
The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Gaussian process regression adaptive
density-guided approach: Toward calculations
of potential energy surfaces for larger molecules

Cite as: J. Chem. Phys. 159, 024102 (2023); doi: 10.1063/5.0152367
Submitted: 29 March 2023 • Accepted: 15 June 2023 •
Published Online: 10 July 2023

Denis G. Artiukhin,1,a) Ian H. Godtliebsen,2,b) Gunnar Schmitz,3,c) and Ove Christiansen2,d)

AFFILIATIONS
1 Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
2Department of Chemistry, Aarhus Universitet, DK-8000 Aarhus, Denmark
3Lehrstuhl für Theoretische Chemie II, Ruhr-Universität Bochum, Universitätstraße 150, 44801 Bochum, Germany

a)Author to whom correspondence should be addressed: denis.artiukhin@fu-berlin.de
b)E-mail: ian@chem.au.dk
c)E-mail: gunnar.schmitz@rub.de
d)E-mail: ove@chem.au.dk

ABSTRACT
We present a new program implementation of the Gaussian process regression adaptive density-guided approach [Schmitz et al., J. Chem.
Phys. 153, 064105 (2020)] for automatic and cost-efficient potential energy surface construction in the MIDASCPP program. A number
of technical and methodological improvements made allowed us to extend this approach toward calculations of larger molecular systems
than those previously accessible and maintain the very high accuracy of constructed potential energy surfaces. On the methodological side,
improvements were made by using a Δ-learning approach, predicting the difference against a fully harmonic potential, and employing a
computationally more efficient hyperparameter optimization procedure. We demonstrate the performance of this method on a test set of
molecules of growing size and show that up to 80% of single point calculations could be avoided, introducing a root mean square deviation
in fundamental excitations of about 3 cm−1. A much higher accuracy with errors below 1 cm−1 could be achieved with tighter convergence
thresholds still reducing the number of single point computations by up to 68%. We further support our findings with a detailed analysis of
wall times measured while employing different electronic structure methods. Our results demonstrate that GPR-ADGA is an effective tool,
which could be applied for cost-efficient calculations of potential energy surfaces suitable for highly accurate vibrational spectra simulations.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0152367

I. INTRODUCTION

Constructions of potential energy surfaces (PESs) are of vast
interest for many fields of chemistry as they can provide a detailed
insight into dynamics and reactivity of molecules. Although the
dimensionality of the PES increases linearly with the number of
nuclei Knuc, i.e., it is equal to the number of vibrational modes
M = 3Knuc − 6(5), the computational cost of the PES construction
scales exponentially due to the need to compute mode–mode cou-
pling terms. As the result, calculations of accurate fully coupled PESs
are prohibitively expensive and are only possible for up to four-
atomic molecules. A commonly used approach to reduce the com-
putational cost of the PES construction relies on the restriction of

high-order mode couplings and is known under several names
such as the n-mode expansion,1–5 cluster expansion,6 or high-
dimensional model representation.7 This method reduces the cost
of the PES generation significantly and enables calculations of up
to a few dozens of atoms. A large number of different strategies
could be applied to further decrease the cost of n-mode-expanded
PESs. These include, to name but a few, many-body expansions,8,9

approximate computations of high-order coupling terms,4,10–16 var-
ious screening techniques,4,17–23 vibrational space dimensionality
reduction,17,24,25 and the use of molecular symmetry.14,26

If PESs are constructed on a grid, the corresponding computa-
tional cost could be high due to a non-optimal spatial placement of
individual grid points and, as the result, a large number of them. The
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design of good ways of constructing the grid of points to avoid a very
large computational burden can require significant human time.
The adaptive density-guided approach (ADGA)27–29 is designed to
mitigate these issues. It constructs grids within the n-mode rep-
resentation in an iterative procedure being guided by one-mode
vibrational densities. The ADGA ensures that a modest number
of single points (SPs) are computed while maintaining a very high
accuracy of the PES. Furthermore, it enables a fully automatic deter-
mination of the grid dimensions and granularity without using any
prior knowledge about the molecular system. Having proved to
be a reliable method for PES computations, the ADGA was fur-
ther extended methodologically with various algorithms for the grid
boundary extension,29 the use of energy derivatives and molecu-
lar point groups of symmetry,14 and different fitting functions for
the analytical representation of PESs.29 Additionally, combinations
of the ADGA with multiresolution PES computations13 and double
incremental PES expansions30 were presented.

The use of machine learning (ML) algorithms for construct-
ing PESs and/or assisting in their computations is also gaining its
momentum. Thus, neural networks (NNs) were already success-
fully employed for PES representation and for vibrational structure
calculations.31–37 Furthermore, in case of molecular dynamic sim-
ulations, it was demonstrated that NNs can extend the simulation
time and treat large molecular systems with an accuracy similar to
that of density functional theory.38–42 Gaussian Process Regression
(GPR),43 a nonparametric Bayesian ML approach, deserves special
attention as it provides uncertainties for predicted data points. This
allows us to estimate the quality of the fit at regions of interest
and make decisions on whether these regions should be supplied
with additional training data points. Note, however, that uncertainty
estimates could also be made by combining several NNs in a com-
mittee.44 This characteristic of GPR makes it well-suited for the use
in Bayesian optimization and active learning. In this regard, Jin-
nouchi et al.45,46 demonstrated an on-the-fly force-field generation
scheme. The use of GPR for the direct representation of the PES
was reported in Refs. 47–52, whereas applications of GPR for posi-
tioning grid points were very recently demonstrated by Schneider
et al.53 Furthermore, it was employed to accelerate certain com-
putational steps by, for example, evaluating PES matrix elements
in a convenient format,54 accelerating time-dependent dynamics,55

and speeding up numerical structure optimization.56–58 For a recent
review on the use of GPR in the context of computational chemistry
and material research, we refer to Ref. 59.

Recently, a combination of the ADGA and GPR method was
presented in Ref. 60. The new approach, dubbed GPR-ADGA,
employed statistical uncertainties from GPR along-side with aver-
aged vibrational densities calculated with the ADGA as criteria for
choosing whether SPs should be predicted with inexpensive GPR
or calculated with a more accurate yet costly electronic structure
method. The performance of GPR-ADGA was assessed by comput-
ing fundamental excitation energies from generated PESs. It was
demonstrated that GPR-ADGA could reduce the number of SPs by
65%–90% while introducing a root mean square deviation (RMSD)
in fundamental frequencies below 2 cm−1 compared to the stan-
dard ADGA. It is interesting to note that similar reduction in the
number of SPs and errors in fundamental frequencies was obtained
with the approach by Schneider et al.53 Common to these works is
that GPR, one way or the other, is involved in deciding where the

final SPs are placed, and resulting from this, a significantly smaller
set of SPs is sufficient. It can thus be firmly established that the
statistical GPR theory can be used for significantly boosting PES
computations. Unfortunately, the original GPR-ADGA algorithm
was applicable only for small systems (order four atoms or so) due to
a number of technical and methodological difficulties arising from
the GPR algorithm itself and its combination with the ADGA (for
more details, see Sec. II E). In the current work, we lift this limitation
and demonstrate an improved and extended version of GPR-ADGA,
which is applied for PES computations of up to 10-atomic molecules
while maintaining a high accuracy in fundamental excitation ener-
gies and a large reduction in the number of SPs (when compared to
the standard ADGA).

This work is organized as follows: The underlying theory of the
GPR-ADGA method together with its recent technical and method-
ological extensions is described in Sec. II. The computational details
are provided in Sec. III and followed by GPR-ADGA computations
of PESs presented in Sec. IV. Subsequently, conclusions to this work
are given in Sec. V.

II. THEORY
In the following, we briefly summarize GPR-ADGA compo-

nents such as the n-mode expansion1–5 in Sec. II A, the theory
behind the ADGA27–29 in Sec. II B, and GPR43 in Sec. II C. Then,
in Sec. II D, we describe the main idea of the GPR-ADGA method
and focus on its recent methodological extensions, which enable
calculations of larger molecules, in Sec. II E.

A. n -mode expansion
As was described above in Sec. I, constructions of full-

dimensional PESs V(q), depending on M = 3Knuc − 6(5) number
of normal vibrational coordinates q = {q1, q2, . . . , qM}, are pro-
hibitively expensive for more than about four atoms, i.e., for Knuc
≳ 4. In order to lift this limitation and construct PESs for larger
molecular systems, additional approximations need to be invoked.
To that end, we first define mode combinations (MCs) mk as sets
{m1, m2, . . . , mk} containing k coordinate indices. Subsequently,
mode combination ranges (MCRs) are formed as sets of MCs (for
more details on MCs and MCRs, see Ref. 8). A full-dimensional PES
V(q) can then be represented as8

V(q) = ∑
mk∈MCR

V̄ mk = ∑
mk∈MCR

∑
mk′⊆mk

mk′ ∈MCR

(−1)k−k′Vmk′ , (1)

where the outer sum in the right-hand side runs over all MCs mk
from the MCR and the inner sum runs over all subsets of mk (includ-
ing mk itself). In this formulation, the potential V(q) is conveniently
represented as a sum of its lower-dimensional cuts excluding over-
counting of equivalent terms. In Eq. (1), the equality sign holds if the
MCR contains MCs mk of up to Mth order. Constructing the MCR
from MCs with at most n-mode indices (where n <M), one neglects
mode–mode couplings of higher orders and provides an approxi-
mate treatment of the PES. This approach drastically reduces the
number of SPs to be computed (compared to a fully coupled PES)
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and is often referred to as the n-mode approximation.1–5 The num-
ber of SPs to be computed when constructing a PES on a grid of
points within the n-mode representation is given by

NSPs =
n

∑
k=1
(M

k
)(gk)k, (2)

where gk is the number of SPs in the direct product grid per MC
mk. The number gk required for the accurate PES representation is
usually unknown and could vary for different regions of the same
PES. Another complication lies in the constructions of such grids
of points. Static grids with predefined and equidistantly separated
points offer an easy solution to this issue. However, this approach is
by no means optimal and often results in a large number of SPs to be
computed (for example, see Ref. 30).

B. Adaptive density-guided approach
The ADGA27–29 is designed for a fully automatic grid con-

struction and has an advantage over above-mentioned static grid
approaches. It calculates PESs employing the n-mode representation
and an iterative procedure, which is guided by one-mode averaged
vibrational densities of the form

ρave
iter(qmk) =

1
Nmk

modal

Nmk
modal

∑
smk=1

∣φmk
smk (qmk)∣

2, (3)

which are obtained in each iteration from vibrational self-consistent
field (VSCF) calculations.61–64 In Eq. (3), φmk

smk (qmk) are orthonormal
one-mode wave functions (modals) used to describe a vibrational
mode qmk and Nmk

modal is the number of these modals. Averaged vibra-
tional densities ρave

iter(qmk) and the corresponding one-mode poten-
tials Vmk

iter(qmk) are then used to calculate an energy-like quantity,
which in the one-dimensional case is given by

Ξmk
iter = ∫

Imk

ρave
iter(qmk)V

mk
iter(qmk)dqmk. (4)

Ξmk
iter is computed for all intervals Imk defined by neighboring SPs of

mode qmk . If Ξmk
iter, computed for a particular interval Imk , changes sig-

nificantly between two ADGA iterations, the corresponding interval
is divided at the middle by inserting a new SP. Note that required SPs
are computed with external electronic structure programs. The pro-
cedure stops when no significant changes in Ξmk

iter are detected for all
modes and intervals. After that, the ADGA continues analogously
for higher mode couplings until convergence at the specified MC
level is achieved. Furthermore, the ADGA automatically extends the
grid boundaries if a non-negligible amount of the average vibrational
density ρave

iter(qmk) is detected outside the current grid. The conver-
gence of the ADGA is controlled with three criteria, ϵrel, ϵabs, and ϵρ,
where ϵrel and ϵabs assess the relative and absolute change in the inte-
gral value Ξmk

iter, respectively, between subsequent iterations and ϵρ
checks for the amount of vibrational density outside the grid bound-
aries. For more details on these thresholds, we refer to the original
works in Refs. 27 and 29.

C. Gaussian process regression
A further speed-up of the PES construction procedure within

the ADGA could be achieved by replacing some of the costly

SP computations with inexpensive GPR predictions. To that end,
we introduce vectors of coordinates xi = (xi1, xi2, . . . , xid)T, each
describing a particular ith molecular conformation. These vectors
xi are often referred to as input or feature vectors.65 In our previ-
ous studies in Refs. 16, 57, and 60, xi were minimal sets of internal
coordinates. In the current work, we still apply internal coordinates
but additionally standardize them by shifting and scaling each fea-
ture (for more details, see Secs. 2.5 and S1.1 in the supplementary
material). Note, however, that normal coordinates q are employed
in the ADGA computations of this paper although extension of the
ADGA to other coordinates has been reported.66 The known values
of the potential V(x) for a given set of molecular structures {xi}N

i are
then collected in a vector v = (V(x1), V(x2), . . . , V(xN))T, which
can be regarded as a vector of outputs or labels.65 We assume that
the elements of v have a multivariant Gaussian distribution, i.e.,

v ∼ N (m, K + σ2
N I), (5)

where m is the prior mean vector of length N, σ2
N is a regularization

parameter or noise, and I is the N ×N identity matrix. K is the prior
N ×N covariance matrix with elements (K)ij being equal to the ker-
nel function k(xi, xj) evaluated for molecular structures xi and xj.
The specific kernel function k(xi, xj) used in this study is defined
later in the text in Sec. II E. In many practical applications of GPR,
including our previous studies in Refs. 16, 57, and 60, the mean
vector m is set to zero. However, in the current work, the compo-
nents of m are given as potential energy functions for the quantum
mechanical harmonic oscillator,

m(xi) = E0 +
1
2
(xi − x0)T H (xi − x0), (6)

with x0 and E0 being the optimized molecular structure in a min-
imal set of internal coordinates and the corresponding reference
energy, respectively, and H being the matrix of second derivatives of
energy at x0 with respect to molecular displacements (i.e., the Hes-
sian matrix). Therefore, the GPR-based approach employed in this
work predicts deviations of V(x) from a harmonic potential given in
Eq. (6) and could be regarded as a variant of Δ-learning67 or semi-
parametric GPR.43 It is, of course, trivial to extend the procedure to
other m(xi).

In order to predict unknown values of the potential
v∗ = (V(x∗1 ), V(x∗2 ), . . . , V(x∗N∗))

T for a set of N∗ molecular struc-
tures {x∗i }N∗

i , the joint Gaussian distribution of unknown values v∗
and observations v is conditioned on v (for more details on condi-
tioning, see Ref. 65). The resulting conditional probability (of v∗,
given v) has a multivariant Gaussian distribution, i.e.,

v∗∣v ∼ N (μ, Σ), (7)

with the new posterior mean vector μ and covariance matrix Σ. The
posterior mean vector μ has the length N∗ and is defined as43

μ = m∗ + (K∗)T(K + σ2
N I)−1(v −m), (8)

where K∗ denotes the N ×N∗ matrix of elements (K∗)i j = k(xi, x∗j )
and m∗ is a vector of length N∗ containing mean values from Eq. (6)
evaluated for x∗i . The posterior covariance matrix Σ from Eq. (7) is
given by43

Σ = K∗∗ − (K∗)T(K + σ2
N I)−1K∗. (9)
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Here, K∗∗ is the N∗ ×N∗ matrix of elements (K∗∗)i j = k(x∗i , x∗j ).
Subsequently, the posterior mean vector μ is used as a predictor
of unknown values v∗, i.e., we assume that v∗ ≈ μ while the diag-
onal elements of the posterior covariance matrix V[V(x∗i )] = (Σ)ii
are employed as statistical error estimates for the predicted values
V(x∗i ) of the potential.

D. Combined GPR-ADGA methodology
As was mentioned above, the general idea of GPR-ADGA60 lies

in using the GPR variance for a predicted potential value V(q∗i )
with the corresponding averaged VSCF vibrational density as cri-
teria for choosing whether the predicted value V(q∗i ) should be
included in the PES as is or re-calculated with a more accurate and
expensive electronic structure method. In practice, the procedure
is carried out in an iterative manner and starts from training the
GPR predictor on the available dataset of coordinates qi and cor-
responding energy values V(qi) (and possibly energy derivatives
with respect to qi) computed with an electronic structure method.
Then, the ADGA calculation is carried out until its full convergence
using GPR-predicted SPs. For each SP of the constructed PES, the
following quantity,

Ωmn
boxi
(q∗i ) = Amn ρmnV[V(q∗i )], (10)

is evaluated. In Eq. (10), Amn is the box size (i.e., length, area, or
volume for one-, two-, or three-dimensional potential cuts, respec-
tively) equal to ∫boxi

dqm1 , dqm2 , . . . , dqmn , ρmn is a vibrational density
computed as a product ∏mk∈mn

ρave
iter(qmk) of one-mode VSCF aver-

aged vibrational densities ρave
iter(qmk), and V[V(q∗i )] is the GPR

variance for the predicted energy value V(q∗i ). The units of ρmn are
inverse of those for Amn . Therefore, the units of Ωmn

boxi
(q∗i ) are those

of the variance V[V(q∗i )] and are [energy2]. A measure involving
the square root of the variance (Ωmn

boxi
(q∗i ) = Amn ρmn

√
V[V(q∗i )])

with units of energy can also be used but was found inferior in the
original work and was thus not pursued here. SPs for which the
value of Ωmn

boxi
(q∗i ) is larger than the specified threshold TΩ (and

some other selection rules are fulfilled; see Ref. 60) are collected in
a list. All SPs from this list are then re-calculated with the electronic
structure method and added to the existing dataset of energy val-
ues. Subsequently, the steps including the GPR predictor training,
ADGA computation, and another selection of SPs are repeated. The
procedure is continued until the list of SPs for which Ωmn

boxi
(q∗i ) > TΩ

is empty.

E. Extension to larger molecules
A large number of technical and methodological modifications

to original GPR-ADGA60 in the Molecular Interactions Dynamics
And Simulation Chemistry Program Package (MIDASCPP)68 were
performed within this work to enable computations of PESs for up
to ten atoms (for examples of PES computations, see Sec. IV). The
former includes (i) predicting energy values V(q∗i ) in batches for
better stability and easier parallelization, (ii) OpenMP parallelization
over the number of batches, (iii) more efficient use of memory and
disk space, and (iv) implementation of initial guesses for hyperpa-
rameter optimization (see Sec. S1.2 in the supplementary material)

as well as a general clean-up removing redundant steps and improv-
ing the overall performance. Methodological changes require a more
detailed consideration.

As was mentioned already in Sec. II C and shown in Eq. (6), we
use a variant of the Δ-learning technique by predicting the difference
between the actual PES and a PES described within the harmonic
approximation. This choice has two advantages. Thus, by predicting
the anharmonicity correction instead of the full PES, we potentially
also decrease errors in predicted values. Furthermore, this allows us
using the derivative information for the reference point x0 in the
GPR mean function as opposed to placing it directly into the training
set (as was performed in our previous studies in Refs. 16 and 60).
Therefore, we avoid enlarging the training set size.

Another important methodological change is related to hyper-
parameter optimization. In our previous studies in Refs. 16 and
60, we used kernels with one signal variance σ2

f and M-number of
characteristic length-scale parameters li, each being optimized for
an individual degree of freedom. This provided a better optimiza-
tion flexibility and allowed GPR to adjust to the physical nature
of each coordinate. However, with the number of atoms growing,
hyperparameter optimization quickly becomes prohibitively expen-
sive, whereas a large number of parameters to be optimized lead
to numerical instabilities and multiple minimas being present on
the hypersurface. These limitations were lifted by first standardiz-
ing coordinates, i.e., by shifting and scaling each feature and label in
the original training set. In the current work, we center our dataset
by removing the mean value of each feature/label and subsequently
dividing them by their population standard deviations. Note that
data standardization could also be applied to training sets contain-
ing derivatives (for a more detailed description of this procedure
and for the full list of data standardization options implemented in
MIDASCPP, see Sec. S1.1 in the supplementary material). This trans-
formation ensures that all features are within comparable-length
intervals, and thereby, it supports the use of a single length-scale
parameter l for all degrees of freedom. As a result, the use of simpler
kernels is enabled, such as the squared exponential kernel,

k(xi, x j) = σ2
f exp(−(xi − x j)2

2l2 ), (11)

which was employed in this work. Furthermore, we implemented
an additional criterion controlling the hyperparameter optimiza-
tion procedure. In our setup, hyperparameter optimization is not
performed during a GPR iteration if a predefined number of SPs
per 2M-cut is present in the training dataset, i.e., hyperparame-
ters are only optimized for the first few GPR iterations and kept
fixed afterward. This allows for yet another reduction in the overall
computational cost since the hyperparameter optimization is more
demanding for larger training set sizes.

III. COMPUTATIONAL DETAILS
To validate the new variant of GPR-ADGA, we chose a test

set of molecules of growing size (from three to ten atoms). This
set includes water, formaldehyde, ethylene, imidazole, and pyrimi-
dine (for Lewis structures, see Fig. 1). The corresponding molecular
structures were optimized in ORCA69 using the Hartree–Fock with
three corrections (HF-3c) approach.70 Subsequently, same electronic
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FIG. 1. Lewis structures of (a) water, (b) formaldehyde, (c) ethylene, (d) imidazole,
and (e) pyrimidine used in this work.

structure method was applied to compute SPs and second derivatives
of energy as presented in Sec. IV A.

Generation of normal coordinates and construction of PESs
with the ADGA27–29 and GPR-ADGA60 were carried out in the
MIDASCPP.68 In all presented PES computations, the n-mode
expansion was truncated at the second order. To find the optimal
set of ADGA thresholds27,29 in terms of accuracy of fundamen-
tal excitations and the computational cost, we carried out a small
benchmark study using the above-mentioned test set of molecules
and ten sets of ADGA criteria. The raw data from this benchmark are
given in Sec. S2 in the supplementary material. The use of thresholds
ϵrel = 1.0 × 10−2, ϵabs = 1.0 × 10−5, and ϵρ = 1.0 × 10−3 led to mini-
mum numbers of SPs being computed while producing RMSDs in
fundamental excitations below 1 cm−1. For this reason, these thresh-
olds were selected as optimal and applied in all GPR-ADGA and
reference ADGA computations (unless stated otherwise). For the
determination of initial grid boundaries, harmonic oscillator turn-
ing points with the quantum number v = 2 were applied. Four VSCF
modals were included in the mean density given in Eq. (3). Reference
ADGA computations were carried out using the dynamic extension
of grid boundaries and gradient-guided basis set determination as
described in Ref. 29. Same settings were found to be incompatible
with GPR-ADGA and were disabled. Contrary to reference ADGA
computations, GPR-ADGA was allowed to extend the potential grid
boundaries already from the first iteration (by default, ADGA does
so starting from iteration two and onward).

To provide the initial training set of points for GPR during the
first GPR-ADGA iteration, the static grid approach71 was used. The
constructed initial static grids contained two SPs per each one-mode
combination and the reference SP energy (i.e., 7, 13, 25, 43, and
49 SPs for water, formaldehyde, ethylene, imidazole, and pyrimi-
dine, respectively). The corresponding static grid boundaries were
set using the harmonic oscillator turning points defined by quantum
number v = 10. Second derivatives of energy with respect to molec-
ular displacements (Hessian) at the equilibrium molecular structure
were computed and used to set up the mean function as described
in Sec. II C. Furthermore, one-mode grid boundaries were added
to the GPR-ADGA list of points, which are to be calculated, dur-
ing the first GPR iteration. The training data, both features and
labels, were standardized shifting by mean values and scaling by
population standard deviations (for more details on standardiza-
tion options, see Sec. S1.1 in the supplementary material). Shifting
and scaling factors were computed using the whole training set of
data (no special treatment of outliers). Note that calculations of new
standardization factors and re-standardization of data were carried
out each time the training set was extended. Similar to Ref. 60, the
Bunch–Kaufmann decomposition was applied to solve the GPR lin-
ear system of equations. Due to several methodological changes to

GPR-ADGA, old thresholds such as values for the selection crite-
rion TΩ and the noise term σ2

N , found to be optimal in Ref. 60,
were not applicable to the current setup. In order to find new opti-
mal values of TΩ and σ2

N , we carried out GPR-ADGA computations
for the water molecule, varying both the criteria independently by
a factor of ten from 1.0 × 10−7 to 1.0 × 10−14 (see Sec. S3 in the
supplementary material). The best trade-off between accuracy and
performance was obtained when TΩ was equal to σ2

N . Furthermore,
both the criteria being simultaneously varied from 1.0 × 10−8 to
1.0 × 10−11 provided a series of computations with growing com-
putational cost and accuracy and consistently converging to the
reference ADGA. In the following, a series of such GPR-ADGA
computations are demonstrated and discussed in Sec. IV. The hyper-
parameters were optimized by minimizing the negative logarithm
of the marginal likelihood43 with the iRprop algorithm.72 To find
the optimal number of SPs per two-mode cut, which can be used
as the threshold for stopping the hyperparameter optimization and
subsequently re-using hyperparameters (see Sec. II E), we tested
several values from 0 (no optimization) to 30. The results are demon-
strated in Sec. S4 in the supplementary material. The value of 15
was found optimal and was applied in all presented GPR-ADGA
calculations.

To obtain analytical representations of PESs, the linear fit using
up to tenth order polynomials was applied. Note that the poly-
nomial order used for fitting depends on the number of SPs and
never exceeds it. The polynomial order increases with the number
of SPs up to the specified value of ten. For high-mode potentials,
an additional cutoff controls that the combination of polynomi-
als does not exceed the 10-th order (for more details, see the
supplementary material of Ref. 29). The fitted PESs were used to
compute fundamental excitation energies with VSCF.61–64 The accu-
racy of GPR-ADGA was assessed by computing maximal, minimal,
and root mean square deviations in fundamental excitations with
respect to the reference ADGA. Additionally, kernel density esti-
mation (KDE) curves were constructed for the difference between
ADGA and GPR-ADGA fundamental excitations, i.e., for Δω =
ω(ADGA) − ω(GPR −ADGA) using the Seaborn73 library. For this
purpose, a Gaussian-type kernel was used.

For a further demonstration of the GPR-ADGA computa-
tional cost in Sec. IV B, the molecular structure of ethylene was
re-optimized in the TURBOMOLE program package V7.0.74 For
this purpose, the Hartree–Fock (HF) method from the DSCF mod-
ule75 as well as explicitly correlated versions of the Møller–Plesset
perturbation theory to second order of perturbation in conjunc-
tion with the resolution-of-the-identity approximation (RI-MP2-
F12)76–78 and coupled cluster with single, double, and perturbative
triple correction [CCSD(F12∗) (T)] from the CCSDF12 module79 was
employed. Note that CCSD(F12∗) is also known as CCSD-F12c.80,81

As the basis set, the correlation-consistent polarized valence double-
ζ cc-pVDZ-F1282 was used in all cases. In F12 calculations, the
complementary auxiliary basis set (CABS) approach83 was adopted.
The corresponding CABS threshold was set to 1.0 × 10−8. Addi-
tionally, the frozen core approximation excluding all orbitals with
energies below −3 a.u. from the correlation treatment was used.
Same electronic structure methods and settings were applied for sub-
sequent ADGA and GPR-ADGA calculations of PESs. Calculations
of the prior GPR mean function were carried out using numer-
ical Hessians. Both ADGA and GPR-ADGA computations were
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performed in parallel on a single Intel Xeon E5-2680 v2 @ 2.8
GHz/128 GB compute-node with 20 cores in total.

IV. RESULTS
In the following, we demonstrate the performance of GPR-

ADGA for PES construction using a test set of five molecules of
growing size and compare it with the standard ADGA in Sec. IV A.
For this proof-of-principle study, we carried out inexpensive PES
computations employing the HF-3c electronic structure method.
Further in Sec. IV B, we analyze the computational cost of GPR-
ADGA in detail by performing PES computations for the ethylene
molecule using a series of different electronic structure methods.

A. Calculations of potential energy surfaces
Performance of GPR-ADGA compared to the reference ADGA

is demonstrated in Fig. 2 (top) and (bottom). As can be seen and as
was expected, the use of tighter thresholds TΩ = σ2

N results in gener-
ally smaller deviations in fundamental excitation energies and larger
numbers of SPs being computed. Thus, with TΩ = σ2

N = 1.0 × 10−8,
RMSD values are always below 3.2 cm−1, whereas the reduction
in the number of SPs compared to the ADGA is maximal and
reaches about 57%–79% (for original values, see Secs. S2 and S4

in the supplementary material). For the tightest thresholds consid-
ered here, i.e., for TΩ = σ2

N = 1.0 × 10−11, all deviations are below
about 0.7 cm−1, while the reduction in SPs is the smallest and varies
from about 4% to 68%. Computational savings are always higher
for looser thresholds, whereas the dependence found for RMSD
values is not always consistent. From Fig. 2 (bottom), it can also
be seen that the gain in terms of the computational cost strongly
and consistently depends on the molecular size. GPR-ADGA per-
forms the best for smaller molecules such as water, where 68%–79%
of SP calculations is avoided. Unfortunately, a lower reduction of
about 4%–57% is found for pyrimidine. Note, however, that for this
molecule GPR-ADGA still allows us to reach the very high accu-
racy of ∼1 cm−1 while computing about half the number of SPs
required for the ADGA (see results for TΩ = σ2

N = 1.0 × 10−9). This
behavior of GPR-ADGA is probably related to the reference ADGA
computations being more efficient for larger molecules. To demon-
strate this, we can calculate approximate numbers of SPs computed
with standard ADGA per 2M-cut potential. Taking the total num-
bers of SPs in PESs constructed with the reference ADGA (Sec. S2
in the supplementary material) and calculating the number of two-
mode combinations as (M

2 ) =M!/[2!(M − 2)!], we can verify that
about 179, 121, 63, 81, and 58 SPs per 2M-cut function are com-
puted for water, formaldehyde, ethylene, imidazole, and pyrimidine,

FIG. 2. Comparison of 2M PESs calculated for the chosen test set of molecules using GPR-ADGA and reference ADGA. RMSDs (in cm−1) of VSCF fundamental frequencies
are shown at the top. Reduction in the number of SPs (in %) is given at the bottom. The number of SPs calculated with the reference ADGA is equal to 536, 1812, 4145,
17 105, and 16 022 for water, formaldehyde, ethylene, imidazole, and pyrimidine, respectively. Results generated with GPR-ADGA criteria TΩ and σ2

N being simultaneously
varied in series 1.0 × 10−8, 1.0 × 10−9, 1.0 × 10−10, and 1.0 × 10−11 are shown in blue, orange, green, and red colors, respectively.
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respectively. Therefore, we could conclude that the ADGA computes
smaller numbers of SPs per mode combination of larger molecules
while still reaching the same level of accuracy. As the result, a rather
modest additional reduction in the number of SPs could be achieved
by means of GPR-ADGA.

It is also interesting to compare the performance of the ADGA
and GPR-ADGA for the largest molecule from our test set, pyrim-
idine, while varying the convergence thresholds ϵrel, ϵabs, and ϵρ.
Results of this analysis are presented in Fig. 3, whereas original val-
ues are given in Sec. S5 in the supplementary material. As can be
seen, RMSD values do not strongly depend on the ADGA conver-
gence criteria ϵrel, ϵabs, and ϵρ and change by at most ∼1 cm−1.
Contrary to that, the reduction in the number of SPs changes from
4%–57% (for “normal”) to 44%–76% (for “extra tight”). This trend
can be explained by the fact that the number of SPs calculated with
the reference ADGA is larger for tighter convergence thresholds,
whereas GPR-ADGA shows a rather weak dependence on ϵrel, ϵabs,
and ϵρ (see Sec. S5 in the supplementary material). For example, the
number of SPs computed with the reference ADGA grows by about
a factor of two (from 16 022 to 33 836 SPs) when the criteria are
changed from “normal” to “extra tight.” At the same time, only a
rather modest increase of about 18% is found for GPR-ADGA using

TΩ = σ2
N = 1.0 × 10−11 (from 15 447 to 18 833 SPs). These results

again support the previously discussed point that the relatively
smaller gain of GPR-ADGA for large molecules when compared to
the ADGA is related to a higher efficiency of the reference ADGA
rather than drawbacks of the GPR-ADGA methodology.

To further analyze the accuracy and precision aspects of the
GPR-ADGA method, we present KDE curves demonstrating distri-
butions of errors in VSCF fundamental frequencies in Fig. 4. Results
are generated for a set of deviations in fundamental excitations
belonging to all five molecules from our test set. In the presented
KDE curves, the position of the function’s maximal value (i.e., the
position of the peak) corresponds to the error Δω with the largest
probability. The closer the position of the peak to the zero at the
Δω axis the more accurate the results obtained. The precision is
reflected in the KDE curve’s broadness: A broader KDE curve corre-
sponds to a larger error distribution and a lower precision, whereas,
on the opposite, a narrower curve indicates at a higher precision. As
can be seen from Fig. 4, both the accuracy and precision of GPR-
ADGA are consistently improving for tighter thresholds TΩ = σ2

N .
Thus, a very broad KDE curve with a maximum at about 2.2 cm−1

is obtained for TΩ = σ2
N = 1.0 × 10−8. With TΩ = σ2

N = 1.0 × 10−9

and 1.0 × 10−10, much more narrow KDE curves with the largest

FIG. 3. Comparison of 2M PESs calculated for pyrimidine using GPR-ADGA and reference ADGA. RMSDs (in cm−1) of VSCF fundamental frequencies are shown at the
top. Reduction in the number of SPs (in %) is given at the bottom. The number of SPs calculated with the reference ADGA is equal to 16 022. The employed sets of
ADGA convergence thresholds (for both, GPR-ADGA and reference ADGA computations) are denoted “normal” (ϵrel = 1.0 × 10−2, ϵabs = 1.0 × 10−5, ϵρ = 1.0 × 10−3),
“tight” (ϵrel = 1.0 × 10−3, ϵabs = 1.0 × 10−5, ϵρ = 1.0 × 10−3), and “extra tight” (ϵrel = 1.0 × 10−2, ϵabs = 1.0 × 10−6, ϵρ = 1.0 × 10−3). Results generated with GPR-ADGA
criteria TΩ and σ2

N being simultaneously varied in series 1.0 × 10−8, 1.0 × 10−9, 1.0 × 10−10, and 1.0 × 10−11 are shown in blue, orange, green, and red colors, respectively.
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FIG. 4. KDE curves for deviations in VSCF fundamental frequencies Δω
= ω(ADGA) − ω(GPR − ADGA) (in cm−1) calculated for all five molecules from
the test set. Results generated with GPR-ADGA criteria TΩ and σ2

N being simulta-
neously varied in series 1.0 × 10−8, 1.0 × 10−9, 1.0 × 10−10, and 1.0 × 10−11 are
shown in blue, orange, green, and red colors, respectively.

probability errors of only about 0.6 and −0.5 cm−1, respectively, are
obtained. Finally, the best results in terms of accuracy and precision
are found for TΩ = σ2

N = 1.0 × 10−11.

B. Computational cost
As was demonstrated in Sec. IV A, GPR-ADGA allows us to

reduce the number of computed SPs by up to 68% (compared to the
reference ADGA) while keeping the RMSD in fundamental excita-
tion energies below 0.7 cm−1. If a lower accuracy of about 3 cm−1

is considered sufficient, even larger reduction in the number of
SPs of up to about 80% could be reached. Although SP calcula-
tions are embarrassingly parallelizable and could be performed on
many dedicated computational nodes, they often remain the main
computational bottleneck of the PES construction. Therefore, the
reduction by 80% reported in this work is rather considerable. One
might argue, however, that a smaller number of SPs being computed
does not necessarily mean a faster PES construction procedure as
GPR-ADGA has a much larger computational overhead than the
ADGA. This argumentation is correct, and the GPR-ADGA method
could indeed be more expensive than the standard ADGA. Thus,
GPR-ADGA executes several ADGA computations until their full
convergence using GPR as a provider of new SPs. This means that
VSCF calculations and fitting of constructed PESs are repeated mul-
tiple times on each GPR iteration. The number of these iterations
could be considerable and reach up to 40 for very tight convergence
criteria TΩ = σ2

N = 1.0 × 10−11. Note, however, that VSCF calcula-
tions within the ADGA are performed for one-dimensional mode
cuts and therefore formally scale linearly with the number of modes
M. Furthermore, additional computational cost is introduced with
the use of the GPR algorithm. In this regard, the most expensive
steps are the inversion of the covariance matrix, i.e., calculations
of the term (K + σ2

N I)−1, and the solution of an equivalent system
of linear equations to find weights ω = (K + σ2

N I)−1(v −m) as seen
from Eqs. (8) and (9). Both steps scale as O(N3) with the number

of training points N. For computing predictions μ and uncertainties
(Σ)ii, it is sufficient to calculate weights ω only once per GPR itera-
tion. However, the hyperparameter optimization procedure updates
hyperparameters and therefore requires re-computing the inverse
on each optimization cycle. Therefore, the computational cost of
hyperparameter optimization is dominated by the inversion of
(K + σ2

N I) and scales as O(N3). Subsequent calculations of the gra-
dient of the marginal likelihood with respect to the hyperparameters
would scale only as O(N2) per hyperparameter43 as the inversion
of (K + σ2

N I) could be re-used for the same set of hyperparameters.
However, as the hyperparameter optimization process continuously
updates the set of hyperparameters, the inverse of (K + σ2

N I) has to
be re-calculated at each step. Since the training set size N grows
from iteration to iteration, the overhead of using GPR increases
as well. Although in our setup the hyperparameter optimization
is not carried out for latter GPR iterations featuring the largest
training sets, as was described in Sec. II E, it still affects the total
computational cost of GPR-ADGA. Finally, the matrix–matrix mul-
tiplication (K + σ2

N I)−1K∗ from Eq. (9) scales as O(N2N∗), where
N∗ is often much larger than N in practical applications of GPR-
ADGA. Performing GPR predictions in batches with an OpenMP
parallelization over the number of these batches, as already men-
tioned in Sec. II E, offers a way to mitigate this step. Note that
the second matrix–matrix multiplication in Eq. (9) involving (K∗)T

formally scales as O(NN∗2). However, because only diagonal ele-
ments of the posterior covariance matrix Σ are required, the actual
computational scaling is reduced to O(NN∗).

Despite the described above overhead, GPR-ADGA could still
considerably reduce the cost of the overall PES construction pro-
cedure when expensive electronic structure methods are used. To
demonstrate this, we calculated wall times of PES generation using
a series of electronic structure methods with increasing computa-
tional costs: HF, RI-MP2-F12, and CCSD(F12∗) (T). The results are
presented in Fig. 5, whereas the original values of the wall time as
well as central processing unit (CPU) time are provided in Sec. S6
in the supplementary material. As can be seen from Fig. 5 (top),
with HF being used, GPR-ADGA reduces the time spent on calcu-
lating SPs by about a factor of two (i.e., by ∼44%–56%) compared to
the reference ADGA. This, however, does not lead to a decreased
total computational cost due to a considerable overhead of run-
ning multiple VSCF calculations and hyperparameter optimizations.
These two types of computations amount in about 18%–24% and
20%–22%, respectively, of the GPR-ADGA wall time. As the result,
depending on the thresholds being used, GPR-ADGA is comparable
or more expensive than the standard ADGA. The situation changes
when RI-MP2-F12 is used for calculating SPs as seen in Fig. 5 (mid-
dle). The reduction in the SP computational cost remains about the
same, whereas 15%–20% and 10%–15% of the GPR-ADGA total
computational time are spent on VSCF and hyperparameter opti-
mization. This leads to GPR-ADGA being 22%–32% faster than the
ADGA. Finally, for the most expensive electronic structure method
CCSD(F12∗) (T), from those applied in this work, the cost of SPs
becomes dominant in GPR-ADGA with all other computational
steps amounting in only about 5%–9% of the total wall time. As
the result, GPR-ADGA computation employing CCSD(F12∗) (T) is
about twice as fast as the reference ADGA using the same electronic
structure method. Due to a very steep increase in the computational
cost of PES construction with the number of atoms, one can expect
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FIG. 5. Wall times required for GPR-ADGA and reference ADGA computations of ethylene PESs. Results are provided for the HF (top), RI-MP2-F12 (middle), and
CCSD(F12∗) (T) (bottom) methods. GPR-ADGA criteria TΩ and σ2

N are simultaneously varied in series 1.0 × 10−9, 1.0 × 10−10, and 1.0 × 10−11. Times spent on SPs,
VSCF, polynomial fit of the PES, energy predictions, hyperparameter optimization (denoted as HOPT), and other operations are given in blue, orange, green, red, gray, and
pink colors, respectively.

that the GPR-ADGA overhead becomes negligibly small (relative to
the cost of SPs) for larger molecules and more expensive electronic
structure methods.

In full analogy to the results presented in Sec. IV A, we also
assessed the accuracy of the constructed GPR-ADGA 2M PESs
of ethylene by computing RMSDs in fundamental excitations and
using ADGA as the reference. To that end, vibrational coupled clus-
ter with up to two-mode excitations (VCC[2])84–88 was applied. The
results are demonstrated in Sec. S7 in the supplementary material
and show very similar trends to those from Sec. IV A. Thus, the
RMSD consistently decreases for tighter convergence thresholds TΩ
and σ2

N and reaches values below 1 cm−1 for TΩ = σ2
N = 1.0 × 10−11.

V. CONCLUSIONS
In this work, we presented a new and improved program

implementation of the GPR-ADGA method60 in MIDASCPP.68 A

number of technical and methodological extensions were intro-
duced, enabling GPR-ADGA calculations of PESs for larger
molecules than those accessible previously while maintaining a very
high accuracy in fundamental excitation energies and a consider-
able reduction in the number of SPs compared to the reference
ADGA. The performance of GPR-ADGA was assessed on a test set
of five molecules of increasing size from three to ten atoms. Conver-
gence thresholds were introduced, allowing one to reach a desired
balance between the accuracy and the efficiency of the PES construc-
tion. Thus, if the RMSD in fundamental excitation energies of about
3 cm−1 is considered sufficient, calculations of up to 80% of SPs
could be avoided by using GPR-ADGA. A higher accuracy of about
0.7 cm−1 or better could be reached with tighter GPR-ADGA con-
vergence thresholds while reducing the number of SPs by up to 68%.
The reduction in the number of SPs was found to be smaller for
larger molecules. This, however, was explained by a higher efficiency
of the reference ADGA for large molecular systems rather than by
drawbacks of the GPR-ADGA methodology.
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Additionally, we analyzed the computational cost of the PES
construction with GPR-ADGA by carrying out calculations of ethy-
lene with a series of electronic structure methods such as HF,
RI-MP2-F12, and CCSD(F12∗) (T) and presenting total wall times.
We showed that due to an increased overhead of GPR-ADGA com-
pared to the reference ADGA and despite the number of SPs being
considerably reduced, no computational gain could be reached while
using HF. For more accurate and expensive RI-MP2-F12, GPR-
ADGA is by 22%–32% faster than the ADGA employing the same
electronic structure method. For CCSD(F12∗) (T), the overhead of
running GPR-ADGA becomes negligibly small compared to the wall
time spent on SPs. As the result, the computational gain is about the
same as the reduction in the number of SPs and reaches 44%–58%.
Therefore, we conclude that it is the most advantageous to use
GPR-ADGA in conjunction with very accurate and costly electronic
structure methods.

Our results demonstrate that GPR-ADGA could be used for
highly accurate and cost-efficient PES calculations and encourage
applications to various molecular systems for subsequent reliable
vibrational spectra simulations. Although all PESs calculated in this
work included only up to second-order mode-coupling terms, GPR-
ADGA including the current implementation can easily be used for
higher-level mode couplings. In fact, computations of three-mode
potentials were already presented in the previous work in Ref. 60.
The approach could further be improved by combining it with dou-
ble incremental PES expansions8,30 and flexible adaptation of local
coordinates of nuclei.89 This could allow to incorporate fragmen-
tation ideas into GPR-ADGA and handle even larger molecular
systems. In this case, the computational gain could be reached by
using GPR-ADGA for calculating individual subsystem potentials
and/or for enabling learning between subsystems of the total molec-
ular system. The work in both of these directions is currently in
progress.

SUPPLEMENTARY MATERIAL

See the supplementary material for (S1) additional theory
aspects, (S2) reference ADGA-2M computations, (S3) optimal GPR-
ADGA thresholds, (S4) parameters controlling hyperparameter
optimization, (S5) influence of ADGA thresholds on GPR-ADGA
computations of pyrimidine, (S6) GPR-ADGA computational cost,
and (S7) vibrational couple cluster computations.
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