2. Nonlinear Wave Propagation

Strong laser pulses can induce a nonlinear polarization in matter. One example is a po-
larization that oscillates much slower than the incident light. This phenomenon can be
employed in the generation of THz pulses. Similarly, a strong laser pulse temporally mo-
difies the optical properties of a medium which are detected by a subsequent weak probe
pulse. This effect can be used to scan the THz pulses or to study the dynamics of the
optically excited medium in real time.

In this chapter, 2 classes of nonlinear polarization are discussed which are relevant for this
work. By using a perturbational approach, we pay particular attention to the propaga-
tion of light when such nonlinear effects are present. These considerations are especially
important to extract the dielectric function from the data of pump-probe experiments.

2.1. Wave Equation

Maxwell’s equations yield a wave equation for the propagation of the total macroscopic
electric field E(x,t) in matter [Mil98],

1 0? 4 O?

where ¢ is the vacuum speed of light, & and ¢ points in space and time, respectively.
The electric polarization P induced by E acts as a source term on the right-hand side of
this equation and makes light propagation in matter different from that in vacuum where
P =0.

In the following, we first restrict ourselves to a polarization linear in E which describes
the domain of linear optics. Later, nonlinear contributions to P are taken into account
and considered as small perturbations to calculate how they modify the propagation of the
electric field.

2.2. Linear Optics

When we assume a medium in a steady state and consider only linear effects of E on P, the
induced polarization is given by Eq. (1.10). Switching from the time domain to frequency
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2. Nonlinear Wave Propagation

space via a Fourier transformation results in the wave equation of linear optics
W2
(VXVX.—I——2€>E=O, (2.1)
c

which is a linear and homogeneous differential equation.

If the medium is locally homogeneous and isotropic around «, plane harmonic waves
E(x,t) = Aexp(ikx — iwt)

with frequency w/27, complex wavevector k, and complex amplitude A are the eigenmodes
of the electric field. Wavevector, frequency, and refractive index n = /¢ are connected by
the so-called dispersion relation

Ak? = win®.

The wavelength is given by A = 27/|Re k|, whereas 1/|Im k| is the attenuation length.

2.3. Nonlinear Polarization: 2 Examples

We now take the nonlinear part of the induced polarization into account, that is all devia-
tions

Py =P —pW

of P from the linear part P, It appears as a source term on the right-hand side of the

wave equation
2

2
(V XV x. + “’—25> E=dr~_ Py (2.2)
c c
and thus perturbs the linear wave propagation.

Py, can, for instance, describe sum- and difference-frequency generation or the effect of the
pump pulse on the propagation of the probe pulse in a pump-probe experiment. Before
solving the wave equation, these examples of a nonlinear polarization are considered in
more detail.

2.3.1. Sum- and Difference-Frequency Mixing: THz Generation and
Detection

We consider only nonlinear effects to lowest order that is effects quadratic in E. For a
medium in a steady state one obtains [Gra78, Boy92]

PP (w)=>" / dw / dws X2 (w, wr,ws) E;(w1) Ex(w2)
ik 00 —00
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Figure 2.1.: Principle of THz generation.
Each frequency pair (w1, ws) within the spec-
trum of a visible laser pulse generate a po- : Yy

larization at the difference frequency 2 = Q=0-o, o, O
Wy — wa. frequency ®

with the abbreviation
x® (w, wi,w2) = X(Q)(wl,wz) O(w —wi — wa).

Here, y® (w1, ws) is the third-rank susceptibility tensor which vanishes in media with inver-
sion symmetry. The d-function shows that only the sum or difference of 2 light frequencies
wy and ws can be generated by this 2nd-order process.

It is convenient to restrict oneself to positive frequencies w,wi,ws > 0. By exploiting
general symmetry properties of x(?), the 2nd-order polarization can be written as [Boy92]

PZ-(Q)(w) = 22 // dw; dwsy (2.3)
Jk w1>w2>0

[ng)g(wa wi, wa) Ej(w1) B (wa) + XE?Z(W, wy, —w2) B (w1)EZ(wQ)]

. /

Vo o
sum-frequency components difference-frequency components

The 1st term in the integrand contributes for w = w; +ws and thus describes sum-frequency
generation (SFG), whereas the 2nd term becomes operative for w = w; — wy and describes
difference-frequency generation (DFG).

THz Generation

As visualized by Fig.2.1, DFG can be employed to generate THz radiation of frequency
{2 = w; — wq from spectrally broad visible light of high intensity. For example, one of
the lasers used in this work delivers pulses with a 100-nm bandwidth centered at 780 nm.
Applying DFG to these pulses should result in THz pulses covering the spectrum from 0
to about 50 THz. In reality, however, propagation effects restrict the DFG process to those
frequencies which fulfill the so-called “phase matching” condition. This point is discussed
in Section 2.6.1.

It must be emphasized that the polarization induced by DFG does not depend on the
absolute phase of all spectral components E;(w) since only the phase differences enter in
Eq. (2.3).

27



2. Nonlinear Wave Propagation
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) Figure 2.2.: Electrooptic detection of a THz wa-
Samp“ng veform. The visible sampling pulse and the THz
pUlSG pulse propagate collinearly through the x(®) crys-
tal. Due to the linear electrooptic effect, the visible
pulse sees a birefringent medium where the bire-
fringence is proportional to the THz electric field
at the position of the sampling pulse. The resul-
ting ellipticity of the sampling pulse is largest if
both pulses propagate with the same velocity but
THz field vanishes if the sampling pul.se sSweeps over a com-
plete THz cycle. To avoid this effect, ZnTe crystals
of only 10 pm thickness are used [Lei99a).

ZnTe Xtal

THz Detection: Electrooptic Effect

DFG and SFG can be also employed to detect the THz radiation: When a visible laser pulse
with field Evis and a THz wave Ery, travel collinearly through a crystal with XS,)g # 0,
the THz wave effectively changes the refractive index for the visible pulse via the 2nd-order
polarization (2.3). Due to this so-called electrooptic or Pockels effect the visible laser pulse
“feels” the THz field which can be detected by this interaction.

More formally, the electrooptic effect can be reasoned as follows: The total field propagating
through the crystal is E = Ery, + Evis and induces the nonlinear polarization (2.3). By
retaining only cross terms, it has the formal structure Pi@) x > ik XE?;ETszEVISk which
just corresponds to an electric polarization linear in Evyis. In other words, the contribution
> y XE?;ETsz represents a change in the linear optical properties of the medium due to the
presence of the THz electric field.

The change in the linear susceptibility makes the crystal temporarily birefringent. In
practice and as detailed in Fig. 2.2, this birefringence is measured by detecting the ellipticity
the visible sampling pulse has accumulated due to its collinear propagation together with
the THz pulse. As in many nonlinear processes, propagation effects limit the efficiency of
the detection process.

2.3.2. Pump-Probe Experiments

The pump-probe technique is a method of choice to observe the dynamics of an optically
excited sample with the best temporal resolution available. In such an experiment, a
short pump pulse with a duration of typically 10 to 100fs excites the sample, and the
ensuing various relaxation processes can be studied by a temporally delayed probe pulse.
After reflection from or transmission through the sample, the probe pulse pulse contains
information about the current sample state, for instance, the temperature, magnetization,
and so on.
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Figure 2.3.: Schematic of a pump-probe experiment. The sample is excited by an intense pump pulse
and, after a delay 7, a weak probe pulse interacts with the sample and thereby gaining information about
the current sample state. Before the probe pulse is detected, it passes some filtering scheme making sure
that no pump light hits the detector when the probe beam is blocked. In this work, spectral and spatial
filtering are employed.

From a formal point of view, the electric field E = E,, + Eprobe s incident on the sample
in a pump-probe experiment and induces a nonlinear polarization Pyp. Since often the
probe field is weak, |Eprobe] < |Epump|, an expansion of Pyi[E] with respect to Epope is
reasonable and similar to Eq. (1.29) yields

1 oo
Pyr(z,t) = Pan[Epump) + T / dt" Ax(z,t,t') Epope(2,t') + O (El ) - (2.4)

This approach takes also those nonlinear-polarization effects into account that cannot be
described by a perturbation series like (1.9) any more, for example the field ionization of
molecules.

The 1st term on the right-hand side of Eq.(2.4) describes a pump-induced polarization
that would also occur without the probe pulse, for instance sum- and difference-frequency
generation. The 2nd term contains all effects of the pump pulse and the sample on the
weak probe pulse. Due to P = PW 4+ Pyp, y := x! + Ay can be understood as the total
linear polarization response of the system “sample and pump pulse”, and

Ae = A Ay

is the pump-induced change in the dielectric function of the sample.

THz detection can also be considered as a pump-probe experiment: As seen above, the
THz pulse acts as the pump pulse and modifies the linear optical properties of a nonlinear
medium which are seen by a copropagating visible probe pulse.

One conceptual problem remains: The separation E = E, ., + Epobe is well defined before
the sample, but within the sample pump and probe beam interact with each other. Thus,
the role of pump and probe beam is not clear any more after the sample. The most natural
solution is to define the probe field as the field that is experimentally detected. It should
disappear when the probe beam is blocked before the sample. Indeed, most experimental
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2. Nonlinear Wave Propagation

setups apply spatial, spectral, or polarization filters to the total field E such that no light
reaches the detector when the probe beam is blocked. When we formally represent this
filter by a linear operator F', the probe field is simply

Eprobe = FE

It has a much smaller intensity than the “rest” E,m, = £ — E,ope.. The considerations
made above should be understood with these definitions of pump and probe beam.

The pump-probe configurations used in this work employ spectral filtering: In the THz
detection, the pump and probe pulse are in the THz and visible spectral range, respectively.
In TRTS, it is the other way around. We apply spectral filtering Fy,e. to Eq.(2.2) and

obtain

w? w? A
(V xV x. + —2€> Eprobe = 477-_Pjspec‘F’NLa
C C

2
since Fspec commutates with V and . This equation together with (2.4) describes the
probe field detected in a TRTS experiment. It is of the same structure as the general wave
equation (2.2).

2.4. Solution of Wave Equation: Perturbational Approach

In this section, a method for the solution of the wave equation (2.2) is developed which
is analog to the Born series in quantum scattering theory [Sch93]. As a perturbational
method, it is only applicable when the nonlinear polarization does not affect the wave
propagation too strongly. On the other hand, it gives an intuitive picture of the underlying
mechanism and is easier to implement than numerical methods like the finite-difference
time-domain scheme [Bea02|. In this work, it is applied to more complicated systems like
carbon nanotubes embedded in a dielectric host where the pump beam induces additional
anisotropies and inhomogeneities.

In order to find the solution of Eq. (2.2) we rewrite it as

A wQ
DE = —é . 47T—2PNL
C

with the abbreviation )

and consider its right-hand side as a perturbation. The perturbation parameter ¢ will be
set to & = 1 finally. The perturbation expansion of E with respect to £ is

E=¢EO 4 ED 4 2E® 4 . (2.5)
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nonlinear
medium

Figure 2.4.: The fundamental wave E(©) travels
through the medium according to linear optics. Ho-
wever, it induces a nonlinear polarization Pls&) at
each position &’ which in turn creates an outgoing
wave PIE&) (',w) Gp/ (x,w). All these waves add
up to the lst-order correction E(1).

Its substitution in Pyp,(E), for example given by Eq. (2.3) or (2.4), yields an expansion of
the nonlinear polarizability

Py =P + 6P + 2P + ..,

where each coefficient PIEIJL) is a function of E® ... EWU . Substitution in Eq.(2.2) leads
to the following hierarchy of coupled differential equations:

DE©® = 0 (2.6)
A (1) w? L0

DEY = —Ar— Py (2.7)
: ,

DEU) = —47T°Z—2P1§JL) (2.8)

The 1st equation describes the wave propagation when all nonlinearities are switched off
which is the domain of linear optics. The resulting “fundamental wave” E©) induces the
lowest-order nonlinear polarization Pl\(IOL) which acts as a source for the 1st-order correction
EW. Here, the term “source” becomes clear when the Green function G (z,w) is employed
to solve Eq. (2.8) for

. w? .
EUD (g, w) = —47r§ /d?’w’ G (z,w) PO (' w). (2.9)

The Green function is defined by the relation ﬁGw/ = 0,1 and can be understood as the
wave that is scattered by a point-like spatial perturbation at «’. It has to be an outgoing
wave in order to fulfill the causality principle. For example, in case the unperturbed
medium is spatially homogeneous and isotropic, G, is an outgoing spherical harmonic
wave starting at &’ [Jac83].

This result permits a simple interpretation of the perturbational solution: The wave E© 4
-+ -+ EU) induces a polarization PISIJL) which in turn at each point &’ creates an outgoing wave
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2. Nonlinear Wave Propagation

proportional to PIEIjL)(a:’ ,w). All these outgoing waves add up to the next-order correction
EU+Y) Figure2.4 illustrates the case j = 0 which in many cases already gives a good
approximation.

2.5. 1-Dimensional Case

The solution (2.9) of the wave equation is still complicated since one has to integrate over
3-dimensional space with the Green-function being a 3 x 3 tensor. Fortunately, many cases
of interest are effectively 1-dimensional: In all situations in this thesis, the light beams can
be considered as plane waves which see a homogeneous medium across their beam cross
section. Therefore, the problem can be reduced to the propagation along one axis z and a
suitable component E of the electric field E. Equation (2.8) becomes

2
DEUH (2 ) = —4W°C”—2P1§fg(z,w) (2.10)

with R
D =92 + K*(2).
Here, k(z) is the local wavevector of the fundamental wave given by
2

k* = %5(2,@.

The derivation of Eq. (2.10) assumes VE = 0 and Py, [E] = Pyp[E] which is fulfilled in all
situations relevant for this work. The solution of Eq. (2.10) is analog to that of Eq. (2.9),
but the 3-dimensional integration is reduced to an integration over z,

w?

EUtD(z,w) = —4#; 42 G (z,w) P9 (2, w). (2.11)

2.5.1. Film between 2 Half-Spaces

A very frequent experimental configuration is shown in Fig.2.5: A plane wave in the left-
hand half-space (medium 1) is incident onto a film (medium 2) of thickness d, partially
transmitted through the film into the right-hand half-space (medium 3), and partially
reflected back. Multiple reflections at the 2 boundaries of the film lead to additional
“echoes” propagating forward and backward.

Fundamental Wave

The fundamental wave £ in the 3 media 1, 2, and 3 is, respectively [Yeh88],

exp(—ik1z) + A7 exp(—iky2z)  (incident + reflected)
= { A exp(ikqz) + A5 exp(—ikyz) (forward + backward) (2.12)
A exp(iksz — iksd) (transmitted)

EO
Einc
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2.5. 1-Dimensional Case

o
medium 1 medium 2 medium 3
fundamental incidenL forward‘ transmitteg
wave < > < - »
reflected backward
Green spherical
function >
Figure 2.5.: Film of thickness d between 2 half- «— forward o
spaces. The fundamental wave is incident on the backward <_—> forward
film from the left, partially reflected back and par- b e
tially transmitted. The Green function has its y \
source at z = 2’ inside the film and creates an out- T
going wave which also undergoes reflections at the A(L L
2 boundary planes of the film at z =0 and z = d. X z d Z

where FEi,. is the incident electric field at z = 0~ just before the left boundary. All
coefficients are defined in Table2.1. The quantities
2711' n; —ny

tij = and rij =
n; + n; n; + n;

are the Fresnel transmission and reflection coefficients, respectively, for the case of normal
incidence onto the boundary plane between medium ¢ and j. The factor
1

M =
1-— 721723 exp(?lk‘gd)

accounts for infinitely many reflections between the 2 boundary planes of the film which
produce echoes in the reflected and transmitted beam. More generally, M can be expanded
in a geometrical series

M = Z [eXp(l/{,‘zd) T23 exp(ikgd) 7“21]j

j=0

in which the jth term represents the jth reflection echo. The last expression nicely shows
that the wave has to travel back and forth through the film between consecutive echoes.
One can set M = 1 if multiple reflections are not important, for example in a thick film
where the reflection echoes j > 1 are outside the temporal detection window.

Green Function

If the nonlinear response Pyp,(2/,w) is restricted to medium 2 with 2z’ € [0, d], the Green
function in medium 1, 2, and 3 becomes

By exp(—iky2) (backward only)
2iky G (2, w) = { exp(ika|z — 2/|) + By exp(ikqez) + By exp(—ikez) (sph + fw + bw)
By exp(iksz — iksd) (forward only)
(2.13)
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2. Nonlinear Wave Propagation

’ med ‘ fundamental wave ‘ Green function
1 Al_ = [T12 + 793 exp(zikzd)] M Bl_ = [exp(ikgz’) + 793 exp(Zide — ikQZ,)] tle
2 A; = t19723 eXp(Qik‘gd)M B; = B; eXp(ik‘Qd)ng/th
A; = tlgM B;_ = Bl_Tgl/tgl
3 | AF = tiotogexp(ikad) M B = [exp(—ika2') + ro1 exp(ikez’)] exp(ikad)tos M

Table 2.1.: Coefficients of the forward and backward propagating components of the fundamental wave E(®)
and Green function G, of a film between 2 half-spaces as described by Egs. (2.12) and (2.13).

" (I) Xtal axis

incident
beam

optical
Xtal axis

GaSe Xtal

N
°~ .
O horizontal
rotation axis

Figure 2.6.: Experimental geometry for THz generation in a GaSe crystal together with the definition of
the angles ¢ and ¥iyc.

respectively. This function fulfills DG, = 0./, is an outgoing wave, and, like its associated
magnetic field, continuous at the film boundaries. The coefficients B;E(z’ ) depend on the
center position z’ of the Green function and are listed in Table2.1.

2.6. Applications

2.6.1. THz Generation in GaSe

In this work, the optically uniaxial crystal GaSe is used to generate THz radiation from
about 10 to 30 THz. The generation process is discussed in detail in Ref. [Sch05] based on
the above formalism. Briefly, as shown in Fig. 2.6, the visible generation beam transmits
a GaSe crystal where it propagates as an ordinary (o) and an extraordinary (e) wave with
wavevectors ko(w+ (2) and ke(w) and frequencies w+ {2 and w, respectively. Via difference-
frequency mixing, both waves together create a polarization with frequency (2 along the
ordinary direction if the azimuthal angle ¢ of the crystal is 60° [Sch05]. Application of the
above formalism leads to a THz wave with wavevector k,({2) which is proportional to the
so-called phase-matching factor

eXp(iAdease) —1
Ak

with Ak = ko(w + 2) — ko(w) — ko(£2)
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at the output plane of the GaSe crystal [Kai99]. Therefore, an efficient THz generation of
frequency (2 requires |Akdgase] < 1. In order to fulfill this condition over a wide range of
THz frequencies, GaSe crystals of a thickness dgase of less than 100 um are used [Hub00].

2.6.2. Probe-Pulse Propagation

Exciting the film in Fig. 2.5 by a pump pulse at time ¢ = —7 leads to a change Ae;, - (w) in
the dielectric function of the film which is seen by the THz probe pulse F arriving at time
t = 0 at the sample. Here, Ae; means the instantaneous dielectric function as defined in
Section 1.8.2. Since all experiments in this work are transmission experiments, we calculate
the probe pulse E(z = d + 0%, w) directly after the film.

According to Egs. (2.4) and (1.33), the relevant nonlinear polarization in w space is
PNLT(Z’ w) = / dw/ Agw—w’(Z, CU,)E(Z, w’) e_i(w_wl)’r.

It induces a pump-induced change AFE,(d + 07, w) in the electric field directly after the
film which can be calculated by the aid of Eq. (2.11). To 1st order in Ae, one obtains

2
AE,(d+ 0" w) = —C;)—2 /dz/dw’ Acy_i(z,0") e @ ITEO (2 WG (d+ 0T, w).

In a pump-probe experiment, AFE, is detected for a complete sequence of pump-probe
delays 7. In order to get access to the dielectric function, we apply a Fourier transformation
T — {2 to the last equation and find

2

AEqo(d+ 0" w) = -2 [ a Aco(z,w — Q)EQ(z,w — 2)G.(d + 07, w).

2
Inserting the expressions (2.12) and (2.13) for the fundamental wave E® and the Green

function G,(d+ 07, w), respectively, leads to a quite lengthy relation between the incident
field Ei,. and the pump-induced change AFq(d + 07, w) in the transmitted field.

However, the films used in this work are much thinner than the wavelength of the THz

probe radiation such that one can set exp(ikad) = 1. As a consequence, the fundamental
wave is EO(d + 0", w) = EinctiotosM = RogEiye where

EO(d+ 0%, w) 1223

ROO = =
Eine 1+ 712723

(2.14)

is the response of the unexcited sample. The Green function (2.13) can be written as
G.(d+ 0", w) = By /2iky = R /2ik; which leads to the compact relation

ABo(d +0%,w) = ARg(w — Q) Ee(w — Q). (2.15)
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Here, the pump-induced change

ARgp(w — 2) = LROO(CU — )Ry (w) /dz Aeg(z,w — ) (2.16)

© 2eny(w)

in the sample response function is the experimentally accessible quantity and can be easily
solved for the spatially averaged change in the dielectric function. In the course of this
work, this formula will be applied to thin films of graphite and carbon nanotubes.

If all terms with the argument w — {2 in Eq. (2.15) are sufficiently flat, this argument can be

approximated by w — 2 &~ w. An inverse Fourier transformation with respect to {2 yields
AE. (d+ 07, w) iw

AR, (w) = —= = Roo(w)? [ dz Ag,(z,w), 2.17

(@) = S = SR [ e () (2.17)

which can be interpreted as the quasistatic limit of Eq. (2.15): The wave propagates as if
the sample changes its optical properties only very slowly.

WKB Approximation

We assume a quasistatically changing sample such that the wave equation (2.10) can be
rewritten as

(02 + k2(2)] Er(z,w) =0 (2.18)
with r
k2 = g[soo(z,w) + Ae,(z,w)].
When a wave is incident from z = —oco and equals Ei,. at z = 2z, the field at a position

z > zp is, according to the so-called WKB approximation, given by [Sch93]

z

E.(z,w) = Epcexp [i/dz' kZT(Z/)] ) (2.19)

20

The WKB approximation is valid if the local wavevector k. varies only slightly over 1 wa-
velength of the radiation, that is, if |0k, /0z| < |k2| [Sch93].
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