
1. Theoretical Background

This chapter provides the background to interpret the dielectric function which is the
quantity measured in THz spectroscopy. After an overview of the dynamics of charge
carriers in optically excited metals, a model Hamiltonian describing a crystalline solid is
introduced. This Hamiltonian is the basis for the rate equations governing the energy
relaxation of excited electrons. Moreover, it is the starting point for a microscopic theory
of the dielectric function. Finally, the case of a rapidly varying sample is discussed.

1.1. Ultrafast Processes in Optically Excited Metals

Since this work investigates the charge carrier dynamics in selected materials, it is useful
to summarize the typical processes that electrons undergo after excitation by an ultrashort
laser pulse. Here, the example of electrons in metals is chosen. Most of the following
facts have been found by pump-probe techniques where an ultrashort laser pulse “pumps”
charge carriers in the sample to excited states. The carriers are probed by a subsequent
laser pulse, for instance by measuring the reflectivity of the sample or by photoemitting
electrons whose kinetic energy is finally detected. The latter scheme is also called time-
resolved photoelectron spectroscopy (TRPES).

The pump pulse with a duration of typically less than 100 fs and a photon energy of
~ωpump ∼ 1 eV mainly interacts with the electrons of the system and couples their sta-
tionary quantum-mechanical states. As shown in the single-electron picture of Fig. 1.1(a),
this leads to a polarization due to the superposition of single-electron eigenstates below
and above the Fermi energy εF.

However, due to the interaction with the other electrons and the phonons, the phases
between the superimposed stationary states are randomized on a time scale of 1 to 100 fs,
and the system is left in a mixed state which is completely characterized by the occupation
numbers of the eigenstates. In other words, the induced polarization has decayed, and the
incident pump pulse has created electrons above εF and holes below εF, as illustrated in
Fig. 1.1(b).

The above implies that the pump pulse energy is initially mainly deposited in the electronic
system. Scattering processes exchange the energy among the excited and unexcited elec-
trons and equilibrate to a Fermi-Dirac distribution which is characterized by an increased
electronic temperature Te. This electron thermalization takes place on a time scale of 10
to 1000 fs and is depicted in Fig. 1.1(c) [Hoh98].
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Figure 1.1.: Processes induced by a fs-laser pulse arriving at a metal surface. The metal is in thermal
equilibrium before excitation. (a,b,c) After generation of a coherent polarization by the laser pulse and
its decay, the excited electrons exchange energy with other electrons by electron-electron scattering. This
thermalization finally leads to a Fermi-Dirac distribution of temperature Te. (d) Directly after excitation,
the electrons start to transfer energy to the cold lattice via electron-phonon coupling. The 2-temperature
model becomes valid as soon as the electrons and phonons can be described by temperatures Te and Tph,
respectively. (e) Finally, electrons and phonons arrive at the same temperature. Transport processes lead
to energy dissipation in the considered volume, too.

The interaction between the lattice and the excited electrons leads to the emission of pho-
nons and the cooling of the electrons on a time scale of 0.1 to 10 ps as seen in Fig. 1.1(d).
In many cases, the resulting phonon population can be described by a Bose-Einstein distri-
bution with phonon temperature Tph, as for example in the 2-temperature model [Ani74].
However, this is not true in general, as shown for semiconductors [Els89] or the semimetal
graphite in this work, where a non-equilibrium population of “hot phonons” is generated.
The heat transfer from the electrons to the lattice fades as soon as electrons and phonons
have arrived at the same temperature, Te = Tph, see Fig. 1.1(e).

It should be emphasized that all processes mentioned can temporally overlap. For example,
the generation of phonons takes place already before the electrons have thermalized. Mo-
reover, spatial transport processes set in from the very beginning. However, they can be
neglected on these short time scales, if the pump pulse creates a homogeneously excited
sample. On much longer time scales, heat diffusion leads to a cooling of the sample to the
ambient temperature.

These mechanisms have important consequences in areas such as surface femtochemis-
try [Bon99]. For example, the hot electrons of laser-excited Ru were shown to trigger chemi-
cal reactions of adsorbed molecules that do not occur under equilibrium conditions [Bon99].

The dynamics of optically excited charge carriers in semiconductors and gases proceeds
similarly to that in metals [Sha99]. Major differences concern the time scales involved and
the recombination of electrons and holes which proceeds by phonon emission in metals.
This is not possible in semiconductors where the phonon energies are much smaller than
the band gap of ∼ 1 eV. Instead, photon emission, Auger and other processes lead to
electron-hole recombination on a time scale of typically 1 ns. Long before, electrons and
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holes thermalize to individual Fermi-Dirac distributions and equilibrate with the lattice by
phonon emission.

The goal of this thesis is to study the dynamics of optically excited charge carriers in solids
and gases by measuring the temporal evolution of its dielectric function in the far-infrared.
The following sections give the theoretical background used in this work.

1.2. Model Hamiltonian of a Crystalline Solid

In the single-electron approach, the electrons in a solid are thought to move within a mean
potential produced by the static lattice and the other electrons [Mad78]. The translational
symmetry of a perfectly crystalline solid implies the Bloch theorem which states that the
eigenstates of the single-electron Hamiltonian are Bloch states

|K〉 = |kB〉.

In real space, these states are plane waves modulated by the lattice-periodic Bloch factor
uK ,

〈x|K〉 = exp(ikx)uK(x).

The quantum numbers involved are the wavevector k, which is restricted to the 1st Brillouin
zone (BZ), and the band index B, which also contains the spin degree of freedom. The
corresponding single-electron eigenenergies εK constitute the band structure. When we
neglect spin effects like ferromagnetism and spin-orbit coupling, εK will not depend on the
spin, and the Bloch states factorize into an orbital and a spin part, |K〉 = |kB〉 = |kb〉⊗|±〉
where |±〉 is the electronic spin-up and spin-down state, respectively. In the following, we
mainly consider the orbital part |k〉 := |kb〉.
Phonons (ph) are the energy quanta ~ΩQ of the fundamental lattice vibrations Q = (q, r)
which are fully characterized by the phonon wavevector q and the phonon branch r; q is
also restricted to the BZ.

The interaction between the lattice and the electrons can be understood as scattering an
electron from state |K〉 into another state |K ′〉,

|K〉 e-ph−−→ |K ′〉,

accompanied by the annihilation (+) and generation (−) of phonons Q± = (q±, r), res-
pectively. The matrix element M r

K′K of this process implies conservation of the total
wavevector,

k′ = k ± q± + G,

where a reciprocal lattice vector G has to be added such that all wavevectors involved lie
in the Brillouin zones. This can be abbreviated as

q± = [±(k′ − k)] mod BZ.
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So-called umklapp processes occur when G 6= 0.

Electrons can also be scattered by impurities (imp) described by an impurity potential V imp.
Its matrix element V imp

K′K = 〈K ′|V imp|K〉 quantifies the amplitude of this scattering process

|K〉 e-imp−−−→ |K ′〉.

With these definitions, the resulting model Hamiltonian of a crystalline solid can be written
as [Nol01, Gri81, Mad78]

Ĥ =
∑

K

εK â†
K âK

︸ ︷︷ ︸
e in mean field

+
∑

Q

~ΩQ b̂†Qb̂Q

︸ ︷︷ ︸
ph in mean field

+
∑

KK′r

M r
K′K â†

K′ âK

(
b̂q+r + b̂†

q−r

)

︸ ︷︷ ︸
e-ph coupling

+
∑

KK′

V imp
K′K â†

K′ âK

︸ ︷︷ ︸
e-imp coupling

.

(1.1)
Here, â†

K and âK are operators creating and annihilating an electron in a state |K〉, res-

pectively, whereas the operators b̂†Q and b̂Q do the same in the phonon subsystem. For
example, e-ph coupling can be interpreted as the annihilation of an electron in state |K〉
and its creation in a new state |K ′〉. This scattering process is induced by the generation
or annihilation of a phonon (q+, r) or (q−, r), respectively. The e-ph interaction is screened
by the surrounding mobile electrons and lattice ions.

Electron-electron interaction is neglected here, since it is already mainly contained in the
Bloch states and the band structure.

1.3. Population Dynamics and 2-Temperature Model

1.3.1. Rate Equations

The dynamics of a solid are rigorously described by the evolution of its total density matrix
which is extremely complicated to calculate for a many-body system. Therefore, the dyna-
mics is often modeled by rate equations which only take the population of the stationary
states, that is the diagonal elements of the density matrix, into account. The population
then changes due to transitions between stationary states, and the transition probabilities
are calculated by Fermi’s Golden Rule which implies strict conservation of energy. This
is, however, not true any more on short time scales where time-energy uncertainty starts
to play a role. Such effects have been observed in the energy relaxation of electrons by
phonon emission in GaAs [Für96].

Within a single-particle picture, the population is given by the occupation numbers fk

and bQ of electronic Bloch states |k〉 and lattice vibrational modes Q, respectively. The
resulting rate equation for the electronic population is [Mad78, All87, Gri81]

∂fk

∂t
=

∑

k′

[wk′k · fk′ · (1 − fk) − wkk′ · fk · (1 − fk′)] (1.2)
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where the 2 terms describe the scattering into |k〉 and out of |k〉, respectively. The transition
rates wkk′ for e-ph scattering involve both phonon generation (−) and annihilation (+),

we-ph
kk′ =

2π

~

∑

r,±

|M r
k′k|2

(
bQ± + 1

2
± 1

2

)
δ (εk′ − εk ± ~ΩQ±) . (1.3)

The annihilation rate of phonons Q+ = (q+, r) grows linearly with their occupation num-
ber bQ+ whereas the generation rate is proportional to bQ− + 1 since also “spontaneous
emission” of phonons Q− = (q−, r) can occur for bQ− = 0. The δ-functions enforce energy
conservation in an e-ph scattering process.

Electron-impurity and e-e scattering give corresponding contributions to this rate equa-
tion [Mad78]. Especially, in case of a real (not complex) impurity potential, e-imp scat-
tering is elastic and does not change the energy of the involved electron. In addition, the
optical excitation of the metal can also be described by a term analog to (1.3).

The rate equation for the phonon distribution bQ is very similar but with a contribution
from ph-ph scattering instead of e-e scattering which originates from the anharmonic cou-
pling between the normal lattice vibrations Q. It is responsible for the energy redistribution
within the phonon system.

It should be noted that the rate equation (1.2) does not take transport effects into account.

1.3.2. 2-Temperature Model for Metals

In order to simplify the rate equations, the 2-temperature model (2TM) describes the
electrons and phonons by merely 2 temperatures:

• The electrons are assumed to be thermalized at any time and thus to follow a Fermi-
Dirac distribution

f(ε) =
1

exp(βeε − βeµ) + 1
(1.4)

with temperature Te = 1/kBβe and chemical potential µ. The electron occupation
numbers are then fK = f(εK). The reason for this assumption is that the e-e interac-
tion is usually stronger than the e-ph interaction. Therefore, the electron subsystem
thermalizes before the thermal equilibrium between electrons and phonons is esta-
blished. As a consequence, e-e and e-imp scattering can be neglected in the rate
equations.

• Similarly, the phonons are assumed to follow a Bose-Einstein distribution

b(Ω) =
1

exp(βph~Ω) − 1
(1.5)

with temperature Tph = 1/kBβph. The phonon occupation numbers are then bQ =
b(ΩQ). This assumption can be easily violated in semiconductors [Els89] or semime-
tals as shown in Chapter 4 for graphite.
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The total energy of the electron subsystem is

Ee = 2
∑

k

fkεk

where the factor of 2 is due to the spin degeneracy. Its temporal change can be calculated
with the aid of Eqs. (1.2) and (1.3). Since the occupation numbers only depend on energy,
fk = f(εk) and bQ = b(ΩQ), one obtains an integral over the initial electron energy ε, final
electron energy ε′, and phonon frequency Ω [All87],

∂Ee

∂t
= 4π

∫∫∫
dε dε′ dΩ S(ε, ε′, Ω) Ω δ(ε′ − ε − ~Ω) H(ε, ε′, Ω). (1.6)

Here,

S(ε, ε′, Ω) = [f(ε) − f(ε′)]b(Ω) − [1 − f(ε)]f(ε′)

embraces all occupation numbers. The auxiliary function

H(ε, ε′, Ω) =
∑

kk′r

|M r
k′k|2δ(ε − εk)δ(ε

′ − εk′)δ(Ω − ΩQ)

is proportional to the Eliashberg function α2F (ε, ε′, Ω) which contains all necessary infor-
mation on e-ph interaction [Gri81, All87].

Sources of the electronic energy such as the exciting laser pulse have to be added on the
right-hand side of Eq. (1.6). As mentioned before, transport effects are neglected.

Most electronic transitions of interest occur around the Fermi edge. In metals, the elec-
tronic density of states (eDOS)

D(ε) = 2
∑

k

δ(ε − εk) (1.7)

shows only small relative variations there such that α2F is usually evaluated at ε = ε′ = εF.
However, this is not possible for the semimetal graphite where we have to take the strongly
varying eDOS into account.

1.4. What Is Measured in an Optical Experiment?

The dielectric function of a sample is the central quantity that is measured in THz spec-
troscopy. The following sections give a definition of the dielectric function and its relation
to the microscopic properties of the sample.
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1.4.1. Induced Electric Polarization

In a typical optical experiment, a light wave is incident on a sample, partially transmitted,
and finally detected. Inside the sample, the electric field E of the light wave modifies the
charge distribution and thus induces an electric polarization P or, equivalently, an electric
current density

jind =
∂P

∂t
. (1.8)

This in turn alters the total electric field E and makes wave propagation in matter different
from that in vacuum. Detecting the transmitted light wave therefore means measuring how
easily the light field can polarize the sample or, equivalently, how easily it can induce an
electric current. This ease is quantified by the so-called dielectric function and can be
determined by THz spectroscopy.

Before turning to the formal relation between electric field, induced polarization, and
dielectric function, it is worth mentioning the following points:

• The material response to the magnetic component of the electromagnetic field is
largely negligible at THz and higher frequencies since the magnetic dipoles within
the material cannot follow the fast magnetic field oscillations [Mil98]. An exception
are so-called optical metamaterials. In these arrays of small LC oscillators, magnetic
effects can become important at THz frequencies [Lin04].

• Most theories consider only macroscopic fields E and P which are the true micro-
scopic fields averaged over a length lavg. In this way, one gets rid of all variations
on length scales much smaller than the characteristic length lopt of the electroma-
gnetic wave where lopt can be its wavelength λ or attenuation length. Therefore, lavg

should be well below lopt but large compared to the length scale lmat on which the
microscopic electric field varies in the unperturbed matter. In a solid one typically
has lmat ∼ 1 Å and lopt ∼ λ ∼ 100 nm at optical frequencies. In this case, the choice
lavg ∼ 10 nm surely fulfills the condition lmat � lavg � lopt.

1.4.2. Dielectric Function ε

How is P related to the intrinsic properties of the sample? In general, it will depend
on the electric field E in a complicated manner. Fortunately, the strength ∼ e/(1 Å)2 ∼
109 V cm−1 of the microscopic fields in unperturbed matter is often much larger than E.
In this case, P can be expanded in a power series with respect to E,

P (E) = P (1) + P (2) + . . . , (1.9)

where P (j) is of exactly jth order in E. This series is sometimes called a Volterra series
since the expansion argument is not a number but a complete function E(x, t) [Gra78]. The
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leading term P (0) is zero since a vanishing macroscopic field does not induce a polarization
at THz and higher frequencies. In the following we assume that E induces only a spatially
localized polarization P . In other words, E(x, t) induces a coherent polarization within
a radius around x that is much smaller than lopt [Mil98]. In contrast, the polarization
response is temporally nonlocal in general, that is the complete past of the electric field
affects the polarization at time t.

In case the sample is in a steady state, one can switch from the time domain to frequency
space by a Fourier transformation where the linear response becomes simply

P (1)(x, ω) = χ(x, ω)E(x, ω). (1.10)

The 2nd-rank tensor χ(x, ω) is called the linear susceptibility at angular frequency ω which
reduces to a scalar in a locally isotropic medium. The dielectric function ε, the conductivity
σ, and the refractive index n are often used instead of χ. They contain the same amount
of information and are defined in ω space by

ε = 1 + 4πχ, σ = −iωχ =
ω

4πi
(ε − 1), and n =

√
ε,

respectively. ε and χ will be used equally in this work. By using Eq. (1.8), the term
“conductivity” becomes clear from its relation to the induced current,

j
(1)
ind(x, ω) = σ(x, ω)E(x, ω).

The relation between the dielectric function and the microscopic structure of the sample
will be discussed in the following section.

A simple macroscopic interpretation can be at least given for the imaginary part of the
dielectric function: It describes how efficiently the medium can absorb light. According to
Poynting’s theorem, the temporally averaged power dPabs absorbed from a monochromatic
light wave E(x, t) = Re [A(x) exp(iωt)] in a volume dV around point x is [Röm94]

dPabs

dV
=

〈
E

∂P

∂t

〉
=

1

2
ω|A|2 Im ε(x, ω),

where the medium is assumed to be optically isotropic. The real part of the dielectric
function is connected to its imaginary part by the Kramers-Kronig relations which are a
direct consequence of causality [Röm94].

Due to the knowledge of the electric field of the probing pulse, THz spectroscopy allows
to measure the dielectric function of a sample, which is the ultimate goal of linear optical
spectroscopy. In TRTS, the sample is excited by a pump pulse, and one can even monitor
the evolution of the dielectric function as a function of the delay between pump and THz
probe pulse. It is, therefore, desirable to know the relation between the dielectric function
and the microscopic properties of the sample. This issue is discussed in the next sections
using classical models and a more rigorous quantum-theoretical description.
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1.5. Microscopic Models for ε

1.5.1. Classical Models

Bound Electrons: Lorentz Oscillator

In the Lorentz model, a bound particle j with charge q and mass m is located in the
minimum position of some potential. The light field E acts on the charge as a small
perturbation and, within the dipole approximation, leads to a harmonic oscillation xj(t)
with resonance frequency ω0 and damping rate γ around the potential minimum at x0j.
The dipole moment induced by the oscillating charge is pj = q · (xj − x0j), and the
macroscopic polarization is the sum of all N dipoles per averaging volume Vavg = l3avg

around position x. In ω space, this yields

P (x, ω) =
1

Vavg

N∑

j=1

pj =
εLorentz − 1

4π
E(x, ω)

with the dielectric function

εLorentz(ω) = 1 +
4πNq2

Vavgm

1

ω2
0 − ω2 − iγω

. (1.11)

Equation (1.11) exhibits a resonance denominator such that Im εLorentz(ω) and the absorp-
tion of light peak at ω = ω0 in case of small damping, γ � ω. Although based on classical
mechanics, the Lorentz model describes the optical response of molecular vibrations and
phonons quite well [Ash76].

Free Electrons: Drude Model

The Lorentz model contains also the limiting case ω0 = 0 of free or unbound electrons
which yields the Drude formula

εDrude(ω) = 1 −
Ω2

pl

ω2 + iΓω
(1.12)

with squared plasma frequency

Ω2
pl =

4πnee
2

me

(1.13)

and free-electron density ne. The damping rate Γ can be interpreted more explicitly when
the damping of the electron oscillation is caused by collisions of the electron with obstacles.
If each collision completely randomizes the electron velocity, 1/Γ is just the time between
2 subsequent collisions. In other words, 1/Γ is the characteristic time it takes to relax an
electronic current when the driving electric field is switched off [Ash76].
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Although the Drude formula is based on an extremely simplified model, it often provides
a good phenomenological description of the optical properties of metals and doped semi-
conductors. As will be discussed below, it can be derived under certain assumptions from
more sophisticated models.

1.5.2. Semiclassical Theory: Boltzmann Equation

In a semiclassical approach and in a spatially homogeneous system, the electrons can be
described by a distribution function f(v, t) where f(v, t) d3v is the density of electrons
having their velocity in the interval [v,v + dv]. The dynamics of f in a homogeneous
external electric field E is described by the Boltzmann equation [Hol65]

∂f

∂t
− e

me

∂f

∂v
E =

∂f

∂t

∣∣∣∣
scatt

.

The term on the right-hand side describes scattering events between the electrons and
other obstacles which can change the velocity v of an electron and therefore lead to a
redistribution of f(v, t). In case of a vanishing electric field, thermalization by electron-
electron scattering results in the familiar Maxwell-Boltzmann distribution

f(v, t) = ne

(
me

2πkBTe

)3/2

exp

(
− mev

2

2kBTe

)
, (1.14)

with electronic temperature Te.

An external electric field E modifies this distribution and induces an electric current. By
treating E as a weak perturbation and assuming that the electrons undergo only binary
collisions with much heavier obstacles such as ions or neutral particles, one can derive the
dielectric function of such a system [Hol65],

εBoltzmann(ω) = 1 +
(4πe)2

3meω

∞∫

0

dv
∂f

∂v
v3 1

ω + iγ(v)
. (1.15)

Here,

γ(v) =
∑

j

vnjσej (1.16)

is the collision rate of an electron having velocity v = |v| caused by scattering off all sorts j
of obstacles. Each obstacle species j is characterized by a density nj and a momentum-
transfer cross section σej for scattering with electrons.

Note that electrons with a velocity around a fixed value v make a Drude-like contribution
to the integration in Eq. (1.15). Moreover, if the collision rate γ(v) does not depend
on the electron velocity v, one can show, that Eq. (1.15) reduces exactly to the Drude
formula (1.12) with electron density ne =

∫
d3v f [Hol65].
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It should be mentioned that the relation (1.15) does not account for e-e scattering. Quan-
tum effects can be included in Eq. (1.15) by calculating the cross sections σej according
to quantum mechanics and by using the Fermi-Dirac distribution (1.4) instead of the
Maxwell-Boltzmann distribution [Mad78].

1.5.3. Quantum-Mechanical Theory: Kubo Formula

Assume that only the electrons of some system interact with a classical light wave given by
the vector potential A(x, t). Then, to 1st order in the light field and in Coulomb gauge,
this interaction is described by the Hamiltonian [Czy04]

Ĥe-light = −1

c

∫
d3x ĵ(x)A(x̂, t).

where the operator of the electronic current density

ĵ(x) = − e

2me

∑

j

[π̂jδ(x − x̂j) + δ(x − x̂j)π̂j]

contains position x̂j and canonical momentum π̂j of all electrons labeled j. Application

of 1st-order perturbation theory in Ĥe-light yields the Kubo formula for the tensor of the
dielectric function [Czy04],

εKubo
αβ (ω) = −4πnee

2

meω2
+

4π

V ω2

∑

mm′

〈m′|ĵα|m〉〈m|ĵβ|m′〉
Em′ − Em − ~ω − i0+

(ρmm − ρm′m′). (1.17)

In this expression, one has to sum over all initial and final eigenstates |m〉 and |m′〉 of
the unperturbed system, respectively. Light with frequency ω is absorbed if the photon
energy ~ω matches the difference between 2 eigenenergies Em′ and Em and if the po-
pulation ρmm of the initial state exceeds the population ρm′m′ of the final state. The
infinitesimally small positive number 0+ ensures that the perturbing electric field E is off
in the far past.

The derivation of this formula involves the dipole approximation and therefore leads to a
spatially local response. It moreover neglects the off-diagonal elements ρmm′ of the density
matrix, that is any coherences in the unperturbed system. Finally, the derivation assumes
the unperturbed system to change slowly within 1 cycle 2π/ω of the probing light field.
This point will be discussed in Section 1.8.

It should be mentioned that the Kubo formula can be rewritten in terms of fluctuations
of the current density which leads to a version of the fluctuation-dissipation theorem:
Photon absorption is related to fluctuations of the current density in the unperturbed sys-
tem [McQ76].
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Figure 1.2.: Photon absorption by resonant direct and indi-
rect optical transitions of Bloch electrons. Direct transitions
conserve the electron wavevector and appear as vertical ar-
rows in the band structure. Indirect optical transitions, in
contrast, involve an additional wavevector source and appear
as nonvertical arrows.

1.5.4. Local Electric Field

All models for the dielectric function presented up to here tacitly assume that the total
macroscopic field E perturbs the motion of the electrons. Strictly speaking, one has to
consider the local electric field Eloc(x, t) which is the total electric field acting on a charge
at position x [Adl62].

Although the local field does generally not equal the macroscopic field one usually neglects
local-field effects by setting Eloc = E. This can lead to significant discrepancies between
modeled and calculated dielectric function [Yu99].

1.6. Optical Transitions in Crystalline Solids

In the following, the Kubo formula is considered for the Bloch electrons of a crystalline
solid. As seen above, the absorption of a photon is possible by a transition |m〉 → |m′〉
between eigenstates of the unperturbed system. Application of the Kubo formula to the
model Hamiltonian (1.1) shows, that 2 distinct classes of optical transitions |kb〉 → |k′b′〉
between electronic Bloch states contribute to the linear optical response of a crystalline
solid [Bas75]:

1. A direct optical transition (DOT) only involves the interaction between Bloch elec-
trons and the light field; the influence of lattice imperfections is neglected. In a DOT,
the electron wavevector remains nearly unchanged, ∆k = 0, since the wavevector of
the light field is much smaller than the linear dimensions of the BZ. Therefore, pho-
ton absorption by a DOT corresponds to a resonant vertical transition in the band
structure as illustrated in Fig. 1.2.

2. An indirect optical transition (IOT) is a higher-order process since it involves the
interaction between Bloch electrons, the light field, and lattice imperfections like
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impurities and phonons. It generally implies changes in the electronic wavevector,
∆k 6= 0. Photon absorption by an IOT corresponds to a resonant nonvertical tran-
sition in the band structure as shown in Fig. 1.2.

In the following, DOTs and IOTs are explained in more detail and compared to the classical
Drude model. For this purpose, the Drude formula (1.12) is linearized in Γ resulting in

εDrude = 1 −
Ω2

pl

ω2
+ i

Ω2
pl

ω3
Γ. (1.18)

It will turn out that Re εDrude can be assigned to direct intraband transitions (intraDOTs),
whereas the dissipative part Im εDrude of the Drude formula can be associated with IOTs,
that is

εDrude = εintraDOT + i Im εIOT.

1.6.1. Direct Optical Transitions

As described above, direct optical transitions conserve the electron wavevector, and the
transition is therefore

|kb〉 photon−−−−→ |kb′〉.
It is useful to separate the DOTs in interband (b 6= b′) and intraband (b = b′) transitions,

εDOT = εinterDOT + εintraDOT.

The diagonal elements of the interband part are [Ped03]

εinterDOT
αα =

2 · 4πe2
~

2

m2
eV

∑

bb′k
b 6=b′

|〈b′k|π̂α|bk〉|2 (fb′k − fbk)

(εb′k − εbk)2 (εb′k − εbk − ~ω − i0+)
(1.19)

where V is the volume of the system. The factor of 2 accounts for the electron spin which
is conserved in the transitions considered due to 〈+|−〉 = 0. Similar to the Kubo formula,
the resonance denominator enables light absorption if the photon energy ~ω matches an
energy difference εkb′ − εkb.

If the occupation numbers depend only on the electron energy, fk = f(εk), the intraband
part of εDOT is [Ped03]

εintraDOT = 1 +
1

ω2

2 · 4πe2

V

∑

k

∂f

∂ε

∣∣∣∣
k

v t
k vk

with vk being the band velocity

vk =
1

~

∂εk

∂k
. (1.20)
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1. Theoretical Background

Since an intraDOT has vanishing transition energy its contribution to the optical response
is often called free-carrier response. It becomes appreciable for a large eDOS and large
band velocities around the Fermi edge where ∂f/∂ε 6= 0. The intraDOTs are a nonre-
sonant contribution, affect only the real part of the dielectric function, and result in a
negative Re εintraDOT

αα with a typical 1/ω2 dependence.

Due to these properties, intraDOTs resemble the situation of the collisionless Drude model.
This becomes even more apparent for the case of quasifree electrons with effective mass meff

and density ne. They are described by 1 parabolic band

εk =
~

2

2meff

k2

which implies a band velocity proportional to their wavevector,

vk =
~

meff

k. (1.21)

Such situation occurs, for example, in several metals like Na [Ash76] or in doped semi-
conductors like n-GaAs or n-InAs [Els89]. Provided the band is not completely filled or
empty, one obtains a scalar dielectric function εintraDOT = 1 − 4πe2ne/|meff|ω2, just like in
the collisionless Drude model.

This striking analogy and Eq. (1.18) lead to a generalized definition of the free-carrier
plasma frequency

Ω2
pl = −8πe2

V

∑

k

∂f

∂ε

∣∣∣∣
k

v t
k vk = −8πe2

V

∫
dε

∂f

∂ε
v2D(ε). (1.22)

Here, the velocity-weighted eDOS

v2D(ε) =
∑

k

v t
k vk δ(ε − εk) (1.23)

has roughly the same spectral structure like the ordinary eDOS D(ε) of Eq. (1.7) [All71].
Note that Ω2

pl is a 2nd-rank tensor which is diagonal in an appropriately chosen coordinate
system.

Metals usually exhibit a large and nearly constant eDOS around the Fermi edge. Then one
can set ε = εF in Eq. (1.22), which makes the plasma frequency independent of the electron
distribution f(ε). Assuming moreover a constant band velocity v2

kα = v2
F/3 provides the

estimate

Ω2
plαα ∼ 4

3
πe2v2

F

D(εF)

V
,

where D is the eDOS, and vF can be interpreted as the electron band velocity averaged
over the Fermi surface.
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1.6. Optical Transitions in Crystalline Solids

1.6.2. Indirect Optical Transitions

The effect of lattice imperfections like impurities or phonons on the optical response is now
taken into account to lowest nonvanishing order. The resulting summation over the IOTs

|k〉 = |kb〉 photon−−−−→ |k′′〉 = |kb′′〉 ph, imp−−−−→ |k′〉 = |k′b′〉
makes an additional contribution only to the imaginary part of the dielectric function as
is exactly the case in the linearized Drude formula (1.18). One obtains [vB72]1

Im εIOT
αα =

2(2π~e)2

(~ω)4V

∑

kk′

wkk′ω · (vkα − vk′α)2 fk · (1 − fk′) (1.24)

where the electron transition rate due to electron-impurity-photon and electron-phonon-
photon coupling is

we-imp
kk′ω = |V imp

k′k |2 · [δ(εk′ − εk − ~ω) − δ(εk′ − εk + ~ω)]

and

we-ph
kk′ω =

∑

r±

|M r
k′k|2

(
bQ± + 1

2
± 1

2

)
[δ(εk′ − εk ± ~ΩQ± − ~ω) − δ(εk′ − εk ± ~ΩQ± + ~ω)] ,

(1.25)
respectively. In this formalism, the lattice imperfections scatter the more electrons from
|k〉 to |k′〉 the more electrons are in the initial state and the less electrons are in the final
state. However, as suggested by Eq. (1.24), absorption of light being polarized along the
α direction only occurs if the electron changes its band velocity vkα along the same direction
α ∈ {x, y, z}.
This situation again is quite similar to that of the Drude model and together with Eq. (1.18)
motivates the definition of a generalized Drude scattering rate [All71]

Γ (ω) =
ω3

Ω2
plαα

Im εIOT
αα . (1.26)

Assuming a constant band velocity v2
kα = v2

F/3, constant matrix elements |V imp
kk′ |2 = |V imp

F |2
for impurity scattering, and a constant eDOS D around the Fermi edge yields an estimate

Γ imp ∼ π

~
|V imp

F |2D(εF) (1.27)

for the Drude scattering rate where vF and |V imp
F |2 can be understood as averages over

the Fermi surface. A large eDOS D(εF) implies many initial and final states for scattering
electrons and thus leads to a large velocity-relaxation rate.

In general, Γ has to be calculated according to Eqs. (1.24) and (1.26) and thus depends on
temperature and light frequency which is especially relevant for a strongly varying eDOS
around the Fermi energy and for e-ph scattering.

1This formula is also derived in [All71] for low temperatures. Note that a factor of 1/V is missing there.
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1. Theoretical Background

Figure 1.3.: Scattering of 2 quasifree electrons with
electron velocities before and after the collision.

1.7. Remarks

• Equation (1.24) describing the contribution of the IOTs to ε is valid for slow relaxa-
tion only, that is Γ � ω [All71]. In case of fast relaxation or strong e-ph coupling,
multiphonon processes have to be taken into account. The Holstein theory does so
but is complicated and designed for metals with parabolic bands only [All71].

• Moreover, Eq. (1.24) considers only processes

|kb〉 photon−−−−→ |kb〉 ph, imp−−−−→ |k′b′〉

where the photon-related step leaves the electron in the same Bloch state. This is
only correct when other bands are energetically separated by significantly more than
the photon energy ~ω [Dum61].

• The case of an e-e collision is shown in Fig. 1.3. In free-electron metals with only
1 parabolic band, e-e scattering is not expected to make a significant contribution
to the photon absorption in an IOT [Kav84]. First, the Coulomb interaction is
effectively screened in metals. Second, wavevector conservation

k1 + k2 = k′
1 + k′

2 + G (1.28)

and the band velocity (1.21) imply that the average velocity of the electron system
does not change in an e-e collision for G = 0. Only umklapp processes involving a
vector G 6= 0 of the reciprocal lattice can relax an electronic current.

This situation can change in semimetals like graphite where the screening of charges
is less effective due to a smaller number of electrons at the Fermi edge. Moreover,
the occurence of bands with strongly differing curvature can lead to a change in the
average velocity also for collisions with G = 0.

In all cases, the relaxation rate grows with electronic temperature [Kav84],

Γ e-e = AT 2
e ,

because higher temperatures imply a larger number of initial and final electron
states.
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1.8. Rapidly Changing Sample

input x output y linear response function R

applied voltage V induced current I resistance

electric field E induced polarization P susceptibility χ(1)

magnetic field B induced magnetization M permeability µ
incident light field Einc transmitted field Etrans sample transmittivity

Table 1.1.: Examples for perturbations x of a system and observables y which are influenced by the
perturbation. The corresponding linear response functions are also shown.

1.8. Rapidly Changing Sample

Up to now, the sample was assumed to change its optical properties only little within
the duration of 1 cycle 2π/ω of the probing radiation. In TRTS, one can get quite easily
beyond this quasistatic regime, for example, when a 1-THz wave with an oscillation period
of 1 ps transmits a sample where free electrons decay on a 300-fs time scale. Such behavior
has mainly 2 consequences:

• The quasistatic relationship (1.10) between polarization and driving field is possibly
not valid any more. Therefore, the standard relations describing the wave propa-
gation [Yeh88] are modified which is important for the extraction of the dielectric
function. This problem is in principle solved; the relation between incident and
transmitted THz field is, for example, given in Section 2.6.2 or in Ref. [Něm02].

• A probably more serious consequence of a quickly changing sample is that the micro-
scopic interpretation of the dielectric function by means of the Kubo formula (1.17)
is not possible any more, since this relation was derived under the assumption of a
quasistatic sample [Czy04]. Therefore, knowledge of the dielectric function beyond
the quasistatic regime is of somewhat limited use at present unless one can compare it
to the results of explicit theoretical calculations as for example done in Ref. [Hub05b].

In the following, the general case of a linear response is considered which leads to a de-
finition of the instantaneous spectral response and its determination in a pump-probe
experiment.

1.8.1. General Linear Response

Consider a physical system which is perturbed by some “input” signal x(t) and, as a conse-
quence, changes an “output” observable y(t). Examples for x and y are listed in Table 1.1.
Here, the most interesting situation is, of course, a pump-probe experiment where the
pump pulse triggers a rapidly evolving change in the susceptibility and transmittivity of
the sample.

The relation between input and output can be formally written y(t) = Ft[x(t′)] where Ft

is a functional since it has the complete function x(t′) as an argument. In many cases
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1. Theoretical Background

the input perturbs the system considered only weakly such that one can linearize Ft with
respect to x(t′) and obtains [Gra78]

y(t) =
1√
2π

+∞∫

−∞

dt′ R(t, t′) x(t′) (1.29)

where Ft(0) = 0 was assumed without loss of generality. The response function R(t, t′) =
(2π)−1/2δFt/δx is the functional derivative of Ft, and the prefactor of 1/

√
2π was introduced

for consistence with the symmetric definition (B.1) of the Fourier transformation used in
this work. Note that in Eq. (1.29) the complete history t′ < t of the input x(t′) contributes
to the output y(t) at time t. The causality principle implies that a future input does not
contribute to the present output; thus one has

R(t, t′) = 0 if t < t′.

The ultimate goal is the measurement of the response function R since it contains important
information about the system investigated.

1.8.2. Instantaneous Spectral Response

Is there a quantity that describes the response properties of the sample at a certain instant
of time? The answer to this question is not immediately obvious since R(t, t′) depends on
2 time variables. Therefore, we eliminate the time t′ by a Fourier transformation (B.1) and
obtain

y(t) =
1√
2π

∫
dω′ R(t,−ω′) x(ω′)

where R(t, ω′) is the Fourier transformed R(t, t′) with respect to t′. The last equation can
be rewritten as

y(t) =
1√
2π

∫
dω′ Rt(ω

′) · x(ω′) exp(−iω′t) (1.30)

where
Rt(ω

′) := R(t,−ω′) exp(iω′t) (1.31)

can be interpreted as the instantaneous spectral response to the component x(ω′) exp(−iω′t)
of the input.

This interpretation makes sense: As will be shown below, Rt(ω
′) does not change with

time t for a sample in a steady state; such system is often called a linear time-invariant
(LTI) system [Mey97]. Time-invariant means that, if an input x(t) induces an output y(t),
the temporally shifted input x(t + t0) will just induce the same but temporally shifted
output y(t + t0). Equation (1.29) then leads to R(t − t0, t

′ − t0) = R(t, t′) and especially

R(t, t′) = R(0, t′ − t), (1.32)
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1.8. Rapidly Changing Sample

such that the instantaneous spectral response (1.31) becomes

Rt(ω
′) = R(t = 0,−ω′) =: R(ω′),

which does not depend on time t. Therefore,

Ξ =

∣∣∣∣
1

ω′Rt(ω′)

∂Rt(ω
′)

∂t

∣∣∣∣

is a measure how quickly the sample changes its linear response within 1 cycle of an input
of frequency ω′.

For example, if Rt is the pump-induced change ∆χt = (∆εt − 1)/4π in the linear suscepti-
bility and fulfills Ξ � 1, the Kubo formula (1.17) can be used for the interpretation of χ
or the dielectric function ε. In the opposite case, the Kubo formula is probably not valid
any more: Its derivation assumes that the occupation numbers ρmm undergo only small
relative changes within 1 optical cycle 2π/ω [Czy04].

Before turning to an instructive example, some remarks are added:

• In frequency space, the response (1.30) reads

y(ω) =

∫
dω′ Rω−ω′(ω′)x(ω′). (1.33)

and reduces to the familiar relation

y(ω) = R(ω)x(ω) (1.34)

in the steady-state case because Eq. (1.32) then implies Rω−ω′(ω′) = R(t = 0,−ω′)δ(ω−
ω′).

• The definition (1.31) of the instantaneous response agrees with that proposed in
Ref. [Say94]. In this publication, the argumentation relies on the special example of
a rapidly changing plasma. Here, a definition based on more general considerations
is given.

• The above motivation of the instantaneous spectral response Rt(ω
′) started with the

elimination of the time t′ in R(t, t′) which is actually possible by any transformation
x(t′) 7→ x(σ′) with respect to an orthonormal basis set bσ′(t′). It can be shown, ho-
wever, that the Fourier basis bω′(t′) ∝ exp(−iω′t′) is the only basis set that results in
a t-independent expression for the transformed Rt(σ

′) if the sample is in equilibrium.
The proof mainly shows that ∂tRt(σ

′) = 0 only and only if the Fourier basis is used.

In the following we will mainly use Rt(ω
′) instead of R(t, t′) due to its easier interpretation

and since it reduces to the familiar expressions in the equilibrium case.
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1. Theoretical Background

Example: Spectrally Flat Response

For the sake of simplicity, we assume that the instantaneous response Rt(ω
′) does not

change over the spectrum of the input x(t′) which is centered at ω′
0 such that one can set

Rt(ω
′) ≈ Rt(ω

′
0). Then the response is simply a multiplication

y(t) = Re [Rt(ω
′
0) · xC(t)] (1.35)

with the analytic signal xC(t) [Die96]. The true signal x(t) is just the real part of the
analytic signal, x = Re xC. Equation (1.35) implies the following points:

• Due to the modulation of the input x(t) by Rt, new frequencies are created in the
output y(t). This effect is strong when Rt changes substantially within 1 period
2π/ω′ of the input signal, that is when Ξ ∼ 1.

• Rt can be measured by using input pulses peaking at different times τ . For example,
a delta-like input pulse x(t) ∝ δ(t − τ) yields y(t) ∝ Rτ (ω

′
0). This is the principle of

a pump-probe experiment.
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