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ABSTRACT

This paper presents two methods for simulating the interference of bosonic Fock states through linear interferometers using coherent states.
The first method repeats the interferometer, injects coherent states in particular modes, and uses symmetric combinations of the outputs to
reconstruct the state amplitudes of the Fock-state interference. The second method constructs a new interferometer that can be probed with
coherent states on individual inputs to extract the required state amplitudes. The two approaches here show explicitly where the classical
computational difficultly arises. In the first approach, the computational hardness is in the measurement post-processing, and in the second
approach, it is within the construction of the required state evolution.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1116/5.0136828

I. INTRODUCTION

There is often quite some confusion about the quantum nature of
states in quantum optical experiments. This is undoubtedly due to the
different paths of research that have been taken for quantum optics1,2

and quantum information theory.3 In quantum information theory,
the focus is entirely on the ability to perform a task (or not), under
specific complexity requirements, using classical or quantum resour-
ces.4 In quantum optics, the desire is the ability to describe a state and
subsequent measurement outcomes using classical probability
distributions.

As this prescription is somewhat vague, there are a number of dif-
ferent constructions which meet these criteria. For example, in quantum
information theory, we could describe a quantum computation using a
particular choice of basis, complementary bases with special proper-
ties,5,6 or more advanced “classical shadow” techniques.7 In quantum
optics, for example, one could use a P-function,8,9 Q-function,10

Wigner-function,11 or a semi-classical technique.12 If a quantum system
can be described by these methods, then one declares the process
“classical.” However, these two definitions are definitely not equiva-
lent.13 One can construct an example (admittedly using mixed states)
where a quantum computational speed-up is available with a system
that would be classed as completely classical in quantum optics.14,15

Here, we show that a similar situation can exist with coherent
states. Coherent states are a class of states which by quantum optics

standards would be called classical. Coherent states, as a theoretical
construct, are useful because they obey many desirable properties, par-
ticularly under passive linear optical evolution. Coherent states, in the
world of optics, display no “quantum-interference” under linear opti-
cal transformations. Furthermore, the statistics of coherent states,
under measurement of quanta of energy, obeys those statistics of ran-
dom and independently generated quanta (i.e., a Possionan distribu-
tion). The action of linear optics evolution is such that single quanta
creation operators evolve into other single quanta creation operators;
hence, coherent states with linear optics is considered at most a “one
particle” or “one photon” experiment. The state amplitudes of single
particle states follow the wave amplitudes of a classical wave under the
linear evolution, hence the conclusion that such experiments can only
be classical. However, coherent states are quantum states and mea-
surement in a Fock basis is a quantummeasurement.

Here, we will argue that by careful construction of optical experi-
ments, coherent state sources, linear optics, and photon detection can
reconstruct the statistics of any multi-photon experiment. The caveat
here is that the information required to perform this construction is
necessarily computationally inefficient to extract from the description
of the experiment being simulated. This is consistent with what is
known about the complexity of multi-photon linear optics experi-
ments.16 An intriguing note of the constructions presented here is that
a choice can be made as to where the most complex part lies. Either
there is an exponential growth in the run-time of computing the linear
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optical network required to perform the simulation, or there is an
exponential growth in the post-processing required to perform an
analysis of the detection outcomes. Hopefully, the theory outlined in
this paper can be of utility when considering the role of using coherent
state sources in quantum optics experiments and the limitations on
their uses.

The results in this paper will be presented as follows: In Sec. II,
the standard approach of reconstructing single-photon interference
using coherent states will be given and the expressions used later in
the paper will be defined. Section III will consider the extension of the
single-photon interference to multiple photon interference in two
modes using coherent states and the extraction of the state amplitudes.
Section IV will consider the generalization of the two-mode system to
any number of modes. Section V will then present an alternative
approach where the extraction of amplitudes is efficient, but the diffi-
culty of the simulation is moved entirely into the construction of the
interferometer. Section VI will discuss some implications of these
methods and the effects of practical imperfections. Finally, in Sec. VII,
the conclusions will be presented.

II. SINGLE-PHOTON INTERFERENCE

Any single-photon Fock state inm-modes can be written as

Xm
i¼1

cij 0; 0;…; 0; 1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
i

; 0;…; 0
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{m

i ¼
Xm
i¼1

ciâ
†
i j 0; 0;…; 0; 0
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{m

i; (1)

with the single particle mode occupation number being represented by
a single non-negative integer i and â†i representing the creation opera-
tor on that mode. This has m complex parameters represented by the
coefficients ci. Requiring the state to be normalized makes the set of
states into a projective linear space, which we will denote as V. One
can think of this as a m-dimensional complex space with one restric-
tion on the degrees of freedom.

The evolution of the photon state from Eq. (1) under a linear
optical transformation Û is

Û
Xm
i¼1

ciâ
†
i j0;…; 0i ¼

Xm
i¼1

ciÛ â†i Û
†Û j0;…; 0i (2)

¼
Xm
i¼1

ciÛ â†i Û
†j0;…; 0i (3)

¼
Xm
i¼1

ci
Xm
j¼1

Uijâ
†
j j0;…; 0i (4)

¼
Xm
j¼1

Xm
i¼1

ciUij

 !
â†j j0;…; 0i (5)

¼
Xm
j¼1

djâ
†
j j0;…; 0i; (6)

where the matrix U is defined by

Xm
j¼1

Uijâj ¼ Û âiÛ
†
; (7)

and the coefficients dj are given by

dj ¼
Xm
i¼0

ciUij: (8)

The values dj are the multiplication of the ci coefficients from Eq. (1)
as a vector with the matrix Uij, which will be a unitary matrix from
U(m), the set ofm�m complex matrices satisfying U†U ¼ UU† ¼ I.
Therefore, for single-photon states, the linear mode transformation
just directly applies the mode transformation matrix to the coefficients
of the superposition.

Now, let us turn to the coherent state evolution. To distinguish
coherent states from Fock basis states, the notation ja ¼ ci will repre-
sent a coherent state with amplitude c. That is, the action of the annihi-
lation operator on these states is

âja ¼ ci ¼ cja ¼ ci; (9)

with c taking on the value of any complex number. Consider now the
m-mode coherent state,

�m
i¼1jai ¼ cii: (10)

The evolution of this state through a linear optical transformation Û
can be found by taking the ansatz that the output state will also be
eigenstates of annihilation operators. To test this ansatz, consider the
kth mode annihilation operator on the evolved coherent state input,

âkÛ �m
i¼1 jai ¼ cii ¼ Û Û

†
âkÛ �m

i¼1 jai ¼ cii; (11)

¼ Û
Xm
j¼1

âjUjk �m
i¼1 jai ¼ cii (12)

¼ Û
Xm
j¼1

cjUjk �m
i¼1 jai ¼ cii (13)

¼
Xm
j¼1

cjUjk

 !
Û �m

i¼1 jai ¼ cii (14)

¼ dkÛ �m
i¼1 jai ¼ cii: (15)

Here, the same definitions for the matrix U in Eq. (7) and the vector d
in Eq. (8) [note the use of the inverse unitary matrix going from Eq.
(11) to (12)] are used. This is consistent with the ansatz and implies
that the evolved state is also a multi-mode coherent state. This evolu-
tion can be written as

Û �m
i¼1 jai ¼ cii ¼ �

m

k¼1
jak ¼ dki: (16)

Here, it can be directly seen that the one-particle amplitudes are all
encoded within the coherent state amplitudes.

III. TWO-MODE INTERFERENCE

When permitting states of more than one photon, there are
many more possibilities. Before approaching the most general situa-
tion of N photons into m modes, first consider the case of N photons
inm¼ 2 modes.

To depict the index set of allowed Fock basis states of m modes
withN photons in total, we will use

N N
m ¼ ði1; i2;…imÞ 2 Zm

þ

����Xm
j¼1

ij ¼ N

( )
: (17)

AVS Quantum Science ARTICLE scitation.org/journal/aqs

AVS Quantum Sci. 5, 011405 (2023); doi: 10.1116/5.0136828 5, 011405-2

VC Author(s) 2023

 26 O
ctober 2023 09:27:32

https://scitation.org/journal/aqs


So, initially, we will use N N
2 , which consists of all ordered pairs of

non-negative integers that sum toN.
An arbitrary two-mode Fock basis state with N photons can be

written as X
ði1;i2Þ2N N

2

cði1;i2Þffiffiffiffiffiffiffiffiffi
i1!i2!
p â†i11 â†i22 j0; 0i: (18)

Applying the Fock basis evolution Û on the Fock basis state of Eq.
(18) gives

Û
X

ði1;i2Þ2N N
2

cði1;i2Þffiffiffiffiffiffiffiffiffi
i1!i2!
p â†i11 â†i22 j0; 0i

¼
X

ði1;i2Þ2N N
2

cði1;i2Þffiffiffiffiffiffiffiffiffi
i1!i2!
p Û â†i11 Û

†Û â†i22 Û
†Û j0; 0i (19)

¼
X

ði1;i2Þ2N N
2

cði1;i2Þffiffiffiffiffiffiffiffiffi
i1!i2!
p ðÛ â†1Û

†Þi1ðÛ â†2Û
†Þi1 j0; 0i (20)

¼
X

ði1;i2Þ2N N
2

cði1;i2Þffiffiffiffiffiffiffiffiffi
i1!i2!
p ðU11â

†
1 þ U12â

†
2Þ

i1

� ðU21â
†
1 þ U22â

†
2Þ

i2 j0; 0i (21)

¼
X

ði1;i2Þ2N N
2

cði1;i2Þffiffiffiffiffiffiffiffiffi
i1!i2!
p

Xi1
k1¼0

Xi2
k2¼0

i1
k1

 !
i2
k2

 !

� Uk1
11U

i1�k1
12 Uk2

21U
i2�k2
22 â†k1þk21 â†N�ðk1þk2Þ2 j0; 0i (22)

¼
X

ð j1;j2Þ2N
N
2

dðj1;j2Þffiffiffiffiffiffiffiffiffi
j1!j2!

p â†j11 â†j22 j0; 0i (23)

with

dðj1;j2Þ ¼
X

ði1;i2Þ2N N

cði1;i2Þ
Xi1;i2

k1; k2 ¼ 0

k1 þ k2 ¼ j1

ffiffiffiffiffiffiffiffiffi
j1!j2!

pffiffiffiffiffiffiffiffiffi
i1!i2!
p

2
664

�
i1
k1

 !
i2
k2

 !
Uk1
11U

i1�k1
12 Uk2

21U
i2�k2
22

3
75; (24)

and ðj1; j2Þ 2 N N
2 . This is clearly a more complex expression than

that for the single-photon case, but the term in the square brackets
can be thought of as a linear mapping of the c coefficients into the d
coefficients. There are a number of observations that can be made
on this expression. First, the action of Û does not change the form
of the expression for a fixed N (i.e., this is a mapping of two-mode
states of N photons onto two-mode states of N photons). Next, the
expression is unchanged under interchange of U11 and U12 with U21

and U22, respectively. Finally, if two different linear mappings were
defined in this way using two matrices U, then their product will
also be of this form. This can be seen by the fact that the Û opera-
tors representing the unitary matrices U will close to form a group.
In this particular case, the term in the square brackets forms a repre-
sentation of the group U(2). It is for this reason that the binomial

coefficients and square-roots of factorial terms appear in the
expression.

Consider the case of Eq. (24), where N¼ 2 with cð1;1Þ ¼ 1 and all
other c terms are zero. With all these restrictions, we find

dð1;1Þ ¼ U11U22 þ U12U21: (25)

Here, the connection to a matrix permanent can be directly seen. This
is also the main term responsible for the “Hong–Ou–Mandel dip,”17

which can be achieved when U11 ¼ U22 ¼ U12 ¼ �U21. For the other
components of this two-photon state, we have

dð2;0Þ ¼
ffiffiffi
2
p

U11U21 (26)

and

dð0;2Þ ¼
ffiffiffi
2
p

U12U22: (27)

Now, we turn to a coherent state representation of this same two-
mode interference effect. To begin, consider the single-photon inter-
ference pattern of Eq. (16). This expression essentially encodes the
matrix elements of U into the coherent state amplitudes. In order to
extract expressions involving two matrix elements, two amplitudes will
be needed. So, for example, the amplitude of Eq. (26) can be extracted
using the single-photon process of Eq. (16) using the output amplitude
dk of mode 1 when using the input amplitude for the two cases of ci
¼ 1 of mode 1 with all other inputs being vacuum and ci¼ 1 for mode
2 with all other inputs being vacuum. These two amplitudes will result
in U11 and U21, which can then be multiplied together along with a
factor of

ffiffiffi
2
p

to give dð2;0Þ. If the ci input terms are not 1, then the out-
put amplitude dk is scaled by this factor, which can be divided out
before the multiplication. This same procedure will work for dð0;2Þ, but
using the output amplitudes of mode 2.

This is suggestive as it matches the Fock basis component of the
input state with the input coherent states. There are two photons
entering the interferometer in modes 1 and modes 2, and these are
exactly the inputs that require coherent states. This would suggest that
the pattern is for dð1;1Þ to require the estimate of an amplitude from
the output of modes 1 and 2. However, here more work is needed to
enforce the symmetry of the transformation. With the coherent state
amplitude injected into the first mode, one can measure the output in
either the first or second modes. Similarly, with amplitude injected
into the second mode, either the first or the second mode amplitudes
can be measured. In order to reconstruct the amplitude of Eq. (25), the
symmetric combination of the two possible choices of how to measure
the outputs must be taken. That is, for the case where a coherent state
is injected into the first mode, if the output amplitude of the first mode
is taken, then we have U11 and, hence, the amplitude for the case
where the coherent state is injected into the second mode must take
the amplitude of the output from the second mode giving U22. The
product of these two terms gives the first part of Eq. (25), and the case
where the outputs are swapped is then added to give the final part of
the expression.

This situation continues for the general two-mode expression in
Eq. (24). For each photon, an experiment is performed with the injec-
tion of a coherent state amplitude into the mode representing the loca-
tion of the single-photon input. That is, there will be N repetitions of
the experiment. For each output location, the amplitudes are measured
and the results are multiplied and symmetrically combined under
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addition. This will automatically incorporate the correct binomial
terms, but the bosonic statistical factors involving the square-root of
factorials must be multiplied into the final result. This extra factor will
depend on the number of repetitions made in the input and the output
modes.

IV. MULTI-MODE MULTI-PHOTON INTERFERENCE

We now move on to the general case with any number of modes.

A. Fock basis

An N photon state inmmodes can be written asX
i2N N

m

ciffiffiffi
i!
p â†i11 â†i22 …â†imm j0; 0;…; 0i; (28)

where i ¼ ði1; i2;…; imÞ and i! ¼ i1!i2! � � � im!. To compute the result
of a linear optical operation Û , the expansion of the annihilation oper-
ators proceeds as before. The resulting expression after this procedure
will be a sum of multinomials in the annihilation operators with the
same total degree of the original state. But as above the expression will
be linear in the ci values, it can be written down as an operator acting

on these coefficients. The space defined by the Fock basis states inN N

has dimension
mþ N � 1

N

� �
. So for eachm where Û represents the

action of U(m), we end up with a linear representation of this continu-
ous group on the Fock basis withN particles inmmodes.

The method for giving the explicit expression of each coefficient
in this evolution is known,16 and the most compact form being that of
the matrix permanent formed from appropriately repeated rows and
columns of the original matrix,ffiffiffi

j!
pffiffiffi
i!
p Per AðjÞðiÞ

� �
: (29)

In this expression AðjÞðiÞ is a square matrix formed from U in a two-step
process. First, a rectangular matrix is formed by taking i1 copies of the
first column of U, i2 copies of the second column of U, and so on.
From this rectangular matrix, the square matrix is formed, matrix j1
copies of its first row, j2 copies of the second row, and so on. This
expression naturally accounts for the binomial coefficients through the
symmetry of the matrix permanent and the combinatorics of the
repeated rows and columns (see Ref. 18). The symmetry of the matrix
permanent means that it is independent of the order in which the
rows and columns appear. The resulting matrix can then be used to
form the transformation from the ci coefficients to the dj coefficients
in the same form as Eq. (24). The resulting expression for the coeffi-
cient in the sum for a N photon state will result in degree N combina-
tions of the matrix elements of the original matrix U.

B. Coherent states

We will now give the generalization of the equivalent coherent
state circuit as described in Sec. III on the two-mode case. We want to
perform some reconstruction of the amplitude of the Fock basis pro-
cess from a configuration given by i to j. Consider the tensor product
space of m�N coherent states with i1 copies of a coherent state in
mode 1, i2 copies of a coherent state in mode 2,

�
m

k¼1
jak ¼ dk1i… �

m

k¼1
jak ¼ dk1i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

i1

� �
m

k¼1
jak ¼ dk2i… �

m

k¼1
jak ¼ dk2i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

i2

… �
m

k¼1
jak ¼ dkmi; (30)

where dkm is the Kronecker’s delta symbol,

dkm ¼
1; k ¼ m;
0; k 6¼ m:

	
(31)

A linear optics operation acting on this space can be constructed using
n copies of the single-photon actionU on the blocks ofm amplitudes as

Utot ¼ �
N

k¼1
U ; (32)

where U is the m-mode linear network matrix. The direct sum is used
to combine the network matrices U as they describe the linear interac-
tion of modes [as defined in Eq. (7)]. Applying this linear transforma-
tion operation on the complete coherent state input state will give in
each block ofm-modes the single-photon amplitudes for each possible
cases of where single photons could be input into the network. Using
the same evolution from Eq. (16), the output after this particular evo-
lution can be written as

�
m

k¼1
jak ¼ U1ki… �

m

k¼1
jak ¼ U1ki|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

i1

� �
m

k¼1
jak ¼ U2ki… �

m

k¼1
jak ¼ U2ki|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

i2

… �
m

k¼1
jak ¼ Umki: (33)

This expression explicitly forms the repeated rows of the input unitary

matrix as required to form the matrix AðjÞðiÞ above. The required col-

umns for the combination j can be formed by measuring mode 1 j1
times, mode 2 j2 times, and multiplying the results, but remembering
to take all possible symmetric combinations of the arrangement of
these modes as was done in Sec. III. The complete amplitude is formed

by multiplying by the factor
ffiffi
j!
pffiffi
i!
p . This configuration is shown schemat-

ically in Fig. 1 for the case of only single-photon inputs (i.e., without
repeats).

C. Three-photon three-mode example

As an example of the general case, consider a three-photon linear
interferometer described by the unitary matrix,

U11 U12 U13

U21 U22 U23

U31 U32 U33

0
BB@

1
CCA: (34)

Into this network, inject the Fock state j2; 1; 0i. In this example, we
will consider the case of the amplitude for the output in the Fock basis
j1; 1; 1i, where the three photons exit all in individual modes.

In the Fock basis, the amplitude for this output can be computed
using the same above-mentioned polynomial expansion as follows:

AVS Quantum Science ARTICLE scitation.org/journal/aqs

AVS Quantum Sci. 5, 011405 (2023); doi: 10.1116/5.0136828 5, 011405-4

VC Author(s) 2023

 26 O
ctober 2023 09:27:32

https://scitation.org/journal/aqs


Û j2; 1; 0i ¼ Û 1ffiffiffi
2
p â21â2j0; 0; 0i

¼ 1ffiffiffi
2
p ðU11â1 þ U12â2 þ U13â3Þ2

� ðU21â1 þ U22â2 þ U23â3Þj0; 0; 0i (35)

!j1;1;1i
ffiffiffi
2
p
ðU11U12U23 þ U11U13U22 þ U12U13U21Þ: (36)

Using the coherent state construction above, with input ampli-
tudes of

ja ¼ 1ija ¼ 0ija ¼ 0ija ¼ 1ija ¼ 0ija ¼ 0ija ¼ 0ija ¼ 1ija ¼ 0i;
(37)

under evolution of the block repeated interferometer, the output
state is

ja ¼ U11ija ¼ U12ija ¼ U13ija ¼ U11ija ¼ U12i
ja ¼ U13ija ¼ U21ija ¼ U22ija ¼ U23i: (38)

Now, to extract the j1; 1; 1i Fock basis amplitude, a symmetric prod-
uct of the amplitudes from the first, second, and third mode of each
block is taken. There are six such combinations, which when added
will give the expression

U11U12U23 þ U11U13U22 þ U12U13U21 þ U11U12U23

þ U11U13U22 þ U12U13U21: (39)

After multiplying this expression by the
ffiffiffi
j!

p
=
ffiffi
i
p

!, this becomes the
same as the Fock basis amplitude in Eq. (36).

D. Efficiency of forming the amplitude

While this process of moving from a Fock basis interferometer to
a coherent state is straight-forward, the ability to make these amplitude
estimates must clearly be inefficient at scale. There is only one part
of the process where this inefficiency lies. The process to lay out the
interferometer repeatedly for the coherent state inputs is linear in
the number of modes (m) and the number of photons (N). The esti-
mation of the output amplitudes from the coherent states can be
made efficiently, as there are no correlations between the modes to
estimate. The only place where the inefficiency lies is in the combi-
nation of the output amplitudes to form the final Fock basis ampli-

tude. In the worst case, there are
m
N

� �
amplitudes that need to be

symmetrically combined.
This is distinct from the concept from quantum optics that the

full effects of interference of photons cannot be reproduced in an
experimental configuration using only classical light. This construction
shows that the analogous interference effects can be recreated, but at
the cost of a computationally inefficient process to generate the ampli-
tudes. For fixed values of m and N, there are no variables to scale the
complexity in, and this procedure will give a construction that will
generate the required amplitudes.

V. EVOLUTION RECOMPUTATION METHOD

In the method presented in Sec. IV, the source of computational
inefficiency all occurs within the measurement processing. Here, we
show how one can move this complexity from the measurement and
into the evolution of the coherent states. In this approach, the appro-
priate representation of the unitary matrix is encoded into a larger
interferometer. The required amplitude can be directly measured on

FIG. 1. Schematic of how amplitudes of a
Fock basis state evolving under a linear
network U can be derived from coherent
states. (a) The configuration considered in
this schematic is for single-photon inputs
into some modes of a linear network U,
and the output is measured in the Fock
basis. (b) The method for extracting the
amplitudes of the Fock basis process. For
each input photon, the network U is
repeated. A coherent state is then injected
into each network for each photon individ-
ually. The output coherent state amplitude
is then measured using homodyne detec-
tion. The Fock basis amplitude is encoded
in the symmetric combination of the output
modes of the corresponding modes of the
Fock basis detection. Though this repre-
sentation shows the case of individual
photon inputs, the procedure works for the
general case (see the text).

AVS Quantum Science ARTICLE scitation.org/journal/aqs

AVS Quantum Sci. 5, 011405 (2023); doi: 10.1116/5.0136828 5, 011405-5

VC Author(s) 2023

 26 O
ctober 2023 09:27:32

https://scitation.org/journal/aqs


the output coherent state amplitude. However, the representation
matrix elements need to be computed, which becomes the source of
the computational inefficiency.

A. Hong–Ou–Mandel example

We will start with the familiar example of the Hong–Ou–Mandel
two-mode two-photon interferometer.17 We can write down the evo-
lution of the annihilation operators from two modes that are of total
degree 2,

1ffiffiffi
2
p â21 !

1ffiffiffi
2
p ðU1;1â1 þ U1;2â2Þ2 (40)

¼ U2
1;1

1ffiffiffi
2
p â21 þ

ffiffiffi
2
p

U1;1U1;2â1â2 þ U2
1;2

1ffiffiffi
2
p â22; (41)

â1â2 ! ðU1;1â1 þ U1;2â2ÞðU2;1â1 þ U2;2â2Þ (42)

¼
ffiffiffi
2
p

U1;1U1;2
1ffiffiffi
2
p â21 þ ðU1;1U2;2 þ U1;2U2;1Þâ1â2

þ
ffiffiffi
2
p

U1;2U2;2
1ffiffiffi
2
p â22; (43)

1ffiffiffi
2
p â22 !

1ffiffiffi
2
p ðU2;1â1 þ U2;2â2Þ2 (44)

¼ U2
2;1

1ffiffiffi
2
p â21 þ

ffiffiffi
2
p

U2;1U2;2â1â2 þ
1ffiffiffi
2
p U2

2;2â
2
2: (45)

As everything is linear, we can write this in matrix form

U2
1;1

ffiffiffi
2
p

U1;1U1;2 U2
2;1ffiffiffi

2
p

U1;1U1;2 ðU1;1U2;2 þ U1;2U2;1Þ
ffiffiffi
2
p

U2;1U2;2

U2
1;2

ffiffiffi
2
p

U2;1U2;2 U2
2;2

0
BB@

1
CCA; (46)

where this matrix acts on the space of vectors formed from the
coefficients of the terms â21=

ffiffiffi
2
p

; â1â2; â
2
2=

ffiffiffi
2
p

. This matrix represen-
tation is also unitary, as it is a faithful representation of the underlying
group. That is, if the inverse is the conjugate transpose of the group
element, then it is also true of this representation. As this is a unitary
matrix, we can think of it as forming another new linear network. This
is the way in which we can make the coherent state isomorphism
work.

If the two-photon two-mode coefficients within the Fock basis
are c1;1; c1;2, and c2;2, then a three-mode coherent state that represents
this two-photon state can be written as

ja1 ¼ c1;1i � ja2 ¼ c1;2i � ja3 ¼ c2;2i: (47)

By using the 3� 3 matrix from Eq. (46), we can recover the evolution
of the two-photon states through this mapping.

B. Three-photon, two-mode example

Following the same rules, one can write out the case for three
photons in two modes. The basis states are fj3; 0i; j2; 1i;
j1; 2i; j0; 3ig, and hence, the unitary matrix will need to act on four-
dimensional vectors. The result is

U3
1;1

ffiffiffi
3
p

U2
1;1U1;2

ffiffiffi
3
p

U1;1U2
1;2 U3

1;2ffiffiffi
3
p

U2
1;1U2;1 U1;1ðU1;1U2;2 þ 2U1;2U2;1Þ U1;2ð2U1;1U2;2 þ U1;2U2;1Þ

ffiffiffi
3
p

U2
1;2U2;2ffiffiffi

3
p

U1;1U2
2;1 U2;1ð2U1;1U2;2 þ U1;2U2;1Þ U2;2ðU1;1U2;2 þ 2U1;2U2;1Þ

ffiffiffi
3
p

U1;2U2
2;2

U3
2;1

ffiffiffi
3
p

U2
2;1U2;2

ffiffiffi
3
p

U2;1U2
2;2 U3

2;2

0
BBBBB@

1
CCCCCA; (48)

which again is a unitary matrix.

C. Two-photon, three-mode example

In the case of two-photons into three modes, the Fock space is spanned by a six-dimensional space. Here, we choose the basis

fj2; 0; 0i; j1; 1; 0i; j1; 0; 1i; j0; 2; 0i; j0; 1; 1i; j0; 0; 2ig: (49)

The matrix for a linear optics network U as a transformation in this basis is

U2
1;1

ffiffiffi
2
p

U1;1U1;2
ffiffiffi
2
p

U1;1U1;3 U2
1;2

ffiffiffi
2
p

U1;2U1;3 U2
1;3ffiffiffi

2
p

U1;1U2;1 ðU1;1U2;2 þ U1;2U2;1Þ ðU1;1U2;3 þ U1;3U2;1Þ
ffiffiffi
2
p

U1;2U2;2 ðU1;2U2;3 þ U1;3U2;2Þ
ffiffiffi
2
p

U1;3U2;3ffiffiffi
2
p

U1;1U3;1 ðU1;1U3;2 þ U1;2U3;1Þ ðU1;1U3;3 þ U1;3U3;1Þ
ffiffiffi
2
p

U1;2U3;2 ðU1;2U3;3 þ U1;3U3;2Þ
ffiffiffi
2
p

U1;3U3;3

U2
2;1

ffiffiffi
2
p

U2;1U2;2
ffiffiffi
2
p

U2;1U2;3 U2
2;2

ffiffiffi
2
p

U2;2U2;3 U2
2;3ffiffiffi

2
p

U2;1U3;1 ðU2;1U3;2 þ U2;2U3;1Þ ðU2;1U3;3 þ U2;3U3;1Þ
ffiffiffi
2
p

U2;2U3;2 ðU2;2U3;3 þ U2;3U3;2Þ
ffiffiffi
2
p

U2;3U3;3

U2
3;1

ffiffiffi
2
p

U3;1U3;2
ffiffiffi
2
p

U3;1U3;3 U2
3;2

ffiffiffi
2
p

U3;2U3;3 U2
3;3

0
BBBBBBBBB@

1
CCCCCCCCCA
: (50)

D. General case

What is the general pattern for these matrices? Clearly,
there is some kind of matrix permanents from matrices formed

from repeated matrix elements of the smaller unitary. This moti-
vates the definition of a generalized expression for matrix perma-
nents. Before getting there, let us look at the matrix determinant.
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This can be written using the totally antisymmetric symbol
�ijk… as

DetðAÞ ¼
X
ijk…

�ijk…Ai1Aj2Ak3…: (51)

Note that this links the dimensionality of the matrix with the rank of
�. So the standard matrix permanent can be rewritten in this notation
as

PerðAÞ ¼
X
ijk…

rijk…Ai1Aj2Ak3…; (52)

where r represents the totally symmetric tensor, that is, 1 if the indices
are a permutation of 123… and zero otherwise. This directly suggests
the generalized permanent expression as

Perabc…abc…ðAÞ ¼
X
ijk…

rabc…
ijk… AiaAjbAkc…; (53)

where rabc…
ijk… is defined as being 1 if ijk… is a permutation of abc…,

and zero otherwise.
The matrix elements of the computed unitary matrix can be

computed using this generalized permanent. First, define a func-
tion D, which takes the vector index notation from Eq. (28) into
the index notation for the generalized permanent expression such
that

Dðði1; i2;…; imÞÞ ¼ 11 � � � 1|fflfflffl{zfflfflffl}
i1

22 � � � 2|fflfflffl{zfflfflffl}
i2

� � �mm � � �m|fflfflfflfflffl{zfflfflfflfflffl}
im

: (54)

Using this, the computed unitary matrix elements can be written as

U sym ¼
ffiffiffi
j!

pffiffiffi
i!
p PerDðjÞDðiÞðUÞ: (55)

A schematic representation of this method is shown in Fig. 2.
As an example of this, consider the case of two photons in three

modes (m¼ 3) above. The matrix element in the first column and sec-
ond row is given by the indices i ¼ ð1; 1; 0Þ and j ¼ ð2; 0; 0Þ, and
with this expression, the value is

1ffiffiffi
2
p
X3
i¼1

X3
j¼1

r12
ij Ui;1Uj;1 ¼

ffiffiffi
2
p

U1;1U1;2; (56)

which agrees with the value given. For another example, consider the
three-photon two-mode case above and the entry in the third column
and second row with indices i ¼ ð1; 2; 0Þ and j ¼ ð2; 1; 0Þ. The entry
is given by ffiffiffi

2
pffiffiffi
2
p
X2
i¼1

X2
j¼1

X2
k¼1

r112
ijk Ui;1Uj;2Uk;2

¼ U1;1U1;2U2;2 þ U1;1U2;2U1;2 þ U2;1U1;2U1;2; (57)

which is the same as the expression given in the matrix above.

VI. DISCUSSION

The methods presented in this paper give explicitly a construc-
tion which extends the notion that “a single-photon linear optics
experiment can be recreated with coherent states” to that of multiple
photon experiments. Even though this is possible, the key observation
is that the methods presented are inefficient, in a computational sense,
to implement. As the number of photons increases, there is some pro-
cedure that requires exponential resources to compute. In both cases

FIG. 2. Schematic example of the coherent
state equivalent of Fock basis mixing
under linear optics. (a) The network con-
sidered is single-photon states injected
into a linear optics network given by the
network matrix U. The output is measured
in the Fock basis. (b) The equivalent con-
figuration under the network recomputa-
tion method. A coherent state in injected
into a single mode (here, shown in the
second mode). The network is recom-
puted using the matrix of Eq. (55). The
equivalent amplitude is extracted from
homodyne measurements on the output.
The representation shown is only for indi-
vidual input photons, but the process
works for multiple photons (see the text).
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here, this is reflected by the presence of symmetric polynomials of
amplitudes and quantities, which can be related to matrix permanents.
In the context of what is known about the classical computational
hardness of quantum systems, even under approximation, this situa-
tion is to be expected. Therefore, such constructions do not in any way
supersede the need for the advancement of quantum technologies to
generate and detect high number Fock states.

The approach considered here depends on the ability to utilize
multiple copies, or the ability to construct linear networks. This
implicitly requires very good knowledge of the network matrix param-
eters. If one were presented with a single instance of the network, then
a computation of the required amplitudes could be performed after a
tomographic characterization of the network.19 In fact, for any one
particular amplitude, only specific elements of the network matrix will
be required. This work, therefore, complements the techniques for
characterizing linear networks.

If the knowledge about the linear network is wrong or incom-
plete, then there will inevitably be an error associated with the esti-
mated amplitudes in addition to any error associated with the
estimation of complex amplitudes. This extra error will be (in the
worst case) an additive error that accumulates for each term involved

in the final estimation. Hence, one can expect
m
N

� �
accumulated

error terms for the symmetric combinations of output amplitudes, and
these errors will be multiplied by N for the unitary recomputation
technique. It is interesting to note that the basis for the classical com-
putational hardness of approximately sampling photons from linear
optic devices is based on the hardness of approximating matrix perma-
nents to within an additive error that scales as

ffiffiffiffiffi
N!
p

. How and if this
can be exploited here to find a regime of noises added to the linear net-
work matrix where a classically efficient approximate estimate tech-
nique based on the observations made here is somewhat unclear.

This estimation technique does not seem to perform poorly in
the presence of loss. If one can characterize the loss rates for all coher-
ent state input–output combinations, then this loss rate can be merely
corrected for by appropriately increasing an estimated coherent state
amplitude. Alternatively, a proportionally higher coherent state could
be injected into the network. This is not surprising, as the purity of
coherent states under loss remains unchanged.

So, in what way is this result useful? The author of this paper
believes that the answer to this question is in the development of new,
larger scale, quantum technologies. It is an often used argument that
an experiment can simply be performed by replacing single photons
with coherent states. What this paper describes may indeed be true,
but depending on the context, either some part of the quantum nature
of the system is lost or the construction is particular and not scalable.
This notion is not necessarily new, as it has been used as a conceptual
basis in the past for determining what is and what is not an
“interesting” quantum optics experiment. However, this has been pre-
viously been left somewhat ambiguous. This paper gives an explicit
construction for which this notion can be compared to.

With all that being said, there is also the possibility that with the
constructions given here, new applications could be identified. There
may be an application which, with a specific construction, minimally
passes some sense of a quantum/classical transition based on the com-
putational difficulty. To the author, no such applications are immedi-
ately obvious, but such possibilities cannot be ruled out.

VII. CONCLUSION

In this paper, the standard approach of comparing single-photon
experiments using linear optics with experiments involving coherent
states with linear optics was presented. By extending the construction
through repeated implementation of the network, particularly chosen
coherent state inputs and post-processing of the output coherent state
amplitudes, multiple photon experiments can have their amplitudes
estimated in a similar way. As an alternative approach, a new linear
optical network can be constructed for coherent state inputs, which
mirrors the original Fock basis process. Coherent states can then be
directly injected and amplitudes estimated. The cost of the first
approach is that the output signals must be processed in a way that
uses exponential computational time. The cost of the second approach
is that computing the new network requires exponential computa-
tional resources. It is hoped that these approaches give a new perspec-
tive on the transition of experiments from what can be explained
classically and what is a manifestly quantum phenomena.
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