Chapter 2

Preliminaries

This chapter gives basic definitions of the types of shapes and distance measures that we work
with in this dissertation. An optional way to read this thesis for a reader who is familiar with
the topic is to skip this chapter, and if necessary refer back to it later — maybe using the
index of keywords at the end of this thesis — to look up a specific definition.

Throughout the whole thesis we consider shapes in d-dimensional real space R, where
the dimension d > 2 is a fixed constant.

2.1 Representation of Shapes

In general there are many ways to describe

geometric shapes, which also varies according =~

to the application and the field of research. In : .
the most general setting a geometric shape .

can be modeled as composed of a finite num-
ber of basic objects (sites), such as points, line segments, triangles.

A common way to represent shapes is to describe them as sets of pixels (or voxels). These
can be seen as special sets of points, which are arranged in a grid fashion. However often
a representation by higher-dimensional sites, such as line segments or triangles, can reduce
the description complexity immensely. One can describe a shape either as a solid volume, or
by its boundary. In two dimensions this yields the special case of closed curves representing
the boundary of a shape. In general, curves are also a class of shapes which are worthwhile
to consider since they appear in several applications. We will exploit the special property of
curves that they are not only a set of points, but that they have a parameterization which
describes an “order” of the points.

Let us now describe in detail the types of sites and shapes we consider in the sequel:

Definition 1 (Simplex) A k-simplex in R, for —1 < k < d, is the convex hull of k + 1
affinely independent points in R:. k + 1 points in R? are affinely independent iff their affine
hull has dimension k.

There are several ways to define polyhedral sets. We consider them to be composed of
simplices, and not of arbitrary polyhedra.



Definition 2 (Polyhedral Set) A polyhedral set A of complexity n in R? is a collection
A=Aay,...,a,} of interior-disjoint simplices of dimension at most d.

Note that since we assume throughout this thesis that the dimension d is constant, every k-
simplex in R? has O(1) j-faces, 0 < j < k, altogether. Hence, a polyhedral set A of complexity
n has a description complexity proportional to n.

Definition 3 (Terrain / Polyhedral Terrain) A terrain F in RY is the graph F =
{(z, f(z))|z € D¢} of a function f : Dy — R, with Dy C R4L. F is a polyhedral
terrain if Dy = UMy, where My is a polyhedral subset of R and f is a linear function
over each simplex of M.

Hence, a polyhedral terrain is a polyhedral set with the property that, for each point in R4,
which we consider embedded in R? at 24 = 0, the line in z4-direction intersects the terrain in
at most one point only. Also note that our definition of terrains allows f to be any k-variate
function for 0 < k < d — 1.

Definition 4 (Curve / Polygonal Curve) A curve in R? is a continuous mapping f :
I — R? for a closed interval I C R. We often use I = [0,1].

A polygonal curve P of complexity n € N is a curve P : [0,n] — R? with vertices P; := P(i)
for i € {0,1,2,...,n} and line segments P; := Pl j+1 for j € {0,1,...,n — 1}, such that
P(j+XN)=0—-XNP(j) +AP(j +1) for all X € [0,1].

Note that the curves we consider are not given as sets of points in R% only, but a curve
f is given as a parameterization f : I — R Thus polygonal curves in our setting do not
only consist of vertices and line segments, but they are also equipped with a fixed. We call a
continuous mapping « : I’ — I a reparameterization, since for a curve f : I — R? it defines
the reparameterized curve foa : I' — f(I) that has the same image of points f(I) C R? as
f but represents a different parameterization.

2.2 Distance Measures

There are many different ways of describing a shape, and there exists a variety of different
distance measures between two shapes. We consider a small subset of distance measures which
we define in the following. The Hausdorff and the directed Hausdorff distance are commonly
used in practice since they are relatively easy to compute. Although the Fréchet distance is
not as well known as the Hausdorff distance, it is a natural distance measure for curves which
has a wide potential to being used in practice once there are practical algorithms for dealing
with it. Now let us define the distance measures we consider:

Definition 5 (Metric) Let p denote a metric in R%. For fived p we implicitly consider
the metric space (R%,p). Let A,B C R%, and let x € R? be a point. We use the notation
p(z,B) = p(B,z) = infyepp(r,y) and p(A,B) = inf,cainf,cpp(x,y). Note that for
compact A and B the infima are realized at points of A and B.

Examples of metrics are metrics induced by norms, such as the Euclidean Lg-norm ||.||,
the Li-norm or the Lo,-norm. Throughout this thesis we denote by p an underlying metric.



Definition 6 (Polyhedral Metric) Let P be a d-dimensional convex polytope in R which
is centrally symmetric with respect to the origin. For two points z,y € R? the distance induced
by P 1s

dp(z,y) := min{oc € R} | y € z + o P}.

dp is the (convex) polyhedral metric induced by P.

If the sum of the complezities of all faces of P is constant, dp is called a polyhedral metric of
constant description complexity.

R? is a normed space with unit ball P. Thus dp is a metric.

Definition 7 (Hausdorff distance) Let p be a metric in R?, and let A,B C R? be two
compact sets with respect to p. Then the directed Hausdorff distance i (A, B) is defined as

ou(A, B) == i = B). 2.1
1(4, B) := maxmin p(z, y) = max p(z, B) (2.1)

If A and B are polyhedral sets in R?, then

51(A, B) == 0u(UA,UB) = i = i b). 2.2
H(A, B) = on(UA,UB) xglaaeﬁyglean(w,y) _nax min p(z, b) (2.2)

For two curves f,q : I — RY the directed Hausdorff distance is defined on the images of the
curves

ou(f,9) = du(f(1),9(I)). (2.3)
The (undirected) Hausdorff distance 0y (A, B) is defined as
1 (A, B) := max{0u(A, B), ou(B, A)}. (2.4)

The Hausdorff distance is a natural way to extend a
metric p to the class of compact sets. Usually the shapes
we consider will be compact, so that we consider dy as

-
-
-
-
-
-
-
-

a natural shape metric. Note that dy is indeed a metric, A B
however dy is not, since it is not symmetric. Nonethe- -
less the directed Hausdorff distance is often used in par- 5H( A'B ) -- 5H( A B )

tial matching applications, where the task is to find a
subset of the shape B that resembles the shape A the most.

For terrains the following similarity notion naturally derives from the monotonicity prop-
erty.

Definition 8 (Perpendicular Distance) The perpendicular distance (also sometimes
called vertical distance, uniform metric, or Chebyshev metric) for two terrains F =
{(z, f(z))|z € D¢}, G = {(z,9(x))|x € Dy} in R over the same domains Dy = D, is
defined as

0L (FG) = sup |f(z) —g(z)] (2:5)
rely



Since f and g are functions, the perpendicular distance is the standard L., Minkowski-metric
for functions.

In contrast to the Hausdorff distance we can exploit the existence of a parameterization
when the shapes we are concerned with are curves. For curves a natural distance measure is
the Fréchet distance.

Definition 9 (Fréchet Distance) Let f : I = [Ii;,r;] — R%, g : J = [l7,75] — R? be two
curves, and let p be a metric in RY. Then the Fréchet distance 6r(f,g) is defined as

or(f,9) = inf  max p(f(a(t)), g(5(t))).
a:[0,1]—=1  t€[0,1]
5:10,1]—J

where o and B range over all continuous and non-decreasing reparameterizations with a(0) =
lr, (1) = rr, B(0) =1y, B(1) = ry. If we drop the condition on the reparameterizations to
be non-decreasing we obtain the weak Fréchet distance Sp(f, g).

We call two reparameterizations o, 5 which fulfill the constraints above witnessing repa-

rameterizations for ép(f,g) iff or(f,g9) = maXe|o,1] p(f(a*(t)),q(B*(t))).

Both the Fréchet distance and the weak Fréchet distance are pseudo-metrics, see [10, 44],
which means that they have almost all properties of a metric with the exception that two
objects with distance 0 may be distinct. As an example consider f,g : [0,1] — R? with
f(x) = (z,2) and g(z) = (x2,22): Clearly 0r(f,g) = dr(f,g) = 0, however f # g.
For the Fréchet distance we will consider p to be the metric
induced by the Euclidean norm ||.||. A popular illustration
/\ of the Fréchetdistance is the following: Suppose a man is
walking his dog, the man is walking on the one curve and
the dog on the other. Both are allowed to control their speed
but they are not allowed to go backwards. Then the Fréchet
distance of the curves is the minimal length of a leash that is
necessary for both to walk the curves from beginning to end.

For two curves f, g in R we can consider their Hausdorff distance, their Fréchet distance
and their weak Fréchet distance. All three distance measures assign points of f(I) and g(J)
according to certain rules to each other, and the respective distance measure is the maximum
distance between any such point pair. The Hausdorff distance has the most freedom in
picking for each point x € f(I) the closest point y € g(J). The weak Fréchet distance on
the other hand already imposes restrictions on the choice of point pairs by forcing them to
be continuously assigned according to continuous reparameterizations. The Fréchet distance
imposes even more restrictions by requiring the continuous reparameterizations to be non-
decreasing. Thus we can make the following observation.

Observation 1 Let f,g be two curves in RY. Then

The standard example of how much those distance measures can differ is given in Figure 2.1.
There two polygonal curves P and ) zigzag, one horizontally, and the other vertically, such
that the Hausdorff distance is relatively small, but the Fréchet distance very large.
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Figure 2.1: Example of two polygonal curves P and @) with large Fréchet distance but small Hausdorff
distance.

2.3 Miscellaneous

In this subsection we gather a few notations and definitions that we will need lateron.
Minkowski sums and semi-algebraic sets are important notions which we need to describe
configuration spaces.

Definition 10 (Minkowski Sum) For two sets A, B C R?
A®B:={a+blac A be B}
is called the Minkowski sum (or vector sum) of A and B.

Definition 11 (Algebraic Set / Semi-Algebraic Set / Algebraic Surface) Let

fiyoooy fr € R[Xq, ..., X4] be polynomials in d variables with coefficients in R. Then
{zeR'] N\ filz)=0} (2.6)
1€[1,...,k]

is an algebraic set. Ifk =1 then it is also called an algebraic surface. Let f; ; € R[X1,..., X{]
fori=1,...;kandj=1,...,1;. Andlet <; ;€ {<,=}. Then

{wer!] A fis@) <, 0} (2.7)
i€[l,....k] je[1,....L;]

is a semi-algebraic set. If exactly one of the <; ;j is a “ =" then the semi-algebraic set is called
a semi-algebraic surface patch.

See [31] for properties and results on algebraic and semi-algebraic sets. See [8] for the definition
and properties of algebraic surfaces and surface patches.
Some further miscellaneous notations we use in the sequel are the following:

e For a given metric p let

— Bl(y) := {z € R? | p(x,y) < ¢} be the d-dimensional closed e-ball centered at
y € R? and let B¢ := BZ(0,...,0) be the closed e-ball at the origin.

— Bi(y) := {z € R? | p(x,y) < e} be the d-dimensional open e-ball centered at
y € R%, and let ]?’)g = ﬁg(o, ...,0) be the open e-ball at the origin.
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— S9=1(y) := BY(y) \ B%(y) be the (d — 1)-dimensional e-sphere centered at y € RY,
and let S ' := B¢\ B¢ be the e-sphere at the origin.

For a set A C R? we denote with 0A its boundary and with 4 its complement.
The convex hull of a collection of points py,...,p, € R? is denoted by CH (py,...,pn).

With Os we denote the variant of the O-notation which subsumes factors n%, and in
which the constant of proportionality depends on 8, for any § > 0. For example O(n?*9)
for any § > 0 is Os(n?).

We identify R? with its vector space, and denote the i-th unit vector in the standard
orthonormal basis with €. Also we often identify points in R? with their vectors.



