
Chapter 6

Matching a Polygonal Curve in a
Graph of Curves

The Fréchet distance as we have considered it in Chapter 5 is defined for two curves. In this
chapter we generalize this concept to one curve and a planar embedded graph with a straight-
line embedding. We show how we can find a polygonal curve in the graph that minimizes
the Fréchet distance to the other curve. To the best of our knowledge this problem has not
been considered before. Apart from the theoretical merit this problem has applications in the
construction of road maps from data collected from GPS receivers. See Section 6.1 for more
details on this application. The ideas of this chapter have been established in collaboration
with Günter Rote, Alon Efrat, and Helmut Alt, see [14]. We thank Scott Howard Morris for
introducing us to the application of matching GPS curves, and Lingeshwaran Palaniappan
for implementing the algorithm of Section 6.2.

Section 6.2 describes the basic algorithm, which runs in O(pq log(pq) log q) time, where
q is the complexity of the planar graph and p is the number of line segments of the given
polygonal curve. This result is somehow surprising in that it is only one log-factor slower than
the computation of the Fréchet distance between two curves, although we have to consider
various sub-curves in the given planar graph. Note that the setting we consider is a partial
matching variant, since we search for the best matching curve in the graph. However we do
not consider any sets of transformations in this chapter. In Section 6.3 we describe how to
solve some variants of the basic problem, which include a time-space trade-off. For this we
solve the problem for a parameter 1 ≤ t ≤ √

p in O(pq(t + log q)) time and O(qp/t) space.
Applications dealing with very large graphs, such as the road map construction application,
will favor a time-space trade-off due to memory restrictions. Furthermore, the trade-off-
algorithm together with the variant of Section 6.3.2 can be used to create a trade-off for the
computation of the Fréchet distance for two curves.

6.1 Problem Statement

We consider a given polygonal curve, and a planar embedded graph with line segment
edges, and we wish to find a path in the graph (which then corresponds to a polygonal
curve) such that the Fréchet distance between the curve and the path is minimized. This
is a partial matching variant which is motivated by the following application: The Global
Positioning System (GPS) is a collection of satellites that provides worldwide positioning

69

information. A specific position can be determined by using a GPS receiver. Now consider a
given road map, and a person traveling on some of the roads, while recording its information
using a GPS receiver. The road map can be modeled by a planar embedded graph, and the
path the person traveled is represented by a sequence of GPS positions recorded by the GPS
receiver, which we connect by straight line segments to form a polygonal curve. Since the GPS
receiver usually introduces noise, the captured curve will not exactly lie on the road map. The
task is to identify those roads which have actually been traveled. This is a prerequisite for
incrementally constructing road maps from such GPS curves, which is especially interesting
for roads such as hiking trails in a forest which are not visible on aerial pictures.

Let us formalize the setting we consider: Let G = (V,E) be an undirected connected
planar graph with a given embedding in R

2, |V | = q, |E| = O(q), such that V = {1, . . . , q}
corresponds to points {v1, . . . , vq} in R

2. We assume, although G is an undirected graph,
that each undirected edge between vertices i, j ∈ V is represented by the two directed edges
(i, j), (j, i) ∈ E. Thus E consists of directed edges, but still represents an undirected graph.
Each edge (i, j) ∈ E is embedded as an oriented straight line segment si,j from vi to vj .
sj,i is obtained from si,j by reversing the orientation. Furthermore let α : [0, p] → R

2 be a
polygonal curve in R

2, which consists of p line segments αi := α|[i,i+1] for i ∈ {0, 1, ..., p − 1}.
We consider each line segment αi to be parameterized by its natural parameterization, i.e.,
α(i+λ) = (1−λ)α(i)+λα(i+1) for all λ ∈ [0, 1]. For a vertex i ∈ V we denote by Adj(i) ⊆ V
the set of vertices adjacent to i. A path π = (i1, . . . , ik) of length k − 1 in G is a sequence
of vertices i1, . . . , ik ∈ V such that (iν , iν+1) ∈ E for all 1 ≤ ν < k. We denote by βπ the
polygonal curve that we obtain by concatenating the line segments si1,i2, si2,i3, . . . , sik−1,ik

associated with the edges that π visits in the order they occur on π.
We interpret G as a given road map, with given junction vertices where several streets

join, and transit vertices that lie in the middle or at a dead end of a street. We assume that
α has been obtained from traveling some of the streets in a certain order, however containing
some extent of noise stemming from the GPS receiver. Given α and G we wish to find the
roads in G that α traveled. We formalize the task as follows:

Problem 8 (Find-Path) We wish to find a path π in G which minimizes δF(α, βπ), where
βπ is the concatenation of line segments on π.

Notice that in the most general setting π does neither have to be simple, nor edge-disjoint,
since in the road map application it should be allowed to travel in loops and also to travel the
same street multiple times. Also we assume that the path starts and ends in a vertex of G,
and not in the middle of an edge. However we will see in Section 6.3.1 that this assumption
can easily be relaxed.

We attack Problem 8 by first solving the decision problem for which we fix ε > 0 and
wish to find a path (if it exists) in G such that the Fréchet distance is at most ε. We refer to
this problem as Problem 9. In fact most of Section 6.2 will concentrate on solving this task.
Afterwards we apply parametric search, similar as in [10], to eventually solve Problem 8.

Problem 9 (Find-ε-Path) Let ε > 0 be given. We wish to find a path π in G such that for
the concatenation βπ of line segments on π δF(α, βπ) ≤ ε holds.

As a subproblem we will consider the decision variant of Problem 9. Note that in this case
we do not fix another parameter, but we distinguish between only deciding if there exists a
path in G with the desired properties, and actually computing such a path.

70

Problem 10 (Decide-ε-Path) Let ε > 0 be given. We wish to decide if there exists a path
π in G such that for the concatenation βπ of line segments on π δF(α, βπ) ≤ ε holds.

6.2 Algorithm

6.2.1 Basic Concepts and Overview

If not stated otherwise let ε > 0 be given. Let si,j for all (i, j) ∈ E be continuously
parameterized by values in [0, 1], thus si,j : [0, 1] → R

2.

Definition 29 (Fi,j, Fi, FDi,j, FDi) Let i ∈ V and (i, j) ∈ E. Then we define the following
free spaces and free space diagrams:

• Fi,j := Fε(α, si,j),

• Fj := Fε(α, vj),

• FDi,j := FDε(α, si,j),

• FDj := FDε(α, vj).

Furthermore let Lj be the left endpoint and Rj be the right endpoint of FDj .

Compare Definition 17 for the definition of the free space and the free space diagrams.
Note that FDj is a one-dimensional free space diagram consisting of at most 2p + 1 black or
white intervals, and Fj is the corresponding one-dimensional free space, which consists of a
collection of white intervals. As shown in Lemma 11 (see also [10]) FDi,j consists of a row of
p cells. Each such cell corresponds to a line segment of α, and the free space in each cell is
the intersection of an elliptical disk with that cell.

For each i ∈ V the free space diagrams FDi,j and FDj,i for all j ∈ Adj(i) have the one-
dimensional free space diagram FDi in common - as the bottom of FDi,j and as the top of
FDj,i. Thus we can imagine glueing together the two-dimensional free space diagrams along
the one-dimensional free space they have in common, according to the adjacency information
of G. In this manner we obtain a topological structure which we call the free space surface
for G and α, see Figure 6.1 for an example.

The algorithm in [10] computes a monotone feasible path in the free space diagram of two
polygonal curves in a dynamic programming fashion: Since the part of the free space inside
a cell is convex it suffices to consider only the free space on all left boundaries Lε

i,j and all
bottom boundaries Bε

i,j of the cells, where i and j range between 0 and the number of vertices
on the two curves, respectively. The algorithm starts in the lower left corner of the diagram
which, assuming a feasible path exists, is white. Otherwise the algorithm stops immediately.
Then it computes which parts of the boundary of the incident cell can be reached from the
lower left corner by a feasible monotone path. In general this type of reachability information
is propagated incrementally on the cell boundaries throughout the diagram. In the end, if
the upper right corner is reachable, a monotone path between the lower left and the upper
right corner can be reconstructed; otherwise there exists no monotone feasible path.

We apply a related approach to our more general setting: We search for a feasible path in
the free space surface. This path has to start at some white left corner Lk and has to end at
some white right corner Rj, for two vertices j, k ∈ V , since the corresponding path π in G has

71

FDi

FDj FD
j,i

FD
k,i

FDk

FD
i,l

FDm

FD
l,n

FDn

FDoFDl

j

k

m

l

n

o

i

Figure 6.1: Example of a free space surface: Free space diagrams glued together according to the
adjacency information of G.

to start and end in a vertex of G. Any path π in G selects a sequence of free space diagrams
in the free space surface, whose concatenation yields FDε(α, βπ). Thus let us consider the
following reachability information:

Definition 30 (Reachable points, R(j)) For every vertex j ∈ V let R(j) be the set of all
points u ∈ Fj for which there exists a k ∈ V and a path π from k to j in G such that there
exists a monotone feasible path from Lk to u in Fε(α, βπ).

We call points in R(j) reachable. We call an interval of points in R(j) reachable if every
point in it is reachable.

The definition of reachable points directly yields the following property:

Observation 3 There is a path π in G with δF(α, βπ) ≤ ε iff there is a vertex j ∈ V such
that Rj ∈ R(j).

Similar to [10] we first decide whether there exists an ε-path, i.e., solve Problem 10,
by computing R(j) for all j ∈ V in a dynamic programming manner. In fact we will not
store the whole R(j) but only parts of it which allow us to arrive at the correct decision.
However as a preprocessing step we first compute the free space diagrams FDi,j together
with some additional reachability information. Altogether the algorithm solving Problem 9
consists of three stages: The preprocessing stage (which we describe in Section 6.2.2), the
dynamic programming stage (see Section 6.2.3) which solves Problem 10, and finally the path
reconstruction stage (see Section 6.2.4) which solves Problem 9 by constructing the path π in
G along with feasible reparameterizations of βπ and α that witness the fact that δF(α, βπ) ≤ ε.
In Section 6.2.6 we show how to apply parametric search to solve Problem 8.

In the following we make use of a property of FDi,j for each (i, j) ∈ E, which we call the
simplicity property of FDi,j: Each FDi,j is a row of cells, and each white region in such a
cell is the intersection of an elliptical disk with the cell. Thus there is no vertical line at any
position in FDi,j which contains white, black, and white points alternatingly. Or in other
words, the white points on a vertical line always form an interval. From this we obtain the
following insight:

72

Lemma 25 Let (i, j) ∈ E, and u ∈ Fi, v ∈ Fj be white points with u ≤ v for which a
feasible monotone path exists from u to v in FDi,j . Then for every u′ ∈ Fi and v′ ∈ Fj ,
u ≤ u′ ≤ v′ ≤ v there exists a feasible monotone path in FDi,j from u′ to v′.

Proof: Consider the feasible monotone path from u to v. Then due to the simplicity
property of FDi,j it is possible to go straight upward from u′ until hitting this path, and
similarly to go straight downward from v′ until hitting this path, and stay inside the free
space all the time. Stitching those pieces of paths together we obtain the desired feasible
monotone path in FDi,j from u′ to v′.

6.2.2 Preprocessing

We compute all one-dimensional free space diagrams FDi for all i ∈ V . Conceptually
we continue to consider the FDi,j for all (i, j) ∈ E, but we do not need to compute them
explicitly, for we capture the reachability information in the additional pointers we will
compute. Let (i, j) ∈ E be fixed, then FDi,j ⊆ [0, p] × [0, 1] consists of p cells, one for each

ak

B′
k

bk+1

Lk+1

ak+1

Bk

k + d′k

k + ck k + dk

bk

Fi,j ∩ ζk

Lk

k + c′k

Figure 6.2: Intervals of the free space on the boundary of a cell.

segment in α. Let, similar to Definition 19, ζk be the cell in FDi,j corresponding to the
kth segment αk of α, 0 ≤ k ≤ p − 1. Let Lk = [ak, bk] be the white interval on the left
boundary of ζk, Bk = [k + ck, k + dk] be the white interval on the bottom boundary of ζk,
B′

k = [k + c′k, k + d′k] be the white interval on the top boundary of ζk. See Figure 6.2 for an
illustration. If Lk = ∅ then we set ak := 1 and bk := 0. Similarly if Bk = ∅ we set ck := 1
and dk := 0, and if B′

k = ∅ we set c′k := 1 and d′k := 0. Note that the left boundary of ζk is
part of the vertical line segment {k} × [0, 1] with respect to the free space diagram FDi,j .
We call {k} × R the vertical line at k. We call k the index of the two spikes bounding Lk.
Note that the interval endpoints correspond to heights or widths of spikes.

Definition 31 (l-Pointers and r-Pointers) Let (i, j) ∈ E, and I be a white interval of
FDi. Then we denote by li,j(I) the leftmost point (and by ri,j(I) the rightmost point) on

73

FDj which can be reached from some point in I by a monotone feasible path in FDi,j . We
call li,j(I) a left pointer or l-pointer and ri,j(I) a right pointer or r-pointer.

For all (i, j) ∈ E we compute li,j(I) and li,j(I) for each white interval I of FDi. This can
be done in linear time for all intervals on FDj , see Lemma 28. Note that li,j(I) either equals
the left endpoint of I or equals k + c′k for some 0 ≤ k ≤ p − 1. For the right pointer holds
ri,j(I) = k + d′k for some other 0 ≤ k ≤ p − 1. Note that similar reachability pointers have
been used in [10] for attacking the case of closed curves. Let us call l(I) the left endpoint of
I, and r(I) the right endpoint of I.

For notation purposes we identify in the following a white interval I on FDi with a Bk for
a 0 ≤ k ≤ p− 1. If a white interval on FDi spans several cells we consider it to be composed
of one white interval per cell.

For each white interval I of FDi we store the left pointers and right pointers in two arrays
that are indexed by the j ∈ Adj(i). Thus each white interval I on FDi has |Adj(i)| l-pointers
and r-pointers attached to it.

Lemma 26 Let (i, j) ∈ E. Then for each white interval I on FDi holds li,j(I) = li,j(l(I))
and ri,j(I) = ri,j(l(I)).

Proof: Let u ∈ I such that li,j(I) = li,j(u). Since I is white, the horizontal line segment
from l(I) to u is also white, such that li,j(u) can also be reached by a monotone feasible path
from l(I). The same argument holds for ri,j.

The following lemma characterizes when points on FDj can be reached from points on
FDi by a monotone feasible path in FDi,j . We use Lemma 27 in the proof of Lemma 28, in
which we show how to compute all l-pointers and r-pointers.

Lemma 27 Let (i, j) ∈ E be fixed. Let 0 ≤ k < k′ ≤ p − 1, and assume that Bk, B
′
k′ 6= ∅.

Then there is a monotone feasible path in FDi,j from some point on Bk to some point on B′
k′

if and only if

l
max
i=k+1

ai ≤
k′

min
i=l

bi for all k < l ≤ k′. (6.1)

Proof: Assume there is a monotone path π in Fi,j from a point on Bk to a point on B′
k′ .

For each k < l ≤ k′ consider the point where π passes the vertical line at l. π has to pass
above all ai for i = k + 1, . . . , l and below all bj for j = l, . . . , k′, otherwise it would not be a
monotone feasible path.

For the other direction, assume that (6.1) holds for all k < l ≤ k′. Let ai1 , . . . , aim be
the sequence of different indices that form the partial maxima of the sequence a1, . . . , ap−1,
when considering its prefixes obtained by reading it from left to right. We construct π to
start in an arbitrary point on Bk, go vertically upwards until the height ai1 , go horizontally
until we hit the lower spike in i1, then visit the points ai1 , . . . , aim , and then pass horizontally
until it ends below some point on B′

k′ , which it then connects to by going vertically straight
up. Two points aiν and aiν+1 are connected in π by a path that starts horizontally at height
aiν until it hits the lower spike in iν+1. It then follows the boundary of this spike (which is
monotonically increasing) until the height aiν+1 . By construction π is monotone. Since (6.1)
holds for l = 1, i1, . . . , im each described piece in the path is indeed feasible.

74

Lemma 28 Let (i, j) ∈ E. Then all pointers li,j(Bk) and ri,j(Bk) for all white intervals Bk

on FDi, 1 ≤ k ≤ p− 1, can be computed in O(p) time.

Proof: The left pointers li,j(Bk) for all 0 ≤ k ≤ p − 1 are easily computed by a scan for
increasing k = 0, . . . , p− 1: Let k be fixed. If ck ≤ d′k then we set li,j(Bk) := k + max(ck, c

′
k).

Otherwise we greedily search for the first cell ζk′ , k′ > k, which contains a white point on
its upper boundary, and such that (6.1) holds. If such a cell does not exist then Bk is black.
Otherwise we set li,j(Bk) := k′ + c′k′ . For the next iteration, i.e., for k increased by one, we
only have to consider cells to the right of ζk′ , such that in total we visit every cell at most
once.

The computation of the right pointers is slightly more complicated. We proceed incre-
mentally for k = 0, . . . , p − 1 as follows. For each k, if Bk 6= ∅, we compute the largest value
k′ for which (6.1) holds. In order to do this we maintain a stack S := {i1, . . . , im} of indices
k < i1 < i2 < · · · < im ≤ k′ which are the indices of those lower spikes that are horizontally
visible from the vertical line at k′. In other words, S is the sequence of different indices that
form the partial maxima of the sequence ak+1, . . . , ak′ , when reading it from left to right.
Thus each index is ∈ S is characterized by the property that ais > al for all is < l ≤ k′. We
call S the partial maxima stack, with top element im, and bottom element i1. Note that for
S = {i1, i2, · · · , im} we have i1 < i2 < · · · < im and ai1 > ai2 > · · · > aim . See Figure 6.3
for an illustration. The significance of these values is as follows: Let is < is+1 ∈ S be two
successive indices, and let is < i ≤ is+1. Then the lowest point on the vertical line at k′ that
can be reached from Bi (if Bi 6= ∅) by a monotone feasible path in FDi,j is ais+1 .

7
5
4
1

Sk’76432 5

top

k=1

Figure 6.3: An example of lower spikes and their partial maxima stack S.

We initialize S = {0} and k′ = 1. Let k = 0, . . . , p−1 be the current value of the iteration.
We maintain the invariant that (6.1) holds for the current values of k and k′ throughout the
algorithm. This is trivially true for the initialization case. And if we know that (6.1) holds for
k−1 and k′, then it immediately holds for k and k′. For fixed k we now search for the maximal
k′ that fulfills (6.1). (We always denote the top element of S by ai1 and the bottom element
by aim , although the indices and the value of m change during the algorithm.) If ai1 > bk′+1,
then k′ + 1 violates (6.1), thus k′ is the maximal value we searched for. If ai1 ≤ bk′+1, then
we have max{ai1 , ak′+1} = maxk′+1

i=k+1 ai ≤ bk′+1, thus (6.1) holds for k′ + 1 and we can safely
increase k′ by one. Now we have to maintain S to represent the partial maxima of lower
spikes between k and the increased value k′. For this we pop the topmost values from S until
aim > ak′ . Finally we push k′ on top. Then we start with a new iteration on k′.

Once we have found the maximal k′ that fulfills (6.1), we know that there is no monotone
feasible path in FDi,j from any point on Bk (assuming that Bk 6= ∅) to B′

k′+1. Thus the
rightmost point on FDj that can be reached by a monotone feasible path from Bk is the first
d′w which bounds a white interval on FDj to the left of the vertical line at k′ + 1.

In order to obtain all d′w efficiently during the run of the algorithm we store O(p) shortcut

75

pointers for each FDi: At the givesak-th cell boundary of FDi, for integer 0 ≤ k ≤ p− 1, we
store a pointer to the rightmost white point on FDi that lies to the left of k. If there is no
such white point we set the shortcut pointer to NIL. We construct this pointer structure on
the fly by computing a pointer value from the shortcut pointer to its left. Now we find d′w by
greedily searching for the next white point on FDj to the left of k′ + 1. If possible we follow
the next shortcut pointer; otherwise we greedily search for the first white point and compute
the shortcut pointers on the way until we either hit an already computed shortcut pointer or
the end of FDj . If k < w then we set ri,j(Bk) := w + d′w. If k > w then we set Bk to be
black. If k = w then if ck ≤ d′k we set ri,j(Bk) := k + d′k, otherwise we set Bk to be black.

Finally, if i1 = k + 1 then we remove i1, i.e., the bottommost element, from S. Then we
start the next iteration on k with its value increased by one.

For the runtime analysis, note that k and k′ are always increased, and never decreased.
In each such increasing step we perform only constant time operations without counting the
stack operations and the location of the d′w. Once a value is removed from the stack (either
by popping from the top, or by removing from the bottom) it is never inserted in S again.
Thus every integer between 1 and p− 1 is at most once inserted in the stack or removed from
the stack. With respect to the shortcut pointers we charge every cell boundary for computing
its shortcut pointer. Thus the total time to compute all ri,j(I) is indeed O(p).

6.2.3 Dynamic Programming

In this stage we decide if there exists a feasible monotone path in the free space surface.
Thus we attack Problem 10. Note that such a path traverses a sequence of free space diagrams
FDi,j. We call the part of a path that traverses one such free space diagram a segment of the
path.

Conceptually we sweep all FDi,j at once with a vertical sweep line from left to right.
Let 0 ≤ x ≤ p denote the position of the sweep line. For each i ∈ V we will store a set
Ci ⊆ R(i) ⊆ Fi of white points, which we compute in a dynamic programming manner.
Throughout the algorithm we maintain the following invariant:

Definition 32 (Ci) Let i ∈ V and x be any current position of the sweep line. Then Ci

consists of all reachable points u ∈ R(i) ⊆ Fi, such that u ≥ x, and for which the last segment
of their associated feasible monotone path crosses or ends at the sweep line.

Thus we are able to decide if Ri ∈ R(i) by checking if Ri ∈ Ci for an advanced enough
position x of the sweep line.

Definition 33 (Consecutive Chain) The subsequence of all white intervals of a sequence
of consecutive white and black intervals of FDi is called a consecutive chain of intervals. For
a consecutive chain C let l(C) be its left and r(C) be its right endpoint. We also use the same
notation for single intervals. For two consecutive chains C ′ ⊆ C we call C ′ a consecutive
subchain of C.

Lemma 29 Every Ci, for i ∈ V , is a consecutive chain, for every value of x. Therefore
Ci = [l(Ci), r(Ci)] ∩ FDi.

76

Proof: Let x and let i ∈ V be fixed. Let w ∈ Ci be the largest point in Ci. By definition
of Ci there is a j ∈ Adj(i) and a white point u ∈ Fj with u ≤ x ≤ w, such that u is reachable
and there exists a monotone feasible path in FDj,i from u to w. For any white point v ∈ Fi

with x ≤ v ≤ w there exists by Lemma 25 a monotone feasible path from u to v in FDj,i,
which makes v in particular also reachable by the same path that reaches u, concatenated by
the monotone feasible path from u to v. Thus v ∈ Ci, and Ci is a consecutive chain.

From the definition of a consecutive chain follows that Ci = [l(Ci), r(Ci)] ∩ FDi.

The algorithm we present is a mixture of a sweep (since we are sweeping with a sweep line),
dynamic programming (on the Ci we incrementally build up), and Dijkstra’s algorithm for
shortest paths (since we are computing paths using a priority queue to augment the path in a
similar fashion to Dijkstra’s algorithm). We maintain a priority queue Q of white intervals of
FDi which are known to be reachable. More precisely, for each i ∈ V the first white interval
of Ci (if Ci 6= ∅) is stored in Q. The priority of an interval is its left endpoint. The events
for the sweep line, i.e., the different values of x, are the left endpoints of the intervals in Q.
Every interval in Q is part of a consecutive chain to which we store a pointer with the interval.
Since Ci = [l(Ci), r(Ci)] ∩ FDi we store the Ci implicitly in constant space by storing only
l(Ci) and r(Ci).

We initialize Q with all white Li (which are degenerate intervals). For all i ∈ V if Li is
white we set Ci := Li, otherwise Ci := ∅. Then we process these intervals in increasing order
as follows:

1. Extract and delete the leftmost interval I from Q; if there are several intervals with the
same priority pick an arbitrary one. Advance x to l(I).

2. Let Ci be the consecutive chain that contains I. Insert the next white interval of Ci

which lies to the right of I, into Q.

3. For each j ∈ Adj(i) update Cj to comply with the new value of x. If necessary, update
the interval of Cj in Q.

4. Store for each white interval J that has been newly added to Cj (or that has been
enlarged) a path pointer to the interval I (from which it can be reached by a monotone
feasible path in FDi,j.

We process all intervals in Q until we either find a j ∈ V such that Rj ∈ Cj , or until Q is
empty. In the latter case there is no path in G with δF(α, βπ) ≤ ε. In the first case we know
that there exists such a path, and we reconstruct it using the path pointers in the second
stage of the algorithm, which is described in Section 6.2.4.

The proof of Lemma 30 gives more details about step 3 of the algorithm.

Lemma 30 Let x be the current position of the sweep line, and let Cj, for j ∈ Adj(i), be the
consecutive chain stored at vertex j for the current value of x. Let I ∈ Ci be the next interval
in Q. Then Cj can be updated in constant time to comply with the new position l(I) of the
sweep line. The update of the first interval of Cj in Q takes O(log p) time.

Proof: [li,j(I), ri,j(I)] defines a consecutive chain on FDj , whose white intervals are white
intervals on FDj which have now been identified to be reachable, since all their points can
be reached from points on I (which are all reachable) by a feasible monotone path in FDi,j .

77

Each such white interval is either a complete white interval of FDj , or a suffix of a white
interval of FDj . By Lemma 26 we know that [li,j(I), ri,j(I)] = [li,j(l(I)), ri,j(l(I))], i.e., we
have to update Cj to comply with the new position l(I) of the sweep line by including the
white point of [li,j(I), ri,j(I)] into Cj.

FDj

Cj

ri,j (I)

li,j (I)

FD

FD
i,j

i
I

FDj

Cj

li,j (I)
ri,j (I)

(1) (2)

FD
i,j

iFD
I

Figure 6.4: Merging of consecutive chains.

• If Cj = ∅ then we set Cj := [li,j(I), ri,j(I)] ∩ FDj . We insert the first white interval of
Cj into Q.

• If Cj 6= ∅ there arise two different cases, (1) l(I) ≤ r(Cj), and (2) l(I) > r(Cj), see
Figure 6.4.

In case (1) the new Cj equals ([li,j(I), ri,j(I)] ∪ Cj) ∩ FDj =
[min(li,j(I), l(Cj)), max(ri,j(I), r(Cj))] ∩ FDj . Note that by Lemma 29 this is
again a consecutive chain. If li,j(I) < l(Cj) then we delete the interval of the old Cj

that is contained in Q, and insert the first white interval of the new Cj into Q.

In case (2) we set Cj := [li,j(I), ri,j(I)]∩FDj , since the new Cj contains only points to
the right of l(I). We delete the interval of the old Cj that is contained in Q, and insert
the first white interval of the new Cj into Q.

Clearly each update of Cj itself takes constant time. Assuming an appropriate implemen-
tation of the priority queue, each operation on Q takes O(log p) time.

The path pointer for a newly added white interval J in step 4 of the algorithm is stored as
follows: Each reachable interval is a suffix of a white interval of FDj . Thus we can store the
path pointer at the right endpoint of J in Fj , pointing to the right endpoint of I in FDi. It
might also happen that J was already present in Cj, but its left endpoint has been changed
to x. This means that its left endpoint is smaller than it was before, i.e., J has been enlarged.
In this case we delete the old path pointer at J and replace it by the new path pointer to I.
Also, since J is present in Q, we update its left endpoint, and with that its priority, in Q.

6.2.4 Path Reconstruction

We assume that in the dynamic programming stage we found a j ∈ V with Rj ∈ J , where
J is a white interval in Cj for some position x of the sweep line. In this stage we use the path

78

pointers to construct a path π in G together with a feasible monotone path in FDε(α, βπ)
which witnesses the fact that δF(α, βπ) ≤ ε.

By construction the right endpoint of J has a path pointer attached to it. We follow this
path pointer to the right endpoint of an interval I, which is a suffix of an interval on FDi

for an i ∈ Adj(j). We repeat following the path pointers until we end at an Lk. This way
we obtain a sequence of pairs (i, r) where i ∈ V and r is the right endpoint of the visited
interval on FDi. We call this sequence the path sequence. Note that it starts with (k,Lk)
for a k ∈ V . When we extract the first component of each pair, we obtain a sequence of
i ∈ V that represents the desired path π in G. It remains to construct the corresponding
feasible monotone path in FDε(α, βπ). Note that for two successive pairs (i, r) and (i′, r′) in
the path sequence it can indeed be that r′ < r. In order to construct the feasible monotone
path described by the path sequence we use a partial minima stack, this time on the right
spikes. This stack is defined similarly to the partial maxima stack of Lemma 27. We scan
the path sequence from beginning to end, use the partial minima stack to snap the right
endpoints to the respective minimum endpoint of the prefix of the path sequence processed
so far. This way we obtain a monotone increasing sequence of the right endpoints of this
modified path sequence. Note that this snapping process cannot cause a right endpoint to be
snapped to the left of the left endpoint of its underlying interval. This follows from the order
of processing the intervals in Q, and from storing a path pointer for a point on FDi to the
first interval that made this point reachable. Thus the modified path sequence is indeed still
a valid path sequence encoding a monotone feasible path. Now for each successive pair in the
modified path sequence we scan the row of cells in the corresponding free space from left to
right, and construct a monotone path along the heights of the lower spikes (using a partial
maxima stack again to keep the path monotone). By concatenating these paths we obtain a
desired monotone feasible path witnessing the fact that δF(α, βπ) ≤ ε.

6.2.5 Time Analysis

Theorem 11 The described algorithm solves Problem 10, i.e., it decides if there is a path π
in G such that δF(α, βπ) ≤ ε in O(pq log q) time and O(pq) space. If such a path π exists the
algorithm solves Problem 9 by computing π together with a monotone feasible monotone path
in the free space surface, in O(pq log q) time and O(pq) space.

Proof: Each FDi has complexity O(p) and can be constructed in O(p) time. Each interval
I on FDi has |Adj(i)| l-pointers and r-pointers attached to it. The number of all l- and r-
pointers for all FDi sums up to O(p|E|) = O(pq), and can by Lemma 28 also be constructed
in this time. Thus we need O(pq) time and space for the preprocessing.

In the dynamic programming stage we insert and delete a suffix of every white interval of
any FDi, i ∈ V , at most once in Q. Also the left endpoint of a white interval of any FDi

might be changed |Adj(i)| times. |Q| ≤ q since Q always contains at most one interval per
vertex in G. With an appropriate implementation of a priority queue each operation needs
O(log q) time, thus O(pq log q) altogether.

For each interval in Q we consider each j in the adjacency list of its consecutive chain
and spend constant time to merge consecutive chains and construct path pointers for each
such j. Altogether this sums up to a runtime of O(p|E|) = O(pq), and for the whole dynamic
programming stage together with the priority queue operations to O(pq log q).

Note that we only store one consecutive chain per vertex, and Q contains at most one
interval per vertex. Thus the extra storage for all the consecutive chains in the dynamic

79

programming stage is only O(q). However we store one path pointer per interval in FDi, thus
the space complexity for the path pointers is O(pq).

For an J which has been identified to be reachable we construct a path pointer to the
interval I that makes J reachable, which means that l(I) ≤ l(J). Since we process intervals
by increasing left endpoint we know that there cannot be a cycle in the path pointers. Thus
every path pointer can be contained in a monotone feasible path in the free space surface at
most once. Since there are O(pq) path pointers, the worst-case length of a feasible path in
the free space surface and thus also of a path π in G is O(pq). This is tight, as a construction
of α zigzagging horizontally, and G representing a vertically zigzagging curve shows. Since
we need time linear in the length of the path to reconstruct it, the path reconstruction needs
O(pq) time at no extra storage.

Note that the space of O(pq) is needed only in two places, namely in the preprocessing stage
to compute the FDi together with all l-pointers, r-pointers, and shortcut pointers, and also in
the dynamic programming stage to store the path pointers. However for the GPS application
there is a huge amount of road map data, which forbids a quadratic space algorithm since
all the free space data could not even fit into memory. We show in Section 6.3.3 how our
algorithm can be tuned to trade space for runtime, which in this case is desirable. For this we
do not explicitly pre-compute the reachability information, but we will see that instead we
can compute it on the fly during the dynamic programming algorithm. For reducing space for
the path pointers, we will apply a standard space-saving technique for dynamic programming
[52, 50] in the path reconstruction stage.

6.2.6 Parametric Search

Now let us turn to solve the original problem Problem 8. Analogously to [10] we use the
algorithm which solves Problem 9 together with Megiddo’s parametric search technique [62]
to find the optimal ε. We will in fact also apply Cole’s trick for parametric search based on
sorting such that we obtain only a logarithmic instead of a poly-logarithmic overhead.

Note that the outcome of the algorithm which solves Problem 9 depends solely on the
relative positions of all possible widths and heights of spikes in all free space diagrams in the
free space surface. For varying ε all those values depend on ε, and for the parametric search
an ε is critical if it makes two of these widths or heights coincide. There are O(pq) different
widths or heights of spikes. As in [10] we now apply a parallel sorting algorithm on those
O(pq) values which depend on ε, and generate in that way a superset of the critical values
of ε we need. By utilizing Cole’s trick [39] for parametric search based on sorting, which in
general yields a runtime of O((k + Tseq) log k) where Tseq is the sequential runtime for the
decision problem and k is the number of values to be sorted, we thus obtain a runtime of
O(pq log(pq) log q), at no extra storage.

Theorem 12 There is an algorithm that solves Problem 8, i.e., it finds a path π in G which
minimizes δF(α, βπ), in O(pq log(pq) log q) time and O(pq) space.

Notice that recently van Oostrum et al. [70] have implemented an object-oriented frame-
work in order to simplify the usually rather complicated implementation of parametric search.
See our remark on that at the end of Section 3.1.1. Interestingly they demonstrated their
environment on the computation of the Fréchet distance, and showed that their framework

80

which uses quicksort, instead of a parallel sorting algorithm or Cole’s trick, runs faster in
practice than the usually recommended binary search on the number space of ε. Therefore
it might be worthwhile in practice to implement the optimization of our algorithms in this
framework.

6.2.7 Implementation

The algorithm that we presented in this sec-
tion, except the parametric search, has been im-
plemented by Lingeshwaran Palanappian in C,
using the gnu multiple precision library [43], with
a graphical user interface using OpenGL. It allows
to edit the graph and the curve, to solve the deci-
sion problem, to perform binary search on ε, and
it visualizes the computed feasible parameteriza-
tions in a walk-through animation. The figure on
the right shows a screen shot of an example input;
the found path in the graph is highlighted. The
decision algorithm runs remarkably fast without
specific optimizations. For example, for graphs
with q = 700 edges and a curve of length q = 420
it runs in 5 seconds, for q = 1170 and p = 1000
in 35 seconds, and for q = 1170 and p = 100 in
less than 2 seconds, on a Pentium 4 processor.

6.3 Variants

We will discuss three variants of the problem, two of which can be easily integrated into
the above algorithm, and another that needs more effort to be established.

6.3.1 Start and End in the Middle of Segments

One straight-forward variation of the problem is to allow a path π in G to start and end
not only at vertices of G but also in the middle of segments si,j for edges (i, j) ∈ E. In fact
this can be easily integrated into our algorithm by replacing the condition to begin a path in
the free space surface in a white Li by the condition to begin a path on any white point on
the left boundary of any FDi,j for (i, j) ∈ E. Similarly the condition to end a path in a white
Ri is replaced by the condition to end a path on any white point on the right boundary of
any FDi,j for (i, j) ∈ E. In order to be able to find an endpoint on the right boundary of a
FDi,j we need to modify the definition of the right pointers and thus also of the consecutive
chains. For this we do not consider only the upper boundary of FDi,j anymore, but imagine
the upper and the right boundary to be concatenated, and let the right pointer of an interval
be the lowermost reachable point on the right boundary (if it exists), and otherwise the
rightmost reachable point on the upper boundary as before. Formally, for an edge (i, j) ∈ E
and a white interval I of FDi we thus redefine ri,j(I) to be the rightmost/lowestmost
point on FDj ∪ Fε(α(p), si,j). Similarly, consecutive chains can now stretch upon the right
boundaries of the free space intervals. Clearly this does not affect the runtime or space bounds.

81

6.3.2 Avoiding U-Turns

Another variant is to ask for more monotonicity in the path π that is found in the graph.
In our current problem setting we allow a path π in G to travel the same edges in G multiple
times. It seems to be hard to avoid these cases without increasing the runtime immensely.
However we can modify our algorithm to avoid ”U-turns”, i.e., to forbid a path π in G to
travel the edge (i, j) and immediately afterwards the edge (j, i). Note that by definition of
the Fréchet distance our algorithm implicitly forbids U-turns in the middle of an edge (since
this would correspond to a non-monotone reparameterization).

We incorporate this feature in the following way: At every reachable white interval I on
FDi we do not store only one path pointer, but a pointer to each reachable interval J on FDj ,
for j ∈ Adj(i), from which I can be reached. This way we store O(p|Adj(i)|) different intervals
and path pointers on FDi for each i ∈ V , which still sums up to O(pq) in total. Apart from
this storing scheme the preprocessing and the dynamic programming stage of the algorithm
are not affected. In the path reconstruction stage we now have choices when following the
path pointers. Therefore we perform a depth first traversal which runs in time linear in the
number of path pointers, of which there are O(pq). During this traversal we locally exclude
the option to travel back the edge from which we arrived in a vertex. Altogether we obtain
the same results as in Theorem 11 and Theorem 12 for the setting which excludes U-turns.

6.3.3 Time-Space-Trade-Off

Dynamic Programming

In every step of the dynamic programming stage in Section 6.2.3 we need mostly local reach-
ability information concerning the current interval, such as its l-pointer, its r-pointer, the
closest shortcut pointer, and the next white interval to the right in its consecutive chain.
We can generate this information on the fly by performing the computation of the former
preprocessing in an incremental way during the algorithm. In this subsection we skip the
preprocessing completely, and present a variant of the dynamic programming algorithm of
Section 6.2.3 that incorporates a time-space trade-off.

We store and maintain the following items during the algorithm:

• As in Section 6.2.3 we store at each vertex i ∈ V exactly one consecutive chain Ci which
is represented by its endpoints.

• In order to compute the d′w efficiently (see proof of Lemma 28) we store for each vertex
i ∈ V a set of shortcut pointers, which we will describe in more detail below.

• For each edge (i, j) ∈ E we maintain a stack S ′(i, j) of indices of lower spikes, which we
will describe in more detail below.

• For each edge (i, j) ∈ E we store a current l-pointer li,j and a current r-pointer ri,j.
These are the pointers with respect to FDi,j , j ∈ Adj(i), that have been computed for
the last processed interval on FDi. We update those pointers with every new interval
that we process on FDi.

Essentially we move the preprocessing which has been accomplished in Lemma 28 into
the algorithm. I.e., we integrate the computation of the l-pointers and r-pointers into the
algorithm, such that we compute those pointers only when we need to access them. If we did

82

this in a straightforward way, we would maintain at each edge its partial maxima stack and
at each vertex all shortcut pointers (compare Lemma 28), which is all information we need
to construct the l-pointers and r-pointers on the fly. This however would result in a storage
of O(pq) altogether. In order to decrease the storage we still follow this approach but do not
store the full lower maxima stacks and all shortcut pointers, but we store only equidistant
samples of each. Since during the algorithm we need to recompute the missing information
between two sample points, the spacing of this sampling is then reflected in the runtime.
We will first use a spacing of

√
p, and will later generalize it for an arbitrary parameter

1 ≤ t ≤ √
p.

Let us now go into the details of this approach. The processing of intervals from Q is
adapted as follows: For step 2 of the dynamic programming stage we need to find the leftmost
white interval in Ci which lies to the right of the current interval I. For this we scan the
one-dimensional cells to the right of I and directly compute each interval partition until we
find the first white interval.

It remains to show how we adjust step 3 of the dynamic programming stage, since in this
stage the l-pointers and r-pointers are needed. For this we follow the lines of the proof of
Lemma 28. We have to show how we maintain the current l-pointers and r-pointers efficiently.
For this we store and maintain compressed versions of the partial maxima stack at each edge
(i, j) ∈ E, and of the shortcut pointers at each vertex i ∈ V .

For each (i, j) ∈ E we use the notion of the partial maxima stack S(i, j), however we do
not store S(i, j) directly, but only a subset of O(

√
p) indices. Let the stack S ′(i, j) contain

this subset of indices. S(i, j) is defined as in Lemma 28 to be the sequence of indices of the
partial maxima of the sequence of lower spikes between two indices k and k′. We let k be the
right endpoint of the last interval processed on FDi, and k′ as in Lemma 28 be the largest
k′ > k for which (6.1) holds. In the beginning S ′(i, j) is initialized to be empty. After that
we directly compute it or update it from the previously stored stack, and we then extract
the current ri,j from it. However, S(i, j) could contain up to O(p) indices, which we cannot
afford to store. Thus we define S ′(i, j) to store every b√pc-th index of S(i, j). More precisely,
S ′(i, j) contains the first (i.e., bottommost) index of S(i, j), and additionally every b√pc-th
index, and finally the last index of S(i, j), in the same order as in S(i, j).

In order to obtain all d′w efficiently during the run of the algorithm we store only O(
√

p)
shortcut pointers for each FDi (as opposed to O(p) pointers as in Lemma 28). For every
integer 1 ≤ k ≤ √

p we store at each position bk√pc (which corresponds to the left boundary
of the bk√pc-th cell of FDi) a pointer to the rightmost white point on FDi which lies to the
left of bk√pc. If there is no such white point we set the shortcut pointer to NIL. We build up
this pointer structure on the fly by computing a pointer value from the next shortcut pointer
to its left.

In the following we show that we can process the next interval I from Q in O(
√

p) time.

Lemma 31 Let x be the current position of the sweep line, and let I ∈ Ci be the next interval
in Q. Then all S ′(i, j), ri,j, and li,j can be updated altogether in O(

√
p) time to comply with

the new position l(I) of the sweep line.

Proof: In the beginning of the algorithm all li,j and ri,j are initialized with −1. For an
interval I that has been picked from Q we update those pointers as follows: Assume I ∈ Ci

and j ∈ Adj(i). If li,j ≥ l(I) then it remains unchanged. This is because it has been the
leftmost reachable point of the previous interval, which due to the simplicity of FDi,j , see

83

Lemma 25, implies that it is also reachable from the current interval and cannot lie further to
the left. If however li,j < l(I), then li,j cannot be reached by a feasible monotone increasing
path from I anymore. Thus in this case we greedily scan the cells of FDi,j to the right of
l(I) just as in the proof of Lemma 28 until we find the new li,j. The only difference is that
we compute the free space in each cell on the fly. Note that, once we have computed the
pointers, we free the storage required for the free space.

Again it is more challenging to update the ri,j: Note that by construction holds that
al′ ≤ bk′ and al′ > bk′+1 for l′ = bottom(S ′(i, j)) and k′ = top(S ′(i, j)). First let r(I) ≤ k′. We
locate r(I) in S ′(i, j). If r(I) ≤ l′ then ri,j remains the same. Otherwise we remove all entries
from the bottom of S ′(i, j) that are smaller than r(I). Now, in order to maintain the property
that bottom(S ′(i, j)) = bottom(S(i, j)), we find that k with r(I) ≤ k ≤ bottom(S ′(i, j))
which maximizes ak. We append k to the bottom of S ′(i, j).

By definition of top(S ′(i, j)) we know that the largest k′ ≥ k for which (6.1) holds has to
be greater or equal to top(S ′(i, j)). We greedily search for this new value of k′ exactly as in
Lemma 28 and construct, on the fly, the full partial maxima stack starting at top(S ′(i, j))
and ending in k′. We then pop top(S ′(i, j)) and push the spikes of this new stack at spacing√

p onto S ′(i, j), taking care that at the transition between the two stacks the spacing is
correct, and make sure to push k′ onto S ′(i, j). We set ri,j to be the first d′w which bounds
a white interval on FDj to the left of k′ + 1. We find this d′w by greedily searching for the
next white point on FDj to the left of k′+1, following shortcut pointers when we meet them.
Now consider the special case that the value of k′ remains the same. If l(I) ≤ ri,j, then ri,j

remains the same. Otherwise there is no point on FDj which can be reached by a monotone
feasible path from I and thus I is a black interval.

If r(I) > k′, then we skip S ′(i, j) completely. We directly construct the full partial maxima
stack starting at r(I) and ending in k′, and store the spikes at

√
p-spacing in S ′(i, j) as before.

Note that the size of each S ′(i, j) is only O(
√

p) during the whole course of the algorithm.
Also the number of shortcut pointers stored per vertex i ∈ V is O(

√
p). Thus the total storage

is indeed at most O(q
√

p). For the analysis of the runtime consider a fixed (i, j) ∈ E. During
the whole course of the algorithm bottom(S ′(i, j)) increases monotonically, and every integer
between 1 and p − 1 is at most a constant time touched, and at most once inserted in or
removed from S ′(i, j). The argument is similar to the proof of Lemma 28. Thus all changes
of S ′(i, j) take O(p) time in total. However the steps of locating r(I) in S ′(i, j) and finding
d′w take O(

√
p) time per white interval in FDi.

From Lemma 31 we know that all data structures can be updated in O(
√

p) time for
one processed interval of Q. Thus the processing of all intervals O(qp

√
p) in total. The

computation of all shortcut pointers takes O(p) time. The handling of insertions, deletions,
and changes of intervals in Q takes O(qp log q) as before. Hence we obtained the following
theorem.

Theorem 13 There is an algorithm that decides if there is a path π in G such that
δF(α, βπ) ≤ ε, thus solving Problem 10, in O(pq(

√
p + log q)) time and O(q

√
p) space.

Now let 1 ≤ t ≤ √
p be a given trade-off parameter. We space the spikes in S ′(i, j) at

distance t instead of
√

p. Similarly we store shortcut pointers at each cell boundary bktc
instead of bk√pc for every integer 1 ≤ k ≤ p/t. This way the storage becomes O(qp/t), and
the runtime is O(pq(t + log q)) since in both cases it is linear in the spacing on the spikes or
the shortcut pointers, respectively.

84

Corollary 11 For any 1 ≤ t ≤ √
p there is an algorithm that decides if there is a path π

in G such that δF(α, βπ) ≤ ε, thus solving Problem 10, in O(pq(t + log q)) time and O(qp/t)
space.

Path Reconstruction

Above we only handled the decision problem Problem 10, without any attached path pointers
to support the path reconstruction to solve Problem 9. However we clearly do not want to
store all O(pq) path pointers. We overcome this problem by applying a standard dynamic
programming trick for saving space, see [52, 50]. However we will not be able to exploit it to
its full extent, such that it will introduce a logarithmic factor in the runtime. We break α
up into several smaller pieces and compute the solution for those subparts of α while keeping
certain path pointer information for these subparts.

For i, j ∈ {0, 1, ..., p} with i ≤ j let α[i, j] := α|[i,j] be the polygonal sub-curve of α starting
in the i-th and ending in the j-th vertex of α. We start with applying the above algorithm
to the whole curve α = α[0, p].

Lemma 32 Let j ∈ V . Then in each step of the algorithm, Cj contains at most one consecu-
tive subchain of intervals that can be reached by a monotone feasible path in FDi,j from points
on FDi, for each i ∈ Adj(j). Each consecutive subchain of Cj equals [li,j(I), ri,j(I)] ∩ FDj

for some white interval I on FDi.

Proof: Assume that there are two disjoint consecutive subchains C and C ′ of Cj, that
can be reached by a monotone feasible path in FDi,j from two disjoint intervals I and I ′,
respectively, on FDi. Let C lie to the left of C ′, and I lie to the left of I ′. Since the left
endpoints of processed intervals of Q always lie to the left of the consecutive chains, we know
that l(I) ≤ l(Cj) ≤ l(C) and also l(I ′) ≤ l(Cj) ≤ l(C). But from Lemma 25 then follows that
C can be reached by a monotone feasible path in FDi,j from I ′, and thus C and C ′ are not
disjoint. If I ′ lies to the left of I then every feasible monotone path from I to C crosses every
feasible monotone path from I ′ to C ′, thus C and C ′ are also not disjoint.

For the second part, let C be a consecutive subchain of Cj and assume that [li,j(I), ri,j(I)]∩
FDj , [li,j(I ′), ri,j(I ′)] ∩ FDj ⊆ C with [li,j(I), ri,j(I)] ∩ [li,j(I ′), ri,j(I ′)] = ∅, for two disjoint
intervals I, I ′ on FDi. Let I lie to the left of I ′. Then l(I), l(I ′) ≤ l(C), such that by
Lemma 25 every feasible monotone path from I to C crosses every feasible monotone path
from I ′ to C, such that li,j(I) = li,j(I ′) and ri,j(I) = ri,j(I ′).

We maintain a variant of the path pointers that we had in step 4 of the algorithm in
Section 6.2: For each j ∈ V we maintain a partition of Cj into consecutive subchains that
can be reached by a monotone feasible path in FDi,j from intervals on FDi for i ∈ Adj(j).
From Lemma 32 we know that there is one interval on FDi from which the corresponding
consecutive subchain on FDj can be reached. Thus we can associate to each consecutive
subchain exactly one feasible monotone path in the free space surface to some Lk. In fact,
for each consecutive subchain we maintain a direct pointer that points directly to the point
Lk that can be reached from points on this consecutive subchain by a feasible monotone path
in a concatenation of free space diagrams of the free space surface. These pointers can be
maintained by constructing the path pointers as in Section 6.2, but instead of storing them,
following them to the pointers of the consecutive subchain they can be reached from, and
then only storing those direct pointers.

85

In order to be able to reconstruct one actual feasible path from the direct pointer in-
formation, we compute different direct pointers for different parts of the free space surface.
For an edge (i, j) ∈ E, let µi,j be the number of the cell in FDi,j which contains the right
endpoint of the current Cj. Note that µi,j changes during the course of the algorithm. Let
V i,j

µi,j := FDε(α(µi,j + 1), si,j) be the vertical right boundary of the partial free space diagram
FD′

i,j := FDε(α[0, µi,j + 1], si,j). Note that V i,j
µi,j contains at most one white interval.

Note that in the regular algorithm we consider one-dimensional free space diagrams only
at the upper and lower boundaries of FDi,j for (i, j) ∈ E. However similar to Section 6.3.1
we now have to construct one-dimensional sub free space diagrams at certain vertical cell
boundaries of FDi,j. We wish to compute for each white interval on a V i,j

bp/2c a direct pointer
to a Lk that can be reached by a monotone path from this interval. During the algorithm,
once we arrived at µi,j ≥ bp/2c, the stored partial maxima stack provides the information
which interval can be reached from the white interval (if it exists at all) on V i,j

bp/2c, which in
turn yields the direct pointer we want to store.

Furthermore we wish to compute for each white Rl a direct pointer to a white interval
on a V i,j

bp/2c. For this we maintain for each consecutive subchain whose right endpoint is

larger or equal to bp/2c a direct pointer to a white interval on a V i,j
bp/2c. Note that these

direct pointers can be maintained in the same ways as the other direct pointers. Thus if a
consecutive subchain lies completely to the left of bp/2c it stores a direct pointer to a Lk, if
it lies completely to the right it stores a direct pointer to a white interval on a V i,j

bp/2c, and
if it contains bp/2c it stores both pointers. This needs O(pq(t + log q)) time and O(qp/t)
storage for the dynamic programming. Since every consecutive chain Cj contains at most
|Adj(j)| subchains due to Lemma 32, all direct pointers can be maintained during the dynamic
programming with O(q) extra space.

Concatenating the direct pointer information of both subproblems we can identify at most
O(q) paths that start at some Lk, end at some Rl, and pass a white interval on a V i,j

bp/2c at a
known point each. Note that the only information we have for these paths are their starting
point, the point where they pass the white interval on V i,j

bp/2c in the free space diagram FDi,j ,
and their endpoint. We only consider exactly one of these paths, and store its starting point
Lk∗ , its endpoint Rl∗ , and the indices i∗, j∗ and the point a∗, where FDi∗,j∗ is the free space
diagram where the path crosses the white interval on V i∗,j∗

bp/2c in the point a∗.
In a recursive manner we now solve the subproblem in a second level for α[0, bp/2c],

maintaining direct pointers as above with respect to bp/4c, and with the only start vertex k∗

and the end point a∗. Note that this requires a very slight modification of the algorithm in that
the endpoint is now not in a vertex of the graph, but on a fixed point on the edge (i∗, j∗), which
is similar to the first variant of the algorithm discussed in Section 6.3.1. Similarly we solve the
subproblem for α[bp/2c, p], with respect to b3p/4c, and with the start point a∗ and the end
vertex l∗. Concatenating the direct pointers for both subproblems we can extract four pointers
representing one feasible monotone path in the free space surface. This can be performed in
O(pq(t + log q)) time, O(qp/t) storage, and O(q) extra storage for the new pointers. We keep
repeating this recursive process for log p levels until we end at single segments of α. We keep
concatenating the computed pointers, and obtain a desired feasible path from some Lk to
some Rl in the end. The whole recursive procedure needs O(pq(t + log q) log p) time, O(qp/t)
storage, and O(q) extra storage for the path representation.

Altogether we thus obtain the following theorem:

86

Theorem 14 For any 1 ≤ t ≤ √
p there is an algorithm that decides if there is a path π in G

such that δF(α, βπ) ≤ ε, thus solving Problem 10, in O(pq(t + log q)) time and O(qp/t) space.
If such a path π exists it can be computed together with a feasible monotone path in the

free space surface, thus solving Problem 9, in O(pq(t + log q) log p) time and O(qp/t) space.
For t = 1 the runtime is O(pq log q).

Parametric Search

We can also incorporate the time-space trade-off to solve Problem 8. We can apply parametric
search in the same way as before to the algorithm which solves Problem 10 using the time-
space trade-off variant. We simply plug that algorithm into the parametric search paradigm
and arrive, using the same argumentation as in Section 6.2.6, at a runtime of O(pq(t +
log q) log(pq)) and space complexity O(pq/t). Now in order to actually find the path we first
run this variant of the parametric search, which determines the optimal ε∗ for which there
exists a path π in G such that δF(α, βπ) ≤ ε∗. With this value for ε we run the algorithm that
computes the path in O(pq(t + log q) log p) time and O(qp/t) space. Thus we can actually
compute the optimal path in G in O(pq(t + log q) log(pq)) time and O(qp/t) space.

Theorem 15 For any 1 ≤ t ≤ √
p there is an algorithm which computes a path π in G which

minimizes δF(α, βπ), thus solving Problem 8, in O(pq(t + log q) log(pq)) runtime and O(pq/t)
space.

Note that the time-space trade-off from this section together with the approach of Sec-
tion 6.3.2 to avoid U-turns can be used to compute the Fréchet distance for two polygonal
curves with the same time-space trade-off. Thus, at the cost of a logarithmic factor in q com-
pared to the algorithm of [10], our algorithms also yields a time-space trade-off for computing
the Fréchet distance of curves.

87

