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ABSTRACT

Spectroscopic ellipsometry is a powerful method with high surface sensitivity that can be used to monitor the growth of even sub-monolayer
films. However, analysis of ultrathin films is complicated by the correlation between the dielectric constant and thickness. This problem is
usually resolved by fixing one or the other value, limiting the information that can be extracted. Here, we propose a method to determine
unambiguously the refractive index, extinction coefficient, and thickness of a film when a transparent range is available in the energy range
investigated. We decompose the analysis in three steps. First, the thickness of the film is determined from the transparent range of the film.
Then, knowing the thickness of the layer, an initial estimation of the refractive index and extinction coefficient is made based on a first-order
Taylor expansion of the ellipsometric ratio. Finally, using this estimation, a numerical iteration is done to ensure convergence of the fit toward
the solution. A theoretical example of the method is given for two different thicknesses of TiO2 films. Finally, the method is applied to the
experimental data measured during the atomic layer deposition of a thin film of Hf0.5Zr0.5O2 grown on Si. The thickness, refractive index, and
extinction coefficient are retrieved with high precision (respectively, 0.01 and 0.002) in the energy range of 3.5–6.5 eV. A detailed analysis is pre-
sented on the accuracy of the retrieved values and their dependency on random and systematic errors for different energy ranges.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0150135

I. INTRODUCTION

Spectroscopic ellipsometry is an optical, non-destructive, char-
acterization method commonly used to precisely monitor the
growth of thin films, both in research and industry.1 This method
relies on the measurement of a complex ellipsometric ratio, ρ, that
characterizes the changes in polarization after polarized light inter-
acts with a sample. As opposed to spectrophotometry and other
techniques, an ellipsometry measurement is made without the need
to calibrate the background intensity, an aspect that consequently
enhances the reliability of the measurement.2 Furthermore, owing
to its high sensitivity to surface change and low footprint, the
method is particularly suited for in situ study.3 In the simple case

of an isotropic three-phase configuration consisting of the ambient
(with complex refractive index ~na), thin film (~nf ) and substrate
(~ns), ellipsometry allows to determine the unknown thickness df
and dielectric constant of the thin film ~εf ¼ (~nf )

2 ¼ (nf þ ikf )
2

where ~nf , nf , and kf are the complex refractive index, real refractive
index, and extinction coefficient of the thin film, respectively.
Commonly, the retrieval of df and ~nf from the measured ρ is made
by developing an optical model assuming a certain dispersion
property of the dielectric constant.1 Indeed, due to the non-
linearity of the optical equations, no direct inversion can be made.4

The information is retrieved by varying the parameters of the
optical model to minimize the mean square error (MSE) that
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characterizes the error between the measured and modeled data.
Therefore, a prior estimation of the optical properties is needed to
ensure the convergence of the model toward a realistic solution.
This method can lead to incorrect optical properties when spectral
features of the film, that were not anticipated and therefore absent
from the model, are overlooked. This is the case, for example, for a
sample with sub-bandgap absorption features that would not have
been taken into account with a simple Tauc–Lorentz model.5

Furthermore, in the case of a very thin film (dfλ � 1 with λ being
the wavelength), this approach cannot be applied as ~nf and df
become strongly correlated.2 This is particularly problematic for
the very first steps of the growth of a thin film. This issue is usually
overcome by fixing either df or ~nf . For example, to study an atomic
layer deposited (ALD) film, it is common to fix the optical property
of a growing film to the bulk value and to recover information on
film growth from the thickness evolution.6–9 However, in addition
to preventing us from retrieving information on the dielectric cons-
tant of the film, this method leads to incorrect values of thickness,
in the case of ultrathin films (typically below 10 nm), as ~nf depends
on the film thickness (an ultrathin film of, e.g., 0.8 nm has a refrac-
tive index different from the one of the bulk).

One way to avoid this issue is to use complementary measure-
ments to disambiguate df and ~nf , such as measuring the mass of the
deposited material with a quartz crystal microbalance.10 Another
method was developed relying on the simultaneous measurement of
changes in the reflected intensity and ρ to disambiguate df and ~nf .

11

A drawback is the need for a precise measurement of the intensity as
it dominates the measurement accuracy.11 Another approach solely
relying on the measurement of ρ was developed by minimizing the
presence of artifacts from the substrate in the dielectric constant for
incorrect thicknesses.12,13 This method allows to unambiguously
determine the thickness when a substrate presents a sharp feature,
i.e., with a high variation with energy, like a critical point. An a priori
knowledge of ~nf is, however, necessary to ensure the convergence
toward the correct solution as multiple solutions of ~nf coexist for a
given df .

4 Finally, when the material is transparent (kf ¼ 0), ~nf is a
real, at least on part of the investigated spectral range, a direct inver-
sion of the thickness and refractive index can be made.14 The
method was extended recently to take into account the error on df ,
enhancing the accuracy.15 Knowing df , ~nf can then be calculated for
the whole spectral range by mapping all existing solutions and select-
ing the physically reasonable solution.16 This step is computationally
intensive and requires a manual selection of the solution to ensure
that a physical solution is found. It limits the applicability of real-
time analysis of a growing film. Therefore, a point-by-point method
to unambiguously determine df and ~nf without prior assumption on
~nf or manual selection of the solution is desirable to study the
growth of very thin films in situ and in real-time.

In this paper, we develop a deterministic algorithm that can
be used to unambiguously determine df , nf , and kf of very thin
films (< 10 nm)—where a transparent range is available—solely
relying on standard ellipsometric data. To the best of our knowl-
edge, such a mathematical method has not been reported so far.
We decompose the analysis in two steps. First, the ambiguity
between the thickness of the film and the optical constant is
removed following the procedure developed by Gilliot et al.15 Then,
knowing the thickness of the layer, the refractive index and

extinction coefficient are determined through a first-order Taylor
expansion of the ellipsometric ratio ρ, ensuring wavelength by
wavelength convergence of nf and kf to the correct solution from a
numerical iterative refinement.17 A theoretical example is presented
for a thin film of TiO2. Detailed analysis and discussion on the
error of df , nf , and kf for different thicknesses of TiO2 are pre-
sented. Finally, the method is demonstrated for the practical
example of a very thin film of Hf0.5Zr0.5O2 (HZO) grown by ALD.

II. MODEL AND METHOD TO UNAMBIGUOUSLY
DETERMINE ~nf AND df

The method can be divided into three parts: a first part to
determine the thickness of the film, a second one to have an esti-
mation of the optical properties from the calculated thickness, and
a third one that uses this estimation to ensure convergence toward
the actual solution by a numerical iteration. Here, we consider the
simple case of an isotropic three-layer configuration: ambient (~na),
thin film (~nf ), and substrate (~ns) as illustrated in Fig. 1.

The experimentally measured ellipsometric ratio is given by1

ρe ¼
rp
rs
¼ tan ψee

�iΔe , (1)

where ψe and Δe are the measured ellipsometric angles, rp and rs
are the p and s polarized complex reflection coefficients of the
stack, respectively. These coefficients are given by

rp ¼ raf ,p þ r fsub,pX

1þ raf ,pr fsub,pX
and rs ¼ raf ,s þ r fsub,sX

1þ raf ,sr fsub,sX
, (2)

with

X ¼ e
j4π~df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2
f
�~n2asin

2 θi

p
λ , (3)

where raf ,p(s), r fsub,p(s) are the Fresnel reflection coefficients of the
ambient/thin film interface and the thin film/substrate interface of
p (s) polarization, respectively. It should be noted that we are using
the physics convention ~nf ¼ nf þ ikf leading to the negative sign
in Eq. (1) and its absence in Eq. (3).1 In the case of a very thin
film, ~nf and df are highly correlated, and cannot be disambiguated
with these equations only.10

FIG. 1. Schematic of an ellipsometry measurement on a bare substrate (a) and
in three-phase ambient/thin film/substrate configuration (b).
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A. Thickness and refractive index disambiguation for
very thin films

In order to disambiguate ~nf and df , we rely on the method
that was presented by Gilliot et al. and that we remind here
below.15 In this method, we first consider the transparent range of
the thin film. Therefore, ~nf is a real number, i.e., ~nf ¼ nf . From
Eq. (3), ~df can be expressed as

~df ¼ �jλ ln (X)þ 2mλπ

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2f � ~n2asin

2 θi
q , (4)

where θi is the angle of incidence and m is an integer that takes
into account the multiplicity of orders due to the periodic behavior
of X. In the case of very thin films, m ¼ 0.

From there, the goal is to calculate an expression of X, that is
independent of ~df , in order to express ~df (nf ) from Eq. (4). Using
Eqs. (1) and (2), it follows that

ρe ¼
raf ,p þ r fsub,pX

1þ raf ,pr fsub,pX
raf ,s þ r fsub,sX

1þ raf ,sr fsub,sX

¼ raf ,p þ raf ,praf ,sr fsub,sX þ r fsub,pX þ r fsub,praf ,sr fsub,sX2

raf ,s þ r fsub,sX þ raf ,pr fsub,praf ,sX þ raf ,pr fsub,pr fsub,sX2
, (5)

(ρeraf ,pr fsub,pr fsub,s � r fsub,praf ,sr fsub,s)X
2

þ (ρer fsub,s þ ρraf ,pr fsub,praf ,s � raf ,p � r fsub,p)X

þ ρeraf ,s � raf ,p ¼ 0: (6)

From Eq. (6), for a given nf two solutions of X can be found
independently of ~df . Consequently, using those solutions, two
values of ~df (nf ) can be calculated.

Now that we can express the thickness in a function of the
refractive index, the main idea of the procedure is that as both the
refractive index and thickness must be real numbers, the correct
value of nf is the one that cancels out the imaginary part of the
thickness, such that

Im ~df (nf )
� �

¼ 0: (7)

These two values of ~df (nf ) can be numerically computed for
the whole wavelength (or energy) range with the method described
in.16 To do so, the values of ~df are computed for a broad range of
nf values, typically nf ¼ [1� 10] with 100 steps. Approximated
values of nf are given by those values corresponding to the change
in the sign of the imaginary part of ~df . From these initial approxi-
mations, the precise values of nf are then finally computed using
an algorithm to find the root of Eq. (7). The algorithm used in this
study is the Newton–Raphson method.18 The sign ambiguity in the
solution of Eq. (6) is solved by keeping the solution that makes
physical sense (df . 0).

The error of df can be calculated from the propagation error
formula as follows:19

σdf ¼


@df
@ψ

� �2

σ2
ψ þ @df

@Δ

� �2

σ2
Δ þ

@df
@θi

� �2

σ2
θi
þ @df

@nsub

� �2

σ2
nsub

þ @df
@ksub

� �2

σ2
ksub

þ @df
@λ

� �2

σ2
λ

þ 2
@df
@ψ

� �
@df
@nsub

� �
σ2
ψnsub

þ 2
@df
@Δ

� �
@df
@nsub

� �
σ2
Δnsub

þ 2
@df
@ψ

� �
@df
@ksub

� �
σ2
ψksub

þ 2
@df
@Δ

� �
@df
@ksub

� �
σ2
Δksub

þ 2
@df
@ψ

� �
@df
@θi

� �
σ2
ψθi

þ 2
@df
@Δ

� �
@df
@θi

� �
σ2
Δθi

þ 2
@df
@ψ

� �
@df
@λ

� �
σψλ þ 2

@df
@Δ

� �
@df
@Δ

� �
σΔλ;

vuuuuuuuuuuuuuuuuuuuuuut
(8)

where σ j is the standard deviation of the associated parameter j
and σ2

xy is the covariance of the parameters x, y.
As this computation is made for all the measured wavelengths,

df and σdf can be presented as a function of energy (E). Although
the measurements are usually made with a fixed wavelength step,
the results will be discussed as a function of energy since this scale
is more relevant to discuss the material properties like bandgap.

The computation presented above allows us to determine df
unambiguously from any energy points of the measured data. As it

is a thickness, df should be constant for all energies. However, two
causes can explain the energy dependency of df :

• This computation is made with the hypothesis that kf ¼ 0; there-
fore, df will vary in the energy range where this is not true.

• Measurements inevitably contain errors that cause variation of df
with the energy. Evaluating the impact of the errors of the mea-
surement on df is thus critical to evaluate the range of energy,
where it can be accurately determined.15
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Consequently, df has to be determined from the region where
df (E) is constant.

Once the thickness is known in theory, it is possible to directly
calculate ~nf . However, knowing df is not sufficient to determine nf
and kf from ellipsometric measurements since multiple solutions of
~nf coexist for a given thickness.4

B. A deterministic algorithm to extract the thickness,
refractive index, and extinction coefficient
automatically

From the point-by-point thickness inversion of Eq. (7), a mea-
surement will give multiple values of thickness for the different
energies. Rather than a manual selection of the thickness, we
propose here to extract the thickness automatically. The multiple
solutions observed in df (E) are caused by the measurement error
and non-transparency of the thin film. Therefore, by looking at the
energy range where σdf and

@d
@E

�� �� are minimum, the thickness can be
accurately evaluated. We calculate the thickness as a weighted
average of df (E) with the weights w(E). The weights are calculated
to minimize the values of σdf and

@d
@E

�� �� using the following function:
w(E) ¼ 1

@df (E)

@E

����
����σdf (E)

: (9)

At this step, we have determined df (E) unambiguously from
~nf with an algorithm that can be applied automatically.

In theory, by knowing df , ~nf can be unambiguously deter-
mined by computing all the possible solutions that reproduce the
measured data using Eqs. (1)–(3). However, without further
process, manual work is still needed to select the correct couple of
values of nf and kf among the multiple solutions. We propose here
an algorithm to automatize this process. In order to remove the
need for the manual selection of solutions nf and kf , we first
compute an initial guess of their value. This method was proposed
recently by Jung et al.17 to approximate ~nf without any a priori

knowledge in the case of very thin films df
λ � 1
� �

. It relies on the

first-order Taylor expansion of ρ. They evidenced that, in such a

configuration, ~nf can be approximated by

~n2f �
1
2

~n2a þ ~n2sub þ
δρ
α

� �
+

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2a þ ~n2sub þ

δρ
α

� �2

� 4~n2a~n
2
sub

s
,

(10)

with

α ¼ 4i
2π
λ
df

~na~n
2
subcos(θi)sin

2(θi)�
~na � ~n2sub

��
~n2sub � ~n2a þ

�
~n2a þ ~n2sub

	
cos(2θi)

� (11)

and

δρ ¼ ρe � ρsub
ρsub

, (12)

where ρsub is the ellipsometric ratio of the substrate before thin film
deposition [Fig. 1(a)]. It can be either measured before thin film
deposition or simulated from the known ~nsub. The ambiguity in the
sign can be removed by choosing the solution that is the closest to
the refractive index as determined from Eq. (7) in the transparent
range of the film. Since the aforementioned method to determine ~nf
is a first-order approximation, there will necessarily be a residual
error between the modeled ellipsometric ratio ρm [that can be calcu-
lated from Eq. (5)] and ρe. To minimize it, a point-by-point numer-
ical iteration can be made to refine the determination of ~nf . To this
end, an iterative method to reduce the error, such as the Newton–
Raphson method, can be used as described in the supplementary
material. After this numerical iteration, we have unambiguously
determined nf (E), kf (E), and df . Further work could be done to
ensure the physicality of the values by implementing an algorithm
to enforce Kramers–Kronig consistent values of nf (E), kf (E), and
also to ensure kf (E) . 0. However, to avoid making the method
presented here too complicated, we will refer the reader to a previ-
ous work, where the implementation of these aspects is presented.16

Finally, an important aspect of this method is to estimate the
error σ~nf on nf and kf to be able to discriminate physical features of
the spectra from a measurement artifact. We apply again the propa-
gation error formula leading to the following error expression:19

σ~nf ¼

 
@~nf
@ψ

!2

σ2
ψ þ

 
@~nf
@Δ

!2

σ2
Δ þ

 
@~nf
@df

!2

σ2
df þ

 
@~nf
@nsub

!2

σ2
nsub þ

 
@~nf
@ksub

!2

σ2
ksub þ

 
@~nf
@λ

!2

σ2
λ

þ 2

 
@~nf
@ψ

! 
@~nf
@θi

!
σψθi þ 2

 
@~nf
@Δ

! 
@~nf
@θi

!
σΔθi þ 2

 
@~nf
@ψ

! 
@~nf
@df

!
σψdf

þ 2

 
@~nf
@Δ

! 
@~nf
@df

!
σΔdf þ 2

 
@~nf
@df

! 
@~nf
@θi

!
σdf θi þ 2

 
@~nf
@ψ

! 
@~nf
@nsub

!
σψnsub þ 2

 
@~nf
@Δ

! 
@~nf
@nsub

!
σΔnsub

þ 2

 
@~nf
@ψ

! 
@~nf
@ksub

!
σψksub þ 2

 
@~nf
@Δ

! 
@~nf
@ksub

!
σΔksub þ 2

 
@~nf
@df

! 
@~nf
@nsub

!
σdf nsub þ 2

 
@~nf
@df

! 
@~nf
@ksub

!
σdf ksub

þ 2

 
@~nf
@ψ

! 
@~nf
@λ

!
σψλ þ 2

 
@~nf
@Δ

! 
@~nf
@Δ

!
σΔλ þ 2

 
@~nf
@df

! 
@~nf
@λ

!
σdf λ:

vuuuuuuuuuuuuuuuuuuuuuuuuuuuut (13)
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It must be noted that, here, all errors are considered as
random noise produced by the measurement. This is not the case,
for example, for an error on θi that should be regarded as a system-
atic error, a fixed deviation inherent to the measurement configura-
tion and which does not depend on energy. However, considering
only random errors allows us to evaluate their impact on different
parts of the energy spectrum. By having a look at the error, this
point-by-point method allows to explicitly evaluate the accuracy of
ellipsometry on the determination of df , nf , and kf for the whole
spectral range. This information is useful in itself as it can be used,
for instance, to evaluate if a spectral feature like a small absorption
below the bandgap has a physical origin or if it sits in a range of
low accuracy and could then be associated with the error of the
measurement. The possibility to analyze the error on the whole
spectral range is an asset of this method, as a similar evaluation is a
hard task to do when the analysis is made with a modeled disper-
sion law like with Tauc–Lorentz oscillators.

The maximum thin film thickness that will lead to correct
values of ~nf with this method depends on the error of thefirst-order
approximation. If this error is too large, the numerical iteration will
converge toward an incorrect solution.

To help understand the proposed method, we sum up the
algorithmic steps in the following flow chart (Fig. 2):

The algorithm is available in the form of a Python code
at https://doi.org/10.5281/zenodo.7722620 alongside example
notebooks.

III. THEORETICAL EXAMPLE: AVERY THIN FILM OF TiO2

ON Si

To illustrate the method, we first evaluate it with the theoretical
case of a very thin film of df ¼ 1:00 nm, of amorphous TiO2 on a
silicon substrate, for the energy range of 0.77–6.20 eV simulated for
an incident angle of θi ¼ 65�. TiO2 is chosen as an example
because it has a transparent range in the energy range considered
here. Its dispersion law is modeled by a Tauc–Lorentz model
(A = 256.08 eV, Br = 1.77 eV, E0 = 4.00 eV, Eg = 3.40 eV, ε1 ¼ 1) and
the optical properties of the silicon substrate are taken from Ref. 20.
To evaluate the uncertainty of the measurement, here, we consider
relatively low, but realistic errors of σψ ¼ σΔ ¼ σθi ¼ 0:01�

σλ ¼ 0:1 nm and errors of σnsub ¼ σksub ¼ 0:001.
In Fig. 3(a), the thickness resulting from the McCrakin inver-

sion of this stack is presented together with the calculated thickness
from Eq. (9) with their respective error.

As expected, the thickness from the McCrakin inversion
shows an energy dependence for values that are above the bandgap
of TiO2 (kf = 0). Indeed, for this part of the spectrum, the
hypothesis of a transparent film is not valid, and this range can,
therefore, not be used to determine the thickness. This inversion
has, therefore, already provided interesting information on the
dielectric constant of the film that can be used to confirm the
values of ~nf . A region with kf = 0 should reflect in a dispersive df .
Below the bandgap, the inversion leads to an exact match with the
actual value of the thickness. The error distribution with energy
also provides valuable information. It shows that the error on df
exponentially increases with decreasing energy in the low energy
range (2.0–0.8 eV). This is due to the fact that for decreasing
energy, the difference between ρsub and ρe also decreases, therefore,
leading to a higher sensitivity to the measurement parameter errors
σψ , σΔ, σθi , σλ, and σ~nsub , and to errors in ρe. The best
energy range to accurately determine df is, therefore, in this case,
2.0–3.4 eV. Using Eq. (9) and the error evaluation in Eq. (8), a
precise determination of df ¼ 1:00+ 0:03 nm is achieved.

From the thickness value, a first estimation of nf and kf is
then made from Eq. (10) and presented in Figs. 3(b) and 3(c) (red
curves). The initial estimation is a relatively good approximation of
the dispersion law of TiO2. However, we observe a higher differ-
ence between the actual values and estimated ones for a higher
energy than for a lower energy range where both values converge.
The estimation is based on the first-order Taylor expansion, relying

on the hypothesis that df
λ � 1
� �

; hence, the error will be increas-

ingly small for decreasing energy (increasing wavelength) as the
first-order expansion becomes a more accurate approximation.
Using this first estimation, the error is then minimized by reducing
the error between the measured and modeled ρ values with a
Newton–Raphson algorithm. The values of nf and kf after the
numerical iteration are presented in Figs. 3(b) and 3(c) (blue

FIG. 2. Flow chart describing the steps and their goals for the proposed
method.
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curves) with their respective errors represented by the colored
areas. After the numerical iteration, the dispersion law of TiO2 can
be perfectly recovered. Regarding the errors on nf and kf , a rela-
tively low error is observed in both cases in the high energy range
(> 3.5 eV), while a large one is observed for the low energy range
(< 3.5 eV). Indeed, for decreasing energy, δρ decreases, leading to a
higher sensitivity to the errors. Around 3 eV, the observed jump in
the error is due to the proximity of the two solutions expressed in
Eq. (10). Indeed, a small variation of the initial value of the numer-
ical iteration will lead to the divergence of the fit toward one solu-
tion or the other. Consequently, the error on nf and kf is large in
the low energy range.

We then considered a thin TiO2 film of df ¼ 5:00 nm, keeping
everything else the same. The results are presented in Fig. 4.

Due to the increased thickness, the error on the McCrakin
inversion is reduced and an accurate determination can, therefore,
be made in a larger energy range from 1.5 to 3.4 eV [Fig. 4(a)]. The
calculated thickness from Eq. (9) is df ¼ 5:00+ 0:02 nm. The
error on the thickness is much smaller than in the previous case
(df ¼ 1:00 nm) due to a lower dependence on the measurement
error as 5 nm leads to a larger difference on δρ. The initial estima-
tion of nf and kf is, however, quite different from the actual value
[Figs. 4(b) and 4(c)]. This is expected as the first-order Taylor
expansion that leads to a larger error for thicker films. The numeri-
cal iteration, however, leads to a very accurate determination of nf
and kf with a very low error on the considered energy range also
due to a higher δρ.

With these two examples, we show that df , nf , and kf can be
unambiguously determined with the determination of the thickness

FIG. 3. (a) Thickness dependence on energy for a thin film of 1 nm (black dots) TiO2 on silicon as determined by a McCrakin inversion method (red line) and calculated
from Eq. (9) (blue dashed line). Dispersion law of the refractive index (b) and extinction coefficient (c) of TiO2 (black dots) initial estimation from Eq. (10) (red line) and
after the numerical iteration (blue line). The colored areas are the calculated errors on the respective values.

Journal of
Applied Physics

ARTICLE pubs.aip.org/aip/jap

J. Appl. Phys. 134, 045301 (2023); doi: 10.1063/5.0150135 134, 045301-6

© Author(s) 2023

 13 O
ctober 2023 11:35:22

https://pubs.aip.org/aip/jap


being made without any assumption on the nf value. However, in
the case of ultrathin films (1 nm), the nf and kf values cannot be
determined below a given energy (here 3.4 eV), as the error
becomes too large.

In the second part of the supplementary material, we present
the result of our method for a broader range of thickness of TiO2

(0.2–10 nm). We demonstrate that it can be applied to successfully
retrieve df , nf , and kf automatically, where a manual standard
modeling approach fails even when considering data with multiple
angles of incidence.

It should also be noted that as illustrated in the supplementary
material, above a certain film thickness, the method will lead to
incorrect values of ~nf due to a high error of the first-order approxi-
mation. The initial values nf and kf , would then, indeed, lead the
numerical iteration to converge toward one of the incorrect

solutions. In this example of a thin film of TiO2 on Si, a thickness
larger than 10 nm leads to an incorrect convergence of nf and kf .

IV. EXPERIMENTAL EXAMPLE: A THIN FILM
OF HZO ON Si

As an experimental example, we applied the method to the
study of a thin Hf0.5Zr0.5O2 film grown by atomic layer deposition
on RCA-cleaned silicon (cf. Sec. VI). As a native oxide of SiOx is
present on the surface of Si, the SiOx/Si substrate was measured
before the deposition to determine ρsub. Then, to calculate ~nsub, the
pseudo-dielectric constant function was calculated.1 This method
allows us to replace a sample that consists of multiple layers with a
pseudo-dielectric constant that represents the dielectric property of
this stack and can thus be considered as the dielectric constant of a

FIG. 4. (a) Thickness dependence on energy for a thin film of 5.00 nm (black dots) TiO2 on silicon as determined by a McCrakin inversion method (red line) and calcu-
lated from Eq. (9) (blue dashed line). Dispersion law of the refractive index (b) and extinction coefficient (c) of TiO2 (black dots) initial estimation from Eq. (10) (red line)
and after numerical iteration (blue line). The colored areas are the calculated errors on the respective values.
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new semi-infinite substrate.21 The errors σψand σΔ were deter-
mined from five measurements of ψ and Δ on the sample. The
error σθi ¼ 0:1� on the angle offset was estimated from five measure-
ments of a 25 nm SiO2 reference sample on Si. The error σ~nsub on
~nsubwas calculated from the measurements of five RCA-cleaned sub-
strates. The resulting calculated thickness df is presented in Fig. 5(a).

Three regions are observed for the thickness from the
McCrakin inversion [Fig. 5(a)]. First, there is an energy-dependent
region at high energy (∼5.2–6.5 eV). This region corresponds to
the non-transparent range of the thin film and cannot be used for
the determination of the thickness. Then, a region of constant
thickness with low error (∼2.5–5.2 eV) is observed from which the
thickness can be accurately determined. A third region is observed
at low energy (∼0.7–2.5 eV). In this region, the thickness values
show a much larger error and also evolve with both the contribu-
tion of a higher scattering and an exponential increase of

decreasing energy. As the thickness values are not solely randomly
scattered, we can conclude that the observed exponential increase
of the thickness comes from systematic errors, such as a constant
offset in θi, or an error on the dispersion law of ~nsub. A detailed
analysis of this region could be done to exploit this artifact to
correct for the systematic errors, for example, considering adding
an offset of 0.1° to the angle of incidence to minimize the thickness
evolution with energy. This is, however, outside the scope of this
paper. Using Eqs. (9) and (8), we calculate the thickness of the film
and its corresponding error to be df ¼ 5:27+ 0:06 nm. We can,
therefore, reach a very low uncertainty on the measured thickness,
thanks to the presence of an energy range with high accuracy in the
McCrakin inversion (∼2.5–5.2 eV).

In Figs. 5(b) and 5(c), the resulting nf and kf values are pre-
sented together with the values of a 20 nm thick HZO film. For
high energies (> 3.0 eV), we show that both nf and kf have

FIG. 5. (a) Thickness dependence on energy for a ∼5 nm HZO film deposited on an RCA cleaned silicon substrate as determined by a McCrakin inversion method (red
line) and calculated from Eq. (9) (blue line) – Dispersion curves of (b) the refractive index and (c) extinction coefficient determined from the proposed method (blue lines)
together with the curves for a 20 nm HZO film (black dots). The colored areas are the calculated error on the respective values.
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dispersion curves similar to their thicker counterpart and that high
accuracy (σ~nsub � 0:01þ 0:002i) is achieved in both cases. The dis-
persion law is similar to a dispersion modeled by a Tauc–Lorentz
function. Such a dispersion law is characteristic of amorphous
materials for which the bandgap is present in the measured spectral
region.1 Note that we obtain such a dispersion law here with this
point-by-point method without relying on a model of the disper-
sion law. The refractive index of the very thin film is lower (2.11 at
an energy of 4.0 eV) than the one of the 20 nm film reference (2.21
at an energy of 4.0 eV), which is attributed to a lower density.1

Using Bruggeman effective medium approximation, assuming the
film is composed of HZO and nanometric air inclusions, we calcu-
late that the very thin HZO film exhibits a density of around 85%
of that of the 20 nm reference.22 This is understood by the ALD
growth mechanism that tends to generate gaps for the first step of
growth due to steric hindrance.23 Moreover, from the extinction
coefficient, a shift toward higher energy of the exponential rise is
observed for the thinner film compared to the 20 nm reference
film. This shift leads to a higher bandgap (5.2 eV) compared to the
reference sample (4.9 eV). The increased bandgap of the very thin
film can be explained by a quantum confinement effect. Indeed, if
the dimension of a material is of the same magnitude as the de
Broglie wavelength of the electron wave function, it will generate a
quantum confinement effect. This effect has already been observed
during the growth of very thin films.24

For energies below ∼3 eV, the error becomes large, which does
not allow to conclude on the optical properties of the HZO thin
film. At these energies, similar to the determination of the thick-
ness, the dispersion laws present errors that are mostly produced
from systematic errors of the measurement.

Therefore, at the present state, the proposed method can be
applied to accurately measure df and ~nf of very thin films for an
energy range higher than ∼3 eV. It should be noted that the mea-
surement of a thicker film will widen the energy range, where ~nf can
be retrieved with high accuracy, as evidenced previously (Sec. III).

V. CONCLUSION

In this paper, we demonstrated a fully automated mathemati-
cal method to unambiguously determine the thickness, refractive
index, and extinction coefficient of a very thin film with high accu-
racy, for energies typically larger than ∼3 eV. The method is devel-
oped for thin films which present a range of transparency and are
deposited on a substrate with known optical properties in the inves-
tigated energy range. The method is decomposed into three steps.
First, the thickness is estimated from a McCrakin inversion by care-
fully looking at the energy range with minimal error and thickness
dispersion. Second, a first estimation of the refractive index and
extinction coefficient is done based on a first-order Talyor expan-
sion of ρ. Finally, from this initial estimation and the calculated
thickness, convergence toward the correct solution of ~nf is ensured
with a wavelength-by-wavelength numerical iteration. We applied
the method to a thin HZO film grown by ALD on a silicon sub-
strate and retrieved its optical properties without any model
assumption with high precision in the energy range of 3.0–6.7 eV.
A high precision (≤0.5 Å) on the determination of the film thick-
ness was also shown.

Calculation of the errors enabled to discriminate physical fea-
tures from artifacts due to systematic or random errors giving addi-
tional information on the sensitivity of the measurement, on the
whole spectral range. Information on the sensitivity of the measure-
ment in various spectral regions cannot be easily obtained with a
standard approach, such as the minimization of the MSE by opti-
mization of the parameters of a Cauchy or Tauc–Lorentz model.
With these models, it is harder to determine if a spectral feature
has a physical origin and should be considered in the model. The
proposed method in this study presents a clear advantage in this
regard. Exploiting non-physical exponential dispersions of the
thickness, refractive index, and extinction coefficient in the low
energy range could improve the accuracy of the measurement. This
is especially true in the low energy range where sensitivity to the
error is the highest.

The need for a transparency range for thickness determination
can be restrictive; it prevents, for example, from studying the first
stages of the growth of a metallic compound. However, the con-
straint in the first step of the method could be overcome by other
methods to disambiguate thickness from optical properties. One
example is the study of the presence of artifacts in the dielectric
constant of the substrate.12,13 The method proposed in this paper is
particularly suited for the study of very thin films of oxides, semi-
conductors, or 2D materials, either ex situ or in situ and in real-
time, particularly during the first stages of growth. Disambiguating
the determination of thickness from the dielectric properties can
genuinely improve the information that can be retrieved from spec-
troscopic ellipsometry measurements.

VI. EXPERIMENTAL DETAILS

Prior to thin film deposition, the silicon substrate is cleaned fol-
lowing a standard RCA procedure to remove organic and ionic con-
taminations and to obtain a defined oxygen-terminated SiOx surface
with the following steps: SC1: 10 min, 70–80 °C, (5:1:1)
H2O +NH4OH (29% weight) + H2O2 (30% in solution), HF dip: 15 s
HF 1%, SC2: 10 min, 70–80 °C, (6:1:1) H2O +HCL (37%
weight) + H2O2 (30% in sol.). The samples are rinsed in H2O and N2

and blow-dried after each step. This standard RCA cleaning process
results in a 1.0 nm (±0.1 nm) chemical oxide SiOx layer. Before the
deposition, the Si/SiOx stack is measured by ellipsometry to deter-
mine ρsub and define the pseudo-dielectric function that can be used
as the substrate dielectric constant ~nsub. The thin film of HZO is
deposited on top of the cleaned Si substrate by atomic layer deposi-
tion at 250 °C using tetrakis(ethylmethylamino)zirconium
(TEMA-Hf) and tetrakis(ethylmethylamino)zirconium (TEMA-Zr)
as precursors and de-ionized H2O as oxidant. The depositions are
performed using an “Oxford FlexAl” ALD system. The spectroscopic
ellipsometry measurements are made with a Woollam M2000 at an
incidence angle of 60°, for a wavelength range of 192–1690 nm corre-
sponding to an energy range of 0.73–6.46 eV. The bulk value of
~nHZO is determined from a Tauc–Lorentz model on a 20 nm thin
film deposited with the same conditions.

SUPPLEMENTARY MATERIAL

See the supplementary material for a detailed mathematical
implementation of the Newton–Raphson iterative process. We also
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provide in the supplementary material a comparison of our algo-
rithm with a classic model relying on the MSE minimization
approach for the theoretical case of a TiO2 thin film on a Si
substrate.
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