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1. Introduction 

 

Production performance demanded of livestock is constantly increasing worldwide. To 

allow for such high growing performances, every single animal requires a specific, well-

adjusted diet. Especially in pigs, a balanced supply of amino acids (AA) is essential to obtain 

good fattening performances. As an essential AA, methionine (Met) cannot be synthetized by 

the organism and needs to be obtained from the diet (Wang et al. 2009). In most diet 

formulations, Met concentration is limiting performance if not supplemented. A shortage in Met 

can result in deficiency of overall protein synthesis (Katsutoshi and Jun-Ichi 1987). Methionine 

has a crucial part in numerous metabolic pathways as well. It acts as a sulfur donor in the 

synthesis of the other two sulfur containing AA cysteine and cystine (Brosnan and Brosnan 

2006). It is also used as a methyl donor in transmethylation pathways after conversion to S-

adenosylmethionine (SAM). SAM is required in many metabolic pathways, e.g. DNA, creatine 

norepinephrine, dopamine or serotonin synthesis (Ouyang et al. 2020; Brosnan et al. 2011; 

Bauchart-Thevret et al. 2009a). Therefore, Met is not only significant on a financial level by 

ensuring good production and health, but is also of importance for the overall physical condition 

of the individual animal (Tian et al. 2016).  

To ensure that livestock is appropriately provided with Met, the latter is often 

supplemented in its crystalline form to the diet of poultry, cows and pigs in the form of L-Met, 

its racemate D/L-Met or its synthetic analog D/L-2-hydroxy-4-methylthiobutyrate (D/L-HMTBA) 

(Zhang et al. 2015). The use of crystalline amino acids instead of “full-protein” diets was shown 

to enhance growth performance by Truong et al., probably, because diets with “rapidly 

available” protein in the form of supplemented crystalline amino acids had a positive effect on 

the utilization of amino acids. Additionally, an oversupply of protein can be avoided, thus 

decreasing the necessity of nitrogen detoxification and excretion (Truong et al. 2017). These 

findings underline the importance of understanding amino acid needs and their utilization in 

livestock. 

 

The focus of the work presented in the current thesis was to assess whether the most 

used forms of dietary Met supplements (D/L-Met, L-Met and D/L-HMTBA) had an influence on 

the absorption of Met in the porcine intestine. Furthermore, this work aimed to describe the 

respective distributions of known and supposed Met and HMTBA transport systems along the 

gastrointestinal tract of pigs and whether these were regulated on a molecular level by 

aforementioned dietary supplements. 
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2. Literature review 

 

2.1. Feed Intake and Digestion 

 

As omnivorous animals, pigs are able to digest plant and animal protein with high 

efficiency. Animal protein, milk powder for example, is being processed with slightly higher 

efficiency than vegetable protein (from soybeans for example) (Mathai et al. 2017). However, 

studies showed the apparent ileal digestibility of amino acids (AA) from vegetable protein can 

be enhanced onto the same level as animal protein through fermentation, making it an 

excellent protein source for growing and fattening pigs (Jeong et al. 2016). Beside the 

digestibility of protein itself, AA patterns in the respective protein sources are essential to best 

cover the pig’s requirements for every single AA. Also, feeding the appropriate AA profile 

allows to reduce overall protein supply, thereby, reducing feed costs and N excretion (Wang 

et al. 2018; Van Milgen and Dourmad 2015). Among the most used protein sources, soybean 

meal has appeared to be the best vegetable protein source for swine diets as it has very good 

ileal digestibility due to an AA profile rich in lysine, tryptophan and threonine (Gonzalez-Vega 

and Stein 2012). These AA are considered “essential” (Van Milgen and Dourmad 2015), which 

means they cannot be synthesized by the porcine organism and have to be obtained from the 

diet (National Research Council 2012). Other AA known to be essential for pigs are Met, 

phenylalanine, histidine, valine, isoleucine and leucine. In contrast, the AA which can be 

synthesized de novo by the body are considered non-essential. De-novo synthesis of these 

AA is not always sufficient to cover all dietary requirements of the animal (arginine in young 

pigs, for example); this means that a well-balanced diet should also contain sufficient amounts 

of non-essential AA  (Van Milgen and Dourmad 2015). Crystalline AA are widely supplemented 

in the diets of livestock in order to fit the optimal AA pattern, assuring the best possible dietary 

supply with all essential (and non-essential) AA (National Research Council 2012).  

  

The digestion of AA starts in the stomach and in the duodenum where the proteins are 

broken down into polypeptides by enzymes. Pepsin, trypsin and chymotrypsin play the most 

important role in this process. Pepsin is the principal acid protease of the stomach as it has a 

very broad specificity and is able to split proteins at numerous places (Berg et al. 2002). Trypsin 

and chymotrypsin are components of pancreatic secretions, both acting in the  duodenum 

(Barrett et al. 2012). The polypeptides are later fragmented into AA and di- or tripeptides by 

various peptidases. These molecules can be transported into the intestinal epithelial cells by 

numerous different AA carriers and the intestinal peptide carrier PEPT1. The AA carriers are 
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mostly specific for the respective type of AA transported; some are specialized in neutral AA, 

others in anionic or cationic AA. Most of the known AA transporters are Na+-coupled, but 

various Na+-independent carriers also participate in the intestinal absorption of AA. Another 

set of carrier transports the intracellularly accumulated AA from the epithelial cell into the blood 

(Von Engelhardt et al. 2015). 

 

 

2.2. Methionine supplementation in pigs 

 

Methionine plays a very important role in the nutrition of pigs as an essential AA. 

Furthermore, it is also a limiting AA which means that it has to be supplemented with most diet 

formulations to improve growth rates, nitrogen efficiency and profitability in meat-producing 

livestock (Lemme et al. 2009). The recommended dietary Met intake is at approximatively 

0.34% for growing pigs (Moehn et al. 2008) and between 0.32% and 0.38% for growing broilers 

(National Research Council 1994). Excessive supplementation of Met has to be avoided as 

this may have toxic effects. In humans, hypermethioninemia has been associated with 

acidosis, vascular endothelial dysfunction and impaired growth in infants (Garlick 2006). In rats 

and chickens, increasing the dietary Met concentration to 1.5-2.0% of the diet caused drastic 

decreases of growth and low feed intakes (Benevenga and Steele 1984). It follows that Met 

supplementation has to occur in a defined dosage range to fulfill its purpose. 

Met deprivation or even restriction has been shown to lead to lower body weights and 

fat mass, but also to enhance overall energy expenses in mammals (Xiao and Guo 2021).  

Furthermore, a slight over supplementation of Met might have a positive effect on the 

development of pigs (Owen et al. 1995). It has been demonstrated that a rise in the Met content 

in the diet of freshly weaned piglets from 0.36% to 0.56% resulted in significantly higher weight 

gains. Others showed that supplementing the feed with 0.15% crystalline D/L-Met increased 

the daily weight gain by more than 13% (Ly et al. 2012). Besides improved growth, a higher 

amount of Met in the diets of growing pigs can raise muscular antioxidant capacity and improve 

meat quality after slaughter by increasing its pH and reducing drip loss (Li et al. 2017). 

Furthermore, as a sulfur containing AA (SAA), Met in its dietary form is a key ingredient for 

sustaining normal mucosal proliferation because dietary SAA deficiency resulted in intestinal 

mucosal atrophy (Bauchart-Thevret et al. 2009b). Despite the positive effects of slight over-

supplementation of Met, it has been shown that a significantly higher Met intake than normal 

might have harmful consequences. In fact, Met has been described as the “most toxic” AA 

(Harper et al. 1970). These harmful impacts might include acidosis, coma and even death in 

some species (Scislowski and Pickard 1993). The source of the toxic effect is mainly attributed 
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to the fact that Met is a precursor of homocysteine which accumulates in the body when Met 

is supplemented in excess (Garlick 2006; Baker 2006), but also the rise in methanethiol and 

H2S from transaminative degradation might play a role in the potential toxicity of this AA 

(Scislowski and Pickard 1993). 

 

Several supplements are suited as Met source. It can be added in the form of L-Met, 

D/L-Met or as D/L HMTBA. Pure L-Met is the most expensive additive when compared to the 

two others, for this reason D/L-Met and D/L-HMTBA are most commonly used in animal 

nutrition. Whether the one or the other of the latter two is more cost efficient cannot be 

answered directly, as various factors have to be taken into account for a realistic economic 

model, especially overall feed price, the price of the used supplement and meat market price 

(Vedenov and Pesti 2010). The D/L-Met racemate is efficiently used by the pig’s organism. 

The D-isomer is converted into the L-isomer in the liver and, in this form, it is fully utilized in 

metabolic processes (Zhang et al. 2015). Several studies used the hydroxyl analog D/L-

HMTBA as an alternative to Met. They showed that D/L-HMTBA has a lower bioavailability 

than D/L-Met or L-Met (Zhang et al. 2015; Shoveller et al. 2010), however, it is still very efficient 

in promoting growth in pigs (Zhang et al. 2015). The reasons for the high growth rates reached 

by using D/L-HMTBA could be that the latter is metabolized to a considerable lesser degree in 

the intestinal epithelial cells than Met (European Food Safety Authority 2012). The Met 

requirement of epithelial cells is very high for the synthesis of glutathione and mucins, but also 

for transmethylation reactions (Fang et al. 2010a; Riedijk et al. 2007; Shoveller et al. 2003); 

furthermore, if the Met concentration in the epithelial cell increases due to high dietary supply, 

transsulfuration, transamination and transmethylation reactions are stimulated to cover the 

cells’ needs for Met (Lemann and Relman 1959).  

 

Nevertheless, even though the bioavailability of the different Met sources is well known, 

there are no studies directly comparing the absorption of Met and D/L-HMTBA in the intestine 

of pigs. It has also never been investigated whether these different Met sources had an effect 

on the expression of intestinal Met transport-systems in pigs, which could directly affect the 

absorption of this AA.  

 

 

2.3. Methionine metabolism 

Met has a very important role in protein biosynthesis as it is the AA used to initiate protein 

synthesis in the cytosol of all eukaryotes (Sherman et al. 1985). Its structure itself also makes 

Met a very interesting proteinogenic AA; the side chain of Met contains a sulfur atom and this 
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confers a certain flexibility to the proteins. This particularity can be used for stabilizing protein 

structures or facilitating protein-protein interactions, which makes Met a very important building 

block in a large variety of proteins. The Met metabolism itself mainly comprises 

transmethylation, remethylation and transsulfuration reactions (Figure 1) (Mastrototaro et al. 

2016). Met can be converted to homocysteine through successive transamination and 

transmethylation via SAM. The latter is the main methyl donor in mammalian cells that is used 

for the methylation of nucleic acids, proteins and lipids (Bauchart-Thevret et al. 2009a). The 

produced homocysteine can then be methylated back into Met, or can be converted to cysteine 

and later taurine through transsulfuration; this last pathway being irreversible (Brosnan and 

Brosnan 2006). Another asset of Met is its ability to be oxidized to methionine sulfoxide which 

can be reduced back to Met by the same enzyme (methionine sulfoxide reductase A: MSR A). 

The oxidation of Met in proteins does not seem to have an effect on the their activity, but might 

be of interest in protecting the eukaryotic cell from oxidation (Aledo 2019). Evidence shows 

that Met even tends to show higher incorporation in proteins when cells are exposed to 

oxidative stress (Aledo 2019). 

 

 

Figure 1: Methionine metabolism pathways according to Bauchart-Thevret et al. (Bauchart-
Thevret et al. 2009a).  
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Methionine can be used in transamination reactions to produce other AA necessary for protein 
synthesis. Most Met absorbed in the intestinal epithelial cells is transmethylated into S-adenosyl-
methionine (SAM). After demethylation into S-adenosyl-homocysteine (SAH), it is processed into 
homocysteine. Homocysteine can be methylated back into Met. In a transsulfuration reaction 
homocysteine can be metabolized into cysteine which can later be used in the synthesis of taurine, 
cystine or glutathione. MAT, methionine adenosyltranferase; MT, methyl transferase; SAHH, S-
adenosylhomocysteine hydrolase; MS, methionine synthetase; BHMT, betaine-homocysteine 
methyltransferase; CBS, cystathionine β-synthase; CGL, cystathionine γ-lyase; CDO, cysteine 
dioxygenase; CSD, cysteine sulfate decarboxylase. 

 
Several studies showed that the dietary Met requirement can be lowered by 

supplementing cysteine. Indeed more than 40% of the SAA requirement can be met by 

cysteine (Bauchart-Thevret et al. 2009a). This “Met-sparing effect” seems to be a consequence 

of reduced homocysteine transsulfuration to cystathionine when cysteine is present in 

sufficient quantity (Finkelstein et al. 1988). Another product of Met metabolism is taurine. 

Taurine is used in the regulation of anti-oxidation reactions. As the intestine is constantly 

exposed to various endo- and exogenous oxidants, taurine is crucial to maintain gut health 

(Colovic et al. 2018). Next to that, taurine is involved in bile acid conjugation which makes it 

very important in intestinal lipid digestion (Bouckenooghe et al. 2006). Bauchart-Thevret et al. 

suggested that taurine can be synthetized in the intestine from Met and cysteine, as a sulfur 

AA-free diet leads to a decrease in ileal taurine concentration (Bauchart-Thevret et al. 2009a). 

In case Met is present in excess, it can also be converted into oxaloacetic acid to be used 

either in the glycolipid metabolism or in the synthesis of nonessential AA (Wan et al. 2017). 

 

The intestinal epithelial cells have very high metabolism rates; indeed approximately 

30% of dietary Met is directly metabolized in the gastrointestinal tract (GIT) (Shoveller et al. 

2005). Evidence of the high intestinal metabolization is the low appearance of dietary Met in 

the portal blood, suggesting a high utilization of Met directly in the intestinal tissue (Stoll et al. 

1998). As a matter of fact, the GIT of piglets shows relatively high transmethylation and 

transsulfuration rates for absorbed Met, a significant amount of the absorbed Met is directly 

used in the GIT for protein synthesis (Riedijk et al. 2007). Stoll et al. concluded that even 

though lysine is considered the first limiting AA, the limiting AA for extra-intestinal deposition 

can be considered being Met in pigs. This statement was made on the basis of the net portal 

AA balance, as only about 48% of the ingested Met appeared in the portal blood, presumably 

due to a very high “first-pass” Met utilization in the intestinal mucosa (Stoll et al. 1998). 
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2.4. HMTBA metabolism 

 

2-Hydroxy-4-methylthiobutyrate is a synthetic hydroxy analog of Met. It is increasingly 

used as a Met substitute in the diet of livestock as it seems to be more cost efficient (Vedenov 

and Pesti 2010). While Met possesses the classic structure of an AA (an amino group, a 

carboxyl group, a hydrogen atom, and a side chain), the amino group is replaced by a hydroxyl 

group in HMTBA. This structural difference makes HMTBA similar to a monocarboxylate 

molecule, rather than an AA (To et al. 2021). This apparently small modification has a 

considerable influence on molecular properties and significantly alters metabolism and 

transport mechanisms of the substance. The bioefficacy of D/L-HMTBA has been the subject 

of various studies in poultry and swine (Shoveller et al. 2010; Lemme et al. 2002) and the use 

of this supplement is still controversial with regards to its effectiveness (Martin-Venegas et al. 

2006). Commercially available D/L-HMTBA consists of 88% of a blend of mono-, di-, and 

oligomers. This product being a mixture of different molecule sizes might play a role in its lower 

dietary efficiency (Zimmermann et al. 2005). Several groups have investigated the 

effectiveness of D/L-HMTBA when compared to D/L-Met. Most studies used N balance as 

primary response criterion whereas others added animal performance in the form of weight 

gain as a criterion (Wang et al. 2020; Opapeju et al. 2012; Feng 2006; Kim et al. 2006; 

Zimmermann et al. 2005). The results ranged from 62 to 78% D/L-HMTBA efficacy when 

compared to D/L-Met on an equimolar base. Before it can be used by the organism, D/L-

HMTBA has to be converted into L-Met. Studies have shown that this process occurs mainly 

in the liver (Lobley et al. 2006), but the GIT was found to be able to transform HMTBA into Met 

(Bauchart-Thevret et al. 2009a; Martin-Venegas et al. 2006). This could explain why one study 

identified higher fractional portal balance of Met (the amount of met in the portal blood after 

first-pass metabolism in the enterocytes) in animals that received D/L-HMTBA as a Met 

supplement compared to animals which were fed a D/L-Met-supplemented diet (Fang et al. 

2010a). Nevertheless, the levels of protein synthesis are comparable in the tissue from animals 

fed D/L-HMTBA or D/L-Met (Knight et al. 1998). Another emerging concern about the 

substitution of Met with D/L-HMTBA might be that the Met analog is not able to replicate the 

antioxidative properties of the AA. Gasparino et al. tackled this question in 2018 and showed 

that enzymatic activity linked to antioxidant systems was similar in D/L-HMTBA-fed chicken 

when compared to the activity measured previously in birds which received D/L-Met as a 

dietary supplement (Gasparino et al. 2018). Other work groups also showed that D/L-Met and 

D/L-HMTBA similarly affected the antioxidant defense system under normal conditions (Zhang 

et al. 2018; Zeitz et al. 2018). In contrast, in heat stress situations, D/L-Met appeared to have 

a better antioxidant efficacy when compared to D/L-HMTBA (Liu et al. 2019). However, it is 
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important to notice that antioxidative capacity was not shown for D/L-HMTBA itself and could 

probably be linked to the capacity of D/L-HMTBA to be metabolized into Met. In another study 

it was hypothesized that a D/L-HMTBA-containing diet would lead to lower production of 

reduced glutathione, which is known for protecting cells from oxidative stress, eventually 

leading to the upregulation of alternative mechanisms against oxidative stress when compared 

to a D/L-Met or L-Met-supplemented diet. This group showed that D/L-HMTBA and D/L-Met 

supplementations led to similarly reduced glutathione levels, only pigs fed with L-Met showing 

higher levels. Nevertheless, the oxidative stress and defense status remained similar with all 

three diets (Rasch et al. 2020). Overall, these recent studies indicate that feeding D/L-HMTBA 

does not have an adverse influence on the antioxidative protective systems when compared 

to D/L-Met. 

 

The first step in L-Met synthesis from D/L-HMTBA is a stereospecific reaction involving 

either L-2-hydroxy acid oxidase (L-HAOX) or D-2-hydroxy acid dehydrogenase (D-HADH). 

This first reaction oxidizes D- or L-HMTBA into 2-keto-(4-methylthio) butyrate (KMB). KMB is 

then converted to L-Met in a transamination step catalyzed by the enzyme aminotransferase 

(Dibner and Knight 1984). These enzymes are not equally distributed in the organism. While 

aminotransferase is ubiquitously present in the tissue of animals, the activity of D-HADH and 

especially L-HAOX is much more restricted. As a matter of fact, L-HAOX has been found only 

in the liver and kidney of different animals. D-HADH is more common as it has additionally 

been found in other tissues, in intestine and skeletal muscle for example (Bauchart-Thevret et 

al. 2009a); it has even been stipulated that D-HADH is potentially present in every cell of the 

body (Vazquez-Anon et al. 2017). However, the activity of both L-HAOX and D-HADH has 

been described as highest in liver and kidney, especially when compared to tissue from the 

intestine (Fang et al. 2010b), indicating that these organs have their importance in the 

transformation of D/L-HMTBA. 

 

 

2.5.   Transport mechanisms for methionine  

 

All AA possess an amino group (-NH2) and a carboxyl group (-COOH). A third functional 

group may confer AA further structural characteristics; therefore, a large range of transport 

systems is necessary that all types of AA can be transported across epithelia in the organism. 

Met is a hydrophobic, neutral, non-aromatic and sulfur-containing AA (Berg et al. 2002); this 

determines which AA transporters can be involved in the intestinal absorption of Met. An 

overview of the hypothetical model of Met transport is shown in Figure 2. Met seems to have 
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a very high priority in the absorption of proteinogenic AA, as numerous transport systems 

appear to be involved in its absorption (Webb 1990). All of these systems have slightly different 

substrate spectra and characteristics. They can be specialized solely in neutral AA or also 

accept cationic AA. Most of them require sodium to carry their substrates; some also need 

chloride in addition. Others are AA exchangers and require the presence of an AA at the 

contralateral side of the membrane. 

 

The B0AT1 (SLC6A19) system is probably the most important protein for Met transport. 

B0AT1 is a strictly sodium-dependent and electrogenic system. This transporter is mainly 

located apically in epithelia of the small intestine and kidney. Its proper localization relies on 

the co-expression of a molecule called collectrin, or its analogue angiotensin-converting 

enzyme 2 (ACE2) in the intestine (Singer and Camargo 2011; Kowalczuk et al. 2008). B0AT1 

accepts all neutral AA as substrates but has a preference towards long-chained, branched 

and/or sulfur containing neutral AA like L-leucine, L-isoleucine and L-Met (Camargo et al. 

2005). These are transported into to the cell with Na+ in a 1:1 stoichiometry. The Km described 

for L-Met is between 1,5 and 4,0 mM. Compared to other transport systems, the affinity of 

B0AT1 for L-Met might appear relatively low (Bröer 2008; Bohmer et al. 2005; Jorgensen et al. 

1990). Mutations in the SLC6A19 gene are associated with a condition called Hartnup disorder, 

involving decreased absorption of neutral AA in the intestine and higher urinary loss. In patients 

with this disorder, the SLC6A19 gene is mutated in such a way that the interaction with 

collectrin and ACE2 is reduced, thus hindering the proper localization of the transporter in the 

epithelial membrane (Jando et al. 2017; Kowalczuk et al. 2008). 

 
ATB0+ (SLC6A14) is supposed to play a rather marginal role in the absorption of dietary 

Met (To et al. 2021). This system has a good affinity to Met and is mainly situated in intestinal 

segments with low Met availability (Chen et al. 1994). At neutral pH, it only accepts neutral AA, 

but the system accepts anionic AA at acidic pH. This system prefers large AA, especially 

glutamine and asparagine (Kekuda et al. 1997). Overall it is potentially the AA transport system 

with the broadest substrate spectrum, as it is able to transport 18 proteinogenic AA (Sikder et 

al. 2017). ATB0+ is a Na+ and Cl- dependent transport system and works with a 2:1:1 (Na+: Cl-: 

AA) stoichiometry. With a Km around 14 µM, ATB0+ has a higher affinity to Met than B0AT1 

(Sloan and Mager 1999). The presence of ATB0+ in the porcine jejunum is subject to 

controversy. Munck et al. stipulated that ATB0+ might not be expressed in the intestine of pigs 

based on functional data (Munck et al. 2000). ATB0+ was shown to be present in the stomach 

and in the small intestine of pigs on the mRNA level (Yang et al. 2010) and the ATB0+ protein 

was already found in jejunum (Sun et al. 2015) although it is supposed to have a higher 

expression in more distal portions of the small intestine and in the large intestine (Hatanaka et 
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al. 2002). Hatanaka et al. showed that ATB0+ accepts several D-AA (D-Met was one of them 

among others). Because of the predominant location in the large intestine, Hatanaka’s group 

stipulated that the primary function of ATB0+ was the absorption of bacterial AA (Hatanaka et 

al. 2002). ATB0+ also plays a role in various pathophysiological processes, for example in 

modulating the severity of cystic fibrosis, as well as being upregulated in various types of 

cancer (Ruffin et al. 2020; Sikder et al. 2017). 

 

  

Figure 2: Supposed model of methionine transport in enterocytes of pigs according to 
Mastrototaro et al. (Mastrototaro et al. 2016). 

The main ways of Met absorption in the intestine are through the Na+-dependent transport systems 
B0AT1 and ATB0+. As the latter could not be found in the intestine of pigs, B0AT1 is probably the main 
way of entrance for Met into the intestinal epithelial cell in pigs. The Na+-independent b0+AT as well as 
the Na+-dependent systems IMINO and ASCT2 may also play a role (although marginal) in the intestinal 
Met uptake. After import into the cell, the biggest fraction of the absorbed Met is rather quickly used up 
in the intracellular Met metabolism and metabolized to homocystein. However, a smaller proportion is 
released on the basolateral side through facilitated diffusion with the LAT4 transport-system. LAT4 is 
probably the only transport system responsible for Met efflux, as the other transport proteins on the 
basolateral side of the enterocytes (LAT1/2, SNAT2, y+LAT1) may facilitate re-uptake of Met from the 
blood into the cell. The arrows show the Met fluxes in the intestinal epithelial cell, red full arrows 
represent the main flow in the porcine enterocytes, the red dotted arrow shows a significant fluxway, 
although probably inexistent in pigs. Blue arrows are likely of minor significance. AA0: neutral amino 
acids ; AA+: cationic amino acids ; MeAIB : methylaminoisobutyric acid.  
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Furthermore, a Na+-independent system, b0,+AT (SLC7A9) seems to participate in the 

intestinal Met absorption. This protein is part of a heteromeric AA transporter composed of a 

b0,+AT and an rBAT (SLC3A1) subunit (Nagamori et al. 2016). Its principal function in the 

intestine is probably the absorption of cysteine from the lumen in the intestinal epithelial cell in 

exchange of neutral AA (for example Met) (Mastrototaro et al. 2016). The rBAt/b0,+AT system 

has a relatively good affinity to Met (Km = 130 µM in humans) (Nickel et al. 2009), however 

under physiological conditions, the Met absorption in the intestine by this transport system may 

be minor as it has a higher affinity to other AA, especially cysteine (Km around 50µM has been 

described) (Bröer 2008). Mutations in the SLC7A9 gene are associated with cystinuria and 

chronic kidney diseases (Corredor et al. 2020; Fazaeli et al. 2017). 

 
The IMINO system is an electrogenic Na+ and Cl--dependent transport. For a long time, 

it had only been known functionally without being identified on a gene level. It was finally 

identified as the product of the SLC6A20 gene (Takanaga et al. 2005). It mainly transports 

proline, betaine and methylaminoisobutyric acid (MeAIB) (Kowalczuk et al. 2005). The IMINO 

system also accepts Met as a substrate, but at a much lower affinity than proline and its other 

substrates; indeed, while the established Km for proline and betaine are approximately 300 µM 

and 170 µM respectively, the Km investigated for Met was around 7 mM (Nickel et al. 2009; 

Takanaga et al. 2005). Mutations in the SLC6A20 gene might be involved in the pathogenesis 

of Hirschsprung disease (Lee et al. 2016). Recent findings associated SLC6A20 together with 

other genes as a potential risk factor for severe responses to SARS-CoV-2 infections (Secolin 

et al. 2021; Ellinghaus et al. 2020). 

 

ASCT2 (SLC1A5) is a high-affinity neutral AA transporter and is believed to be the main 

Met transporter in the intestine besides B0AT1 (To et al. 2021). It is an obligatory Na+-

dependent, yet not electrogenic system with an antiport mode of transport (Scalise et al. 2018; 

Utsunomiya-Tate et al. 1996). It is not very clear whether Na+ is co-transported with the AA or 

if it only binds to the transport system, thus stimulating the transport activity (Scalise et al. 

2018). Its isoform, ASCT1 is found in the kidney and only accepts few AA as substrates (L-

alanine, L-serine, L-cysteine) (Mastrototaro et al. 2016). ASCT2 has a slightly wider spectrum 

as it also accepts L-threonine and L-alanine with very good affinity (Km ~ 20 µM) (Utsunomiya-

Tate et al. 1996). L-Met is also accepted with significantly lower affinity (Km ~300 µM) (Verma 

and Kansal 1993). Nevertheless, the main role of ASCT2 seems to be the uptake of L-

glutamine, which it accepts with high affinity (40 ≤ Km ≤ 90 µM) (Bröer et al. 2000). L-Glutamine 

is transported in a Na+-dependent manner in exchange of other neutral AA such as L-serine, 

L-asparagine or L-threonine (Scalise et al. 2018). The transport of L-glutamine through ASCT2 

seems to have major significance in fast growing cells, especially tumor cells (Mcgivan and 
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Bungard 2007). Through its high presence in tumorous cells, ASCT2 can be used as a 

predictor in cancer prognostics (Bernhardt et al. 2017; Sun et al. 2016), although its absence 

does not suffice to significantly slow down tumor growth. Indeed, the absence of this transport 

system in tumor cells has been shown to be compensated by the upregulation of other AA 

transporters, especially SNAT1 and SNAT2 (Bröer et al. 2019). 

 

The Met efflux on the basolateral side of enterocytes is mainly regulated by a single 

protein, LAT4 (SLC43A2) (Guetg et al. 2015). This transport system enables the outflow of a 

very small spectrum of AA. Indeed, only L-leucin, L-isoleucin, L-phenylalanine and L-Met are 

accepted as substrates. LAT4 is completely Na+-, Cl-- and pH-independent, and functions 

through facilitated diffusion, which means that not only the outflow of AA is regulated by this 

system; it is also able to allow the uptake of these same AA from the blood into the cell when 

needed (Bodoy et al. 2005). It has been demonstrated that LAT4 has a “two-step” kinetics for 

L-leucine and L-phenylalanine (100 ≤ Km ≤ 200 µM und Km > 3 mM). This feature makes LAT4 

a very effective transport system at both low and high substrate concentrations (Bodoy et al. 

2005). Tumor cells have been shown to highly express this transport system to ensure their 

own Met supply, to the point where especially immune cells in the surrounding area found 

themselves depleted of this AA (Bian et al. 2020). 

 

The system-L transporters LAT1 (SLC7A5) and LAT2 (SLC7A8) are both located on 

the basolateral side of the intestinal epithelial cells and are electroneutral exchangers for 

neutral AA. Their significance for Met absorption is probably negligible as their first function 

seems to be equilibration of the relative AA concentrations across cell membranes (Verrey et 

al. 2004), especially the efflux of L-leucine and the re-uptake of L-Met from the blood into the 

cell in exchange of other AA (Mastrototaro et al. 2016; Yanagida et al. 2001; Chen et al. 1994). 

The functionality of LAT1 and LAT2 requires the association with the 4F2hc (SLC3A2) heavy-

chained protein (Bröer et al. 2001).  

LAT1 is a high-affinity transport system for L-leucine, L-isoleucine, L-phenylalanine and L-Met 

(Km = 20 µM), though D-isomers can be accepted with similar affinity (Yanagida et al. 2001). 

LAT2 is known to accept the same substrates as LAT1, but with a slightly lower affinity (Km = 

204 µM for L-Met) and without accepting D-isomers (Segawa et al. 1999). Both systems can 

be inhibited by 2-amino-2-norbornanecarboxylic acid (BCH) (Christensen 1990). The 

significant functional difference between LAT1 and LAT2 is the pH dependence. While LAT2 

is stimulated by acidic pH (Fraga et al. 2002), pH variations have no effect on the transport 

capacities of LAT1 (Prasad et al. 1999). LAT1 was shown to take part in the pathogenesis of 

cancer (Kanai 2021) but also that its presence is primordial for osteogenesis and maintaining 

bone density (Ozaki et al. 2019). The inactivation of LAT2 was associated with aminoaciduria, 
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but its absence seemed to be rather well compensated as growth and development were not 

significantly impacted (Braun et al. 2011).  

 
Another transport system responsible for the re-entry of L-Met from the basolateral side 

into the enterocyte is SNAT2 (SLC38A2). It is a secondary active transport system which 

transports its main substrates L-alanine and L-Met together with Na+ from the blood into the 

intestinal epithelial cell. Other neutral AAs (especially L-serine and L-proline) are also accepted 

as substrates (Yao et al. 2000). In the mammary glands of mice, the Km described for Met was 

around 400 µM (Verma and Kansal 1993). SNAT2 has a lower efficiency at lower pH and can 

be inhibited by MeAIB (Yao et al. 2000). Its isoform SNAT1 is also able to transport L-Met, but 

seems to have a very marginal role in the small intestine (Mackenzie et al. 2003). Even though 

SNAT2 is present in the intestine, the malfunction or absence of this transport system is not 

primarily linked to intestinal symptoms but impacts lung and placenta function (Vaughan et al. 

2021; Weidenfeld et al. 2021). 

  

4F2hc/y+LAT1 (SLC7A7) and 4F2hc/y+LAT2 (SLC7A6) are both located on the 

basolateral side of enterocytes and share a relatively high grade of sequence homology. 

Studies have shown that y+LAT1 transports cationic AA in a Na+-independent manner, 

whereas neutral AAs require the presence of Na+ to be accepted as substrates (Pfeiffer et al. 

1999). This particularity and the fact that the extracellular Na+ concentration is physiologically 

high make these transport-systems efflux carrier of cationic AA (especially L-lysine and L-

arginine) from the enterocytes in exchange of a large neutral AA (L-leucine, L-glutamine or L-

Met for example) together with a Na+ ion. This claim can be reinforced as it has been shown 

that neutral L-AA on the “trans” side stimulate the efflux of L-lysine from the cell (Rotoli et al. 

2020; Deves et al. 1992). y+LAT1 is believed to be expressed primarily in macrophages, 

intestine and in kidneys whereas y+LAT2 is mainly expressed in erythrocytes and lymphocytes 

(Pfeiffer et al. 1999). Defects in the SLC7A7 gene lead to an autosomal disease called lysinuric 

protein intolerance where the absorption and re-absorption of cationic AA in intestine and in 

kidney is disturbed. This leads to a collection of more or less severe symptoms ranging from 

hypotonia to pulmonary alveolar proteinosis, the last one being potentially lethal (Bodoy et al. 

2019). Defects in y+LAT1 are believed to be relatively well compensated by y+LAT2, thus 

deletion of y+LAT1 is normally associated with less severe symptoms (Rotoli et al. 2020). The 

loss of function of y+LAT2 on the other hand, leads to other pathological patterns as it 

preponderantly disrupts the exchange of L-arginine and L-glutamine, upsetting the urea cycle 

in the liver and potentially leading to hepatic encephalopathy (Errasti-Murugarren and Palacín 

2022).  
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The intestinal D/L-HMTBA uptake is quite distinct from the L-Met pathway; it has been 

shown that D/L-HMTBA is absorbed in the jejunum by a Na+-independent carrier system 

associated with a diffusive component across the brush-border membrane (Brachet and 

Puigserver 1987). The exact apical D/L-HMTBA uptake mechanism has not been described 

yet (To et al. 2021). Evidence has been found that D/L-HMTBA is principally absorbed apically 

in an H+-dependent way, and that this transport can be inhibited by L-lactate (Maenz and 

Engele-Schaan 1996). Due to these findings and to the morphologic resemblance between 

D/L-HMTBA and monocarboxylates, it has been suggested that D/L-HMTBA is transported 

into the intestinal cells by the MCT1 transport system, probably with additional contribution of 

MCT4 (To et al. 2021). MCT1 is a transport system which, in the intestine, is mostly localized 

on the apical cell membrane of enterocytes, whereas MCT4 is believed to be localized mainly 

on the basolateral side of enterocytes (Felmlee et al. 2020; Martin-Venegas et al. 2014). MCT1 

and MCT4 have very similar substrate spectra with the main difference being that MCT4 

demonstrates a lower affinity for most substrates than MCT1 (Halestrap 2013). Both MCT1 

and MCT4 function as an H+-dependent importer or an exporter in intestinal cells (Park et al. 

2018; Morris and Felmlee 2008). The substrates accepted by MCT1 and MCT4 are mainly 

monocarboxylates, especially L-lactic acid (Km = 3.5 - 6 mM for MCT1; Km = 28 mM for MCT4), 

but it also accepts keto acids (e.g., pyruvate, Km = 1.8 - 2.5 mM for MCT1; Km = 153 mM for 

MCT4) (Felmlee et al. 2020; Halestrap and Wilson 2012; Martin-Venegas et al. 2007). High 

MCT expressions are associated with tumor proliferation in many cancer types, mainly for the 

efflux of L-lactic acid produced by the high glucose turnover in tumor cells. Discrepancies in 

the expression of MCT are mainly associated with metabolic diseases. Indeed, mutations of 

MCT1 have also been associated with exercise-induced hyperinsulinemia and ketoacidosis, 

and obese patients were shown to have increased expression of MCT4 in muscle (Felmlee et 

al. 2020). 
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3. Aims and objectives of this thesis 

 

The literature review showed that the supplementation of AA, especially Met, is key to 

ensure good production rates and health in pigs. There has been a lot of research done on the 

effects of Met supplementation on the metabolism and health in various species, and we 

possess detailed information on individual transport systems. However, concerning the way 

these transport systems work together and react in vivo to changes in dietary supply, the 

information remains very sparse. To ensure that livestock is appropriately provided with Met, 

the latter is often supplemented in its pure form to the diet of poultry, cows and pigs in the form 

of L-Met, its racemate D/L-Met or its synthetic analog D/L-HMTBA. These forms of Met are 

immediately bioavailable; meaning they could have a direct impact on Met absorption and 

metabolism in the intestine. Thus, the hypothesis of this thesis is that Met absorption can be 

influenced by the form of Met supplemented through the diet. 

 

To assess this hypothesis, the objective of this project was to analyze the mechanisms 

of Met absorption in the intestine of pigs. In the first part of this thesis, the main focus was to 

assess the effects of the different Met sources that are available in pig nutrition, on Met 

absorption in the intestine. For this purpose, a feeding study was designed, in which 3 groups 

of 9 pigs each received a different Met supplement: D/L-Met, L-Met or D/L-HMTBA. After a 

minimum of 10 days of feeding, the pigs were euthanized and sections from their duodenum, 

jejunum and ileum were used in Ussing-chamber experiments. In these experiments the flux 

of D-Met, L-Met and D/L-HMTBA were measured in the three small intestinal section of all 27 

animals. 

In the second part of this project, the aim was to describe the distribution of supposed 

Met and HMTBA transporters along the gastro-intestinal tract, as well as to evaluate if the 

different Met sources had an influence on the molecular expression of these transport systems. 

For this purpose, mRNA expression was examined by qPCR for the following genes: B0AT1, 

ATB0+, rBAT, ASCT2, IMINO, LAT4, y+LAT1, LAT2, SNAT2, MCT1 and MCT4. Western blot 

experiments to measure protein expression were conducted for B0AT1, ASCT2, LAT2 and 

LAT4. 

 

The information gained through this thesis will deepen the understanding on the Met 

absorption pathways and their regulation. This knowledge would allow optimizing the Met 

supply in pig production, thereby, avoiding unnecessary over supplementation and reducing 

nitrogen emission while maintaining growth performance. 
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4. Results 
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4.2. HMTBA-Flux in the small intestine 

In the first part of this project we showed that feeding different Met sources can modify 

the absorptive flux of L-Met and D-Met (Romanet et al. 2020). The data presented in 

Publication 1 focusses on the flux of D-Met and L-Met in the intestine of pigs supplemented 

with three different Met sources (D/L-Met, L-Met and D/L-HMTBA). The flux of D/L-HMTBA 

was assessed in parallel in those experiments; the data will be presented in this chapter. 

4.2.1. Materials and Methods 

Diets, animal handling, methods and flux measurements, as well as statistical analysis 

are described in Publication 1 (Romanet et al. 2020). The only difference during flux 

measurement was that chambers received 37.0 kBq [14C]-D/L-HMTBA together with unlabeled 

D/L-HMTBA to a final concentration of 50 µM on the mucosal side, which was increased for 

the second flux period to 5 mM. All other procedures of the Ussing chamber experiment 

remained the same. 

  

4.2.2. Results 

The means of 7-9 mucosal-to-serosal flux rates of radioactively labeled D/L-HMTBA in 

three different small intestinal regions at 50 µM and 5 mM D/L-HMTBA in the presence or 

absence of Na+ are presented in Figure 3. For clarity, only P-values < 0.1 are shown. In Na+-

free condition, Na+ was replaced with NMDG to maintain osmolarity. 

 

At 50 µM D/L-HMTBA, significant effects on flux rates were neither observed for the 

factor diet nor for the factor Na+ in any of the three investigated intestinal segments (Figure 3 

A; C and E). 

At 5 mM HMTBA, diet and the presence of Na+ had also no significant effects on flux 

rates, except for a significant effect of Na+ on D/L-HMTBA flux rates in the duodenum (P < 

0.05). Peculiarly, the presence of Na+ appeared to be associated with lower D/L-HMTBA flux 

rates (Figure 3 B). 
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Figure 3: JD/L-HMTBA at a mucosal concentration of 50 µM D/L-HMTBA (A–C) or 5 mM D/L-HMTBA 
(D–F) in duodenum (A, D), jejunum (B, E), and ileum (C, F) in the mucosal presence of either 
Na+ or NMDG+.  

Data represent means ± SEM of flux rates from n = 7 – 9 pigs fed diets supplemented with either D/L-
Met, L-Met, or D/L-HMTBA. Data were compared using 2-factor ANOVA and a post-hoc Student–
Newman–Keuls test. D/L-HMTBA, D/L-2-hydroxy-4-methylthiobutanoic acid; JD/L-HMTBA, absorptive flux 
rate of D/L-HMTBA in the mucosal-to-serosal direction; Met, methionine; NMDG, N-methyl-D-
glucamine. 
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In Publication 1, we compared the absorption capacity for D-Met and L-Met in the 

duodenum, jejunum and ileum. We showed that the absorption of D- and L-Met was lower in 

the duodenum at both low (50 µM) and high (5 mM) Met concentration. We performed the 

same analysis with the D/L-HMTBA flux rates (Table 1). 
 

Table 1: Comparison of D/L-HMTBA absorption capacity in the duodenum, jejunum and ileum 
of pigs. 

 Duodenum Jejunum Ileum P-Value 

Flux Rates     

50 µM D/L-HMTBA 0.46 ± 0.042b 1.09 ± 0.097a 1.26 ± 0.097a < 0.001 

5 mM D/L-HMTBA 102.87 ± 8.61b 202.23 ± 16.88a 222.26 ± 15.87a < 0.001 

Values represent mean flux rates ± SEM. Means were calculated irrespective of diet and irrespective of 
the presence of Na+. Data were compared using ANCOVA and a post-hoc Student-Newman-Keuls test. 
Different letters within one row indicate significant differences between intestinal sites at the same D/L-
HMTBA concentration. 
 

 The ANCOVA showed that flux rates of D/L-HMTBA were lower in the duodenum when 

compared to the jejunum and ileum at both tested D/L-HMTBA concentrations. Jejunum and 

ileum showed similar D/L-HMTBA flux rates at low and high substrate concentrations. 

 

4.2.3. Conclusion 

The flux measurements of D/L-HMTBA showed that its absorption in the small intestine 

could not be influenced by different Met sources. The addition of sodium did not enhance D/L-

HMTBA flux across the intestinal tissue in any tested segment; curiously, it seemed to lower 

the D/L-HMTBA flux in the duodenum. This effect reached statistical significance only at the 

higher D/L-HMTBA concentration. Interestingly, the duodenum showed overall significantly 

lower absorptive capacity for D/L-HMTBA when compared to the jejunum and to the ileum. 
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4.3. Publication 2 
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RESEARCH Open Access

Expression of proposed methionine
transporters along the gastrointestinal tract
of pigs and their regulation by dietary
methionine sources
Stella Romanet1, Jörg R. Aschenbach1* , Robert Pieper2, Jürgen Zentek2, John K. Htoo3, Rose A. Whelan3 and
Lucia Mastrototaro1

Abstract

Background: Given the key role of methionine (Met) in biological processes like protein translation, methylation,
and antioxidant defense, inadequate Met supply can limit performance. This study investigated the effect of
different dietary Met sources on the expression profile of various Met transporters along the gastrointestinal tract
(GIT) of pigs.

Methods: A total of 27 pigs received a diet supplemented with 0.21% DL-Met, 0.21% L-Met, or 0.31% DL-2-hydroxy-
4-(methylthio)butanoic acid (DL-HMTBA). Changes in mRNA expression of B0AT1, ATB0,+, rBAT, ASCT2, IMINO, LAT4,
y+LAT1, LAT2, and SNAT2 were evaluated in the oral mucosa, cardia, fundus, pylorus, duodenum, proximal jejunum,
middle jejunum, ileum, cecum, proximal colon, and distal colon, complemented by protein expression analysis of
B0AT1, ASCT2, LAT2, and LAT4.

Results: Expression of all investigated transcripts differed significantly along the GIT. B0AT1, rBAT, y+LAT1, LAT2, and
LAT4 showed strongest mRNA expression in small intestinal segments. ASCT2, IMINO, and SNAT2 were similarly
expressed along the small and large intestines but expression differed in the oral mucosa and stomach. ATB0,+

showed highest mRNA expression in large intestinal tissues, cardia, and pylorus. In pigs fed DL-Met, mRNA
expression of ASCT2 was higher than in pigs fed DL-HMTBA in small intestinal tissues and mRNA expression of
IMINO was lower than in pigs fed L-Met in large intestinal tissues. Dietary DL-HMTBA induced a stronger mRNA
expression of basolateral uptake systems either in the small (LAT2) or large (y+LAT1) intestine. Protein expression of
B0AT1 was higher in the middle jejunum and ileum in pigs fed DL-Met when compared with the other Met
supplements. LAT4 expression was higher in pigs fed DL-HMTBA when compared with DL-Met (small intestine) and
L-Met (small intestine, oral mucosa, and stomach).

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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Conclusion: A high expression of several Met transporters in small intestinal segments underlines the primary role
of these segments in amino acid absorption; however, some Met transporters show high transcript and protein
levels also in large intestine, oral mucosa, and stomach. A diet containing DL-Met has potential to increase apical
Met transport in the small intestine, whereas a diet containing DL-HMTBA has potential to increase basolateral Met
transport in the small intestine and, partly, other gastrointestinal tissues.

Keywords: Longitudinal heterogeneity of gene expression, Intestine, Methionine transport, qRT-PCR, Stomach,
Western blot

Introduction
Methionine (Met) is an essential sulfur amino acid (AA),
which must be provided by the diet because it cannot be
synthesized de novo by the body [1]. Methionine plays
several essential roles in cellular metabolism. It is a pro-
teinogenic AA with special importance for the initiation
of protein translation [2], a sulfur donor necessary to
generate other sulfur-containing AA (cysteine and cyst-
ine), a main donor of methyl groups [3] and, finally, it
influences the cellular redox state [4].
The optimum AA ratios in food or feed is a key elem-

ent to ensure coverage of AA requirements with a mini-
mum of protein intake [5, 6]. In animal production,
reducing dietary protein levels is not only vital to reduce
N excretion through urine and feces but also to lower
greenhouse gas emissions [7, 8]. Additionally, the reduc-
tion of protein levels in the feed of livestock is a cost-
reducing strategy [5, 9]. Therefore, providing adequate
dietary methionine supply, as a main limiting essential
AA in low crude protein diets, is crucial to ensure opti-
mal growth and health with additional ecologic and eco-
nomic benefits. Whereas humans rely primarily on
naturally occurring L-Met from food materials, pig and
poultry diets are often supplemented with L-Met, DL-
Met, or a hydroxyl analogue DL-2-hydroxy-4-
(methylthio)butanoic acid (DL-HMTBA) [10, 11]. Not
only are the metabolism and utilization different for
these Met sources; they also differ in their absorption
mechanisms. Because HMTBA is a precursor without an
amino group, it is not absorbed by AA transporters, but
rather by sodium-dependent and sodium-independent
monocarboxylate transporters, one prominent candidate
of the latter being MCT1 [12, 13]. By sharp contrast,
Met is mainly taken up via carrier-mediated systems that
differ in their specificity for L- and D-isomers [11, 14].
The current knowledge on gastrointestinal Met trans-
porters has been summarized by Mastrototaro et al. [14].
According to this proposed model, the apical transport
systems are mainly Na+-dependent (B0AT1, ATB0,+,
ASCT2, IMINO) but are complemented by b0,+AT
which is Na+-independent. b0,+ requires the heavy chain
rBAT for membrane targeting; hence, expression of
rBAT is considered critical for b0,+/rBAT heterodimer
function. Consequently, previous studies mostly analyzed

the expression of subunit rBAT in preference over sub-
unit b0,+ [15–17]. On the basolateral side, the main
transport system for Met efflux is represented by the
Na+-independent system L (LAT1, LAT2, and LAT4;
where L stands for large neutral AA). Interestingly, the
exact localization of LAT1 seems to be species-specific
as it was located basolaterally in the chicken intestine
and porcine kidney but apically in human intestine [12,
18]. System L is complemented by the Na+-dependent
transporters SNAT2 and y+LAT1. SNAT2 takes up AA
from blood in interdigestive phases, and y+LAT1 medi-
ates the Na+-dependent influx of neutral AA (like Met)
against an efflux of cationic AA [19–21].
The present study aimed to determine whether the

supplementation of different dietary Met sources would
modulate the distribution and the expression profile of
presumed Met transporters along the porcine GIT. In a
previous study on tissues from the same animals, we had
identified increased transport of L- and partly D-Met in
different small intestinal segments (duodenum, middle
jejunum, and ileum) after feeding a DL-Met–containing
diet [22].

Experimental procedures
Animals and diets
Diets and animal handling procedures have been de-
scribed previously [22]. Briefly, 27 pigs (castrated male,
Danbred x Piétrain) were used with an initial bodyweight
of ~ 25 kg at ~ 10 weeks of age to assure the establish-
ment of stable gastrointestinal health after weaning. Pigs
were fed a basal diet deficient in standardized ileal di-
gestible (SID) Met + Cys (0.46%) but adequate for all
other AA. To meet Met + Cys requirements, the basal
diet was supplemented with either 0.21% DL-Met
(MetAMINO; Evonik Nutrition & Care GmbH, Essen,
Germany; N = 9), 0.21% L-Met (Evonik Nutrition &
Care GmbH, Essen, Germany; N = 9) or 0.31% DL-
HMTBA (Novus International, Inc., Saint Charles, MO;
N = 9). The higher dietary concentration of DL-HMTBA
was used to account for its lower bioefficacy (approxi-
mately 70% compared with L-Met) [10]. Diets were pro-
vided for at least 10 days, after which pigs were
euthanized for harvesting tissues. Dietary treatments
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were blinded to the research investigators until gene ex-
pression data was summarized.

Tissue preparation
After euthanasia, tissue samples of all pigs were recov-
ered from a total of 11 regions of the GIT for molecular
analyses (quantitative real-time PCR and western blot)
of Met transporter expression. Sections included four
extraintestinal regions (oral mucosa as well as cardia,
fundus, and pylorus of the stomach), four small intestinal
regions (duodenum, proximal jejunum, middle jejunum,
and ileum), and three large intestinal regions (cecum,
proximal colon, and distal colon). The study targeted at
selective quantification of epithelial transporters. There-
fore, the tunica muscularis externa (longitudinal and cir-
cular muscle layers) was mechanically removed before
collecting gastric and intestinal samples. Oral mucosa was
harvested by perpendicular cutting of small tissue chips
from the mucosal surface.
Tissues for transcript expression analysis were immersed

in RNAlater® (Sigma Aldrich, St Louis, MO, USA), stored at
+ 4 °C overnight and at – 20 °C thereafter until RNA

isolation. Tissues for protein analysis were snap-frozen in li-
quid nitrogen and then stored at – 80 °C until analysis.

Gene expression analysis
Total RNA was extracted from the tissues using a com-
mercial kit including a DNAse digestion step (Nucleos-
pin RNA, Macherey & Nagel, Düren, Germany).
Afterwards, all RNA samples were evaluated for quantity
and purity using a lab-on-a-chip technique (RNA 6000
Nano Kit, Agilent, Waldbronn, Germany). Only samples
with an RNA integrity number (RIN) > 6.5 were used for
cDNA synthesis. Reverse transcription was performed
with 1000 ng of RNA using iScript® cDNA synthesis kit
(Bio-Rad Laboratories, Munich, Germany) according to
the manufacturer’s instructions; reactions were then di-
luted to a final concentration of 5 ng/μL.
Changes in the relative expression of the Met trans-

porters B0AT1, ATB0,+, rBAT, ASCT2, IMINO, LAT2,
LAT4, y+LAT1, and SNAT2 were evaluated by qRT-PCR
using intron-flanking or exon-spanning primers and
double quenched probes synthetized by Eurofins MWG
Operon (Ebersberg, Germany; for primer and probe se-
quences, see Table 1).

Table 1 Primer and probe sequences for the Met transporters and reference genes

Gene Accession number Primer Sequence Probe sequence

B0AT1
(SLC6A19)

XM_003359855.4 Fwd CTTCATCTTCACCCTGAACTC CCCCTGCTCATCATCGCCTTCTTCGAGATGT

Rev GATGTCGCTGTTGAACCTG

ATB0+

(SLC6A14)
NM_001348402.1 Fwd CTGTGGCTTGGGGTGGTTTA CCAACTCCCAGGTGGGCCAT

Rev AACCAAGCAGCAACCCAAAG

rBAT
(SLC3A1)

NM_001123042.1 Fwd CAATGCAGTGGGACAACAG TCCAAAAGACCCAGCCCAAATCAGCA

Rev GGCGTGAAGCAAACTTAATTC

ASCT2
(SLC1A5)

XM_003127238.4 Fwd CGATTCGTTCCTGGATCTTG CTCCAACCTGGTGTCTGCAGCCTT

Rev TAGGACGTCGCGTATGAG

IMINO
(SLC6A20)

XM_003358406.4 Fwd TCGTGTCCCTCATCAACAG ACCTCCATCTTTGCCAGTGTCGTCACCTT

Rev AGGAAGCCATCTTCAAGGTC

LAT4
(SLC43A2)

XM_003358191.3 Fwd CAGATCCAGAAGATCACCAAC TGACCTGCCTCATTCCCAACCTGC

Rev TGAAGGAGAGAATCTGTAGGG

y+LAT1
(SLC7A7)

NM_001110421.1 Fwd CTCTGCTGTTCAATGGTCTC GGCGCTGATCTACTTGTGCGTGGA

Rev ATAGAGCTGACCCACGATAG

LAT2
(SLC7A8)

XM_003128550.5 Fwd ACTACCTCTTCTATGGCATCAC CGGACAGATAGTTCTTCGCTGGAAGAAGCCTAA

Rev GCAAGTAGATGATGGGGAACAG

SNAT2
(SLC38A2)

XM_003126626.5 Fwd TTCATTCTTCCATCTGCCTTC GTTAAGTGGCATAGGGGTGATGACCGGA

Rev GGGCATTGTGTACCCAATC

ACTB XM_021086047.1 Fwd GACATCAAGGAGAAGCTGTG CTGGACTTCGAGCAGGAGATGGCC

Rev CGTTGCCGATGGTGATG

GAPDH XM_021091114.1 Fwd CAAGAAGGTGGTGAAGCAG TGAGGACCAGGTTGTGTCCTGTGACTTCAA

Rev GCATCAAAAGTGGAAGAGTG

YWHAZ XM_005662949.2 Fwd AAGAGTCATACAAAGACAGCAC ATCGGATACCCAAGGAGATGAAGCTGAA

Rev ATTTTCCCCTCCTTCTCCTG
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The qRT-PCR experiments used a 40-cycle two-step
PCR protocol (20 s at 60 °C and 1 s at 95 °C) and were
performed in a thermocycler (ViiA7, Applied Biosys-
tems/Life Technologies, Foster City, CA, USA) with 4.5
μL of cDNA and three replicates per reaction. iTaq® Uni-
versal Probes Supermix (Bio-Rad Laboratories) in com-
bination with the specific primers and probes was used
as master mix in assay volumes of 10 μL. Thresholds
were automatically calculated by the cycler software.
Amplicons were validated by sequencing.
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH),

tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein zeta (YWHAZ), and
β-actin were tested for stable expression with geNorm,
and all three were suitable and used as nonregulated ref-
erence genes. An inter-run calibrator (IRC), composed
of a pool of 21 cDNA, was present on each plate and
afterwards used as calibrator. The double delta Ct ana-
lysis was performed to analyze qRT-PCR data; so after
normalization of Ct values with the reference genes, the
normalized results were scaled to the calibrator to obtain
the expression fold change of each sample relative to the
IRC. Calibrated normalized relative quantities (CNRQ
values) were used for statistical analysis.

Protein analysis
Proteins were isolated from ~ 200 mg of frozen tissue
samples homogenized in 500 μL of RIPA buffer contain-
ing 50 mM Tris, 150 mM NaCl, 1% Triton X-100, 0.1%
SDS, 2 mM EDTA, and 5 μL of Protease Inhibitor Mix
G (Serva, Heidelberg, Germany). The samples were incu-
bated on ice for 90 min and briefly shaken at 20,000
rpm for 1.5 min every 20 min by using a Mixer Mill
(Retsch MM200, Hahn, Germany). Centrifugation
(14,000 rpm, 4 °C, 30 min) was performed to a pellet-
insolubilized material. The concentration of total ex-
tracted proteins was determined using the Pierce® 660-
nm Protein Assay (ThermoFisher Scientific, Waltham,
MA, USA). An aliquot of 15 μg total protein was re-
solved on an 8% SDS-polyacrylamide gel for LAT2,
LAT4, and B0AT1. The proteins for ASCT2 were loaded
on a 10% TGX Stain-Free gel™ (Bio-Rad Laboratories).
An IRC was loaded as reference sample on each gel.
Following electrophoresis, the proteins were trans-

ferred to a polyvinylidene difluoride (PVDF) membrane
(Bio-Rad Laboratories Inc.), which was blocked with 5%
dry milk in TBS + Tween (TBST, 50 mM Tris, 150 mM
NaCl, 0.01% Tween-20, pH 7.6) for 2 h at room
temperature. After blocking, immunoblotting was per-
formed overnight at 4 °C with a primary rabbit antibody
directed against B0AT1 (SLC6A19, 1:1000; ABIN567031,
Abnova Corp., Taipeh, Taiwan), mouse antibody against
ASCT2 (SLC1A5, 1:1000; NBP1-89327 Novus biologi-
cals, Littleton, CO), rabbit antibody against LAT2

(SLC7A8, 1:1000; ABIN2781629, Aviva Systems Biology,
San Diego, CA, USA) or mouse antibody against LAT4
(SLC43A2, 1:1000; ABIN2781629 Abgent, San Diego,
CA, USA). Primary mouse antibody specific for RPL19
(1:1500; Santa Cruz Biotechnology, Dallas, TX, USA)
was used to quantify RPL19 as reference protein to con-
trol for loading efficiency for LAT2, LAT4, and B0AT1.
For ASCT2, total protein on the gel was quantified by
the stain-free technology according to the manufac-
turer’s instruction and used to correct for loading effi-
ciency. After overnight incubation with the primary
antibodies, the membranes were incubated with the re-
spective horseradish peroxidase (HRP)-conjugated sec-
ondary antibodies (anti-mouse, 1:1000; anti-rabbit, 1:
2500; both from Cell Signaling Technology, Frankfurt,
Germany). Proteins were visualized by use of the Clari-
tyTM Western ECL Substrate (Bio-Rad Laboratories) and
the Bio-Rad ChemiDocTM MP Imaging System in com-
bination with the software ImageLab 5.0 (Bio-Rad La-
boratories), which allowed a densitometric analysis and a
normalization of each band to the blackness of the re-
spective lane (normalized intensities, NI). IRC was al-
ways assumed to have NI = 1; thus any other value
represented the relative expression of the respective
sample compared with IRC. Representative western blots
are shown in Fig. 1.

Statistical analysis
The comparisons of mRNA or protein levels between all
regions irrespective of the factor diet (Tables 2) were
performed with IBM SPSS Statistics Version 26 (IBM,
Armonk, NY, USA), using ANCOVA (Analysis of co-
variance) followed by post hoc Dunn’s method (all pair-
wise multiple comparison), accounting for the covariate
diet. The effect of diet on the expression of genes and
proteins in comparable sets of regions (extraintestinal,
small intestinal, and large intestinal regions) were subse-
quently compared by two-factor ANOVA with post hoc
Student-Newman-Keuls’ test (all pairwise multiple com-
parison) using the software SigmaPlot 11.0 (Systat Soft-
ware, GmbH, Erkrath, Germany). Fixed factors were
“diet” (DL-Met, L-Met, and DL-HMTBA) and “tissue”.
Results are given as means ± SEM. Differences of P <
0.05 were considered significant; trends are discussed if
0.05 ≤ P < 0.1.
Graphs were plotted with SigmaPlot 11.0. P values for

main factors and their interactions are listed in each graph.
For clarity, however, only relevant P values < 0.1 are shown.
If P values are not listed in a graph, they are ≥ 0.1.

Results
Effects of tissue and diet on mRNA expression
The regional distribution of Met transporters irrespect-
ive of the provided diet is shown in Table 2. Relative
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expression data differed among the gastrointestinal sec-
tions for all investigated transcripts (P < 0.001). Of note,
B0AT1, rBAT, and LAT4 had higher mRNA expression
in the small intestinal segments compared with all other
segments. B0AT1 had highest CNRQ values in the mid-
dle jejunum, rBAT in the duodenum and proximal je-
junum, and LAT4 in the proximal and middle jejuna.
y+LAT1 showed highest CNRQ values in the middle je-
junum and fundus, with intermediate CNRQ values in
the duodenum, proximal jejunum, and ileum. ASCT2,
IMINO, and LAT2 had similar CNRQ values in most
segments, except for a high CNRQ of ASCT2 in the gas-
tric fundus, gastric pylorus and distal colon, a compara-
tively low CNRQ of IMINO in the oral mucosa and
gastric fundus, and a high CNRQ of LAT2 in the gastric
fundus and middle jejunum. SNAT2 mRNA was highly
expressed in the gastric fundus and pylorus. Expression
of ATB0,+ appeared dominant in the large intestine with

highest CNRQ values measured in the proximal and dis-
tal colons; intermediate values in the cecum, gastric car-
dia, gastric pylorus, and duodenum; and low expression
in the jejunum, ileum, and gastric fundus. Oral mucosa
was among the tissues with the weakest expression levels
for all transporters tested (P < 0.05; Table 2).
As different gastrointestinal regions have different di-

gestive functions, three functional subgroups with com-
parable functions were created to analyze the effect of
diet on transporter expression: extraintestinal tissues
(oral mucosa and the three gastric regions pylorus, car-
dia, and fundus), small intestinal tissues (duodenum,
proximal jejunum, middle jejunum, and ileum), and
large intestinal tissues (proximal colon, distal colon, and
cecum).
Transport systems with supposedly apical and basolat-

eral locations are shown in Figs. 2 and 3, respectively.
The factor diet had no effect on any transporter in the

Fig. 1 Western blots of B0AT1, ASCT2, LAT2, and LAT4 protein. Blots are representative of a total of 188 western blots evaluated for this study.
Blots for B0AT1, LAT2, and LAT4 were conventional western blots where specific signals were quantified relative to RPL19 as loading control. For
ASCT2, stain-free technology was used and ASCT2 protein intensity was quantified relative to total protein. Tissues were grouped per animal on
blots for B0AT1 and LAT4, whereas tissues from the three feeding groups were compared on blots for LAT2 and ASCT2. The left lane in each blot
shows the molecular weight marker. IRC, inter-run calibrator; DUO, duodenum; PJ, proximal jejunum; MJ, middle jejunum; IL, ileum; CAE, caecum;
PC, proximal colon; DC, distal colon
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extraintestinal tissues. In selected intestinal tissues, the
expression of rBAT, ASCT2, IMINO, y+LAT1, and LAT2
was affected by the factor diet. A diet containing DL-
Met increased ASCT2 gene expression across all small
intestinal tissues compared with a diet containing DL-
HMTBA (P < 0.05; Fig. 2). A diet containing L-Met in-
duced a stronger expression of IMINO across large in-
testinal tissues compared with DL-Met (P < 0.05; Fig. 2).
The diet containing DL-HMTBA increased the expres-
sion of the basolateral exchange systems LAT2 in the
small and y+LAT1 in the large intestines (P < 0.05; Fig.
3). It also caused an increase in the expression of rBAT
selectively in the proximal jejunum (P < 0.05) as evi-
denced by a diet × tissue interaction (P < 0.05; Fig. 2).
The two-factorial statistical evaluation of regions fur-

ther supported the differences among tissues that had
already been identified by ANCOVA (cf. Table 2). Add-
itional findings were that cardia had a higher expression
of ATB0,+ and rBAT than other extraintestinal regions;
in the small intestine, the duodenum had highest expres-
sion of ATB0,+, distal colon had higher expression of
LAT2 than caecum, and that expression patterns of
LAT2 and LAT4 showed clear regional differences in ex-
traintestinal tissues (Fig. 3).

Effects of tissue and diet on protein expression
Selected transporters with assumed high relevance for
apical Met uptake (B0AT1 and ASCT2) or Met

basolateral efflux (LAT2 and LAT4) were further investi-
gated on the protein level by western blot. As for
mRNA, data from the three feeding groups were initially
compared across all tissues by ANCOVA accounting for
diet as covariate. Protein expression levels of all investi-
gated proteins were significantly different along the GIT
(P < 0.001; Table 3.
Protein expression of B0AT1 was highest in the ileum

and gastric cardia and lowest in the gastric fundus. Pro-
tein expression of ASCT2 was highest in parts of the
large intestine, with lowest levels in all the three gastric
regions and proximal jejunum. Protein expression of
LAT2 was remarkably high in the oral mucosa and gas-
tric cardia, whereas the pylorus, middle jejunum, and
cecum had the lowest expression values. Protein expres-
sion of LAT4 was strikingly high in the oral mucosa with
the lowest values in gastric fundus (Table 3).
The data were further divided into the three regional

subgroups (similar to mRNA data) in order to investi-
gate whether the diet has an effect on the protein ex-
pression in tissues of comparable physiological functions
(Fig. 4). When comparing the expression of B0AT1
within each regional subgroup, protein levels in the
small intestine were significantly affected by diet (P <
0.001) and tissue (P < 0.001) with significant interaction
of the two factors (P < 0.05). The basis for interaction
were higher B0AT1 protein levels in pigs fed DL-Met
compared with L-Met or DL-HMTBA in the middle

Table 2 mRNA expression of Met transporters among different intestinal and extraintestinal regions irrespective of the factor diet

Tissue B0AT1 ATB0+ rBAT ASCT2 IMINO y+LAT1 LAT2 LAT4 SNAT2

Oral mucosa 0.014 ±
0.006d

0.48 ± 0.12cd 0.019 ±
0.008d

0.57 ±
0.15b

0.065 ±
0.023b

0.072 ±
0.016e

0.14 ± 0.02d 0.10 ±
0.02d

0.69 ± 0.12c

Cardia 0.023 ±
0.008d

1.76 ± 0.25ac 0.20 ± 0.03d 0.74 ±
0.11b

0.88 ± 0.09a 0.37 ± 0.03ce 0.49 ±
0.05bcd

0.33 ±
0.07d

0.92 ±
0.11bc

Fundus 0.034 ±
0.011d

0.040 ±
0.010d

0.025 ±
0.005d

1.74 ± 0.29a 0.26 ± 0.04b 1.51 ± 0.19ab 2.23 ± 0.28a 0.59 ±
0.07d

1.59 ± 0.18a

Pylorus 0.022 ±
0.005d

1.09 ± 0.27bd 0.025 ±
0.004d

1.82 ± 0.30a 0.75 ± 0.06a 0.40 ± 0.04ce 0.65 ±
0.08bcd

0.23 ±
0.05d

1.37 ±
0.13ab

Duodenum 0.55 ± 0.08c 1.04 ± 0.61bd 2.34 ± 0.38ab 0.80 ±
0.13b

0.85 ± 0.06a 1.06 ± 0.13bc 0.64 ± 0.07b 1.24 ±
0.19b

0.70 ± 0.07c

Proximal
jejunum

0.91 ± 0.11bc 0.43 ± 0.08cd 3.13 ± 0.87a 0.71 ±0.12b 0.91 ± 0.11a 1.12 ± 0.20b 0.64 ±
0.09bcd

1.92 ± 0.24a 0.65 ± 0.06c

Middle jejunum 1.73 ± 0.21a 0.15 ± 0.06d 1.31 ± 0.86c 0.63 ±
0.11b

0.96 ± 0.08a 2.11 ± 0.36a 2.02 ± 0.33a 1.81 ±
0.32ab

0.62 ± 0.06c

Ileum 1.13 ± 0.12b 0.21 ± 0.03d 1.56 ± 0.25bc 0.52 ±
0.08b

1.04 ± 0.13a 0.91 ±
0.16bcd

0.63 ± 0.07bc 1.32 ±
0.15ab

0.85 ±
0.17bc

Cecum 0.010 ±
0.002d

1.60 ± 0.35ac 0.17 ± 0.04d 0.83 ±
0.13b

0.79 ± 0.09a 0.26 ± 0.02de 0.28 ± 0.02cd 0.28 ±
0.03d

0.97 ±
0.11bc

Proximal colon 0.026 ±
0.008d

2.34 ± 0.30ab 0.093 ±
0.020d

0.81 ±
0.13b

0.95 ± 0.16a 0.28 ± 0.02de 0.43 ±
0.05bcd

0.27 ±
0.04d

1.05 ±
0.14ac

Distal colon 0.013 ±
0.003d

2.82 ± 0.60a 0.10 ± 0.02d 1.17 ±
0.23ab

1.04 ± 0.19a 0.33 ± 0.03de 0.55 ±
0.08bcd

0.32 ±
0.04d

0.84 ±
0.13bc

P value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
a–eGene expressions within one column are different at P < 0.05 if they do not share a common letter.
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Fig. 2 (See legend on next page.)
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jejunum and ileum only (P < 0.05). In the extraintestinal
regions, pigs fed DL-Met or L-Met tended to show
higher B0AT1 protein levels when compared with DL-
HMTBA (P < 0.1; Fig. 4). Among the large intestinal re-
gions, two-way ANOVA identified higher B0AT1 expres-
sion in distal colon than the cecum—an effect that had
not been significant with the all-tissue ANCOVA.
No diet effects were identified for ASCT2 protein (Fig.

4), which was unexpected because feeding a diet con-
taining DL-Met had induced higher ASCT2 mRNA
abundance in small intestinal segments (Fig. 2). None-
theless, when only the proximal jejunum, middle je-
junum, and ileum were tested in a two-way ANOVA,
the effect of diet on ASCT2 protein was significant (P <
0.01) with higher expression in DL-Met–fed pigs com-
pared with the other two groups.
No diet effects were observed for protein expression of

LAT2 (Fig. 4). However, an effect of diet was observed
for LAT4 in extraintestinal regions and small intestine
(P < 0.05) and, as a trend also in the large intestine (P <
0.1). Pigs fed DL-HMTBA showed or tended to show
highest LAT4 protein levels compared with pigs fed L-
Met (P < 0.05 in extraintestinal and small intestinal tis-
sues) and partly DL-Met (P < 0.05 in small intestinal tis-
sues; Fig. 4).

Discussion
The present study intended to investigate the longitu-
dinal heterogeneity of the expression of AA transporters
along the GIT of pigs and to elucidate a possible impact
of Met supplementation on the expression of these
transporters. The effect of targeted Met supplementation
on the expression of gastrointestinal Met transporters
has not been investigated previously, except for a study
in broiler chicken where a trend for higher mRNA ex-
pression of ATB0,+ and B0AT1 was observed in the ileum
of L-Met– and DL-Met–supplemented versus non-
supplemented control chickens [23]. Upon supplementa-
tion of a DL-Met–containing diet, we had observed an
increased absorption of L-Met in the small intestinal
segments (duodenum, middle jejunum, and ileum) and
the induction of Na-dependent L-Met absorption in the
middle jejunum for the same pigs used in the present
study [14]. Therefore, the effects of the DL-Met–con-
taining diet on transporter expression were of special
interest.
Regarding the longitudinal distribution of Met trans-

porters, it may appear somehow surprising that all inves-
tigated transporters were detectable in all investigated
segments despite rather different physiological functions
of these segments. The accepted textbook knowledge is

(See figure on previous page.)
Fig. 2 Analysis of Met transporter expression with proposed apical localization along the gastrointestinal tract using qRT-PCR. Data was compared
with 2-way-ANOVA for the factors “Tissue”, “Diet”, and their interaction “Tissue x Diet”. Significant factor effects are mentioned in each graph. If
column groups or columns do not share a common small letter within one graph, their expression values are either different irrespective of
diet(a–c) or within a given diet(y,z) (P < 0.05). A,BDifferent capital letters indicate diet effects within a given tissue. OM, oral mucosa; CAR, cardia; FUN,
fundus; PYL, pylorus; DUO, duodenum; PJ, proximal jejunum; MJ, middle jejunum; IL, ileum; CAE, cecum; PC, proximal colon; DC, distal colon

Table 3 Protein expression data of selected methionine transporters among different intestinal and extraintestinal regions
irrespective of the factor diet

Tissue B0AT1 ASCT2 LAT2 LAT4

Oral mucosa 0.60 ± 0.11cd 1.70 ± 0.26ac 4.13 ± 0.44b 7.50 ± 0.70a

Cardia 1.41 ± 0.25ab 0.78 ± 0.14c 7.45 ± 1.70a 0.98 ± 0.23bc

Fundus 0.26 ± 0.05d 0.62 ± 0.16c 2.89 ± 0.64bc 0.11 ± 0.03c

Pylorus 0.67 ± 0.12cd 0.77 ± 0.12c 0.79 ± 0.14d 1.00 ± 0.29bc

Duodenum 0.79 ± 0.12bd 0.99 ± 0.19ac 2.09 ± 0.50cd 1.02 ± 0.12bc

Proximal jejunum 0.84 ± 0.12bd 0.72 ± 0.10c 1.60 ± 0.38cd 0.93 ± 0.13bc

Middle jejunum 0.67 ± 0.08cd 0.87 ± 0.12bc 0.73 ± 0.14d 1.30 ± 0.22bc

Ileum 1.92 ± 0.28a 1.13 ± 0.20ac 2.66 ± 0.64bd 1.01 ± 0.17bc

Caecum 0.48 ± 0.12cd 1.99 ± 0.34ab 0.91 ± 0.29d 1.39 ± 0.20b

Proximal colon 0.83 ± 0.12bd 1.09 ± 0.16ac 1.74 ± 0.35cd 1.09 ± 0.18bc

Distal colon 1.01 ± 0.14bc 2.01 ± 0.35a 2.07 ± 0.42cd 0.87 ± 0.17bc

P value <0.001 <0.001 <0.001 <0.001
a–dProtein expressions within one column are different at P < 0.05 if they do not share a common letter.
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Fig. 3 (See legend on next page.)
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that primarily the small intestine has relevance for AA
absorption in mammals [24–27]. It has been shown spe-
cifically in pigs that their colon is also able to actively
transport Met immediately after birth; however, this
transport capability fades away in the first 10 days of life
[28]. Nonetheless, several experimental findings provide
indirect hints for a possible capacity to absorb AA also
from the large intestine of adult mammals [29]. These
hints include the appearance of microbial-derived AA
nitrogen in the circulation and metabolism of pigs,
humans and other non-ruminant mammals [30, 31], and
the preferential presence of certain apical AA trans-
porters like ATB0,+ [32, 33] and ASCT2 [34] in the large
intestine of mice. As these transporters accept D-AA as
substrates [32, 35], it may be assumed that they have a
specific role in the recovery of D-AA from bacterial me-
tabolism [32]. Nonetheless, a final proof for quantita-
tively relevant absorption of AA from the large intestine
is still missing in mammals, including pigs and humans.
Similarly, a final proof for the relevance of apically lo-
cated AA transporters in stomach and oral mucosa is
missing, although the presence of all Na+-dependent ap-
ical Met transporters investigated in the current study
(B0AT1, ATB0,+, IMINO, and ASCT2) had been demon-
strated in stomach, at least at the mRNA level, already
in previous studies [14].
Coherent with a primary role of the small intestine in

AA absorption, expression of B0AT1 and rBAT mRNA
was rather low in most extraintestinal and large intes-
tinal tissues in the present study. However, partly coher-
ent with the just cited literature findings, ASCT2 mRNA
was highest in gastric fundus and pylorus among all in-
vestigated tissues, IMINO mRNA showed values in the
cardia, pylorus, and large intestine that were comparable
to those of the small intestinal segments, and ATB0,+

mRNA was highest in the large intestinal segments, gas-
tric cardia, and pylorus. On the protein level, B0AT1 was
highest in the ileum; however, the cardia also showed a
comparably high expression. For ASCT2 protein, highest
values were observed in the oral mucosa, cecum, and
distal colon.
The Na+-dependent carrier B0AT1 has previously been

termed the Met-preferring system and is postulated to
be a main carrier for Met absorption from the GIT of
mammals [14]. Supporting its major role in AA absorp-
tion, we found transcripts predominantly in the small

intestine with highest levels in the middle jejunum. Al-
though B0AT1 mRNA levels were not influenced by the
feeding regimen, B0AT1 protein levels were regulated
post-transcriptionally by the diet with a tissue × diet
interaction in the small intestine. Pigs fed DL-Met
showed a stronger B0AT1 protein expression in the mid-
dle jejunum and ileum. This is in partial support of a
functional induction of a Na+-dependent transporter in
the middle jejunum observed in our recent study on tis-
sues of the same animals [22] and also partly confirms
the previous results obtained in chickens receiving an L-
Met– or DL-Met–supplemented diet [23]. It may thus
be speculated that the increased expression of B0AT1
protein upon feeding a DL-Met–containing diet may
have functional significance.
ATB0,+ has repeatedly been cited as a very important

Met carrier in several species [36, 37]. Its expression in
pigs is subject to controversy because a previous study
was unable to detect ATB0,+ on a functional level in the
porcine jejunum [38, 39]. Nonetheless, another study ob-
served ATB0,+ mRNA expression in the small intestine
and stomach of White Duroc × Chinese Erhualian pigs
[40]. In our study, the levels of ATB0,+ mRNA were
comparatively low in the small intestine (except for the
duodenum) when compared with areas in the stomach
and especially to the large intestine. This partly confirms
another study in mice where ATB0,+ protein was pre-
dominantly expressed in the large intestine and, to a
lower extent, also in the distal parts of the small intes-
tine. The authors speculated that transport of Met and
other AA into the intestinal epithelial cells might not be
the primary function of ATB0,+ as most AA coming
from feed intake are not present in the digesta this far in
the intestinal canal [32]. As stated earlier, however, other
scientists considered a functional relevance of trans-
porters like ATB0,+ for large intestinal absorption of
amino acid derived from microbial metabolism [29–31].
Dietary upregulation of ATB0,+ mRNA by a DL-Met or
L-Met–containing diet, as previously observed in
chicken [23], could not be identified in the present
study. However, a trend for diet effect in the large intes-
tine mRNA data indicates a possibility of dietary upregu-
lation of ATB0,+ by DL-HMTBA supplementation in the
large intestinal segments. This finding appears concord-
ant with the work of Malik et al. who showed that DL-
HMTBA is available in the digesta further down the

(See figure on previous page.)
Fig. 3 Analysis of Met transporter expression with proposed basolateral localization along the gastrointestinal tract using qRT-PCR. Data was
compared with 2-way-ANOVA for the factors “Tissue”, “Diet”, and their interaction “Tissue x Diet”. Significant factor effects are mentioned in each
graph. a–c Expression values among tissues within one graph (irrespective of diet) are different if they do not share a common letter (P < 0.05).
For LAT4, multiple comparison could not identify differences in the small intestine despite of a significant effect of tissue. OM, oral mucosa; CAR,
cardia; FUN, fundus; PYL, pylorus; DUO, duodenum; PJ, proximal jejunum; MJ, middle jejunum; IL, ileum; CAE, cecum; PC, proximal colon; DC,
distal colon
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lower intestine compared with Met [41]. Thus, DL-
HMTBA is still present in the lumen of the large intes-
tine and its possible microbial conversion to Met could
potentially be associated with an upregulation of ATB0,+

in this portion of the gastrointestinal tract.
The Na+-independent transporter b0,+/rBAT has been

postulated as a main uptake system for L-Met in Caco2
cells [42]. As mentioned earlier, rBAT mRNA expression
was analyzed representatively for the expression of the
b0,+/rBAT heterodimer in the present study. Transcripts
of rBAT were also expressed highest in the small intes-
tine, similar to B0AT1, suggesting the possibility of func-
tional relevance in these tissue segments. In the
proximal jejunum, mRNA expression of rBAT was in-
creased by a diet containing DL-HMTBA; however, no
difference was observed in other segments of the small
intestine. Furthermore, as we did not observe increased
Na+-independent methionine transport in the duode-
num after supplementation of a DL-HMTBA–supple-
mented diet in our previous study [22], the functional
significance of this finding remains to be determined.
The IMINO and ASCT systems have been character-

ized as uptake systems with low affinity for L-Met [34,
42]. They have been described as strongly expressed in
the small intestine [14]. In the present study, the tran-
script levels of IMINO and ASCT2 were rather similar in
the small and large intestines. Additionally, ASCT2 pro-
tein levels showed only moderate variation across small
and large intestinal segments with highest levels in the
cecum and distal colon. Of note, a diet effect was ob-
served for ASCT2 mRNA in all small intestinal segments
with highest values observed in pigs receiving the DL-
Met–containing diet. Although the ASCT2 protein pat-
tern almost mirrored its mRNA pattern in the proximal
jejunum, middle jejunum and ileum, this effect did not
penetrate towards statistical significance at the protein
level when tested for all four small intestinal segments.
When tested for only the proximal jejunum, middle je-
junum and ileum, however, a DL-Met–containing diet
significantly upregulated ASCT2 protein expression,
which was coherent with the observed changes in
mRNA expression. It was further coherent with the in-
duction of a Na+-dependent transporter by the DL-Met
diet observed in the middle jejunum of these pigs in our
companion study [22].

The basolateral exit of Met is mainly mediated by a
single uniport system, LAT4. The other transport sys-
tems known to accept Met on the basolateral side of
enterocytes either operate as exchange proteins (LAT1,
LAT2, y+LAT1) or mediate Na+-dependent basolateral
import of Met from blood (SNAT1, SNAT2) [14]. In the
present study, we evaluated transcripts (y+LAT1, LAT2,
LAT4, and SNAT2) and proteins (LAT2 and LAT4) of
basolateral transporters involved in Met shuttle. It needs
to be acknowledged that y+LAT1 and LAT2 have been
suggested to have a function in methionine reentry from
the blood into the intestinal epithelial cell [14, 43].
LAT1 and LAT2 transporters do not contribute to a net
flux of AA since they only exchange abundant AA for
less abundant AA [19]. Because of this characteristic, it
is not surprising that LAT2 is also expressed in cells that
have no absorptive function like Paneth’s cells [44].
Transporter y+LAT1 exchanges intracellular cationic AA
against extracellular neutral AA like Met. Only LAT4
transports selected AA (L-Met, L-leucine, L-isoleucine,
and L-phenylalanine) solely by concentration gradient,
functioning as a symmetrical uniporter [45, 46].
The expression of mRNA or protein of basolateral

Met transporters was not increased by dietary supple-
mentation with either DL-Met or L-Met. However, DL-
HMTBA supplementation enhanced gene expression of
y+LAT1 in large intestinal tissues and LAT2 in small in-
testinal tissues, as well as protein expression of LAT4 in
small intestinal tissues, extraintestinal tissues, and, as a
trend, in large intestinal tissues. A similar stimulating ef-
fect of DL-HMTBA on basolateral Met transport was
suggested in a previous study in chickens [47]. Of note,
the increased expression of basolateral transport systems
was apparently not associated with increased transe-
pithelial Met absorption as the latter was not stimulated
by HMTBA in our previous study [22]. This argues
against a rate-limiting role of basolateral Met trans-
porters for transepithelial Met absorption as postulated
earlier [14] based on studies in Caco2 cells [48]. Another
study showed that even with feeding DL-HMTBA, the
first pass utilization of Met remains at a constant pro-
portion of about 30% [49, 50], indicating that basolateral
transporters do probably not create an intracellular trap
for Met in pigs as long as dietary Met concentrations are
within requirement ranges.

(See figure on previous page.)
Fig. 4 Western blot analysis of B0AT1, ASCT2, LAT2, and LAT4 in the intestinal and extraintestinal regions of pigs fed three different diets. Each
value is the mean of 9 pigs and represents the relative expression to the IRC (IRC = 1). Data was compared with two-way ANOVA for the factors
“Tissue”, “Diet”, and their interaction “Tissue × Diet”. Significant factor effects are mentioned in each graph. If column groups or columns do not
share a common small letter within one graph, their expression values are either different irrespective of diet(a–c) or within a given diet(y,z) (P <
0.05). A,BDifferent capital letters indicate diet effects within a given tissue. OM, oral mucosa; CAR, cardia; FUN, fundus; PYL, pylorus; DUO,
duodenum; PJ, proximal jejunum; MJ, middle jejunum; IL, ileum; CAE, cecum; PC, proximal colon; DC, distal colon
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Methionine metabolism in enterocytes plays a substan-
tial role in the gastrointestinal absorption of Met. It is
estimated that 20–30% of dietary Met is directly metabo-
lized in intestinal epithelial cells [49, 50]. Dietary supple-
mentation of DL-HMTBA is often seen as a way to
avoid this first pass metabolism because HMTBA passes
the intestinal epithelial cell largely unchanged and is
only later converted into Met in the liver [51, 52]. How-
ever, such interpretation does not hold true. At least for
pigs, HMTBA is absorbed from the intestinal lumen
more slowly than L-Met and, thus, has a greater loss to
intestinal bacterial degradation (as part of the first pass
metabolism), associated with a lower amount of
HMTBA absorption [41]. The latter may explain lower
plasma Met concentrations by dietary HMTBA supple-
mentation compared with Met supplementation [53].
Thus, it may be speculated that dietary DL-HMTBA
supplementation induces a higher expression of basolat-
eral Met “recovery systems” in order to compensate the
lower dietary Met levels and to enhance the exchange of
Met with other AA.
An interesting finding of the present study was that

mRNA expression of two transporters, namely B0AT1
and LAT2, was higher in the middle jejunum compared
with the ileum, whereas their protein expression pattern
was inverse. Bringing this data together with our previ-
ous flux study, it conformed functionally with higher ab-
sorptive capacity for L-Met in the ileum compared with
the middle jejunum, at least at higher L-Met concentra-
tions [22]. A quite similar finding was reported earlier
for the glucose transporter GLUT2. Despite lower
mRNA levels in the distal ileum compared with the mid-
dle jejunum, GLUT2 protein abundance was higher in
the distal ileum than the middle jejunum [54]. Consider-
ing these findings together, it is tempting to suggest that
a higher absorptive capacity for nutrients in the ileum of
pigs compared with their middle jejunum originates
partly from differences in the translation or turnover of
certain nutrient transporters.
The present study was performed in pigs; however,

Met supplements gain increasing popularity also in hu-
man nutrition [14]. As humans rely on L-Met supple-
ments almost exclusively, it is desirable to explore in
model animals whether other Met supplements may
have nutritional benefits beyond those of L-Met. Pigs are
an ideal model for humans [55]. Despite some minor dif-
ferences, the anatomical and physiological similarities
between the porcine and human intestines are striking
and far superior when compared with rodent models or
other non-rodent species [56]. Gut microbiota and nutri-
ent digestibility of pigs show great resemblance to the
human intestine [57]. The high correlation of ileal amino
acid digestibility and the similarity in eating habits be-
tween pigs and humans make pigs a useful model for,

especially, protein digestion in humans [58]. As such,
the present results have a high potential to be transfer-
able to man, suggesting that the type of Met supplemen-
tation may affect transporter expression and absorptive
efficiency for Met and potentially other amino acids.

Conclusion
The present study showed that known Met transporters
have a distinct longitudinal pattern of expression along
the different sections of the GIT in pigs. A high expres-
sion of several Met transporters in small intestinal seg-
ments underlines the primary role of these segments in
AA absorption. However, some transporters showed ra-
ther high expression in segments that do not have a
proven role in AA absorption (extraintestinal and large
intestinal tissues). Dietary Met source changed the ex-
pression of some transport systems. From these changes,
it may be extrapolated that a diet containing DL-Met
has potential to increase apical Met transport in the
small intestine, which is congruent with recent func-
tional findings of our group. On the other hand, a diet
containing DL-HMTBA has potential to increase baso-
lateral Met transporters in the small intestine and,
partly, other gastrointestinal tissues. However, this was
not previously found to improve functional methionine
absorption and may be a result of a system compensa-
tion for lower free Met to be used for epithelial cell me-
tabolism or as an exchange molecule for transport of
other AA. Overall, the degree of regulation appeared
small to moderate and, likely attributable to this fact,
changes in mRNA expression did not clearly correlate
with changes in protein expression. Importantly, the
small changes in mRNA (ASCT2) and protein expres-
sion (B0AT1) of apical Na+-dependent transporters in
the present study cannot explain the de novo induction
of a Na+-dependent uptake system in the mid jejunum
identified in our previous study upon feeding a DL-
Met–containing diet [22]. Therefore, further functional
studies on intestinal Met absorption should complement
the current findings, including investigations on post-
translational mechanisms that possibly regulate AA ab-
sorption. A comprehensive knowledge on
transcriptional, translational, and posttranslational regu-
lation of AA absorption will greatly enhance our under-
standing of AA absorption in animals and eventually
humans.
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4.4. Monocarboxylate transporters 

The previous phase of this study showed that feeding D/L-Met, L-Met or D/L-HMTBA 

resulted in altered transcript levels of several AA transport systems in different sections of the 

porcine intestine. The data presented in Publication 2 (Romanet et al. 2021) concentrated on 

Met-associated transport systems. The main transport protein alleged to accept HMTBA as a 

substrate is MCT1, probably with the cooperation of MCT4 (To et al. 2021; Mastrototaro et al. 

2016; Martin-Venegas et al. 2007). Therefore, their transcript expression in the porcine 

intestine depending on the fed Met supplement was of interest and was addressed with the 

following analyses. 

 

4.4.1. Materials and Methods 

Diet and animal handling are described in Publication 1 (Romanet et al. 2020). Methods 

for tissue preparation, gene expression measurement and statistical analysis are outlined in 

Publication 2 (Romanet et al. 2021). 

 

Table 2  shows the primer and probe sequences used in the RT-qPCR experiments. 

 

Table 2: Primers and probe sequences for MCT1 and MCT2. 

 
 Primer and probe

MCT1 Fwd CTGATGGACCTTGTTGGA

Rev TGTCATTGAGACGACCTAAA

 Probe TCTCCAGTGCTGTGGGATTGGTGA 

MCT4 Fwd TGGACAGGTACCCTTGTATTA

Rev GGAGACAAACTGCTACCTTTAT

 Probe TGGAGCTATCGCATTGCATTTGGTGC 

 

4.4.2. Results 

The mean expression values of MCT1 and MCT4 of 9 pigs for each gene in the different 

intestinal regions are summarized in the following figures. P-values obtained in the two-factor 

Anova for the factors “feeding” and “tissue” are shown next to the corresponding graph in 

Figure 4. For clarity, only P-values < 0.1 are shown.    
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Figure 4: T-qPCR analysis of MCT1 (A, C, E) and MCT4 (B, D, F) in extra-intestinal regions (A, 

B), in the small intestine (C, D) and in the large intestine (E, F).  
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Data were compared using 2-factor ANOVA and a post hoc Student–Newman–Keuls test. Significant 
factor effects are mentioned in each graph. If column groups or columns do not share a common small 
letter within one graph, their expression values are either different irrespective of diet (a-c) or within a 
given diet (y,z) (P < 0.05). Different capital letters indicate diet effects within a given tissue. DUO: 
duodenum; PJ: proximal jejunum; MJ: middle jejunum; IL: ileum; Cae: caecum; PC: proximal colon; DC: 
distal colon; OM: oral mucosa; CAR: cardia; FUN: fundus; PYL: pylorus 
                                                                                                                                                                           

 In the extra-intestinal regions, no diet effect could be found for the mRNA expression 

of MCT1 (Figure 4E) or MCT4 (Figure 4F). In contrast, the factor “tissue” was statistically 

significant for both transport systems (P < 0.001). MCT1 showed higher mRNA levels in fundus 

and in pylorus compared to oral mucosa and cardia (P < 0.01). MCT4 had highest gene 

expression levels in fundus compared to the three remaining extra-intestinal regions (P < 

0.001). 

In the small intestine, MCT1 mRNA expression (Figure 4A) was statistically different 

depending on which Met supplement the animals received (factor diet, P < 0.05) and 

depending on the segment tested (factor tissue, P < 0.01) with significant diet × tissue 

interaction (P < 0.01). The interaction effect was attributable to a higher MCT1 mRNA 

expression in the proximal jejunum only, where the D/L-HMTBA group had significantly higher 

MCT1 mRNA levels when compared to the D/L-Met and L-Met feeding groups. The MCT4 

mRNA expression in the small intestine (Figure 4B) did not differ regarding both factors tissue 

and diet. 

 In the large intestine, MCT1 gene expression (Figure 4C) was significantly higher in 

pigs fed D/L-HMTBA when compared to pigs fed D/L-Met or L-Met (P < 0.05). This effect could 

not be found for MCT4 (Figure 4D) (P > 0.1). Both MCT1 and MCT4 did not show any changes 

in the mRNA expression levels for the factor tissue. 

  

 In Table 3, the relative expression data of MCT1 and MCT4 was analyzed among all 

segments, irrespective of the factor diet using ANCOVA with diet as a covariate. 

  



Results 

 
Seite 50 von 82 

Table 3: Comparison of the relative mRNA expression data of MCT1 and MCT4 among different 
intestinal and extra-intestinal sections irrespective of the factor diet. 

  MCT1 MCT4 

OM 0.05 ± 0.01d 0.1 ± 0.01c 

Pyl 0.36 ± 0.07bcd 0.57 ± 0.1bc 

Car 0.11 ± 0.02cd 0.31 ± 0.03c 

Fun 0.37 ± 0.07bcd 1.59 ± 0.25a 

Duo 0.50 ± 0.08bcd 0.54 ± 0.11bc 

PJ 0.49 ± 0.14bcd 0.77 ± 0.21bc 

MJ 0.28 ± 0.06cd 0.74 ± 0.11bc 

Ile 0.12 ± 0.02cd 1.18 ± 0.30ab 

Cae 1.07 ± 0.21ab 0.40 ± 0.08c 

PC 1.50 ± 0.40a 0.31± 0.04c 

DC 0.82 ± 0.18abc 0.36 ± 0.07c 

  P-value < 0.001 < 0.001 

Different small letters within one column indicate significant differences of gene expression between 
intestinal and extra-intestinal sites at P < 0.05. 
 

The gene expression distribution of MCT1 and MCT4 mRNA along the intestinal tract 

was rather different. While MCT1 had a rather high expression in the large intestine, levels of 

MCT4 were highest in the fundus of the stomach and in ileum (Table 3). 

 

4.4.3. Conclusion 

The gene expression of MCT1 seemed to be partially influenced by the feeding of 

different Met supplements. While pigs fed D/L-Met and L-Met showed similar MCT1 levels 

through the whole intestinal tract, pigs which received D/L-HMTBA showed higher MCT1 levels 

in all large intestinal samples and ileum. MCT4 levels were comparable for the factor diet in all 

tested samples. 

Interestingly, MCT1 and MCT4 gene expression was not equivalently distributed along 

the intestinal tract. Whereas measured MCT1 gene expression was highest in the large 

intestine and rather low in the small intestine, this pattern was inverted for MCT4. Apart from 

the oral mucosa and cardia, the samples of the large intestine showed the lowest MCT4 levels; 

and small intestinal samples were among the samples with the highest MCT4 gene expression. 
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5. Discussion 

 

The importance of supplementing Met to the diet of livestock is elemental to ensure 

health and growth performance because it is a limiting and essential AA. As a precursor for 

SAM, Met is also primordial for cell metabolism. The importance of SAM for cell survival is 

directly linked to its metabolism. SAM is used, among other purposes, in the methylation of 

DNA and phospholipids, thus the availability of SAM has a direct influence on gene expression 

and membrane fluidity (Lu 2000). Another very important metabolic pathway of SAM is the 

trans-sulfuration to glutathione which is a major cellular anti-oxidant (Lu 2000). Methionine 

deprivation triggers various pathways to maintain the intracellular Met and SAM stock and a 

long-term absence of these metabolites leads to cell apoptosis (Shiraki et al. 2014). Maybe 

because of this fact, it is also the AA with the highest absorption rates in the intestine of 

mammals (Webb 1990) and a large portion of the absorbed Met is directly metabolized by the 

intestinal epithelial cell (Shoveller et al. 2005). This high Met demand of the intestine is not 

very surprising, as the intestinal mucosa forms a junction between the inner organism and the 

outer environment. Besides having to form an effective barrier, the intestinal mucosa also has 

to be permeable towards nutrients; this dual role makes the intestinal epithelium prone to 

oxidative damage by luminal components (Circu and Aw 2012). Damages to the enterocytes 

have a direct impact on nutrient utilization and, therefore, on production performance (Yang 

and Liao 2019). Methionine has been shown to have a beneficial effect on intestinal integrity 

and morphology, antioxidative status and immune response (Yang and Liao 2019). To provide 

sufficient Met supply for all metabolic functions and to ensure good production rates, Met has 

been supplemented to the diet of livestock (pigs and poultry especially) in its crystalline form. 

There is evidence of a beneficial effect on health and production rates when animals are 

offered a low crude protein diet supplemented with adequate levels of crystalline Met in poultry  

(Lemme et al. 2020) and pigs (Wang et al. 2018; Gloaguen et al. 2014). The most commonly 

used Met supplements in animal nutrition are D/L-Met and the synthetic precursor D/L-HMTBA. 

L-Methionine is also available but due to the high production cost of this supplement, it is 

mostly used in human nutrition and pharmacological applications. The adequate 

supplementation of D/L-Met or D/L-HMTBA is essential not only for commercial purposes, but 

also because over-supplementation of either supplement can cause reduced performance 

(Vazquez-Anon et al. 2017). While piglets fed L-Met and D/L-Met show very similar average 

daily weight gain during their growth (Shen et al. 2014), some studies suggested that piglets 

fed D/L-HMTBA had better growth rates than animals fed D/L-Met (Li et al. 2014) despite it 

being less bioavailable than D/L-Met (Shoveller et al. 2010). The relative effectiveness of D/L-

HMTBA when compared to D/L-Met was described to be between 62% and 78% (Zimmermann 
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et al. 2005). D/L-HMTBA was not absorbed as effectively as D/L-Met in the small intestine 

(Drew et al. 2003). Interestingly, a study involving cecectomized chicken showed that D/L-

HMTBA and D/L-Met could not be measured in the excreta of conventional chicken but that 

animal without ceca excreted significant amount of D/L-HMTBA indicating that the large 

intestine and especially the microbiome play an essential role in the utilization of D/L-HMTBA 

(Han et al. 1990). This also suggests that the lower bioavailability of D/L-HMTBA is not only 

caused by a limited absorption of the substance. This would mean that at least part of the 

differences in bioavailability are of metabolic nature. These variances in metabolism seem to 

affect overall feed intake, depending on supplementation levels of D/L-HMTBA and D/L-Met, 

making it difficult to compare the bioefficacy of both compounds. There is indication that the 

weight gain of animals fed D/L-HMTBA vs. D/L-Met develops differently depending on how low 

(or high) the compounds are supplemented to the feed. At lower dosages, broilers fed D/L-

HMTBA seem to show lower growth rates when compared to the same dosages of D/L-Met. 

This effect seems to be existent in diets deficient for sulfur AA, whereas the effect seems to 

disappear or reverse at higher concentrations (Vazquez-Anon et al. 2017). Having extensive 

insight about the ways Met and its analogs are absorbed by the body, as well as their effect 

on said pathways is essential. However, this information is very sparse in literature. The 

objective of the present work was to obtain knowledge on the influence of the most used dietary 

Met sources on Met absorption in the gastrointestinal tract (GIT) of growing pigs.  

 

Influence of methionine absorption depending on dietary supplementation  
 

In its first phase, this work examined the trans-epithelial Met absorption along the small 

intestine, comparing L-Met absorption to the absorption of its stereoisomer D-Met. The 

duodenum had lower absorptive capacity than the more distal parts of the small intestine, 

jejunum and ileum. However, it had been described previously that Met is very quickly 

absorbed in the proximal parts of the small intestine (Malik et al. 2009). For this reason, the 

enhanced Met absorption in the distal parts of the small intestine might appear contradictory. 

However, the higher concentration of the transport systems in the more distal portions of the 

GIT may enable the organism to extract even smallest amounts of Met from the digesta, 

preventing the loss of this essential AA. Interestingly, this effect has been observed for both 

D- and L-Met. 

L-Methionine is the biologically active isomer. D-Methionine has to be converted into L-

Met in order to be utilized in cell metabolism. This transformation occurs in the liver and in the 

kidneys where the reaction is catalyzed by D-AA oxidases and followed by reamination into L-

Met (Metzler-Zebeli et al. 2017). The bioavailability of D-AA is controversially described in 

literature. Certain authors describe a similar utilization based on the feed conversion ratio 
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(Kong et al. 2016; Chung and Baker 1992); others stipulate, with the same criterion as 

reference, that L-Met is more efficiently used (Shen et al. 2014; Kim and Bayley 1983). Based 

on this disparity, several groups preferred to measure N-retention and secretion as an indicator 

for D-AA bioavailability. Here again, the results were not consistent (Espinosa et al. 2021; Kong 

et al. 2016; Cho et al. 1980). An explanation for those disparities could be the different ages 

of animals used for the studies because it was stipulated that the age of animals could have 

an influence on the activity of D-AA oxidase and thus on the utilization of D-Met and other D-

AA (D'aniello et al. 1993). At least in weanling pigs, as were used in the experiments of the 

present thesis, D-AA oxidase is present in high concentrations in the small intestine, potentially 

allowing for an immediate conversion of D-Met into L-Met directly after uptake, especially in 

proximal parts of the small intestine (Espinosa et al. 2021; Brachet and Puigserver 1992). In 

our experiments, the D-Met flux rates at physiological concentration were noteworthy and only 

the ileum showed significantly higher L-Met flux rates than D-Met flux rates, suggesting that a 

potentially lower bioavailability is not only caused by the limitation in absorptive capacity but 

also by metabolic factors. Overall, the uptake and utilization of D-Met in the intestinal tract is 

rather efficient when compared to some other D-AA (D-histidine or D-lysine, for example) 

(Friedman 1999; Jervis and Smyth 1959). 

This work further showed that the choice of Met supplement had an influence on the 

absorption of L-Met in the intestine of pigs. In piglets fed with the D/L-Met racemate, D- and L-

Met flux rates across the jejunal epithelium were significantly higher than in the tissue from 

animals which had received the L-Met or D/L-HMTBA supplement. Interestingly, the D/L-Met 

supplement caused a more evident increase in the L-Met flux rates than in the D-Met flux rates. 

Additionally, L-Met absorption was elevated only if the mucosal environment contained Na+, 

suggesting that either the induced transport system accepts both Met enantiomers as 

substrates or the D/L-Met- containing diet induced two separate transport systems. It has been 

postulated that D-Met and L-Met are absorbed through distinct pathways in the intestine; L-

Met being absorbed with higher affinity than D-Met, and each one inhibiting the uptake of the 

other (Brachet et al. 1987). In the present work, however, we were able to increase L-Met 

absorption with the dietary supplementation of D-Met, suggesting that both enantiomers take 

a rather similar path from the intestinal lumen into the enterocyte. Indeed, the main reason for 

the aforementioned suggested reciprocal inhibition might be that some transport proteins are 

known to accept both D-Met and L-Met though having a higher affinity for one of the 

enantiomers. For example ATB0+ was shown to allow flux of both L-Met and D-Met (Hatanaka 

et al. 2002). ASCT2 also accepts both isomers but seems to have a higher affinity towards D-

Met when compared to L-Met (To et al. 2021). In the model for the intestinal Met transport 

proposed by Mastrototaro et al., nine proteins and transport systems are mainly responsible 

for the absorption of dietary Met in the GIT (Mastrototaro et al. 2016). Among the apically 
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located transport systems, four are Na+-dependent: ATB0+, IMINO, B0AT1 and ASCT2. ATB0+ 

is described to be mainly expressed in the large intestine while being sparsely expressed in 

the small intestine (Hatanaka et al. 2002). The results obtained in this work support these 

allegations. To et al. even postulate that ATB0+ only plays a marginal role in dietary Met 

absorption (To et al. 2021). IMINO was shown to have a very low affinity for Met (Brachet and 

Puigserver 1987). Therefore, B0AT1 and ASCT2 are more likely to have been induced by 

dietary D/L-Met. Both of the aforementioned transport-proteins accept other AA apart from Met 

and therefore it was no surprise to see that the Na+-dependent Met flux that was stimulated 

with D/L-Met-containing diet was reduced by the mucosal presence of other AA. These results 

suggest that the induced transport system(s) is (are) selective not only for Met but also 

accept(s) other AA as substrates, potentially with higher affinity. Overall, a supplementation 

with D/L-Met might influence intestinal absorption of several AA in addition to Met. This dietary 

supplement might therefore raise the absorptive capacity of the small intestine and thereby 

improve dietary protein utilization. 

Beside D- and L-Met flux rates, the flux rates of radiolabeled D/L-HMTBA were also 

investigated in the first phase of this project. Flux measurements of D/L-HMTBA showed that 

its absorption in the small intestine could not be influenced by different Met sources. The 

addition of Na+ did not enhance D/L-HMTBA flux rates across the intestinal tissue in any tested 

segment at physiological concentration; peculiarly, it seemed to lower the D/L-HMTBA flux 

rates in duodenum. This effect reached statistical significance only at the higher D/L-HMTBA 

concentration of 5 mM, but was indicated numerically at 50 µM D/L-HMTBA. Interestingly, the 

duodenum showed overall significantly lower absorptive capacity for D/L-HMTBA when 

compared to the jejunum and to the ileum. The lack of diet effects on HMTBA flux rates is quite 

surprising as the transport system MCT1, which is supposedly the main protein responsible 

for the secondary active transport of HMTBA, is substrate-inducible (Cuff et al. 2002). 

Therefore, one could expect the HMTBA flux rates to be higher in HMTBA-fed animals. 

However, monocarboxylate transporters are proton-coupled and are dependent on a pH 

gradient in order to accept their substrates with high affinity (Felmlee et al. 2020). The lack of 

pH gradient in our experimental procedure between the apical and basolateral side of the 

intestinal tissue might have resulted in diffusion being the main flux pathway and explain why 

the flux rates were similar between dietary groups, as especially MCT1 might have had little 

activity, and the uptake of HMTBA in the intestine is suggested to have a diffusive component 

besides the active transport via MCT1 and MCT4 (Brachet and Puigserver 1987). In rainbow 

trout, the transport of D/L-HMBTA was shown to have a Na+-dependent component, indicating 

the contribution of sodium monocarboxylate transporters (SMCTs) in some species (Pham Thi 

Ha To et al. 2020). The results obtained in the present study indicate that Na+ does not 

enhance the flux of D/L-HMTBA through the porcine intestine whatsoever, indicating that 



Discussion 
 

Seite 55 von 82 

SMCTs had no major significance in the D/L-HMTBA transport in the small intestine of pigs. 

When considering the whole GIT, the intestinal absorption is not the only relevant factor when 

considering D/L-HMTBA as a Met replacement. The presence and activity of the enzyme D-

HADH is primordial in the conversion of D/L-HMTBA into Met. This enzyme is regulated by the 

type of dietary Met supplement and its expression was remarkably high in the stomach, 

comparable to what was found in liver and kidney, suggesting that the stomach would be able 

to process dietary D/L-HMTBA (Martín-Venegas et al. 2011; Fang et al. 2010b). Therefore, a 

great part of dietary HMTBA might be absorbed in the stomach. Indeed, Malik et al. showed 

that around 50% of dietary HMTBA disappeared from the ingesta before the small intestine in 

pigs (Malik et al. 2009). In poultry, this effect was even stronger as almost the totality of the 

fed D/L-HMTBA seemed to be absorbed before the duodenum (Richards et al. 2005). As D/L-

HMTBA has a rather low pKa (~ 3.86), diffusion could be quantitatively relevant at the acidic 

pH immanent to the upper GIT of pigs and poultry (To et al. 2021). 

 

Overall, the functional experiments in the Ussing chamber showed that it is possible to 

influence intestinal Met absorption with dietary supplements. For a better understanding of the 

functional data, an analysis of the expression of possible met transport systems along the 

intestinal tract of pigs is helpful and is expected to give insight on the mechanisms that can be 

influenced by different Met supplements.  

 

Expression of Met transporters along the gastrointestinal tract of pigs  
 

In the feeding trial, the mucosal tissue was sampled in pigs fed D/L-Met, L-Met or D/L-

HMTBA in different locations along the gastrointestinal tract. These samples were examined 

for gene and protein expression of known Met transporters in western blot and qPCR 

experiments. This research was complemented with the examination of the gene expression 

of transport systems that are suspected to accept HMTBA as substrate (MCT1 and MCT4). 

The goal of this part of the project was to identify the transport system(s) which were induced 

with a D/L-Met dietary supplement in the flux experiments of the first part of this project 

(Romanet et al. 2020). Six of the presented proteins (B0AT1, ATB0+, b0+AT, IMINO, ASCT2 

and MCT1) are principally located on the apical side of the intestinal epithelial cell and five 

(LAT4, LAT1/2, SNAT2, y+LAT1, MCT4) are mostly located on the basolateral side. B0AT1, 

ATB0+, ASCT2, SNAT2 and y+LAT1 require Na+ for AA transport (Mastrototaro et al. 2016). 

Among these systems, few are known to accept both Met isoforms as substrate but especially 

ASCT2 and LAT1 seem to accept both isomers (Kobayashi et al. 2012; Yanagida et al. 2001). 

ASCT2 is a rather interesting transport system. Firstly, ASCT2 expression and activity 

can be influenced by the composition of the diet, especially AA availability, in the intestine (Wu 
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et al. 2015) but also in skeletal muscle and mammary epithelial cells, potentially increasing AA 

availability (Dai et al. 2020; Hu et al. 2019). Secondly, ASCT2 is able to transport D-Met, 

possibly with higher affinity than L-Met (Kobayashi et al. 2012). This feature makes ASCT2 a 

promising target to enhance Met utilization, as in animal nutrition, Met is mostly supplied in its 

racemic form. In the present work, ASCT2 protein and mRNA was found all over the GIT with 

transcript levels being highest in the stomach and protein levels highest in sections of the large 

intestine. ASCT2 mRNA levels seemed to be enhanced in the small intestine of animals which 

received a D/L-Met containing diet, especially when compared to D/L-HMTBA, indicating that 

this transport system might be a suitable target to improve dietary Met absorption. As an 

obligatory antiporter, ASCT2 seems essential in the AA homeostasis of the cell, endorsing a 

role as “harmonizer” of AA (Scalise et al. 2018). It has been stipulated that the activity of 

ASCT2 is closely related to the basolateral LAT1 transporter (Cormerais et al. 2018), which 

interestingly also accepts D-AA (Yanagida et al. 2001). LAT1 is, like ASCT2, also an AA 

exchanger and together these two proteins might take an essential part in balancing the levels 

of intracellular AA (Cormerais et al. 2018). Both transport systems seem to show similar 

expression patterns, they are either upregulated together or remain unchanged together when 

the expression of other AA transporters is being influenced, underlining their partnership 

(Mccracken and Edinger 2013; Amaral et al. 2008). This apparent interaction has been 

repeatedly described in association with tumor growth and cancer (Lopes et al. 2021; Zhang 

et al. 2020) but it is thinkable that it also takes part in physiological proliferative mechanisms 

that occur in the intestine. However, information on this topic outside of a pathological context 

remains very sparse. 

The function of ATB0+ in the absorption of dietary Met is not very clear. While some 

assign ATB0+ an important role in L-Met absorption (Chen et al. 1994), others describe its role 

as marginal, mainly because of its supposedly low expression in the small intestine (To et al. 

2021). Various working groups were able to identify the SLC6A14 gene in the small intestine, 

whereas it has not been found in other studies based on its functional characteristics (Yu et al. 

2020; Schweer et al. 2016; Sun et al. 2015; Yang et al. 2010; Munck et al. 1995). In the present 

work, we were able to detect ATB0+ gene expression throughout the whole intestinal tract of 

pigs. However, the large intestine showed significantly higher gene expression levels than the 

small intestine, reinforcing the postulate that ATB0+ does not have significance in the 

absorption of dietary Met or even dietary AA in general. Interestingly, ATB0+ gene expression 

trended to be higher in D/L-HMTBA fed animals in the large intestine only. Malik et al. showed 

that D/L-HMTBA is present much further down the GIT when compared to Met (Malik et al. 

2009), indicating that D/L-HMTBA might be available for intestinal microorganisms in the large 

intestine, possibly leading to microbial conversion into Met. This theory is in line with another 
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group which hypothesized that ATB0+ is probably more involved in the absorption of AA coming 

from bacterial metabolism than in the absorption of dietary AA. (Hatanaka et al. 2002). 

B0AT1 was described by many authors as the main transport system for Met (To et al. 

2021; Mastrototaro et al. 2016; Bröer 2008). In the present study, B0AT1 was predominantly 

found in the small intestine, especially in the middle jejunum, thus suggesting it might be the 

most important transporter for dietary AA. As a matter of fact, mutations in the SLC6A19 gene 

(as in Hartnup disease for example) result in excessive excretion of neutral AA (Hashmi and 

Gupta 2021), especially tryptophan, threonine, serin, glutamine, tyrosine and histidine. 

Methionine, isoleucine, alanine and phenylalanine have also been found to have a significantly 

higher renal clearance in patients with Hartnup disease (Bröer 2009). In another study, 

SLC6A19 knockout mice suffered from protein malabsorption, including a delayed distribution 

of AA to tissues (Javed et al. 2018). These studies therefore suggest that lack or malfunction 

of SLC6A19 result in severe changes in AA uptake, confirming its central role in the absorption 

of dietary neutral AA. In the present project, we also investigated the distribution of B0AT1 

protein and mRNA transcript levels along the digestive system in animals fed different Met 

sources (L-Met, D/L-Met and D/L-HMTBA). The type of diet did not have any influence on 

B0AT1 mRNA expression in this study, but mRNA transcripts were higher in middle jejunum 

and to a smaller extent in the ileum, when compared to the more proximal small intestinal 

portions. Protein levels of B0AT1 were highest in the ileum. These results indicate a post-

transcriptional upregulation of B0AT1 and could support the data obtained in a functional study 

where D/L-Met induced a Na+-dependent L-Met flux in the jejunum. In the jejunum and ileum, 

the flux rates of L-met were overall higher in pigs fed D/L-Met but a Na+-dependency could not 

be shown on a statistical level, which is rather surprising as the upregulation of B0AT1 protein 

by D/L-Met was numerically higher in the ileum than in jejunum. Thus, the sole presence of the 

B0AT1 protein in the tissue does not seem to be a guarantee for B0AT1 activity, post-

translational pathways appear to be decisive in this case. The normal activity of B0AT1 in the 

intestine was observed to depend on the partnership with ACE2, as the proper localization of 

this transport system in the membrane seems to rely on the latter’s expression (Camargo et 

al. 2020; Singer and Camargo 2011; Kowalczuk et al. 2008), although the sole coexpression 

of these two proteins is seemingly not sufficient to guarantee B0AT1 activity either (Yang et al. 

2016). An explanation might be that B0AT1 also associates with other proteins, such as 

syntaxin 1A. The pairing of B0AT1 with syntaxin 1A has been shown to have the opposite effect 

to the partnership with ACE2, namely an inhibition of B0AT1 activity (Fairweather et al. 2015). 

Overall B0AT1 expression can be influenced on a molecular level by the diet as shown in the 

present study, but the post-translational processes that ensure its transport activity are rather 

complex and not yet fully understood. 
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On the basolateral side LAT4 seems to be the only relevant transporter for a net efflux 

of Met (To et al. 2021; Mastrototaro et al. 2016). The function of the other basolateral proteins 

seems to mainly be the equilibration of AA across the cell membrane rather than facilitating a 

net efflux (LAT1 and LAT2) (Bröer 2008; Verrey et al. 2004). Other basolateral amino acid 

transporters are mainly responsible for net uptake from the blood (SNAT2 and y+LAT1) 

(Mastrototaro et al. 2016; Bröer 2008). This postulate has been confirmed in a recent trial 

which demonstrated that a lack of LAT4 resulted in the accumulation of Met in the enterocyte 

(Rajendran et al. 2020). Its indispensability has also been confirmed by Guetg et al., who 

reported that SLC43A2 (LAT4) knockout mice showed severe postnatal growth deficiency and 

premature death (Guetg et al. 2015). The substrate spectrum of LAT4 has been shown to be 

rather narrow. As a matter of fact, it transports only a few essential AA, but interestingly other 

AA’s plasma levels are also affected by the lack of LAT4, indicating that LAT4 is involved in 

the overall regulation of transepithelial AA flux (Oparija et al. 2019). A reason for this impact 

on AA homeostasis might be the tight cooperation of LAT4 with other basolateral AA 

transporter that have a broader substrate range (namely LAT2 and y+LAT1) (Maric et al. 2021; 

Guetg et al. 2015). Together these systems control exit and entrance of AA at the basolateral 

side of the enterocyte. In the present study, LAT4 had highest mRNA expression in the small 

intestine, but transcripts were not influenced by the type of dietary Met supplement. In contrast, 

protein expression of LAT4 was significantly higher in the small intestine of pigs fed a D/L-

HMTBA containing diet. D/L-HMTBA also influenced transcript levels of LAT2 (in the small 

intestine) and y+LAT1 (in the large intestine), supporting the thesis that these proteins operate 

together to ensure AA balance across the basolateral enterocyte membrane. Enterocytes have 

a rather high need of Met, and feeding D/L-HMTBA is a popular method to lower first-pass 

metabolism of Met (Fang et al. 2010a). This may result in Met deficiency in the enterocytes, 

as HMTBA is mainly converted to L-Met in the liver (Lobley et al. 2006). By increasing the 

expression of LAT4 and other basolateral systems, the enterocyte might try to replace the 

missing dietary AA by others from the blood to guarantee sufficient supply for its own 

metabolism. This hypothesis is reinforced by the recent work of Fagundes et al. (Fagundes et 

al. 2020). They showed that LAT4 mRNA transcripts were significantly higher in chicken fed a 

Met- deficient diet. Overall, besides being the major “exit door” for essential dietary AA from 

the intestinal cell, in particular for Met, there is some evidence suggesting that LAT4 might 

double as an “emergency backdoor” to guarantee the supply of those same essential AA in 

periods where nutritional supply is insufficient. 

The present study showed that feeding HMTBA had an influence on the expression of 

some Met transporters. However, this upregulation of mainly basolateral transport systems 

might essentially be due to the lack of available serosal Met rather than to the action of HMTBA 

itself. Due to small (but essential) differences in their structure, HMTBA is not transported 
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through the same pathways as Met (Brachet and Puigserver 1987). MCT1 and MCT4 are 

supposedly the main transport systems for HMTBA; in consequence, their distribution along 

the GIT was also investigated. The data is presented in chapter 4.3 and shows that both 

investigated MCT genes are expressed along the porcine GIT. The results show that their 

distribution differs between extra-intestinal and intestinal regions. Whereas MCT1 shows 

higher gene expression in regions of the large intestine, MCT4 seems to have higher gene 

expression in the small intestine and in locations of the stomach. Furthermore, the different 

Met supplements affected the expression of MCT1 only. This data set is in accordance with 

literature that reports MCT1 as ubiquitously expressed but with highest levels in the colon 

where it is mainly responsible for the transport of short-chain fatty acids (SCFAs) produced by 

bacterial fermentation (Welter and Claus 2008; Ritzhaupt et al. 1998). The MCT1 mRNA levels 

seemed to be upregulated by a diet containing D/L-HMTBA in the large intestine and in the 

ileum. It has previously been shown that the MCT1 gene expression does not vary depending 

on the dietary supplements D/L-Met, L-Met and D/L-HMTBA in the jejunum of chicken (Zhang 

et al. 2017), which reflects the lack of regulation in this part of the porcine intestine in this 

project. It is reported in the existing literature that especially in the epithelium of the large 

intestine MCT1 is easily regulated by the presence of an appropriate substrate (Agyekum et 

al. 2015; Cuff et al. 2002). Therefore, the upregulation of MCT1 by D/L-HMTBA as oral 

supplement is coherent, because HMTBA transport across the apical membrane is known to 

be mediated by MCT1 (Zhang et al. 2015; Martin-Venegas et al. 2007). The results obtained 

in this project are also consistent with a study from Martin-Venegas et al. (Martin-Venegas et 

al. 2014) where they showed that HMTBA supplementation upregulates MCT1 mRNA 

expression and protein levels in Caco-2 cells.  

In contrast to MCT1, which is ubiquitously distributed among tissues, MCT4 is mainly 

expressed in tissues with high glycolytic rates and probably located on the basolateral side 

responsible for lactate efflux in these tissues (Halestrap and Wilson 2012; Morris and Felmlee 

2008; Bonen 2001). Investigations from other groups showed that MCT4 can be upregulated 

in skeletal muscle to allow the efflux of lactic acid under conditions of high energy demand, 

suggesting that MCT4 expression is regulated by the availability of its main substrate (Furugen 

et al. 2011). The quantification of MCT4 mRNA in the present study showed highest levels in 

the gastric fundus which is in accordance with the finding that a large portion of HMTBA is 

already resorbed in the stomach before reaching the intestine (Malik et al. 2009; Richards et 

al. 2005). 

Feeding different Met sources did not induce any significant effect on MCT4 expression 

in any of the regions analyzed. This resembled the data of Martin-Venegas et al. (Martin-

Venegas et al. 2014) who confirmed the expression of both MCT transporters in Caco-2 cells 

but reported that only MCT1 but not MCT4 expression was affected by HMTBA 



Discussion 

 
Seite 60 von 82 

supplementation. In the present work, the gene expression of only MCT1 was upregulated by 

the D/L-HMTBA-containing diet, indicating that MCT1 might represent the main active system 

involved in the absorption of HMTBA, as already suggested by Sepponen et al. (Sepponen et 

al. 2007). As MCT1 transcripts were among the lowest in the stomach, MCT1 is not a very 

likely explanation for the high disappearance rates of dietary HMTBA before the small intestine 

as observed in some previous studies (Malik et al. 2009; Richards et al. 2005). It could thus 

be speculated that metabolic conversion of HMTBA prior to reaching the small intestine or 

permeation by lipophilic diffusion facilitated by low pH (Vazquez-Anon et al. 2017; Pieper et al. 

2016) may contribute to pre-intestinal disappearance of HMTBA. 

 

Overall, the work showed that the absorption of Met is influenced by the diet, and that 

higher transport rates might be the consequence of the modulation of the expression of 

different AA transporters. Especially a D-Met-containing diet (in the form of a D/L-Met 

supplement) seemed to enhance L-Met absorption in the jejunum of pigs in the presence of 

Na+. The two transport systems which are most likely causative for these higher transport rates 

are ASCT2 and B0AT1. The molecular data showed that the mRNA expression of ASCT2 was 

slightly higher in pigs which received D/L-Met although the mRNA expression of B0AT1 was 

not influenced by the diet. On protein level, ASCT2 was not influenced by the diet whereas 

B0AT1 was higher in pigs fed D/L-Met. These findings do not allow to attribute the higher L-

Met flux observed in pigs fed D/L-Met to only one transport system, especially because the full 

functionality of B0AT1 does not only rely on its sole presence. To fully pinpoint the mechanisms 

involved in this process, more information, especially functional data is necessary.  

As ASCT2 and B0AT1 both accept a range of AA, especially neutral, as substrates, it is 

conceivable that overall AA absorption is influenced by the dietary supplementation of 

crystalline Met. This could have significance in supporting treatments against gastrointestinal 

malabsorption diseases also in humans. The porcine intestine has shown to be an excellent 

model of human digestive diseases because the human and porcine GIT are very similar in 

terms of anatomy and pathophysiology (Gonzalez et al. 2015). Especially diseases like short-

bowel syndrome are well reproducible with the aid of a porcine intestinal model (Manithody et 

al. 2020). Moreover, understanding the exact mechanisms and learning how to influence AA 

absorption in pigs is essential to optimize pig production. This not only relates to enhancing 

yields and reducing N-excretion but it might be an important element in combating post-

weaning diarrhea in piglets because adequate AA supply is a key component for intestinal 

health and metabolism (Mou et al. 2019). 
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6. Summary 

 

Ensuring high growth performances is a central subject in the production of livestock. 

For this reason the diet of pigs is often supplemented with crystalline AA, especially Met as it 

is an essential and a limiting AA. The objective of this project was to gain insight into the 

mechanisms of Met absorption in the intestine of weaned pigs and to assess whether different 

dietary supplements might have different effects on the expression of Met transport systems 

in the intestinal tract. 

In the first part of this project, a feeding study was run to give insight whether different 

Met sources had an effect on the absorption of Met in the small intestine. For this purpose, 

three groups of each 9 piglets received a pre-feeding which only differed by the Met source 

supplemented. The three sources were L-Met, D/L-Met and the hydroxy Met analog D/L-2-

hydroxy-4-methylthiobutyrate) D/L-HMTBA. In a functional study using the Ussing chamber, 

we analyzed the mucosal-to-serosal flux rates of L-Met, D-Met and D/L-HMTBA through 

sections of duodenum, jejunum and ileum. The resulting data showed that a D/L-Met-

containing diet increased the absorptive capacity for D-Met and L-Met. In the jejunum the flux 

rates of L-Met in the D/L-Met fed group were strongly Na+-dependent, suggesting the induction 

of a Na+-dependent transport system in the jejunum by a D/L-Met-containing diet. Na+-

dependent L-Met transport systems in the apical membrane include B0AT1, ATB0+, ASCT2 

and system IMINO. The flux study of D/L-HMTBA in the small intestine showed that the 

different dietary sources had no influence on the intestinal flux of D/L-HMTBA itself, which was 

rather surprising as the systems which supposedly accept D/L-HMTBA as a substrate (MCT1 

and MCT4) are known to be upregulated in the presence of appropriate substrates.  

For a better understanding of the functional data obtained in the first part of this project, 

an analysis of the expression of possible Met transport systems was run along the whole 

gastrointestinal tract of pigs in the second part of this project. The samples came from the 

same pigs we used in the Ussing chamber experiments in the first part. Changes in mRNA 

expression of a total of nine apical or basolateral AA transporters, as well as MCT1 and MCT4, 

and changes in protein expression of four AA transporters were analyzed. In pigs fed D/L-Met, 

mRNA expression of ASCT2 was higher when compared to D/L-HMTBA in the small intestine, 

but this induction was not statistically confirmed on the protein level. B0AT1 protein expression 

was higher in the distal small intestine where it was upregulated by a D/L-Met containing diet. 

A D/L-HMTBA-containing diet seemed to upregulate certain basolateral transport systems on 

gene and protein levels, but also mRNA expression of MCT1. Overall, this part of the project 

showed that different Met supplements have an effect on the expression of several AA 
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transport systems, especially D/L-Met seemed to have an effect on apical transport systems 

and D/L-HMTBA more on basolateral transport systems.  

Overall, this work showed that Met absorption in the intestine is influenced by the diet. 

Especially a D/L-Met-containing diet increased the L-Met flux in the jejunum of pig in the 

presence of Na+. Following the functional experiments, the analysis of gene and protein 

expression showed that this effect might result from expression changes of ASCT2 and B0AT1 

which are both Na+-dependent transport systems. They are both excellent candidates for being 

responsible for the induction of Na+-dependent L-Met flux in the jejunum in the Ussing chamber 

experiment. To distinguish among those two contenders, more functional data is required to 

fully understand the mechanisms behind the changes observed in the feeding trial. 
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7. Zusammenfassung 

 

Mechanismen der Methionineabsorption im Darm von Schweinen 

 

Die Gewährleistung von hohen Wachstumsraten ist eine zentrale Zielsetzung in der 

Fleischproduktion. Aus diesem Grund wird die Ernährung von Schweinen oft mit Aminosäure-

Supplementen ergänzt. Das Vorhaben dieses Projektes war es, einen Einblick in die 

Mechanismen der Methioninabsorption im Darm abgesetzter Ferkel zu gewinnen und zu 

erforschen, ob verschiedene Futterergänzungsmittel verschiedene Effekte auf die Expression 

von Methionintransportern im Gastrointestinaltrakt haben. 

Im ersten Teil dieses Projektes, wurde eine Fütterungsstudie durchgeführt. In diesem 

Experiment sollte Verständnis gewonnen werden, ob die Absorption von Methionin von 

verschieden supplementierten Methioninquellen beeinflusst werden kann. Zu diesem Zweck 

wurden drei Gruppen aus je neun Absatzferkeln jeweils ein Futtermittel verfüttert. Jede Gruppe 

wurde mit je einer anderen Methioninquelle vorgefüttert. Die drei Quellen waren L-Methionin, 

D/L-Methionin und D/L-2-hydroxy-4-methylthiobutyrate (D/L-HMTBA), die restliche 

Zusammensetzung der drei Futtermittel war identisch. In einer funktionellen Studie wurden die 

mukoserosalen Fluxraten von L-Methionin, D-Methionin und D/L-HMTBA in verschiedenen 

Dünndarmabschnitten mit der Ussing-Kammer Technik analysiert. Die Daten zeigten, dass ein 

mit D/L-Methionin supplementiertes Futtermittel die Absorptionsfähigkeit für D- und L-

Methionin erhöht. Im Jejunum der Tiere, die D/L-Methionin erhielten, waren die L-Methionin 

Fluxraten stark Na+-abhängig. Dieses Ergebnis ist ein Hinweis, dass ein D/L-Methionin-

haltiges Futtermittel ein Na+-abhängiges Transportsystem im Jejunum von Absatzferkeln 

induziert. Als Na+-abhängige Transportsysteme, die Methionin als Substrat akzeptieren, sind 

B0AT1, ATB0+ ASCT2 und das IMINO System bekannt. Die D/L-HMTBA Fluxstudie im 

Dünndarm zeigte, dass die verschiedenen Methioninquellen keinen Einfluss auf die Fluxraten 

von D/L-HMTBA selbst hatten. Diese Erkenntnis war eher überraschend, da die 

Transportsysteme, die vermeintlich für den Transport von D/L-HMTBA im Dünndarm 

verantwortlich sind (MCT1 und MCT4), dafür bekannt sind, durch die Anwesenheit von 

eigenen Substraten hochreguliert zu werden. 

Für ein besseres Verständnis der funktionellen Daten, die im ersten Teil dieser Arbeit 

erhalten wurden, wurde auch eine Analyse der Expression vermeintlicher Methionintransporter 

entlang des gesamten porzinen Gastrointestinaltraktes durchgeführt. Die Proben, die für diese 

Analysen verwendet wurden, stammten von denselben Tieren, die auch für die Ussing-
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Kammer-Experimente des ersten Teils benutzt wurden. Veränderungen der mRNA-

Expression von insgesamt neun apikalen oder basolateralen Transportsystemen, zuzüglich 

MCT1 und MCT4, sowie Veränderungen der Proteinexpression von vier 

Aminosäurentransportern wurden analysiert. Schweine, die mit D/L-Methionin gefüttert 

wurden, zeigten höhere ASCT2 mRNA-Gehalte im Dünndarm verglichen mit den Tieren, die 

D/L-HMTBA erhielten; diese Induktion konnte auf Proteinebene statistisch nicht bestätigt 

werden. Die B0AT1-Proteinexpression war höher im distalen Dünndarm, wo es durch die 

Zufütterung von D/L-Methionin hochreguliert wurde. Ein Futtermittel welches mit D/L-HMTBA 

supplementiert wurde schien einige basolaterale Transportsysteme auf der Gen- und 

Proteinebene hochzuregulieren. Die MCT1-mRNA-Expression wurde auch durch D/L-HMTBA 

erhöht. Insgesamt hat der molekularbiologische Teil dieser Arbeit gezeigt, dass verschiedene 

Methioninsupplemente einen Effekt auf die molekulare Expression verschiedener 

Aminosäurentransporter haben. Insbesondre D/L-Methionin scheint einen Einfluss auf apikale 

Transportsysteme zu haben, während D/L-HMTBA eher auf die basolateralen Systeme 

einwirkt. 

Alles in allem hat diese Arbeit gezeigt, dass die Methioninabsorption im Darm über die 

Ernährung beeinflusst werden kann. Insbesondere eine Supplementierung der Diät mit D/L-

Methionin hatte eine Zunahme des absorptiven L-Methioninfluxes in der Anwesenheit von Na+ 

im Jejunum von Schweinen zur Folge. Anschließend an die funktionellen Experimente, hat die 

Analyse der Gen- und Proteinexpression eine Hochregulierung von zwei Na+-abhängigen 

Transportsystemen, namentlich ACT2 und B0AT1, gezeigt. Beide sind exzellenten Kandidaten 

für die Vermittlung eines Na+-abhängigen L-Methioninfluxes in der Ussing-Kammer. Um die 

Mechanismen der veränderten Methioninabsorption aus der Fütterungsstudie voll zu 

verstehen, sind weitere funktionelle Daten nötig, insbesondere um unterscheiden zu können 

welches Transportsystem dafür verantwortlich war. 
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