~	Duomonti analitätakanatanta dan E Evaktian
α	Proportionalitätskonstante der Γ-Funktion Suszeptibilität
χ δ	chemische Verschiebung
φ	Flipwinkel
$\overset{\mathtt{d}}{\Phi}_{\mathrm{y}}$	Phase der Spins entlang y-Richtung
η΄	Viskosität
γ	gyromagnetisches Verhältnis
γ_{I}	kernspezifisches gyromagnetisches Verhältnis zum Spin $\vec{\mathbf{I}}$
γs	kernspezifisches gyromagnetisches Verhältnis zum Spin \vec{S}
κ_{21}	Konstante aus dem Weinmann-Modell: κ_{21} =0,044 1/min
λ	Gewebe-Blut-Verteilungskoeffizient
λ_1	Konstante aus dem Weinmann-Modell: λ ₁ =-0,0082 1/min
λ_2	Konstante aus dem Weinmann-Modell: λ ₂ =0,00876 1/min
μ	magnetisches Dipolmoment
μ_0	magnetische Induktionskonstante
$\mu_{ m r}$	Permeabilitätszahl
μ_{s}	Kernspindipolmoment
θ	Winkel zwischen $\vec{\mathbf{r}}_{\text{IS}}$ und $\vec{\mathbf{B}}_{0}$
ρ	Protonendichte
$\widetilde{ ho}$	Fouriertransformation von S
σ	Abschirmkonstante
σ_{T}	Abschirmtensor
τ	Integrationsvariable der Zeit
$egin{array}{c} au_{ m c} \ \Omega \end{array}$	Autokorrelationszeit
ω	ω _L .ω Betrag der Kreisfrequenz
$\vec{\omega}$	Kreisfrequenz Kreisfrequenz
ω_0	Kreisfrequenz des \vec{B}_0 -Feldes
ω_{l}	Kreisfrequenz des \vec{B}_1 -Feldes
$\vec{\omega}_{\scriptscriptstyle L}$	Lamorfrequenz
$\omega_{ m L}$	Betrag der Lamorfrequenz
$\omega_{ m L}$ $\omega_{ m R}$	Frequenz der Referenzlinie von Tetramethylsilan
$\omega_{\rm K}$	Resonanzfrequenz abhängig vom Ort entlang der x-Achse
ξ	Anpaßparameter im benutzten Modell
Ψ	Wellenfunktion
ψ_{Im}	Eigenfunktion von I und m
$ec{\mathbf{A}}$	Operator der Kombinationen der Komponenten $\vec{\mathbf{I}}$, $\vec{\mathbf{S}}$
b	Anpaßparameter der histologischen Radiusverteilung
$ec{ extbf{B}}_0$	Feldstärke des homogenen Magnetfeldes
B_0	Betrag der Feldstärke des homogenen Magnetfeldes
$ec{ extbf{B}}_1$	Feldstärke des hochfrequenten Wechselfeldes
\mathbf{B}_1	Betrag der Feldstärke des hochfrequenten Wechselfeldes
$ec{ ext{B}}_{ ext{ iny DD}}$	magnetisches Dipolfeld
$\mathrm{B}_{\mathrm{DD,z}}$	z-Komponente des magnetischen Dipolfeldes
	-

 \vec{B}_{eff} effektives Magnetfeld

B_i magnetische Induktion im Innern einer Substanz

 $B_{int}(t) \qquad \qquad B_{int}(t) = \frac{\int_0^t C_B(t) d\tau}{C_B(t)}$

 $\begin{array}{ll} B_{lok} & Lokales \ Magnetfeld \\ B_z & Magnetfeld \ in \ z\text{-}Richtung \end{array}$

B_{1,y} y-Komponente des hochfrequenten Wechselfeldes
B_{1,x} x- Komponente des hochfrequenten Wechselfeldes
c Anpaßparameter der histologischen Radiusverteilung

C(t) Kontrastmittelkonzentration im Voxel C₀ Kontrastmittelkonzentration zur Zeit t=0

 $C_a(t)$ arterielle Kontrastmittelkonzentration = arterielle Inputfunktion

 $C_k(t)$ kapilläre Kontrastmittelkonzentration $C_v(t)$ venöse Kontrastmittelkonzentration

C_B Signalintensität von Blut

CBV regionales zerebrales Blutvolumen

C_i(t) Kontrastmittelkonzentration im Interstitium

C_{in}(t) Kontrastmittelkonzentration vor Erreichen des betrachteten Voxels

CO Herzschlagvolumen

C_{out}(t) Kontrastmittelkonzentration nach Verlassen des betrachteten Voxels

 C_p Kontrastmittelkonzentration im Blutplasma $C_{p,langsam}$ Exponentialfunktion bezüglich Plasma

C_{p,schnell} Bolusfunktion im Plasma

C_{B,langsam} Exponentialfunktion bezüglich Blut

C_{B,schnell} Bolusfunktion im Blut

 $\begin{array}{ll} C_{langsam} & langsame \ Komponente \ der \ Bolusfunktion \\ C_{T} & Kontrastmittelkonzentration \ im \ Gewebe \\ C_{T\text{-}B} & Kontrastmittelkonzentration \ im \ Gewebeblut \\ C_{T\text{-}E} & Kontrastmittelkonzentration \ im \ Extravasalraum \end{array}$

 $\begin{array}{ll} d & Abstand \ der \ Spins \\ d_{schicht} & Schichtdicke \\ D_{sample} & Sampling funktion \\ E_m & Energie eigen wert \ f \ddot{u}r \ m \end{array}$

E Energie

Einheitsvektor in x-Richtung \vec{e}_{v} Einheitsvektor in y-Richtung \vec{e}_{v} \vec{e}_z Einheitsvektor in z-Richtung Meßwerte der Histologie e_{j} F Blutflußrate oder Blutfluß FLR Fraktional Leak Rate Blutfluß in der Aorta F_{Aorta} F_{Gehirn} Blutfluß zum Gehirn

 F_j statistisch schwankende Raumkoordinate f_i Interstitiumanteil im Extravasalraum

 f_p Plasmaanteil im Blut $\vec{G}(t)$ Gradientenfeldtensor

Gradientenfeld in x-Richtung

G^y Gradientenfeld in x-Richtung
G^z Gradientenfeld in z-Richtung

Hct Hämatokritwert

ħ Plank'sches Wirkungsquantum

H Hamiltonoperator

 \mathcal{H}_0 Hamiltonoperator des Zeeman-Effektes

 $\mathcal{H}_{0,z}$ z-Komponente des Hamiltonoperator des Zeeman-Effektes

H' Störoperator

 \mathcal{H}_{CS} Hamiltonoperator der chemischen Verschiebung \mathcal{H}_{DD} Hamiltonoperator der Dipol-Dipol-Wechselwirkung

H magnetisches FeldI Drehimpulsquantenzahl

 $egin{array}{ll} I_R & Stromstärke \\ ar{I} & Kernspin \end{array}$

I Kernspin (Drehimpulsoperator)

I_z z-Komponente des Drehimpulsoperators

 $\begin{array}{lll} i & Komplexes\ i \\ j & Summations index \\ J(\omega) & Spektral dichte funktion \\ \vec{k}(t) & Orts frequenz vektor \\ k_{\gamma} & Recovery konstante \\ k & k-Raum variable \end{array}$

k_x k-Raumvariable in x-Richtung k_v k-Raumvariable in y-Richtung

k_B Boltzmann-Konstante

L Induktivität

 M_0 Gleichgewichtsmagnetisierung = Nettomagnetisierung

M_x x-Komponente der Magnetisierung

M_x x-Komponente der Magnetisierung im rotierenden Koordinatensystem

M_{xv} Quermagnetisierung oder Transversalmagnetisierung

M_v y-Komponente der Magnetisierung

M_v y-Komponente der Magnetisierung im rotierenden Koordinatensystem

M_z z-Komponente der Magnetisierung

N Anzahl der Summationspunkte bzw. Anzahldichte

N_{matrix} Matrix größe

 $N_{1/2}$ Anzahl der Spins die antiparallel eingestellt sind $N_{-1/2}$ Anzahl der Spins die parallel eingestellt sind

 $egin{array}{lll} N_I & Anzahl der Kernspins \ N_S & Anzahl der Spins \ N_{AV} & Anzahl der Mittlungen \ \end{array}$

N_{Phk} Anzahl der Phasenkodierschritte

P Permeabilität

PS Permeabilitätsoberflächenprodukt

PS' $PS' = k_{12} \cdot rbv$

P_{PSF} Point Spread Funktion

Δp Druckdifferenz

o Meßwerte der Kernspinresonanz

O Gefäßoberfläche Q(t) Kontrastmittelmenge

r Ortsvektor

rCBV regionales zerebrales Blutvolumen \bar{r} gewichtetes Mittel des Gefäßradius

 $egin{array}{lll} r_{\gamma} & Exponentialfaktor \\ r_{bg} & Blutgefäßradius \\ r_{IS} & Abstand der Kerne \\ r_{max} & maximaler Gefäßradius \\ \end{array}$

r_{min} minimaler histologischer Gefäßradius

R Ohmscher Widerstand

 R_1 T_1 -Relaxivität

R_{1KM} T₁-Relaxivität mit Kontrastmittel

R₂ T₂-Relaxivität

R_{2KM} T₂-Relaxivität mit Kontrastmittel

 R_2^* T_2^* -Relaxivität

R₂*_{KM} T₂-Relaxivität des Kontrastmittels

 \vec{S} Spinoperator

S(t) Kernspinresonanzsignal S analoges MR-Signal

Signal vor Kontrastmittelgabe

S_{Blut} Signal aus dem vaskulären Kompartiment

S_{FLASH} Signal einer FLASH-Sequenz

S_{FLASH,KM} Signal einer FLASH-Sequenz mit Kontrastmittel

S_{Gew1} Signal aus Gewebe 1 S_{Gew2} Signal aus Gewebe 2

 S_{i} Signal aus dem interstitiellen Kompartiment S $_{IRFLASH}$ Signal einer Inversion-Recovery-FLASH-Sequenz

S_{IRFLASH,KM} Signal einer Inversion-Recovery-FLASH-Sequenz mit Kontrastmittel

 S_{SE} Signal einer Spin-Echo-Sequenz S_{voxel} Signal im betrachteten Voxel

T absolute Temperatur T_{ADC} Akquisitionsdauer

t Zeit

t₀ Zeitpunkt des Signalanstiegs
 T₁ longitudinale Relaxationszeit

T_{1KM} longitudinale Relaxationszeit mit Kontrastmittel

T₂ transversale Relaxationszeit

T₂* transversale Relaxationszeit durch Feldinhomogenitäten

 T_{2^*KM} transversale Relaxationszeit mit Kontrastmittel T_{2KM} transversale Relaxationszeit mit Kontrastmittel

T_{akq} Akquisitionszeit siehe T_{ADC}

T_E Echozeit
T_I Inversionszeit

t_{HF} Dauer der Einstrahlzeit

t_x Schaltzeit für den x-Gradienten
 t_y Schaltzeit für den y-Gradienten

 $egin{array}{ll} \dot{T}_R & & Repetitionszeit \\ U & Spannung \\ \end{array}$

 $\begin{array}{ll} U_{ind} & Induktions spannung \\ U(l_{matrix}) & Stufen funktion \\ V & Volumen \end{array}$

V₀ anfängliche Verteilungsvolumen für das Kontrastmittel

 $\begin{array}{ll} V_{Gehirn} & Gehirnvolumen \\ V_i & interstitielles \ Volumen \end{array}$

V_{total} gesamtes Volumen in der Aorta

 $\begin{array}{ccc} V_{vox} & & Voxelvolumen \\ V_z & & zellul\"{a}res \ Volumen \end{array}$

W Wahrscheinlichkeitsdichte der Blutgefäßradien

x Richtungskoordinate x

Y $Y \equiv \Gamma(r+1)\frac{1}{k_{\gamma}}^{r+1} = \frac{1}{K} \int_{0}^{\infty} \Delta R_{2} *_{fit}(t) dt$

y Richtungskoordinate y z Richtungskoordinate z