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Abstract
Questions: Soil resource heterogeneity influences the outcome of plant– plant interac-
tions and, consequently, species co- existence and diversity patterns. The magnitude 
and direction of heterogeneity effects vary widely, and the processes underlying such 
variations are not fully understood. In this study, we explored how and under what 
resource conditions small- scale heterogeneity modulates grassland plant diversity.
Location: Oderhänge Mallnow, Potsdam, Brandenburg, Germany.
Methods: We expanded the individual- based plant community model (IBC- grass) to 
incorporate dynamic below- ground resource maps, simulating spatial heterogeneity of 
resource	availability.	Empirical	centimeter-	scale	data	of	soil	C/N	ratio	were	integrated	
into the model, accounting for both configurational and compositional heterogeneity. 
We	then	analyzed	the	interplay	between	small-	scale	heterogeneity	and	resource	avail-
ability on the interaction and co- existence of plant species and overall diversity.
Results: Our results showed significant differences between the low-  and high- 
resource scenarios, with both configurational and compositional heterogeneity hav-
ing a positive effect on species richness and Simpson's diversity, but only under 
low-	resource	conditions.	As	compositional	heterogeneity	in	the	fine-	scale	C/N	ratio	
increased, we observed a positive shift in Simpson's diversity and species richness, 
with the highest effects at the highest level of variability tested. We observed little to 
no effect in nutrient- rich scenarios, and a shift to negative effects at the intermedi-
ate resource level. The study demonstrates that site- specific resource levels underpin 
how fine- scale heterogeneity influences plant diversity and species co- existence, and 
partly explains the divergent effects recorded in different empirical studies.
Conclusions: This study provides mechanistic insights into the complex relationship 
between resource heterogeneity and diversity patterns. It highlights the context- 
dependent effects of small- scale heterogeneity, which can be positive under low- 
resource, neutral under high- resource, and negative under intermediate- resource 
conditions. These findings provide a foundation for future investigations into small- 
scale heterogeneity– diversity relationships, contributing to a deeper understanding of 
the processes that promote species co- existence in plant communities.
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1  |  INTRODUC TION

The	 “environmental	 heterogeneity	 hypothesis”	 (EHH)	 holds	 that	
spatial heterogeneity in biotic and abiotic environmental conditions 
increases	biodiversity	 (MacArthur	&	MacArthur,	1961;	MacArthur	
et al., 1966;	MacArthur	&	Wilson,	1967;	Ricklefs,	1977). Following 
this hypothesis, the heterogeneity– diversity relationship (HDR) is 
typically assumed to be positive, as environmental heterogeneity 
not only allows for the presence of additional niches, but also mod-
ulates the breadth of existing ones. Soil moisture, organic matter, 
nitrogen or other nutrients, light, precipitation, and temperature are 
known	sources	of	environmental	heterogeneity.	Some	experimental	
studies also included heterogeneity in the microsite texture (Grime 
et al., 1987) and soil depth (Baer et al., 2004). However, there are 
contradictory empirical findings, raising doubts about the universal-
ity of this simple heterogeneity– diversity relationship (Williams & 
Houseman, 2013). Field et al. (2009) showed that empirical studies 
found positive, neutral, or even negative effects of heterogeneity 
on the diversity of plant communities, with HDR being predicted 
to typically be positive for coarse- grained heterogeneity at the in-
tercommunity level, but to be non- existent or even negative with 
smaller	patch	sizes.	Additionally,	many	studies	have	reported	differ-
ent correlations between at least one source of heterogeneity and 
species diversity, showing positive, negative, and unimodal relation-
ships (Williams & Houseman, 2013). In sum, one of the major find-
ings is that the relationship seems to be highly scale-  and potentially 
resource- dependent, lending support to the assumption that soil 
chemistry, texture, and depth, for example, have the greatest im-
pact on community composition at small spatial scales, with climatic 
variables becoming increasingly important as scale increases (e.g., 
Palmer, 2007;	Costanza	et	al.,	2011).

At	fine	scales,	environmental	heterogeneity	within	communities	
is assumed to support resource partitioning between competing 
species (Chesson, 2000;	Bolker,	2003;	Costanza	et	al.,	2011). With 
increasing scales, heterogeneity gradients become wider, and dif-
ferent communities can co- exist, resulting in large regional species 
pool	sizes	and	positive	heterogeneity–	diversity	relationships	(Tamme	
et al., 2010). But how can the divergence in empirical findings across 
different	scales	be	explained	from	a	theoretical	perspective?	At	the	
landscape	scale,	Kadmon	and	Allouche	(2007) unified the island bio-
geography and niche theory in an elegant analytical model to chal-
lenge the positive relationship between species richness and habitat 
heterogeneity predicted by classical niche theory. By capturing the 
main elements of both theories, the model demonstrated that areal 
and dispersal limitations may create unimodal and even negative rela-
tionships between species richness and habitat heterogeneity. While 
increasing heterogeneity increases the potential number of species 
that may exist in a given area (as predicted by the niche theory), 

the simultaneous reduction in the amount of suitable area available 
for	 each	 species	 increases	 the	 likelihood	 of	 stochastic	 extinction	
(Kadmon	&	Allouche,	2007). Interestingly, these contrasting mecha-
nisms are also found in the ongoing discussion on whether landscape 
fragmentation per se (i.e., the spatial pattern of habitat configuration 
independent of habitat amount) has positive, negative, or neutral ef-
fects on species diversity (Fahrig, 2003, 2017; Fletcher et al., 2018; 
Rohwäder & Jeltsch, 2022). While these mechanisms are typically 
related to the landscape scale, a more overarching perspective 
emerges when two distinct components of environmental hetero-
geneity are explicitly distinguished: the compositional and configu-
rational heterogeneity (Palmer, 1992; Fahrig et al., 2011; Ben- Hur & 
Kadmon, 2020). The former describes the magnitude of variation in 
environmental heterogeneity (e.g., the number of different habitat 
niches), and the latter refers to its spatial structure, i.e., how clumped 
or dispersed patches with similar conditions are distributed in space. 
Clearly, compositional and configurational heterogeneity may be cor-
related (Ben- Hur & Kadmon, 2020). In principle, both components 
are	distinct	at	different	scales.	At	the	 landscape	 level,	 for	example,	
increasing compositional heterogeneity increases the available niche 
space	and,	thus,	the	potential	to	host	a	large	number	of	species.	At	
the same time, with increased niche space, the effective area occu-
pied by a particular species is potentially reduced.

In contrast, at the local- patch scale, small- scale soil or resource 
heterogeneities can provide dissimilar microniches, possibly favor-
ing particular individuals of competing species. However, it is unclear 
whether an increase in such microniches has negative effects, similar 
to the reduction in the effective area that a species can occupy at 
the	 landscape	 scale.	A	 corresponding	 negative	 effect	 at	 the	 small	
scale could be that too few similar microniches lead to a very low 
number of individuals of the same species in the local patch, pos-
sibly	 causing	 local	 Allee	 effects	 (e.g.,	 reduced	 pollination	 success,	
Nottebrock	et	al.,	2013).	An	increase	in	the	other	component	of	het-
erogeneity, namely the configurational heterogeneity (e.g., clumping 
or gradual changes in resource availability), results in an increase in 
spatial fragmentation of the differing habitat types and their spatial 
distribution. This may not only negatively impact habitat connec-
tivity and metapopulation dynamics at the landscape scale but also 
local	population	sizes.	At	a	local	scale,	spatial	fragmentation	may	ei-
ther lead to micropatches that are too large to provide a safe site 
for an individual plant of a competitively inferior species, or patch 
sizes	may	get	 too	small	 to	provide	 sufficient	 resources	 for	 its	 sur-
vival. In the latter case, the heterogeneity may be too fine to matter. 
These theoretical considerations indicate that the effects of changes 
in compositional and configurational heterogeneity are particularly 
difficult to predict at a small scale. Furthermore, to date, small- scale 
variations in soil parameters have not been tested on a scale of 
centimeters, which is relevant for interactions between small plant 
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individuals	 (e.g.,	 in	 grasslands;	 e.g.,	 Schenk,	2006). Indeed, recent 
research indicates that plant– plant interactions at such scales can 
be crucial for understanding local plant community dynamics (e.g., 
Crawford et al., 2019, 2021).

In this study, we (i) present empirical data showing fine- scale 
heterogeneity in soil resources (here: soil carbon- to- nitrogen ratio) 
at the centimeter scale, and (ii) use the individual- based community 
model IBC- Grass (May et al., 2009; Pfestorf et al., 2016; Crawford 
et al., 2021) to explore how and under what conditions such fine- 
scale heterogeneity in soil resources impacts species co- existence 
and diversity of grassland communities. More specifically, we ex-
panded	and	re-	parameterized	the	model	for	10	common	grassland	
species	in	Mallnow	Nature	Reserve,	Germany.	Using	varying	scenar-
ios in below- ground resource availability, we disentangle the effects 
of resource availability and compositional versus configurational 
resource	heterogeneity	on	species	diversity.	We	hypothesized	that	
(1) the fine- scale configurational heterogeneity (patchiness) of the 
soil resource affects plant diversity, (2) compositional heterogeneity 
(i.e., variability of resources) is a major driver therein, and (3) the total 
resource availability of the local grid further modifies the impact of 
these two factors.

2  |  MATERIAL AND METHODS

2.1  |  Study system

This study combined Horn et al.'s (2015) published plant community 
and soil properties data from a dry grassland habitat of the natural 
reserve in Mallnow, Lebus (Brandenburg, Germany, 52°27.778′ N,	
14°29.349′ E)	and	a	complementary	fine-	scale	soil	survey	as	bench-
marks.	 This	 reserve	 has	 been	managed	under	 low-	intensity	 sheep	
grazing	conditions	for	the	past	500 years	(Ristow	et	al.,	2011). The 
grassland plant community was inventoried using a spatially explicit 
design based on hierarchical nesting of three replicated macroplots 
along a steep gradient of soil properties. Further details regarding 
the sampling protocol are available in Horn et al. (2015). Festuca spp. 
dominate the community assemblage, but plant diversity can be very 
high	locally,	with	more	than	40	species,	even	in	a	10 m × 10 m	plot.	
The	soil	is	characterized	as	calciferous	boulder	clay	and	very	sandy	
(Hensen, 1995).	 Along	 the	 hillslopes,	 one	 can	 observe	 relatively	
steep gradients from sandy clayey soils on the top to almost pure 
sandy soils in the lower parts. To further dissect the level of small- 
scale variation in soil parameters on a scale of centimeters, we col-
lected	soil	samples	from	smaller	macroplots	of	15 m × 5 m	along	this	
slope	and	divided	them	into	three	sections	of	3 m × 5 m,	which	were	
3 m	apart	(top,	middle,	and	bottom	parts	of	the	hill).	In	each	of	these	
plots,	we	selected	three	subplots	of	20 cm × 20 cm	and	collected	16	
soil	samples	in	each	(4 × 4	soil	cores	of	1.5 cm	in	diameter	and	10 cm	
in	depth),	resulting	in	144	soil	samples	(as	detailed	in	Appendix	S1). 
We cut the soil cores into five 2- cm slices and determined the nitro-
gen content for each of these subsamples. Soil carbon and nitrogen 
were	analyzed	by	direct	combustion	of	30 mg	of	pulverized	soil	per	

core	using	a	EuroEA	Element	Analyzer	(HEKAtech	GmbH).	Oriented	
toward	 the	 empirical	 variability	 of	 carbon-	to-	nitrogen	 (C/N)	 ratio	
in the Mallnow reserve, the model explores scenarios of alterna-
tive levels of resource availability and small- scale heterogeneity (for 
data,	see	Appendix	S1).	The	C/N	ratio	is	considered	a	proxy	for	soil	
resource availability because, as Watt and Palmer (2012) noted, it is 
a reliable predictor of soil nitrogen fertility by implicitly accounting 
for the positive correlation between soil carbon content and nitro-
gen	immobilization.

2.2  |  Small- scale spatial heterogeneity maps to 
describe below- ground resources

With the overall aim of systematically exploring the effect of small- 
scale heterogeneity in soil resources on the co- existence and dynam-
ics of grassland communities, we used the empirical fine- scale data 
of	 soil	 carbon-	to-	nitrogen	 (C/N)	 ratio	described	above	 to	generate	
derivative resource maps with realistic features of spatial hetero-
geneity. Using a two- dimensional grid with a spatial resolution of 
1 cm × 1 cm	 in	cell	size,	we	systematically	varied	 (i)	 the	range	of	re-
source levels occurring at this fine scale (expressed as the standard 
deviation	from	a	given	mean	C/N	ratio	value)	and	(ii)	the	spatial	cor-
relation of resources in grid cells (determined by the nugget effect) at 
identical mean resource levels. While the earlier measure describes 
the range of different potential microniches (i.e., compositional het-
erogeneity), the latter defines the pattern of spatial aggregation (i.e., 
local patchiness or configurational heterogeneity).

To this end, we generated derivative fractal maps of resource 
availability and heterogeneity patterns following a Gaussian prob-
ability	 distribution,	 which	 takes	 a	 specified	 empirical	 value	 of	 the	
soil	C/N	ratio	as	input.	The	derivative	maps	were	generated	in	three	
steps	 as	 follows.	 (1)	 A	 surface	 grid	 map	 of	 the	 recorded	 carbon-	
to- nitrogen ratio data was created, with the corresponding x-  and 
y- coordinates as point data within a specified spatial window (e.g., 
101 cm × 101 cm	for	this	study).	(2)	With	a	weighted	linear	combina-
tion	of	known	data	in	the	nearest	neighborhood,	the	ordinary	kriging	
method was applied to generate estimates for unsampled locations 
over	 the	 entire	 spatial	 window	 (see,	 Voltz	 &	 Webster,	 1990). (3) 
Second-	order	 polynomial	 kriging	with	 spline	 interpolation	was	 ap-
plied	using	the	R	package,	gstat (Pebesma, 2004; Gräler et al., 2016), 
as shown in Figure 1.	From	the	empirical	variogram	of	 the	krigged	
C/N	ratio	data,	we	extracted	selected	map	parameters.	This	includes	
the	nugget	size,	which	defines	the	spatial	autocorrelation	of	neigh-
boring points; the sill, corresponding to the variance value where the 
empirical	variogram	appears	to	level	off;	the	range,	which	marks	the	
distance after which autocorrelation becomes independent; and the 
kappa	coefficient,	a	measure	of	kriging	accuracy.	Using	these	param-
eters, we generated derivative resource maps depicting the gradi-
ent	of	C/N	 resource	availability	using	 the	Gaussian	 field	algorithm	
(Sciaini et al., 2018).

In the subsequent step, we generated a set of analogous re-
source maps (Figure 2), in which the level of spatial autocorrelation 
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of resource units between grid cells is constrained by a patchi-
ness	 factor	 (technically	 described	 as	 “nugget	 size,”	 see	 e.g.,	 Voltz	
& Webster, 1990). In this study, this patchiness factor enabled the 
quantification and systematic comparison of the configurational 
heterogeneity	of	 soil	 resources	 (i.e.,	C/N	 ratio)	 of	 specified	 spatial	
extents.	 The	 empirical	 nugget	 size	 of	 0.06	 in	 the	 Mallnow	 land-
scape	was	 taken	as	a	 reference	patchiness	value.	For	our	analysis,	

we considered seven landscapes with patchiness ranging from 0.46 
(nearly uncorrelated spatial configuration) to 0.06 (highly correlated 
spatial configuration; see Figure 2).	As	a	basis	for	model	simulations,	
we	 prepared	 all	 maps	 in	 raster	 format	 using	 the	 R	 package	 raster 
(Hijmans, 2020) and linearly transformed them to produce resource 
maps with specified mean values of below- ground resource availabil-
ity and a coefficient of variation of 0.25, translating to a ±4 extent of 
variability at a standard deviation of one unit per cm2.

2.3  |  Modeling approach

To investigate the dynamics of the small- scale heterogeneity– 
diversity relationship in a grassland community, we used a refined 
version of the dynamic IBC- Grass model (an individual- based model 
of grassland community) by May et al. (2009), which simulates the 
fate of individual plants over time depending on above-  and below- 
ground resource availability. With this model, different scenarios of 
plant– plant and plant– environmental interactions have been tested, 
for example, the effects of varying nutrient content and mowing 
(May et al., 2009), shoot and root herbivory (Crawford et al., 2021), 
and habitat isolation on plant communities (Weiss et al., 2014). 
Other examples include the effects of below- ground herbivory on 
the community (Körner et al., 2014; Pfestorf et al., 2016; Crawford 
et al., 2021),	influence	of	grazing	cessation	(Weiss	&	Jeltsch,	2015), 
and role of intraspecific trait variability in species co- existence 
(Crawford et al., 2019). Pfestorf et al. (2016) adapted the model to 
allow	flexible	species	parameterization	as	well	as	inclusion	of	annual	

F I G U R E  1 A	krigged	map	of	fine-	scale	C/N	ratio	distribution	of	
a	typical	1 m × 1 m	plot	in	the	Mallnow	reserve.

F I G U R E  2 A	set	of	derivative	resource	maps	generated	with	different	levels	of	patchiness	of	resource	availability	derived	from	empirical	
soil	carbon-	to-	nitrogen	ratio	measurements.	The	color	scheme	and	legend	key	represent	the	magnitude	of	the	deviation	from	the	mean	
resource level at an empirical standard deviation of 2.346 units per cm2.



    |  5 of 14
Journal of Vegetation Science

OLAGOKE et al.

species.	For	this	study,	we	re-	implemented	the	IBC-	Grass	in	NetLogo	
6.0.2	 (Wilensky,	 1999) with emphasis on a user- friendly interface 
and documentation. We used the IBC- Grass version of Pfestorf 
et al. (2016) as a base for species- level and plant functional type 
(PFT)	 parameterization,	 as	 well	 as	 model	 testing.	 We	 further	 ex-
panded the model to integrate the below- ground resource map as a 
dynamic input to simulate the spatial heterogeneity of resource avail-
ability,	representing	the	C/N	ratio	of	the	grid	cells	per	time	step.	To	
ensure software quality, we conducted intensive model testing and 
evaluation (including global sensitivity analyses) based on the two- 
person rule (Kusumoto et al., 1998). This pair programming approach 
engages at least two persons in crucial software development, test-
ing,	and	quality	control	tasks,	leveraging	their	expertise	and	perspec-
tives	to	minimize	the	likelihood	of	mistakes	and	to	detect	and	rectify	
errors. For model testing, we used species- specific parameters of 
the plant community described by Pfestorf et al. (2016) with some 
modifications (see Table S2.1	 in	 Appendix	 S2). For simplicity and 
readability, we provide here only a general overview of the model. 
A	full	description	of	the	model	version	used	in	this	study	is	provided	
following the ODD protocol (Overview, Design concepts, Details; 
Grimm et al., 2010; Grimm et al., 2020)	in	Appendix	S2.

2.4  |  Overview of the IBC- Grass model

IBC- Grass is an individual- based spatially explicit model. It simu-
lates the spatial and temporal dynamics of a plant community on a 
torus	2D-	grid	of	100 × 100	cells.	Each	grid	cell	was	set	to	a	spatial	
resolution	 of	 1 cm × 1 cm.	 These	 grid	 cells	 are	 characterized	 by	 a	
specific supply of above- ground resource (light) and below- ground 
resources (e.g., nutrients). Individual plants occupy spatially defined 
coordinates within the grid and are represented by their above-  and 
below- ground circular Zones of Influence (ZOI; Weiner et al., 2001). 
The latter defines the space and, thus, the quantity of resources to 
which	the	plants	have	access.	The	accumulated	resource	uptake	is	
allocated to the above-  and below- ground biomass, as well as to 
reproductive	biomass,	in	weekly	time	steps.	The	annual	vegetation	
growth	cycle	was	set	at	30 weeks.	The	model	describes	the	following	
key	processes:	 inter-		 and	 intraspecific	 competition	 for	 above-		 and	
below- ground resources, individual plant growth, plant mortality, 
seed production, seed dispersal, seed mortality, germination, spacer 
growth and ramet establishment for clonal species, as well as plant 
dieback	during	the	winter	break.

The	 above-	ground	 competition	 for	 light	 was	 modeled	 size-	
asymmetrically.	Neighboring	plants	(specified	by	overlapping	ZOIs)	
share resources proportional to their respective biomass and shoot 
geometry (May et al., 2009). In contrast, below- ground competition 
follows	a	size-	symmetric	mode	(Weiner	et	al.,	2001) in which com-
peting plants share available resources equally in overlapping ZOI 
areas.

During	weeks	16–	20,	 plants	 allocate	 a	 specified	 proportion	of	
the resources accrued to reproduction. Perennial and annual plants 
allocate	5%	and	20%	of	their	weekly	resource	uptake,	respectively,	

to seed production. Clonal plants use 5% of their resources for 
spacer growth (i.e., vegetative connection between the mother and 
possible	 daughter	 ramets)	 and	 ramet	 development	 during	 weeks	
other	 than	weeks	16–	20.	Although	only	one	spacer	can	grow	at	a	
time,	 this	occurs	 throughout	 the	year,	except	during	 the	weeks	of	
seed	production.	At	week	21,	seeds	are	dispersed	over	the	grid	cells,	
with a probability of 50% mortality. Seedlings can establish in vacant 
cells	for	up	to	four	weeks	after	dispersal	and	in	the	first	four	weeks	
of the next year.

Plant mortality can result from three factors: resource stress, 
winter	dieback,	and	a	random	background	mortality	of	21%	per	year.	
If	resource	uptake	is	below	a	fixed	threshold	fraction	(e.g.,	20%	of	
the	optimal	 uptake),	 plants	 suffer	 from	 resource	 stress,	which	 lin-
early	 increases	 the	 probability	 of	mortality	 each	week.	 The	 plant	
dies	when	a	 species-	specific	 survival	 time	 is	 exceeded.	All	 ramets	
and	annual	plants	die	shortly	before	winter	break.	Perennial	plants	
lose their total reproductive biomass and half of their above- ground 
biomass	during	the	winter	dieback.

2.5  |  Simulated plant community

Simulation experiments for heterogeneity– diversity relationship 
scenarios were based on the described resource maps derived from 
empirical	soil	carbon-	to-	nitrogen	data.	We	parameterized	with	em-
pirical records in the TRY plant trait database (Kattge et al., 2020) 
and other scientific literature (see Table 1). The plant community de-
scribed here comprised 10 grassland species ecologically adapted to 
sites	with	low	to	medium-	high	values	of	soil	C/N	ratio,	characterizing	
the	grassland	in	the	Mallnow	Nature	Reserve.	Species	nomenclature	
follows Ristow et al. (2011). Based on the plant adaptive strategy 
scheme (Grime, 1988; Hunt et al., 2004), the selected species were 
distributed oer three plant functional types along resource competi-
tion and stress adaptation dimensions. These are: (1) the competi-
tor (adapted to high- resource pre- emption and higher establishment 
success under low stress); (2) the intermediate (possess average 
competitive to stress- tolerant traits and are more abundant at the 
intermediate resource range); and (3) the stress- tolerant (adapted to 
high- resource stress, with a high establishment success in extremely 
nutrient-	poor	soils).	Each	plant	species	was	described	by	26	trait	pa-
rameters divided into 16 species- specific state variables and 10 com-
mon	parameters,	which	were	kept	constant	for	all	species.

2.6  |  Model validation

The performance of the model in reproducing the empirical plant 
community was evaluated by comparing the differences in plant 
species richness and composition of indicator species between em-
pirical observations and simulation results for 10 selected sample 
plots	with	soil	C/N	ratios	 ranging	from	11.57	to	23.2.	The	simula-
tion results represent 20 replicated model outcomes at the end of a 
50- year seasonal cycle, which is considered a reasonable equilibrium 
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point, following which no appreciable changes in the species richness 
and Simpson reciprocal diversity index were recorded. We used the 
published vegetation and soil properties data of Horn et al. (2015) 
as a reference. Using the medians and median absolute deviations of 
species richness from the simulated plots, we conducted a pairwise 
Mann– Whitney U test to identify significant differences between 
the model output and empirical observations. Spearman's Rho coef-
ficient was computed to infer the strength of the relationship be-
tween the variables.

2.7  |  Simulation experiments

We performed two batches of simulation experiments. The first 
batch explored whether landscape patchiness, as a measure of con-
figurational heterogeneity, increases species diversity equally under 
different	mean	below-	ground	 resource	 (C/N	 ratio)	 conditions.	 For	
this, we compared the temporal dynamics of local communities 
grown	under	a	 fixed	mean	C/N	 ratio	 (i.e.,	 “no	heterogeneity”)	 and	
a	high	patchy	mosaic	(patchiness = 0.06,	standard	deviation	(SD)	of	
mean	 C/N	 ratio = 10 units	 per	 cm2) under mean below- ground re-
sources	of	low	(14)	and	high	(36)	C/N	ratios	over	a	50-	year	simula-
tion period.

The second batch of experiments aimed to decipher how 
changes in compositional heterogeneity (i.e., the range of variability 
in fine- scale resource levels, as defined by the standard deviation 
of a specific mean resource value) and configurational heterogene-
ity (i.e., patchiness in spatial distribution) determine the magnitude 
and direction of heterogeneity– diversity relationships. This experi-
ment was arranged in a full factorial design with four levels of mean 
below-	ground	resource	availability	 (C/N	ratios:	14,	18.4,	22.8,	and	
36),	eight	levels	of	SD	of	the	mean	C/N	ratio	(i.e.,	0.00,	1.25,	2.50,	
3.75, 5.00, 6.25, 7.50, 8.75, and 10.00) and seven levels of patchiness 
(i.e., 0.46, 0.39, 0.26, 0.20, 0.13, 0.06, and 0.00; higher patchiness 
values indicate higher levels of fragmentation) (see Figure 2). We 

initialized	 model	 runs	 for	 these	 resource	 heterogeneity	 variables,	
using the above- stated species- specific parameters and 100 seed-
lings	for	each	of	the	10	species.	Each	model	run	lasted	for	50	sim-
ulated years, and was repeated 20 times. This runtime sufficiently 
yielded	stable	population	and	community	dynamics.	At	week	20	of	
each year (directly before seed dispersal), we recorded the number 
of surviving individuals of all species, as well as the estimates of spe-
cies richness and the Simpson's reciprocal diversity index (hereafter 
cited as Simpson's diversity; sensu Pallmann et al., 2012) of the sim-
ulated grid.

3  |  RESULTS

By comparing the simulation results and empirical observations ob-
tained from the selected soil carbon- to- nitrogen ratio of the Mallnow 
site (between 11.57 and 23.2), we found no significant differences in 
species richness (Mann– Whitney U test: W = 33,	p = 0.202).	Against	
the empirical median species richness of 5 (median absolute deviation 
[MAD] = 1.48,	interquartile	range	[IQR] = 2.75),	from	the	simulations,	
a	median	species	richness	of	6	(MAD = 2.22,	IQR = 3)	was	obtained,	
with an overestimation and/or underestimation of 8% deviation 
across the board (Spearman's ρ = 0.92).	 As	 shown	 in	 Figure 3, the 
simulation results typify stochasticity in species richness within each 
mean	C/N	ratio	value,	when	considering	a	standard	deviation	of	2.346	
recorded in the sample plots. The model reproduced the dominance 
of Festuca brevipila and F. psammophila grasses in the plant cover of 
plots	with	C/N	ratios	in	the	low	to	medium-	high	range.	Similarly,	spe-
cies with high stress tolerance traits, such as Arrhenatherum elatius, 
Carex humilis, and Rumex acetosella, were the most abundant species 
in	plots	characterized	by	low	soil	C/N	ratios.

From the first simulation experiment, analyses of the temporal 
trajectories of the simulated grassland community indicated that 
under	 low	 below-	ground	 conditions	 (mean	 C/N	 ratio = 14),	 small-	
scale	heterogeneity	in	a	derivative	high	patchy	soil	C/N	ratio	mosaic	

F I G U R E  3 Species	richness	of	selected	
plots across a range of low to medium- 
high soil carbon- to- nitrogen ratios in the 
Mallnow Reserve. The violin plots and 
black	dots	distributed	therein	represent	
the simulation results, whereas the red 
dots are the corresponding empirical 
observations.
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(patchiness = 0.06,	 and	 SD = 10.0),	 resulted	 in	 higher	 Simpson's	 di-
versity and species richness than in a “no- heterogeneity” landscape 
(Figure 4). Both Simpson's diversity and species richness declined 
sharply under “no- heterogeneity” conditions, earlier than in a het-
erogeneous patch mosaic where a steep decline in species richness 
of	the	simulated	community	only	set	 in	after	11 years.	By	the	final	
simulation year, median Simpson's diversity and species richness in 
patchy mosaic diverged from the “no- heterogeneity” scenario by 
1.6 (±0.497	MAD)	and	2	(±1.480	MAD),	respectively.	The	response	
to fine- scale heterogeneity in the low- resource scenario conveyed 
a beta diversity of 4. Under high below- ground resource avail-
ability	 (mean	 C/N	 ratio = 36),	 the	 Simpson's	 diversity	 and	 species	
richness in the “no- heterogeneity” and heterogeneous conditions 
maintained comparable values throughout the simulation period. 
The final respective Simpson's diversity and species richness of the 
two high- resource scenarios converged at median values of 2.62 
(±0.156	MAD)	and	4,	which	are	equivalents	of	 their	 values	 in	 the	
“no- heterogeneity” low- resource condition.

Subsequent analyses proceeded to further systematically evalu-
ate the interactions of configurational (i.e., patchiness) and compo-
sitional heterogeneity (i.e., the extent of variability defined by the 
standard deviation, SD) of below- ground resources (mean resource 
level	C/N	ratio)	on	species	diversity	(Figure 4).	At	a	low	resource	level	
(mean	C/N	ratio = 14,	left	panel	of	Figure 5), the spatial configuration 
and composition of resource distribution both strongly influenced 

Simpson's	diversity.	Although	a	sizable	 increase	 in	Simpson's	diver-
sity was apparent along the compositional heterogeneity gradient, 
distinctive patterns emerged in response to the configurational 
patchiness at different levels of compositional heterogeneity. With 
compositional variability at SD between 0 and 1.25, a hump- shaped 
Simpson's diversity emerged when intermediate configurational 
patchiness	only	marginally	increased	the	plant	diversity.	At	medium	
compositional heterogeneity a U- shaped effect of configurational 
patchiness (i.e., least Simpson's diversity at the intermediate patchi-
ness)	was	apparent.	A	further	increase	in	compositional	heterogene-
ity yielded mixed responses of Simpson's diversity to configurational 
patchiness, leading to a moderate reverse- J shape at the SD value of 
10. In contrast, under high below- ground resource conditions (mean 
C/N	 ratio = 36,	 right	panel	of	Figure 5), the interaction of configu-
rational and compositional heterogeneity of resource distribution 
yielded no distinct effect on Shannon diversity. Similar to the no- 
heterogeneity scenario, only competitive, fast- growing species dom-
inated	the	community.	A	similar	trend	was	observed	for	the	species	
richness (see Figure S3.1	in	Appendix	S3).

The slopes of the relationship between species diversity met-
rics and compositional heterogeneity (i.e., Δ- diversity/Δ- SD of the 
mean	C/N	ratio)	synthesize	effect	levels	along	the	gradient	of	con-
figurational patchiness under contrasting mean carbon- to- nitrogen 
resource levels (Figure 6). Slope estimates were positive only at 
the	 low	 resource	 level	 (mean	C/N	 ratio = 14)	 across	 all	 the	 tested	

F I G U R E  4 Temporal	changes	in	
Simpson's diversity (a) and species 
richness (b) of the simulated grassland 
community in the “no heterogeneity” and 
heterogeneous resource configurations 
under	low	(mean	C/N	ratio = 14)	and	
high	(mean	C/N	ratio = 36)	below-	ground	
resource	conditions.	Each	experimental	
setting	was	initialized	with	100	seedlings	
for each of the 10 species and run for 50 
simulated years, with 20 repetitions. Data 
on the number of surviving individuals 
and estimates of Simpson's diversity and 
species	richness	were	recorded	at	week	
20 of each year.
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configurations. In contrast, we recorded negative slope estimates at 
mid-	range	resource	levels	(mean	C/N	ratio = 18.4–	22.8).	At	a	high	re-
source	level	(mean	C/N	ratio = 36),	the	slopes	teetered	around	zero,	
with no significant effect of configurational patchiness.

4  |  DISCUSSION

In this study, we aimed to systematically explore how and under what 
conditions spatial resource heterogeneity affects plant co- existence 
and overall diversity at very fine scales. The heterogeneity– diversity 
relationship (HDR hypothesis of Williams and Houseman, 2013) 

posits that increased spatial heterogeneity creates more ecological 
niches, which in turn promotes greater diversity. This study explores 
this relationship and sheds light on why previous empirical studies 
have generated non- convergent results. Specifically, we investi-
gated the effect of below- ground resource heterogeneity generated 
by the patchiness of the resources (“configurational heterogeneity”) 
and the variability of available resources (“compositional heteroge-
neity”), as defined in previous studies (see e.g., Palmer, 1992; Fahrig 
et al., 2011; Ben- Hur & Kadmon, 2020). Furthermore, we consid-
ered levels of average resource availability (high vs low) as a third 
factor.	Given	the	analyzed	grassland	community,	our	results	suggest	
that the effect of heterogeneity on Simpson's diversity and species 

F I G U R E  5 The	response	of	Simpson's	diversity	to	the	interacting	effects	of	compositional	heterogeneity	(defined	by	the	standard	
deviation	of	the	mean	C/N	ratio)	and	configurational	heterogeneity	(i.e.,	patchiness	pattern)	under	contrasting	below-	ground	resource	
availability (higher patchiness values indicate higher levels of fragmentation; see Figure 2).	Each	experimental	setting	was	initialized	with	100	
seedlings for each of the 10 species and run for 50 simulated years, with 20 repetitions. Data on the number of surviving individuals, and 
estimates	of	Simpson's	diversity	and	species	richness	were	recorded	at	week	20	of	each	year.

F I G U R E  6 Slope	estimates	of	the	relationship	between	diversity	and	compositional	heterogeneity	(i.e.,	standard	deviation	of	below-	
ground resources) at varying levels of patchiness and under contrasting below- ground resource availability (note: higher patchiness values 
indicate higher levels of fragmentation; see Figure 2).	The	bars	represent	standard	errors	of	the	slope	estimates.	Each	experimental	setting	
was	initialized	with	100	seedlings	for	each	of	the	10	species	and	run	for	50	simulated	years,	with	20	repetitions.	Data	on	the	number	of	
surviving	individuals,	and	estimates	of	Simpson's	diversity	and	species	richness	were	recorded	at	week	20	of	each	year.
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richness strongly depends on resource limitations, with little to no 
effect of heterogeneity in high- resource habitats (Figures 4 and 5), 
whereas, under low- resource conditions, heterogeneity can strongly 
impact diversity depending on fine- scale variability of the resource 
composition and patchiness configuration (Figure 5). Thus, in low- 
resource habitats, both facets of heterogeneity, its configuration 
and its composition, interact in the magnitude and direction of the 
overall effect on diversity. While, above a certain threshold, an in-
crease of compositional heterogeneity (i.e., resource variability, here 
measured as standard deviation of mean below- ground resources) 
leads to an increasing species co- existence, the strength of this ef-
fect is modulated by configurational heterogeneity (i.e., resource 
patchiness). While increasing patchiness showed a hump- shaped 
effect on diversity under low- resource conditions and minimal com-
positional heterogeneity, that is, co- existence is highest at interme-
diate patchiness (Figure 5), the effect is generally idiosyncratic along 
patchiness gradient. Disparate patterns emerged at the intermediate 
compositional heterogeneity and a reverse J- shape emerged at the 
highest level tested.

Testing the effects of resource heterogeneity under different 
mean resource availability revealed an overall positive effect of 
compositional heterogeneity on diversity. This pattern is consistent 
with the empirical observations of Williams and Houseman (2013). 
In contrast, for moderate resource availability, this effect turned 
negative, independent of the patchiness level. Under high resource 
availability, the effects of both compositional and configurational 
heterogeneity	waned.	Altogether,	 our	 results	 show	 that	our	 initial	
two hypotheses that fine- scale patchiness (configurational het-
erogeneity) and resource variability (compositional heterogeneity) 
distinctively affect plant diversity hold only under low- resource 
conditions.	Meanwhile,	the	third	hypothesis,	emphasizing	the	impor-
tance of the overall resource level for the magnitude and direction of 
fine- scale heterogeneity effects on diversity, was clearly confirmed. 
In the following, we discuss these findings with regard to the under-
lying causes and mechanisms.

The	 strikingly	 different	 effects	 of	 small-	scale	 heterogeneity	
under different resource levels obtained in our simulation experi-
ments could explain why previous empirical studies have shown 
positive, neutral, or negative results regarding the relationship be-
tween	resource	heterogeneity	and	diversity.	A	likely	explanation	for	
the marginal effect of below- ground resource heterogeneity under 
high- resource conditions is the general observation that increasing 
nutrient availability, for example, shifts competition from the below- 
ground compartment to the above- ground compartment, giving a 
disproportionate	advantage	to	faster-	growing	tall	species	(Bobbink	
et al., 1998; Farrer & Suding, 2016; Hautier et al., 2018; Crawford 
et al., 2021). Under such conditions, when below- ground resources 
are not limiting, the niche- related processes facilitated by fine- 
scale heterogeneity are of no prime importance when dominated 
by neutral- type processes (Gravel et al., 2006), whereby the overall 
species richness is driven by a density- dominated competitive exclu-
sion, for example. This may be the case for studies where empirical 
evidence suggests little or no effect of soil nutrient heterogeneity 

on diversity relationships was recorded (e.g., Baer et al., 2004; 
Wijesinghe et al., 2005). The intermediate- resource settings provide 
more of an ecotone, providing a confluent range for highest spe-
cies co- existence and diversity. Therein, resource variability may 
convey niche overlap while lending an additional advantage to some 
fast- growing species to preempt resources and outcompete others, 
culminating in a negative impact on local species assemblages and 
diversity (see Figure S3.3	 in	Appendix	S3). In contrast, under low 
below- ground resource levels, small patches with higher nutrient 
availability can provide a microniche for individual plants, relating 
to how much the local resource levels differ from the grid average. 
Here, the variability of resource levels in different patches (i.e., the 
compositional heterogeneity) clearly plays an important role: the 
higher the variability, the higher the chance that there are at least 
some microhabitat patches that meet the required resource levels 
for individuals with high nutrient demand. In addition to such single- 
species effects, microniches also affect the outcome of plant– plant 
interactions, and hence local community dynamics and species 
co- existence (Crawford et al., 2019; Casper et al., 2000; Fitter 
et al., 2000; Wilson, 2000).

Interestingly, our results confirmed that the outcome of plant 
competition for heterogeneous below- ground resources depends 
greatly on specific resource patchiness and, correspondingly, on 
the species’ ability to explore such resource patches (Wijesinghe 
et al., 2001; Day et al., 2003; Baer et al., 2004; Maestre et al., 2007; 
Rajaniemi, 2007;	Gazol	et	al.,	2013). The latter is mostly due to the 
differential abilities of plants to proliferate roots into nutrient- rich 
patches (Robinson, 1994 and references therein), and in the vari-
able	rates	of	nutrient	uptake	(Campbell	et	al.,	1991; Robinson, 1994; 
Einsmann	et	 al.,	1999; Farley & Fitter, 1999; Fransen et al., 1999; 
Robinson et al., 1999; Hutchings et al., 2000; Wijesinghe et al., 2001). 
Regarding patchiness, our model revealed a hump- shaped response 
of	 Simpson's	 diversity	 to	 increasing	 patch	 sizes	 where	 composi-
tional heterogeneity was inconsequential. On the one hand, the 
corresponding	optimum	diversity	for	medium	patch	sizes	under	low	
compositional heterogeneity can be explained by a minimum patch 
size	 that	 is	 needed	 to	 provide	 the	 required	 resources	 of	 a	 single	
plant. On the other hand, if resource patches become larger and 
are shared by several individuals, local competition increases, thus 
again	 amplifying	 competitive	 exclusion.	 Patches	 that	 reach	 a	 size	
that is much larger than individual plants might approach a homog-
enous condition, leading to a lowered diversity, as obtained in “no- 
heterogeneity” scenarios.

For grasslands, our findings confirmed that the effects of 
changes in compositional and configurational heterogeneity of 
below-	ground	 resources	 at	 fine	 centimeter-	size	 scales,	 as	 sug-
gested	by	Schenk	 (2006), are indeed important. This aligns with 
recent studies by Crawford et al. (2019, 2021), indicating that 
plant– plant interactions at such scales can be crucial for local plant 
community dynamics. In addition, plant responses to the spatial 
distribution patterns of nutrients are species- specific. Depending 
on specific growth strategies, plants might struggle when trying 
to achieve the optimal distribution of roots under given levels of 
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resource heterogeneity, which might result in suboptimal growth 
and fitness (Wijesinghe & Hutchings, 1997; Wijesinghe et al., 2001, 
2005). In contrast, clonal plants that spread vegetatively have an 
apparent advantage, as they can reach various resource patches si-
multaneously and dominate due to resource complementarity be-
tween	patches	(Hartnett	&	Bazzaz,	1983;	Alpert	&	Mooney,	1986; 
Friedman	&	Alpert,	1991). This could then decrease the expected 
positive effect of small- scale soil nutrient heterogeneity, at least 
in	certain	settings	(Eilts	et	al.,	2011). However, this advantage may 
not increase the competitive ability in nutrient- rich habitats or in 
cases where resource patches are larger than individual plant root 
systems (Hutchings et al., 2003).

Although,	 in	this	study,	we	provide	sufficient	theoretical	bases	
for all observed effects, the robustness and explicit application of 
the current model outcomes are subject to empirical evaluation. 
However, data suitable for such comprehensive evaluations are cur-
rently	 lacking.	While	our	model	assumed	some	temporal	fractional	
loss and replenishment in the spatial composition and configuration 
of resources, plants themselves are modifying local resource avail-
ability,	for	example,	by	resource	uptake	but	also	by	litter	decompo-
sition or by trapping organic material that is redistributed by wind 
or water, also depending on topography, soil parent material, etc. 
(Reynolds et al., 2007; Williams & Houseman, 2013). These addi-
tional	feedbacks	from	plants	back	to	resource	availability,	which	are	
not explicitly described in this study, may limit a definitive prediction 
of competitive outcomes under spatially heterogeneous resource 
conditions.

5  |  CONCLUSIONS

In this study, we made a first attempt to include empirical centimeter- 
scale data on soil carbon- to- nitrogen resource heterogeneity in a 
plant community model. Our findings show that both configura-
tional and compositional below- ground heterogeneity in resources 
influence diversity patterns, but with a high dependence on the 
overall mean resource availability. These results confirm the view 
that under low- resource conditions, spatial heterogeneity in soil 
resources can be assumed to be a stronger driver of plant species’ 
co- existence, and hence diversity, than light (sensu Tilman, 1982; 
Reynolds et al., 2007). In addition, they provide a mechanistic ex-
planation for the observed interactive effects of configurational 
and compositional resource heterogeneity. This, we hope, will 
stimulate future research on small- scale heterogeneity, potentially 
of more than one resource, to better understand the role of fine- 
scale processes in promoting or counteracting co- existence in plant 
communities.
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SUPPORTING INFORMATION
Additional	 supporting	 information	 can	 be	 found	 online	 in	 the	
Supporting Information section at the end of this article.

Appendix S1. Description of the empirical field study and soil 
property data.
Appendix S2.	Expanded	IBC-	Grass	model	description	following	the	
ODD protocol.
Appendix S3.	 Additional	 figures	 supporting	 some	 chapters	 of	 the	
main text.
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