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The function of non-coding RNA sequences is largely determined by their spatial
conformation. This is the secondary structure of the molecule, which is formed by
Watson–Crick interactions between nucleotides. Hence, modern RNA alignment
algorithms routinely take structural information into account. Essential tasks for
discovering yet unknown RNA families and inferring their possible functions are the
structural alignment of RNAs and the subsequent search of the derived structural
motifs. These tasks demand a lot of computational resources, especially for aligning
many long sequences, and it therefore requires efficient algorithms that utilize modern
hardware when available. A subset of the secondary structures contains pseudoknots,
which are overlapping interactions that add additional complexity to the analysis
and are often ignored in available software.

In this thesis I present LaRA 2 and MaRs, two SeqAn-based software tools that
implement algorithms for finding sequence-structure motifs in genomic sequences. In
contrast to other programs my tools can handle arbitrary pseudoknots. They use
multithreading for parallel execution and are implemented in modern C++ code for
maximal longevity and performance.

LaRA 2 is significantly faster than comparable software for accurate pairwise
and multiple alignments of structured RNA sequences. It uses a new heuristic for
computing a lower boundary to the solution and employs vectorization techniques
for speeding up the time-critical parts of the algorithm.

MaRs can be applied in a workflow right after LaRA 2 and derives sequence-
structure motifs from the structural alignments. The motifs are descriptors of the
RNA sequences’ properties and drive the search for homologs in genomic sequences.
MaRs employs a bi-directional index on the genomic sequences and an optimized
multithreaded search strategy for finding the matches really fast. The use of a thread
pool, effective pruning strategies, and a low memory footprint ensure that MaRs is
capable of processing extremely large data sets.
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Background
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1 Ribonucleic acid

RNA, short for ribonucleic acid, is a versatile biopolymer that is typically single-
stranded. It has a backbone composed of ribonucleotides, which are linked by
phosphodiester bonds. A ribonucleotide consists of a ribose sugar, a phosphate group,
and one of the four nucleobases adenine (A), cytosine (C), guanine (G), or uracil
(U). We use the characters A, C, G, and U to describe the sequence of nucleotides in
an RNA molecule, which is also called primary structure [Picardi, 2015,Parker et al.,
2016].

Similar to DNA (deoxyribonucleic acid), the nucleobases are able to build hydrogen
bonds with their complement: The complement of cytosine is guanine, and the
complement of adenine is uracil. However, as RNA consists usually of a single strand,
it extensively builds intramolecular base pairings between complementary parts. The
pattern of these pairings is denoted as secondary structure and is deeply discussed in
section 1.3. Before that, let us look at different types of RNA (section 1.1) with a
focus on long non-coding RNA (section 1.2).

1.1 Types of RNA

According to the central dogma of molecular biology, the genetic information is
transcribed from DNA to (coding) RNA, which in turn gets translated at the
ribosomes into proteins [Crick, 1958,Crick, 1970]. It came as a surprise to researchers,
when it was discovered that the majority of RNA in a eukaryotic cell did not code
for proteins. In fact, in mammalian cells the content of messenger RNA (mRNA),
which is the coding RNA, is only 3–7 % of the mass of total RNA [Palazzo and
Lee, 2015]. mRNA is either monocistronic, if it translates a single protein, which is
usually the case for eukaryotic mRNA, or polycistronic, if it can translate multiple
proteins [Kozak, 1983]. Since it became clear that the developmental and physiological
complexity of humans cannot be explained by protein-coding genes alone, the research
on non-coding RNA has drastically expanded [Wilusz et al., 2009].

Non-coding RNA (ncRNA) can be further categorized into housekeeping and
regulatory ncRNA [Ponting et al., 2009]. Housekeeping ncRNAs are expressed
constitutively, and for many cellular processes they work as key regulatory molecules
[Losko et al., 2016]. As figure 1.1 shows, there are ribosomal (rRNA), transfer
(tRNA), small nuclear (snRNA) and small nucleolar (snoRNA) RNAs in this group:

rRNA Ribosomal RNA is with 80–90 % the vast majority of RNA mass in a cell
[Palazzo and Lee, 2015]. As the name suggests, this type of ncRNA is the main
component of ribosomes, where protein synthesis takes place.
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Figure 1.1: A systematic scheme of RNA types. The main distinction is made
between the messenger RNA that contains the code for building proteins
and the group of non-coding RNAs. This group is further divided into
housekeeping ncRNAs, which are necessary for elementary functions of
the cell, and regulatory ncRNAs, which play important roles in gene
regulation, and are still subject to ongoing research.

tRNA Transfer RNA represents 10–15 % of a cell’s RNA. It is rather small and even
though there is less tRNA by mass than rRNA, the number of tRNA molecules
is about 10 times higher [Palazzo and Lee, 2015]. Its secondary structure looks
like a cloverleaf and while it accepts an amino acid on the one side, it has
the anti-codon on the opposite side. The anti-codon are three bases that are
complement to the code for the respective amino acid.

snRNA Small nuclear RNA (0.02–0.3 %) has about 150 nucleotides and is located
in the chromatin. It performs post-transcriptional modifications of mRNA and
builds the spliceosome for intron removal and maturation of mRNA.

snoRNA Small nucleolar RNA (0.04–0.2 %) has 60-300 nucleotides and is located in
the chromatin. It performs post-transcriptional modifications and maturation
of rRNA, snRNA and other cellular ncRNAs.

The group of regulatory ncRNAs has a large variety of functions like gene expression
control and enzymatic catalysis during splicing and translation. Regulatory ncRNAs
are divided into long and short ncRNA, where long ncRNA (lncRNA) has at least
200 nucleotides. Long ncRNA can be categorized into groups by location, sequence,
morphology, structure and function features, and therefore represents the broadest
class of ncRNAs [Losko et al., 2016]. As it also has the highest importance in this
thesis, the next section 1.2 is solely dedicated to lncRNA. For short ncRNA with
less than 200 nucleotides the most important types are micro RNA (miRNA), small
interfering RNA (siRNA), and PIWI interacting RNA (piRNA):
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1.2 Biological relevance of long non-coding RNA

miRNA Micro RNA is a very short (about 20–23 nucleotides), highly conserved
ncRNA. It plays an essential role in post-transcriptional regulation of gene
expression, and can silence mRNA molecules very specifically, e.g. by base-
pairing with complementary sequences [Bartel, 2009,Laganà et al., 2015].

siRNA Small interfering RNA is a double-stranded molecule with a length of 20–25
base pairs. It silences exogenous nucleic acids and undesired transcripts and
therefore maintains the genome integrity and is involved in the cell defence
[Laganà et al., 2015].

piRNA PIWI interacting RNA has a length of 21–35 nucleotides. It regulates gene
expression, silences transposable elements, and inhibits viral infection [Monga
and Banerjee, 2019]. PIWI is a regulatory protein with RNA binding site that
is responsible for stem cell and germ cell differentiation [Cox et al., 2000].

1.2 Biological relevance of long non-coding RNA

Long non-coding RNAs (lncRNAs) exhibit a surprisingly wide range of sizes, shapes
and functions in comparison to other RNAs. These features provide lncRNAs with
huge functional potential, as they have roles in all different aspects of gene expression.
There is currently much research carried out in order to study their functions, and
we still have little knowledge on this class of RNA. Experiments for their analysis are
very challenging, as their various functions depend on many aspects, like subcellular
localization, attraction to interaction partners, and dynamic changes in local cell
environments [Yao et al., 2019]. For validating the role of lncRNA, researchers often
conduct gain- or loss-of-function experiments, but it is very difficult to determine
which cellular process can be probed to yield an observable phenotype. In order to
keep pace with the fast progress in lncRNA discovery, more efficient analyses and
high-throughput approaches are needed [Sun and Kraus, 2015].

Transcription is not limited to protein-coding regions, and it is likely that over 90 %
of the human genome is transcribed [ENCODE Project Consortium et al., 2007]. Most
of the transcribed non-coding sequence is associated with lncRNA. However, Ponting
et al., 2009 hypothesize that a large proportion of proposed lncRNAs may instead
be artefacts of either experiment or computation, and represent e.g. fragments of
unprocessed pre-mRNAs. Nevertheless, a large amount of lncRNAs have been studied
that are regulated during development, exhibit a cell type specific expression, localize
to specific subcellular compartments, and are associated with human diseases [Wilusz
et al., 2009]. This shows that lncRNAs are, besides proteins, a cell’s key regulatory
molecules, as shown in figure 1.2.

LncRNAs serve as an organizational framework of subcellular structures [Wilusz
et al., 2009]. For instance, they act as a molecular scaffold to recruit and combine
with multiple regulatory proteins. Some attach to both DNA and protein, and add
methyl groups to the DNA, which can be interpreted as tagging parts of DNA as
active or inactive. Furthermore, they mediate chemical modifications to histone

5



1 Ribonucleic acid

Figure 1.2: Different regulatory functions of lncRNA in the nucleus and cyto-
plasm. The image is taken from Sun and Kraus, 2015. The nuclear
functions are interactions with chromatin modifiers (A) and transcription
factors (B) to alter epigenetic modifications and gene regulatory activities,
as well as inhibiting the activity of DNA-binding transcription factors
(C). In the cytoplasm, lncRNAs act as a sponge to miRNA to reduce
their targeting of mRNA (D), as a regulator for mRNA stability through
binding with the STAU1 protein (E), and as translation inhibitor (F).

proteins, which are associated to DNA and form chromatin fibres. The interaction
of DNA methylation patterns, histone modifications, and chromatin structure is
the central component of epigenetics, a field of study that aims to explain heritable
phenotypical changes that are not caused by DNA sequence alterations. In addition,
lncRNAs regulate the activity and location of proteins, and through allosteric effects
they are able to interact with different ligand proteins. Even the act of ncRNA
transcription alone can be sufficient to affect the expression of nearby genes positively
or negatively [Wilusz et al., 2009].
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1.3 Structure of ncRNA

It is now well-established that lncRNA molecules introduce an additional layer
in genetic information processing. They play a significant, active role in cell and
developmental biology and carry out many tasks that were previously attributed
exclusively to proteins. However, only a small fraction of lncRNA families have been
identified so far and many more can still be discovered [Mattick, 2005]. Structural
RNA elements are also involved in the control of virus replication [Viehweger et al.,
2019], transcription and translation, indicating that the usage of the RNA structure
features will be exploited in the near future for designing novel antiviral strategies [Lim
and Brown, 2017].

1.3 Structure of ncRNA

Comparing functionally related ncRNA molecules requires more than sequence in-
formation, because their function is primarily determined by their secondary structure,
which is often better conserved than the primary sequence. Hence, sequence-structure
alignments reward the conservation of structural interactions of the ncRNA molecules,
which is a key property for many applications, e.g. finding homologous structures of
known ncRNA families [Kalvari et al., 2018], phylogenetic fingerprinting as conducted
for example for the ITS2 database [Wolf et al., 2005], or the computation of a con-
sensus structure of a set of related RNA molecules [Hofacker et al., 2004,Torarinsson
et al., 2007,Bauer et al., 2007,Will et al., 2007,Xu and Mathews, 2011,Tabei et al.,
2008,Wei et al., 2011,Meyer and Miklós, 2007,Tan et al., 2017].

Owing to the importance of ncRNA molecules, there has been a steady stream of
developments for analysing the molecules computationally. Specific rules govern RNA
structure formation, therefore structured RNAs provide clear patterns of selection
with base pairing patterns directly reflecting structural conservation [Rivas et al.,
2017]. In other words, two nucleotides that form a base pair may be changed by
mutations but preserve the propensity to form a valid base pair through compensatory
mutations. Having a good model of an RNA structure (or a secondary structure as
proxy of the 3D structure) is therefore crucial to elucidate its function [Gutell et al.,
1992].

Different algorithms for computing the best secondary structures from an RNA
sequence are discussed in section 2.1. However, it is important to note that there is
generally not a single conformation of an RNA structure in a living cell, as it is very
dynamic and can be dependent on different reaction conditions, like temperature,
somatic variation, metabolite concentration, ATP depletion, and knockdown of
interacting proteins [Qian et al., 2019].

For the analysis of secondary structure it is helpful to decompose the whole
structure into different parts, based on the presence or absence of hydrogen bonds
within the molecule. Hydrogen bonds are formed between the canonical Watson-Crick
pairs, which are the stable complementary CG and AU base pairs, as well as between
Wobble pairs, which denote weaker GU pairings. The more stable an interaction is,
the more often it occurs. Thus, the frequency of different base pairs across all types

7



1 Ribonucleic acid

A C G U

A 2.22% 1.81% 5.66% 22.94%
C 0.36% 57.21% 0.59%
G 0.74% 7.40%
U 1.08%

Table 1.1: The relative base pair composition in RNA helical structures.
Canonical and Wobble pairs are highlighted. The numbers are based on
the structures present in the Nucleic Acid Database [Berman et al., 1992]
and are computed from absolute values published in Olson et al., 2009.

Figure 1.3: Secondary structure elements. A secondary structure consists of a
collection of the following elements: stem, hairpin, multiloop, interior
loop, bulge loop, pseudoknot, and single-stranded regions. The image is
taken from the rPredictorDB user documentation1.

of ncRNAs, which is shown in table 1.1, gives a good picture of their likelihood and
chemical stability.

Based on the locations of base pairs, the following structure components are
considered. Figure 1.3 represents them graphically.

Single-stranded region This is a part of a sequence that is not involved in any base
pairings. It is also called Loop.

Stem A stem consists of a sequence of consecutive base pairings. It requires two
parts of the sequence to have reverse complementary nucleobases.

Hairpin loop It is a single-stranded region, which links the two ends of a stem.

1http://rpredictor.ms.mff.cuni.cz/documentation/_images/secondary-structures.png

(01.06.2021)
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1.4 Pseudoknots

Interior loop An interior loop consists of two single-stranded regions, which are
located on both strands between two stems.

Bulge loop This is a single-stranded region, which is located on one strand between
two stems. On the opposite strand the two stems are adjacent to each other.
It can be also considered as a special interior loop, where one of the loops has
length zero.

Multiloop A junction that possibly contains single-stranded regions and is adjacent
to multiple stems.

Pseudoknot Crossing interactions of loop regions. Typical pseudoknots are between
two hairpin loops (so-called Kissing Hairpins, as shown in figure 1.3), but also
other types are possible, e.g. hairpin loop with bulge loop. As pseudoknots
play an important role in this thesis, the next section is devoted to them.

As a compact representation of a secondary structure, the dot-bracket notation has
been established by Hofacker et al., 1994. In its basic form, it uses the dot character to
denote an unpaired site and matching parentheses to denote a base pair. For instance,
a stem of length 3 with a hairpin loop of length 4 is written as (((....))). A
dot-bracket string always has the same length as its corresponding sequence and with
only a single bracket type it requires structures to be non-crossing [Hofacker et al.,
1994]. For pseudoknots, the dot-bracket notation has been extended by additional
bracket types, like curly, squared and angle brackets ({}[]<>), as well as matching
pairs of uppercase and lowercase letters (Aa Bb etc.). This is the so-called WUSS
(Washington University Secondary Structure) notation.

1.4 Pseudoknots

About 12% of known RNA structures contain pseudoknots [Danaee et al., 2018], which
are crossing interactions of loop regions. In figure 1.4, the difference between secondary
structures without and with pseudoknots is visualized. Within pseudoknotted
structures the base pairing is not well nested, i.e. for two base paired positions (i, j)
and (h, k) either i < h < j < k or h < i < k < j holds. In other words, base pairs
overlap each other with respect to their sequence position. Pseudoknot base pairs
are annotated as the minimal set that results in a pseudoknot-free structure when
removed [Danaee et al., 2018]. In figure 1.4b the respective base pairs are marked in
red.

The terms page number or book thickness of a pseudoknotted structure [Haslinger
and Stadler, 1999] are used to denote the complexity of a pseudoknot. If we consider
a page as a set of nested (i.e. pseudoknot-free) interactions, then the page number is
defined as the minimal number of pages needed to describe the structure [Haslinger
and Stadler, 1999]. From this follows that a pseudoknot-free structure always has
page number 1, while a structure with a pseudoknot has at least page number 2. In
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1 Ribonucleic acid

( )( ) ( )( )( )( )( )( ). . . . . . .

(a) In a nested structure the interactions do not cross each other.

( )( )( )[ ][ ][ ]( )( ). . . . . . .

(b) In a structure with a pseudoknot some interactions are crossing.

Figure 1.4: Pseudoknots have crossing (non-nested) interactions. The com-
parison of two linearly drawn structures without and with a pseudoknot
(marked in red) is shown. The blue circles represent the nucleobases,
and the green line marks the backbone of the RNA molecule. Below the
nucleobases there is the dot-bracket notation of the structure: While for
a nested structure one type of parentheses is sufficient, we need to use at
least two types to represent a pseudoknot.

terms of the extended dot-bracket notation introduced in the previous section, the
page number can be interpreted as the minimal number of bracket types that are
required in order to represent all the base pairs of a structure.

Pseudoknots are difficult to predict with standard methods that use dynamic
programming or stochastic context-free grammars that rely on the nested property
[Jabbari et al., 2018]. In fact, the majority of today’s software for structure prediction
and alignment does not recognize pseudoknots, and the programs that do support
them are more complex and are therefore more limited regarding the input size [Rivas
and Eddy, 1999,Dirks and Pierce, 2004,Möhl et al., 2010].

From a biological viewpoint, pseudoknots must not be neglected, as they play
various important roles. For instance, they can be catalytically active or induce
ribosomes to slip into alternative reading frames, which results in altered gene
expression [Staple and Butcher, 2005]. This gives rise to the need for algorithms
that can actually predict and analyse pseudoknots in RNA structure. The programs
LaRA 2 and MaRs, which are discussed later on in this thesis, are both able to analyse
pseudoknotted RNA.
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2 Computational RNA analysis

In the light of the biological importance of RNA that we have discussed in the
previous chapter, let us take a look at the computational analysis of RNA molecules.
In the last decades, much progress has been made in the computation of the most
likely structures of an RNA molecule, as well as in the comparison of these structures.

This chapter is divided into three sections. Section 2.1 focuses on secondary struc-
ture prediction and demonstrates how structure predictions are obtained from one
or more sequences. Having several related sequences with corresponding structures
available, the best way of extracting information is a sequence-structure alignment,
which we discuss in section 2.2. We look at methods for structure alignments, and
observe that we can identify conserved structural motifs from these alignments. The
positions of these structural motifs are likely the functional sites of the respective
RNA class. Therefore, in the final section 2.3, we see how RNA can be classified
based on conserved structure or sequence features.

2.1 Prediction of secondary structure

A secondary structure is a simplification of the complex, three-dimensional folding
of an RNA molecule, as we have seen in section 1.3. Besides the backbone, it
emphasizes the hydrogen bonds between the nucleobases within the RNA molecule.
With the knowledge which bases pair with each other, we can computationally predict
secondary structures. Note that each nucleobase can only interact with one partner
and that the interactions are undirected.

2.1.1 Base pair maximization

The easiest approach is to maximize the number of canonical base pairs, as it is the
purpose of the Nussinov algorithm. It is a recursive algorithm that employs dynamic
programming by calculating the best structure for small subsequences and extending
them step by step. This algorithm cannot detect pseudoknots and the stability of
GC pairs is considered equal to AU pairs [Nussinov and Jacobson, 1980].

The input is a sequence x = (x1, x2, . . . , xL) of length L. We compute a matrix N
of size L× L that contains at N (i, j) the maximal number of base pairs that can be
formed for the subsequence (xi . . . xj). Thus, the maximal number of base pairs in
the whole sequence is the value N (1, L).

11
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xi xj−1

xj
xj

(a) Extension of a
substructure
with a base xj .

xi+1 xj−1

xi xj
xj

(b) Extension of a
substructure with a
base pair xi, xj .

xi

xk−1 xk xj

xj−1xk+1

(c) Combination of two substructures
with a closing base pair xk, xj .

Figure 2.1: The case distinction in Nussinov’s algorithm. The blue substruc-
tures are extended by the red nucleobases. The indices of relevant
nucleobases are shown according to equation (2.2). The green line indic-
ates the backbone of the exemplary RNA molecule.

Because of the biological constraint that a nucleobase does not interact with itself
nor its neighbour, we initialize the values for very short subsequences with zero:

for 1 ≤ i ≤ L : N (i, i) = 0

N (i, i− 1) = 0
(2.1)

We define the notation xi ▷◁ xj, which denotes the condition that xi and xj
complement each other. The remaining matrix entries can be calculated with the
recurrence:

for 1 ≤ i < j ≤ L : N (i, j) = max

 N (i, j − 1)
max
i≤k<j
xk ▷◁ xj

N (i, k − 1) + N (k + 1, j − 1) + 1

(2.2)
The first case adds an unpaired base xj to the optimal substructure of (xi . . . xj−1)

without increasing the score, as shown in figure 2.1a. In the second case, for k = i,
we increment the score for adding a complementary base pair xi, xj to the optimal
substructure of (xi+1 . . . xj−1), as the value evaluates to 0 + N (i + 1, j − 1) + 1.
This case is demonstrated in figure 2.1b. Furthermore, adding an unpaired base
xi to the optimal substructure of (xi+1 . . . xj) does not increase the score, because
the condition xi ▷◁ xj is false. For k > i we introduce a bifurcation, as shown in
figure 2.1c: The two optimal substructures of (xi . . . xk−1) and (xk+1 . . . xj−1) are
combined, while adding a final matching base pair xk, xj to the second substructure,
which implies a score increment.

N (i, j) is filled with sections of increasing length j − i, so the entries N (i, j − 1),
N (i, k − 1), and N (k + 1, j − 1) have been already computed before and can be
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2.1 Prediction of secondary structure

read from the matrix. Therefore, the algorithm runs in O(L3) time and O(L2)
space. The maximal number of base pairs for the whole sequence x is the value
in cell N (1, L). Starting from this cell, we can trace back the recursion cases that
yielded the maximum for the respective cell, in order to retrieve an optimal secondary
structure. The trace-back is computed in O(L2) time [Nussinov and Jacobson, 1980].

However, the algorithm comes with some limitations: Crossing structures cannot
be predicted, so the result never contains pseudoknots. Furthermore, the base pair
maximization does not differentiate the structures well enough, so that multiple, quite
different optimal structures may exist with the same base pair count. Therefore, it is
not enough to report only one structure. This can be overcome with extensions of the
algorithm or for instance with the algorithm by Wuchty et al., 1999. Nevertheless,
the structures are biologically not very relevant, because important aspects are
neglected, like the profit of base pair stacking, different loop sizes and the properties
of multi-loops. The Zuker algorithm, which is introduced in the following subsection,
improves this by defining energy terms for these structure properties.

2.1.2 Free energy minimization

Instead of maximizing the number of base pair interactions, we use energy terms to
obtain a more realistic picture of the stability of an RNA structure. The free energy
of a structure is a measure for its thermodynamic instability, which means that a
structure with high free energy is not stable and likely to change, while a structure
with low free energy is rather stable and in theory more likely to occur.

The algorithm by Zuker and Stiegler, 1981 computes for a given RNA sequence the
optimal secondary structure, considering the free energy contributions of different
types of structure components. For each hairpin, stem, interior loop, and multiloop
(compare figure 1.3) an individual free energy value is obtained based on their
properties: while unpaired sites in a loop increase the free energy amount, canonical
base pairs have a negative contribution. A bulge loop is considered as an interior
loop with one empty loop, and pseudoknots are not detected. The free energy of the
whole RNA structure is the sum of the energies of its components.

In order to find the minimum free energy (MFE) structure, the algorithm has
to visit each possible conformation and compare their energies. This is performed
efficiently in the style of the Nussinov algorithm: a recursion starts from the shortest
interactions and extends these substructures until the whole sequence is covered.
The algorithm runs in O(L2) space and O(L4) time to fold a sequence of length L.

The run time complexity is caused by the interior loops, where for each base
pair (xi, xj) we are looking for another base pair (xh, xk) with h < i < j < k that
closes the loop. This can be overcome by a heuristic that limits the loop size to a
constant amount, but it may compute a suboptimal structure. Another approach by
Lyngsø et al., 1999 uses an optimization for the interior loops that reduces the time
complexity to O(L3) by utilizing currently used energy rules.

The obtained MFE structure gives us a much more realistic picture of the in-
teractions that an RNA sequence builds, compared to the base pair maximization.
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2 Computational RNA analysis

However, a single structure is often not enough for reliable RNA comparisons, as we
see in the following subsection.

2.1.3 Base pair distribution

In section 1.3, we discussed that there is not a single conformation of an RNA
structure, but rather a large variety of structures, of which we try to find the most
likely ones. Therefore, it is more meaningful to compute individual probabilities
of base pairings, which represent the whole ensemble of structures, than a single
minimum free energy (MFE) structure.

Let Ψ be the set of all possible structural conformations of an RNA sequence.
In equilibrium, the likelihood of the structures are determined by the Boltzmann
distribution, so that the probability pψ of a particular structure ψ ∈ Ψ can be
calculated as follows:

pψ =
1

Z
e

−E(ψ)
RT with Z =

∑
ψ∈Ψ

e
−E(ψ)
RT

The parameter E(ψ) is the free energy of conformation ψ, T is the temperature,
and R the universal gas constant. The normalization denominator is the canon-
ical partition function Z, which is the sum of the probabilities of all accessible
conformations [Pa lkowski and Bielecki, 2019].

Knowing the probability of a particular structure enables us to calculate base
pairing probabilities. Let Ψij ⊆ Ψ be the set of all possible structural conformations
of sequence x, in which xi and xj form a base pair. Then the probability P(i, j) that
xi and xj form a base pair can be calculated as the sum of the probabilities of all
these structure conformations:

P(i, j) =
∑
ψ∈Ψij

pψ

The base pair probabilities can be well visualized in a so-called dot plot, as shown
in figure 2.2. It shows a matrix labelled with the sequence in both dimensions, and
there are black dots in the matrix cells, whose size represents the probability of the
base pairing between the respective nucleobases.

McCaskill, 1990 introduced an algorithm to efficiently compute the partition
function in O(L2) space and O(L3) time for a sequence of length L. It follows the
dynamic programming scheme of the algorithm by Nussinov and Jacobson, 1980, i.e.
we start with the computation of the partition functions of small subsequences, store
the intermediate results in a matrix, and extend until the whole sequence is covered.
It employs the energy model by Zuker and Stiegler, 1981 with the optimization to
O(L3) complexity by Lyngsø et al., 1999.

As we have seen above, the base pair probabilities can be obtained by adding up
the terms of the partition function, whose structure contains the respective base
pair. Although the considered structures in the partition function cannot contain
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Figure 2.2: A dot plot represents base pair probabilities. A subsequence
of a murine hepatitis virus (accession NC 001846) is displayed in both
horizontal and vertical directions and the plot shows for each pair of
nucleobases the probability that this pair forms an intramolecular inter-
action. In the upper triangular matrix the size of the dots corresponds to
the probabilities: The larger a dot is drawn, the higher is the probability
it represents. The lower triangular matrix displays only the optimal
structure, i.e. there is at most one dot per column or row.

pseudoknots through the application of dynamic programming [McCaskill, 1990],
the resulting base pair probabilities may still point out the interactions that are
likely involved in a pseudoknot. This would not be possible if only one optimal
structure was computed, as the algorithm needs to decide for the strongest of crossing
interactions and omit the other.

The algorithm is implemented in the RNAfold tool [Lorenz et al., 2011], which
is widely used. Recently, parallel and cache-efficient code of the algorithm for
the TRACO and PLUTO compilers have been developed [Pa lkowski and Bielecki,
2019,Zhao and Sahni, 2020]. Furthermore, extensions of the algorithm were published
that include pseudoknots, but they are not feasible for the analysis of long sequences:
The algorithm by Rivas and Eddy, 1999 requires O(L6) time and O(L4) space, and
the algorithm by Dirks and Pierce, 2004 runs in O(L5) time and O(L4) space.
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2 Computational RNA analysis

2.2 Sequence-structure alignment

The computation of biologically meaningful alignments is challenging for RNA
sequences whose nucleobase identity is under 60% [Capriotti and Marti-Renom,
2010]. As in RNA molecules the secondary structures are evolutionary conserved,
covariation often becomes the strongest available signal. Standard sequence aligners
like ClustalW [Thompson et al., 1994], MAFFT [Katoh et al., 2002], or T-Coffee

[Notredame et al., 2000] assume site independence and cannot take this information
into account [Chatzou et al., 2016].

In a set of homologous RNA sequences, we want to find conserved elements,
so-called motifs, that are likely relevant for the RNA’s function. These motifs can
be extracted from a more specialized alignment that takes both the sequence and
the structure into account. The existing methods for RNA alignment can be divided
into three categories: (1) first align then fold, (2) first fold then align, and (3)
sequence-structure alignment.

The first category computes a sequence alignment of the RNA sequences, and then
tries to find the best MFE structure that represents the alignment. Existing software
tools for this approach are e.g. SeqAn [Reinert et al., 2017], MAFFT [Katoh et al., 2002],
and ClustalW [Thompson et al., 1994] for the alignment, and RNAalifold [Lorenz
et al., 2011], RNAalishape [Janssen and Giegerich, 2015], and Pfold [Knudsen and
Hein, 2003] for the secondary structure. One problem with this approach is that the
sequence alignment must be very good to form a basis for structure prediction, i.e.
it must correctly align the biologically correspondent nucleobases of the sequences.
This is surprisingly often not the case, as a recent protocol by Warnow, 2021 shows.
The other problem is that functional RNA structures often reside in non-conserved
parts of the sequence [Pervouchine, 2018]. This is unfortunate for this approach, as
the regions of the highest uncertainty in the alignment are the most important for
the structure prediction.

The second category finds a secondary structure for each individual sequence, either
computationally as discussed in the previous section or experimentally with e.g. NMR
spectroscopy, and then overlaps these structures in order to find common elements.
For the second step it is common to model a structure as a tree, as introduced by
Shapiro and Zhang, 1990 in their RNAdistance tool, and applied also in RNAforester

[Höchsmann, 2005]. Other approaches use graphic vector representations [Liao and
Wang, 2004] or the transformation of a possibly pseudoknotted structure into a
linear sequence [Liu and Wang, 2006]. This category is explored to a much lesser
extent [Pervouchine, 2018] and suffers from the problem that MFE structures often
do not model the biologically relevant interactions.

Under a sequence-structure alignment we understand a structural information-
guided alignment of RNA sequences [Tan et al., 2017]. The benefit is that both
sequence and structure support the computation, as demonstrated in figure 2.3. How-
ever, considering structural information adds complexity to the problem of aligning
sequences. The original algorithm for simultaneous alignment and folding by Sankoff,
1985 has the time complexity O(L6) for the pairwise case with sequence length
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2.2 Sequence-structure alignment

Figure 2.3: A sequence-structure alignment. The scoring function of this align-
ment considers equal nucleobases as well as matching secondary structure
elements (blue lines).

L. The Sankoff algorithm applies dynamic programming and essentially integrates
sequence alignment by Needleman and Wunsch, 1970 and structure alignment by
Nussinov and Jacobson, 1980. The tool LocARNA [Will et al., 2012] reduces the
time complexity to O(L4) by using a progressive alignment scheme. A quadratic
complexity is reached by the programs SPARSE (part of LocARNA) [Will et al., 2015]
and LaRA [Bauer and Klau, 2005].

The most recent tool (as of May 2021) is RNAmountAlign [Bayegan and Clote,
2020], which uses mountain distance for pairwise structural pairwise alignments and
runs in O(L3) time for sequences of length L. Bayegan and Clote, 2020 demonstrate
besides RNAmountAlign a good performance for LocARNA [Will et al., 2007] and
T-LaRA [Bauer et al., 2007], which we investigate later on in this thesis. An overview
of 71 tools or algorithms related to sequence-structure alignment is published by
Lalwani et al., 2014.

2.2.1 Multiple alignment

In most cases, we need to align more than two sequences, and we denote such an
alignment as multiple sequence alignment (MSA). In an optimal MSA the aligned
nucleobases are maximally similar according to some specified criteria. Even when
neglecting the structure, the computation of an accurate MSA is an NP-complete
problem [Chatzou et al., 2016]. Adding the secondary structure conservation as an
alignment criterion, the problem becomes even more difficult. All existing algorithms
for multiple sequence-structure alignment (MSSA) use heuristics, and finding a good
solution is still a challenging task [Chatzou et al., 2016,Warnow, 2021].

The Sankoff algorithm, which is the foundation of most of the algorithms de-
scribed above, has a time complexity of O(L3n) and memory requirements of the
order of O(L2n) for aligning n sequences of average length L [Sankoff, 1985], which
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is prohibitive for most use cases. Therefore, different approximations have been
implemented.

Some programs restrict the computation of the dynamic programming matrix to
a band around the main diagonal. This limits the size and shape of the structure
elements, but avoids computations, which are likely not in the optimal solution.
However, this is problematic for the analysis of eukaryotic or virus RNA with
long-range interactions, a field, which still lacks efficient computational methods
[Pervouchine, 2018,Marz et al., 2014]. Tools with banded alignment include Dynalign
[Mathews and Turner, 2002], Foldalign [Gorodkin et al., 1997], and SCARNA [Tabei
et al., 2008].

The majority of tools, like MARNA [Siebert and Backofen, 2005], PMcomp [Hofacker
et al., 2004], LocARNA [Will et al., 2007], FoldAlignM [Torarinsson et al., 2007],
T-LaRA [Bauer et al., 2007], and R-Coffee [Wilm et al., 2008], use progressive
multiple alignment to reduce the complexity of the MSSA problem. Progressive
alignment is a heuristic developed originally for protein sequences by Feng and
Doolittle, 1987 with the idea to trust the comparison of recently diverged sequences
more than those that evolved in the distant past. Therefore, the approach uses the
once a gap — always a gap policy, as changing gap choices later would increase the
weight of more distantly related sequences. The algorithm computes in a first step
n(n−1)

2
pairwise alignments from all combinational pairs of the given n sequences.

With the help of a guide tree, which groups the most similar alignments together,
the alignments are progressively combined to larger multiple alignments. The famous
ClustalW tool [Thompson et al., 1994] implements this strategy for multiple sequence
alignment.

The main problem of progressive alignment is that errors in the initial alignments
are propagated to all subsequent steps. This can be overcome with consistency
approaches, as the tools T-Coffee [Notredame et al., 2000] and MAFFT [Katoh et al.,
2002] implement them. They are much more reliable tools for progressive multiple
alignment, because they incorporate the information of all other sequences to the
initial alignments, and therefore minimize the errors that are propagated to the next
steps. The consistency paradigm can be applied to MSSA, e.g. the tool T-LaRA uses
LaRA for pairwise sequence-structure alignment and combines these progressively with
T-Coffee. The X-INS-i extension [Katoh and Toh, 2008] of MAFFT goes one step
further and incorporates structural information in the progressive multiple alignment.
Based on the structural pairwise alignments from LaRA or SCARNA, and the base pair
probabilities from McCaskill’s algorithm, it adds a so-called four-way-consistency
score contribution to the progressive alignment, which favours base pair interactions
of high probability in combination with a high pairwise similarity of the involved
nucleotides.

2.2.2 The algorithm of LaRA

As described in the previous paragraph, LaRA computes a pairwise sequence-structure
alignment. Here, we want to look deeper into the algorithm, as in part II of this
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2.2 Sequence-structure alignment

Definition 1. Let S be a sequence s1, . . . , sn of length n over the alphabet
⌃ = (A,G,U,C,�). A paired base (i, j) is called an interaction, if si 6=
� and sj 6= � and if (i, j) forms a Watson-Crick-pair. The set P of
interactions is called the annotation of sequence S. Two interactions are
said to be in conflict, if they share one base. A pair (S, P ) is called an
annotated sequence.

Note that a structure where no pair of interactions is in conflict with
each other forms a valid secondary structure of an RNA sequence.

We are given two annotated sequences (S1, P1) and (S2, P2). In graph-
theoretic terms the input can be modeled as a graph G = (V,A[I) where
the set V denotes the vertices of the graph, in this case the letters of the
two sequences, a set A of edges between vertices of the two input sequences
(the alignment edges) and I the set of interaction edges between vertices
of the same sequence. The left side of Fig. 1 shows such an input graph.
Dashed lines are interaction edges, solid lines are alignment edges.

Fig. 1. Input graph for structural alignments and realized interaction
matches

Two alignment edges (a1, b1) and (a2, b2) are said to be in conflict,
if a1 < a2 ! b1 < b2 or a1 > a2 ! b1 > b2 is not satisfied. Visually
stated, alignment edges that are in conflict cross or touch each other. A
subset A of A is called an alignment, if no alignment edges are in conflict.
Graph-theoretically, an alignment is a non-crossing matching.

Two interaction edges i = (i1, i2) 2 P1 and j = (j1, j2) 2 P2 are said
to be realized by an alignment A if and only if the alignment edges (i1, j1)
and (i2, j2) are realized by A. The pair (i, j) is called an interaction match.
Note that (i, j) is an ordered tuple, that is, (i, j) is distinct from (j, i).
The right side of Fig. 1 shows four interaction matches that are realized
by the alignment (indeed it shows a preserved pseudoknot).

Each alignment edge and interaction match is assigned a positive
weight representing the benefit of realizing this edge or the match. In

(a) An example input graph.
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and (i2, j2) are realized by A. The pair (i, j) is called an interaction match.
Note that (i, j) is an ordered tuple, that is, (i, j) is distinct from (j, i).
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by the alignment (indeed it shows a preserved pseudoknot).

Each alignment edge and interaction match is assigned a positive
weight representing the benefit of realizing this edge or the match. In

(b) Interaction matches.

Figure 2.4: LaRA’s graph model for structural alignments. The vertices are
the nucleobases of the two sequences, the dashed lines are interaction
edges and the solid lines represent the alignment edges. The figures are
taken from Bauer and Klau, 2005.

thesis I present my re-implementation of the tool. Unless cited otherwise, the content
of this subsection is based on Bauer and Klau, 2005.

The main idea of LaRA is to formulate an integer linear program (ILP) based on a
graph representation of the sequence-structure alignment. With the ILP we aim to
find the alignment, which maximizes the combined sequence-structure score.

Given two sequences x, y and their base pair probabilities Px,Py, we model a
graph G = (V,A ∪ I). In the graph, the vertices V are the nucleobases of the two
sequences x and y. The graph’s vertices are connected by two distinct kinds of edges,
as demonstrated in figure 2.4a:

1. A set A of Alignment edges (solid lines) that link vertices from sequence x with
vertices from sequence y. An edge (xi, yj) ∈ A models the alignment of xi with
yj, i.e. the i-th character of the first sequence with the j-th character of the
second sequence. Two alignment edges (xa, yc) and (xb, yd) are in conflict, if
they touch or cross each other, i.e. a < b⇒ c < d or b < a⇒ d < c is violated.
An alignment is a subset A ⊆ A, where no alignment edges are in conflict.

2. A set I of Interaction edges (dashed lines) that represent intramolecular struc-
tural interactions, and therefore form connections among the vertices of a
sequence. An edge (xi, xj) ∈ I represents a base pair interaction of the i-th and
j-th nucleobase in sequence x. An ordered pair of interaction edges (ix, iy) ∈ I2

with ix = (xa, xb) and iy = (yc, yd) is called an interaction match, if and only if
the incident alignment edges (xa, yc) and (xb, yd) are realized by the alignment
A. Figure 2.4b shows an example of two (pseudoknotted) interaction matches.

For incorporating a score, we annotate the edges with weights. The weight wl of
an alignment edge l is the score of aligning the two incident nucleobases, which given
by the Ribosum65 matrix [Klein and Eddy, 2003]. This 5 × 5 matrix contains the
score for all combinations of the four RNA nucleobases and a wildcard symbol. The
score is a positive number for equal nucleobases (i.e. AA, CC, GG, and UU), and a
negative number otherwise (e.g. AC, NU, etc.).
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2 Computational RNA analysis

The weight wlm of an interaction match realized by two alignment edges l = (xa, yc)
and m = (xb, yd) is derived from the respective base pair probabilities Px(a, b) and
Py(c, d). In order create an additive scoring scheme from the probabilities, we
transform them to the logarithmic space [Bauer et al., 2008]:

wlm =
1

2
ln

(Px(a, b)
pmin

)
+

1

2
ln

(Py(c, d)

pmin

)
(2.3)

The value pmin = 0.003 is the minimum probability that is considered to be an
interaction, i.e. for any entry P(i, j) < pmin there is no corresponding interaction
edge. Note that wlm and wml are distinct variables (with the same value), as the
pair (l,m) of an interaction match is ordered.

The graph is subject to some constraints in order to model a valid alignment:
Every vertex is incident to at most one interaction edge (2.5). The end nodes of each
interaction match must be part of the alignment A (2.5 and 2.7). No alignment edges
are in conflict (2.6). Each two related interaction matches (where the pair is inverted)
must be both either present or absent (2.7). These constraints can be modelled as
an ILP, where the objective function aims to maximize the score achieved by the
weights of the interaction and alignment edges, as equation (2.4) shows.

max
∑
m∈A

∑
l∈A

wlmblm +
∑
m∈A

wmbm (2.4)

s. t.
∑
m∈A

blm ≤ bl ∀l ∈ A (2.5)∑
l∈X

bl ≤ 1 ∀ sets of crossing alignment edges X (2.6)

blm = bml ∀l,m ∈ A, l < m (2.7)

b ∈ {0, 1} (2.8)

The boolean variable bl has value 1, if and only if l ∈ A. Analogously, blm = 1 if
and only if the alignment edges l and m realize an interaction match.

Because solving the ILP is an NP-hard problem, Bauer and Klau, 2005 use Lagrange
Relaxation to simplify the original problem. Practically, this means dropping the
constraint of equation (2.7) and penalizing its violation in the objective function:

max
∑
m∈A

∑
l∈A

wlmblm +
∑
m∈A

wmbm +
∑
m∈A

∑
l∈A
l<m

λlm(blm − bml) (2.9)

The λlm variables in equation (2.9) are Lagrange multipliers, and the task is to
find multipliers that provide the best upper bound to the original problem. With
λml = −λlm for l < m and λll = 0 we can note the relaxed problem as ILP with
constraints 2.5, 2.6, 2.8, and the following objective function.

max
∑
m∈A

∑
l∈A

(λlm + wlm)blm +
∑
m∈A

wmbm (2.10)

20



2.3 RNA homology search

The relaxed problem is a pairwise sequence alignment problem with a position-
specific score. A formal proof can be found in Bauer et al., 2008. In short, for each
alignment edge we can compute the maximum score that it can contribute to the
alignment by choosing the outgoing edge with maximum weight wlm that is not in
conflict and add the edge’s own weight wl. The score of each alignment edge gives
an entry in a position-specific score matrix (PSSM), which is then used by a global
alignment algorithm, e.g. by Needleman and Wunsch, 1970.

We denote the resulting alignment the relaxed solution, because it may violate the
constraint 2.7. Its score zU is an upper bound for the optimal valid solution, because
the computed alignment is optimal with respect to fewer constraints.

If for all pairs of alignment edges l and m the equation blm = bml holds, then
we have found the optimal valid solution to the original problem. Otherwise, some
interaction edges contradict each other.

Given the fixed set A of active alignment edges, we have to find a subset of
interaction edges such that each nucleotide is paired with at most one other nucleotide
and the interactions have the maximum weight. This is a general maximum weighted
matching problem [Bauer and Klau, 2005], which is discussed in section 4.4. The
result is a valid structural alignment and its score zL is a lower bound for the solution
of the original problem.

Overall, LaRA iteratively solves the relaxed problem by employing iterative sub-
gradient optimization. The Lagrange multipliers λ are incorporated into the scoring
matrix. In each iteration, from the alignment a new lower bound is computed by
finding the best structural interactions of this alignment and the Lagrange multipliers
are updated accordingly. The solutions get increasingly better through the iterations
and the bounds zU and zL provide a quality guarantee after any number of iterations.
When the bounds coincide, the optimal solution has been found.

2.3 RNA homology search

As we have seen in chapter 1, one of the major challenges with lncRNA is linking
sequence and function. Sequence alignment requires relatively long regions of high
sequence conservation, which lncRNAs do not have. Thus, a better way is the
detection of rather short conserved motifs within long and rapidly evolving transcripts.
[Constanty and Shkumatava, 2021]

In the past, a genome-wide annotation of non-coding RNA was restricted to
homologs of already identified RNA families [Griffiths-Jones, 2007]. There are
specialized algorithms that spot a particular RNA family, like tRNAscan-SE [Chan
and Lowe, 2019] and ARAGORN [Laslett and Canback, 2004] for tRNA, or miRscan [Lim
et al., 2003] and miRseeker [Lai et al., 2003] for miRNA. Although they work really
well and efficient within their scope, it is tedious to invent new algorithms for each
RNA family, and it is impossible to discover new families with them.

Another class of algorithms is more general and can be applied to all families
of RNA. These require known properties of the families, like patterns, motifs, or
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2 Computational RNA analysis

profiles. For instance, PatSearch [Grillo et al., 2003] and Structator [Meyer et al.,
2011] work with patterns, RNAMotif [Macke et al., 2001] takes structural motifs as
input, and Infernal [Nawrocki and Eddy, 2013] as well as ERPIN [Lambert et al.,
2004,Prince et al., 2022] work with profiles.

According to Macke et al., 2001, the benefits of structural motifs over pattern-based
descriptors are the ability to incorporate context information. A motif allows for
different variations in sequence or loop length with individually assigned scores.

For user-defined patterns and motifs, the specification of RNA structure and
sequence constraints must be defined in one of several descriptor languages, which
are often specific to a particular tool. Beyond their need for a-priori knowledge about
the structure of the RNA family, a good understanding of the exact requirements is
necessary, since too subtle or tight constraints can easily disturb the balance between
specificity and sensitivity [Gautheret and Lambert, 2001].

The advantage of profile-based approaches is that they generate statistical profiles
automatically from a multiple (structural) alignment and thus do not need the
descriptor language. A profile is a statistical model that incorporates scores for
sequence and secondary structure. A group of such tools is based on Stochastic Context
Free Grammars (SCFG). They derive their statistical model as sets of production
rules with associated probabilities [Gautheret and Lambert, 2001]. However, these
tools cannot model pseudoknots and suffer from high computational demands.

One such SCFG-based tool is Infernal, which is very successful and probably one
of the most frequently used tools in the field of RNA homology search. It computes
consensus secondary structure profiles, so-called covariance models (CMs). These
can be used for homology searches in a sequence database, or for computing novel
alignments [Nawrocki et al., 2009]. Rfam, the most well known database of RNA
families, is based on these covariance models, and it contains as well the genomic
transcripts that have been found by applying Infernal on the CMs [Griffiths-Jones
et al., 2003].

Since the CM-based method is very slow due to the expensive creation and
calibration of the model, there have been efforts to increase the speed, e.g. by filtering
the relevant sequences [Sun et al., 2012]. In part III of this thesis I present a novel
program called MaRs, which is capable of searching an RNA family in a genomic
database, and it is orders of magnitude faster than Infernal (see figure 12.6).

Instead of CMs, the sequence-structure information can also be represented as a
collection of stem loops. A stem loop consists of a hairpin loop and an enclosed stem
region that may contain interior or bulge loops (compare section 1.3 and figure 9.2).
The advantage of the stem loop representation is that it can naturally deal with
pseudoknots and that the overall complexity is reduced due to splitting the molecule
into independent units of conserved structures [Sorescu et al., 2012].

For finding transcripts of an RNA family in a large genomic data set, the methods
can be grouped into two categories: Tools of the first category scan the database,
apply various filters and compute matches, e.g. Infernal [Nawrocki and Eddy, 2013],
LocARNAscan [Will et al., 2013], or tRNAscan-SE [Chan and Lowe, 2019]. The second
group of tools uses an index of the data set, like a suffix array in RaligNAtor [Meyer
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2.3 RNA homology search

et al., 2013], or affix trees for bi-directional search as in Structator [Meyer et al.,
2011] or Schnattinger et al., 2012. Also MaRs is part of this second category, since
it employs a bi-directional FM-index [Ferragina and Manzini, 2000, Lam et al.,
2009], which has been implemented in SeqAn by Pockrandt, 2015 and was improved
with so-called Enhanced Prefixsum Rank dictionaries [Pockrandt et al., 2017]. The
advantage of this FM-index implementation is that it has a much lower memory
consumption compared to the affix tree, and the results in section 12.1 show that
the index creation and the search run faster by orders of magnitude.
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Part II

LaRA 2: Sequence-structure
alignment of RNA
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3 Reading input and computing a
structure annotation

LaRA 2 works on a set of at least two RNA sequences with structure annotation. An
RNA sequence is a string of L characters over the RNA alphabet α = {A,C,G, U,N}
where the characters represent the four nucleotides Adenine, Cytosine, Guanine, and
Uracil, plus the wildcard for an unknown nucleobase, respectively. The structure
annotation of a sequence x of length L is given as an L × L matrix P, where the
entry P(i, j) denotes the probability p that nucleotide xi and nucleotide xj form a
base pair in the secondary structure of the RNA molecule.

For the sequence input, LaRA 2 accepts several formats from two categories: se-
quence files and secondary structure files. Sequence file formats are the ones that
SeqAn 2 can parse, namely Fasta, Fastq, Embl, Genbank, Raw, Sam, and Bam. As file
formats for secondary structure I have implemented Connect, Stockholm, Dotbracket,
Vienna, Ebpseq, and Bpseq. The user specifies the parameter -i to pass a file in one
of the mentioned formats to LaRA 2, which extracts the sequences and stores them
as Rna5 string, which is an efficient string implementation in SeqAn over α.

For the structure annotation input, LaRA 2 accepts three alternative ways, which
are discussed in detail in the following sections.

1. The secondary structure format Ebpseq already contains the base pair probab-
ilities for each sequence.

2. The user specifies the -d parameter to pass multiple dot plot files, from which
the structure annotation and the sequence are extracted by LaRA 2. Dot plots
can be retrieved as output from e.g. the RNAfold tool [Lorenz et al., 2011] with
the partition function parameter (-p) enabled, which implements McCaskill’s
algorithm (see section 2.1.3 and McCaskill, 1990). As the dot plot contains the
sequence already, an additional sequence input is not needed.

3. The structure input can be omitted and LaRA 2 computes the structure annota-
tion internally, using the API of RNAfold.

3.1 The Ebpseq file format

With the purpose of integrating all kinds of different input data for RNA analysis
into a single file, Gianvito Urgese and I have designed the Ebpseq file format. An
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3 Reading input and computing a structure annotation

1 ## G: General field with arbitrary information or comments for the file.

2 ## S1: Name of the first sequence

3 ## S2: Name of the second sequence

4 ## S3: Name of the third sequence

5 ## F1: Secondary structure, method 1

6 ## F2: Secondary structure, method 2

7 ## M1: Base pair probability matrix, method 1

8 ## T1: Type of biologically validated data (e.g. SHAPE, DMS, CMCT).

9 ## T2: Another type of biologically validated data (e.g. SHAPE, DMS, CMCT).

10 # S1 T2

11 # I NT QU R2 RE2 F1 F2 M1

12 1 A H 3.4552 1.1760 8 5 <5/0.003 | 8/0.87>

13 2 G { 46.9128 13.8533 7 4 <5/0.03 | 7/0.4>

14 3 U # 0.1740 0.2738 6 6 <6/0.5>

15 4 C ! 0.0000 0.0000 0 2 <>

16 5 C 7 0.0000 0.0000 0 1 <1/0.003 | 1/0.03>

17 6 G T 0.0279 0.0161 3 3 <3/0.5>

18 7 U @ 0.0997 0.0575 2 0 <2/0.4>

19 8 C g 0.0000 0.0000 1 0 <1/0.87>

20 # S2 T2

21 # I NT QU R2 RE2 F2 M1

22 1 A @ 3.4552 1.1760 8 <5/0.003 | 8/0.87>

23 2 G { 16.9128 1.8533 7 <5/0.03 | 7/0.4>

24 3 C # 0.1740 0.2738 6 <6/0.6>

25 4 C ! 0.0000 2.0220 0 <>

26 5 C & 0.4300 0.0110 0 <1/0.003 | 1/0.03>

27 6 A T 0.0279 0.0161 3 <3/0.6>

28 7 U @ 0.0997 0.0575 2 <2/0.4>

29 8 C 1 0.0000 0.0000 1 <1/0.87>

30 # S3 T1 T2

31 # I NT QU R1 RE1 R2 RE2 F1 M1

32 1 A ? 3.4552 1.1760 0.7127 0.0863 8 <4/0.002 | 5/0.3>

33 2 G ' 46.9128 13.8533 0.3916 0.1568 4 <4/0.6 | 7/0.3>

34 3 U 5 0.1740 0.2738 1.5855 0.2431 6 <6/0.8>

35 4 C ! 0.7700 2.4500 0.3236 0.6132 2 <1/0.002 | 2/0.6>

36 5 C @ 0.0000 0.0000 1.6117 0.0000 1 <1/0.3>

37 6 G \ 0.0279 0.0161 0.4674 0.0000 3 <3/0.8>

38 7 U @ 0.0997 0.0575 0.3222 3.9352 0 <2/0.3>

Listing 3.1: The versatile Ebpseq file format. It consists of a header for textual
descriptions of the sequences, structures and methods to obtain the data,
and one or multiple records that contain values in tabular form, including
e.g. the RNA nucleobase, a quality code, reactivity data, fixed structures,
and base pair probabilities for each sequence position.
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3.2 Parsing dot plot files

Ebpseq file consists of a header, followed by one or multiple data records, as shown
in the example file in listing 3.1.

In the header various data sources are defined and linked to their identifiers, which
in turn can be referenced from the individual records. For instance, S1 is the identifier
of the first sequence, which has a given name (e.g. extracted from a Fasta header)
and is referenced in the first record. In the same way it is possible to specify with
which method a fixed secondary structure (F) or base pair probability matrix (M) has
been retrieved, and which type of experimental validation (T) has been used. Each
identifier must be unique, and each group of identifiers can have arbitrary many
elements or be omitted.

The Ebpseq records have a tabular structure with one line per nucleobase, due
to their design as an extension of the Bpseq format. The leftmost three columns
hold therefore serial numbers as index, the nucleobases, and (optional) sequencing
qualities, respectively. Further columns can be present according to the availability
of data, and they can vary among different records.

An F column contains a secondary structure and holds the respective index of the
paired base. In case a base is unpaired, the value is 0 (which does not cause conflicts,
as the indices in the first column start from 1). The base pair probabilities in an M

column are represented as list enclosed in angle brackets and divided with a vertical
bar (|). Each list element is a pair consisting of the partner index and an assigned
probability. An empty list represents a site without interaction.

The R and RE columns are linked to the T identifier. They are meant to represent
the contents of RDAT files, i.e. the reactivity values (R) and reactivity error (RE)
of RNA structure mapping experiments, like SHAPE. The reactivity is a likelihood
estimate whether the respective site is paired or not, accompanied by the standard
error between the samples used. Each record can be tagged with zero, one or more T

identifiers (see the example file) and their indices must be equal to the used R and
RE indices. These data can be used to add constraints or weights to the structural
interactions.

The Ebpseq file format can be used as a database to collect all types of structural
information of related sequences. It can be used as single-file input for LaRA 2. I
implemented the format for reading and writing in SeqAn, where it is publicly
available since version 2.3.0.

3.2 Parsing dot plot files

A dot plot file is the result of computing the partition function of a sequence with
the RNAfold program [Lorenz et al., 2011] (-p flag enabled). The program generates
one file per sequence and the filename consists of the sequence name and the suffix
dp.ps. Besides the sequence, it contains the base pair probabilities of possible

interactions.
Figure 2.2 on page 15 shows a dot plot file that is opened with a Postscript viewer.

It shows a matrix which is labelled in both directions with the same sequence. The
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3 Reading input and computing a structure annotation

349 /sequence { (\

350 UAGGACACUCUCUAUCAGAAUGGAUGUCUUGCUGUCAUAACAGAUAGAGAAGGUUGUGGCAGACC\

351 ) } def

398 %start of base pair probability data

399 1 14 0.003357526 ubox

400 1 31 0.804069207 ubox

401 1 58 0.059768145 ubox

402 1 63 0.004190175 ubox

403 2 9 0.004788885 ubox

404 2 13 0.003736190 ubox

405 2 29 0.017668299 ubox

406 2 30 0.948162637 ubox

407 2 57 0.066164678 ubox

408 3 8 0.005870257 ubox

Listing 3.2: Excerpt of a dot plot file when opened in a text editor. From
the Postscript code it is possible to extract the sequence and the base
pair probabilities.

probability of an intramolecular interaction of a pair of nucleobases is shown in the
respective cell with a dot, where in the upper triangular matrix the size of the dot
corresponds to the base pair probability. The lower triangular matrix shows the
optimal structure, as computed with the McCaskill algorithm (see section 2.1).

When the same dot plot file is opened in a text editor, the underlying Postscript
data can be accessed, as demonstrated in listing 3.2, which is an excerpt of the file
that contains figure 2.2.

The sequence can be located in the file by searching for the /sequence variable.
It may contain a newline character preceded by a backslash at multiple positions,
which are skipped in the parsing process. The characters are interpreted as RNA
nucleobases and stored efficiently as Rna5 string. Characters that are not in α are
rejected.

The base pair probabilities are located in the lines that end with ubox, which
encode the upper triangular matrix of the dot plot. After removing the ubox suffix,
each of these lines can be interpreted as a triple of two integral numbers and one
floating point number. The integral numbers represent the indices of the nucleobases
within the sequence that form a pair with the probability given by the floating point
number. For instance, in the example file, base number 2 forms a pair with base
number 30 with a probability of 94.8%.

I implemented the file format in LaRA 2 for reading. If a user provides dot plot files,
LaRA 2 extracts the sequences with the respective base pair probabilities as input.

3.3 Computing a structure annotation

If for any input sequence there are no base pair probabilities given, LaRA 2 computes
them with the RNAlib library of the ViennaRNA package [Lorenz et al., 2011], which
is an implementation of the algorithm by McCaskill, 1990. It produces the same
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3.3 Computing a structure annotation

1 find_library (VIENNA_RNA_LIB libRNA.a)

2 find_path (VIENNA_RNA_PATH NAMES ViennaRNA/part_func.h)

3 if (VIENNA_RNA_LIB AND VIENNA_RNA_PATH)

4 add_definitions (-DVIENNA_RNA_FOUND)

5 target_link_libraries (lara PUBLIC ${VIENNA_RNA_LIB})

6 target_include_directories (lara SYSTEM PUBLIC ${VIENNA_RNA_PATH})

7 endif ()

Listing 3.3: Linkage of the RNAlib as an optional dependency. If it is available,
the macro VIENNA RNA FOUND is defined (line 4), which can be queried
in the program code.

1 int length = seqan::length(sequence);

2 init_pf_fold(length);

3 float energy = pf_fold(seqan::toCString(sequence), nullptr); // fills the arrays pr and iindx

4

5 for (int i = 1; i <= length; ++i)

6 for (int j = i + 1; j <= length; ++j)

7 double prob = pr[iindx[i] - j];

Listing 3.4: Computation of the base pair probabilities in LaRA2. The main
work is done by the pf fold function of the RNAlib, which computes
the partition function and writes the base pair probabilities to the pr

array, which is publicly defined in RNAlib. An additional index array
iindx helps to interpret the pr data as shown in line 7.

results as if the user produces dot plot files with RNAfold and passes them to LaRA 2.
The library has a C interface (which is accessible from C++) and the current version
of April 2021 is 2.4.18. The use of the RNAlib API has two advantages: Firstly, the
production of an output file per sequence, their storage on a hard drive, and the
subsequent extraction of the relevant data in LaRA 2 requires time and disk space
that can be saved. Secondly, passing a single sequence file to LaRA 2 with possibly
hundreds of sequences is much more handy than specifying the filenames of possibly
hundreds of dot plot files.

As shown in listing 3.3, I linked the RNAlib as an optional dependency into LaRA 2.
The advantage is that LaRA 2 can be used even if the library is not available, however
the computation of a structure annotation is then not possible. If in this case the
user passes only sequence files, an error message is shown, which clarifies that the
library is missing.

Two functions of the RNAlib are being used in the program code of LaRA 2, namely
init pf fold and pf fold. The first one allocates space dependent on the length
of the given sequence x. The latter performs the actual computation of the partition
function and returns the minimum free energy of the optimal structure, which could
be queried with the second parameter of pf fold, but is not needed here. The base
pair probabilities are contained in a public variable pr. The probability P(i, j) that
xi and xj form a pair can be accessed from pr with help of the index array iindx,
as shown in line 7 of listing 3.4.
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3 Reading input and computing a structure annotation

The full API of the RNAlib can be accessed on https://www.tbi.univie.ac.

at/RNA/ViennaRNA/doc/html/index.html (01.06.2021). Since I have implemented
LaRA 2, the interface of the RNAlib has advanced, and the described pr and iindx

arrays are marked deprecated. Therefore, I suggest updating LaRA 2 to the newer
API in future developments, namely using the function vrna pf fold, which has the
same interface as pf fold, except that it takes as third argument a pointer to a list,
where the base pair probabilities are stored. The new implementation is thread-safe
and the computation of structure annotations in LaRA 2 can thus be parallelized over
the number of sequences.
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4 Solving the structural alignment

After parsing the input files as explained in the previous chapter, LaRA 2 compiles a
set of all pairwise sequence indices. All these sequence pairs are independently treated
by LaRA 2 in order to compute structural alignments, and afterwards they are passed
to a progressive alignment method for combining them to a multiple alignment.
Therefore, in the following we are looking at computing a single, individual pairwise
structural alignment, and for their parallel computation and multiple alignment
please read chapter 5 and chapter 6, respectively.

4.1 Filtering relevant interactions

Given two input sequences x and y of length L and M , there are L ·M possible
alignment edges that connect the characters of sequence x with the characters of
sequence y. In order to reduce the memory footprint of the program, we want to
filter these edges to the most relevant ones.

A global sequence alignment with affine gap costs can be computed with the
algorithm by Gotoh, 1990. Affine gap costs take into account that a gap has an
initialization cost as well as an extension cost, such that a single long gap is preferred
over multiple short gaps. As scores LaRA 2 uses by default the gap open score −6,
gap extension score −2, and the Ribosum65 scoring matrix (see page 19). The Gotoh
algorithm is a dynamic programming algorithm (as introduced with the Nussinov
algorithm in section 2.1), which computes matrices of size (L+ 1) × (M + 1) that
allow us to retrieve the score of the optimal alignment of all sequence prefixes
(x1, x2, . . . , xi) and (y1, y2, . . . , yj) with 1 ≤ i ≤ L and 1 ≤ j ≤M .

Applying the Gotoh algorithm on the reversed sequences (xL, xL−1, . . . , x1) and
(yM , yM−1, . . . , y1) computes the matrices that allow us to retrieve the score of the
optimal alignment of all sequence suffixes (xi, xi+1, . . . , xL) and (yj, yj+1, . . . , yM)
with 1 ≤ i ≤ L and 1 ≤ j ≤M .

Summing up the prefix score, suffix score and the Ribosum65 score of a cell
(i, j), we retrieve the maximum possible score sij that an alignment through (i, j)
can achieve. An example table of these maximum scores for each cell is shown in
table 4.1. We observe that an optimal alignment is represented in the table as a
path of optimal scores with sij = sopt from the top left corner to the bottom right. A
second observation is that the more a cell deviates from the optimal alignment path,
the smaller is its score. LaRA 2 has a suboptimality parameter u with default value
u = 40, which influences how strict the edge filter is. The implemented rule allows
for each (i, j) pair the creation of an alignment edge l = (xi, yj) only if sij ≥ sopt − u.
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4 Solving the structural alignment

C A G A A A C C U G
C 4.5 -7.8 -12.0 -16.7 -22.1 -27.5 -30.7 -35.5 -41.5 -47.5
A -0.3 4.5 -6.2 -9.7 -15.1 -20.4 -27.5 -32.3 -36.9 -41.7
G -6.6 1.3 4.5 -6.2 -11.6 -17.0 -22.8 -27.6 -31.7 -35.0
A -11.3 -4.3 3.2 4.5 -4.9 -10.3 -17.3 -22.1 -26.7 -31.5
A -16.7 -9.7 -6.2 4.5 4.5 -4.9 -11.9 -16.8 -21.3 -26.1
A -22.1 -15.1 -11.6 -4.9 4.5 4.5 -6.5 -11.4 -15.9 -20.7
A -27.5 -20.4 -17.0 -10.3 -4.9 4.5 2.9 -6.0 -10.5 -15.3
C -30.7 -27.5 -22.8 -17.3 -11.9 -6.5 4.5 2.9 -7.1 -12.8
C -35.5 -32.3 -27.6 -22.1 -16.8 -11.4 -4.3 4.5 1.7 -8.3
U -41.5 -36.9 -31.7 -26.7 -21.3 -15.9 -10.4 -5.5 4.5 0.2
G -47.5 -41.7 -35.0 -31.5 -26.1 -20.7 -16.3 -12.6 -7.0 4.5

Table 4.1: Maximum possible score of each edge. This table is used by the edge
filter to select the best alignment edges for the structural alignment. The
optimal sequence alignment with sopt = 4.5 is marked in green. The filter
removes all edges, whose score differs at more than u from sopt (shown in
red for u = 40).

Since the SeqAn implementation of the Gotoh algorithm does not permit access
to the underlying matrices and the algorithm is simple enough, I implemented it
for LaRA 2. The file edge filter.hpp contains the code that is needed for deciding
which alignment edges are created and which are omitted.

Therefore, I implemented a class PairwiseGotoh, which on creation computes the
necessary tables and provides functions to query the prefix score for a position (i, j)
and the overall optimal score sopt.

The public function generateEdges, which is shown in listing 4.1, uses two
instances of the PairwiseGotoh class: one for the forward and one for the reversed
sequences. It iterates once through the matrix of possible edges and determines,
whether sij is equal to or larger than the threshold sopt − u. The run time and
memory of the edge filter have the complexity O(L ·M).

The computation of two alignments prior to the actual structural alignment may
raise the question, whether the effort pays off. In fact, sequence alignment is a
much easier problem than structural alignment and the runtime of the edge filter is
usually less than 1% of LaRA 2’s overall runtime. Unless the given sequences have
no structure at all, the time spent with the edge filter already amortizes in the first
two iterations of structural alignment. Therefore, the efficiency of the filter is clearly
dependent on the number of iterations, which is unknown a-priori. Furthermore, the
edge filter is generally more efficient with longer alignments, since it is able to prune
more edges.

In comparison to a banded alignment, where we limit the alignment to cells with a
fixed maximal distance from the main diagonal, this edge filter has two advantages:
it can react much better to different regions of similarity, and it would be quite
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4.2 Edge management

1 std::vector<bool> generateEdges(seqA, seqB, scoreMatrix, u)

2 {

3 // generate reverse sequences

4 seqan::ModifiedString<seqan::Rna5String const, seqan::ModReverse> reverseA(seqA);

5 seqan::ModifiedString<seqan::Rna5String const, seqan::ModReverse> reverseB(seqB);

6

7 // two instances of Gotoh algorithm

8 PairwiseGotoh forward(seqA, seqB, scoreMatrix);

9 PairwiseGotoh backward(reverseA, reverseB, scoreMatrix);

10

11 // length of the sequences

12 size_t const lenA = seqan::length(seqA);

13 size_t const lenB = seqan::length(seqB);

14

15 std::vector<bool> edges{lenA * lenB, false};

16 int const threshold = forward.getPrefixScore(lenA, lenB) - u;

17

18 for (size_t a = 0; a < lenA; ++a)

19 {

20 for (size_t b = 0; b < lenB; ++b)

21 {

22 if (forward.getPrefixScore(a, b)

23 + seqan::score(scoreMatrix, seqA[a], seqB[b])

24 + backward.getPrefixScore(lenA - a - 1, lenB - b - 1) >= threshold)

25 {

26 edges[a * lenB + b] = true;

27 }

28 }

29 }

30 return edges;

31 }

Listing 4.1: Implementation of the edge filter. The PairwiseGotoh class has
a function getPrefixScore, which accesses the internal tables of the
algorithm and returns the alignment score until the given position in
constant time.

hard to set a good band distance a priori. The threshold value for the edge filter is
dependent on sopt, the optimal alignment score. This makes the filter very flexible
for alignments of various length or sequence identity. The default value of u = 40
has been chosen as the smallest value such that it does not negatively influence the
alignments in the Rfam database [Kalvari et al., 2018]. Since this is a diverse dataset
of many RNA families, I assume that this value is suitable for general use.

4.2 Edge management

This is a short section about how edges are stored and referenced in LaRA 2, since
they are a central part throughout the whole program.

For alignment edges, in LaRA 2 so-called lines, there is a class EdgeManager that
maintains a mapping between the position pair within the original sequences and
the internal edgeId, which is based on the reduced number of edges from the edge
filter (see previous section). The following operations are performed on average in
constant time:
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4 Solving the structural alignment

• edgeId(source, target): retrieve the edge identifier from sequence positions

• source(edgeId): retrieve the position within the first sequence

• target(edgeId): retrieve the position within the second sequence

• nonCrossing(edgeId1, edgeId2): return true if the two edges do not cross
each other, false otherwise

Using an integral number to identify an edge has several advantages, e.g. a structural
alignment is stored efficiently as a vector of edgeId, or a boolean vector can be used
as a constant-time lookup table for whether an edge is part of an alignment. Most
importantly, it simplifies the definition of interaction edges.

Structural interaction edges are stored as a vector of hash maps. Each edgeId

is assigned a hash map containing potential partner edges (their identifiers are the
hash keys) with additional information. This information includes the structural
score of the pair derived from the base pair probability matrix, a unique identifier
number of the pair (used after the matching step), and a pointer into the priority
queue to allow constant-time updates of the queue.

A priority queue for a given line is a set of interaction partners, which consists
of the profit score of realizing the interaction, and the edgeId of the partner line.
Since the queue is sorted by score, we can access in constant time the interaction
partner of a line with maximal profit and iterate through the set in descending order.
Note that the profit score is initialized with the sum of structure score and sequence
score, but opposed to those it will change in each iteration according to the Lagrange
adjustments after the matching step. These changes may of course alter the order of
the queue elements.

The score matrix for the structural alignment contains a value for each possible
line. These values are set to the maximal profit scores given by the leading elements
of the priority queues. After each iteration the values are updated accordingly and
this is the key mechanism how LaRA 2 incorporates the structure information and
shifts the alignment towards a valid matching of interaction edges.

4.3 Alignment with position-specific score

We have seen in section 2.2.2 that the relaxed structural alignment problem is a
pairwise sequence alignment with position-specific score. Fortunately, SeqAn already
implements a very fast pairwise sequence alignment routine by Rahn et al., 2018,
which is capable of SIMD vectorization, multi-threading, and affine gap scores.
Of course, I wanted to use this implementation for LaRA 2. However, the SeqAn

implementation lacked the ability of using a position-specific score matrix (PSSM),
which is necessary for including the structural information.

The goal was therefore to implement an extension for this alignment algorithm,
namely a new template instance for seqan::Score, which can answer the score
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4.3 Alignment with position-specific score

Score<int, PositionSpecificScore>

+ data_gap_extend: int

+ data_gap_open: int

+ matrix: seqan::String<int>

– int_min: static int const

– dim2: size_t

+ score(idx1, idx2): int

+ init(dim1, dim2, gapOpen, gapExtend): void

+ set(idx1, idx2, value): void

+ reset(): void

«interface»
Score<TScore, TSpec>

+ data_gap_extend: TScore

+ data_gap_open: TScore

+ score(entryH, entryV): TScore

Score<int, ScoreMatrix>

+ data_gap_extend: int

+ data_gap_open: int

+ data_tab: int[TAB_SIZE]

+ score(chr1, chr2): int

LaRA 2

SeqAn

Figure 4.1: Comparison of the score class interfaces. The score class in LaRA 2

implements the SeqAn class interface and extends it for position specific
score with functions for initializing and resetting the whole matrix or for
updating single values. For comparison, on the right there is the class
definition for the score matrix implementation, which uses as matrix a
fixed array of size TAB SIZE = |α|2, where |α| is the size of the sequence
alphabet.
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4 Solving the structural alignment

queries of the algorithm. Unfortunately, the score queries of the template class
are based on sequence characters, e.g. score(’C’, ’C’), which does not allow the
determination of their positions (a.k.a. index) inside the sequences.

Since the sequence characters themselves are not relevant for the algorithm, but
rather the indexing inside a sequence in order to determine the score, LaRA 2 creates
two index sequences (0, 1, 2, . . . , L− 1) and (0, 1, 2, . . . ,M − 1) and passes them to
the alignment algorithm instead of the real sequences of length L and M . This was
possible through a relaxation of the SeqAn interface such that it accepts sequences of
integral numbers. With this trick, the score queries are based on the positional index,
e.g. score(23, 24), and it becomes possible to implement a new class template
instance score<int, PositionSpecificScore> that returns the correct score.

The new score class contains an L ×M matrix (linearized as seqan::String)
for the position-dependent score, as well as two values for the gap open and gap
extension scores. In LaRA 2, each score value is stored as 32 bit signed integer. Initial
floating point numbers, e.g. from the Ribosum65 score matrix or user parameters,
are multiplied with the constant factor 8192 and converted to integer. The factor is
chosen as a power of two, such that it ensures three digits of precision and provides
still enough range [−262 144 . . . 262 144) for the original (untransformed) score.

The initialization value of each entry in the PSSM should be −∞, which can
be approximated with intmin = std::numeric limits<int32 t>::lowest(), the
minimum supported score value. However, with this value the alignment algorithm
turned out to be not deterministic for some cases: Note that with the edge filter
described above, some cells of the PSSM may remain −∞ forever. I found out that
during the evaluation of a neighbouring cell the algorithm occasionally generates
an underflow, since a possibly negative score from the PSSM is added to the intmin

value. In order to avoid any value underflows, internally 2
3
· intmin is used as value

for −∞.
Figure 4.1 visualizes how the score implementation fits into the SeqAn environment.

Essentially, it is required to implement a function to retrieve the score and two
members for the gap scores. The remaining functions and members are for maintaining
and updating the matrix, since it has to be altered in each iteration. The private
int min member is the initialization value intmin as discussed above and used by
the init and reset functions. The dim2 member permanently stores the second
sequence length in order to calculate the correct matrix index from a given position
pair (index = dim2 · idx1 + idx2) and is used by the score and set functions.

Now that we have seen how the position-specific score works and is implemented,
let us zoom out a bit and focus on how it is used and what are the results of the
alignment procedure.

Although LaRA 2 computes many alignments in which the PSSM has always a
different content or size, at any time there exists only one such matrix (per thread).
Since the matrix has always full L ×M size, it would be expensive to delete and
recreate it for each alignment (or even iteration). Instead, a function updateScores

changes specifically the modified values between two iterations, which are on average
5% of the matrix values. When all alignments of a sequence pair are finished and the
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4.4 Maximum weighted matching

next pair is loaded, the whole matrix is reset to −∞. In order to guarantee that the
allocated matrix is always large enough for the next alignment, the input sequences
have been sorted by length and pairs are created with the longer sequence first, such
that L is the length of the longest sequence and M the length of the second longest
sequence. In subsequent alignments the matrix still has its original (maximal) size,
but only a subset of cells may be accessed.

Likewise, the order of input sequence pairs is helpful for the creation of the index
sequences. Instead of allocating and filling separate integer vectors for each sequence,
LaRA 2 stores only a single index sequence of length L, the length of the longest
sequence. For any sequence x of length Lx ≤ L, the prefix of length Lx of that
pysical index sequence represents the corresponding index sequence of x. The prefix
is computed with the function seqan::Prefix, which does not perform a copy and
thus efficiently provides a (virtual) subsequence. A pair of such index sequence
prefixes is used to invoke the alignment algorithm.

The returned result from the alignment algorithm are a pair of gapped integer
sequences and the alignment score, of which the latter is an upper bound to the
optimal solution’s score. The gapped sequences must once be iterated linearly for
two reasons: (1) The linked characters in the alignment represent edges that must
be marked active (i.e. bl = 1, see section 2.2.2) for consideration in the matching
step. (2) At the same time we sum up the amount of (negative) gap score, since we
need it for computing the lower bound solution.

4.4 Maximum weighted matching

A valid solution (the Lagrangian primal) of the original alignment problem is com-
puted by applying a maximum weighted matching (MWM) algorithm on the interac-
tion graph that is depicted in figure 4.2. The nodes of the interaction graph are the
active lines, i.e. the edges that result from the alignment step. An undirected edge
(shown as solid arc) is present between these nodes, where there exists an interaction
match, i.e. corresponding structural interactions (shown as dashed arcs) in both
sequences. See figure 2.4b on page 19 for a visualization of interaction matches.

A matching is an independent edge set, i.e. it does not have any common vertices.
The MWM algorithm ensures that each nucleotide is incident to at most one structural
interaction, while it chooses the interactions such that the sum of the edge weights
is maximal. The weight of an edge between nodes l and m is the sum of the score of
the two involved interaction matches wlm + wml, which are derived from the base
pair probabilities as previously shown in equation (2.3).

I have tested two different heuristics for MWM in general graphs: An extension of
the Blossom algorithm by Edmonds, 1965a that is available in the Lemon Graph
Library [Dezső et al., 2011], and a greedy approach with look-ahead strategy, which
I have implemented in LaRA 2.

The method of the Blossom algorithm is the detection of cycles in the graph that
consist of an odd number of edges, so-called blossoms. In a blossom with 2m+1 edges
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4 Solving the structural alignment

C A A U G G A A C U

U A A G C A G A C C U

Figure 4.2: Maximum weighted matching. The algorithm selects the best valid
interactions in order to compute a lower boundary for the optimal score.
The matching property in the displayed interaction graph is not yet
satisfied, because the leftmost node is incident to two interactions.

there are exactly m edges that are part of the matching, forming an alternating path.
Thus, each blossom can be contracted into a single node and the search continues in
the reduced graph. The running time is in O(EV 2) with E the number of edges and
V the number of nodes [Edmonds, 1965b,Gerards, 1995].

For the greedy approach I generate a list of all edges sorted by their weight in
descending order. Then I consider the maximum weighting k edges from the beginning
of this list and perform an exhaustive search to find the maximum weighting set.
The selected edges become part of the matching and all incident edges are excluded
from the list. This process is repeated with the following k edges in the list, until
the end of the list is reached.

An exhaustive search of k edges is performed by checking for each of the 1
2
k(k− 1)

pairwise combinations whether they share a node with each other. If yes, then they
are collected in a set of conflicting pairs, otherwise they immediately become part of
the matching. The set of conflicting pairs is passed to the recursive solveConflicts

routine. This routine chooses one edge and removes each entry from the list that
involves this edge and calls solveConflicts on the reduced list. The algorithm
keeps track of the edge scores, so it can compare at each stage the maximum score
that results from including or excluding an edge.

The solveConflicts routine checks in the worst case 2k alternative combinations
of edges. It is called E

k
times, with E the number of edges in the graph. For each set
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Figure 4.3: Comparison of run time for maximum weighted matching. The
diagram shows the total run time of LaRA 2 in minutes for computing the
388 reference alignments of the BRAliBase 2.1 data set [Gardner et al.,
2005]. The included methods are the blossom algorithm and the greedy
approach with different look-ahead parameter k ∈ {20, 10, 5, 3, 1}.
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Figure 4.4: Quality comparison for maximum weighted matching. The dia-
gram shows the sum of pairs score (SPS) of LaRA 2 for the BRAliBase
2.1 data set. Benchmark details are given in section 7.1.
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4 Solving the structural alignment

of k edges, all incident edges are removed from the remaining list, which adds on
average E

2
incidence checks of 4k comparisons at most. Thus, the whole algorithm

executes at most E
k

(2k + 2Ek) operations and with fixed parameter k the run time is
in O(E2).

A comparison of the total run time for LaRA 2 as shown in figure 4.3 reveals that
the greedy approach results in a lower total run time compared to the blossom
algorithm. Although the heuristics may produce suboptimal matchings, the resulting
alignments do not loose quality (see figure 4.4), because LaRA 2 compensates the
outcome with a few more alignment and matching iterations. For the default method
in LaRA 2 I choose the greedy method with k = 5.

The score for the lower bound of the current LaRA 2 iteration is the sum of the
weights of the edges that are part of the computed matching, plus the sequence
alignment score. The highest score over all iterations together with the correspond-
ing alignment is reported as the valid solution of the pairwise sequence-structure
alignment problem.

4.5 Updating the Lagrange multipliers

The final topic we should discuss in the light of solving the structural alignment
is the update of the Lagrange multipliers λlm such that the alignment converges
towards the optimal solution. In LaRA 2 this is achieved with iterative subgradient
optimization — the same method that is also employed in LaRA 1. Thus, I do not
give many mathematical details on this method here and refer to Bauer and Klau,
2005 and section 2.2.2. I rather want to connect the implementations that were
described in the previous sections, and discuss in detail the steps of an iteration. As
an overview, each iteration in LaRA 2 performs the following sequence of steps:

1. compute global alignment with PSSM

2. determine a valid solution through maximum weighted matching

3. update the best upper and the best lower bound

4. terminate if the bounds are close enough or no iterations remain

5. halve the step size if there was no progress in 50 iterations

6. compute the next Lagrange multipliers

7. update the PSSM

The purpose of the iterations in LaRA 2 is to decrease the gap between the dual
and primal solution. The dual solution is the result of the relaxed problem in
equation (2.10), which is obtained in the alignment step as the sum of the scores
for active alignment lines, incident structural interactions, and gaps. Since it results
from the relaxed problem and is possibly not a valid matching, it is considered an
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4.5 Updating the Lagrange multipliers

upper boundary to the optimal solution. The primal solution is the result of applying
maximum weighted matching on the dual solution. Hence, it is a valid solution for
the original problem, but it may be suboptimal and is considered a lower bound to
the optimal solution.

Figure 4.5 demonstrates the development of the boundaries over multiple iterations.
While the black crosses show the values of the dual and primal solution for each
iteration, the red lines mark the yet discovered boundaries. The targeted optimum
solution is sketched in blue (of course it is not known a-priori).

Iterative subgradient optimization searches for the maximum of a function by
taking successive steps in the direction of a positive gradient. Applied to LaRA, in
every iteration we adjust each Lagrange multiplier λlm the following way: If blm > bml
then λlm is decreased by a step size s, if blm < bml then λlm is increased by s. For
blm = bml nothing happens, because constraint 2.7 is satisfied.

This means that in each iteration we push the alignment slightly into the desired
direction. The step size s is determined as the bounds distance divided by the
number of violations of constraint 2.7: the smaller the bounds distance and the more
violations, the smaller becomes the step size.

However, there is a small possibility that the iterations get stuck in a loop of
repeating states and as a consequence the bounds would never converge. To spot
this, I implemented a counter for the number of non-improving iterations. If there is
no improvement of the bounds for 50 iterations, the step size s is halved and the
counter is reset, so the algorithm has the chance to break out from the loop.

In the LaRA 2 implementation I keep track of the lowest upper bound and the
highest lower bound values, in order to estimate the remaining distance to the
optimum. In addition, I keep track of the best valid alignment, which is updated
whenever the best lower bound is increased. In figure 4.5 these are the alignments,
which are represented by the black crosses that hit the lower red line.

There are three scenarios for terminating the iterations:

• The dual solution is a valid matching and thus equals the primal solution. In
this case we have found the optimum.

• If the distance is smaller than a parameter ε > 0, the solution is close enough
to the optimum. The default in LaRA 2 is ε = 0.01.

• A variable remainingIterations is initialized with the maximum number of
iterations, which is 500 in the default case. It is decremented in each iteration,
and if it reaches zero, the best alignment so far is reported.
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iterations

optimum

best upper bound

best lower bound

alignment  
score

dual  
solutions

primal  
solutions

Figure 4.5: Evolution of the alignments towards the optimum. The figure
visualizes how the best bounds evolve from the dual and primal solutions.
The dual solutions are the scores of the relaxed problem, i.e. the alignment
step; the primal solutions are the result of the corresponding maximum
weighted matching. The more iterations are performed, the closer get
the best bounds to the optimum.
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5 Parallel and vectorized execution of
LaRA 2

One of the most beneficial improvements compared to LaRA 1 is the possibility of
LaRA 2 to utilize multiple CPU cores at the same time through multithreading and,
on top of that, compute multiple alignments per thread through vectorization. The
emerging speed-up of up to 130 allows the application of LaRA 2 on much larger data.
In the following sections I describe how I implemented these technologies in LaRA 2,
together with the challenges I had to face.

A short run time in relation to the problem size is an important aspect. Given
the current rapid increase of the size of data sets it is essential to have efficient
implementations available that solve the structural alignment problem in reasonable
time, while securing a sufficient quality of the results. Some programs already allow
to distribute the work on several cores for parallel execution through multithreading.
With LaRA 2 I go a step further and combine multithreading with vectorization: By
storing the data of multiple alignments in vectors, they can be computed simultan-
eously on a single core. Hence, with T cores and vector size S, LaRA 2 processes
T · S alignments simultaneously.

5.1 SIMD vectorization

The term SIMD means single instruction, multiple data. It is a type of parallel
processing, where the same operation is performed on multiple data points simultan-
eously. Instead of e.g. computing the sum of two integer values, SIMD allows us to
pass two vectors of integer numbers and a special processor instruction can compute
the pairwise sum in a single operation (the result is a new vector, of course).

The vector size S is system-dependent. There exist different instruction sets,
like SSE4, AVX2 and AVX512, which support 128, 256 and 512 bits per vector,
respectively. Assuming a data size of 32 bits, there is space for 4, 8, or 16 values in a
vector. Note that S is also dependent on the data size, however in this thesis the
data size is considered 32 bits, which is the size of an integer or float.

Previous work has been done on the vectorization of the pairwise alignment
computation using the wavefront approach [Daily, 2016,Rahn et al., 2018] and for the
recognition of barcode and adapter sequences [Roehr et al., 2017]. My implementation
extends the work by Rahn et al., 2018.

A SIMD vector is constructed as seqan::SimdVector<int>, which is a data
structure in SeqAn that provides a system-independent interface for operations on
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5 Parallel and vectorized execution of LaRA 2

Score<int, PositionSpecificScore>

+ data_gap_extend: int

+ data_gap_open: int

+ matrix: seqan::String<int>

– int_min: static int const

– dim2: size_t

+ score(idx1, idx2): int

+ init(dim1, dim2, gapOpen, gapExtend): void

+ set(idx1, idx2, value): void

+ reset(): void

«interface»
Score<TScore, TSpec>

+ data_gap_extend: TScore

+ data_gap_open: TScore

+ score(entryH, entryV): TScore

LaRA 2

SeqAn

Score<int, PositionSpecificScoreSimd>

+ data_gap_extend: int

+ data_gap_open: int

+ matrix: seqan::String<seqan::SimdVector<int>>

– int_min: static int const

– dim2: size_t

+ score(idx1, idx2): seqan::SimdVector<int>

+ init(dim1, dim2, gapOpen, gapExtend): void

+ set(seq, idx1, idx2, value): void

+ reset(seq): void

Figure 5.1: Additional class for position-specific score with SIMD. The new
class uses vectors of score values. Some additional API adaptations to the
functions are necessary. The changes to the non-SIMD implementation
are highlighted in red.

SIMD vectors and uses internally the Intel compiler intrinsics1. This interface
automatically applies the vector size that is determined through compilation with
one of the instruction sets. During run time, users of LaRA 2 do not need to care
about enabling the SIMD functionality. Instead, this decision is made with the
compilation of LaRA 2, where the -march flag should be used to tell the compiler
about the minimal hardware the code should run on, so the instruction set is chosen
accordingly. I have described the compiler configuration for clang and gcc in detail
in the installation instructions section on the project website and in the readme file.

In section 4.3 I have described a new score class that can cope with position-
specific scoring functions rather than a simple character comparison. In order to use
vectorization for the structural alignment approach, I implemented a modification

1https://software.intel.com/sites/landingpage/IntrinsicsGuide (11.07.2022)
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5.1 SIMD vectorization

1 // Define SIMD vectors for single values, e.g. ones = (1,1,1,1,1,1,1,1)

2 auto const zeros = seqan::createVector<seqan::SimdVector<int>>(0);

3 auto const ones = seqan::createVector<seqan::SimdVector<int>>(1);

4 auto const twos = seqan::createVector<seqan::SimdVector<int>>(2);

5 auto const maxNonImproving = seqan::createVector<seqan::SimdVector<int>>(50);

6

7 while (numAtWork > 0)

8 {

9 // simplified interface to show the idea

10 currentUpperBound = computeSIMDalignments(gappedSeq1, gappedSeq2, pssm);

11 currentLowerBound = matching(gappedSeq1, gappedSeq2, lagrangeMult);

12

13 // compare upper bound: mask = true where best > current

14 auto mask = seqan::cmpGt(bestUpperBound, currentUpperBound);

15 // best = mask ? best : current

16 bestUpperBound = seqan::blend(bestUpperBound, currentUpperBound, mask);

17 // nonImproving = mask ? nonImproving : 0

18 nonImproving = seqan::blend(nonImproving, zeros, mask);

19

20 // compare lower bound

21 mask = seqan::cmpGt(currentLowerBound, bestLowerBound);

22 bestLowerBound = seqan::blend(bestLowerBound, currentLowerBound, mask);

23 nonImproving = seqan::blend(nonImproving, zeros, mask);

24

25 // if the limit of non-improving iterations is reached then use half the step size

26 nonImproving = nonImproving + ones;

27 mask = seqan::cmpGt(nonImproving, maxNonImproving);

28 stepFactor = seqan::blend(stepFactor, stepFactor / twos, mask);

29 nonImproving = seqan::blend(nonImproving, zeros, mask);

30

31 // decrement remaining iterations

32 remainingIterations -= ones;

33 // new step size

34 stepSize = stepFactor * (bestUpperBound - bestLowerBound) / lagrangeMult.size();

35

36 // [...] update pssm

37 // if an alignment is finished: replace it or decrement numAtWork

38 }

Listing 5.1: Working with SIMD vectors. This listing shows how the subgradient
optimization is implemented with SIMD vectors. It also demonstrates
the SeqAn interface that wraps the system-dependent commands, so we
do not need to care about the vector size, for instance.

of this score class, named PositionSpecificScoreSimd, where each entry of the
PSSM is a SIMD vector of length S instead of a single integer value. See figure 5.1
for a comparison: Further adaptations to the API of this class are the return type
of the score() function, which returns a SIMD vector, and the set() and reset()

functions, which take an additional sequence index, since we need to update single
values inside a SIMD vector.

The presented score class can be employed by the SIMD global sequence alignment
algorithm by Rahn et al., 2018, similar to the class for PSSM that we discussed in
section 4.3. However, the API of the globalAlignment() function cannot be used
as is, since it extracts the results from the SIMD vectors in a loop inside. Instead, in
LaRA 2 I still want to proceed with the scores as SIMD vector, so I exclude this step
by copying only the few desired code parts of that function to LaRA 2.
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5 Parallel and vectorized execution of LaRA 2

For invoking the alignment I prepare the pairs of input sequences in the format of
two dependent StringSets of length S, a slim data structure in SeqAn 2 that stores
only links to the original sequences. The StringSets hold index sequences that have
the lengths of the original sequences to be aligned (compare section 4.3). Again, I
use the memory-efficient trick to store only the longest index sequence and assign
virtual prefixes for the others.

In addition to the alignment step, also the iterative subgradient optimization
employs SIMD vectors. The result of the alignment is a SIMD vector of the current
upper bound. It is compared to the best upper bound vector, which results in a
so-called mask. A mask is a boolean SIMD vector of length S that contains the
result of an operation (in this case the greater operation). Afterwards, we can use
the blend function to set values conditionally based on the mask. In this way I
update the best upper and lower bound vectors, count the number of remaining and
non-improving iterations, as well as compute the next step size. An excerpt of the
corresponding code is shown in listing 5.1.

5.2 Multithreading

Multithreading means to execute independent parts of a program code as threads.
On a multi-core system (which are the most of the systems nowadays), threads
can run simultaneously on different cores and thus execute the program in parallel.
Optimally, we try to distribute work equally to the cores of the system.

The optimal number of threads is system-dependent and in LaRA 2 it is determined
at run time, according to the following priority:

1. the value of the --threads parameter

2. the hint returned by std::thread::hardware concurrency()

3. a single thread if the previous methods both return 0

The parallel execution of LaRA 2 with two threads on an exemplary dual-core
system with AVX2 instruction set (S = 8) is visualized in figure 5.2. It shows the
independent execution of the two threads: each thread performs the LaRA iterations
of alignment and maximum weighted matching on its individual set of 8 alignments.
The SIMD bound computations and PSSM update are also performed in the thread,
but since they are so fast compared to the other steps, they are not shown.

As discussed at end of section 4.3, the list of alignments to be computed is sorted
in descending order by the length of the longer sequence. A key advantage of this
order is clearly visible here: The alignments that are grouped together in a SIMD
vector have similar length. Since the run time of a SIMD alignment is determined by
the longest contained alignment, the second (shorter) group can iterate significantly
faster than the first group.

I have put much effort into trying to parallelize also the step that computes the
structures with RNAlib. However, the library version that was available at the time
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5.2 Multithreading

Thread 1

parse or compute structures

(serial) matchings

SIMD alignments

(serial) matchings

SIMD alignments

Thread 2

(serial) matchings

SIMD alignments

SIMD alignments

(serial) matchings

SIMD alignments

time

Figure 5.2: Execution flow with multiple threads. Each thread solves S different
alignments at the same time. The figure shows the benefit of sorting
the alignments by length: thread 2 has a group of shorter alignments
and can iterate faster. The threads are mostly independent; only if an
alignment is finished and has to be replaced, a shared access is needed.

I was implementing LaRA 2 turned out to be not thread-safe. For more information I
refer to the last paragraph of section 3.3.

If the iterations for one of the alignments in a SIMD group should terminate (for
one of the three scenarios described on page 43), the result of that specific alignment
is stored and the next alignment is constructed in-place. Since multiple threads can
finish an alignment at the same time, two mutexes are used to lock (1) the iterator
to the next sequence pair and (2) the next free storage for finished alignments. The
function of a mutex is to allow only a single thread at a time the access to a shared
resource.

At the end of this section, I briefly want to sketch a concept that I had to discard.
In an earlier development step of LaRA 2, the command flow had the out-most
loop over the iterations. In each iteration we would compute in parallel the SIMD
alignments of all given sequence pairs, followed by all the respective matchings. This
implementation works for a small set of sequences, but with increasing amount of
sequences n the number of alignments grows quadratically to 1

2
n(n− 1). Keeping all

these alignments in memory has turned out to be problematic, since each alignment
needs storage for the position-specific score matrix, the base pair probability matrix,
the graph for MWM, the bounds values, and further individual values for the
subgradient optimization (e.g. current step size, number of non-improving iterations).
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5 Parallel and vectorized execution of LaRA 2

Because of the much lower memory footprint, I decided to compute at most T · S
alignments at a time. A second argument against looping the iterations is that each
alignment requires an individual amount of iterations, which is not known a-priori.
Thus, the algorithm would have to run the maximum number of iterations for all
the alignments, although the most of them would idle after their optimum has been
found.

5.3 Testing the speed-up

In this section I want to demonstrate the scaling of the run time of pairwise structural
alignments with LaRA 2 in the light of SIMD instruction sets and multi-threading.
As a benchmark I use the plastids data set from the 5SrRNAdb [Szymanski et al.,
2002] database, which contains 838 sequences with average length 123. This results
in 350,703 pairwise structural alignments. Figure 5.3 visualizes the run time for
computing all these pairwise alignments with LaRA 2, including 25 seconds for the
non-parallel base pair probability calculations. For this test, LaRA 2 was compiled
with gcc version 9 on a Linux server with 126 GB RAM and an Intel® Xeon® CPU
E5-2650 v3 with 2.30 GHz.

The effect of SIMD instructions is a speed-up of 1.8×–1.6× with AVX2 and 1.6×
with SSE4. Because the vectorization is implemented for the alignment step and
not for the matching and folding, these factors are reasonable. In combination with
multi-threading there is a large improvement of the run time. With 16 threads
LaRA 2 achieves 13× speed-up compared to the single-threaded run in the SSE4 or
non-SIMD case and 11.5× with AVX2. The sequential part in the program is mainly
the computation of the base pair probabilities with RNAfold, which takes constantly
25 seconds. A limiting effect to the speed-up has a larger memory allocation, e.g. for
AVX2 instructions and 16 threads the program needs to allocate 128 alignments.
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5.3 Testing the speed-up

Figure 5.3: Run time comparison for various thread and SIMD config-
urations. In the bar-graph, the time for computing 350,703 pairwise
alignments is reported in minute:second [m:s] notation. The matrix shows
the run time for 1, 4, 8 and 16 threads with different SIMD instruction
sets, which compute 1, 4 or 8 alignments per thread.
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6 Output and multiple alignment

After all the pairwise alignments are computed, LaRA 2 produces one of the following
three output formats, which can be selected with the --outformat parameter:

1. MSA library for T-Coffee [Notredame et al., 2000]

2. pairwise alignments for MAFFT [Katoh and Toh, 2008]

3. aligned Fasta format (only if exactly two sequences are given)

I have implemented all the output functionality in a class named OutputLibrary.
This class is responsible for collecting the finished pairwise alignments and printing
the results in one of the three formats to a file or to stdout.

The output library is the data structure that is visualized in figure 6.1. It stores
a reference to the sequence records, because it needs to access the sequences and
sequence names for writing the output. The set of optimal alignments is stored as
a pair of the actual alignment data structure and its score. The alignment data
structure consists of a pair of sequence indices and a vector containing triples of
all the base pairings with their individual scores. These scores correspond to the
sequence and structure conservation in the associated nucleotide pair. Lastly, the
output library stores the selected output format.

A structural multiple alignment (MSA) is an alignment of more than two sequences.
As introduced in the beginning of chapter 4, the pairwise alignments from LaRA 2

need to be processed by a progressive alignment method afterwards that combines
them to a multiple alignment. The following sections describe each of the three
output formats in detail and how they can be further processed.

6.1 T-Coffee

The introduced alignment data structure is designed to print an MSA library for
T-Coffee [Notredame et al., 2000] easily and without further calculations. T-Coffee
is a well-known and fast software for progressive multiple sequence alignment. It
incorporates structural information by constructing an alignment graph that contains
the structural weights of the pairwise alignments.

The library data structure consists of a weighted set of sequences with weighted
character pairings. The major advantage of T-Coffee over other tools is that due
to its library design it is flexible enough to support also the incorporation of other
constraints (from e.g. already computed alignments) or additional, experimentally
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6 Output and multiple alignment

OutputLibrary

– records: std::vector<seqan::RnaRecord> const &

– alignments: std::set<std::pair<Alignment, int>>

– format: enum const

+ addAlignment(alignment, score): void

+ print(ostream): void

+ print(filename): void

+ operator<<(ostream): ostream

Alignment:

pair  vector<tuple> 
(1,2)    (1,1, 5)
  (2,2, 2)
  (3,4, 6) 

sequence  
indices

alignment columns
(2 positions, score) 

Figure 6.1: Class diagram for the output library. It shows the functions for
collecting and printing the alignments, as well as the member variables
that store the necessary data. The alignment data structure is sketched
on the right-hand side and consists of indices for the associated sequence
pair, as well as a vector of triples that contain the start position, end
position, and score for each alignment line. For instance, the last entry
shown can be interpreted as follows: Align base 3 of sequence 1 with base
4 of sequence 2, and the score contribution is 6. This implicitly means
that base 3 of sequence 2 is aligned to a gap character.

gained structures (e.g. obtained by SHAPE experiments) by adjusting the weights
accordingly in the library. These can be adjusted right in the library file or by using
the software’s input options.

SeqAn 2 has an implementation of the T-Coffee algorithm that is in many aspects
superior to the original program. Instead of observing each nucleotide individually,
SeqAn::T-Coffee by Rausch et al., 2008 applies so-called segments, which consist
multiple adjacent nucleotides. This leads to a segment graph that is much smaller
than an alignment graph and is thus much faster, especially for long sequences.
Further improvements for deep alignments have been implemented by Yasnev, 2015.
Together with Svenja Mehringer I have already developed the architecture for a
SeqAn 3-based version of T-Coffee, but it is not subject to this thesis.

Unfortunately, SeqAn::T-Coffee does not work as expected with LaRA 2. The
results have always been much worse in the benchmarks compared to the original
program by Notredame et al., 2000. I have tried various older versions from the
repository and also excluded the code that was added for deep alignments, but in
the end I came to the conclusion that the segment approach messes up the structural
information included in the pairwise alignments and that the original tool should be
used.

T-Coffee can be invoked simply with t coffee -lib results.lib, where the
file name should be the same that has been used as output parameter (-w) for LaRA 2.
The format of this file is shown in listing 6.1: It in enclosed in a header and footer
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6.2 MAFFT X-INS-i

1 ! T-COFFEE_LIB_FORMAT_01

2 3

3 seq1 6 AAACCC

4 seq2 6 CCCGGG

5 seq3 6 AAACCC

6 # 1 2

7 4 1 1000

8 5 2 1000

9 6 3 1000

10 # 1 3

11 1 1 1000

12 2 2 1000

13 3 3 1000

14 4 4 1000

15 5 5 1000

16 6 6 1000

17 # 2 3

18 1 4 1000

19 2 5 1000

20 3 6 1000

21 ! SEQ_1_TO_N

Listing 6.1: Example of the MSA library format. Each record describes an
alignment and consists of a block that starts with # and two sequence
indices (lines 6, 10, 17). The following lines until the next block are triples
with two nucleotide positions and a score, as seen before in figure 6.1.
Note that the indices for sequences and nucleotides are counted from 1
in this file format. In line 2 there is the number of sequences, followed
by a list of the sequences’ names, length and the nucleotides.

line starting with !, contains the number and lengths of all the sequences with their
description on top, and is followed by records with the alignment information as
indicated above. From the format it is obvious that further lines with additional
constraints can be added easily.

6.2 MAFFT X-INS-i

The pairwise alignment output of LaRA 2 is designed to be parsed by the MAFFT

framework [Katoh et al., 2002] and contains three lines per pairwise alignment, as
shown in listing 6.2. The first line is a header line similar to the Fasta format
containing both sequence identifiers, and the remaining two lines consist of the first
and the second aligned sequence. The aligned sequences possibly contain gap symbols
and have equal length.

MAFFT is well-known as a fast multiple sequence aligner, which (in its default
mode) does not care about secondary structure. However, there is an extension to the
MAFFT framework called X-INS-i [Katoh and Toh, 2008] that performs a multiple
sequence-structure alignment. As a first step, it uses the algorithm by McCaskill,
1990, which we have discussed in section 2.1.3, in order to compute the base pair
probabilities of the input sequences. Afterwards, there is the most interesting step:
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6 Output and multiple alignment

1 >seq1 && seq2

2 AAACCC---

3 ---CCCGGG

4 >seq1 && seq3

5 AAACCC

6 AAACCC

Listing 6.2: Pairwise alignment file for MAFFT. This format looks similar to
Fasta, but it contains two aligned sequences per record.

1 // old

2 sprintf( com, "env PATH=%s:/bin:/usr/bin mafft_lara -i _larain -w _laraout -o _lara.params %s",

3 whereispairalign, laraarg );

4 // new

5 sprintf( com, "env PATH=%s:/bin:/usr/bin mafft_lara -i _larain -w _laraout -o pairs %s",

6 whereispairalign, laraarg );

Listing 6.3: Amendment of MAFFT X-INS-i to use LaRA2. Only a single
option needs to be adapted in file core/pairlocalalign.c. It sets the
desired output format with -o pairs.

it computes pairwise structural alignments with LaRA 1 [Bauer and Klau, 2005] or
SCARNA [Tabei et al., 2006].

It was easy to amend the X-INS-i workflow such that it is able to use LaRA 2:
There is one code line that builds the command line call to LaRA, and instead of
passing a parameter file (this was the way to set options for LaRA 1), I set the option
of LaRA 2 that creates the pairwise alignment output that is expected by X-INS-i.
The exact code change is defined in listing 6.3.

The fork repository of MAFFT that contains the change is located at GitHub
and the command for running X-INS-i with LaRA 2 is mafft-xinsi --larapair

input.fasta.
The workflow of X-INS-i computes a progressive MSA based on a guide tree

(like T-Coffee), but applies an iterative refinement step with a so-called four-way-
consistency score [Katoh and Toh, 2008]. It incorporates the structural information
not only through the (here unweighted) base pairs of the pairwise alignments, but
additionally from the initial base pair probabilities resulting from the McCaskill
algorithm. The four-way-consistency score for an interaction match (defined in
section 2.2.2) is derived from the involved based pair probabilities and a sequence
similarity score obtained from the algorithm by Vingron and Argos, 1990.

6.3 Pairwise alignment output

In case of n = 2 there is no need for generating a multiple alignment, because
there is only one pairwise alignment. Since it is not necessary to invoke another
tool in this case, I have implemented an aligned Fasta output for two sequences.
This format is accepted by most existing tools that take an alignment as input, e.g.
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6.3 Pairwise alignment output

1 >seq1

2 AAACCC---

3 >seq2

4 ---CCCGGG

Listing 6.4: The Fasta alignment file format. This format can represent two or
more aligned sequences with gap characters. All sequences are required
to have equal length.

Biopython [Cock et al., 2009]. Also T-Coffee and MAFFT support this format for
writing a multiple alignment.

Like in a Fasta sequence file, there are two lines per sequence recorded: an identifier
and the sequence (here with gap symbols). An example can be inspected in listing 6.4.
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7 Benchmarks

In order to demonstrate the performance of LaRA 2 compared to relevant existing
software, I have evaluated three different benchmarks with focus on multiple alignment
with conserved structures, run time comparison on a large data set, and the detection
of pseudoknots.

All benchmarks have been performed on a Linux server using an x86 64 architecture
with Intel® Xeon® CPU E5-2650 v3 with 2.30 GHz and 126 GB RAM. I compiled
with GCC version 9 and where applicable, I used up to 16 threads and AVX2
instructions.

For the benchmarks I have chosen the best tools from recent publications, as
analysed in section 2.2.

The employed program versions and parameters are displayed in table 7.1 and
include LaRA 2 [Winkler et al., 2022] with both MAFFT [Katoh et al., 2002] and
T-Coffee [Notredame et al., 2000] as multiple alignment, LaRA 1 [Bauer and Klau,
2005] linked with T-Coffee version 5.0.5, the structural aligner LocARNA [Lorenz
et al., 2011], and RNAmountAlign [Bayegan and Clote, 2020].

In addition, the standalone MAFFT tool [Katoh et al., 2002] is included as a pure
sequence aligner in order to demonstrate that structural alignment is superior for
ncRNA comparisons.

For the purpose of a fair comparison with other tools I include the time for folding
the sequences in the benchmarks (unless stated otherwise). However, if the structure
annotation is available the folding step can be omitted for LaRA 2.

LaRA 2 v2.0.1 lara --threads 16

+ MAFFT v7.453 mafft-xinsi --larapair

+ T-Coffee v13.41.0 t coffee

LaRA v1.4.3 lara

LocARNA v1.9.0 mlocarna --threads=16

RNAmountAlign v1.0 RNAmountAlign

MAFFT v7.453 mafft --thread 16

Table 7.1: Program versions and parameters for the benchmark. If possible
and not already default, I chose 16 threads for execution, and used the
most recent program versions as of April 2021.
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7 Benchmarks

7.1 Multiple alignment of RNA families

This benchmark compares the performance for multiple structural alignment across
several RNA families dependent on the sequence similarity. I took the BRAliBase 2.1
data set, which consists of 388 reference alignments of 5 sequences each (after removal
of the 93 SRP alignments due to an erratum). The contained RNA families are 5S
ribosomal RNA (RF00001), tRNA (RF00005), U5 spliceosomal RNA (RF00020),
and Group II catalytic introns (RF00029) [Gardner et al., 2005]. For the evaluation
of RNAmountAlign I had to exclude 46 alignments that contain the character ’N’,
because the program does not accept wildcard symbols.

In order to evaluate the resulting multiple structure alignments two metrics are
applied: SPS and MCC. The sum-of-pairs (SPS) score is a measure of similarity
between the test alignment and the curated reference alignment that is available
in the Rfam database [Kalvari et al., 2018]. SPS values are in range [0..1], where 1
means identity and value 0 represents maximal distance. While SPS considers solely
the character matchings, the Matthews correlation coefficient (MCC) [Matthews,
1975] evaluates the predicted secondary structure. MCC is a value in range [−1..1],
where 1 denotes a perfect prediction, 0 is a random prediction according to the
background distribution, and −1 denotes a total disagreement.

For calculating the MCC as shown in equations (7.1) and (7.2), I follow the
publications of the tools Murlet [Kiryu et al., 2007] and RNAmountAlign [Bayegan
and Clote, 2020]. For future reference and reproducibility the script is provided in
the LaRA 2 repository.

In a first step the test alignments are folded with RNAalifold from the ViennaRNA

package [Lorenz et al., 2011]. I have computed the consensus structures with
PETfold [Seemann et al., 2011] as well, which led to the same results. For the
reference alignments the structure annotations from the Rfam 5.0 database with
accession numbers RF00001, RF00005, RF00020, and RF00029 are used, this is
according to the compilation of the BRAliBase data [Gardner et al., 2005].

In the next step the consensus structure is assigned to each sequence of the
respective alignment. For all matching base pairs the sequence positions are extracted
per sequence and stored in two sets: Tx contains the base pairs of sequence x in the
test alignment and Rx contains the base pairs of x in the reference alignment. Based
on these sets the amount of true positives (tp), false positives (fp), false negatives
(fn), and true negatives tn, which is the so-called confusion matrix, are calculated
according to equation (7.1). Note that the true negative (tn) value contains the
number of all possible base pairs that are contained in neither the test nor the
reference set (and thus it is typically very large). The values of the confusion matrix
in turn are used in equation (7.2) to calculate an MCC value.

tp :=
∑
x

|Tx ∩Rx| fp :=
∑
x

|Tx \Rx|

tn :=
∑
x

|(Tx ∪Rx)
c| fn :=

∑
x

|Rx \ Tx|
(7.1)
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7.1 Multiple alignment of RNA families

MCC :=
tp · tn− fp · fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
(7.2)

Figure 7.1 shows the performance of the tested tools according to the SPS and
MCC benchmarks. The curves in a) and b) are fitted through the data points with
a lowess smoother (f = 0.5). The statistical significance of the MCC benchmark
is displayed in c). As annotated in the BRAliBase data set [Gardner et al., 2005],
I have divided the alignments in three groups of low, medium and high sequence
similarity. For each group and each tool I have calculated the median and 95%
confidence intervals after bootstrapping 1000 samples.

The results demonstrate that LaRA 2 performs as good as LocARNA and LaRA 1,
and better than RNAmountAlign and MAFFT. In the alignments with more than
70% sequence similarity we observe the same performance for all tools in the SPS
benchmark. This is expected, as the importance of the structure is low and even a
pure sequence aligner is able to compute alignments that are close to the reference
alignment. For lower sequence similarities we observe an almost linear regression
in the SPS score of MAFFT, because the structure becomes more crucial. Here we
observe that LaRA and LocARNA clearly perform the best among the tested tools.

Another question that has concerned me is the performance drop of all programs
around the 55% sequence similarity region in the SPS benchmark. As Löwes et al.,
2016 have pointed out, this is the effect of an unbalanced representation of RNA
families in the BRAliBase benchmark set: Especially the tRNA family, which has a
well-conserved cloverleaf structure, is overrepresented in the BRAliBase data set and
bears responsibility for the dent.

For the structure evaluation with Matthews correlation coefficient, LaRA 2 has the
same performance as LocARNA and LaRA 1, while this group outperforms MAFFT and
RNAmountAlign. An interesting observation is the decline of the reference curve for
high sequence similarity, which is mainly represented by alignments of the tRNA
family. For the reference curve I computed the optimal structures of the BRAliBase
reference alignments with RNAalifold [Lorenz et al., 2011] (they do not provide
reference structures), and compared them with the respective curated structures
from Rfam, using the MCC metric. Apparently, the results of all the programs follow
the same trend as the reference, while for higher sequence similarity the curves get
closer to each other.

I was surprised to see that above 55% sequence similarity MAFFT has a better
performance than RNAmountAlign in the MCC benchmark, as shown in figure 7.1
b) and c). The comparably poor performance of RNAmountAlign for low sequence
similarities is compliant with the results that have already been published by Bayegan
and Clote, 2020. My assumption is that RNAmountAlign balances the weight too
much on the sequence similarity.

The run time for the benchmark is displayed in figure 7.2. I summed up the run
time for 481 executions of each tool (including the SRP data in order to have more
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7 Benchmarks

Figure 7.1: SPS and MCC evaluation for the BRAliBase data set. a) Sum-of-
pairs score and b) Matthews correlation coefficient are shown for different
tools dependent on the sequence similarity. The tools were run on 388
alignments of the BRAliBase 2.1 data set (without SRP) and the curves
were generated with a lowess function on the results. In order to show
the MCC performance of MAFFT as a sequence alignment tool, as well
as of the reference alignment from BRAliBase, we calculated the best
secondary structure of the alignments with RNAalifold [Lorenz et al.,
2011]. c) 95% bootstrap percentile confidence intervals and medians for
the MCC values. The first axis represents the sequence similarity in three
groups: low (< 55%), medium (≥ 55% and < 75%) and high (≥ 75%),
as annotated in BRAliBase [Gardner et al., 2005]. For each group we
bootstrapped 1000 samples of the MCC experiment.
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7.2 Influence of the sequence length

Figure 7.2: Run time of the tested programs for 481 alignments of 5 sequences
each from the BRAliBase 2.1 benchmark, including the SRP data. The
calculation of the base pair probabilities is included in the run time.
The displayed run time of RNAmountAlign is scaled with factor 481

384
for

comparison.

data points), except RNAmountAlign, which I ran on a limited set (384 alignments
that do not contain wildcard characters) and scaled the run time accordingly.

The fastest result of the sequence-structure aligners is delivered by LaRA 2 with
T-Coffee in less than 5.5 minutes. This is closely followed by RNAmountAlign (below
7 minutes), which is impressive in the light of its non-parallel execution, but shadowed
by its performance in the benchmark above. LaRA 2 with MAFFT runs in less than 13
minutes, LocARNA takes almost 35 minutes and the single-threaded LaRA requires
more than 1 hour to compute the test alignments. MAFFT is the fastest among all
tested tools, however this is expected since sequence alignment is a less complex
problem. As there are only five sequences aligned at a time, parallel execution has
just a minor effect compared to the benchmark in section 7.3.

7.2 Influence of the sequence length

I examined the time and memory consumption of LaRA 2 with respect to the average
sequence length. As the BRAliBase data set contains rather short sequences (up to
300 bases) I extended the set with two additional RNA families from the RNAStrAlign
database [Tan et al., 2017]: Telomerase and 16S rRNA. Each alignment consists of
five sequences, and I averaged the run time per alignment over 10 runs in order to gain
more accurate results. Figure 7.3a shows the results for the run time and figure 7.3b
for the maximum allocated memory. In both cases we observe a monotonic increase
with sequence length, and an alignment of average sequence length 1500 takes about
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(a) Run time in relation to sequence length.
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(b) Memory in relation to sequence length.

Figure 7.3: Run time and memory of LaRA2 in relation to the sequence
length. I used the sequences from BRAliBase 2.1 including SRP as
well as Telomerase RNA and Mollicutes’ 16S rRNA from RNAStrAlign
database [Tan et al., 2017]. Each of the 560 alignments consists of 5
sequences, of which the average length is denoted on the x-axis. The
y-axis shows the run time or peak memory consumption respectively for
each alignment computation, including the calculation of the base pair
probabilities.
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7.3 Deep alignments

#
threads

LaRA 2 +
MAFFT

LaRA 2 +
T-Coffee

LaRA LocARNA

RNA-

mount-

Align

MAFFT

Time
[m:s]

16 26:28 54:14 na 419:59 na 0:04
1 237:00 151:17 3424:57 1260:50 212:30 0:02

Mem
[MB]

16 2059 3917 na 3003 na 357
1 1362 3908 4172 453 3923 36

Table 7.2: Run time and memory consumption for the computation of a mul-
tiple alignment with 838 sequences of 5S rRNA Plastids, taken from the
5SrRNAdb database [Szymanski et al., 2002]. The comparison shows the
tested programs employing 1 or 16 threads. The calculation of the base
pair probabilities is included.

one minute and occupies at most 2.6 gigabytes of memory. This benchmark does not
include MSA calculations, but includes the computation of base pair probabilities.

7.3 Deep alignments

With deep alignment, I mean an alignment that consists of many sequences. In order
to demonstrate the ability of LaRA 2 to process such large data sets in reasonable time,
I use the plastids data set from the 5SrRNAdb [Szymanski et al., 2002] database,
which contains 838 sequences with average length 123. This results in 350,703
pairwise structural alignments that are then combined to a single multiple alignment.
As table 7.2 demonstrates, LaRA 2 with MAFFT X-INS-i can compute this in 26.5
minutes due to its efficient and parallel implementation. The run time of LaRA 2

with T-Coffee is about 54 minutes, and I examined that in both cases the common
pairwise alignment part takes less than 7.5 minutes.
MAFFT is significantly faster in this benchmark due to the fact that it is a pure

sequence aligner, which is a less complex problem. Interestingly, the multi-threaded
version is even disadvantageous for MAFFT, likely because of the larger memory alloca-
tion. As stated in section 2.2, LocARNA has a worse run time complexity compared to
LaRA 2, which leads to a significantly slower execution with this large alignment. Note
that RNAmountAlign and LaRA support only single-threaded execution. I computed
also the SPS scores for the results of this benchmark, which are values between 0.95
and 0.98 for all programs.

The speed-up of LaRA 2 with MAFFT using 16 threads is about 9, which is much
better than all the other tools. With T-Coffee it reduces to a factor of 3. Still this
is the same speed-up factor as LocARNA.

Taking a look at the peak memory allocation in table 7.2 reveals that even with so
many sequences the calculations do not require an extensive amount of memory. The
maximum allocation of around 4 gigabytes is reached when running RNAmountAlign

or T-Coffee (after LaRA 2 or LaRA 1). When LaRA 2 is executed with MAFFT X-INS-i
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7 Benchmarks

RNA family id RF01089 RF01084 RF00499 RF00165

sequence similarity 59.46% 53.51% 81.67% 66.92%

LaRA 2 + T-Coffee 0.82 0.79 0.93 0.84

LaRA 2 + MAFFT 0.86 0.75 0.94 0.94

LaRA 0.81 0.77 0.91 0.83

LocARNA 0.76 0.68 0.89 0.80

RNAmountAlign 0.63 0.67 0.93 0.83

MAFFT 0.70 0.59 0.92 0.83

Table 7.3: SPS evaluation on pseudoknotted structures from Rfam. The
best values are printed in bold font. For each RNA family the sequence
similarity is also provided, since it has an impact of the performance of
some tools.

the peak memory is determined by the LaRA 2 part, which is around 2 gigabytes for
16 threads and 1.3 gigabytes for single threaded execution. Since this is lower than
any other program in multi-threaded mode, I recommend using LaRA 2 with MAFFT if
the available memory is limited.

7.4 RNA structures with pseudoknots

Although Danaee et al., 2018 have estimated that 12% of RNA structures contain
at least one pseudoknot, the most structural alignment methods do not implement
mechanisms to conserve pseudoknotted structures, because their detection is com-
putationally more demanding. Since many commonly used software tools do not
detect pseudoknots, the number 12% may still be underestimated. Generally, in
alignments with a high enough sequence conservation a pseudoknot can be aligned
correctly by any method that aligns for sequence similarity, while for alignments with
low sequence similarity the ability of the methods to represent crossing structures
becomes more important.

I show with SPS values of some pseudoknotted RNAs from Rfam and in an
additional graphical example that LaRA 2 actually detects pseudoknots. SPS scores
express the similarity to the reference alignment and therefore a high score indicates
that the pseudoknot is aligned properly, however a low score can result from a
different location and is not sufficient to prove the absence of the pseudoknot in the
test alignment.

The scores in table 7.3 show that LaRA 2 performs the best according to the
SPS criterion. This is expected, because LaRA 2 and LaRA receive their structural
information from individual base pair probabilities and can model pseudoknots
in their graph representation. The high scores of the structural interactions of
the pseudoknot benefit the conservation of the respective columns of the multiple
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7.4 RNA structures with pseudoknots

0 10 20 30 40 50 60 70 80 90 100 110 120 130

LaRA 2 LocARNA

Reference Reference

Figure 7.4: Structure plot of RF01089 with LaRA 2 and LocARNA (north) as well
as the reference (south). It was created with R-chie [Lai et al., 2012] of
type double covariance plot after structure prediction with IPKnot [Sato
et al., 2011]. The reference result is shown in black, the LaRA 2 and
LocARNA results in green/blue. The colour coding of the alignment: If
a sequence can form a base pair as dictated by the structure, the base
pair is coloured green, else red. For green base pairs, if a mutation
has occurred, but base pairing potential is retained, it is coloured in
blue (dark for mutations in both bases, light for single-sided mutation).
Unpaired bases are displayed in black and gaps in grey.

alignment as shown in the example above. In contrast, a pure sequence aligner like
MAFFT can only show good results with high sequence similarity like RF00499.

I have chosen a structure for the graphical example where the pseudoknot inter-
actions are biologically essential and where the alignment is not obvious through
sequence comparison to point out the benefit of detecting pseudoknots. Athanaso-
poulos et al., 1999 describe a pseudoknot in the regulatory region of the repBA gene,
which consists of two complementary sequences of 8 bases. The base pairing between
them forms a pseudoknot that is essential for translation. I have downloaded for this
benchmark the respective seven seed sequences (accession RF01089) from the Rfam
database [Kalvari et al., 2018] as well as the respective reference alignment.

I have computed the structural multiple alignment with LaRA 2 and LocARNA. From
these alignments I ran the tool IPknot [Sato et al., 2011] (mode: McCaskill model
with refinement, allow pseudoknots) to produce a secondary structure of the two
alignments and the reference in order to detect whether the alignments have the
correct pseudoknot positions aligned. Figure 7.4 visualizes the secondary structure
from IPknot with the R-chie tool [Lai et al., 2012]. The southward arcs (black)
visualize the interactions in the reference, which can be directly compared with
LaRA 2 and LocARNA in the north half (green/blue) of the plots.
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7 Benchmarks

The pseudoknot of subject is the long-range interaction that is displayed as large
blue arcs in figure 7.4. Comparing the two plots reveals that LaRA 2 correctly aligned
the pseudoknot (mostly green coloured base pairs) and placed it in the same position
as in the reference; while with LocARNA the left side of the pseudoknot cannot be
correctly spotted and is thus not represented in the alignment. In numbers, the
reference structure has 39 interactions, of which 11 are in a pseudoknot. Of those,
LaRA 2 correctly detects 32 interactions, including 9 of the pseudoknot ones; LocARNA
detects only 18 interactions, including 2 pseudoknot interactions.
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8 Discussion

The first implementation of the T-LaRA algorithm by Bauer et al., 2007 computes
sequentially a sequence-structure alignment for all pairs of sequences and then
combines the pairwise alignments using T-Coffee [Notredame et al., 2000]. The
program is still competitive as we have seen in chapter 7, however it is not well
maintained in the sense that old libraries are used (e.g. LEDA [Mehlhorn et al., 1996]
for access to general matching algorithms) and the code is not parallelized. Hence,
my PhD project is a re-implementation of the core algorithms based on the modern
C++ library SeqAn [Reinert et al., 2017].

I have implemented the algorithm for pairwise structural alignments in a new C++
program with the name LaRA 2, which reflects that the underlying model is the one of
the original LaRA 1, but has been improved with the techniques described in part II
of this thesis.

The new tool computes structural alignments with pseudoknots in high quality. It
is capable of processing large data sets because of its enormous speed-up thanks to
its implementation optimized for multithreading and vectorization. According to the
benchmarks LaRA 2 is up to 130× faster than LaRA 1, while maintaining the accuracy.
In contrast to existing software it can handle arbitrary pseudoknots and shows better
performance on both simulated and experimentally determined RNA structures.

In addition to the multithreading and vectorization techniques, the speed-up of
LaRA 2 is due to the new efficient routines for alignment and matching. I have made
the SeqAn alignment amenable for position-specific score and added two efficient
methods for maximum weighted matching: the blossom algorithm, which computes
slightly better matchings, and a faster greedy approach.

For multiple structural alignment I have created two workflows. There is the
classic one with T-Coffee, and an improved one with MAFFT X-INS-i, which has
proven to be faster and requires less memory.

For versatile input options, I have implemented a wide range of formats for
sequences with structure annotation, as well as parsing the dot plot files from
RNAfold. Furthermore, together with Gianvito Urgese I have designed the new
Ebpseq format, which can be used to store sequence and structure information from
various sources, including SHAPE data.

Alongside the program I have developed an interactive Jupyter notebook that
serves as a template for getting started and provides practical use cases and code
for benchmarks. Furthermore, the manual on https://seqan.github.io/lara

(22.08.2022) provides assistance for using LaRA 2 with T-Coffee or MAFFT for multiple
structural alignments and demonstrates the supported input and output formats.
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8 Discussion

8.1 Outlook

The performance of LaRA is quite dependent on a good base pair probability prediction.
In this section I want to suggest improvements to achieve a better and more realistic
structural input for LaRA 2.

A promising addition to the proposed LaRA 2 workflow is the incorporation of
additional, experimentally gained structures that have been obtained by SHAPE
experiments. This is a type of experiment for RNA that determines the reactivity of
the 2’-hydroxyl group in the ribose ring. A high reactivity is found at single-stranded
and conformationally flexible positions, while the reactivity is low for base-pair
constrained nucleotides [Spitale et al., 2014]. Although the reactivity values are not
yet used as additional constraints in LaRA 2, they can already be incorporated via
the Ebpseq format.

An interesting project to consider is the consensus structure module (Cosmo) from
a master thesis by Resta, 2018, which is able to include secondary structures resulting
from the three tools IPknot [Sato et al., 2011], RNAfold [Lorenz et al., 2011], and
RNAstructure [Reuter and Mathews, 2010]. It combines all the input data in a graph,
and aims to create a structural conformation of an RNA family that is supported by
multiple tools. It produces an Ebpseq file, which LaRA 2 can take as input. However,
Cosmo does not use the full capabilities of this format, since it outputs just a single
secondary structure into it. In general, a fixed structure performs worse than a base
pair probability matrix, because the alignment is forced to satisfy the one given
structure, which makes it is extremely sensitive to artefacts or other errors. I suggest
improving Cosmo in a way that it passes the unfiltered information to LaRA 2 such
that also suboptimal structures can be considered with a given probability.

8.2 Availability

LaRA2 project
Homepage: https://seqan.github.io/lara
Source code: freely available on https://github.com/seqan/lara

System requirements: tested on Linux and MacOS; gcc or clang compiler
Software dependencies: SeqAn 2.4, Lemon 1.3.1, ViennaRNA 2.0 or higher
License: BSD-License (3-clause)

Benchmark data
Plastids data: http://combio.pl/rrna/download
Reference alignments for pseudoknotted RNA structures: https://rfam.xfam.org
Data and scripts for the BRAliBase 2 benchmark:

http://projects.binf.ku.dk/pgardner/bralibase/bralibase2.html
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Part III

MaRs: Motif-based aligned RNA
search
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9 Structural motifs for classifying
ncRNA

Under a structural motif we understand a set of descriptors, which define the
properties of an RNA family with respect to sequence and secondary structure. We
have seen in section 2.3 that a very flexible way of describing the relevant properties
are stem loop descriptors. They divide the molecule into logical units that can be
treated independently and naturally support pseudoknots. This chapter describes in
detail how stem loops are detected from secondary structure (section 9.3) as well as
how the descriptors are designed in MaRs (section 9.4).

For creating structural motifs we need two ingredients: a sequence-structure
alignment and at least one consensus secondary structure. The alignment can
be obtained with LaRA 2 or other structural aligners, e.g. the ones introduced in
section 2.2. Resources for existing alignments are for instance the Rfam database
[Kalvari et al., 2018] or the SILVA ribosomal RNA gene database [Quast et al.,
2013]. A consensus secondary structure describes the structural conformation of a
whole ensemble of related RNA sequences, i.e. the base pairings of the columns of a
(multiple) sequence-structure alignment. The consensus secondary structure is either
already given inside the alignment file, e.g. using the Stockholm format, or otherwise
it must be computed from the alignment. Section 9.2 deals with obtaining such a
consensus structure.

9.1 Reading and storing a multiple structural
alignment

MaRs takes as input a structural multiple alignment in either Clustal, Fasta, or
Stockholm format. The latter usually contains already a consensus structure (espe-
cially if it has been obtained from Rfam) and thus the structure prediction can be
skipped. Clustal and Fasta are the output formats of multiple alignment tools, like
T-Coffee or MAFFT, which we have discussed in chapter 6. They are not able to store
a secondary structure, and thus it has to be computed with structure prediction
programs. This is similar to the structure prediction in LaRA 2 (section 2.1), however
with the difference that here we want to fold an alignment and not a stand-alone
sequence.

A multiple structural alignment in MaRs is stored according to the class diagram
in figure 9.1. Since the aligned sequences contain gaps, I use the seqan3::gapped
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9 Structural motifs for classifying ncRNA

MultipleAlignment

+ sequences: vector<vector<gapped<rna15>>>

+ names: vector<string>

+ structure: pair<vector<int>, vector<int>>

Figure 9.1: UML representation of the Multiple Alignment class. Besides
the gapped sequences of the alignment, this data structure also holds the
sequence names and a consensus secondary structure. It is implemented
as a struct with public member variables and no member functions.

1 void parse_structure(std::pair<std::vector<int>, std::vector<int>> & structure,

2 std::vector<seqan3::wuss51> const & wuss_string)

3 {

4 structure.first.resize(wuss_string.size(), -1); // initialize structure with -1 (unpaired)

5 structure.second.resize(wuss_string.size(), -1);

6

7 std::stack<int> brackets[seqan3::max_pseudoknot_depth<seqan3::wuss51>];

8 int pos = 0;

9 for (seqan3::wuss51 symbol: wuss_string)

10 {

11 int const pkid = seqan3::pseudoknot_id(symbol).value_or(-1);

12

13 if (symbol.is_pair_open())

14 {

15 brackets[pkid].push(pos);

16 }

17 else if (symbol.is_pair_close())

18 {

19 if (brackets[pkid].empty())

20 throw seqan3::parse_error{"Invalid WUSS string encountered."};

21

22 structure.first[pos] = brackets[pkid].top(); // set righthand position

23 structure.first[brackets[pkid].top()] = pos; // set lefthand position

24 // reduce pseudoknot level if the stack on the lower level is unused

25 int reduced_pk = pkid;

26 while (reduced_pk > 0 && brackets[reduced_pk - 1].empty())

27 --reduced_pk;

28 structure.second[pos] = structure.second[brackets[pkid].top()] = reduced_pk;

29 brackets[pkid].pop();

30 }

31 // no actions for unpaired

32 ++pos;

33 }

34 for (std::stack<int> const & stack: brackets)

35 if (!stack.empty())

36 throw seqan3::parse_error{"Invalid WUSS string encountered."};

37 }

Listing 9.1: Parsing the structure from WUSS notation. The implementation
uses stacks for extracting the positions of corresponding brackets per
pseudoknot level.
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9.2 Obtaining the secondary structure of a multiple alignment

type with the rna15 alphabet. This alphabet allows 15 different values and enables
MaRs to parse and process wildcard symbols from the alignment file. The sequence
names are kept for the output later on, and the secondary structure in encoded in
two vectors: The first vector contains for each alignment column the position of the
interacting column, or -1 if unpaired. The second vector contains for each interaction
the pseudoknot page (the page number was discussed in section 1.4), or -1 if unpaired.

For Fasta input, I simply use the SeqAn 3 sequence parser, which works also for
gapped sequences. The Clustal and Stockholm alignment formats I have implemented
in MaRs, because the SeqAn 3 alignment I/O is designed solely for read alignments
and thus not compatible. However, my implementations are written in line with the
current I/O design and located in header files without external dependencies, so if
desired they can be included into the SeqAn 3 library without effort later on.

The secondary structure in Stockholm files is given in WUSS notation. I wrote a
function parse structure that converts this notation into the vector-based structure
format described above. The function is shown in listing 9.1 and uses a stack per
pseudoknot level (i.e. bracket type) in order to keep track of the positions of the
opening brackets. Whenever a closing bracket is encountered, the position of its
partner can be obtained from the respective stack. Since the WUSS notation does
not always apply the lowest possible pseudoknot level, I reduce the assigned level to
the lowest that has an empty stack (see lines 25 to 28 of listing 9.1).

9.2 Obtaining the secondary structure of a multiple
alignment

A secondary structure is essential for assigning structural features to the motif. In the
case of MaRs, it is necessary for the stem loop detection as well as for the distinction
between stem and loop regions. Thus, the first step is to obtain such a structure for
the given multiple sequence-structure alignment.

With MaRs the structure is calculated either with IPknot [Sato et al., 2011]
or RNAalifold [Hofacker et al., 2002]. Because IPknot is superior in structure
prediction and is able to predict pseudoknots [Sato et al., 2011], I have chosen it as
the default method. RNAalifold is slightly faster (in the scale of seconds), but since
the structure prediction is less than 2% of MaRs’ run time, this argument can be
neglected.

From a technical point of view, RNAalifold is implemented in RNAlib as part of
the ViennaRNA package [Lorenz et al., 2011]. Since IPknot depends on RNAlib, the
algorithm of RNAalifold is available for free.

IPknot, however, has quite a list of software dependencies. If missing, they are
automatically downloaded during installation in the cmake step and include RNAlib,
Contrafold [Do et al., 2006], Nupack [Zadeh et al., 2011] (depends on Boost),
MPFR [Fousse et al., 2007], and optionally GLPK.
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1 /*!

2 * \brief Compute the secondary structure of a given multiple structural alignment (MSA).

3 * \param[in] names The IDs of the MSA.

4 * \param[in] seqs The sequences of the MSA.

5 * \return two vectors which hold the base pairs and pseudoknot levels.

6 */

7 std::pair<std::vector<int>, std::vector<int>> run_ipknot(std::list<std::string> const & names,

8 std::list<std::string> const & seqs);

Listing 9.2: The interface for calling the IPknot algorithm. The function
takes a multiple structural alignment as second argument, as well as
the sequence identifiers. It returns two integer vectors encoding the
structural interactions and pseudoknot levels.

1 void compute_structure(Msa & msa)

2 {

3 // Convert names

4 std::list<std::string> names{msa.names.size()};

5 std::ranges::copy(msa.names, names.begin());

6

7 // Convert sequences

8 std::list<std::string> seqs{msa.sequences.size()};

9 auto && char_seq = msa.sequences | seqan3::views::to_char;

10 for (auto && [src, trg] : seqan3::views::zip(char_seq, seqs))

11 std::ranges::copy(src, std::cpp20::back_inserter(trg));

12

13 msa.structure = run_ipknot(names, seqs);

14 }

Listing 9.3: Usage of the IPknot interface. The containers for sequence names
and sequences have to be converted into lists beforehand. In addition,
the sequences have to be transformed from seqan3::dna15 vector to
string.

Although it is implemented in C++, IPknot unfortunately does not provide an API
that allows a programmer the invocation of the structure prediction algorithm from
a C++ function.

Thus, I have created a fork of the IPknot repository in the lib subdirectory
of MaRs, in which I have removed the main() function from src/ipknot.cpp and
replaced it with a function run ipknot(). It contains the relevant code path from
main() that invokes the desired algorithm. Essentially, I have removed the code
related to argument parsing and file in- and output.

The interface of this function as declared in src/structure.hpp is shown in
listing 9.2, however I refrain from citing the definition, since it is not my own code.
Instead, the function definition can be looked up in file lib/ipknot/ipknot.cpp in
the MaRs repository.

The invocation of the presented IPknot interface is shown in listing 9.3. In order
to adapt to the interface, I have to change the container type of the sequence names
and sequences into linked lists, and transform the sequences into char type.
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9.3 Stem loop detection

Figure 9.2: Stem loop structure. A stem loop consists of exactly one hairpin (on
the left) with an associated stem region, which in this case contains an
internal loop. The green line marks the RNA backbone, while the black
connections denote base-pair interactions. On the right end there could
be e.g. a multiloop or two single-stranded ends.

9.3 Stem loop detection

A stem loop can be detected unmistakably through its hairpin loop, since each stem
loop has exactly one. Figure 9.2 shows an example of a stem loop, and its hairpin is
located on the left-hand side. The hairpin loop is closed with a stem region, which
includes at least one stem (consecutive base-pairs), and possibly internal or bulge
loops alternating with further stems. Remember that we have discussed the different
RNA structure components in section 1.3 on page 8.

The algorithm for stem loop detection scans linearly the RNA backbone from 5’ to
3’ end, i.e. it iterates the structure vectors introduced in section 9.1. If the structure
contains pseudoknots, we have to scan for each pseudoknot level independently,
considering only the base pairs that are active for the particular level. Listing 9.4
shows the algorithm for detecting the stem loops within a given level. As an example,
for the structure in figure 1.4b we do one run considering only the parentheses (),
which finds the stem loop of black interactions, and a second run for the squared
brackets [], which finds the stem loop of the red ones.

Let bp be the first structure vector, which contains the base pairings. While we
iterate at position i in the vector, the value bp[i] tells us, if we are at an unpaired
position (bp[i] = −1), or at an interaction site with a partner to the right (bp[i] > i)
or to the left (ℓ ≤ bp[i] < i), with ℓ = 0 initially.

As soon as we spot the first interaction with ℓ ≤ bp[i] < i, we have found the
closing base pair of a hairpin loop. We iterate further, as long as ℓ ≤ bp[i] < i or
bp[i] = −1 holds. This process extends the current stem loop region, until we either
reach the end of the bp vector, or we encounter an interaction that belongs already
to the following stem loop (bp[i] > i) or that closes a multiloop (−1 < bp[i] < ℓ). We
report the coordinates (bp[i], i) of the outermost valid interaction of each stem loop
and set ℓ = i+ 1 for continuing the search.

The meaning of the ℓ variable, which corresponds to left in listing 9.4, is to keep
track of the leftmost position for a stem loop to start. This is necessary, because
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1 void detect_stemloops(Motif & stemloops,

2 std::vector<int> const & bpseq,

3 std::vector<int> const & plevel,

4 int level)

5 {

6 std::pair<int, int> coordinates{-1, -1}; // store bounds of current stem loop

7 unsigned char id_cnt{0u}; // generates unique ids for each stem loop

8 int left = 0; // leftmost start of current stem loop

9

10 // 0-based indices

11 for (auto && [idx, bp, pk] : seqan3::views::zip(std::ranges::views::iota(0), bpseq, plevel))

12 {

13 if (bp == -1 pk != level) // unpaired site or non-matching pseudoknot level

14 continue;

15

16 if (bp < idx && left <= bp) // extend current stem loop

17 {

18 coordinates = {bp, idx};

19 }

20 else if (idx < bp && coordinates.second != -1) // new stem loop after previous is finished

21 {

22 left = coordinates.second + 1;

23 stemloops.emplace_back(id_cnt++, coordinates);

24 coordinates = {-1, -1};

25 }

26 }

27 stemloops.emplace_back(id_cnt, coordinates); // store the last stem loop

28 }

Listing 9.4: Algorithm that detects stem loops for a particular pseudoknot level.
The main loop considers three values per iteration: idx is the current
position i, i.e. a counter that starts from 0, bp is the current value of
the base pair vector and corresponds to bp[i] in the text, and pk is the
pseudoknot level.

interactions that close a multiloop nest more than one hairpin loop, even though
they satisfy the bp[i] < i condition.

9.4 Motif design

The type of the first parameter of function detect stemloops in listing 9.4 is a
reference to Motif, which is simply an alias for a vector of stem loops. We see in
line 23 that new stem loops are appended to this vector by in-place construction
from a unique identifier number and the boundary position. Thus, the stem loops
already contain their positional offset within the alignment, but no sequence-structure
information yet. In this section I discuss the retrieval of this information, as well as
the design of the Stemloop class and its two dependent data structures LoopElement
and StemElement, as visualized in figure 9.3.

After the constructor sets the unique identifier and the boundaries during the
stem loop detection step, the remaining member variables of class Stemloop are
set afterwards by the analyze method. It takes the multiple sequence-structure
alignment as a parameter (the data structure introduced in sections 9.1 to 9.2)
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9.4 Motif design

Stemloop

+ uid: uint8

+ bounds: pair<uint16, uint16>

+ length: pair<uint16, uint16>

+ elements: vector<variant<LoopElement, StemElement>>

+ Stemloop (uid, bounds)

+ analyze (msa): void

+ print_rssp (output_stream): void

LoopElement

+ profile: vector<vector<ScoredRna>>

+ gaps: vector<unordered_map<uint16, uint64>>

+ leftsided: bool

StemElement

+ profile: vector<vector<ScoredRnaPair>>

+ gaps: vector<unordered_map<uint16, uint64>>

Figure 9.3: UML representation of the stem loop class and its dependent data
structures LoopElement and StemElement. Since many members are
unsigned integer types of various size, I specify them here with their
exact size information, e.g. uint8 is an 8-bit unsigned integer with a
value range between 0 and 28 − 1 = 255.

and uses it to extract the desired information. Since the location of the stem loop
within the alignment is already known from the bounds member, it operates only
on the alignment columns that are located within the respective region. In MaRs

the stem loop analysis is executed in parallel, because this step can be performed
independently for each stem loop.

The length member is a pair of two numbers, which denote the minimum and
maximum possible length of the stem loop. For each sequence we count the number
of nucleotides within the stem loop region and set the minimum and maximum length
accordingly. Thus, the minimum length is determined by the stem loop sequence
with the most gap characters, while the maximum length is determined by the stem
loop sequence with the least gap characters. The length information is used later on
to prune the search tree, see items 2 and 4b on page 89.

The elements member is a vector that consists of (usually alternating) loop and
stem elements. A loop element represents a single-stranded region from a hairpin,
bulge, or internal loop, while a stem element stores information about stems. My
implementation uses the STL class template std::variant for storing the alternating
types in a single vector.

The first element of the vector is the hairpin loop, which we know is always present
and is supposed to be searched at first. The only occurrences of two adjacent loop
elements in the vector are caused by internal loops, which are stored as two separate
loops, the left-sided (5’) and the right-sided (3’) one. The information about the
orientation of each loop is stored in the leftsided flag of the loop elements, see
figure 9.3. Note that I have defined each hairpin loop right-sided.

In the profile of a loop or stem element is encoded which nucleotides occur
at each alignment column and with which likelihood. The outer vector has the
length of the alignment and each element contains information of one alignment
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column. The inner vector contains the set of the possible nucleotides with associated
likelihood, sorted in descending order by likelihood. I have also tried to use a
std::set here, but it has turned out to be more efficient to sort the data once it
has been collected in a vector, since it has faster access times, which is desired for
the search. For a loop, the internal type is ScoredRna, which resolves to a pair of
a float value and a single nucleotide of type seqan3::rna4. In case of a stem, the
internal type is ScoredRnaPair, where the second type of the pair is a pair of two
seqan3::gapped<seqan3::rna4> characters.

Gaps are in general stored apart from the sequence profiles, various good reasons
have been reported by Strauch, 2017: The individual storage of single gap symbols
would lead to a combinatorial problem in enumerating the patterns, and, even more
important, lose information about the length of a gap streak, i.e. one deletion of
length 5 in a sequence is different from five deletions of length 1 scattered across
different sequences and columns.

The gaps variable is a vector that contains for each alignment column c a hash
map of gaps that start in column c. The hash key k is the length of the gap streak,
and the assigned value is the number of gaps of length k that start in c.

However, for stems I differentiate between two types of gaps: a two-sided gap has
a gap symbol on both sides of the stem and is stored in the gaps data structure; a
one-sided gap is a gap symbol that has a structural interaction with a nucleotide
and is stored in the profile. The reason is that one-sided gaps are very rare and
usually have a length of just 1, so it does not lead to combinatorial problems in
this case, and furthermore keeping the nucleotide information allows for a better
representation of the RNA family.

Before I go into details about the profile creation in the following subsections,
I want to mention the function print rssp, which is also shown as a member of
the Stemloop class in figure 9.3. This function generates output for a pattern file
(.pat) that contains the stem loop structure in dot-bracket notation alongside a
single sequence string. The sequence string contains the wildcard character N where
the profile contains multiple options, and a nucleotide if the profile is unique at a
site. The file that results from concatenating all the stem loops’ patterns is used for
benchmarking the Structator tool, see section 12.1.

9.4.1 Obtaining a loop profile

For counting the occurrences of the different characters in an alignment column,
I implemented a template class profile char that works for all alphabets that
model seqan3::semialphabet. In particular, for loops I instantiate it with the
seqan3::rna4 alphabet, so internally it stores an array of size 4 with the counts
for A, C, G, and U. It has a function increment, which takes a character from the
alignment and adds to the respective count(s), unless it is a gap. If one of the four
nucleotides is given, one of the counts in increased by 1. However, if a wildcard
character is given that substitutes for k different nucleotides, the respective k counters
are increased by 1

k
each.
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A 0 40 0 0 50 25
C 100 0 60 70 10 25
G 0 10 40 30 20 25
U 0 40 0 0 20 25

A -14.14 0.42 -14.14 -14.14 0.73 -0.26
C 2.32 -13.55 1.59 1.81 -1.00 0.32
G -13.55 -1.00 1.00 0.59 0.00 0.32
U -14.14 0.42 -14.14 -14.14 -0.58 -0.26

Table 9.1: Example of a loop profile. Each column in the table corresponds to a
column of an alignment with n = 100 sequences. The top half of the table
shows the absolute nucleotide counts cz as collected in the profile chars,
the bottom half the corresponding logarithmic odds scores sz, assuming
the expected nucleotide distribution eA = eU = 0.3 and eC = eG = 0.2.
The second column must contain 10 gap symbols, since

∑
z cz = 90.

The sequence profile for a loop is created by scanning the respective alignment
columns. When a column is processed, an empty profile char is created and for each
of the column’s symbols the increment function is called. Afterwards, the collected
quantities can be queried from the profile char and transformed into score values, as
shown in table 9.1.

The transformation into score values is important, since we want an additive score
that is not dependent on the profile length, and we want to model the statistical
significance of the nucleotides present in the alignment in relation to their expected
distribution. For satisfying the second property, I compute an odds score, which is
the quotient of actual and expected occurrence. The additive property can be met by
transforming the score into the logarithmic space. Thus, the score sz of nucleotide z
with expected relative occurrence ez is computed as follows:

sz = log2

rz
ez

with rz =
cz + ε

n

The term rz is the relative occurrence, i.e. the absolute count value cz from the
profile char divided by the number of sequences n. In the shown formula, I have
added a pseudo count of ε = 1

600
to the cz value to avoid that the argument of the

logarithm is zero. I have taken the ez values from Olson et al., 2009 and since these
values are constant, MaRs pre-computes their logarithms:

sz = log2

cz + ε

n
− log2 ez

We can see from the formula for the logarithmic odds score that counts above
the expectancy result in a positive score and vice versa: rz > ez ⇔ sz > 0. This
means that a few uncommon occurrences can easily generate high scores and thus
gain a lot of attention for the search step. On the one hand this is desired to model
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9 Structural motifs for classifying ncRNA

the statistical significance, on the other it can easily lead to mistakes caused by
misalignments or sequencing errors.

The gaps profile is created together with the sequence profile while scanning the
alignment columns. A vector gp is used for storing the start positions of gap streaks
for each sequence. The initial value for each entry is -1, which means that currently
no gap is present. If a gap symbol is encountered in sequence i and gp[i] = −1, then
we have spotted a gap opening and the respective column number is recorded in
gp. As soon as the column occurs during the scan where there is no gap symbol in
sequence i any more, the gap is recorded with its length (the difference of the column
indices) and start position (the value of gp[i]) in the hash map vector described
above. If the hash map key already exists, we have found another occurrence of the
same gap in a different sequence, and thus the counter value of the existing map
entry is incremented. Since the gap has been closed, the value of gp[i] is reset to -1.

9.4.2 Obtaining a stem profile

In a stem we want to observe the occurrence of nucleotide pairs as well as one-sided
gaps. I have implemented in MaRs an alphabet type called bi alphabet, which for
any alphabet α represents the combined α× α alphabet. Since I want to represent
one-sided gaps as well (see above), the particular type for the stem alphabet is
bi alphabet<seqan3::gapped<seqan3::rna4>>. It has an alphabet size of 25 and
models all the possible pairs that can occur in a stem: AA, AC, AG, AU, A-, CA, . . ., -G,
-U, and --. Note that the last value exists for technical reasons and is never used,
since two-sided gaps are stored in the gaps data structure instead.

For obtaining the stem profile, I use the profile char class that I have in-
troduced already for the loop region. Since the described stem alphabet models
seqan3::semialphabet as well, it is possible to apply the same methods as above.
The internal array has 25 counters in this case, and it automatically deals with
wildcards in the increment function. The score calculation uses the same formulae
as for loops, but with z denoting a pair of nucleotides instead. The ez values of the
expected distribution of base pairs I have taken from Olson et al., 2009, however the
values for gap pairings are not available. I have set them to 1, because small values
would add more significance to gaps than desired, while the value 1 is rather neutral
with log2 1 = 0.

9.4.3 Pruning the sequence and gap profiles

In order to avoid too many search paths, I have initially tried to implement a filter
based on the relative occurrence rz, which failed because the filter either did not
remove anything, or the search sensitivity dropped significantly. After I had changed
to scoring system towards the logarithmic odds score as described in the previous
subsections, I came up with a new filter, based on the odds score, i.e. the quotient of
actual and expected frequency.
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9.4 Motif design

The filter has a parameter p, which defaults to 10. From the sequence profiles (of
loops and stems) the filter removes the nucleotides z, which occur less than p% of
the expected frequency, i.e. if rz < ez · p%.

Given that rz ≥ 1
n

and ez ≤ 0.5721 (the expected frequency of the most likely
nucleotide pair, which is GC) we follow from 1

n
< 0.5721 · p% that n > 100

0.5721·p , so the

sequence filter is effective with at least 175
p

sequences in the alignment.
An exception are zero-counts, which are not yet considered, since rz = ε

n
. The

inequation ε
n
< ez · p% is in practice almost always true for p > 0, so zero-counts are

removed from the motif. However, for p = 0 the inequation is false and the motif
keeps its full content.

For gaps, since we do not have reliable expectancy values, the filter removes a gap
if it occurs in less than p

2
% of the sequences. Thus, the gaps filter is only effective

for alignments with more than 200
p

sequences.
We can see that apart from removing zero-counts this implemented filter method

prunes only in alignments with many sequences. This is very appreciated, since small
alignments are fast anyway, and we want the filter to operate on large alignments
to compute them in a feasible time. As we see in the benchmarks (chapter 12),
disabling the filter with p = 0 leads to a large run time that is spent mainly with
a few alignments that can be characterized either by their enormous number of
sequences or by the presence of a very long stem loop. Furthermore, a disabled filter
keeps even zero-counts, which creates an exponential number of considered search
paths (4L for loops and 24L for stems of length L). If a high sensitivity is important,
I recommend setting p = 2.
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genome

In this chapter I describe the methods that MaRs uses to locate an RNA family in
a genome. I put genome, because it is the intended application for this method,
however it can be applied to any kind of sequence. Furthermore, MaRs is not limited
to a single (genomic) sequence, instead it works as well for a set of sequences, e.g.
taken from a sequence database.

A detailed description of an RNA family’s properties is provided with the motif,
which we have discussed in the previous chapter. The motif consists of a set of stem
loops, which are subject to independent searches. In the first section of this chapter
I describe the data structure that allows us to perform fast searches, and section 10.2
discusses how a stem loop search is conducted with the help of this data structure.
The searches generate so-called hits, which are genome positions where a stem loop
matches well. In the final step, which is covered in section 10.3, a linear scan over the
genome reveals the locations, where hits from different stem loops can be grouped
into matches for the whole motif.

10.1 Bi-directional index

Searching multiple queries in a genome in a näıve way is not a good idea, since
the run time is proportional to the genome length, the number of queries, and the
average query length. As an alternative, an additional data structure called index
can be used to store e.g. pre-computed locations of substrings in alphabetical order.
This reduces significantly the computational cost of each search, since the run time
is not any more proportional to the genome length, but to its binary logarithm.

The cost of using an index is its additional memory usage and the time for its
construction. For keeping the memory footprint as low as possible, I use a bi-
directional FM-index in MaRs, as discussed already in section 2.3. The benchmark in
section 12.1 demonstrates that the FM-index requires significantly less memory and
a shorter construction time compared to the affix tree used in Structator [Meyer
et al., 2011]. The construction step of the index is required only once, as long as
the sequence does not change. The index can be stored alongside the sequence
in a separate file, so it is persistent across different program runs, and it is even
transferable among different computers.

Like the Structator program, MaRs applies a bi-directional index, which is able
to expand the search pattern not only to the right, but in both directions. This
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10 Motif search in an indexed genome

is a great benefit for structural RNA search, since a hit can be expanded in both
directions in order to check for the complementary base pairs in the stem regions.

The relevant data structure for searching a query string in the bi-directional FM-
index of SeqAn 3 is the cursor. It represents the query, which is initially empty, and
can be extended gradually with nucleotide characters to the left and right. Instead
of storing the query as a string, the cursor maintains pointers that mark the interval
in the internal table of the index where the query is represented. The size of this
interval corresponds to the number of occurrences of the query in the genome. Thus,
the interval becomes successively smaller whenever more nucleotides are appended
(extend right) or prepended (extend left) to the query. The extend-operations of
the SeqAn 3 cursor return whether the extension was successful, i.e. the query could
be extended such that it exists at least once as a substring in the indexed genome.

As input parameter for the genome MaRs accepts the name of a sequence file.
My implementation uses seqan3::sequence file input for parsing the file, which
supports the following formats: Fasta, Fastq, Embl, and Genbank. But before the file
is actually read, the program checks whether an index file exists in the directory of
the specified file.

If an index file is present, the index is loaded from that file and the sequence file
is ignored (it does not even need to exist). The index file name is the sequence file
name with the additional suffix .marsindex.

In case an index file is absent, MaRs parses the given sequence file and computes an
index. With SeqAn 3 this as easy as calling the constructor of seqan3::bi fm index

and passing the sequences as argument. In the end, MaRs writes an index file next to
the location of the sequence file such that the index is available much faster in the
future.

I have implemented the index in- and output with the Cereal library and use a
binary encoding. Binary files are not readable with text editors, but they have much
smaller file sizes. Alongside the index the file stores a version string (in case the
format needs to be changed in the future) and the sequence name(s). The sequence
names are usually short compared to the sequence content and add the benefit that
the index file is self-sufficient and thus MaRs does not need to parse the sequence file
only for the sequence names, which are needed for the output of the results.

In addition, I have added a flag -z to MaRs that controls whether the index output
shall be compressed. Compression creates an even smaller file with the drawback
that the decompression takes additional time whenever the file is read from disk. The
compressed index file has the suffix .marsindex.gz. I have implemented the support
for compressed index in- and output with the gzip support streams of SeqAn 3. If,
for whatever reason, an uncompressed and a compressed index are both present for
reading, the uncompressed one is preferred since it loads faster, as the benchmark
in section 12.1 demonstrates. Note that users may also use the gzip program to
(de)compress the index files outside MaRs.

The index data structure is created for the seqan3::dna4 alphabet and uses the
collection layout, since I want MaRs to support input files that possibly contain
multiple input sequences. Internally, the index concatenates all the sequences with
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Figure 10.1: Motif search scheme. The tree shows the different search paths with
scores for the loop region from table 9.1. Some low-scoring branches are
omitted for the sake of a clearer arrangement.

sentinel characters in between and keeps track of their positions. Thus, the search
results that we see in the following sections consist of the sequence number alongside
the position.

10.2 Finding stem loop hits

In this section I describe how we use the index to find the positions where the stem
loop descriptors match (so-called hits). As discussed above, we start to generate a
search query at the hairpin loop and extend it in both directions until we reach the
outermost base pair of the stem loop. On the way from inside to outside we need to
consider all the alternative options of the profile, and since there may be multiple
branches at each site, the search procedure actually looks like a tree.

Figure 10.1 visualizes such a search tree for the loop profile example that we have
already examined in table 9.1 on page 81. The first column of the profile contains
the C nucleotide with score 2.32, and some zero-counts that we consider to be filtered
out. Thus, we initiate a search for this character and obtain a cursor to the index,
which includes all the positions in the sequence that contain the character C. In a
vector called history, which is still empty at this point, we store the current score
(2.32) and the cursor.
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Figure 10.2: Index search with backtracking and gaps. The nodes of this
search tree demonstrates the evolution of the search query. Whenever
the algorithm reaches a leaf node, the locations of the query in the
genome are generated.

We visit the next column of the profile and in this description let us consider the
two options A and U. The search follows the depth-first paradigm, so we visit the
whole sub-tree of A first, revert to this state with the help of the history vector, and
visit the remaining sub-trees (according to the score in descending order). Since the
actions for each node are the same, I implemented them in a recursive function.

Returning to the example, the recursive function creates a copy of the last cursor
and appends the A to the right (assuming a right-sided loop, cf. section 9.4), so the
new cursor includes all the CA substrings in the genome. The new cumulative score
is 2.32 + 0.42 = 2.74, which is the previous score from history plus the current one.
Finally, the new cursor and cumulative score are appended to the history vector.

Whenever we have arrived at a leaf node, i.e. the end of the stem loop, a function
locate is called, as depicted in figure 10.2. Based on the current cursor, it extracts
all the genome locations from the index where the current search string matches.
Each location alongside the cumulative score, the length of the search string, and
the stem loop identifier build a hit. The generated hits are stored in a data structure
that I am going to discuss in the next section.

We need to backtrack to the previous level if we are either at a leaf node or if all
the sub-trees of the current node have been visited. Backtracking is very easy in my
implementation, since we only need to erase the last entry of the history vector to
restore the previous state.
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The procedure for stem regions is the same as for loop regions with a single
exception: we append two characters to the cursor per node. Since each stem element
provides a character pair, we append the first one on the left side, and the second
one on the right side of the search query. This stem-based expansion is the crucial
step that uses the conserved structural interactions for reducing the search space
effectively.

Alongside the sequence profile we have to check for gaps once at each node of
the search tree. Therefore, we iterate the respective hash map of the gaps data
structure (cf. figure 9.3) and execute the following for each gap steak length L: We
continue the search after leaving L columns of the profile out. This can be depicted
as appending additional sub-trees to the current node, which consist of the remaining
profile after skipping L entries. In the implementation this causes additional calls
of the recursive function, where the iterators of the profile and gaps vectors are
advanced by L, while the cursor and score remain the same.

Finally, let us discuss the various conditions of pruning the search tree. This means
that if one of the following conditions occur, the search is aborted, we return to the
previous state in history (backtracking), and continue the search from there.

1. The cursor returns false on the append operation, i.e. the query sequence does
not exist in the genome.

2. The maximum length of the stem loop has been exceeded. This scenario arises
if the alignment contains gaps in all the sequences, but the search path has
not considered any or very few gaps yet.

3. The score is lower than d search steps ago. The assumption is that a series of
rather unlikely choices from the profile does not lead to a good search string
any more. Thus, the algorithm checks whether the current score is less than d
entries back in the history vector. The default value in MaRs is d = 4, and can
be changed with a user parameter.

4. At the end of a stem loop (i.e. at a leaf node) the locate step is omitted if

a) the cumulative score is negative,

b) the query does not reach the minimum length of the stem loop because
too many gaps were included, or

c) the query length is shorter than 6, since we would generate too many
spurious hits and furthermore such a short stem loop would be sterically
very unlikely.

In general, these conditions are heuristics that aim to reduce the run time of MaRs
by avoiding search paths that likely do not lead to good solutions. After I had found
out that the locate function is the most time-consuming step of the search, the
overall run time has improved very much with the implementation of the conditions
in item 4. This is also respected in the parallel implementation of MaRs, which I
discuss in chapter 11.
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10 Motif search in an indexed genome

10.3 Generation of motif matches

We have seen in the previous section that the locate function generates so-called hits.
A hit defines the occurrence of a particular stem loop in the genome and contains
the genome location, cumulative score, query length, and stem loop identifier. Since
the genome may exist in the form of multiple sequences, the location consists of a
sequence identifier, which is the positional index i for the ith sequence, and the start
position within this sequence.

Hits are collected in n different vectors, where n is the number of sequences. The
assignment to the vectors is based on the hits’ sequence identifiers i, so after the
search we have assembled all the hits per sequence. This has three advantages:

1. We do not need to store the sequence identifier in each hit.

2. The pooling step is much simpler if nearby hits are stored together.

3. The hit vectors are independent, thus pooling can be multithreaded well.

Since I describe the multithreading in the next section, let us focus on the pooling
step here. The aim is to group nearby hits of different stem loops into matches. A
match is a location in the genome that fits very well to the whole motif and thus is
considered an occurrence of the RNA family.

The first step is sorting the hit vector by the compensated positions of the hits. A
compensated position is the detected start position of the hit in the genome minus
the offset of the stem loop within the alignment, which we have stored in the first
bounds coordinate of the stem loop (see figure 9.3). This compensation has the effect
that the hits are mapped to the same start position of the motif, no matter from
which stem loop they originate.

In the second step we want to detect clusters and therefore iterate the hit vector
in order. We start with the first hit and add further hits to the cluster, as long as
their compensated position is less than 1

2
L away, where L is the alignment length.

As an additional condition, in a cluster we collect only one hit per stem loop, which
is (if multiple hits occur) the hit with the highest score. If a hit is encountered that
exceeds the allowed range for the cluster, a new cluster is initialized with this hit.

In every cluster we collect the following data for generating a match:

diversity the number of different stem loops

start position the smallest hit position (not compensated)

end position the largest value for the sum of hit position + query length

score the sum of the hits’ scores

sequence identifier known from the hit vector we are processing

query length the sum of the hits’ query lengths

e-value =
genome length · query length

2score
[Altschul et al., 1997]
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The last step filters and prints the collected matches. The output is a column-based
format, inspired by the output formats of Structator and Infernal. This is to
ease the integration of MaRs into existing workflows. The columns contain from left
to right: sequence name, numeric sequence identifier, start position, end position,
query length, diversity, score, and e-value. For filtering low-scoring matches, I have
implemented in MaRs two methods that can be switched with a parameter.

One method is based on e-values and is the default method in MaRs. An e-value
represents the significance of a match, i.e. the likelihood that the genome and the
query produce a match of the given score by chance [Altschul et al., 1997]. Thus,
small e-values are preferred, and matches with e-values smaller than 10−10 always
pass the filter. But occasionally, there are no such good e-values in the set and
an empty output is also not desired. Let Emin be the lowest e-value in the set of
matches; the matches with an e-value < 10

√
Emin additionally pass the filter. Such

possible ranges are for instance 10−10 . . . 10−4 or 10−6 . . . 10−2.
Another method is rather experimental, since it has not shown as good results

yet. This filter consists of two conditions that both must be satisfied for a hit in
order to pass the filter: diversity >

⌊
1
4
k
⌋

with k the number of stem loops, i.e. more
than one quarter of the stem loops must be found, and score > k · s, where s is a
user parameter for the average score that stem loop should achieve. I found that
the parameter s is hard to set without prior knowledge about the data, for the
benchmark in section 12.5 on Rfam data I was using s = 0.25.
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In general, MaRs has many individual tasks that can be executed in parallel, a good
overview is given in figure 11.1. The amount of tasks and their size depend on various
circumstances, which are not known a-priori, like the number of stem loops in the
predicted secondary structure, the availability of an index, the amount of leaf nodes
in the search tree, and the number of genome sequences.

11.1 Thread pool

For decoupling the tasks from the system specifications, especially the number of
available compute cores, I wanted to use a thread pool that automatically assigns
the tasks to threads and computes them in parallel. The idea is to submit one
or more tasks to the pool, which are kept in a waiting queue until computational
resources are free to execute them. On submission of a task, the main thread receives
a so-called future, which is able to wait for the task to finish and to access its return
value. In MaRs the number of available worker threads can be set with the --threads
parameter (which by default uses all available threads on the system).

The choice of a suitable and efficient thread pool implementation was not very
easy, and I have tried various options. My first idea was to check in SeqAn 3, and
I found the execution handler parallel. Unfortunately, it does not provide the
flexibility of submitting different tasks and e.g. waiting for a particular task — I
conclude that its design is dedicated mainly to the alignment and search algorithms
within SeqAn. The ThreadPool implemented by Nathaniel J. McClatchey1 failed to
run subtasks, i.e. a task created by another task, and otherwise it was rather slow.
Andrey Kubarkov provides the thread-pool-cpp2, which has a rather minimalistic
API and is very fast, since the tasks are detached, but the drawback is that it lacks
a mechanism to query whether a task in the pool has been finished. A promising
implementation is riften::Thiefpool by Conor Williams3 that uses a lock-free
queue and very modern C++ code. What prevents me from using this one is that
it requires the C++ 20 standard and adds more dependent software libraries. Since
MaRs is implemented in C++ 17 and still supports gcc versions ≥ 7, I decided that I
do not want to give up on this compatibility.

1https://github.com/nmcclatchey/ThreadPool (06.04.2022)
2https://github.com/inkooboo/thread-pool-cpp (06.04.2022)
3https://github.com/ConorWilliams/Threadpool (06.04.2022)
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Figure 11.1: Multithreading scheme for MaRs. The figure shows a possible
program flow for 4 threads. More threads can be imagined as copies of
threads 3 and 4, so the work of the stem loop analysis, the hit location,
and the pooling would be distributed over more threads. The yellow tiles
correspond to the motif preparation, the green ones to the index creation.
Thread 2 is depicted in two versions to demonstrate the difference of an
available or absent index file.

Finally, I decided to use the C++ Thread Pool by Dmitry Danilov4, which is a
lightweight single-header implementation of a thread pool, which is still efficient and
easy to use. After construction with the desired thread count I keep an instance of
the thread pool during the whole run time of MaRs. The central function for adding
a task to the queue is the submit function, which accepts any type of function and
returns a future object.

11.2 Motif and index construction

For performing the search, MaRs needs the structural motif in the form of fully
analysed stem loops, as well as the constructed index. These two ingredients can be
created completely independently of each other, as figure 11.1 shows in yellow and
green tiles.

The preparation of the stem loops includes reading the alignment, computing
secondary structures, detecting the stem loop boundaries, and analysing the stem
loops. The latter can be shared among all available threads, since the stem loops are
already constructed and just need to be completed based on their assigned slice of
alignment. Therefore, the analysis tasks are submitted to the thread pool.

4https://github.com/f-squirrel/thread_pool (06.04.2022)
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11.3 Parallel motif search and match generation

Simultaneously, the index is constructed in its own thread. The corresponding
task is submitted to the thread pool immediately after the command line parsing,
so it definitely starts before the stem loop analysis. The required amount of work
depends heavily on whether the index just needs to be read from a file (thread 2a),
which is rather fast and depending on the genome size it finishes before or after the
stem loop analysis. In the other case, the index must be computed after reading a
sequence file (thread 2b), which always takes much time, so the main thread usually
has to wait for the index to be ready.

Since the search algorithm needs the stem loops as well as the index, a synchroniz-
ation point is required to wait for the slower part. This is implemented with calling
wait() on the future objects that have been returned on task submission.

11.3 Parallel motif search and match generation

We have seen in section 10.2 that each stem loop spans its individual search tree
during the recursive generation of search queries. Thus, my first version of a parallel
search implementation was submitting a search task for each stem loop to the thread
pool. This worked but did not gain much speed-up. Analyses of the thread usage
revealed that after about 10 seconds only one or sometimes two threads were actually
working, while the majority of the search tasks have already finished. In the extreme
cases, MaRs spent 2 hours or more on searching one stem loop with a single thread.

My attempt to solve this problem was the design of tasks that solve individual
branches of the search tree. This attempt failed, since the data management between
the recursive tasks became quite complex and there was almost no improvement of
runtime. For a better balancing of workload I have experimented with task-stealing
thread pools, which have one task queue per thread and if one becomes empty, the
thread is able to steal a task from a busy queue. Finally, I could narrow down the
problem and found out that the most of the overall run time is spent in some leaf
nodes, especially in the function locate, which retrieves the hit positions from the
cursor.

As a consequence, I submit each invocation of locate to the thread pool, such that
the search continues, while separate tasks deal with the creation of hits. This results
in a large improvement of runtime and a nearly optimal thread usage. Furthermore,
I have invented the criteria for omitting the locate step that I have described in
item 4 on page 89, of which especially the pruning of very short queries has a large
impact.

To summarize, the complete picture is this: For k stem loops there are k tasks
submitted to the thread pool that recursively create search queries for a particular
stem loop, compare lines 18 to 25 of listing 11.1. Each query that models a full stem
loop and passes the filter submits another task to the pool for extracting the genome
positions and storing the hits.

Since the search tasks in the pool generate new sub-tasks, it is desired that they
are all submitted to the thread pool before the first sub-tasks are created. I have
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11 Multithreading in MaRs

1 struct ConcurrentFutureVector

2 {

3 std::vector<std::future<void>> futures;

4 std::mutex mutex;

5 };

6

7 void find_motif(BiDirectionalIndex const & index, Motif const & motif)

8 {

9 StemloopHitStore hits(index.get_names().size()); // allocate n vectors

10 uint8_t const num_motifs = motif.size(); // k

11 seqan3::detail::latch latch{num_motifs}; // initialize a latch

12

13 ConcurrentFutureVector locate_tasks;

14 std::vector<std::future<void>> search_tasks;

15

16 for (size_t idx = 0; idx < num_motifs; ++idx)

17 {

18 search_tasks.push_back(pool->submit([&index, &motif, &hits, &locate_tasks, &latch, idx]

19 {

20 // wait for latch

21 latch.wait();

22 // start recursive search

23 SearchInfo info(index.raw(), motif[idx], hits, locate_tasks);

24 recurse_search<LoopElement>(info, motif[idx].elements.cbegin(), 0);

25 }));

26 latch.arrive(); // decrement latch after submitting a task

27 }

28

29 for (auto & future: search_tasks) // first: wait for search tasks

30 future.wait();

31 for (auto & future: locate_tasks.futures) // second: wait for locate tasks

32 future.wait();

33

34 // ... work with hits

35 }

Listing 11.1: Implementation of parallel motif search. We use two vectors of
futures to separate the search tasks from the locate sub-tasks and a
latch to prioritize the search tasks. Lines 18 to 25 demonstrate that
tasks can be submitted in the form of lambda functions.

implemented this with a latch: A counter starts from k (line 11) and is decremented
with each submitted task (line 26). The tasks have a wait-command at their very
beginning (line 21), which defers their start until the latch is released with the
counter arriving to zero. Since the submission of k tasks (the loop in lines 16 to 27)
usually takes only a few milliseconds, there is no noticeable delay in the program
execution, but it is ensured that the first tasks do not already submit sub-tasks to
the pool.

The futures of the tasks are collected in two separate vectors. The first one has
length k and is used to wait for the stem loop iterations to finish (lines 29 to 30).
The second one has an associated mutex (line 4), which controls that only one thread
can append new futures for the locate-tasks at a time.

Since the hits are collected separately for each genome sequence, the multithreading
of the final step is rather obvious: For each sequence MaRs submits a task to the
thread pool, which performs the pooling of hits and collects motif matches.
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In order to demonstrate the performance of MaRs compared to relevant existing
software, I have evaluated different benchmarks with focus on the search performance.
In the following sections I investigate how well and with which demands of time
and memory MaRs detects RNA families in genomic sequences compared to the tools
Structator [Meyer et al., 2011] and Infernal [Nawrocki and Eddy, 2013]. This
includes also evaluations with respect to the underlying index in the compressed and
uncompressed case, like the construction time, the access time and the required disk
space. In the last section of this chapter, I provide a comparison of the two output
methods for matches in MaRs, which were discussed at the end of section 10.3.

For the benchmarks I have chosen from the best tools reported in recent pub-
lications, as analysed in section 2.3. The employed programs include Structator

version 1.1, as found on GitHub1, and Infernal version 1.1.4, which is available on
its homepage2. The Structator tool is the most similar program to MaRs in the
sense that it also employs a bi-directional index to search stem loops from inside
to outside. Infernal is included as the currently leading tool for RNA homology
search.

All benchmarks have been performed on a Linux server using an x86 64 architecture
with Intel® Xeon® CPU E5-2650 v3 with 2.30 GHz and 126 GB RAM. I compiled
with GCC version 9 and where applicable, I used up to 16 threads and AVX2
instructions.

Time and memory have been measured with the /usr/bin/time -v command,
and I use R for plotting the graphs.

12.1 Comparison with Structator

In this section I describe the comparison of MaRs with Structator [Meyer et al., 2011].
I consider Structator the most similar tool, since it also employs a bi-directional
index to match stem loops from inside to outside, i.e. starting with the hairpin loop.
Differences exist however in the representations of index and motif. MaRs uses an
FM-index based on Enhanced Prefixsum Rank dictionaries [Pockrandt et al., 2017],
while Structator uses affix arrays as underlying index data structure. In contrast
to MaRs, which defines the motif through detailed stem loop profiles as described in
section 9.4, Structator takes pre-defined pattern descriptors as input.

1https://github.com/fernandomeyer/Structator (19.08.2022)
2http://eddylab.org/infernal/ (19.08.2022)

97

https://github.com/fernandomeyer/Structator
http://eddylab.org/infernal/


12 Benchmarks

1 # index creation

2 afconstruct genome.fasta -alph dna.alphab -a -s genome

3 mars -g genome.fasta

4

5 # search

6 afsearch genome -comp dna_rna.comp -a -local -pat motifs.pat

7 mars -g genome.fasta -a msa.aln

Listing 12.1: The commands for invoking Structator and MaRs. The first
pair of commands creates the indices, and the second one uses them
to perform the search. The files dna.alphab and dna rna.comp are
shipped with Structator.

As genome input, I use the sequences compiled from the full alignments in the Rfam
database [Griffiths-Jones et al., 2003], release 14.6. This set consists of 3,106,298
RNA sequences with a total length of 415 Megabases. I stored the sequences in
a single Fasta file with the name genome.fasta, which is submitted to MaRs and
Structator as shown in listing 12.1.

If MaRs only receives a genome file as input, it computes the index (if not already
present) and terminates without creating motifs, since no alignment file is provided.
However, please note that in contrast to Structator, MaRs is able to compute the
index and perform the motif search in a single run, i.e. the first call of MaRs in
listing 12.1 is not required in a normal workflow. For Structator, the afconstruct

binary must be invoked, which takes besides the genome file also a file that defines
the alphabet, and the -a flag, which tells the algorithm to compute all the tables of
the index. This is the command as recommended in Structator’s readme-file.

Figure 12.1a shows the required time for creating indices for various genomes with
MaRs and Structator. The comparison shows that MaRs is between 14 and 53×
faster, depending on the genome size. Especially for large genomes MaRs convinces
with a much more feasible index creation time: For the zebrafish genome (Danio rerio)
of length 1679 Mb MaRs needs 25 minutes, whereas Structator takes 22.4 hours.

Regarding the size of the created index, MaRs is more efficient as well. As fig-
ure 12.1b demonstrates, the size of the index file on disk is between 36 and 64.5×
larger for Structator compared to MaRs. Using the zebrafish example again, the
index of MaRs has less than 1.2 gigabytes, while the files of Structator consume
more than 47 gigabytes. I use the plural, because Structator creates 15 different
files for a full index.

Note that in this benchmark MaRs creates the compressed index, as described
in section 10.1 on page 86. The creation of the uncompressed index is about 25%
faster compared to the compressed index, while its size is about 60% increased. For
the zebrafish genome, I measured a run time of 18 minutes and 40 seconds and the
resulting index size is 1.8 gigabytes.

The comparison of the search turned out to be difficult, since the input data is not
compatible. While MaRs simply needs a multiple alignment as input, Structator
reads a file with RNA sequence-structure patterns (RSSPs), which require a-priori
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Figure 12.1: Comparison of the index creation step. I have computed indices
for genomes of various length, and we can see that MaRs takes less time
than Structator and creates a more compact index. For MaRs both
benchmarks use the creation of the compressed index (-z enabled).
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knowledge about the stem loops of the RNA family [Meyer et al., 2011]. Since RSSPs
are similar to the stem loop descriptors in MaRs, I have implemented RSSP output in
the Stemloop class, as shown in figure 9.3. The output is based on the fully-analysed
stem loops and writes the pat format, for details I refer to section 9.4.

The executable to initiate the search with Structator is afsearch, which receives
as parameters the base name of the genome index files (as specified in afconstruct

with the -s parameter), a file dna rna.comp that contains Watson-Crick and
wobble complementarity rules, two flags -a and -local, since we have all tables
available and want to search locally for matches, and the pattern file. The whole
command is shown in listing 12.1. For MaRs the user must provide the genome
filename and a multiple sequence-structure alignment (with or without secondary
structure).

As alignment input, I took the seed alignments from Rfam that have at most
10 sequences. The use of deep alignments is excluded here, because they result
in patterns with mainly wildcard characters. Since Structator patterns can only
distinguish between nucleotides and wildcards without any weighting, it would be
not fair to generate patterns from deep alignments. The benchmark set includes 2578
alignments, but for 187 of them Structator failed, so I excluded them such that
this benchmark runs on 2391 RNA families. The multiple alignments are available
as Stockholm files with secondary structure, however I computed also a second
benchmark without secondary structures, so in this case they are computed with
IPknot.

For the evaluation of an RNA family I compared the names of the detected
sequences (the positive set) with the sequences that are assigned to this family in
Rfam (the true set). From these sets I computed a confusion matrix, i.e. the true
positives (tp), true negatives (tn), false positives (fp), and false negatives (fn). I
calculated the values for the Matthews correlation coefficient (MCC), the sensitivity
and the specificity according to equations (7.2) and (12.1). The average values over
all 2391 RNA families are shown in table 12.1.

sensitivity :=
tp

tp+ fn
specificity :=

tn

tn+ fp
(12.1)

The results show that MaRs and Structator both have excellent specificity, i.e.
they do not report too many spurious results. However, we should keep in mind
that we search in a set of 3,106,298 RNA sequences, and thus the number of true
negatives is usually very high. The sensitivity of MaRs is almost double compared
to Structator, which means that MaRs is better at detecting matches. In the
benchmark with Rfam structures, MaRs reports on average 62% of the sequences that
represent a family, while Structator detects only 35%.

The MCC values in table 12.1 reflect as well that MaRs is superior at detecting
the correct matches for RNA families. The difference between the results computed
with Rfam or IPknot structures is rather small; the Rfam structures lead to slightly
better MCC values in this benchmark.
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12.1 Comparison with Structator

MCC sensitivity specificity
MaRs 0.71 0.62 1.00
Structator 0.40 0.35 1.00

(a) structures from Rfam 14.6

MCC sensitivity specificity
MaRs 0.65 0.60 1.00
Structator 0.36 0.37 0.99

(b) structures computed with IPknot

Table 12.1: Evaluation of the motif matches. The tables show the performance
of MaRs and Structator for detecting RNA families. The consensus
secondary structures are obtained either from Rfam 14.6, or computed
with the IPknot program.

The run time for the search is visualized in figure 12.2 for Structator and MaRs,
while for MaRs I show also the difference of using the compressed or uncompressed
index. I want to express with this figure the distribution of the run times when
computing the individual alignments. Therefore, I sorted the lists of run times in
ascending order and plotted them to the same chart.

We can see that the vast majority of searches need very little time: for the
lower 70% Structator takes 0.8 seconds per search, whereas MaRs takes 0.5 or 2.5
seconds per search for the lower 90% with the uncompressed and compressed index,
respectively. In 99% of the cases, both programs need less than 20 seconds for a
search (in absolute numbers, 2362 of the searches finished below 20 seconds). At the
upper end there are a few cases where MaRs takes more time than Structator. The
extreme case with a run time of 109 minutes is the family RF00503, where IPknot

detects a very complex secondary structure, which has many rather small stem loops
that generate thousands of hits.

What is also clearly visible from figure 12.2 is that decompressing the index for
a search takes constantly 2 seconds, using the index of the Rfam 14.6 sequences.
My general recommendation is not to use compression, especially if many searches
are being performed. The run time difference in this benchmark with 2391 searches
in total is about 80 minutes. However, if the disk space is too limited for storing
large indices, the compression is a vital feature of MaRs with still very acceptable
run times.

The conclusion about this benchmark is that MaRs provides much better results in
detecting genome locations than Structator, while it is faster in most of the cases.
In contrast to Structator, MaRs does not need pre-defined patterns as input and
thus can be used more easily in automated workflows. Furthermore, MaRs requires
substantially less memory for the index, which makes it amenable for applying huge
amounts of data.
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Figure 12.2: Run time of motif searches with MaRs and Structator. The plot
shows the run time values sorted in ascending order, so the distribution
of rather fast and slow searches is visible. For MaRs I included two
curves for comparing the use of a compressed (-z) and uncompressed
index.

12.2 RMARK

Infernal uses rather different methods compared to MaRs and Structator. It does
not use an index for searching in sub-linear time, but scans the genome sequences in
a dynamic programming style. Instead of motifs or patterns it employs covariance
models, i.e. consensus structure profiles that define an RNA family. For more
background about Infernal I refer to section 2.3.

For a comparison with Infernal, my first attempt was using the RMARK3 benchmark
scripts, that are available on GitHub in the Infernal repository3. The scripts are
written in Perl and have been developed by Nawrocki and Eddy, 2013 based on Rfam
version 10. Besides Infernal, they include also nhmmer [Wheeler and Eddy, 2013]
and BLASTN [Altschul et al., 1997] to the tests.

This benchmark runs on the seed alignments of 106 RNA families with at least
5 aligned sequences. The genome sequence set of length 10.16 Mb is created from
random sequences, in which 780 test sequences are inserted that have less than 60%
identity with the alignment sequences [Nawrocki and Eddy, 2013].

3https://github.com/EddyRivasLab/infernal (22.08.2022)
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Figure 12.3: Result of the RMARK3 benchmark. The plot shows the detection
rate of sequences (sensitivity) versus the false-positive rate for the tested
programs.

I have added MaRs to the benchmark by implementing an additional Perl script to
be executed by RMARK3. MaRs is tested three times with the profile pruning parameter
p set to 10, 5, and 2 (compare section 9.4.3).

As we can see in figure 12.3, MaRs detects only less than 10% of the sequences in
this benchmark, whereas BLASTN shows perfect sensitivity and Infernal performs
between 70 and 80%. Since the sequences differ so much from the alignment sequences
by benchmark design, MaRs is unable to detect many of them. MaRs currently employs
an exact search, i.e. the search queries are derived directly from the sequence-structure
profile. Nucleotides that are absent in an alignment column are not considered for
the search.

MaRs could be extended in a future version, such that it accepts up to a particular
amount of errors in the search, where error is meant in the sense of an edit operation.
However, the ratio of errors will always remain rather small, since for each error all
the possible nucleotides or nucleotide pairs must be considered, which leads quickly
to a combinatorial explosion in the search tree: allowing for k errors creates 4k

branches in a loop region and 24k branches in a stem region (compare section 9.4.3).
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12 Benchmarks

1 cmbuild model.cm msa.sth

2 cmcalibrate model.cm

3 cmsearch model.cm genome.fasta

Listing 12.2: The commands for invoking Infernal. The first step reads an
alignment and computes a CM, which needs to be calibrated using the
second command. The final step performs the search in the genome.

Additionally, a method for allowing additional gaps of various lengths to some extent
should then be developed as well.

12.3 Comparison with Infernal

Two more realistic benchmarks for MaRs are the search for RNA families in all the
sequences given in Rfam, i.e. without explicitly excluding all the similar ones, or in a
real genome sequence, e.g. the human genome. Let us focus on the first case here,
and I cover the search within a human genome in the following section.

In this benchmark I want to compare the performance of Infernal, Structator,
and MaRs, where for MaRs I use two configurations, the default p = 10 and a more
sensitive one with p = 2. As sequence data I have used the genomic sequences
annotated in Rfam 14.6, which consist of 3,106,298 RNA sequences with a total
length of 415 Megabases. Furthermore, I have downloaded the complete set of seed
alignments from Rfam, i.e. the alignments of 4070 families in Stockholm format.

When creating the pattern files for Structator, I realized that 388 families do not
have base pair interactions in their secondary structure string, e.g. different snoRNAs.
Since in this case MaRs cannot find any stem loops and thus there are no RSSPs to
write to a pattern file, I excluded these RNA families from the benchmark. Later
on, I had to exclude additional 3 families (RF02540, RF02541, RF02543), because the
cmsearch command of Infernal did not terminate successfully. Interestingly, these
are the three families with the longest alignments. In the end, the benchmark set
consists of 3722 families.

We have already seen in listing 12.1 how MaRs and Structator are executed. Note
that for MaRs we add a call with the -p 2 setting to test also a more relaxed profile
filter. Listing 12.2 shows the commands for invoking Infernal, which involve the
model creation, the calibration, and the actual search.

I have run the programs as described, and for each family the reported sequences
are compared with the set of assigned sequences in Rfam. This comparison generates
a confusion matrix, of which the sensitivity, specificity, and MCC are computed
according to equations (7.2) and (12.1). The results are shown in figure 12.4
and table 12.2.

For the plot I use a lowess smoother (f = 2
3
) to generate the curves from the data

points for each family. Since the specificity is very high, I decided to plot the values
for 1 − specificity, i.e. the false positive rate, on the logarithmic x-axis. It shows
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Figure 12.4: Comparison of the performance for MaRs, Structator, and
Infernal. The plot shows the relation of true positive rate and false
positive rate for the tested programs. The x-axis is logarithmic and all
values have been shifted by ε = 10−5 to avoid zeroes. The curves end at
the data point with the maximal false positive rate.

MCC sensitivity specificity
MaRs 0.654 0.509 0.999984
MaRs-p 2 0.659 0.513 0.999991
Structator 0.319 0.379 0.971228
Infernal 0.919 0.995 0.999956

Table 12.2: Results of the Infernal benchmark. The table shows the average
values of MCC, sensitivity, and specificity for detecting RNA families.

how likely a program reports a spurious match. On the y-axis is shown how likely a
program detects a valid match (sensitivity, true positive rate).

Infernal detects on average 99.5% of the sequences that belong to the RNA famil-
ies, MaRs in both versions around 51%, and Structator 38%. The high sensitivity of
Infernal can be explained with the fact that the annotations in the Rfam database
that we are using have been created with the Infernal tool.

MaRs misses the sequences with content that is not represented in the alignments.
At the same time MaRs has the best specificity among the tested tools, i.e. it does not
report many wrong matches. Likely, we can relax the output filter, such that more
matches are generated. This would increase the sensitivity, but decrease specificity.
The benchmark in section 12.5 demonstrates how the results of a comparably weak
filter look like.

Structator has a much lower specificity compared to the benchmark in sec-
tion 12.1, compare table 12.1. Since this benchmark contains also deep alignments,
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Figure 12.5: MCC distributions in the Infernal benchmark. The white dot
marks the median value, and the coloured bars end at the quartiles.

i.e. alignments with many sequences, the most alignment columns generate the
wildcard N for the pattern descriptor. Thus, Structator searches for more unspecific
patterns in this case, and coincidently finds more true and false matches.

The Matthews Correlation Coefficient (MCC) is a balanced measure for the
correlation of the actual and the predicted sequence sets. The distribution of the
MCC is visualized in the violin plots in figure 12.5 and the results coincide with the
analysis of the previous paragraphs.

Comparing the run time in figure 12.6 demonstrates that MaRs with default
parameters is the fastest tool among the programs. Compared to Infernal it is
faster by orders of magnitude. I have also added the run times of MaRs with single-
thread execution (-j 1) to the plot. While MaRs benefits from a very efficient and
highly parallel implementation and an index with sub-linear search, Infernal suffers
from the expensive creation and calibration of the covariance model. Structator

is also rather fast, since it also benefits from a bi-directional index. Its run time is
between the run times of the single- and multithreaded MaRs configurations.

Furthermore, the plot shows the influence of the profile pruning on run time. The
more sensitive search takes significantly more time compared to the default p = 10
setting.

MaRs has the lowest consumption of working memory, as it is clearly visible from
figure 12.7. However, for longer alignments there is a big difference between the
default and the p = 2 configuration, since the more sensitive run needs to store
more hits. For short alignments, Structator allocates the most working memory
compared to the other programs, this effect is probably caused by the index, since
Structator’s memory increases only for longer alignments. Infernal shows a
nearly linear correlation of alignment length and memory consumption, and for long
alignments it consumes more memory than Structator.

Since MaRs is so fast compared to Infernal, I wanted to find out for how many

106



12.3 Comparison with Infernal

20 50 100 200 500 1000 2000

1
10

10
0

10
00

10
00

0

alignment length

ru
n 

tim
e 

(s
ec

)

MaRs
MaRs -j 1
MaRs -p 2
Structator
Infernal

Figure 12.6: Runtime comparison in the Infernal benchmark. For MaRs the
choice of the pruning parameter and single-threaded execution has a
large impact on the run time, but in its default version MaRs is the
fastest tool. Infernal is clearly slower on the whole range of alignment
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Figure 12.7: Memory comparison in the Infernal benchmark. For all the
programs, memory increases with alignment length. We can see that
MaRs has the lowest memory footprint and that the parameter p for
pruning the motif has a big impact. I have added a memory curve for
single-threaded execution of MaRs (-j 1).
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Figure 12.8: Direct comparison of RNA family detection. I have computed
for how many RNA families MaRs or Infernal is superior according to
MCC. For 935 families MaRs is at least as good as Infernal. For 930
of them MaRs computes them in a shorter time.

RNA families it is actually more beneficial to use MaRs. The direct comparison per
family according to the MCC criterion is shown in the Venn diagram in figure 12.8.
We can see from the numbers that for 935 families the MCC of MaRs is at least as
large as the MCC of Infernal. For 930 of these families MaRs computes the matches
faster. The median run time per alignment with Infernal is 89.14 seconds, with
MaRs it is 0.57 seconds.

12.4 Search in the Human Genome

In this section I briefly want to describe another benchmark I have set up with MaRs

and Infernal, based on the human genome. I have downloaded the genome version
GRCh38.p11 with a size of 3.25 Gb. Furthermore, I have extracted from Rfam the
annotated RNA families and got the alignments of 1066 families.

MaRs created an index of the genome in 22 minutes and took additional 5 hours and
38 minutes for finding the 1066 RNA families with help of the index. I verified for
each family the locations, by comparing the annotation with the positions reported
by MaRs. On average, MaRs has a sensitivity of 0.45, i.e. it identified 45% of each
family’s occurrences.

However, if we change the viewpoint away from the individual RNA families, in
total there are 14,910 locations annotated in Rfam, of which MaRs finds 923 i.e. only
6.2% of them. My conclusion from these two different results is that MaRs works well
for families that have a few well-conserved transcripts in the genome, while for other
families (apparently the ones with a lot of transcripts) it does not.

Unfortunately, Infernal could not finish this benchmark. When I checked the
status after 72 hours run time, it had only processed 10 of the 25 chromosome
sequences.
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Figure 12.9: Comparison of the output filter setting. This plot is created like
figure 12.4, but it adds a curve for a different output filter and shows the
data points of MaRs. The black curve uses the default e-value criterion,
while the grey curve requires a minimum score of s = 0.25 per stem
loop contained in the motif.

12.5 Comparison of the output filter methods

At the end of section 10.3 I have described two different methods for filtering the best
motif matches. The default method, which is displayed in solid black in figures 12.2
to 12.7, uses a threshold of e-values and produces results of very high specificity. The
other method requires that more than one quarter of the stem loops must be present
in the match and the score per stem loop must be larger than s, which is 0.25 in this
benchmark.

What we see from figure 12.9 is that the specificity is much lower with the score
filter: While in the default method almost all the data points are at the left border,
the grey data points scatter over the whole range. In numbers, the specificity of
the score filter is 0.98760 compared to 0.99999 of the e-value method (compare
table 12.2). The amount of false positives has also dropped the MCC value to 0.644
for the score filter.

Beneficial is however the improvement in sensitivity, which is on average 0.60 with
the score filter and 0.51 with the e-values. Thus, MaRs is able to detect more matches,
and it may be worth investing further efforts into a fine-tuning of this method.

As a conclusion, with setting s = 0.25 MaRs finds generally more matches in the
genome, which leads to an improved sensitivity and a reduced specificity.
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13 Discussion

In part III of this thesis I have described my implementation of a new C++ program
with the name MaRs, which is the acronym for Motif-based aligned RNA searcher. It
is capable of rapidly finding the transcripts of an RNA family in a genomic sequence
or database, given a multiple sequence-structure alignment.

I consider MaRs a valuable contribution to the field of RNA homology search. MaRs
is able to model pseudoknots in contrast to many of the existing tools, including the
SCFG-based tools like Infernal. We have seen not only that MaRs is extremely fast
and capable of searching the whole human genome for over 1000 RNA families in just
six hours, it is also very economic in memory allocation. Thus, MaRs is well-prepared
for analysing enormous amounts of data.

The speed-up of MaRs compared to Infernal is on average 159×, and in the
maximum case 7511×. The enormous speed of MaRs is based on the interplay of
(a) the application of the efficient bi-directional FM-index from SeqAn 3, (b) the
idea of searching stem loops from inside to outside, which has been borrowed from
Structator, (c) intelligent pruning of the search paths, and (d) the implementation
of multithreading techniques. As described in chapter 11, I have put much effort
into optimizing the code with the help of a thread pool, such that the available CPU
cores are used as efficient as possible.

The benchmarks in the previous chapter demonstrate as well that MaRs needs
some additional tuning to increase the sensitivity. I believe that MaRs would benefit
the most from well-designed methods for accepting a limited amount of errors during
the search. I mean errors in the sense of base substitutions, insertions, or deletions,
so the algorithm is not any more limited to the options in the alignment. These
methods must be designed with care, since they counteract the profile pruning, and
we have seen in the benchmarks for p = 2 that the run time depends much on the
number of search paths.

SeqAn 3 [Reinert et al., 2017] played an important role and was a big help for
implementing MaRs, since many useful algorithms and data structures are provided,
like alphabets with wildcard or gap support, sequence file input, the gzip stream
adaptor, the bidirectional FM-index, and the wrappers for some C++ 20 features like
latch and zip-iterator.

Finally, I would like to stress that with MaRs I have implemented a very user-
friendly software, which provides various features. It implements different methods for
filtering the found matches, it is capable of reading and writing a possibly compressed
index, it can store and read the motif to/from a file, and convert the motif into
a pattern file for Structator. Furthermore, MaRs employs a thread pool with a
selectable number of threads, and as input it accepts versatile formats for sequences
and alignments, which may or may not contain secondary structure.
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13 Discussion

13.1 Outlook

In this section I would like to suggest various directions for the future development
of the MaRs tool. As stated a few paragraphs above, MaRs needs a sophisticated
scheme for considering nucleotides or gaps to a small extent in the search that are
not represented in the alignment. I suggest that the inclusion of one or two edit
operations in the search already enables many more hits to be found. However, if
MaRs should gain the ability of finding matches in very distant sequences like in the
RMARK benchmark (section 12.2), this is likely not enough and in-depth research is
needed to find efficient methods that allow for more variability.

For improving the balance of sensitivity and specificity for the resulting matches
further, the two presented methods should be fine-tuned regarding the e-value
threshold or the score criterion. Especially a good value for s is hard to find, since I
found that the optimal value depends on the observed alignment and varies among
different RNA families, although I already account for the number of stem loops.
Furthermore, the pooling of hits can be improved from a simple iteration to a more
sophisticated chaining, like in Structator. This would likely result in better groups
of hits and thus in a clearer signal that allows to differentiate high-scoring from
spurious matches.

Regarding the benchmarks, the output of pattern files by MaRs caused the problem
of many wildcard symbols for deep alignments. To provide more specific input files
for Structator I suggest setting a nucleotide if an alignment column consists of at
least 80% or 90% of the same nucleotide. The current threshold of 100% seems too
strict. Additionally, I realized that all my benchmarks depend more or less on Rfam,
the resource for RNA families. Since Infernal is involved in creating this database,
it would be interesting to see how the programs compare based on different resources.

The methods for computing the alignment secondary structure could be comple-
mented with the tool SimulFold [Meyer and Miklós, 2007], which is a promising
approach for inferring the RNA structure. It performs Bayesian inference with
Markov chain Monte Carlo and shows good results compared to RNAalifold. It is
capable of predicting pseudoknots, however the performance on the pseudoknotted
samples in the publication have a comparably low MCC result with SimulFold.
A benchmark by Doose and Metzler, 2012 shows superior results for SimulFold

compared to IPknot, but even better results for their PhyloQFold tool.

13.2 Availability of MaRs

Source code: freely available on https://github.com/seqan/mars

System requirements: tested on Linux and MacOS with gcc ≥ 7
Software dependencies: SeqAn 3.1, IPknot 1.0.0
License: BSD-License (3-clause)
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14 Conclusion

In this thesis I have presented my contributions to the field of computational RNA
analysis. We have seen that for RNA molecules the analysis of the sequence alone
is not enough, because rather the secondary structure is evolutionary conserved. In
order to extract the conserved motifs from a set of homologous RNA sequences, I
have implemented the LaRA 2 program. It computes a sequence-structure alignment
from the provided set of homologous RNA sequences. The consideration of secondary
structure in an alignment, especially if pseudoknots should be considered, adds so
much complexity to the alignment problem that new and faster programs are needed
to cope with the vast amount of data.
LaRA 2 is a C++ program that is capable of computing structural alignments with

pseudoknots in high quality. I have implemented new efficient alignment and matching
functions, and used multithreading and vectorization techniques to make LaRA 2

up to 130× faster than its predecessor LaRA 1. For computing multiple structural
alignments, I provide two workflows that use MAFFT or T-Coffee for progressively
combining pairwise alignments.

The extraction the conserved structural motifs from the multiple structural align-
ments is one of the tasks for which I have developed my second tool: MaRs. I have
designed sophisticated descriptors that store the relevant information in the form of
stem loops. The stem loop descriptors usually characterize an RNA family, and they
can be utilized to find homologs in a genome sequence. These are the positions of
the genome where further members of the same RNA family are encoded.
MaRs can rapidly detect matching genome locations from the stem loop profiles.

For the search I employ a bi-directional index data structure, which allows performing
searches in sub-linear time and extending the search pattern in both directions, as
it is the nature of stem loops. I have implemented MaRs as a C++ program, which
benefits from extensive multithreading and effective pruning techniques.

The development of the presented workflow was a very interesting and challenging
PhD project for me. I really enjoyed bringing LaRA 2 and MaRs into life, after
designing them from scratch. I have learned much about parallel and vectorized
programming in a modern C++ environment, and got many insights into RNA biology.
As part of the SeqAn team I was happy to contribute to various library features and
have always enjoyed the good team work in our group.
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Sparse: quadratic time simultaneous alignment and folding of rnas without
sequence-based heuristics. Bioinformatics, 31(15):2489–96.

130



Bibliography

[Will et al., 2007] Will, S., Reiche, K., Hofacker, I. L., Stadler, P. F., and Backofen,
R. (2007). Inferring noncoding rna families and classes by means of genome-scale
structure-based clustering. PLoS Comput Biol, 3(4):e65.

[Will et al., 2013] Will, S., Yu, M., and Berger, B. (2013). Structure-based whole-
genome realignment reveals many novel noncoding rnas. Genome Res, 23(6):1018–
27.

[Wilm et al., 2008] Wilm, A., Higgins, D. G., and Notredame, C. (2008). R-coffee:
a method for multiple alignment of non-coding rna. Nucleic Acids Res, 36(9):e52.

[Wilusz et al., 2009] Wilusz, J. E., Sunwoo, H., and Spector, D. L. (2009). Long
noncoding rnas: functional surprises from the rna world. Genes Dev, 23(13):1494–
504.

[Winkler et al., 2022] Winkler, J., Urgese, G., Ficarra, E., and Reinert, K. (2022).
LaRA 2: parallel and vectorized program for sequence-structure alignment of RNA
sequences. BMC Bioinformatics, 23(1):18.

[Wolf et al., 2005] Wolf, M., Achtziger, M., Schultz, J., Dandekar, T., and Müller, T.
(2005). Homology modeling revealed more than 20,000 rrna internal transcribed
spacer 2 (its2) secondary structures. RNA, 11(11):1616–23.

[Wuchty et al., 1999] Wuchty, S., Fontana, W., Hofacker, I. L., and Schuster, P.
(1999). Complete suboptimal folding of rna and the stability of secondary structures.
Biopolymers, 49(2):145–65.

[Xu and Mathews, 2011] Xu, Z. and Mathews, D. H. (2011). Multilign: an algorithm
to predict secondary structures conserved in multiple rna sequences. Bioinformatics,
27(5):626–32.

[Yao et al., 2019] Yao, R.-W., Wang, Y., and Chen, L.-L. (2019). Cellular functions
of long noncoding RNAs. Nat Cell Biol, 21(5):542–551.

[Yasnev, 2015] Yasnev, O. (2015). Adaptation of multiple sequence alignment al-
gorithm from the SeqAn library for processing deep alignments. Master’s thesis,
Saint Petersburg Academic University.

[Zadeh et al., 2011] Zadeh, J. N., Steenberg, C. D., Bois, J. S., Wolfe, B. R., Pierce,
M. B., Khan, A. R., Dirks, R. M., and Pierce, N. A. (2011). Nupack: Analysis
and design of nucleic acid systems. J Comput Chem, 32(1):170–3.

[Zhao and Sahni, 2020] Zhao, C. and Sahni, S. (2020). Efficient computation of
RNA partition functions using McCaskill’s algorithm. In 2020 15th Conference on
Computer Science and Information Systems (FedCSIS), pages 449–452.

[Zuker and Stiegler, 1981] Zuker, M. and Stiegler, P. (1981). Optimal computer
folding of large RNA sequences using thermodynamics and auxiliary information.
Nucleic Acids Res, 9(1):133–48.

131





Glossary

API Application programming interface, a documented set of functions of a software
that is exposed for usage by other software. 27, 31, 32, 47, 76, 93

ATP Adenosine triphosphate is an organic compound that transfers energy in living
cells to drive various processes. 7

index The term index has a lot of meanings in different contexts – in this thesis
we use two of them: (1) An index is a non-negative integral number that
denotes the absolute position of an element within a sequence, string, array
or matrix. It is often used as a key or identifier of a specific element. Unless
noted otherwise the first element has index 0, see index sequence. (2) An index
data structure allows fast searches in an underlying text. In part III of this
thesis we use a bi-directional FM-index for searching patterns in a genome. 22,
29, 31, 33, 38, 55, 85, 94, 98, 108, 115

index sequence An integer sequence (0, 1, 2, . . . , L − 1) of length L. Each value
represents its own positional index (here 0-based). 38, 39, 48

matching A matching in an undirected graph is a set of edges without common
vertices. In a weighted graph the maximum-weighted matching is a matching
in which the sum of weights is maximal. 21, 36, 39, 42, 43, 49, 50, 69, 115

MSA Multiple sequence alignment; opposed to a pairwise alignment, this is an
alignment of more than two sequences. 17, 53, 56, 65

mutex A mutual exclusion is used to control the access to shared resources. It
ensures that only one thread can enter the critical section at a time. 49, 96

NMR spectroscopy Nuclear magnetic resonance spectroscopy is a method to detect
magnetic fields around atoms. These magnetic fields reveal details of the
electronic structure of a molecule and its individual functional groups. 16

primary structure The specification of the atomic composition of a biopolymer, for
RNA/DNA it is equivalent to the sequence. 3

pseudoknot Structural interactions between loop regions that cross each other, see
figure 1.4b for a visualization. 9, 11, 13, 15, 22, 59, 66, 69, 73, 75, 77, 111, 112,
115
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Glossary

PSSM Position-specific score matrix (also called position weight matrix ) is a scoring
system for sequence alignment that provides a score dependent on the position
within the sequence, rather than the sequence character itself. 21, 36, 38, 42,
47, 48

secondary structure The pattern of intramolecular base pairings. 3, 7, 22, 55, 67,
70, 73, 115

sequence Denotes the type and order of nucleotides or amino acids in a biopolymer,
in this work usually the nucleotides in an RNA molecule. 3, 5, 21, 73, 115

SHAPE Selective 2’ Hydroxyl Acylation and Primer Extension: A type of experiment
for RNA that determines how likely a nucleotide is paired or unpaired. 29, 54,
69, 70

SIMD Single Instruction, Multiple Data is a type of parallel processing, where the
same operation is performed on multiple data points simultaneously. 45, 48

STAU1 Double-stranded RNA-binding protein Staufen homolog 1 is a protein that
in humans is encoded by the STAU1 gene. 6

stdout The standard output is a communication channel that prints the output of a
program back to the command-line. 53

STL The Standard Template Library is a powerful set of C++ template classes. It
provides general-purpose classes and functions with templates that implement
many popular and commonly used algorithms and data structures. 79

transposable element A gene that can change its position in the genome, also called
jumping gene. 5

WUSS Washington University Secondary Structure notation. A linear representation
of secondary structure with pseudoknot support. 9, 75
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Zusammenfassung

Die Funktion nicht-kodierender RNA-Sequenzen wird weitgehend durch ihre räum-
liche Konformation bestimmt. Dies ist die Sekundärstruktur des Moleküls, welche
durch Watson-Crick-Wechselwirkungen zwischen Nukleotiden gebildet wird. Daher
berücksichtigen moderne RNA-Alignment-Algorithmen routinemäßig Strukturinfor-
mationen. Wesentliche Aufgaben um noch unbekannte RNA-Familien zu entdecken
und auf ihre möglichen Funktionen zu schließen, sind das strukturelle Alignment von
RNAs und die anschließende Suche nach den abgeleiteten Strukturmotiven. Diese
Aufgaben erfordern einen hohen Rechenaufwand, insbesondere für das Alignment
vieler langer Sequenzen und erfordern daher effiziente Algorithmen, die moderne
Hardware (soweit verfügbar) optimal ausnutzen. Einige der Sekundärstrukturen
enthalten überlappende Interaktionen, sogenannte Pseudoknoten, welche die Analyse
zusätzlich komplexer machen und von bereits bestehender Software oft ignoriert
werden.

In dieser Arbeit stelle ich mit LaRA 2 und MaRs zwei SeqAn-basierte Software-
Tools vor, die Algorithmen zum Auffinden von Sequenzstrukturmotiven in genomi-
schen Sequenzen implementieren. Im Gegensatz zu anderen Programmen können
meine Programme beliebige Pseudoknoten verarbeiten. Sie nutzen Multithreading
zur gleichzeitigen Ausführung von Programmteilen und sind in modernem C++-Code
implementiert, um maximale Langlebigkeit und Leistung zu gewährleisten.

LaRA 2 ist deutlich schneller als vergleichbare Software für paarweise und multiple
Alignments von strukturierten RNA-Sequenzen. Es verwendet eine neue Heuristik zur
Berechnung einer unteren Schranke zur Lösung und setzt Vektorisierungstechniken
ein, um die zeitkritischen Bestandteile des Algorithmus zu beschleunigen.

MaRs kann in einem Workflow direkt an das Ergebnis von LaRA 2 angesetzt werden
und leitet Sequenz-Struktur-Motive aus den strukturellen Alignments ab. Die Motive
sind Deskriptoren für die Eigenschaften der RNA-Sequenzen und steuern die Suche
nach homologen Sequenzen in einem Genom. MaRs verwendet einen bidirektionalen
Index für die Genomsequenzen und eine optimierte, parallel ausführbare Suchstrategie,
um die Übereinstimmungen extrem schnell zu finden. Die Verwendung eines Thread-
Pools, effektive Pruning-Strategien und ein geringer Speicherbedarf sorgen dafür,
dass MaRs in der Lage ist, auch extrem große Datensätze zu verarbeiten.
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