
Chapter 4

Qualitative analysis of the

core–surface fluid motions
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Heracleitos

In this chapter I explore core–surface fluid motions which explain the temporal variation
of the magnetic field at the CMB over the period 1980 – 2000. The non-uniqueness of this
inverse problem is fundamental and was first recognized by Roberts & Scott [1965] and
formalized by Backus [1968] leading to some assumptions to reduce the non-uniqueness of
the geomagnetic core–surface motion problem. I will discuss the main assumptions, their
shortcomings and the resulting fluid motion prediction. Furthermore I will highlight some
geophysical implications for the Earth’s angular momentum budget and geomagnetic jerks.

4.1 Inversion for core–surface flows

The secular variation of the magnetic field at a fixed point is characterized by two processes.
First, there is a change in the field due to the advection of magnetic flux tubes by the fluid
motion. Second, there is a diffusion of field lines relative to the motions due to ohmic
dissipation. The induction equation for the magnetic field,

∂tB = ∇× (u ×B) + η∇2B , (4.1)

with the condition

∇ · B = 0 (4.2)

describes how the time rate of change of the magnetic field B is due to these effects. u
is the fluid velocity and η = 1/(µσ) the magnetic diffusivity assumed uniform, with the
magnetic permeability µ and σ the electrical conductivity of the core fluid. The first term
of the right hand side (rhs) of the induction equation (4.1) represent the advection, the
second term the diffusion of magnetic field lines. The ratio of transport to diffusion terms
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66 Chapter 4. Qualitative analysis of the core–surface fluid motions

in equation (4.1) is usually quantified by the magnetic Reynolds number Rm

|∇ × (u× B)|
|η∇2B| ∼ UL

η
= Rm, (4.3)

where U and L are characteristic velocity and length scales of the fluid motion, respectively.
The length scales for advection and diffussion are assumed to be the same. With typical
values (L ' 106 m, U ' 5 × 10−4 m s−1, η ' 1 m2s−1) equation (4.3) gives that Rm ≈ 500.
Convection is apparently more important than diffusion. Alfvén [1942] suggested that
diffusion could be neglected, the magnetic field being effectively frozen into the fluid. The
magnetic field in a moving perfect conductor is governed by the diffusion-less induction
equation

∂tB = ∇× (u× B) (4.4)

With this condition, it can be shown that the frozen flux condition applies; the magnetic
field is frozen within the fluid. The frozen–flux theorem and was first applied by Roberts
& Scott [1965] to analyze the secular variation. They inverted the reduced equation for
the flow at the core surface.

Now requiring that there is no fluid flow across the core–mantle boundary,

ur = 0 |r=c (4.5)

and following the arguments of Backus [1968], then a further condition can be deduced
which ∂tBr must satisfy if it is purely due to advection of Br in a continuous velocity field
u on the CMB:

If A is any patch on the CMB whose boundary ∂A is a null-flux curve (Br = 0 along
this curve), then

∫

A

∂tBrdA = 0 . (4.6)

If either of these conditions fails, no continuous u will generate ∂tBr from Br, and flux
diffusion must be invoked. From these conditions, Backus [1968] showed that, if there
exists one (unique) u which satisfies (4.4), then there exist infinitively many. This is more
obvious considering the radial diffusion–less induction equation

∂tBr + ∇h · (uBr) =0

∂tBr + Br∇h · u + u · ∇hBr =0
(4.7)

where ∇h = ∇ − r̂(r̂ · ∇) is the horizontal divergence. A single equation (4.7) must be
solved for two unknowns uh = {uθ, uφ}. The non–uniqueness can be reduced by imposing
further constraint on the nature of the flow. Four different methods, which have been
developed in the last two decades, are discussed in this chapter: steady flow, steady flow in
an azimuthally drifting reference frame, tangentially geostrophic flow and flow caused by
torsional oscillations. All these flow assumptions have in common a scheme of computation,
which is outlined in the next section.
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4.1.1 Scheme of the flow computation

The formalism of the flow calculation bases on a poloidal–toroidal decomposition of the
velocity field as formulated by Roberts & Scott [1965]. Assuming ∇ · u = 0, the velocity
field can be expressed in terms of two scalar functions of positions on the sphere, S and T.
These functions can be expanded in spherical harmonics. So the decomposition reads

u = up + ut , (4.8)

where

up = ∇H(r S) =

(

0,
∂S

∂θ
,

1

sin θ

∂S

∂φ

)

ut = ∇H × (r T ) =

(

0,
1

sin θ

∂T

∂φ
,−∂T

∂θ

)

,

(4.9)

are the poloidal and toroidal velocities and

S(θ, φ) =
∞

∑

l=1

l
∑

m=0

sm
l Y

m
l (θ, φ)

T (θ, φ) =

∞
∑

l=1

l
∑

m=0

tml Y
m
l (θ, φ) .

(4.10)

Y m
l is a real Schmidt quasi–normalized spherical harmonic. Substituting (4.8), (4.9), (4.10)

into the rearranged radial induction equation (4.7)

∂tBr + u · ∇hBr + Br∇h · u = 0

leads to a matrix equation
ḃ = Am = Et + Gs (4.11)

which relates secular variation coefficients ḃ = ∂tB = {ġm
l , ḣ

m
l } with toroidal and poloidal

coefficients as model vector m = {tml , sm
l }. The matrices E,G are the Elsasser and Gaunt

matrices. Following Bloxham [1988] the matrices have elements like
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These integrals are non–zero only for certain pairs of (l1, m1), (l2, m2), (l3, m3) [Bullard &
Gellman, 1954].
Equation (4.11) represents a linear inverse problem, ∂tB and B are given in terms of Gauss
coefficients, which were derived in the previous part of this study (chapter 3).
In the next sections I discuss some assumptions of how to relate the poloidal and toroidal
velocities in order to solve equation (4.7) with less ambiguity for the core–surface flow.

4.1.2 Steady motion theorem

The idea first made by Gubbins [1982] that an unique solution could be derived by assuming
the flow to be the same at three different times for a given point on the CMB was first
formalized by Voorhies & Backus [1985]. Their approach as follows.

Suppose that for a given point on the CMB at three different times {ti; i = 1, 2, 3} uh

is the same, then three simultaneous equations for the unknowns uθ, uφ, ∂ur/∂r are given,
namely

∂tBr(ti) = Br(ti)
∂ur

∂r
− 1

r

∂Br(ti)

∂θ
uθ −

1

r sin θ

∂Br(ti)

∂φ
uφ. (4.12)

A unique solution exists, when the determinant is

∆ = r̂ · [B1(b2 × b3) + B2(b3 × b1) + B3(b1 × b2)] 6= 0 , (4.13)

where Bi = Br(ti), bi = ∇hBr(ti) and Ḃi = ∂tBr(ti) Then the solution is given by

uh = ∆−1r̂ ×

∣

∣

∣

∣

∣

∣

b1 b2 b3

B1 B2 B3

Ḃ1 Ḃ2 Ḃ3

∣

∣

∣

∣

∣

∣

. (4.14)

The condition ∆ 6= 0 reflects the fact that a minimal temporal variation of Br is required to
solve for the core-surface motion uniquely. Without this variability, even the assumption
∂tuh = 0 does not permit uh to be uniquely determined from magnetic measurements
[Voorhies & Backus, 1985]. The immanent problem of the steady motion theorem is the
fact that for short periods (some decades) applied the determinant ∆ decreases and the
three simultaneous equations become progressively less well conditioned, whereas applied
for long periods (50 – 300 years) it does not recover rapid secular variation, i.e. geomagnetic
jerks, at all. The conclusion is that time dependence of the flow is critical to the validity
of the frozen flux hypothesis.

4.1.3 Steady flow in a azimuthally drifting reference frame

An extension of the steady flow assumption is the consideration of a steady flow in an
azimuthally drifting reference frame. This approach, suggested by Voorhies & Backus
[1985], and developed by Davis & Whaler [1996]; Holme & Whaler [2001] assumes the flow
is steady in a frame fixed to the core, where the core frame is allowed to rotate with respect
to the mantle about the Earth’s rotation axis. The drift rate of this core frame might be
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variable. For the remainder of this section, the primed variables are those of the drifting
core frame.
Let

ψ = φ− φ′ , (4.15)

where ψ is the accumulated drift angle. Then the flow as seen from the mantle frame is

u(θ, φ, t) = u′(θ, φ− ψ(t)) + rc
dψ

dt
cos θφ̂ , (4.16)

where φ̂ is the azimuthal unit vector. Then

∂tBr
′ + ∇h(uh

′Br
′) = 0 (4.17)

is solved under the assumption of steady flow in the drifting core frame. Because of the
Galilean invariance of B it must be the same whether in the stationary or drifting frame,
so the Gauss coefficients in the drifting frame are

gm′

l = gm
l cosmψ + hm

l sinmψ ,

hm′

l = hm
l cosmψ − gm

l sinmψ .
(4.18)

The secular variation coefficients are

ġm′

l = ġm
l cosmψ + ḣm

l sinmψ +mψ̇hm′

l ,

ḣm′

l = ḣm
l cosmψ − ġm

l sinmψ −mψ̇gm′

l ,
(4.19)

where the last term accounts for the relative velocity between mantle and core. Both
transformations (4.18) and (4.19) are non–linear in drift angle Ψ.

Prescribed by the non–linearity of the transformation of the predicted Ḃr from the core
to the mantle frame, the inversion is divided into two steps:

1.) The computation of the steady flow in the core frame. Here the flow velocity is
represented as a linear combination of toroidal and poloidal vectors as outlined in
section (4.1.1). The objective function to be minimized

Θ(m) = (y − Am)TCe
−1(y − Am) + λvm

TCm
−1m , (4.20)

where

mTCmm =

∮
[

(∇2
huθ)

2 + (∇2
huφ)

2

]

dS =
∑

l

l3(l + 1)3

2l + 1

∑

m

[(tml )2 + (sm
l )2] . (4.21)

λv is the damping parameter. Finally the solution for the model vector m is given
by (3.24).

2.) The accumulated drift angle is parameterized as a function of time on the basis
of cubic B–splines with 2.5 year knot spacing. Utilizing the cubic B–splines allows
easy derivation of the drift rate ψ̇ and the drift acceleration ψ̈.
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The algorithm is set up to optimize for a set of spline coefficients which minimize the
integral

∫ t2

t1

[ ∫

CMB

(Ḃr
obs − Ḃr

pred)dS + λd(ψ̈)2

]

dt+ Cm (4.22)

For each (non–linear) optimization step, to find the spline coefficients, the linear flow
problem is solved. The non–linear optimization method applied here is the Powell’s method
to minimize a function of multiple variables [Press et al., 1993].

4.1.4 Geostrophic flow

This method follows from consideration of the force balance at the core–mantle boundary.
Let us first consider the Navier–Stokes equation, which describes the forces acting in the
viscous top layers of the core. The equation of motion and transfer of a viscous fluid in a
rotating system reads

ρ

(

∂u

∂t
+ (u · ∇)u

)

= −∇p + ρ

(

ρ′g − 2Ω × u− Ω × (Ω × r) + µ∇2u

)

+ J × B (4.23)

where p is the non-hydrostatic part of the pressure, g gravitation, ρ the density, ρ′ density
fluctuation, u the fluid velocity, Ω the Earth’s angular velocity, µ the dynamic viscosity, J
the current density and B the magnetic field. Suppose ρ is uniform and g is a conservative
force, so that

g = −∇Φ (4.24)

where Φ is the potential function1. The centrifugal terms can be rewritten by

Ω × (Ω × r) = −∇(
1

2
|Ω × r|2) , (4.25)

then combining (4.24) and (4.25) gives an effective gravity ge = −∇(Φ + 1
2
|Ω × r|2); then

we can write (4.23)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p− 2Ω × u + ν∇2u +

1

ρ
(J ×B) +

ρ′

ρ
ge (4.26)

where ν = µ/ρ is the kinematic viscosity.

The geostrophic motion constraint, suggested by Hills [1979] and Le Mouël [1984] is
based on the hypothesis that the Coriolis force balances the pressure gradient. This seems

1There are various sign conventions, I prefer to use the sign, that positive work is done against the
potential.
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to be justified, when all other forces compared with the Coriolis force are small:

inertial force

Coriolis force
=

|(u · ∇)u|
|2(Ω × u)|

∼= U

2ΩL cos θ
∼= 10−6/ cos θ , (4.27)

driving force

Coriolis force
=

|∂u/∂t|
|2(Ω × u)|

∼= 1

2ΩT cos θ
∼= 10−5/ cos θ , (4.28)

viscous force

Coriolis force
=

|ν2∇2u|
|2(Ω × u)|

∼= ν

2ΩL2 cos θ
∼= 10−15/ cos θ , (4.29)

where L = 106m, U = 10−4ms−1 (corresponding to a westward drift rate of 0.2◦ per year)
and T = 108s. Estimations of the ratio of the Lorentz to Coriolis force are less simple,
because only poloidal field is observable outside the core, whereas little is known about
the toroidal field in the core–mantle boundary region. Every assessment of the ratio of
the Lorentz and Coriolis force rely on the assumption that the toroidal field is weak and
vanishes outside the core.

A lower bound for the poloidal field at the CMB is Bp = 5 · 10−4T . This value is given
by a downward continuation of the observed magnetic field strength at the Earth’s surface.
For a purely poloidal field at the top of the core it is

Lorentz force

Coriolis force
=

|J × Bp|
|2ρ(Ω× u)|

∼=
B2

p

2ρΩLU cos θ
∼= 10−3/ cos θ . (4.30)

Then the flow in the top layers of the core is governed by this simplified equation of motion

−1

ρ
∇p = 2(Ω × u) , (4.31)

∇ · u = 0 . (4.32)

Equation 4.31 is known as the geostrophic flow equation and can be useful in approximat-
ing quasi-steady large-scale flow in the ocean, the atmosphere or even at the core–mantle
boundary. An interesting result of the geostrophic flow equation is that the velocity field
is found to be perpendicular to the pressure gradient.

The important result of the geostrophic flow approximation can be deduced by curling
(4.31).

∇× (2Ω × u) = −1

ρ
∇× (∇p) = 0 . (4.33)

Using the vector identity

∇× (A× B) = A∇ ·B + (B · ∇)A− B∇ · A− (A · ∇)B

then the equation reads

Ω∇ · u + (u · ∇)Ω − u(∇ ·Ω) − (2Ω · ∇)u = 0 (4.34)
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Ω is independent of the position, so it follows

Ω∇ · u− (Ω · ∇)u = 0 . (4.35)

Finally equation (4.32) gives
Ω · ∇ · u = 0 . (4.36)

By convention, the direction of Ω is parallel to z

2Ω∇ · u = 2Ω
∂u

∂z
= 0 → ∂u

∂z
= 0 . (4.37)

In words it means that in the absence of external forces the slow flow of a rotating, ho-
mogeneous, inviscid fluid is necessarily two–dimensional. The motion is confined to planes
perpendicular to the axis of rotation. If the fluid is contained in a rigid spherical container,
then the restriction on the motion is even more severe, the only slow motion possible are
those in which cylindrical shells rotate like rigid bodies about the axis of rotation [Bullard
& Gellman, 1954]. This result is known as Proudman–Taylor theorem [Proudman, 1916;
Taylor, 1917], but was first derived by Hough [1897].

Now confining the flow in a horizontal plane to be geostrophic – no flow across the boundary

ur = 0 |r=c , (4.38)

then (4.31) reads

−1

ρ
∇hp = 2(Ω × u)h . (4.39)

Multiplying (4.39) with r and taking the horizontal divergence yields the tangentially
geostrophic constraint

∇h(u cos θ) = 0 . (4.40)

The validity of (4.39) and therefore (4.40) breaks down at the geographical equator, where
the pressure gradient cannot be balanced by Coriolis force any longer. Hence, the flow
motion cannot be resolved uniquely. Backus & Le Mouël [1986] called this the leaky belt,
but as pointed out by Chulliat & Hulot [2001] the non–uniqueness extend even to larger
region than a equatorial band. The geostrophic regions can be defined as a set of points,
where |Br/ cos θ| ≤ ζ2. The value of ζ essentially depends on the radial derivative of the
toroidal field (which is unknown), Chulliat & Hulot [2000] put a lower bound on ζ = 10−3T .
The bright patches in figure 4.1 correspond to areas where the geostrophic assumption is
expected to fail.

To construct solutions for (4.11) stochastic inversion (see section 3.4.2) is applied. The
solution has to minimize the norm

mTNSm =

∮
[

(∇2
huθ)

2 + (∇2
huφ)

2

]

dS =
∑

l

l3(l + 1)3

2l + 1

∑

m

[(tml )2 + (sm
l )2] , (4.41)

2Holme [priv. comm.] pointed out that flows perpendicular to the regions for which the geostrophic
contours are closed are not resolved by tangential geostrophy.
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Figure 4.1: Sketch of the geostrophic degeneracy, the white region are the areas where the
geostrophic assumption is expected to fail. ζ is chosen to be 10−3T .

i.e. the spatial roughness and the numerical convergence by the truncation degree of the
velocity field at the CMB [Bloxham, 1988]. Further the solution should be smooth in time
and minimizes

mTNT m =

∮
(

∂u

∂t

)2

dS =
∑

l

l(l + 1)

2l + 1

∑

m

[tml + sm
l ]2 . (4.42)

The flow is also forced to be close to tangential geostrophic and therefore to minimize the
quantity

mTNGm =

∮
[

∇h · (u cos(θ))

]2

dS . (4.43)

All three norms can be expressed as quadratic form

mTCm
−1m = λsN

−1
S + λtN

−1
T + λgN

−1
G , (4.44)

which gives the formal solution

m = (ATCe
−1A + Cm)−1ATCe

−1ḃ (4.45)

that minimizes an objective function similar to (3.25). The results of the flow inversion
are discussed in section (4.2).

4.1.5 Torsional oscillation

It has been suggested that an observed variation of the magnetic field with a period of
≈ 60 years may be related to torsional oscillations of rigid cylindrical surfaces aligned with
the rotation axis [Braginskii, 1970, 1984].



74 Chapter 4. Qualitative analysis of the core–surface fluid motions

The last section provided the dynamical description on cylindrical surfaces leading now
to an analysis of these oscilations around an quasi–equilibrium state, the so–called Taylor
state.
Taylor [1963] considered the steady (∂/∂t = 0), slow motion of an inviscid fluid (ν = 0),
then the force balance reads

2Ω × u = −1

ρ
∇p+

1

ρ
(J × B) +

ρ′

ρ
ge . (4.46)

When integrated azimuthally over a cylindrical surface (4.46) reduces to

2Ω

∫

Σ

(u)φdΣ =

∫

Σ

(j × B)φdΣ (4.47)

with dΣ = sdφdz and (s, φ, z) the cylindrical coordinates. The buoyancy force ρ′

ρ
ge is

equal to zero, because it acts only in meridional planes and has therefore no azimuthal
component. The azimuthally integrated component of the pressure gradient force is also
zero. Because of the continuity equation

∇ · u = 0 (4.48)

the left hand side of (4.47) is equal to zero

∫

Σ

udΣ +

∫

N(s)

udS +

∫

S(s)

udS =

∫

∇ · udV = 0 , (4.49)

where N(s) and S(s) are the spherical caps of the cylinder as shown in figure (4.2) [Gubbins
& Roberts, 1987]. There is no net–flow out or into the cylinder. Finally it remains

∫

Σ

(J ×B)φdΣ = 0 , (4.50)

In order to have a velocity u compatible with (4.1), (4.46) and (4.48), then it is necessary
for the magnetic field of a slow and inviscid rotating fluid in a rigid spherical geometry
to satisfy (4.50). This is Taylor’s constraint. A further implication of (4.50) is, that
the coupling between the annular cylinders co–axial with the rotation axis must vanish.
Recent studies suggest that the geodynamo is currently oscillating around its Taylor state
[Zatman & Bloxham, 1997, 1998; Bloxham et al., 2002], where the azimuthal components
of the Lorentz force integrated over the cylinder surface vanishes, except the part involved
in torsional oscillation. In order to excite torsional oscillation the geodynamo must have
departed from its Taylor state. Jault & Le Mouël [1989]; Jault et al. [1996] showed that
topographic and gravitational coupling3 between the core and the mantle lead to this
departure from the Taylor state and excite motions in cylindrical annuli of the type

uG = uφ(s)φ̂ . (4.51)
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Figure 4.2: Sketch of the core geometry to illustrate the Taylor constraint

The fluid motion (4.51) will distort the magnetic field lines, causing a curvature to the
field lines. The curvature generates a Lorentz force on the fluid which counteracts further
curvature as predicted by Lenz’s law and reverses the direction of the fluid flow. The field
lines return to the undistorted configuration and beyond until the Lorentz force becomes
strong enough again to stop fluid motion and to reverse it. Once the oscillations are
initiated, they are unaffected by the toroidal field, and only the component perpendicular to
the rotation axis, Bs, determines the restoring force and the period of torsional oscillation.
A range of periods between 60 years [Braginskii, 1970] and 25 years [Gubbins & Roberts,

3Topographical coupling is due to dynamical pressure variation acting on an aspherical CMB [Hide,
1969], whereas gravitational coupling is due to the action of an aspherical geoid acting on density inho-
mogeneities in the core.
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(b) (e)(d)(c)(a)

Fluid velocity

Lorentz force 

Magnetic field line

Figure 4.3: Figure shows the excitation mechanism of Alfvén like waves, such as torsional
oscillation. Courtesy of C. Finlay

1987] has been suggested depending on the assumed strength of Bs in

T ' 2µ0ρλ

Bs
2 (4.52)

where λ is the wavelength, Bs = 5mT[Gubbins & Roberts, 1987]. Without ohmic dissipa-
tion or viscosity these oscillations are undamped. Figure (4.3) depicts a complete cycle of
the action due to the competing inertial force and Lorentz force [Finlay, 2004a].

The method of inversion for the flow motion is basically the same as outlined in section
4.1.4, the only distinction between these methods is the temporal damping of the toroidal
components of the flow. Here the temporal damping of these components is relaxed and
therefore the toroidal flow can more vary with time. Compared with Zatman & Bloxham
[1997, 1998] and Bloxham et al. [2002] this approach is more general, but should recover
the same behaviour of the fluid flow.



4.2. Maps of core–surface flows 77

4.2 Maps of core–surface flows

In this section I compare the resulting flows derived using the different constraints outlined
in the previous sections. First, I consider the maps based on the steady flow assumption
and its extension in a azimuthally drifting reference frame, then the flows which based on
tangential geostrophy are presented.

4.2.1 Steady flows

The steady flow for a single epoch was derived from triplets of the secular variation and the
main field of the center epoch, i.e. 1990, and the adjacent epochs separated by five years,
i.e 1985 and 1995. The figure 4.4 show the steady flows centering on the epochs 1985, 1990
and 1995. Similarities and differences are evident, all graphs show a pronounced westward
drift. All figures show flows across the equator, most clearly around 1985 and 1995 near
South America and 1985 near Indonesia. In at least two of the figures, namely for 1990
and 1995, a big circulation is apparent southeast of Africa. Also a strong circulation seems
to have existed in 1985 underneath Indonesia. This gyre is less clearly defined in 1990 and
has disappeared in 1995.
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Figure 4.4: Steady flows centered on 1985, 1990 and 1995. The vectors show the velocity
and direction of the fluid motion at the CMB.
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4.2.2 Steady flows in an azimuthally drifting reference frame

The first finding of the examination of solutions for different damping parameters λv is
shown in figure 4.5. The curves of the objective function differ for different λv. The
minimum for strong damping coincide with a drift rate of approximately -10 km/yr, which
is in a good agreement with the known value of the westward drift. Two further minima
appear, when the damping is relaxed. One for -60 km/yr and an other for 49 km/yr, what
would correspond to a westward drift and eastward drift, respectively. The appearance
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Figure 4.5: Objective function as a function of drift rate for different damping parameters
λv.

of two solutions for the drift rate, when the damping is relaxed, is not comprehendible at
once. In fact Holme & Whaler [2001] argued that the two solutions are caused by flows
drifting with nearly equal and opposite angular velocity so that

u1(θ, φ, t) = u′(θ, φ− ψ(t)) + rc
dψ

dt
cos θφ̂

u2(θ, φ, t) = u′′(θ, φ+ ψ(t)) − rc
dψ

dt
cos θφ̂ .

Any linear combination of the two flows will explain the secular variation. Possible scenarios
could be that both flows represent two traveling waves making up a standing wave. But
also two convection rolls, as inferred from the maps of the radial magnetic field (figure 3.7)
in opponent rotation would give a possible explanation.
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Three solutions were constructed for three uniform drift rates: one eastward centered
on 49.0 km/yr and two westward centered on -10.81 or -60.0 km/yr, respectively. These
three drift velocities correspond to the three minima found for the objective function (see
figure 4.5). The diagnostics for the three flow solutions are given in table 4.1. The flows
with the higher drift velocities tend to be more energetic than the one with the drift speed
centered on -10.81 km/yr, also the fit of the slow drifting flow to the secular variation is
poorer than for the two fast drifting flows. Figure C.1 shows the comparison of the first 18
secular variation coefficients from the time–dependent model and predicted by the three
flow solutions. All three solutions show a distinct temporal behaviour, but have in common
that the recovering of the short term secular variation is rather poor. In figure 4.6 maps

W Drift (W1) W Drift (W2) E Drift (E1)

drift velocity (km/yr) -10.81 -60.0 49.0

rms secular variation misfit (nT/yr) 4.43 2.91 2.77

Table 4.1: Diagnostics of the drifting flow.

of the drifting flow solution for weak damping and eastward drift is shown. The three top
graphics represent snapshots for three different times (1980, 1990 and 2000) as observed in
the mantle frame. These flows do not significantly from those of the steady flow (cf figure
4.4). The bottom graphic shows the flow as seen in the drifting frame, here the flow is
dominated by the strong eastward drift of about 49 km/yr.
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Figure 4.6: The three top maps show the drifting flows for 1980, 1990, and 2000 in the
mantle frame. The bottom map shows the steady flow in the drifting reference frame.
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4.2.3 Tangetially geostrophic flows and torsional oscillation

The solution is found as the knee point in the trade off curves between the averaged
velocity of the flow and the secular variation misfit, as shown in figure 4.7. The trade
off curves show very weak dependence of the temporal damping; therefore, the curves for
strong λt = 0.1E+03, medium λt = 0.1E-01 and weak λt = 0.1E-09 temporal damping
overlay. The preferred solution is obtained for strong temporal and geostrophic constrains
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Figure 4.7: Trade off curves for three different temporal damping: strong λt = 0.1E+03,
medium λt = 0.1E-01 and weak λt = 0.1E-09.

and referred to as flow 1 for the remainder of this study. Figure 4.8 shows the flow 1 for
three different epochs.

The dominant features are a strong circulation southeast of Africa, a strong clockwise
circulation centered underneath Labrador, strong westward directed flow in equatorial
regions and weak flow in the Pacific region. The circulation centered southeast of Africa
shows a rather complex structure and seems to be linked to a smaller gyre under the
south Atlantic. Both gyres are parts of a much larger pattern in the southern hemisphere,
which appears as a bending wave starting in east Antarctica and fades out across the south
Pacific. All features are persistent during the 20 years interval. The ratio of the energy
density of the equatorial symmetric and asymmetric flow components is 2.8; the flow is
strongly equator symmetric.

The assumption of frozen flux and tangential geostrophy determine up and downwelling
by

∇h · uh =
tan(θ)

c
uθ . (4.53)
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Flow 1 Flow 2 Flow 3

Damping spatial λs 2.0×10−4 2.0×10−4 2.0×10−4

temporal λt 1.0 1.0 1.0

temporal λtz (for zonal terms) - - ×10−3

Diagnostic geostrophic norm 4.80×10−2 220.09 4.80×10−2

spatial smoothness norm 15.57×106 1.01×106 15.57×106

temporal smoothness norm 103.6 152.35 97.93

time averaged velocity (km/yr) 15.33 11.44 15.33

time averaged acceleration (km/yr2) 2.87 3.48 2.90

characteristic flow time (years) 5.34 3.28 5.28

rms secular variation misfit (nT/yr) 0.80 1.49 2.91

rms ang. mom. misfit 2.04 4.83 2.08

Table 4.2: Parameters and diagnostics of the inversions for two tangentially geostrophic
flow and the flow invoking torsional oscillation.

Fluid up and downwelling is depicted in a color scale. This description seems to be in-
sensitive for greater latitude and regions of fluid up and downwelling concentrate near the
equator, where the geostrophic assumption is supposed to fail and therefore the magnitude
of the upwelling cannot be given with high confidence. Nevertheless, it is worth noting that
the strongest fluid up and down welling coincide with the regions, where the column rolls
are expected from the analysis of the morphology of the radial field at the CMB (section
3.5.1).

Fluid upwelling is also to see in connection with magnetic diffusion, because the toroidal
field is advected by fluid upwelling as sketched in figure 4.9. Upwelling results in a field
concentration which is then twisted by a vertical velocity field. Finally, reconnection leads
to magnetic diffusion of the field through the CMB.

As already mentioned, constraining the flow temporally does not have a significant
effect on the solution itself, rather the tangentially geostrophic constraint controls the flow.
Therefore a second solution, flow 2, is analysed, where the geostrophic constraint is relaxed
by ten orders of magnitude. Relaxing the geostrophic constraint lets the ageostrophic part
in the flow solution rise. Ageostrophy occurs, when the balance between pressure gradient
and the Coriolis force is deranged. A perfect geostrophic balance would mean that the fluid
motion is along lines of constant pressure, implicitly assuming that the tangential velocity
with respect to the boundary is zero (4.38). This can only be achieved, when a thin
viscous layer exists, the Ekman layer. The frictional drag F within this layer unbalances
the geostrophic flow and generates an ageostrophic flow

2Ω × uag = F . (4.54)

The imbalance deflects the flow towards lower pressure4. See figure 4.10. The maximum

4This phenomenon is also known from the Earth’s atmosphere, where the geostrophic wind feels the
frictional drag of the rough underlying surface.
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ageostrophic velocity never exceeds 3 km/yr, is strongest in the region of the geostrophic
degeneracy (see figure 4.1) and crossing the equator. The direction of the friction, which
can be deduced from this graph, is more or less symmetric to the equator and pointing
either west or east.

A third flow solution (flow 3) is analysed, where only zonal components of the flow are
allowed to vary with time. The maps of the torsional oscillation flow are shown in figure
4.12. The difference to flow 1 is insignificant. For comparison of the inversion parameters
and characteristics of all three flows, see table 4.2. The results of an analysis of the time
averaged velocity field is given in the table (4.3).

Flow 1 Flow 2 Flow 3

total flow kinetic energy 210.90 145.97 210.96

toroidal component1 94.49 83.94 94.48

poloidal component1 5.51 16.06 5.52

symmetric component1 66.39 71.25 66.39

symmetric toroidal component2 98.73 89.93 98.73

symmetric poloidal component2 1.27 10.07 1.27

asymmetric component1 33.61 28.75 33.61

asymmetric toroidal component3 86.13 69.08 86.10

asymmetric poloidal component3 13.87 30.92 13.90

geostrophic component1 99.96 75.05 99.96

ageostrophic component1 0.03 24.94 0.03

zonal toroidal component1 16.12 38.22 16.13

Table 4.3: Characteristics of the two tangentially geostrophic flows and the flow invoking
torsional oscillation. The total energy is given in arbitrary units and the components as
percentage of the total flow (1) and the total symmetric component (2) and total asym-
metric component (3), respectively.
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Figure 4.8: Tangentially geostrophic flows for 1980, 1990 and 2000. The vectors show the
velocity and direction of the fluid motion at the CMB. The color scale shows the intensity
of the horizontal divergence (upwelling and downwelling) of the flow.
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Figure 4.9: Sketch of the toroidal flux expulsion in an electrically conducting medium.
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Figure 4.10: The ageostrophic force balance, where F is the frictional drag.
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Figure 4.11: The ageostrophic part of the flow 2.
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Figure 4.12: Torsional oscillation flows (flow 3) for 1980, 1990, and 2000. The vectors show
the velocity and direction of the fluid motion at the CMB.
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Like in chapter 3 a resolution analysis of the solutions is carried out. In figure 4.13
the resolution of the toroidal (left) and the poloidal velocity coefficients (right) are shown.
The resolution is derived at the six times during 1980 and 2000. The resolution of the flow
inversion is fairly time invariant, as the six curves overlay. Recalling, that low resolution
means the model is controlled by the regularization or a priori beliefs, whereas high reso-
lution states that the model is controlled by the data, i.e. the model for secular variation
and the main field. The resolutions for toroidal and poloidal terms differ significantly, for
the toroidal terms it is higher than for the poloidal ones. This appears to be expected
from point of view, that the poloidal flow is more constrained by applying the tangentially
geostrophic constraint. It becomes immediately clear, when considering the resolution of
less tangential geostrophic constrained solution (figure 4.14). Here the resolution of the
poloidal terms (right panel) is of the order of the resolution of the toroidal terms (left
panel).
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Figure 4.13: The resolution of the toroidal (left) and poloidal velocity coefficients (right)
for flow 1.
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Figure 4.14: The resolution of the toroidal (left) and poloidal velocity coefficients (right)
for flow 2.
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4.2.4 Prediction of secular variation from flows

Figure 4.15 provides the fit of the secular variation predicted by different flow assumptions
to that of the time–dependent model derived in the previous chapter. The overall impres-
sion is that flow 1, 2 and 3 recover the secular variation at all chosen stations fairly good.
Table 4.2

The predictions by the drifting flow is rather poor. It captures only the gross features of
the secular variation, but cannot account for the short term variation, i.e. jerks. However,
this fact may help to evaluate possible explanation for geomagnetic jerks. The incapacity
of the drifting flow to fit short term secular variation allows to different scenarios for the
generation of short term secular variation: either jerks are related to flux expulsion or
caused by non–equator symmetric flows.

I also tested the hypothesis if the secular variation can be attributed to a flow which is
purely toroidal. This means that equation 4.7

∂tBr + Br∇h · u + u · ∇hBr = 0

reduces to
∂tBr + u · ∇hBr = 0 . (4.55)

Toroidal flows are divergence free and confined to a spherical surface, i.e. there is no ad-
vection of toroidal field or upwelling of fluid flow.

Figure 4.15 allows a direct comparison of the secular variation prediction of the flows
with the time–dependent model. All flows based on the tangential geostrophic assump-
tion, flow 1 – 3, and the purely toroidal flow recover the secular variation and the jerks
almost. Whereas, the drifting flow captures the secular variation roughly, without explain-
ing short term variations. Figure C.1 in the appendix shows a comparison of the first 15
coefficients of the secular variation derived from different drifting flows.
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Figure 4.15: Comparison of modeled secular variation (solid black line) to the secular
variation estimates at selected permanent observatories. Red curves are the prediction of
flow 1, of flow 3 (green curves) and of the purely toroidal flow (blue curves). The pink curves
are the prediction by the drifting flow (E1). From left to right: dX/dt, dY/dt, dZ/dt. From
top to bottom: Resolute Bay (Canada), Niemegk (Germany), Newport (USA), MBour
(Senegal), Pamatai (French Polynesian).
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Figure 4.15: (continued from previous page) From top to bottom: Hermanus (South Africa),
Eyrwell (New Zealand) and Scott Base (Antarctica).
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4.2.5 Prediction of the decadal change of length of day

The Earth’s rotation rate varies with periods ranging from a few days to at least a few thou-
sand years. Several geophysical processes affecting the Earth’s rotation rate: exchanges of
angular momentum between solid Earth and either the atmosphere or oceans, tidal friction
in the gravitational Earth–Moon–Sun system, seasonal exchange of angular momentum due
to foliation and glaciation, or changes in the moment of inertia of the mantle due to post-
glacial rebound. It is widely accepted that between core and mantle angular momentum is
exchanged via a coupling mechanism [Hide & Dickey, 1991]. Because angular momentum
is conserved an increase in the mantle rotation rate is associated with a slowing down of
the core and vice versa.

Small differences between universal time (UT) and ephemeris time (ET) can be mea-
sured through astronomical observations, e. g., the time of lunar occultation of a star can be
predicted to a high accuracy. Small changes in the Earth rotation rate cause discrepancies
between the predicted time and the actual time, this time lag can directly be translated
into a sidereal displacement angle ψ. ψ defines the relative position of the Earth to the
stars. The first time derivative is the variation in the length of day (LOD)

Λ =
dψ

dt
, (4.56)

what is equivalent to the angular momentum

L = I × Λ , (4.57)

where IM is the moment of inertia. The second time derivative is the observed torque on
the mantle

Γ = I
d2ψ

dt2
, (4.58)

Now the intention is to show how core surface motion can account for a small portion of
Λ, when all other known contributions were removed. The basic idea is that the magnetic,
inviscid, rotating fluid of the outer core interacts with solid lower most mantle via coupling.
After rejecting viscous coupling as too weak [Rochester, 1984], three possible coupling
mechanism remain. Mass anomalies and an aspherical shape of the core–mantle boundary
region cause a non-radial component of gravity which might exchange angular momentum
and generate a torque from the core to the mantle [Jault & Le Mouël, 1989]. These mass
anomalies which directly translate into density heterogeneities are below seismic resolution,
so this hypothesis cannot be tested directly. A further mechanism, which was explored in
detail by Stix & Roberts [1984] and Holme [1998a,b, 2000], relies on the interaction of the
induced currents in the lower most mantle with the magnetic field of the core to produce
Lorentz torques. Another coupling mechanism was proposed by Hide [1969], which bases
on assumptions about torques exerted by topographic coupling between core and mantle.
Because of the high non–uniqueness of the torque calculation the form of coupling is still
controversial.
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The estimation of the core angular momentum is much simpler, it requires only that
the surface flow matches the bulk flow on cylinders. The estimations follow directly from
tangentially geostrophy of the flow.

uG = uφ(s)φ̂

= −r ×∇
( ∞

∑

l=1

l
∑

m=0

tml P
m
l cos(θ)

)

It can be shown [Jault et al., 1988; Jackson et al., 1993] that the angular momentum as
measured in the mantle rest frame is given by

L =
8π

15
c4ρ

(

t01 +
12

7
t03

)

(4.59)

and the change in the length of day can be predicted by

Λ = 1.138

(

t01 +
12

7
t03

)

[ms] . (4.60)

The calculations by Jault et al. [1988] were made on the assumptions that all of the toroidal
zonal flow was in the mode uG by imposing symmetry about the equator on the calculations;
requiring all terms t02n = 0 for n ≥ 1. Jackson et al. [1993] relaxed this requirement, by
postulate that angular momentum changes associated with the background convection and
therefore the even toroidal zonal modes are small.

Figure 4.16 shows the change in the length of day deduced from astronomical mea-
surement taken from Holme & de Viron [2005]. It also shows the predictions from the
tangentially geostrophic flow without or with invoking torsional oscillation following from
(4.60. The vertical offset is varied arbitrary to enable a clear distinction of the results for
each flow type. The prediction from the drifting flow varies as the descending straight line
and is not shown. Generally, the slope of Λ of the flow prediction is much steeper than the
actual Λ, this agree well with [Holme & Olsen, 2005]. The green line shows the prediction
of a flow, when the geostrophic constraint is relaxed.

Figure (4.17) depicts the averaged zonal velocities of the tangential geostrophic flow 1
and 2 at three dates. It is clearly visible that flow 2 shows significant variation in the zonal
velocity and a equator-asymmetric state, which may explain the poor fit to the observed
Λ (c.f. figure 4.17). The averaged zonal velocities of flow 1 are nearly symmetric to the
equator.

4.3 Discussion and Conclusion

In this chapter the time–dependent model of the main field and its secular variation (devel-
oped in chapter 3) are treated as data, to invert the radial induction equation for different
types of flows. Therefore, I have adopted the frozen flux hypothesis which ascribes the
observed secular variation entirely to the effects of advection.
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Figure 4.16: Comparison of Λ prediction. The black represent the Λ taken from Holme &
de Viron [2005]. The colored curves are the predictions from the flows accordingly to the
legend in the lower left corner.

The maps of steady flows and the drifting flow show less features than the maps of the
flows 1 and 2, but all maps of all flows show a gyre south east of Africa and a feature
underneath Labrador during the 20 years period.

It had been demonstrated that flows based on the tangential geostrophic assumption
can explain almost of the observed secular variation and the change of the length of day.
But, also a purely toroidal flow confined to a spherical surface, with no fluid upwelling and
advection of toroidal field explains the secular variation equally well. The resolution anal-
ysis suggests that the poloidal component of flow 1 is mostly determined by the tangential
geostrophic assumption. A relaxation of the tangential geostrophic constraint leads to a
better fitting of the secular variation on one side, but on the other side the fit to Λ worsens
(see table 4.2). This allow the conclusion that the poloidal component of the flow is less
important for the generation of secular variation.

A second class of flow assumption as outlined in the first part of this chapter. Unlike
the geostrophic flows, which are based on the dynamic description of the secular variation
generation (i.e. Navier–Stokes equation), the steady flow assumption is a kinematic analysis
of this. The steady flow assumption provides formal uniqueness for the inversion of the
diffusion-less radial induction equation, but by definition a time–dependency of the solution
is impossible. To introduce time–dependency to steady flow is therefore highly motivated.
In fact, a steady flow in an azimuthally drifting reference frame improves the fit to the
secular variation compared with single epoch steady flow. But it is still unable to explain
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Figure 4.17: The zonal velocity profile for the epochs 1980, 1990, and 2000, derived from
flow 1 (top) and flow 2 (bottom).

geomagnetic jerks in terms of generation by flows. Nevertheless, the drifting flow allows
that the remaining signal might be explained by diffusion, whereas tangential geostrophic
flows suggest that diffusion is unimportant.

The author is inclined to assume that geomagnetic jerks could be explained in terms
of sudden flux expulsion, resulting in magnetic diffusion and a current in the lower most
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mantle (see figure 4.9). The sudden appearance of currents may causes sudden acceleration
or deceleration of the core, because a current system in the lower most mantle between
regions of flux expulsion leads to an exchange of angular momentum form the core to the
mantle. At the minute this is a speculation and needs to be proven and quantified.




