previous Ab initio studies of the - transition
	First principle calculations for cerium systems
	Computational settings
	Convergence of the SCF cycle
	Multiple solutions

	Cerium dimer
	Local and semi-local functionals: LDA and PBE
	(EX+cRPA)@PBE
	Hartree-Fock
	Hybrid functionals: PBE0
	Fraction of exact-exchange
	(EX+cRPA)@PBE0
	Beyond RPA methods
	Summary

	Cerium clusters
	PBE and PBE0
	EX+cRPA: the - phase transition
	Summary

	Cerium bulk
	Hybrid functionals and the  and  phases
	Spin unpolarized results
	Magnetic properties
	Role of Exact-exchange
	Summary

	Phase diagram for the - transition
	Toward the bulk
	Finite temperature
	Summary

	Beyond cerium
	Hybrid functional calculations for La, Pr, and Nd
	 Many-body functional calculations of the dimers: La2, Pr2, and Nd2
	Summary

	Summary and Outlook
	The - phase transition
	Future directions

	Appendices
	Crystal structures
	Computational details
	Numerical atom centered orbitals
	Basis set superposition error
	Convergence with respect to the basis set
	Convergence with respect to the frequency points
	k-point convergence

	Publications
	Curriculum Vitæ
	Acknowledgements
	Bibliography


