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A B S T R A C T   

Background: Although cognitive behavioral therapy is a highly effective treatment for obsessive–compulsive 
disorder (OCD), yielding large symptom reductions on the group level, individual treatment response varies 
considerably. Identification of treatment response predictors may provide important information for maximizing 
individual treatment response and thus achieving efficient treatment resource allocation. Here, we investigated 
the predictive value of previously identified biomarkers of OCD, namely the error-related activity of the sup-
plementary motor area (SMA) and the sensorimotor network (SMN, postcentral gyrus/precuneus). 
Methods: Seventy-two participants with a primary diagnosis of OCD underwent functional magnetic resonance 
imaging (fMRI) scanning while performing a flanker task prior to receiving routine-care CBT. 
Results: Error-related BOLD response of the SMN significantly contributed to the prediction of treatment response 
beyond the variance accounted for by clinical and sociodemographic variables. Stronger error-related SMN ac-
tivity at baseline was associated with a higher likelihood of treatment response. 
Conclusions: The present results illustrate that the inclusion of error-related SMN activity can significantly in-
crease treatment response prediction quality in OCD. Stronger error-related activity of the SMN may reflect the 
ability to activate symptom-relevant processing networks and may thus facilitate response to exposure-based CBT 
interventions.   

1. Introduction 

Obsessive-compulsive disorder (OCD) is characterized by repetitive 
and distressing obsessions and compulsions (American Psychiatric As-
sociation, 2013). OCD can lead to a significant impairment in everyday 
functioning and quality of life and often follows a chronic course when 
not treated (Koran, Thienemann, & Davenport, 1996). 

Cognitive-behavioral therapy (CBT) is a highly effective treatment 
for OCD yielding very large effects on primary outcome measures 
compared to wait list or placebo in randomized controlled trials (d ~ 
1.30, Olatunji, Davis, Powers, & Smits, 2013; Öst, Havnen, Hansen, & 

Kvale, 2015) and under routine care conditions (d = 1.47, Kathmann, 
Jacobi, Elsner, & Reuter, 2022). However, individual treatment re-
sponses vary considerably. While about 65 % of the treated patients 
show clinically significant symptom change and about 50 % reach 
remission, about 25 % to 30 % of the patients who begin CBT discon-
tinue the treatment prematurely (Abramowitz, 2006; Kathmann et al., 
2022; Öst et al., 2015; Simpson, Huppert, Petkova, Foa, & Liebowitz, 
2006). 

Personalized medicine aims to identify individual clinical, socio-
demographic, behavioral and neurobiological features that are associ-
ated with reduced treatment response in order to subsequently use this 
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information for individualized treatment allocation or optimization 
(Ozomaro, Wahlestedt, & Nemeroff, 2013). An approach that promises 
high efficiency and practicability is using clinical and demographical 
data that are routinely acquired in most treatment settings. Among these 
variables, clinical (initial symptom severity, comorbid personality dis-
orders, hoarding subtype) and sociodemographic characteristics (un-
employment, family dysfunction, relationship status) and previous 
treatment experience (previous medication use) were identified as pre-
dictors (Kathmann et al., 2022; Keeley, Storch, Merlo, & Geffken, 2008; 
Knopp, Knowles, Bee, Lovell, & Bower, 2013). While comorbid per-
sonality disorders, hoarding subtype, unemployment, higher family 
dysfunction and being single/unmarried were associated with worse 
therapy response, higher initial symptom severity and previous medi-
cation use predicted better therapy response. As multiple predictors may 
contribute and interact simultaneously, data-driven approaches have 
also been applied to more closely capture these dynamics (Hilbert et al., 
2021; Hilbert et al., 2020). However, machine learning modeling of 
treatment response in OCD based on routine clinical and sociodemo-
graphic data did not substantially outperform the classification accuracy 
of regression analyses (Hilbert et al., 2021), thus implying possible 
limitations of this data type. 

The inclusion of additional data sources, such as (neuro)biological 
data, may further improve therapy outcome prediction (Paul et al., 
2022). Biomarkers may provide higher objectivity than self-report or 
interview data and may more closely capture underlying pathogenic 
mechanisms (Gottesman & Gould, 2003; Riesel, Endrass, & Weinberg, 
2021). Thus, although they are more difficult to assess than socio-
demographic or clinical data, biomarkers pose a promising candidate for 
therapy outcome predictors. 

Previous research indicates that excessive error signals may present a 
biomarker or endophenotype for OCD. Increased error-related activity 
brain activity in OCD compared to healthy control participants (HC) is 
commonly observed in the cingulo-opercular salience network, 
comprising the dorsal anterior cingulate cortex, SMA, insula/ frontal 
operculum and rostral anterior cingulate cortex (Grutzmann et al., 2016; 
Grützmann et al., 2021; Norman et al., 2019). Additionally, increased 
error-related activity has also been observed in the default mode 
network (DMN), the sensorimotor network (SMN) and the fronto-limbic 
emotion processing network in OCD (Fitzgerald et al., 2010; Grützmann 
et al., 2021; Stern et al., 2011). The hyperactivation of the salience 
network is also captured in the error-related negativity (ERN), an event- 
related potential component in the EEG, which is robustly increased in 
OCD patients (Riesel, 2019). Overactive performance monitoring as 
reflected in these excessive error signals may trigger the frequent “not- 
just-right” feelings and intrusive harm-related thoughts in OCD patients 
and thus contribute to the repetitive compulsive loops (Pitman, 1987). 
As increased error signals are not only observed in OCD, but also in 
anxiety disorders (Endrass & Ullsperger, 2014; Riesel, Goldhahn, & 
Kathmann, 2017; Weinberg, Dieterich, & Riesel, 2015), and in unaf-
fected first-degree relatives of patients with OCD or anxiety disorders 
(Riesel, Endrass, Kaufmann, & Kathmann, 2011; Riesel et al., 2019), 
they might represent an overarching risk marker for internalizing dis-
orders, possibly reflecting underlying trait-like threat sensitivity 
(Weinberg et al., 2016). Taken together, increased error-related brain 
activity might reflect a central pathogenic mechanism in OCD and thus a 
promising candidate for a treatment response predictor. 

Neuroimaging studies show that indicators of resting state functional 
connectivity and task-related brain activity can serve as predictors of 
CBT treatment response in OCD. Parameters reflecting altered resting- 
state functional connectivity of the DMN and visual network (Feusner 
et al., 2015; Reggente et al., 2018), predicted better response beyond the 
contribution of clinical, sociodemographic and behavioral data (i.e. 
Stroop interference). Fullana et al. (2017) showed that a lower resting- 
state functional connectivity between the basolateral amygdala and the 
ventromedial prefrontal cortex, that might be functionally associated 
with reduced capacity to regulate fear responses, also positively 

predicted treatment response. Similar effects have been observed for 
task-related activity. Olatunji et al. (2014) showed in a small sample of 
OCD patients with contamination/cleaning symptoms that higher acti-
vation of the emotion-processing network (i.e. anterior temporal pole, 
amygdala) and the SMN (i.e. postcentral gyrus, precuneus) during 
symptom provocation were associated with a stronger treatment 
response. Furthermore, two recent studies showed that stronger conflict- 
related activity of the salience network was associated with an increased 
treatment response (Norman et al., 2021; Pagliaccio et al., 2019). Taken 
together, these studies imply that patients with stronger baseline ab-
normalities in brain activity are more likely to improve during CBT. On a 
functional level, stronger brain activity abnormalities at baseline may 
provide a larger potential to achieve a more adaptive brain state through 
therapeutic interventions. 

Previous research indicates that excessive error-related activity may 
play an important role in OCD pathology. Specifically, it might func-
tionally contribute to characteristic features of OCD symptomatology 
such as increased self-monitoring, error aversiveness, perfectionism, and 
rigidity/over-controlled behavior (Norman et al., 2019; Pitman, 1987; 
Riesel, 2019). Despite this potential as a functional biomarker, to the 
best of our knowledge error-related activity of has not been tested as a 
therapy outcome predictor in OCD. The present analysis uses data from 
OCD patients who were on a waitlist for CBT treatment at the outpatient 
clinic of the Humboldt-Universität zu Berlin and had received fMRI 
scanning while performing a flanker task (Grützmann et al., 2021). 
Analysis of the fMRI data identified increased error-related BOLD 
response of regions within the salience network (SMA) and SMN1 

(precuneus, postcentral gyrus) in the patient group. Patients then 
received routine-care non-manualized CBT accompanied by standard-
ized diagnostic assessments. Here, we investigate whether inclusion of 
error-related activity of the salience network and SMN can improve 
treatment response prediction in patients with OCD beyond the contri-
bution of previously established clinical and sociodemographic pre-
dictors. In accordance with previous studies, we expected a higher 
likelihood of a treatment response in patients with stronger error-related 
activation. 

2. Method and materials 

2.1. Participants 

Participant flow is illustrated in Fig. 1. Initially, 98 patients with 
OCD took part in the pre-therapy fMRI data collection. Patients had a 
primary diagnosis of OCD, as assessed by trained clinicians using the 
German version of the Structured Clinical Interview for DSM-IV (First, 
Spitzer, Gibbon, & Williams, 1995), with a severity score of > 12 in the 
Yale-Brown Obsessive Compulsive Scale (Y-BOCS; Goodman et al., 
1989). Exclusion criteria were prominent suicidal ideation, any lifetime 
substance dependence, borderline personality disorder, comorbid psy-
chotic disorders, history of head trauma and neurological diseases. All 
participants received verbal and written explanation of the purpose and 
procedures of the study, gave their written informed consent in accor-
dance with the ethical guidelines of the Declaration of Helsinki. They 
received 10 € per hour for the participation in the fMRI experiment. 
Fourteen patients had to be excluded from the fMRI data analysis due to 
poor data quality (n = 3) or failure to comply with experimental in-
structions (n = 11), resulting in a final analysis sample of 84 patients. 
For the treatment response prediction, all patients that received at least 
one therapy session were included (n = 72). Fourteen of these patients 

1 These clusters were interpreted as indicators of DMN activity in our pre-
vious manuscript. A comparison with the seven-network brain parcellation 
mask by Thomas Yeo et al. (2011) in the current analysis indicated that 
although the clusters are spatially extent and comprise regions within the DMN, 
the peak voxels are located within the sensorimotor network. 
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prematurely discontinued treatment (non-completers), as defined by the 
patient’s unilateral decision to abandon treatment without the thera-
pist’s approval, while 58 patients completed the treatment (completers), 
as defined by a consensual termination decision of patient and therapist 
based on clinical criteria. Patients were treated with CBT including 
exposure and response prevention and cognitive therapy (Foa, Yadin, & 
Lichner, 2012) delivered by licensed, experienced therapists with at 
least three years of training in CBT, who participated in weekly inter-
vision sessions. Treatments were conducted in accordance with the 
general regulations for psychotherapy in the public German health care 
system, which allows up to 80 units of 50 min each per treatment. For 
patients in the present study, the mean number of therapy sessions was 
46 (SD: 19.28, range: 8–80). Sessions usually took place once or twice 
weekly, but therapists were free to adjust session length when imple-
menting exposure and to reduce session frequency at the end of treat-
ment. The mean therapy duration was 74 weeks (SD: 34, range: 
19–150). The mean therapy duration was significantly shorter in the 
non-completers (M: 50, SD: 20) than in the completers (M: 80, SD: 34), t 
(70) = 4.36, p <.001. Mean frequency of therapy sessions was 0.67 (SD: 
0.27, range: 0.25 – 1.90), indicating that on average patients received 
less than one therapy session each week. Please note, that this value very 
likely underestimates the true session frequency in active therapy pe-
riods, as the total therapy duration also contains periods in which the 
outpatient therapy was paused, for example due to vacation. The mean 
frequency of therapy sessions did not significantly differ between com-
pleters (M: 0.68, SD: 0.28) and non-completers (M: 0.63, SD: 0.19), t 
(70) = 0.73, p =.470. 

Forty-seven patients (65 %) showed at least one comorbid disorder 

including affective disorders (depressive episode n = 20, recurrent 
depressive disorder n = 16, dysthymic disorder n = 7), anxiety disorders 
(agoraphobia n = 2, social phobia n = 5, specific phobia n = 7, panic 
disorder n = 1, generalized anxiety disorder n = 3), somatoform disor-
ders (undifferentiated somatoform disorder n = 2, hypochondriacal 
disorder n = 1, other somatoform disorders n = 1), post-traumatic stress 
disorder (n = 1) and eating disorders (atypical anorexia nervosa n = 1). 
At the pre-therapy fMRI measurement, 33 patients (45 %) reported 
taking one or more psychotropic medications in the last three months 
(SSRI, n = 27; SSNRI, n = 4; tricyclic antidepressants, n = 4; tetracyclic 
antidepressant, n = 1). Further characteristics of the sample at pre- 
therapy baseline are presented in Table 1. 

Fig. 1. Participant flow from the pre-therapy fMRI session to the final data analysis. FMRI = functional magnetic resonance imaging, CBT = cognitive-behav-
ioral therapy. 

Table 1 
Socio-demographic and clinical characteristics of the whole sample (all), com-
pleters and non-completers at baseline (pre-therapy).   

All Completer Non-Completer 

Sex male/female 31/41 26/32 5/9 
Unemployed n (%) 12 (16 %) 12 (21 %) 0 (0 %) 
Any comorbid axis-I 

disorder n (%) 
47 (65 %) 38 (65 %) 9 (64 %) 

Any comorbid personality 
disorder n (%) 

13 (17 %) 11 (19 %) 2 (14 %) 

Any psychotropic 
medication n (%) 

33 (45 %) 26 (44 %) 7 (50 %)  

M SD M SD M SD 
Age 31.47 8.94 32.60 9.04 26.79 6.97 
Number of therapy 

sessions 
46.24 19.28 50.26 18.47 29.57 12.75  
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3. Data collection 

3.1. FMRI data 

The experimental design, data analysis and results of the pre-therapy 
fMRI experiment are described in detail in Grützmann et al. (2021). 
Briefly, participants performed an arrow-version of the flanker task 
(Eriksen & Eriksen, 1974; Kopp, Rist, & Mattler, 1996) while error- 
related BOLD response was assessed with a 3-Tesla Siemens Trio MR 
system. Error- and conflict related brain activity was assessed in OCD 
patients, unaffected first-degree relatives of OCD patients and healthy 
control participants. Exclusion criteria for the control group were psy-
choactive medication in the past three months, any current or past axis-I 
psychological disorder, and family history of OCD in first-degree rela-
tives. After standard preprocessing with SPM12 (Statistical Parametric 
Mapping Version 7487, https://www.fil.ion.ucl.ac.uk/spm) comprising 
realignment, movement and slice time correction and normalization to 
the standard template provided by the Montreal Neurological Institute, 
the data were analyzed with general linear model specifying two re-
gressors of interest assessing error- (by modeling incongruent error >
incongruent correct) and conflict-related activity (by modeling incon-
gruent correct > congruent correct). Error-related BOLD response was 
then compared between the patient group and a healthy control group, 
consisting of 99 participants matched for gender, age, education, and 
handedness. To correct for multiple comparisons, an extent threshold 
correction as defined by Monte Carlo simulations (3DClustSim; imple-
mented in AFNI; Cox, 1996) was applied. For a threshold at the voxel 
level of p <.001 uncorrected, and spatial properties of the current study, 
10.000 simulations resulted in an extent threshold of 56 voxels at p 
<.05. The analysis identified increased error-related activity in three 
brain regions in OCD patients, namely the SMA, the postcentral gyrus 
(PCG) and the precuneus (see Fig. 2 and Table 2). Beta values from these 
clusters (defined as 5 mm sphere radius around the MNI coordinates of 
peak voxel in the whole brain interaction) were extracted and served as 
predictors in the regression analyses. As the beta-values of the left 
postcentral gyrus and right precuneus were highly correlated (r = 0.914) 
and the localization of these clusters was quasi-symmetrical across the 
hemispheres, they might reflect the bilateral activity of a functionally 
unified cluster. Thus, their activity was averaged into one predictor 
reflecting SMN activity. 

3.2. Sociodemographic and clinical data 

During two pre-therapy diagnostic sessions, sociodemographic and 
clinical data were collected to assess eligibility. Lifetime diagnoses of 
mental disorders including personality disorders were assessed with the 
SCID-I and SCID-II, respectively (First, Spitzer, Gibbon, & Williams, 
1997; First et al., 1995). In order to quantify symptom severity, the 
following self-report questionnaires and clinical interviews for symp-
toms of obsessive–compulsive disorder and depression were applied 
before treatment, every 20th session and at termination of treatment: Y- 
BOCS, Obsessive-Compulsive Inventory-Revised (OCI-R, Foa et al., 
2002), Beck-Depression-Inventory-II (BDI II, Beck, Steer, & Brown, 
1996), Montgomery-Asperg Depression Rating Scale (MADRS, Mont-
gomery & Asberg, 1979). For non-completers the Last Observation 
Carried Forward method was used as a conservative estimate for 
outcome data. 

3.3. Data analysis 

Separate hierarchical binary logistic regression analyses were 
applied for the prediction of response and remission. Response was 
defined according to the reliable change index (RCI, Jacobson, Follette, 
& Revenstorf, 1984). The RCI assesses whether an observed change in 
symptom score is statistically reliable, when considering the reliability 
and the standard deviation of the measure in the relevant population. 
The RCI was calculated for Y-BOCS total scores with an internal con-
sistency of the Y-BOCS of α = 0.79 (Moritz et al., 2002) and a standard 

Fig. 2. Brain regions with increased error-related activity in OCD patients compared to healthy control participants (Grützmann et al., 2021). Beta values from these 
clusters were extracted and served as predictors in the regression analyses. 

Table 2 
Regions showing increased error-related activation in OCD patients compared to 
healthy control participants.  

Peak Activity 
Neural Region 

hem x y z zmax k  

Supplementary Motor Area (SMA) 
extending to preSMA  

R, L 2 − 16 64  10.01 120 

Precuneus R 12 − 46 62  9.94 165 
Postcentral Gyrus L − 24 − 44 66  9.45 80 

Note. Coordinates are refer to the standard template provided by the Montreal 
Neurological Institute (MNI). Hem = Hemisphere, R = right, L = left. 
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deviation of SD = 5.41. Using this metric, the critical difference for 
significant change of the Y-BOCS was 8 points. Remission was oper-
ationalized as a combination of post-treatment Y-BOCS score <= 12 
(Mataix-Cols et al., 2016) and reliable symptom change. 

As a priori correlation analyses revealed high collinearity between 
the brain activity of the SMA and the SMN (r > 0.76, p <.001), a separate 
regression analysis was conducted for each brain activity measure (SMA, 
SMN) and each outcome variable (response, remission), resulting in a 
total of four models. Separate analyses were conducted for the SMA and 
SMN clusters in order to allow for identification of their distinct 
contribution to treatment response prediction. To investigate whether 
error-related activity improves outcome prediction beyond the contri-
bution of previously identified sociodemographic and clinical predictors 
(Kathmann et al., 2022; Keeley et al., 2008; Knopp et al., 2013), the 
following variables were included in the first step of the hierarchical 
regression: initial symptom severity (Y-BOCS), unemployment (cate-
gorical: currently employed vs currently unemployed), comorbid per-
sonality disorders (categorical: no comorbid diagnoses of personality 
disorder vs at least one comorbid personality disorder) and previous 
medication use (categorical: no previous psychoactive medication vs 
any previous or current psychoactive medication). Some previously 
identified predictors (family dysfunction, relationship status) could not 
be investigated, as they were not assessed in the present sample. 
Hoarding subtype was not investigated as patients with predominant 
hoarding symptoms were excluded from the fMRI study. In the second 
step, the respective brain measure (SMA activity, SMN activity) was 
entered into the model in order to investigate whether inclusion of error- 
related activity significantly improves treatment response prediction. 

3.4. Exploratory and control analyses 

In an additional exploratory-three-step model we investigated the 
effects of other clinically plausible predictor variables that were assessed 
in the present sample (comorbid axis I disorder, current medication use, 
initial severity of depressive symptoms). Here, previously established 
sociodemographic and clinical predictor variables were entered in the 
first step, exploratory clinical variables in the second step and brain 
activity measures in the third step. Additionally, a numbers of control 
analyses were conducted that assessed the effects of clinical and 
behavioral variables and possible interaction effects of the predictor. 
The specific models and their results are presented in the supplemental 
material. Taken together, the control analyses confirmed the stability 
and specificity of the main results reported below. 

4. Results 

4.1. Average symptom change 

Dimensional symptom changes from pre- to post-treatment are pre-
sented in Table 3. The Y-BOCS score significantly decreased from pre- 
treatment to post-treatment, t(71) = 11.95, p <.001, with a mean 
reduction of 9.44 points and a large effect size of Cohen’s d = -1.31. The 
changes were significantly larger in completers than in non-completers, t 
(70) = 3.84, p <.001. The additional outcome measures also signifi-
cantly improved from pre- to post-treatment (OCI-R: t(71) = 10.44, p 
<.001, MADRS: t(71) = 7.64, p <.001, BDI-II: t(71) = 8.61, p <.001). 
Here, changes were trend-level larger in completers than in non- 
completers (all t < 1.76, all p >.083 Completers and non-completers 
did not significantly differ in clinical symptoms at baseline (all t <
-1.00, all p >.320). 

The categorical outcome measures presented in Table 4 illustrate 
that 55.6 % of patients showed a response and 38.9 % reached remis-
sion. Response, χ2 (1) = 11.99, p =.001, and remission rates, χ2 (1) =
7.37, p =.007, were significantly lower in non-completers than in 
completers. 

4.2. Prediction of reliable symptom change 

The first block of the hierarchical logistic regression for response 
showed a classification accuracy of 63.9 %, and a trend-level model fit, 
Wald χ2 (4) = 8.23, p =.084, R2 = 0.15. Higher initial symptom severity 
emerged as a significant predictor and was associated with a higher 
likelihood of response, β = 0.126, Wald χ2 (4) = 5.42, p =.020, OR =
1.13, 95 % CI [1.02, 1.26]. 

Inclusion of the error-related activity of the SMN in the second block 
resulted in a significant improvement of model fit, Wald χ2 (1) = 4.52, p 
=.033. The model showed a classification accuracy of 65.3 % and a 
significant model fit, Wald χ2 (5) = 12.75, p =.026, R2 = 0.22. In 
addition to initial symptom severity, β = 0.133, Wald χ2 (1) = 5.61, p 
=.018, OR = 1.14, 95 % CI [1.02, 1.28], error-related SMN activity also 
was a trend-level predictor, β = 0.398, Wald χ2 (1) = 3.11, p =.078, OR 
= 1.49, 95 % CI [0.96, 2.32]. A higher error-related BOLD response of 
the SMN was associated with a higher likelihood of response. 

Inclusion of the error-related activity of the SMA in the second block 
did not significantly increase model fit, Wald χ2 (1) = 2.31, p =.129. 

4.3. Prediction of remission 

The first block model did not reach a significant model-fit, Wald χ2 

(4) = 4.92, p =.295, R2 = 0.09. The second block models indicated that 
none of the brain activity significantly increased model fit (all Wald χ2 

(1) < 0.80, all p >.372). 

4.4. Discussion 

The present study investigated the utility of increased error-related 
BOLD response of the SMA and SMN as potential biomarkers of treat-
ment response in OCD. Error-related activity of the SMN contributed to 
the prediction of treatment response beyond the variance accounted for 

Table 3 
Pre- to post-therapy dimensional symptom change in primary (Y-BOCS) and 
secondary (OCI-R, MADRS, BDI-II) outcome measures in the whole sample (all), 
completers and non-completers.    

Mpre (SD) Mpost (SD) t p d 

all       
Y-BOCS 22.01 (5.00) 12.57 (7.08)  11.95  <0.001  − 1.77  
OCI-R 24.83 (11.96) 12.54 (10.61)  10.44  <0.001  − 1.17  
MADRS 13.67 (9.58) 5.08 (5.84)  7.64  <0.001  − 0.76  
BDI-II 18.71 (11.78) 8.23 (9.53)  8.61  <0.001  − 0.94 

Completers       
Y-BOCS 21.72 (4.79) 10.91 (6.03)  13.48  <0.001  − 2.03  
OCI-R 24.29 (11.55) 11.00 (9.43)  10.20  <0.001  − 1.24  
MADRS 13.52 (9.85) 4.72 (6.02)  6.91  <0.001  − 0.77  
BDI-II 18.03 (11.81) 6.77 (8.40)  8.97  <0.001  − 1.06 

Non-Completers       
Y-BOCS 23.21 (5.82) 19.43 (7.19)  2.26  0.042  − 0.69  
OCI-R 27.07 (13.79) 18.93 (13.0)  3.21  0.007  − 0.84  
MADRS 14.29 (8.64) 6.57 (4.97)  3.16  0.008  − 0.70  
BDI-II 21.50 (11.67) 14.29 (11.77)  2.09  0.057  − 0.56  

Table 4 
Categorical pre- to post-therapy symptom change (response, remission) in the 
whole sample (all), completers and non-completers.   

Response Non-response Remission Non-Remission  

n % n % n % n % 

All 40  55.6 32  44.4 28  38.9 44  61.1 
Completer 38  65.5 20  34.5 27  46.6 31  53.4 
Non-Completer 2  14.3 12  85.7 1  7.1 13  92.9 

Note. Response was measured by the reliable change index. Remission was ful-
filled for patients who showed reliable symptom change (response) and a post- 
therapy Y-BOCS score <= 12. 
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by previously established clinical and sociodemographic predictors. In 
line with previous findings, patients with stronger baseline abnormal-
ities exhibited a higher probability for response. To the best of our 
knowledge, this is the first study to show that error-related SMN activity 
predicts CBT treatment response in OCD patients. This substantially 
extends the evidence for increased error-related brain activity in OCD 
(Norman et al., 2019; Riesel, 2019), by showing that the functional 
mechanism reflected in SMN activity alterations is related to treatment 
outcome. In contrast, the error-related activity of the SMA did not 
emerge as a significant treatment response predictor. 

The SMN comprises regions involved in the integration of sensory 
information and the generation and control of motor behaviors (van den 
Heuvel et al., 2016). A substantial proportion of OCD patients (60–70 %) 
report that their compulsions are not only driven by fear/anxiety but 
also by sensory phenomena such as aversive or uncomfortable sensa-
tions or perceptions that could be related to dysfunctions of the SMN 
(Ferrão et al., 2012; Lee et al., 2009; Shavitt et al., 2014; Shephard et al., 
2021). These sensory phenomena can manifest as “not-just-right”-ex-
periences related to ordering, arranging, counting and repeating com-
pulsions, but also as tactile sensations of feeling dirty in the context of 
cleaning/washing compulsions (Ferrão et al., 2012; Shephard et al., 
2021). In line with this, larger gray matter volume (Subirà et al., 2015) 
and increased activation of the SMN (Brown et al., 2019) were observed 
in OCD patients with sensory phenomena. Thus, stronger error-related 
SMN activity might indicate that errors elicit aversive sensory phe-
nomena in OCD patients which in turn create the urge to perform re-
petitive remedial actions. Furthermore, Shephard and colleagues (2021) 
proposed that increased SMN activity in OCD may also be related to the 
habit-like properties of compulsions in some OCD patients. In concert 
with subcortical structures the SMN is involved in habit formation (de 
Wit et al., 2012; Tricomi, Balleine, & O’Doherty, 2009). Thus, increased 
SMN activity in OCD may contribute to the transition from goal-directed 
(i.e. performed to reduce fear/anxiety) to habitual compulsions (i.e. 
performed to reduce diffuse “not-just-right”-experiences) (Shephard 
et al., 2021). 

Against this background, the predictive value of increased error- 
related SMN activity may be attributed to its capacity to adjust toward 
a more adaptive state through treatment. Olatunji et al. (2014) reported 
that increased activity of the emotion processing network and the SMN 
during symptom provocation predicted response to CBT in OCD patients 
with contamination compulsions. They concluded that this pattern re-
flects the activation of symptom-relevant fear networks, which accord-
ing to the Emotional Processing Theory by Foa and Kozak (1986) is 
essential for reorganization of the fear-structure during exposure ther-
apy. Similarly, increased activity of the SMN during error processing 
may reflect the activation of aversive sensory phenomena following 
errors (i.e. “not-just-right”-experiences). Thus, stronger task-related 
activation of the SMN may characterize patients that are less prone to 
engage in (cognitive) avoidance under symptom provocation and thus 
more likely to profit from exposure therapy (Foa & Kozak, 1986; Paul, 
Kathmann, & Riesel, 2016). 

As there is consistent evidence for an increased ERN in patients with 
OCD (Riesel, 2019) and the ERN has been linked to activity of regions 
within the cingulo-opercular salience network, such as the midcingulate 
cortex and SMA (Debener et al., 2005; Grutzmann et al., 2016), we 
assumed that the error-related activity of the SMA might contribute to 
therapy response prediction. However, our analysis provided no evi-
dence for a significant contribution of the SMA cluster beyond the 
variance accounted for by sociodemographic and clinical variables. 
There are several possible explanations for this distinction between the 
contribution of error-related SMA and SMN activity. Firstly, the error- 
related activity of the salience network and the SMN might reflect 
different aspects of cognitive-emotional error processing. While the ac-
tivity of the salience network might be primarily related to initial error 
detection and categorization as a salient negative event, the activity of 
the SMN might be related to secondary emotional-sensory responses to 

errors. Secondly, EEG research indicates that the ERN reflects a trait- 
marker of psychopathology rather than a state-marker. Increased ERN 
amplitudes in OCD persist despite symptom reduction in CBT (Hajcak, 
Franklin, Foa, & Simons, 2008; Riesel, Endrass, Auerbach, & Kathmann, 
2015), are also observed in unaffected first-degree relatives of OCD 
patients (Riesel et al., 2011; Riesel et al., 2019) and are thus discussed as 
a promising endophenotype candidate for OCD (Riesel, 2019). Against 
this background, the salience network activity reflected in the ERN 
might constitute a risk marker for disorder onset rather than a marker 
for its malleability by treatment. Thus, the utility of the ERN as predictor 
of treatment response in OCD should be investigated in future studies. 

Additionally, it is notable that the SMN regions significantly 
contributing to the therapy response prediction are not located within 
the cingulo-opercular network, which constitutes the core error pro-
cessing network in healthy populations and comprises the anterior and 
midcingulate cortices, the SMA and the anterior insulae (Norman et al., 
2019; Taylor, Stern, & Gehring, 2007; Ullsperger, Danielmeier, & Joc-
ham, 2014). Although the flanker task successfully activated the 
cingulo-opercular salience network in OCD patients and healthy control 
participants, the group differences for the postcentral gyrus and pre-
cuneus are located outside these regions. In line with this, some previous 
studies have shown that error monitoring alterations in OCD might not 
only be characterized by an increased activity of the cingulo-opercular 
network, but also by broader activation within this network and the 
recruitment of additional brain regions (Fitzgerald et al., 2010; Grutz-
mann et al., 2016; Grützmann et al., 2021; Stern et al., 2011). In a 
combined EEG-FMRI study we observed that the increased ERN ampli-
tude in OCD was related to an altered generator configuration: while the 
MCC contributed to ERN amplitude in both groups, an additional 
generator within the SMA was selectively present in the patient group 
(Grutzmann et al., 2016). A recent meta-analysis by Norman et al. (2019) 
confirmed increased error-related activation within the cingulo- 
opercular network in OCD, but also detected increased activation in 
the anterior lateral prefrontal cortex. The authors argue that these 
additional neural resources might reflect compensatory effort at 
engaging in behavioral corrections. In a similar vein, selective activation 
of the postcentral gyrus and precuneus in OCD may reflect the activation 
of additional processes in OCD that are not commonly involved in error- 
processing in healthy individuals, such as aversive sensory phenomena. 

Some limitations of the current study have to be considered. The 
analysis tested the predictive value of error-related activity of a priori 
defined brain regions. Thus, it cannot be excluded that other brain re-
gions may also constitute significant predictors. Additionally, although 
inclusion of the error-related SMN activity significantly increased model 
fit, the individual predictor contribution only reached a trend level. As 
this may be attributed to the relatively small sample, the predictive 
value of biomarkers should be further explored with larger samples. 
Furthermore, psychotherapy was not standardized and 46 % of the pa-
tients received additional psychoactive medication. This naturalistic 
approach is representative under routine care conditions in Germany 
but generalization to other treatment conditions as for example man-
ualized and/or intensified CBT may be limited. 

In conclusion, the present study significantly adds to the growing 
evidence that alterations of error-processing reflect an important 
mechanism in OCD pathology by showing that error-related SMN ac-
tivity can serve as a predictor of CBT treatment response. Still, several 
question regarding clinical application need to be addressed. Firstly, 
brain activity measures are costly and time-intensive, which constitutes 
a disadvantage compared to routinely acquired clinical and socio-
demographic data. Although the inclusion of error-related SMN activity 
significantly improved the prediction model in the current study, the 
absolute magnitude of the increase in classification accuracy was small. 
Thus, the clinical application of neuroimaging biomarkers of treatment 
response will have to be balanced against their cost-effectiveness 
(Hoexter et al., 2015). Regarding this criterion, resting state functional 
connectivity may be superior to task-related activity, as it can be 
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assessed with shorter measurement sequences. Another promising 
approach may be to probe the brain-network dysfunctions and under-
lying pathogenic traits with other data sources that are easier to acquire 
such as EEG. Furthermore, although including brain activity measures 
significantly improves outcome prediction, classification accuracies still 
are below the threshold for actual clinical utility (Hilbert & Lueken, 
2020). Additional and more sensitive features from brain activity pat-
terns should be identified and combined in order to improve prediction 
accuracy. (Bowyer et al., 2019). Nevertheless, the current study illus-
trated that including neurobiological data has the potential to signifi-
cantly improve model fit and classification accuracy. 
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