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Background: Accurate prediction of clinical outcomes in individual patients

following acute stroke is vital for healthcare providers to optimize treatment

strategies and plan further patient care. Here, we use advanced machine learning

(ML) techniques to systematically compare the prediction of functional recovery,

cognitive function, depression, and mortality of first-ever ischemic stroke patients

and to identify the leading prognostic factors.

Methods: We predicted clinical outcomes for 307 patients (151 females, 156

males; 68 ± 14 years) from the PROSpective Cohort with Incident Stroke

Berlin study using 43 baseline features. Outcomes included modified Rankin

Scale (mRS), Barthel Index (BI), Mini-Mental State Examination (MMSE), Modified

Telephone Interview for Cognitive Status (TICS-M), Center for Epidemiologic

Studies Depression Scale (CES-D) and survival. The ML models included a Support

Vector Machine with a linear kernel and a radial basis function kernel as well as a

Gradient BoostingClassifier based on repeated 5-fold nested cross-validation. The

leading prognostic features were identified using Shapley additive explanations.

Results: The ML models achieved significant prediction performance for mRS

at patient discharge and after 1 year, BI and MMSE at patient discharge, TICS-M

after 1 and 3 years and CES-D after 1 year. Additionally, we showed that National

Institutes of Health Stroke Scale (NIHSS) was the top predictor for most functional

recovery outcomes as well as education for cognitive function and depression.
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Conclusion: Our machine learning analysis successfully demonstrated the ability

to predict clinical outcomes after first-ever ischemic stroke and identified the

leading prognostic factors that contribute to this prediction.

KEYWORDS

stroke, machine learning, outcome prediction, post-stroke depression, mortality,

functional outcome, cognitive impairment

1. Introduction

Stroke is the second most common cause of death

and a major cause of disability on a worldwide scale

(1). It occurs when the blood supply to brain tissue

is interrupted by either blockage (ischaemic stroke) or

bleeding caused by rupture of cerebral blood vessels

(haemorrhagic stroke) ultimately resulting in irreversible

neuronal death (2). The incidence of stroke is set to rise

due to the demographic shift affecting populations across

the globe (3). Thus, it is paramount to identify parameters

that can aid in accurate prediction of long-term clinical

outcome post-stroke.

In recent years the move toward electronic health records

and the application of machine learning (ML) techniques in the

medical research field have opened new frontiers of personalized

medicine and decision support. The key advantage is that—

in contrast to traditional statistical analyses—not only can

predictors and biomarkers be identified on a group level, but

ML techniques also enable prediction on an individual patient

level. In other words, the outcome for a single patients can

be predicted by considering a vast array of variables (4).

Numerous studies have successfully demonstrated the ability of

ML models to predict specific clinical outcomes after stroke

with remarkable accuracy and identified leading baseline factors

that carry high prognostic value (5–8). Most studies so far

have focused on the prediction of the modified Rankin Scale

(mRS) (9) as it is the gold standard for determining functional

recovery after stroke. While there are some studies investigating

the ML-based prediction of the Barthel Index (BI) (10) and

Modified Telephone Interview for Cognitive Status (TICS-M)

(11), research regarding the Center for Epidemiologic Studies

Depression Scale (CES-D) (12) andMini-Mental State Examination

(MMSE) (13) is sparse. In addition, the heterogeneity of ML

techniques, clinical outcomes and datasets used in these studies

makes it difficult to assess the broader implications of their

findings (4).

The primary aim of the present study was therefore

to conduct a systematic comparison of ML-based outcome

prediction after first-ever ischemic stroke featuring measures

of functional recovery (mRS, BI), cognitive function (MMSE,

TICS-M), depression (CES-D), and mortality. The analysis was

based on three powerful ML models and an array of baseline

features including demographic, clinical, serological and MRI

variables. As a secondary aim, we set out to identify to the

key prognostic markers for each outcome using state-of-the-art

visualization techniques.

2. Methods

2.1. Dataset and feature selection

The patients included in these analyses were selected from

the PROSpective Cohort with Incident Stroke Berlin (PROSCIS-

B) study. Recruitment for this prospective cohort study was

conducted over a three-year period starting in March 2010 at

the Center for Stroke Research Berlin and Charité University

Hospital with a consecutive three-year follow-up period. The study

population consists of patients aged 18 years and over with acute

first-ever stroke according to the WHO stroke criteria (14). The

complete inclusion and exclusion criteria are described in detail on

https://clinicaltrials.gov (NTC01363856). The study was approved

by the ethics committee of the Charité - Universitätsmedizin

Berlin (EA1/218/09) and was conducted in accordance with the

Declaration of Helsinki. For the purposes of this exploratory

analysis only patients with ischemic stroke and input features with

no more than 15% missing values were included.

MRI data was collected after study completion from clinical

routine data. In order to quantify the characteristics of the imaging

data all acute and chronic stroke lesions were delineated on

Diffusion-weighted imaging (DWI) and Fluid-attenuated inversion

recovery (FLAIR) sequences, respectively, using MRIcron (15)

from the Center for Advanced Brain Imaging (University of

South Carolina, Chris Rordan, USA). The delineation and volume

extraction for acute and chronic stroke lesions were performed

by medical students supervised by two independent expert

neuroradiologists while all further MRI parameters were obtained

by expert neuroradiologists.

Due to significant differences in the number and mean age of

female and male patients, we balanced the dataset by separating all

patients into groups according to sex and age and then randomly

selecting patients within these groups until there were no more

significant differences (up to p≤ 0.1). This was necessary to ensure

the predictions of our models were not based on an inherent

bias in the training data (e.g., women being older on average and

thus having worse outcomes) (16). The patient selection process

is shown in Figure 1 and the characteristics of the dataset are

described in Table 1.

2.2. Input data and outcomes

This study includes a total of 43 stroke-related baseline

variables in four input subdomains. They consisted of 6
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FIGURE 1

Flowchart depicting patient selection process. PROSCIS, PROSpective Cohort with Incident Stroke; MRI, Magnetic resonance imaging.

demographic and 16 clinical variables, 10 serological markers and

11 MRI parameters as listed in Table 1. Procalcitonin serum levels,

which have previously been identified as a prognostic marker for

30-day mortality after stroke (18), had to be excluded since this

variable hadmore than 15%missing values. The outcomes included

measures of functional recovery (mRS and BI), cognitive function

(MMSE and TICS-M), depression (CES-D) and survival. The mRS

and BI were assessed at patient discharge, and 1 year post-stroke.

Cognitive impairment was evaluated using the MMSE at discharge

and later with the TICS-M at 1 and 3 years. CES-D and survival

were also assessed 1 and 3 years after the index event. The follow-

up process included an initial telephone assessment of cognitive

function, followed by a structured interview conducted either by

phone or mail. Table 2 shows the distribution of outcomes in the

dataset, their respective follow-up time points, and the cut-off

points for good vs. poor clinical outcome as defined by clinical

scoring gold standards.

2.3. Machine learning analysis

The aim of this study was to conduct a systematic comparison

of ML-based outcome prediction models after first-ever ischemic

stroke. To accomplish this, a linear model, a non-linear model, and

a tree-based model were selected for comparison (see Figure 2). To

reduce complexity and potential problems brought on by multiple

comparisons, a small set of three ML algorithms were selected.

A Support Vector Machine (SVM) with linear kernel (SVM-lin)

(19) and a SVM with radial basis function kernel (SVM-rbf) (20)

were chosen as linear and non-linear models due to their strong

performance in previous studies and the ability to directly compare

them (6, 16, 21). Similarly, Gradient Boosting (GB) (22) was

chosen as the tree-based classifier due to its superior performance

and when compared to other tree-based models (23, 24). We

compensated for missing data in the training and validation set

with Multiple Imputation using Chained Equations (MICE) (25).

The outcome class imbalances in the training set were counteracted

with the Synthetic Minority Over-sampling Technique (SMOTE)

(26) and random oversampling (27). Categorical input features

were transformed using one-hot encoding. Then, models were

carefully evaluated using ten times repeated 5-fold nested cross-

validation with fixed seed to increase robustness (28). Here the data

is split into five training (80%) and test sets (20%). Each of these

training sets is then subdivided into further five training (80%)

and validation sets (20%). The hyperparameters of the ML models

(listed in Supplementary Table S1) have been optimized on these

training and validation sets via grid search before finally being

evaluated on the unseen data of the test sets.

Performance of each model was evaluated using balanced

accuracy (BA), area under the receiver operating characteristic

curve, sensitivity, specificity, likelihood ratio (LR) and Integrated

Discrimination Improvement index (IDI). BA is the arithmetic

mean of sensitivity and specificity while the receiver operating

characteristics curve (ROC) plots the true positive rate in relation

to the false positive rate of theMLmodels. The area under the curve

(AUC) of the ROC is routinely used as a measure of performance

in ML. For each outcome, we reported the mean BA and AUC

along with their standard deviation (SD) for ten iterations of

5-fold nested cross-validation. The LR compares the fit of two

models by taking the ratio of their likelihoods (29) while the IDI

ranks the model according to the change of the discrimination

slopes (30). To test for statistical significance, we performed non-

parametric permutation testing (31). Here, the exact same ML

analysis and nested cross-validation procedure was performed a

hundred times on randomly permuted ground truth labels before

being compared to the original results. Results were considered

statistically significant below p≤ 0.05 and p≤ 0.01 after Bonferroni

correction for multiple comparisons (3ML algorithms × 5 feature

subsets). We used the Python 3.6 programming language with the

scikit-learn, pandas, statsmodel, matplotlib and seaborn packages

for all analyses and visualizations.

2.4. Feature importance and Shapley values

In order to discern feature importance we implemented

Shapley values using the SHAP (SHapley Additive exPlanations)

framework (32). This statistic is a solution concept originating from

cooperative game theory which calculates the relative importance

of an input feature for the final prediction result and has

already demonstrated convincing results in biomedical and clinical

research applications (33, 34). Shapley values are calculated by

determining the average marginal contribution of each feature

over all possible combinations of input features. This is done

by analyzing the effect of each feature on the prediction when

it is included or excluded, while also taking into account the
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TABLE 1 Baseline characteristics of patient population.

Parameter Total n = 307 Female Male P-value

Demographic

Sex, n (%) 307 151 (49.2) 156 (50.8)

Age in years, Mean± SD 68± 14 69± 15 67± 13 0.1

Education in years, Mean± SD 14.1± 4.6 12.9± 4.3 15.3± 4.6 0.0

BMI, Mean± SD 27.3± 4.8 27.5± 5.4 27.1± 4.0 0.16

Waist circumference [mm], Mean± SD 997.4± 131.6 964.6± 142.1 1,028.1± 113.0 0.0

Hip circumference [mm], Mean± SD 1,035.8± 112.5 1,034.7± 128.5 1,036.8± 95.8 0.58

Clinical

Blood pressure, Mean± SD Systolic 140.1± 22.3 139.8± 22.8 140.3± 21.7 0.57

Diastolic 76.1± 13.7 74.7± 13.0 77.4± 14.3 0.03

Alcohol consumption, n (%) 108 (35.2) 38 (25.2) 70 (44.9) 0.0

Smoking, n (%) Active 102 (33.2) 39 (25.8) 63 (40.4) 0.1

Never 130 (42.3) 71 (47.0) 59 (37.8)

Former 70 (22.8) 39 (25.8) 31 (19.9)

Dependent before stroke, n (%) 39 (12.7) 22 (14.6) 17 (10.9) 0.39

Physically active, n (%) 101 (32.9) 44 (29.1) 57 (36.5) 0.09

Thrombolysis, n (%) 60 (19.5) 33 (21.9) 27 (17.3) 0.48

Revascularization, n (%) 5 (1.6) 0 (0.0) 5 (3.2) 0.04

NIHSS, Median [IQR] 2 [1–4] 2 [1–4] 2 [1–4] 0.41

Pre-existing conditions

Diabetes Mellitus, n (%) 71 (23.1) 35 (23.2) 36 (23.1) 0.61

Hypercholesterinemia, n (%) 66 (21.5) 32 (21.2) 34 (21.8) 0.95

Hypertension, n (%) 198 (64.5) 98 (64.9) 100 (64.1) 0.98

Atrial fibrillations, n (%) 64 (20.8) 31 (20.5) 33 (21.2) 1.00

Angina pectoris, n (%) 37 (12.1) 14 (9.3) 23 (14.7) 0.18

Myocardial infarction, n (%) 10 (3.3) 2 (1.3) 8 (5.1) 0.33

Peripheral artery disease, n (%) 15 (4.9) 7 (4.6) 8 (5.1) 0.95

Serological markers

Glucose [mmol/L], Mean± SD 7.3± 3.2 7.6± 3.9 7.1± 2.5 0.41

HbA1c [mmol/mol], Mean± SD 10.9± 15.5 12.2± 18.9 9.5± 10.7 0.21

Cholesterol [mmol/L], Mean± SD 11.1± 2.7 11.3± 2.7 10.9± 2.7 0.10

HDL [mmol/L], Mean± SD 2.9± 0.9 3.2± 0.9 2.6± 0.8 0.00

LDL [mmol/L], Mean± SD 6.8± 2.2 6.8± 2.3 6.7± 2.1 0.46

Triglycerides [mmol/L], Mean± SD 7.6± 4.8 7.0± 4.5 8.1± 5.1 0.00

Creatinine [µmol/L], Mean± SD 82.4± 25.0 75.9± 23.1 88.6± 25.3 0.00

eGFR [ml/min], Mean± SD 76.8± 20.6 73.5± 21.2 79.9± 19.6 0.02

hsCRP [mg/L], Mean± SD 1.2± 1.9 1.3± 2.1 1.0± 1.7 0.15

White blood cells [cells/mm3], Mean± SD 8.0± 2.8 8.2± 2.8 7.8± 2.8 0.47

MRI

Acute infarct DWI [ml], Mean± SD 6.1± 14.5 5.6± 11.4 6.6± 17.1 0.17

Acute infarct FLAIR [ml], Mean± SD 5.0± 12.9 4.6± 10.4 5.4± 15.0 0.11

(Continued)
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TABLE 1 (Continued)

Parameter Total n = 307 Female Male P-value

Infarct location, n (%) Supratentorial 225 (73.3) 116 (76.8) 109 (69.9) 0.18

Infratentorial 52 (16.9) 21 (13.9) 31 (19.9)

Both 30 (9.8) 14 (9.3) 16 (10.3)

Infarct side, n (%) Left 138 (45.0) 67 (44.4) 71 (45.5) 0.26

Right 132 (43.0) 69 (45.7) 63 (40.4)

Both 37 (12.1) 15 (9.9) 22 (14.1)

Unilateral infarct, n (%) 270 (87.9) 136 (90.1) 134 (85.9) 0.46

Chronic infarct, n (%) 79 (25.7) 37 (24.5) 42 (26.9) 0.90

Chronic infarct [ml], Mean± SD 1.5± 2.5 1.3± 2.4 1.6± 2.6 0.34

Wahlund Score, (17) Median [IQR] 6 [3–10] 6 [3.5–11] 5 [2–8] 0.02

Infarct origin, n (%) MCA 143 (46.6) 75 (49.7) 68 (43.6) 0.58

ACA 1 (0.3) 1 (0.7) 0 (0.0)

PCA 17 (5.5) 10 (6.6) 7 (4.5)

AchA 18 (5.9) 8 (5.3) 10 (6.4)

Infratentorial 52 (16.9) 21 (13.9) 31 (19.9)

Thalamus 19 (6.2) 8 (5.3) 11 (7.1)

Multiple 57 (18.6) 28 (18.5) 29 (18.6)

Infarct pattern, n (%) Territorial 96 (31.3) 52 (34.4) 44 (28.2) 0.61

Subcortical 74 (24.1) 37 (24.5) 37 (23.7)

Scattered 72 (23.5) 35 (23.2) 37 (23.7)

Lacunar 1 (0.3) 0 (0.0) 1 (0.6)

Infratentorial 52 (16.9) 21 (13.9) 31 (19.9)

TOAST, n (%) Large-artery 88 (28.7) 46 (30.5) 42 (26.9) 0.4

Cardioembolism 89 (29.0) 50 (33.1) 39 (25.0)

Small-vessel 14 (4.6) 8 (5.3) 6 (3.8)

Other 40 (13.0) 17 (11.3) 23 (14.7)

Undefined 76 (24.8) 30 (19.9) 46 (29.5)

BMI, body mass index; NIHSS, National Institute of Health Stroke Scale; TOAST, Trial of ORG 10172 in Acute Stroke Treatment; MCA, Middle cerebral artery; ACA, Anterior cerebral artery;

PCA, Posterior cerebral artery; AchA, Anterior choroidal artery.

Data are given as mean ± standard deviation (SD) for continuous variables, median with limits of the interquartile range [25th-75th percentile] for ordinal variables and absolute (n) as well as

relative (%) frequency for categorical variables. To determine significant differences between female and male patients we performed a t-test for continuous variables and a chi-squared test for

categorical variables and reported the resulting p-values.

dependencies between features. For the purposes of this study, we

implemented the Kernel SHAPexplainer which acts as a specially-

weighted local linear regression (32).

3. Results

Out of the 621 PROSCIS-B patients 125 had no MRI associated

with their study ID and in 5 further cases we were unable to locate

theMRI data. This resulted in 491 patients with imaging data out of

which 255 had received a 3T scan at the Center of Stroke Research

Berlin (CSB) and 236 had been processed on scanners at Charité

- Universitätsmedizin Berlin ranging from 1 to 1.5T, all of which

were Siemens MRI units. In 56 cases the imaging data could not

be delineated due to missing sequences or motion artifacts and in

8 cases participants had retracted their consent for the study which

resulted in a total of 427 fully delineated cases. The final balanced

dataset consisted of 307 patients. There was a loss to follow-up of

74 patients (24.1%) in mRS, 105 patients (34.2%) in BI, 51 patients

(26.2%) in TICS-M, and 49 patients (23.2%) in CES-D from the

initial sample size. No loss was observed for mortality.

We evaluated and ranked the performance of the ML models

using the metrics of BA and AUC. The results of these analyses

can be found in Supplementary Tables S2–S6. In Figure 3, we show

the performance in BA for all outcomes (mRS, BI, MMSE, TICS-

M, CES-D, and survival), time points, and ML models (SVM-lin,

SVM-rbf and GB). Additionally, we calculated the Integrated IDI

and LR to provide further insight into the models’ performance.
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TABLE 2 Cut-o�s and distribution of outcomes, listed as frequency for patient numbers in total, males, and females.

Distribution of outcomes in patient population

Outcome Time points Good outcome, n
(total/female/male)

Poor outcome, n
(total/female/male)

mRS PD 221/110/111 86/41/45

Year 1 193/89/104 40/27/13

BI PD 263/125/138 44/26/18

Year 1 195/90/10 7/6/1

MMSE PD 271/126/145 29/21/8

TICS-M Year 1 147/69/78 48/32/16

Year 3 125/60/65 19/8/11

CES-D Year 1 163/79/93 48/35/13

Year 3 132/53/79 30/19/11

Mortality Year 1 271/132/139 36/19/17

Year 3 142/78/64 165/73/92

Cut-o� points for good vs. poor outcome

Outcome Total points Good outcome Poor outcome

mRS 0–6 0–2 3–6

BI 0–100 61–100 0–60

MMSE 0–30 24–30 0–23

TICS-M 0–50 30–50 0–29

CES-D 0–60 0–15 16–60

mRS, modified Rankin Scale; BI, Barthel Index; MMSE,Mini-Mental State Examination; TICS-M,Modified Telephone Interview for Cognitive Status; CES-D, Epidemiologic Studies Depression

Scale; PD, patient discharge.

FIGURE 2

Process flow of input data, machine learning analysis and outcome prediction. mRS, modified Rankin Scale; BI, Barthel Index; MMSE, Mini-Mental

State Examination; TICS-M, Modified Telephone Interview for Cognitive Status; CES-D, Epidemiologic Studies Depression Scale; SVM-lin, Support

Vector Machine with linear kernel; SVM-rbf, Support Vector Machine with radial basis function kernel; GB, Gradient Bossting Classifier; MRI, Magnetic

resonance imaging.
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FIGURE 3

Prediction performance in balanced accuracy (BA) for all outcomes, time points and input subdomains. In (A) all input parameters were considered

while (B–E) show the results of the (B) demographic, (C) clinical, (D) serological and (E) MRI input subdomain. Results for BI after 1 year were

unreliable due to the extreme class imbalance in the dataset (see Table 2). mRS, modified Rankin Scale; BI, Barthel Index; MMSE, Mini-Mental State

Examination; TICS-M, Modified Telephone Interview for Cognitive Status; CES-D, Epidemiologic Studies Depression Scale; SVM-lin, Support Vector

Machine with linear kernel; SVM-rbf, Support Vector Machine with radial basis function kernel; GB, Gradient Bossting Classifier; MRI, Magnetic

resonance imaging.
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TABLE 3 Best prediction results and most important predictors for all outcomes as determined via Shapley values.

Outcome Time Model Input Mean absolute
SHAP value

Variables

mRS PD GB All 0.68 [0.64, 0.72] NIHSS

0.44 [0.41, 0.47] hsCRP

0.21 [0.19, 0.24] Glucose

0.18 [0.15, 0.21] Cholesterol

0.18 [0.15, 0.20] Supra-/Infratentorial

Year 1 SVM-rbf Demographic 0.52 [0.47, 0.57] Waist circumference [cm]

0.50 [0.46, 0.54] Sex

0.47 [0.43, 0.51] Age

0.37 [0.33, 0.41] Education [years]

0.19 [0.15, 0.22] BMI

BI PD SVM-lin All 1.11 [1.05, 1.18] NIHSS

0.61 [0.57, 0.65] Smoking

0.46 [0.42, 0.49] TOAST classification

0.41 [0.36, 0.45] Infarct pattern

0.37 [0.34, 0.41] Infarct origin

TICS-M Year 1 SVM-lin Demographic 0.68 [0.62, 0.73] Education

0.51 [0.46, 0.56] Age

0.40 [0.34, 0.46] BMI

0.20 [0.17, 0.23] Sex

0.19 [0.16, 0.21] Hip circumference [cm]

Year 3 SVM-rbf Demographic 1.32 [1.16, 1.49] Education [years]

0.54 [0.48, 0.60] Age

0.42 [0.36, 0.47] Sex

0.38 [0.31, 0.44] Waist circumference [cm]

0.36 [0.31, 0.42] Hip circumference [cm]

MMSE PD SVM-rbf Demographic 0.48 [0.43, 0.53] Education [years]

0.36 [0.33, 0.38] Sex

0.35 [0.30, 0.41] Age

0.14 [0.11, 0.17] Waist circumference [cm]

0.13 [0.10, 0.15] BMI

CES-D Year 1 GB Demographic 0.52 [0.49, 0.55] Education [years]

0.42 [0.38, 0.46] Sex

0.36 [0.31, 0.41] BMI

0.29 [0.25, 0.32] Hip circumference [cm]

0.21 [0.17, 0.26] Waist circumference [cm]

mRS, modified Rankin Scale; BI, Barthel Index; MMSE,Mini-Mental State Examination; TICS-M,Modified Telephone Interview for Cognitive Status; CES-D, Epidemiologic Studies Depression

Scale; PD, patient discharge; SVM-lin, Support Vector Machine with linear kernel; SVM-rbf, Support Vector Machine with radial basis function kernel; GB, Gradient Boosting Classifier; BMI,

body mass index; NIHSS, National Institute of Health Stroke Scale; TOAST, Trial of ORG 10172 in Acute Stroke Treatment.

The mean absolute SHAP value is reported with 95% confidence interval.
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The detailed results are reported in Supplementary Tables S7–S11.

While the LR revealed no significant differences between the ML

models it is important to note that the results obtained from

the BA, AUC and the LR should be viewed independently, as

they are based on different methods of evaluating the models’

performance. Although in many cases the performance of the three

ML models was at a comparable level the strongest predictive

performance overall was achieved by SVM-rbf for TICS-M after

3 years (BA ± SD = 0.7 ± 0.13; AUC ± SD = 0.76 ± 0.13; p ≤

0.05) using the demographic input subdomain. Table 3 states the

most important predictors according to the Shapley values. The

following paragraphs will list significant results (p ≤ 0.05 or p ≤

0.01 Bonferroni corrected) according to the permutation test for

each outcome per input subdomain.

3.1. Modified Rankin Scale

The highest prediction score for mRS at patient discharge was

achieved by GB (BA ± SD = 0.69 ± 0.07; AUC ± SD = 0.77

± 0.06; p ≤ 0.01) followed by SVM-lin (BA ± SD = 0.67 ±

0.07; AUC ± SD = 0.74 ± 0.07; p ≤ 0.01) and SVM-rfb (BA

± SD = 0.65 ± 0.06; AUC ± SD = 0.77 ± 0.06; p ≤ 0.01)

using all input parameters. In the serological input subdomain

GB (BA ± SD = 0.63 ± 0.07; AUC ± SD = 0.68 ± 0.08; p ≤

0.01) and SVM-rbf (BA ± SD = 0.57 ± 0.06; AUC ± SD = 0.63

± 0.07; p ≤ 0.05) attained significant prediction results. The top

five predictors using all input parameters were National Institutes

of Health Stroke Scale (NIHSS), hsCRP, glucose, cholesterol and

supra-/infratentorial infarct location.

The mRS after 1 year could best be predicted using the

demographic input subdomain by SVM-rbf (BA ± SD = 0.68 ±

0.09; AUC± SD= 0.73± 0.01; p≤ 0.01) followed by SVM-lin (BA

± SD = 0.67 ± 0.08; AUC ± SD = 0.73 ± 0.01; p ≤ 0.01) and GB

(BA ± SD = 0.61 ± 0.08; AUC ± SD = 0.66 ± 0.09; p ≤ 0.05).

In the serological input subdomain, SVM-rbf (BA ± SD = 0.63 ±

0.1; AUC ± SD = 0.64 ± 0.12; p ≤ 0.01) led in prediction results.

Waist circumference, sex, age, education, and BMI were the leading

predictors in the demographic input subdomain.

3.2. Barthel Index

For BI at patient discharge, SVM-lin (BA ± SD = 0.65 ±

0.08; AUC ± SD = 0.73 ± 0.11; p ≤ 0.05) and GB (BA ±

SD = 0.63 ± 0.08; AUC ± SD = 0.74 ± 0.07; p ≤ 0.05)

achieved significant prediction results using all input parameters.

The strongest predictors were NIHSS, smoking, the Trial of ORG

10172 in Acute Stroke Treatment (TOAST) classification, infarct

pattern and infarct origin. However, BI after 1 year could not be

predicted by any model.

3.3. Mini-Mental State Examination

The leading ML models for predicting MMSE at patient

discharge were SVM-rbf (BA ± SD = 0.67 ± 0.09; AUC ± SD =

0.71± 0.11; p≤ 0.01) and SVM-lin (BA± SD= 0.65± 0.1; AUC±

SD= 0.7± 0.1; p≤ 0.05) using the demographic input subdomain

with education, sex, age, waist circumference and BMI being the

most important predictors.

3.4. Modified Telephone Interview for
Cognitive Status

The best predictions for TICS-M after 1 year were by SVM-lin

(BA ± SD = 0.67 ± 0.09; AUC ± SD = 0.73 ± 0.09; p ≤ 0.01),

SVM-rbf (BA ± SD = 0.65 ± 0.09; AUC ± SD = 0.72 ± 0.09; p

≤ 0.01) and GB (BA ± SD = 0.63 ± 0.08; AUC ± SD = 0.69 ±

0.11; p ≤ 0.01) using the demographic input subdomain. Further

significant prediction results were achieved by GB (BA ± SD =

0.6 ± 0.08; AUC ± SD = 0.66 ± 0.1; p ≤ 0.01) using the clinical

input subdomain. The top five predictors in the demographic input

subdomain were education, age, BMI, sex, and hip circumference.

TICS-M after 3 years was most successfully predicted by SVM-

rbf (BA ± SD = 0.7 ± 0.13; AUC ± SD = 0.76 ± 0.13; p ≤

0.05), SVM-lin (BA ± SD = 0.69 ± 0.14; AUC ± SD = 0.77 ±

0.13; p ≤ 0.05) and GB (BA ± SD = 0.68 ± 0.12; AUC ± SD =

0.74 ± 0.13; p ≤ 0.01) using the demographic input subdomain.

Education, age, sex, waist circumference, and hip circumference

were the leading variables.

3.5. Center for epidemiologic studies
depression scale

For the prediction of CES-D after 1 year the use of the

demographic input subdomain led to a significant prediction

performance by GB (BA ± SD = 0.63 ± 0.09; AUC ± SD = 0.7 ±

0.1; p≤ 0.05), SVM-lin (BA± SD= 0.63± 0.08; AUC± SD= 0.68

± 0.1; p≤ 0.05) and SVM-rbf (BA± SD= 0.62± 0.07; AUC± SD

= 0.7 ± 0.09; p ≤ 0.01). The strongest predictors were education,

sex, BMI as well as hip and waist circumference. No ML model

achieved significant prediction results for CES-D after 3 years.

3.6. Survival

Survival within 1 or 3 years could not be predicted reliably by

any model.

4. Discussion

To the best of our knowledge, this is the first study to apply

highly comparable standardized ML models to predict a wide

range of long-term patient outcomes including functional recovery,

cognitive impairment, depression, and mortality from a single,

homogenous patient collective. While functional recovery scores

like mRS and BI are often used as primary outcome endpoints in

most major stroke cohorts, cognitive impairment and depression

play a vital role in terms of long-term patient outcome. Up to 80%

of patients are affected by cognitive impairment post-stroke and up
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FIGURE 4

Decision-making process by the Gradient Boosting Classifier for the modified Rankin Scale (mRS) at patient discharge on the level of individual

patients depicted via Shapley values. The relative importance of an input variable can be quantified by its Shapley value and represented by the length

of a bar. In this example, features in red counted toward a good outcome while blue features signified poor outcome for mRS at patient discharge. In

(A) a patient with a mRS score of 1 point was correctly classified as having a good outcome with variables such as low National Institutes of Health

Stroke Scale (NIHSS), high-sensitivity C-reactive protein (hsCRP), cholesterol and acute infarct volume in Di�usion-weighted imaging (DWI)

outweighing a high Wahlund Score. In (B) a patient with a mRS score of 4 points was correctly predicted as having poor outcome due to high NIHSS,

hsCRP and cholesterol whilst o�setting a low acute infarct volume in DWI. In both instances the decision was made by considering the total impact

of all features.

to 30% will develop a clinically relevant depression within 2 years

after the index event (35, 36). These factors not only negatively

affect functional recovery by decreasing a patient’s capability for

actively participating in rehabilitation measures but also disrupt

their social integration. Although numerous previous studies have

used similar ML models to predict functional recovery after stroke

(5), here we demonstrate the accuracy of ML models to predict

post-stroke cognitive status and depression up to 3 years post-

stroke, as well as functional recovery.

Our results are in line with previous studies in identifying

NIHSS as the leading predictor for mRS at patient discharge

amongst all input variables (37, 38). Increased levels of hsCRP

were correlated with poor clinical outcome which supports findings

reported by den Hertog et al. (39) in acute stroke. Interestingly,

waist circumference was the leading predictor for mRS after 1

year. Being underweight (BMI < 18.5 kg/m2) has previously been

associated with unfavorable outcomes in terms of mortality and

functional recovery in previous studies (40). Figure 4 illustrates the

decision-making process of GB for mRS at patient discharge on a

single-subject level.

In a study by Monteiro et al. (6) various ML models were

applied to predict mRS after 3 months from 425 patients using 152

input variables. The best performance using baseline variables was

achieved using a Random Forest (RF) classifier with an AUC of

0.808 ± 0.085. In a separate study by Heo et al. (7) a DNN was

used on 3,522 patients and achieved a classification accuracy of

AUC = 0.888 with no reported SD. However, the authors did not

mention whether cross-validation or repetition were used, which

are important for developing a robustMLmodel and avoiding over-

fitting. In a study by Li et al. (21) predicting mRS after 6 months a

SVM (AUC = 0.865; 95% CI 0.823–0.907) performed comparably

well with six other models, including a RF classifier (AUC= 0.874;

95%CI 0.835–0.912) and a DNN (AUC 0.867; 95%CI 0.827–0.908).

In contrast, in our study, for mRS at patient discharge the SVM-lin

(AUC ± SD = 0.74 ± 0.07) was outperformed by GB (AUC ± SD

= 0.77 ± 0.06). However, comparing the results of these studies

is challenging due to variations in follow-up time points, input

variables, methodology, and performance measures. Nevertheless,

it appears that SVMs tend to perform similarly to, or worse than,

tree-based classifiers or DNNs for predicting mRS outcomes.

Considerable overlap exists between mRS and BI in the

development of functional recovery post stroke (41). This is

reflected in NIHSS being the leading predictor for BI at patient

discharge. Our results also confirm the relative importance of

stroke origin for this outcome (42). The BI after one year could not

be predicted—thismay be due to the extreme class imbalance of this

outcome (see Table 2). In contrast, in a study by den Hertog et al.

(39) a ML model for identifying prognostic factors for motor and

cognitive improvement after post-stroke rehabilitative training was

developed based on a SVM-lin. The model included 55 patients and

the results of the ischemic test set reported performance scores of

correlation= 0.75,MADP= 87,03% and RMSE= 21,74 for BI. The

most important parameters for the prediction were identified as

the Functional Independence Measure and BI at patient discharge

as well as serological markers such as Platelet-to-lymphocyte ratio,

Red Cell Distribution Width and Lymphocytes.

Amongst the leading predictors for cognitive function post-

stroke were demographic factors such as education, age and BMI

which confirms previously published results (43, 44). While our

findings are in line with the results by Casanova et al. (45) and

Aschwanden et al. (46) their studies additionally identified the

importance of socioeconomic status and ethnicity in terms of

cognitive function post-stroke. Unfortunately, in the current study,

these variables could not be accounted for.
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Education being the top predictor for levels of depression after

1 year is in accordance with several studies linking low education

level to an increased risk of post-stroke depression (47). Previous

studies have found a significant association between higher waist

circumference with an elevated rate of depression (48). In the

current analysis, female sex was also identified as an important

predictor of depression (49). A study by Hama et al. (50) achieved

an impressive AUC above 0.90 for the prediction of post-stroke

depression using a probabilistic artificial neural network on 274

stroke inpatients at the Hibino Hospital. The predicted clinical

score was the Hospital Anxiety and Depression Scale and its lead

predictors were the Japanese Perceived Stress Scale, the Symbol

Digit Modalities Test, tapping span backward, visual cancellation

Kana time and the Continuous Performance Test. This jump in

prediction accuracy may be explained in part by the inclusion of

these very specific test scores.

4.1. Methodological considerations

While many previous ML-based studies achieved noteworthy

results, there are some potentially problematic methodological

factors to consider: ideally, a ML model is trained and tested on

numerous different samples in order to create a robust predictor for

new, unseen data (51). In face of limited clinical data, it is crucial to

include a re-sampling procedure to ensure effective training (52).

Additionally, few studies performed more than one iteration of

their analyses which negatively impacts robustness (28). In our

study, we accounted for these factors by using a repeated 5-fold

nested cross-validation. Furthermore, many studies use datasets

andMLmethods specific to the purpose of predicting an individual

outcome. This impedes comparability as it remains unclear whether

differences in performance are based on variations in input data or

technical aspects of the ML analysis (5). Neglecting to balance these

datasets regarding age and sex may also lead to biased results (53).

We therefore balanced the dataset according to age and sex and

predicted a range of clinical outcomes from the same dataset using

three classical ML models while ensuring independence between

training and test data. In addition, and in contrast to previous

ML studies, we estimated the relative importance of features using

Shapley values allowing to assess the impact of different input

features for clinical outcome prediction in individual patients

(see Figure 4).

4.2. Clinical implications

In the coming years, the advancement of big data analytics

based on collaboration networks and electronic health records is set

to drive a paradigm shift in clinical research (54). Novel automated

and computer-based methods will play a key role in making use

of increasing datasets and processing power. Therefore, we take

a crucial step forward in the application of ML-based research

methods to one of the most common and severe diseases around

the globe and show that established as well as less traditional risk

predictors can be identified and reproduced with ML techniques

even in a limited sample size.

There is currently no established prediction score for

depression outcomes following ischemic stroke. However, there

are already a variety of scores available in the scientific literature

for predicting functional outcomes (such as the Wang et al.

(55) and ASTRAL (56) scores), cognitive outcomes (such as

the CHANGE (57) and SIGNAL2 (58) scores), and mortality

outcomes (such as the iScore (59) and PLAN (60) scores). In future

studies, the aim should be to develop a universal model that can

predict multiple outcomes-including functional recovery, cognitive

impairment, depression, and mortality outcomes-using a basic set

of variables such as NIHSS, education, sex, age, or BMI. This model

would ideally be an easy-to-use tool for clinicians in real-world

medical practice and act as an AI-based clinical decision support

system (CDSS). The implementation of CDSS has been shown

to be a cost-effective and efficient method for enhancing clinical

workflow and decision-making (61). CDSSs have the potential to

enhance patient safety by mitigating the occurrence of oversights

and treatment errors. In the case of stroke, functional recovery

is heavily dependent on rehabilitation measures which in turn

requires adequate cognitive function and management of post-

stroke depression (62, 63). The ability of CDSSs to alert providers

to potential challenges in the management process can provide

valuable guidance for more personalized rehabilitation programs

and patient-tailored secondary prevention strategies, ultimately

improving post-stroke outcomes.

4.3. Limitations

This study has several limitations that warrant discussion. First

and foremost, this study had a limited sample size, the outcome

classes were imbalanced, and an external control dataset was

lacking. The application of 5-fold nested cross-validation, SMOTE

and random oversampling partially counteract these limitations.

To avoid shortcut learning and develop a model representative

of the general population, we balanced our dataset by age and

sex. Shortcut learning occurs when the model relies heavily on

easily observable features like age rather than underlying causes,

leading to potential biases and inaccuracies when applied to

individuals outside the trained age range. However, this approach

does not account for the natural incidence variation within

the population, which may impact the ML model’s predictions.

Additionally, most of the patients included in this study had

relatively mild to moderate strokes (NIHSS median of 2 (1–4));

this may have negatively affected prediction performance and limits

generalizability to more severely affected stroke cohorts. There was

also no data available on whether patients entered a rehabilitation

program post-stroke, or which secondary prevention strategies

were initiated. Therefore, these factors could not be accounted for

in terms of post-stroke outcome endpoints in this analysis.

5. Conclusion

Based on a systematic comparison, the results of this study

demonstrated the viability of ML-based outcome prediction

after first-ever ischemic stroke for functional recovery, cognitive

function, depression, and mortality. Compared to group-based
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statistical analyses, the advantage of ML-techniques is their ability

to make predictions on a single-subject level by considering a

multitude of variables which is key for future application in

clinical routine. Furthermore, we extracted the most important

prognostic variables for each outcome. On the one hand,

the results confirmed several already established prognostic

markers and on the other identified novel candidates such

as education, hsCRP and waist circumference as relevant

predictors of important clinical endpoints. However, further studies

are needed to confirm these findings and to establish their

clinical viability.
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