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Abstract
Given a collection of hypergraphs𝐇 = (𝐻1,… ,𝐻𝑚)with
the same vertex set, an 𝑚-edge graph 𝐹 ⊂ ∪𝑖∈[𝑚]𝐻𝑖 is a
transversal if there is a bijection 𝜙 ∶ 𝐸(𝐹) → [𝑚] such
that 𝑒 ∈ 𝐸(𝐻𝜙(𝑒)) for each 𝑒 ∈ 𝐸(𝐹). How large does
the minimum degree of each 𝐻𝑖 need to be so that 𝐇
necessarily contains a copy of 𝐹 that is a transversal?
Each𝐻𝑖 in the collection could be the same hypergraph,
hence the minimum degree of each𝐻𝑖 needs to be large
enough to ensure that𝐹 ⊆ 𝐻𝑖 . Since its general introduc-
tion by Joos and Kim (Bull. Lond. Math. Soc. 52 (2020)
498–504), a growing body of work has shown that in
many cases this lower bound is tight. In this paper, we
give a unified approach to this problem by providing
a widely applicable sufficient condition for this lower
bound to be asymptotically tight. This is general enough
to recover many previous results in the area and obtain
novel transversal variants of several classical Dirac-type
results for (powers of) Hamilton cycles. For example, we
derive that any collection of 𝑟𝑛 graphs on an 𝑛-vertex
set, each with minimum degree at least (𝑟∕(𝑟 + 1) +
𝑜(1))𝑛, contains a transversal copy of the 𝑟th power of a
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Hamilton cycle. This can be viewed as a rainbow version
of the Pósa–Seymour conjecture.

MSC 2020
05D15, 05D40 (primary)

1 INTRODUCTION

This paper concerns the study of transversals over hypergraph collections. Roughly speaking,
given a collection of hypergraphs on the same vertex set, we want to select exactly one edge
from each hypergraph, so that the selected edges (the transversal) induce a hypergraph with some
desired property. More precisely, we say that𝐇 = (𝐻1,… ,𝐻𝑚) is a hypergraph collection on vertex
set 𝑉 if, for each 𝑖 ∈ [𝑚], the hypergraph𝐻𝑖 has vertex set 𝑉. We call the collection a graph collec-
tion if each hypergraph in the collection has uniformity two. Given an𝑚-edge hypergraph 𝐹 on𝑉,
we say that𝐇 has a transversal copy of 𝐹 if there is a bijection 𝜙∶ 𝐸(𝐹) → [𝑚] such that 𝑒 ∈ 𝐻𝜙(𝑒)

for each 𝑒 ∈ 𝐸(𝐹). We will also use the adjective rainbow for a transversal copy of 𝐹. Indeed, we
can think of the edges of hypergraph 𝐻𝑖 to be coloured with colour 𝑖 and, in this framework, a
transversal copy of 𝐹 is a copy of 𝐹 in

⋃
𝑖∈[𝑚] 𝐻𝑖 with edges of pairwise distinct colours. We are

interested in the following general question formulated originally by Joos and Kim [14].

Question 1. Let 𝐹 be an 𝑚-edge hypergraph with vertex set 𝑉,  be a family of hypergraphs and
𝐇 = (𝐻1,… ,𝐻𝑚) be a hypergraph collection on vertex set 𝑉 with 𝐻𝑖 ∈  for each 𝑖 ∈ [𝑚]. Which
conditions on guarantee a transversal copy of 𝐹 in𝐇?

By taking 𝐻1 = 𝐻2 = ⋯ = 𝐻𝑚, it is clear that such a property needs to guarantee that each
hypergraph in contains 𝐹 as a subhypergraph. However, this alone is not always sufficient, not
even asymptotically. For example, Aharoni, DeVos, de la Maza, Montejano and Šámal [1] showed
that if 𝐆 = (𝐺1, 𝐺2, 𝐺3) is a graph collection on [𝑛] with 𝑒(𝐺𝑖) > (

26−2
√
7

81
)𝑛2 for each 𝑖 ∈ [3], then

𝐆 contains a transversal which is a triangle. As shown in [1], the constant 26−2
√
7

81
> 1∕4 is optimal.

On the other hand, Mantel’s theorem states that any graph with at least 𝑛2∕4 edges must contain
a triangle.
Instead of a lower bound on the total number of edges, it is also natural to investigate what can

be guaranteed with a lower bound on the minimum degree. It turns out that even in this more
restrictive setting, there can be a discrepancy between the uncoloured and the rainbow versions
of the problem. To make this more precise, we give the following two definitions, where, for a
𝑘-uniform hypergraph 𝐻 and 1 ⩽ 𝑑 < 𝑘, we let 𝛿𝑑(𝐻) be the minimum number of edges of 𝐻
that any set of 𝑑 vertices of 𝑉(𝐻) is contained in. Moreover, for a hypergraph collection 𝐇 =

(𝐻1,… ,𝐻𝑚), we denote |𝐇| = 𝑚 and 𝛿𝑑(𝐇) = min𝑖∈[𝑚] 𝛿𝑑(𝐻𝑖).

Definition 1.1 (Uncolouredminimumdegree threshold). Let be an infinite family of 𝑘-uniform
hypergraphs. By 𝛿 ,𝑑 we denote, if it exists, the smallest real number 𝛿 such that for all 𝛼 > 0

and for all but finitely many 𝐹 ∈  the following holds. Let 𝑛 = |𝑉(𝐹)| and 𝐻 be any 𝑛-vertex
𝑘-uniform hypergraph with 𝛿𝑑(𝐻) ⩾ (𝛿 + 𝛼)𝑛𝑘−𝑑. Then𝐻 contains a copy of 𝐹.
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A GENERAL APPROACH TO TRANSVERSAL VERSIONS OF DIRAC-TYPE THEOREMS 2819

For example, if  is the family of graphs consisting of a cycle on 𝑛 vertices for each 𝑛 ∈ ℕ, then
we have 𝛿 ,1 = 1∕2. Indeed, this follows from Dirac’s theorem which states that any graph with
minimum degree at least 𝑛∕2 has a Hamilton cycle.

Definition 1.2 (Rainbow minimum degree threshold). Let  be an infinite family of 𝑘-uniform
hypergraphs. By 𝛿rb

 ,𝑑
we denote, if it exists, the smallest real number 𝛿 such that for all 𝛼 > 0

and for all but finitely many 𝐹 ∈  the following holds. Let 𝑛 = |𝑉(𝐹)| and𝐇 be any 𝑘-uniform
hypergraph collection on 𝑛 verticeswith |𝐇| = |𝐸(𝐹)| and 𝛿𝑑(𝐇) ⩾ (𝛿 + 𝛼)𝑛𝑘−𝑑. Then𝐇 contains
a transversal copy of 𝐹.

If the two values are well-defined, it must be that 𝛿rb
 ,𝑑

⩾ 𝛿 ,𝑑. Indeed, if𝐻 contains no copy of
𝐹, the collection𝐇 consisting of |𝐸(𝐹)| copies of𝐻 does not contain a transversal copy of𝐻 either.
However, Montgomery, Müyesser and Pehova [24] made the following observation which shows
that 𝛿rb

 ,𝑑
can be much larger than 𝛿 ,𝑑. Set  = {𝑘 × (𝐾2,3 ∪ 𝐶4)∶ 𝑘 ∈ ℕ} where 𝑘 × 𝐺 denotes

the graph obtained by taking 𝑘 vertex-disjoint copies of 𝐺. It follows from a result of Kühn and
Osthus [17] that 𝛿 ,1 = 4∕9. Consider the graph collection𝐇 = (𝐻1,… ,𝐻𝑚) on 𝑉 obtained in the
following way. Partition 𝑉 into two almost equal vertex subsets, say 𝐴 and 𝐵, and suppose that
𝐻1 = 𝐻2 =⋯ = 𝐻𝑚−1 are all disjoint unions of a clique on 𝐴 and a clique on 𝐵. Suppose that
𝐻𝑚 is a complete bipartite graph between 𝐴 and 𝐵. Observe that each 𝐻𝑖 in this resulting graph
collection has minimum degree ⌊|𝑉|∕2⌋. Further observe that if 𝐇 contains a transversal copy
of some 𝐹 ∈  , the edge of 𝐾2,3 or 𝐶4 that gets copied to an edge of 𝐻𝑚 would be a bridge (an
edge whose removal disconnects the graph) of 𝐹. However, neither 𝐾2,3 nor 𝐶4 contains a bridge.
Hence, 𝛿rb

 ,𝑑
⩾ 1∕2.

On the other hand, there are many natural instances where 𝛿rb
 ,𝑑

= 𝛿 ,𝑑. When this equality
holds, we say that the corresponding family  is 𝑑-colour-blind, or just colour-blind in the case 
is a family of graphs (and 𝑑 = 1). For example, Joos and Kim [14], improving a result of Cheng,
Wang and Zhao [9] and confirming a conjecture of Aharoni [1], showed that, if 𝑛 ⩾ 3, then any
𝑛-vertex graph collection𝐆 = (𝐺1, … , 𝐺𝑛)with 𝛿(𝐺𝑖) ⩾ 𝑛∕2 for each 𝑖 ∈ [𝑛] has a transversal copy
of a Hamilton cycle. This generalises Dirac’s classical theorem and implies that the family  of 𝑛-
cycles is colour-blind†. There aremanymore families of colour-blind (hyper)graphs. In particular,
matchings [7, 20–22], Hamilton 𝓁-cycles [8], factors [7, 24] and spanning trees [24] have been
extensively studied. We recall that for 1 ⩽ 𝓁 < 𝑘, a 𝑘-uniform hypergraph is called an 𝓁-cycle if
its vertices can be ordered cyclically such that each of its edges consists of 𝑘 consecutive vertices
and every two consecutive edges (in the natural order of the edges) share exactly 𝓁 vertices. In
particular, (𝑘 − 1)-cycles and 1-cycles are known as tight cycles and loose cycles, respectively.
In this paper, building on techniques introduced by Montgomery, Müyesser and Pehova [24],

we give a widely applicable sufficient condition for a family of hypergraphs  to be colour-blind.
This gives a unified proof of several of the aforementioned results, as well as many new rainbow
Dirac-type results. The following theorem lists the applications we derive in the current paper,
though we believe that our setting can capture even more families of hypergraphs.

Theorem 1.3. The following families of hypergraphs are all 𝑑-colour-blind.

(A) The family of the 𝑟th powers of Hamilton cycles for fixed 𝑟 ⩾ 2 (and 𝑑 = 1).

† In fact, in this particular case, the corresponding thresholds are exactly the same, and there is no need for an error term.
We discuss this aspect of the problem further in our concluding remarks.
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2820 GUPTA et al.

(B) The family of 𝑘-uniform Hamilton 𝓁-cycles for the following ranges of 𝑘, 𝓁 and 𝑑.
(B1) 1 < 𝓁 < 𝑘∕2 and 𝑑 = 𝑘 − 2;
(B2) 1 ⩽ 𝓁 < 𝑘∕2 or 𝓁 = 𝑘 − 1, and 𝑑 = 𝑘 − 1;
(B3) 𝓁 = 𝑘∕2 and 𝑘∕2 < 𝑑 ⩽ 𝑘 − 1 with 𝑘 even.

Remark 1. Theorem 1.3 (B2) when 𝓁 = 𝑘 − 1 was originally proven by Cheng, Han, Wang, Wang
and Yang [8], who raised the problem of obtaining the rainbow minimum degree threshold for
a wider range of 𝓁 ∈ [𝑘 − 2]. Moreover, the case of Hamilton cycles in graphs (i.e., 𝑘 = 2 and
𝑑 = 𝓁 = 1) was previously proven by Cheng, Wang and Zhao [9] (and their result was sharpened
by Joos and Kim [14]).

Theorem 1.3 is derived fromourmain theorem, Theorem2.6, in Section 5. The precise statement
of Theorem 2.6 is quite technical, and will be given in Section 2. In preparation for the formal
statement, we now give some intuition for our approach. First, Theorem 2.6 is concerned with
hypergraph families  with a ‘cyclic’ structure. That is, we assume there exists a hypergraph 

such that all 𝐹 ∈  can be obtained by gluing several copies of  in a Hamilton cycle fashion
(see Definition 2.3). For example, for 𝑘-uniform Hamilton cycles, would be a single 𝑘-uniform
edge (see Figure 1), whereas for the 𝑟th power of a Hamilton cycle,  would be a a clique on 𝑟
vertices (see Figure 2). In the uncoloured setting, most of the well-studied problems fit into this
framework, including everything listed in Theorem 1.3.
A common framework for embedding such hypergraphs with cyclic structure is the absorption

method. Suppose one wishes to reprove Dirac’s theorem (any 𝑛-vertex graph 𝐺 with mini-
mum degree at least 𝑛∕2 contains a Hamilton cycle) via the most common-place variant of the
absorption method. Then, the key steps would roughly be as follows.

Step 1. Set aside a vertex reservoir. Let 𝑅 ⊆ 𝑉(𝐺) be a small subset so that each vertex 𝑣 has
about |𝑅|∕2many neighbours in 𝑅. A randomly sampled set 𝑅 satisfies this property with
high probability.

Step 2. Find an absorber. Show that 𝑉(𝐺) ⧵ 𝑅 contains a small subset 𝐴 and vertices 𝑣, 𝑤 ∈

𝐴 so that for any small enough subset 𝐿 ⊆ 𝑉(𝐺) ⧵ 𝐴, we have that 𝐺[𝐿 ∪ 𝐴] contains a
spanning path with endpoints 𝑣 and 𝑤.

Step 3. Cover the remainder via long paths. Show that all but few vertices of 𝑉(𝐺) ⧵ (𝐴 ∪ 𝑅)
can be covered by pairwise disjoint long paths in 𝐺.

Step 4. Build a long path. Using the property of 𝑅, connect corresponding endpoints via short
paths to build a path 𝑃 with endpoints 𝑣 and 𝑤, vertex-disjoint with 𝐴 ⧵ {𝑣, 𝑤}, and
covering all but a few vertices of 𝑉(𝐺) ⧵ 𝐴.

Step 5. Use the absorber. By the property of 𝐴, the set 𝐿 = 𝑉(𝐺) ⧵ (𝐴 ∪ 𝑉(𝑃)) can be used
together with 𝐴 to connect 𝑣 and 𝑤 via a path 𝑃′. Then 𝑃 ∪ 𝑃′ is the desired Hamilton
cycle.

Our main theorem, Theorem 2.6, essentially states that if there is a proof as above that 𝛿 is
the uncoloured minimum degree threshold for some  with cyclic structure, then the rainbow
minimum degree threshold of  is equal to 𝛿. Some partial progress towards such an abstract
statement was already made in [24]. In fact, in [24], it was remarked that, plausibly, transversal
versions of other Dirac-type results can be shown by adapting themethod from [24], provided that
one can prove strengthened versions of the non-transversal (uncoloured) embedding problem. For
example, in [24], this strengthening took the form of embedding trees with the location of a single
vertex being specified adversarially (see [24, Theorem 4.4]). Using such a strengthening, one can
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A GENERAL APPROACH TO TRANSVERSAL VERSIONS OF DIRAC-TYPE THEOREMS 2821

TABLE 1 References for the properties 𝐀𝐛, 𝐂𝐨𝐧 and 𝐅𝐚𝐜 for the families in the statement (B) of
Theorem 1.3. The first row is split into two, as [5] deals with the case 𝑘 = 3 and [2] deals with the case 𝑘 ⩾ 4.

Family  Reference for 𝜹
 ,𝒅 Property 𝐀𝐛 Property 𝐂𝐨𝐧 Property 𝐅𝐚𝐜

1 < 𝓁 < 𝑘∕2 Buß, Hàn [5, Lemma 7] [5, Lemma 5] Observation 2.5
and 𝑑 = 𝑘 − 2 and Schacht [5]

de Bastos, Mota, Schacht, [2, Lemma 7] [2, Lemma 5]
Schnitzer and Schulenburg [2]

1 ⩽ 𝓁 < 𝑘∕2 Hàn and Schacht [11] [11, Lemma 5] [11, Lemma 6]
and 𝑑 = 𝑘 − 1

𝓁 = 𝑘 − 1 Rödl, Ruciński [27, Lemma 2.1] [27, Lemma 2.4]
and 𝑑 = 𝑘 − 1 and Szemerédi [27]
𝓁 = 𝑘∕2 Hàn, Han and Zhao [10] [10, Lemma 2.3] [10, Lemma 2.5]
and 𝑘∕2 < 𝑑 ⩽ 𝑘 − 1,
with 𝑘 even

translate Steps 1 to 5 above into a coloured setting. On the other hand, the main advantage of
our main theorem, Theorem 2.6, is that it does not require to make ad hoc strengthening to the
uncoloured version of the result, allowing for a very short proof of Theorem 1.3. To achieve this,
we codify, through what we call propertiesAb andCon, what it means for there to be streamlined
absorption proof for the uncoloured result, andwe use the existence of such a proof as a black-box.
In our applications, to ensure that the relevant properties hold, we rely on existing lemmas in the
literature without having to do any extra work (see Table 1).
In addition to properties Ab and Con that guarantee we can rely on a streamlined absorption

proof for the uncoloured result, we have one more hypothesis in Theorem 2.6, which we call
property Fac. One reason why transversal versions of Dirac-type results are more difficult is that
every single hypergraph in the collection as well as every single vertex of the host graph needs
to be utilised in the target spanning structure (the transversal). This is crucial as demonstrated
by the construction given after Definition 1.2. In this construction, the possibility of finding a
transversal copy of  is ruled out by showing that a particular graph in the collection (namely
the hypergraph𝐻𝑚) cannot be used in a transversal copy of a 𝐾2,3 or 𝐶4. Therefore, in addition to
some properties that are related to the uncoloured case andwhere colours do not play any role, we
require a property concerning the coloured case that we call Fac. This roughly states that vertex-
disjoint copies of (the building block of the hypergraph we are trying to find) can be found in a
rainbow fashion using a fixed, adversarially specified set of hypergraphs from the collection. This
ensures that we never get stuck while trying to use up every single colour/hypergraph that we
start with. When  is just a single edge (as it will be the case for Theorem 1.3(B)), the property
Fac is essentially trivial to check (see Observation 2.5). For powers of Hamilton cycles, however,
this property is more delicate and, to verify Fac, we rely on a non-trivial coloured property from
[24].

Remark 2. In principle, using Theorem 2.6, one can obtain short proofs of many other transversal
Dirac-type results. But there does exist a natural instance of an uncoloured Dirac-type problem
(3-uniform Hamilton 2-cycles with 𝑑 = 1) with a proof based on the absorption method [26], yet
the structure of this proof does not fit into our framework (essentially due to complications with
Step 4). We discuss this further in Section 6.
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2822 GUPTA et al.

Organisation
The rest of the paper is organised as follows. In Section 2, we introduce the necessary terminology
for our main Theorem 2.6 and give the formal statement. In Section 3, we introduce some tools
that we will use later and provide an overview of the proof method. Section 4 contains the proof
of Theorem 2.6, while Section 5 deals with its applications. Finally, some concluding remarks and
directions for future research are given in Section 6.

Notation. We make a few clarifying points about the notation that we use. Recall that for a
𝑘-uniform hypergraph 𝐻 and 1 ⩽ 𝑑 < 𝑘, we let 𝛿𝑑(𝐻) be the minimum number of edges of
𝐻 that any set of 𝑑 vertices of 𝑉(𝐻) is contained in. Moreover, given vertex subsets 𝑆 and
𝑉 of a hypergraph, deg(𝑆, 𝑉) denotes the number of 𝑉′ ⊆ 𝑉 such that 𝑆 ∪ 𝑉′ is an edge of
the hypergraph.

Recall as well that a hypergraph collection 𝐇 = (𝐻1,… ,𝐻𝑚) is a collection of (not nec-
essarily distinct) hypergraphs 𝐻𝑖 , 𝑖 ∈ [𝑚], which all have the same vertex set, and 𝛿𝑑(𝐇) =

min𝑖∈[𝑚] 𝛿𝑑(𝐻𝑖). Given a hypergraph collection 𝐇 = (𝐻1,… ,𝐻𝑚) with vertex set 𝑉, and a set
𝑈 ⊂ 𝑉, the collection of graphs 𝐻𝑖[𝑈], 𝑖 ∈ [𝑚] induced on the vertex set 𝑈 is denoted by 𝐇[𝑈].
We set |𝐇| to denote the size of𝐇 = (𝐻1,… ,𝐻𝑚), so that, in this case, |𝐇| = 𝑚.
As mentioned earlier in the introduction, we will think of the edges of different hypergraphs

in a collection as having different colours. In particular, given a hypergraph collection 𝐇 =

(𝐻1,… ,𝐻𝑚), we consider each hypergraph𝐻𝑖 to have a colour 𝑖. Given a subgraph𝐻 ⊂ ∪𝑖∈[𝑚]𝐻𝑖 ,
edge 𝑒 ∈ 𝐸(𝐻) can be assigned colour 𝑖 if 𝑒 ∈ 𝐸(𝐻𝑖).𝐻 is a transversal if each edge can be assigned
a distinct colour. Hypergraphs where an edge colour does not repeat is called rainbow. When we
say𝐻 ⊂ ∪𝑖∈[𝑚]𝐻𝑖 is uncoloured, we emphasise that a colouring has not yet been assigned.
We use standard hierarchical notation for constants, writing 𝑥 ≪ 𝑦 to mean that there is a fixed

positive non-decreasing function 𝑓 on (0,1] such that the subsequent statements hold for 𝑥 ⩽
𝑓(𝑦). Where multiple constants appear in a hierarchy, they are chosen from right to left. We omit
rounding signs where they are not crucial.

2 STATEMENT OF THEMAIN THEOREM

This section introduces the relevant terminology and states our main Theorem 2.6.

2.1 Links, chains and cycles

An ordered hypergraph is a hypergraph equipped with a linear order of its vertex set. For con-
venience, we often index the vertices of an ordered 𝑛-vertex hypergraph with {1, 2, … , 𝑛} so that
𝑣𝑖 < 𝑣𝑗 if and only if 𝑖 < 𝑗. A subgraph of an ordered hypergraph inherits an ordering from the
parent hypergraph in the obvious way. Whenever we state that two ordered hypergraphs are
isomorphic, we mean that they are isomorphic as ordered hypergraphs.

Definition 2.1 (𝓁-link). Let 𝑘,𝓁, 𝑚 ∈ ℕ with 𝓁 ⩽ 𝑚. Let  = (𝑉, 𝐸) be an ordered 𝑘-uniform
hypergraph on𝑚 vertices.We call an 𝓁-link of uniformity 𝑘 if𝑠 and𝑡 are isomorphic, where
𝑠 = [{𝑣1, … , 𝑣𝓁}], and 𝑡 = [{𝑣𝑚−𝓁+1, … , 𝑣𝑚}]. We refer to 𝑚 as the order of  and we call
the ordered hypergraphs𝑠 and𝑡 the start and the end of, respectively.
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A GENERAL APPROACH TO TRANSVERSAL VERSIONS OF DIRAC-TYPE THEOREMS 2823

Definition 2.2 (-chain). Let 𝑘,𝓁, 𝑚 ∈ ℕ with 𝓁 ⩽ 𝑚, and  be an 𝓁-link of uniformity 𝑘 and
order𝑚. We say that an ordered hypergraph  is an-chain if the following properties hold.

(1) 𝑣() = 𝑛 = (𝑚 − 𝓁)𝑡 + 𝓁 for some 𝑡 ∈ ℕ.
(2) Set 𝑆1 = {1, … ,𝑚} and for 1 < 𝑞 ⩽ 𝑡 define 𝑆𝑞 ⊆ [𝑛] recursively as follows. For 1 < 𝑞 ⩽ 𝑡, if

𝑆𝑞−1 = {𝑠, … , 𝑠 + 𝑚 − 1}, define 𝑆𝑞 = {𝑠 + 𝑚 − 𝓁, … , 𝑠 + 2𝑚 − 𝓁 − 1}. Then, for each 1 ⩽ 𝑞 ⩽
𝑡, the hypergraph 𝑞 = [{𝑣𝑖 ∶ 𝑖 ∈ 𝑆𝑞}] is isomorphic to.

(3) Each edge of  is contained in 𝑞 for some 𝑞 ∈ [𝑡].

We refer to 𝑡 as the length of the -chain and we call 1 and 𝑡 the first and the last links of
 , respectively. Moreover, we call the start of 1 and the end of 𝑡 the start and the end of  ,
respectively, and refer to them collectively as the ends of  .

Definition 2.3 (-cycle). Let be an-chain. Let  and  be the start and the end of  , respec-
tively. Let 𝜙 be the isomorphism between the ordered hypergraphs  and  , and identify 𝑥 ∈ 

with 𝜙(𝑥) ∈  for each 𝑥 ∈  . We call the resulting (unordered) hypergraph an-cycle.

We remark that with being an 𝓁-link of order𝑚, if  is an-chain and  is an-cycle, then
the following holds: 𝑣() ∈ (𝑚 − 𝓁)ℕ and 𝑒() = 𝑒()−𝑒(𝑠)

𝑚−𝓁
𝑣(), while 𝑣() ∈ (𝑚 − 𝓁)ℕ + 𝓁 and

𝑒() =
𝑒()−𝑒(𝑠)

𝑚−𝓁
𝑣() − 𝑂(1), where 𝑂(1) stands for a constant that only depends on.

Observe that for each 1 ⩽ 𝓁 ⩽ 𝑘, a single 𝑘-uniform edge induces an 𝓁-link of uniformity 𝑘
and order 𝑘, and its chain (resp., cycle) corresponds to a 𝑘-uniform 𝓁-path (resp., cycle). Figure 1
shows the case 𝑘 = 5 and 𝓁 = 2. Similarly, the compete graph on 𝑟 vertices induces a (𝑟 − 1)-link
of uniformity 2 and order 𝑟, and its chain (resp., cycle) corresponds to the (𝑟 − 1)th power of a
path (resp., cycle). Figure 2 illustrates the case 𝑟 = 3. Finally, Figure 3 shows that a pillar can also
be obtained as an-chain.
We now state the properties we require from the link for our main theorem to hold.

Definition 2.4. Let 𝑘,𝓁, 𝑚 ∈ ℕ with 𝓁 ⩽ 𝑚,  be an 𝓁-link of order 𝑚 and uniformity 𝑘, and
𝑑 ∈ [𝑘 − 1]. We say that is (𝛿, 𝑑)-good if the following three properties hold.

F IGURE 1 A 5-uniform 2-path is an-chain, with being (any ordering of) a single 5-uniform edge. The
numbering of the vertices in each edge denotes the (ordered) isomorphism between that edge and.

F IGURE 2 The square of a path is an-chain, with being (any ordering of) a triangle.

 14692120, 2023, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12896 by Freie U

niversitaet B
erlin, W

iley O
nline L

ibrary on [19/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2824 GUPTA et al.

F IGURE 3 A pillar is an-chain, with being the above ordering of a cycle on four vertices.

𝐀𝐛 For any 𝛼 > 0, there exist 0 < 𝜏, 𝜂 ⩽ 𝛼 and 𝑛0 ∈ ℕ so that if  is a 𝑘-uniform hypergraph
on 𝑛 ⩾ 𝑛0 vertices with 𝛿𝑑() ⩾ (𝛿 + 𝛼)𝑛𝑘−𝑑, then there exists𝐴 ⊆ 𝑉() of size at most 𝜏𝑛
with the following property.
For any 𝐿 ⊆ 𝑉() ⧵ 𝐴 of size at most 𝜂𝑛 with |𝐿| ∈ (𝑚 − 𝓁)ℕ, there exists an embedding

of an-chain to with vertex set 𝐴 ∪ 𝐿. Furthermore, the embedding of the start and the
end of the-chain does not depend on the subset 𝐿.

𝐂𝐨𝐧 For any 𝛼 > 0, there exist a positive integer 𝑐 and 𝑛0 ∈ ℕ so that if  is a 𝑘-uniform
hypergraph on 𝑛 ⩾ 𝑛0 vertices with 𝛿𝑑() ⩾ (𝛿 + 𝛼)𝑛𝑘−𝑑, the following holds.
Let  and  be vertex-disjoint copies of𝑠 in . Then,  contains an embedding of an

-chain of length at most 𝑐 with start  and end  .
𝐅𝐚𝐜 For any 𝛼 > 0, there exist 𝛽0 > 0 and 𝑛0 ∈ ℕ so that the following holds for any 𝑛 ⩾ 𝑛0 and

𝛽 ⩽ 𝛽0.
Let 𝐇 be a hypergraph collection on vertex set [𝑛] with |𝐇| ⩽ 𝛽𝑛 and 𝛿𝑑(𝐇) ⩾ (𝛿 +

𝛼)𝑛𝑘−𝑑. Moreover, suppose 𝑒() divides |𝐇|. Then 𝐇 contains a transversal that consists
of |𝐇|∕𝑒() vertex-disjoint copies of.

We remark that the property Fac easily holds when consists of a single edge, as stated in the
following observation, whose proof appears in Section 3.

Observation 2.5. Let 𝑘 ∈ ℕ, 𝑑 ∈ [𝑘 − 1] and be a 𝑘-uniform edge. Then, for any 𝛿 > 0, property
𝐅𝐚𝐜 holds for (with respect to minimum 𝑑-degree).

2.2 Main theorem

We have now introduced all the necessary terminology to state our main theorem. Recall that,
following Definition 1.1, the uncoloured minimum 𝑑-degree threshold for a Hamilton -cycle,
with  being a link of uniformity 𝑘, is the smallest real number 𝛿 = 𝛿(, 𝑑) with the following
property. For any 𝛼 > 0, there exists 𝑛0 ∈ ℕ so that for any 𝑛 ∈ (𝑚 − 𝓁)ℕ with 𝑛 ⩾ 𝑛0, every 𝑘-
uniform hypergraph on 𝑛 vertices with 𝛿𝑑() ⩾ (𝛿 + 𝛼)𝑛𝑘−𝑑 contains a Hamilton-cycle.

Theorem 2.6 (Main theorem). Let 𝑘,𝓁, 𝑚 ∈ ℕ with 𝓁 ⩽ 𝑚,  be an 𝓁-link of order 𝑚 and uni-
formity 𝑘, and 𝑑 ∈ [𝑘 − 1]. Let 𝛿 = 𝛿(, 𝑑) be the uncoloured minimum 𝑑-degree threshold for
the containment of a Hamilton -cycle and suppose that  is (𝛿0, 𝑑)-good for some 𝛿0 ⩾ 𝛿. Then,
for any 𝛼 > 0, there exists 𝑛0 = 𝑛0(, 𝛼, 𝑑) ∈ ℕ so that for any 𝑛 ∈ (𝑚 − 𝓁)ℕ with 𝑛 ⩾ 𝑛0, the
following holds.
Let𝐇 be a 𝑘-uniform hypergraph collection on vertex set [𝑛]with |𝐇| = 𝑒()−𝑒(𝑠)

𝑚−𝓁
𝑛 and 𝛿𝑑(𝐇) ⩾

(𝛿0 + 𝛼)𝑛
𝑘−𝑑 . Then𝐇 contains a transversal copy of a Hamilton-cycle.
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A GENERAL APPROACH TO TRANSVERSAL VERSIONS OF DIRAC-TYPE THEOREMS 2825

Observe that the quantity 𝑛

𝑚−𝓁
(𝑒() − 𝑒(𝑠)) appearing in Theorem 2.6 is precisely the number

of edges in a Hamilton -cycle covering 𝑛 vertices. Therefore, it is also the size of a hypergraph
collection on [𝑛] containing a transversal copy of a Hamilton -cycle. Moreover, if Theorem 2.6
holds with 𝛿0 = 𝛿, then the family of Hamilton-cycles is colour-blind.

3 TOOLS AND PROOF OVERVIEW

3.1 Tools

We begin with a simple proposition and a trivial observation that we are going to use often in the
paper.

Proposition 3.1. Let 0 ⩽ 𝛼, 𝛿 ⩽ 1, and 𝑑, 𝑘,𝑚, 𝑛 ∈ ℕ, with 1 ⩽ 𝑑 ⩽ 𝑘 − 1. Let 𝐇 be a 𝑘-uniform
hypergraph collection on vertex set [𝑛] with |𝐇| = 𝑚 and 𝛿𝑑(𝐇) ⩾ 𝛿𝑛𝑘−𝑑 . Let  be the 𝑘-uniform
hypergraph with vertex set [𝑛], where 𝑒 is an edge of if 𝑒 ∈ 𝐸(𝐻𝑖) for at least 𝛼𝑚 values of 𝑖 ∈ [𝑚].
Then, 𝛿𝑑() ⩾ (𝛿 − 𝛼)𝑛𝑘−𝑑 .

Proof. The notation deg stands for the 𝑑-degree in . For each 𝑑 pairwise distinct vertices
𝑣1, … , 𝑣𝑑 ∈ [𝑛], we have

𝑚 ⋅ 𝛿𝑛𝑘−𝑑 ⩽
∑
𝑖∈[𝑚]

deg𝐻𝑖 (𝑣1, … , 𝑣𝑑) ⩽ 𝑚 ⋅ deg(𝑣1, … , 𝑣𝑑) + 𝑛
𝑘−𝑑 ⋅ 𝛼𝑚,

and therefore deg(𝑣1, … , 𝑣𝑑) ⩾ (𝛿 − 𝛼)𝑛𝑘−𝑑. Thus, 𝛿𝑑() ⩾ (𝛿 − 𝛼)𝑛𝑘−𝑑, as wanted. □

Observation 3.2. Let𝐇 be a 𝑘-uniform hypergraph collection on𝑉 with 𝛿𝑑(𝐇) ⩾ 𝛿𝑛𝑘−𝑑. Let 𝑆 ⊆ 𝑉

with |𝑆| ⩽ 𝜁𝑛. Then𝐇 ⧵ 𝑆 has minimum 𝑑-degree at least (𝛿 − 𝜁)𝑛𝑘−𝑑.

Proof. Let 𝐻 be a hypergraph in 𝐇 and let 𝐷 be a set of size 𝑑 disjoint with 𝑆. For any vertex 𝑣
not in𝐷, the set𝐷 ∪ {𝑣} can have degree at most 𝑛𝑘−𝑑−1. Therefore, there are at most 𝜁𝑛𝑘−𝑑 edges
containing𝐷 that are also incident to 𝑆. Hence,𝐻 ⧵ 𝑆 hasminimum 𝑑-degree at least (𝛿 − 𝜁)𝑛𝑘−𝑑,
implying the observation. □

Observation 3.2 allows a short proof of Observation 2.5.

Proof of Observation 2.5. Let 𝛿, 𝛼 > 0, set 𝛽0 = 𝛼∕(2𝑘), and let 𝛽 ⩽ 𝛽0. Let 𝐇 be a hypergraph
collection on [𝑛] with 𝛿𝑑(𝐇) ⩾ (𝛿 + 𝛼)𝑛𝑘−𝑑 and |𝐇| ⩽ 𝛽𝑛. Suppose that we have found 𝑠 < |𝐇|
vertex-disjoint copies of on [𝑛] together with a rainbow colouring (using 𝑠 colours), and let 𝑆 be
the vertex set spanned by those copies. Observe that |𝑆| = 𝑠𝑘 ⩽ 𝛼𝑛∕2. Let𝐻 be a hypergraph in𝐇
not yet used, then by Observation 3.2,𝐻[𝑉 ⧵ 𝑆] still contains an edge and thus a copy of. Hence,
we can extend the collection of copies of in a rainbow fashion. This proves the observation. □

In the proof of Theorem 2.6, we need the following result that states that the vertex set of a
hypergraph collections can be partitioned into linear sized sets, each preserving good minimum
degree conditions in each of the hypergraphs of the collection.
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2826 GUPTA et al.

Lemma 3.3. Let 1∕𝑛 ≪ 𝛼, 𝛽 and 𝑚 ⩽ 𝑛2. Let 𝑡 ∈ ℕ and 𝑛1, … , 𝑛𝑡 ⩾ 𝛽𝑛 be integers such that∑𝑡
𝑖=1 𝑛𝑖 = 𝑛. Let𝐇 be a 𝑘-uniformhypergraph collection on vertex set [𝑛]with |𝐇| = 𝑚 and 𝛿𝑑(𝐇) ⩾

(𝛿 + 𝛼)𝑛𝑘−𝑑 . Then there exists a partition of [𝑛] into𝑉1,… , 𝑉𝑡 with |𝑉𝑖| = 𝑛𝑖 for 𝑖 ∈ [𝑡] such that any
𝑆 ∈

([𝑛]
𝑑

)
has degree at least (𝛿 + 𝛼∕2)𝑛𝑘−𝑑

𝑖
into 𝑉𝑖 with respect to any of the𝑚 hypergraphs in𝐇.

We will show that a partition chosen uniformly at random has the properties required from
Lemma 3.3 with high probability. For that, we use a concentration inequality due to McDiarmid
[23], whose present formulation can be found in [19].

Lemma 3.4 [19, Lemma 6.1]. Let 𝑐 > 0 and let 𝑓 be a function defined on the set of subsets of some
set𝑈 such that |𝑓(𝑈1) − 𝑓(𝑈2)| ⩽ 𝑐 whenever |𝑈1| = |𝑈2| = 𝑚 and |𝑈1 ∩ 𝑈2| = 𝑚 − 1. Let𝐴 be a
uniformly random𝑚-subset of𝑈. Then for any 𝛼 > 0, we have

ℙ
[|𝑓(𝐴) − 𝔼[𝑓(𝐴)]| ⩾ 𝛼𝑐√𝑚]

⩽ 2 exp
(
−2𝛼2

)
.

Before proving Lemma 3.3, we prove the following consequence of the McDiarmid inequality.

Lemma 3.5. Let 𝑘,𝓁 ∈ ℕ, 0 < 𝛿′ < 𝛿 < 1 and 1∕𝑛, 1∕𝓁 ≪ 1∕𝑘, 𝛿 − 𝛿′. Let 𝐻 be a 𝑘-uniform 𝑛-
vertex hypergraphwith vertex set𝑉 and suppose that deg(𝑆, 𝑉) ⩾ 𝛿𝑛𝑘−𝑑 for each 𝑆 ∈

(𝑉
𝑑

)
. Let𝐴 ⊆ 𝑉

be a vertex set of size 𝓁 chosen uniformly at random. Then, for every 𝑇 ∈
(𝑉
𝑑

)
, we have

ℙ
[
deg(𝑇, 𝐴) < 𝛿′𝓁𝑘−𝑑

]
⩽ 2 exp

(
−𝓁(𝛿 − 𝛿′)2∕2

)
.

Proof. Let 𝑓 ∶ (𝑉) → ℝ be defined by 𝑓(𝑋) = deg(𝑇, 𝑋) for each 𝑋 ⊆ 𝑉, and set 𝜀 = (𝛿 −

𝛿′)∕(2𝛿) < 1∕2. Observe that |𝑓(𝑈1) − 𝑓(𝑈2)| ⩽ 𝓁𝑘−𝑑−1 for any 𝑈1,𝑈2 ∈ (𝑉) with |𝑈1| =|𝑈2| = 𝓁 and |𝑈1 ∩ 𝑈2| = 𝓁 − 1. Given an edge 𝑒with𝑇 ⊆ 𝑒, the probability that 𝑒 ⧵ 𝑇 is contained

in 𝐴 is at least (
𝑛−𝑘

𝓁−𝑘+𝑑)

(𝑛𝓁)
⩾ (1 − 𝜀)𝓁

𝑘−𝑑

𝑛𝑘−𝑑
, where we used 1∕𝑛, 1∕𝓁 ≪ 1∕𝑘, 𝛿 − 𝛿′. So, by linearity of

expectation we have 𝔼[𝑓(𝐴)] ⩾ 𝛿(1 − 𝜀)𝓁𝑘−𝑑 = 𝛿+𝛿′

2
𝓁𝑘−𝑑. We can then apply Lemma 3.4 with 𝑐 =

𝓁𝑘−𝑑−1,𝑚 = 𝓁 and 𝛼 =
√
𝓁(𝛿 − 𝛿′)∕2, and get thatℙ[𝑓(𝐴) < 𝛿′𝓁𝑘−𝑑] ⩽ 2 exp(−𝓁(𝛿 − 𝛿′)2∕2), as

desired. □

We are now ready to prove Lemma 3.3.

Proof of Lemma 3.3. Pick a partition of [𝑛] into 𝑉1 ∪⋯ ∪ 𝑉𝑡 uniformly at random from all
partitions that satisfy |𝑉𝑖| = 𝑛𝑖 for all 𝑖 ∈ [𝑡]. Then by Lemma 3.5, we have the probability
that there are 𝑖 ∈ [𝑡], 𝑗 ∈ [𝑚] and 𝑆 ∈

([𝑛]
𝑑

)
such that deg𝐻𝑗 (𝑆, 𝑉𝑖) < (𝛿 + 𝛼∕2)𝑛𝑘−𝑑

𝑖
is at most

𝑡 ⋅𝑚 ⋅
(𝑛
𝑑

)
⋅ 2 ⋅ exp(−𝛼2𝛽𝑛∕8) = 𝑜(1), wherewehave used that𝑛𝑖 ⩾ 𝛽𝑛 for each 𝑖 ∈ [𝑡], 1∕𝑛 ≪ 𝛼, 𝛽

and𝑚 ⩽ 𝑛2. Therefore, there exists a partition with the desired properties. □

Finally, we state a lemma from [24], which we are going to use while proving a colour-
absorption type statement.
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A GENERAL APPROACH TO TRANSVERSAL VERSIONS OF DIRAC-TYPE THEOREMS 2827

Lemma 3.6 [24, Lemma 3.3]. Let 𝛼 ∈ (0, 1) and let 𝓁, 𝑚, 𝑛 ⩾ 1 be integers satisfying 𝓁 ⩽ 𝛼7𝑚∕105

and 𝛼2𝑛 ⩾ 8𝑚. Let𝐾 be a bipartite graph on vertex classes𝐴 and 𝐵 such that |𝐴| = 𝑚, |𝐵| = 𝑛 and,
for each 𝑣 ∈ 𝐴, deg𝐾(𝑣) ⩾ 𝛼𝑛.
Then, there are disjoint subsets 𝐵0, 𝐵1 ⊂ 𝐵 with |𝐵0| = 𝑚 − 𝓁 and |𝐵1| ⩾ 𝛼7𝑛∕105, and the fol-

lowing property. Given any set𝑈 ⊂ 𝐵1 of size 𝓁, there is a perfect matching between𝐴 and 𝐵0 ∪ 𝑈 in
𝐾.

3.2 Proof overview

As previously mentioned, the framework of the proof of our main result borrows a lot from the
work of Montgomery, Müyesser and Pehova [24], and we highly recommend the reader to inspect
the proof sketch given there, especially for embedding trees. We will now attempt to give a self-
contained account of the main ideas of our proof strategy. For the purposes of the proof sketch,
it will be conceptually (and notationally) simpler to imagine that we are trying to prove that the
family of (2-uniform)Hamilton cycles is colour-blind. Observe that aHamilton cycle is an-cycle
with being an edge.

Proposition 3.7 [9, Theorem 2]. For any 𝛼 > 0, there exists 𝑛0 ∈ ℕ such that the following holds.
Let 𝐆 be a graph collection on vertex set [𝑛] with |𝐆| = 𝑛 and 𝛿(𝐆) ⩾ (1∕2 + 𝛼)𝑛. Then 𝐆 contains
a transversal copy of a Hamilton cycle.

3.2.1 Colour absorption

The basic premise of our approach, which is shared with [24], is that Proposition 3.7 becomes
significantly easier to prove if we assume that |𝐆| = (1 + 𝑜(1))𝑛, that is, if we have a bit more
colours than we need to find a rainbow Hamilton cycle on 𝑛 vertices†. Thus, the starting goal of
the proof is to somehow simulate having access to more colours than we need, while still starting
with a graph collection of size exactly 𝑛. The way we achieve this is through the following lemma,
which follows in a long tradition of absorption-based ideas.

Lemma 3.8. Let 𝑑, 𝑘, 𝑛 ∈ ℕ, 1∕𝑛 ≪ 𝛾 ≪ 𝛽 ≪ 𝛼 and 𝛿 ⩾ 0. Let  be a 𝑘-uniform hypergraph with
𝑒() = 𝛽𝑛 and suppose that any 𝑛-vertex 𝑘-uniform hypergraph with minimum 𝑑-degree at least
𝛿𝑛𝑘−𝑑 contains a copy of  . Let𝐇 = (𝐻1,… ,𝐻𝑚) be a 𝑘-uniform hypergraph collection on [𝑛] with
𝛿𝑑(𝐇) ⩾ (𝛿 + 𝛼)𝑛

𝑘−𝑑 and |𝐇| = 𝑚 with𝑚 ⩾ 𝛼𝑛.
Then, there is an uncoloured copy  of  in ∪𝑖∈[𝑚]𝐻𝑖 and disjoint sets 𝐴,𝐶 ⊂ [𝑚], with |𝐴| =

𝑒() − 𝛾𝑛 and |𝐶| ⩾ 10𝛽𝑚 such that the following property holds.Givenany subset𝐵 ⊂ 𝐶with |𝐵| =
𝛾𝑛, there is a rainbow colouring of  in𝐇 using colours in 𝐴 ∪ 𝐵.

We remark that Lemma 3.8 is the hypergraph analogue of [24, Lemma 3.4]. For the sake of
completeness, we give its proof below.

Proof of Lemma 3.8. Let be the 𝑘-uniformhypergraphwith vertex set [𝑛], where 𝑒 is an edge of
exactly when 𝑒 ∈ 𝐸(𝐻𝑖) for at least 𝛼𝑚 values of 𝑖 ∈ [𝑚]. Then, by Proposition 3.1, 𝛿𝑑() ⩾ 𝛿𝑛𝑘−𝑑

†More intuition for why surplus colours are helpful is given in the proof sketch from [24].
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2828 GUPTA et al.

and, therefore,  contains a copy of  , which we denote by  . Observe that  is an uncoloured
copy of  in ∪𝑖∈[𝑚]𝐻𝑖 .
Let 𝐾 be the bipartite graph with vertex classes 𝐸() and [𝑚], where 𝑒𝑖 is an edge of 𝐾 exactly

if 𝑒 ∈ 𝐻𝑖 . Note that, as each 𝑒 ∈ 𝐸() is also an edge of , we have that deg𝐾(𝑒) ⩾ 𝛼𝑚. Then, as
𝛾 ≪ 𝛽 ≪ 𝛼, by Lemma 3.6 with 𝓁 = 𝛾𝑛, 𝑚 = 𝛽𝑛, 𝑛 = 𝑚, there are disjoint sets 𝐴,𝐶 ⊂ [𝑚] with
|𝐴| = 𝑒() − 𝛾𝑛 and |𝐶| ⩾ 10𝛽𝑚, such that, for any set 𝐵 ⊂ 𝐶 of size 𝛾𝑛 there is a perfect match-
ing between 𝐸() and 𝐴 ∪ 𝐵. Note that for such a matching𝑀, the function 𝜙 ∶ 𝐸() → 𝐴 ∪ 𝐵,
defined by 𝑒𝜙(𝑒) ∈ 𝑀 for each 𝑒 ∈ 𝐸(), gives a rainbow colouring of  in 𝐇 using colours
in 𝐴 ∪ 𝐵, as required. □

3.2.2 Completing the cycle

Lemma 3.8 provides us with a lot of flexibility, by finding a small subgraph that admits a rain-
bow colouring in many different ways. To prove Proposition 3.7, we will also need the following
proposition.

Proposition 3.9. Let 1∕𝑛 ≪ 𝜁 ≪ 𝜅, 𝛼. Let 𝐆 be a graph collection on [𝑛] with |𝐆| = (1 + 𝜅 − 𝜁)𝑛

and 𝛿(𝐆) ⩾ (1∕2 + 𝛼)𝑛. Let 𝑎, 𝑏 ∈ [𝑛] be distinct vertices. Then, 𝐆 contains a rainbow Hamilton
path with 𝑎 and 𝑏 as its endpoints, using every colour 𝐺𝑖 with 𝑖 ∈ [(1 − 𝜁)𝑛].

Proposition 3.9, in combination with Lemma 3.8, gives a proof of Proposition 3.7.

Sketch of Proposition 3.7. Let  denote the set of the 𝑛 colours. Apply Lemma 3.8 with  being
a path of length 𝛽𝑛 (and some constant 𝛾 ≪ 𝛽 ≪ 𝛼). This gives a path  in 𝐆 and colour sets 𝐴
and 𝐶 (and we can fix 𝐶 to be a subset of the original set of size 𝜌𝑛 with 𝛾 ≪ 𝜌 ≪ 𝛽). Let 𝑎 and
𝑏 be the endpoints of  . Set 𝐆′ to be the graph collection obtained by restricting 𝐆 to the vertex set
([𝑛] ⧵ 𝑉()) ∪ {𝑎, 𝑏} and colour set  ⧵ 𝐴. Apply Proposition 3.9, labelling the colours in 𝐆′ so that
the first (1 − 𝜁)𝑛 colours correspond to those in  ⧵ (𝐴 ∪ 𝐶). This way, we extend  to a Hamilton
cycle . While the edges in  are still uncoloured, those in  ⧵  have been assigned a colour set
using all colours in  ⧵ (𝐴 ∪ 𝐶) and exactly |𝐶| − 𝛾𝑛 colours from 𝐶. Using the absorption property
of  , the path  can be given a colouring using all the colours in 𝐴 and the remainder colours in ,
thereby giving a rainbow colouring, as desired.

Unfortunately, due to the technicalities present in the statement, Proposition 3.9 is far from
trivial to show. Most of the novelty in the proof of our main theorem is the way we approach
Proposition 3.9 for arbitrary -chains satisfying 𝐀𝐛, 𝐂𝐨𝐧 and 𝐅𝐚𝐜. We now proceed to explain
briefly how we achieve this, and how the three properties come in handy.
First, in the setting of Proposition 3.9, it is quite easy to find a few rainbow paths using most of

the colours from the set [(1 − 𝜁)𝑛]. Below is a formal statement of a version of this for arbitrary
-chains, where we remark that ( 𝑒()−𝑒(𝑠)

𝑚−𝓁
)𝑛 is the number of edges of an-cycle on 𝑛 vertices.

Lemma 3.10. Let 1∕𝑛 ≪ 1∕𝑇 ≪ 𝜔, 𝛼, 1∕𝑚. Let be an 𝓁-link of order 𝑚 and uniformity 𝑘, and
𝑑 ∈ [𝑘 − 1]. Let 𝛿 be theminimum𝑑-degree threshold for the containment of aHamilton-cycle. Let
𝐇 be a 𝑘-uniform hypergraph collection on [𝑛] with 𝛿𝑑(𝐇) ⩾ (𝛿 + 𝛼)𝑛𝑘−𝑑, and suppose that |𝐇| ⩾
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A GENERAL APPROACH TO TRANSVERSAL VERSIONS OF DIRAC-TYPE THEOREMS 2829

(
𝑒()−𝑒(𝑠)

𝑚−𝓁
)𝑛. Then 𝐇 contains a rainbow collection of 𝑇-many pairwise vertex-disjoint -chains

covering all but at most 𝜔𝑛 vertices of𝐇.

Proof. Choose𝜔, 𝑇 such that Lemma 3.3 holds with 𝛽 = (1 − 𝜔∕2)∕𝑇, and set 𝑡 = (
𝑒()−𝑒(𝑠)

𝑚−𝓁
). Let

𝐇 be a 𝑘-uniform hypergraph collection on [𝑛] with 𝛿𝑑() ⩾ (𝛿 + 𝛼)𝑛𝑘−𝑑 and |𝐇| ⩾ 𝑡𝑛.
By Lemma 3.3 applied with 𝛽 = (1 − 𝜔∕2)∕𝑇, there exists a partition of [𝑛] into𝑉1,… , 𝑉𝑇, 𝑉𝑇+1

with |𝑉1| = ⋯ = |𝑉𝑇| = (1 − 𝜔∕2)𝑛∕𝑇 and |𝑉𝑇+1| = 𝜔𝑛∕2, such that for any 1 ⩽ 𝑖 ⩽ 𝑇 + 1 and
any hypergraph of the collection𝐇, it holds that 𝛿𝑑([𝑉𝑖]) ⩾ (𝛿 + 𝛼∕2)|𝑉𝑖|𝑘−𝑑. We claim that
we can greedily cover all but at most 𝑚 ⋅ 𝑇 vertices of 𝑉1,… , 𝑉𝑇 with a rainbow collection of 𝑇-
many pairwise vertex-disjoint-chains1, … ,𝑇 , such that𝑖 covers all but at most𝑚 vertices
of the set 𝑉𝑖 for each 𝑖 ∈ [𝑇]. Suppose we were able to do so for the sets 𝑉1,… , 𝑉𝑖 for some 1 ⩽
𝑖 < 𝑇. Then the number of colours used so far is at most 𝑖 ⋅ (𝑡|𝑉1|) and thus there are at least
𝑡𝑛 − (𝑇 − 1)𝑡|𝑉1| = 𝑡𝑛 (𝑇−1)𝜔+2

2𝑇
available colours. Let 𝐶 be the set of such colours. Observe that

a rainbow -chain covering the vertices of 𝑉𝑖+1 uses no more than 𝑡(1 − 𝜔)𝑛∕𝑇 = 𝜂|𝐶| colours,
where 𝜂 = 2−𝜔

(𝑇−1)𝜔+2
⩽

𝛼

4
, wherewe used 1∕𝑇 ≪ 𝜔, 𝛼 for the last inequality. Let be the 𝑘-uniform

hypergraph with vertex set 𝑉𝑖+1, where 𝑒 is an edge of  if 𝑒 ∈ 𝐸(𝐻𝑖) for at least 𝜂|𝐶| colours
𝑖 ∈ 𝐶. Then by Proposition 3.1, we have 𝛿𝑑() ⩾ (𝛿 + 𝛼∕2 − 𝜂)|𝑉𝑖+1|𝑘−𝑑 ⩾ (𝛿 + 𝛼∕4)|𝑉𝑖+1|𝑘−𝑑,
where we used 𝜂 ⩽ 𝛼∕4 for the last inequality. Therefore,  contains a copy of a Hamilton -
cycle, which in turn contains an -chain covering all but 𝑚 vertices of 𝑉𝑖+1. Now we greedily
assign colours from 𝐶 to this-chain in a rainbow fashion.
This shows we can find a rainbow collection of 𝑇-many pairwise vertex-disjoint -chains

covering all but at most𝑚 ⋅ 𝑇 + |𝑉𝑇+1| ⩽ 𝜔𝑛 vertices of𝐇, as wanted. □

Although it is easy to use most of the colours coming from a colour set using the above result,
a challenge in Proposition 3.9 is that we need to use all of the colours coming from the set [(1 −
𝜁)𝑛]. As we are currently concerned with the case when consists of a single edge, this will not
be a major issue. Indeed, using the minimum degree condition on each of the colours, we can
greedily find rainbow matchings using small colour subsets of [(1 − 𝜁)𝑛] (see Observation 2.5).
For arbitrary, we would like to proceed in the same way; however, say when is a triangle, the
situation becomes considerably more complicated. This is why the property Fac is built into the
assumptions of the main theorem.
Our ultimate goal is to build a single-chain connecting specific ends, not just a collection of

-chains. Hence, we rely on the property Con to connect the ends of the paths we obtained via
Lemma 3.10 (as well as the greedy matching we found for the purpose of exhausting a specific
colour set). An issue is that Con is an uncoloured property, whereas we would like to connect
these ends in a rainbowmanner. Here we rely on the trick offered by Proposition 3.1, which states
that in hypergraph collections where each hypergraph has good minimum 𝑑-degree conditions,
we can pass down to an auxiliary hypergraph that also has goodminimum 𝑑-degree conditions.
An edge appears in  if and only if that edge has Ω(𝑛) many colours in the original hypergraph
collection. We can use the property Con on  to connect ends via short uncoloured paths, and
later assign greedily one of the many available colours to the edges on this path.
As is the case with many absorption-based arguments, the short connecting paths we find will

be contained in a pre-selected random set. After all the connections are made, there will remain
many unused vertices inside this random set. To include these vertices inside a path, we use the
property Ab. Similarly to Con, property Ab is an uncoloured property, but we can use again the
trick of passing down to an appropriately chosen auxiliary graph.
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2830 GUPTA et al.

4 PROOF OFMAIN THEOREM

Proof of Theorem 2.6. Let 𝑘,𝓁, 𝑚 ∈ ℕ with 𝓁 ⩽ 𝑚,  be an 𝓁-link of order 𝑚 and uniformity 𝑘,
and 𝑑 ∈ [𝑘 − 1]. Let 𝛿 ∶= 𝛿(, 𝑑) be the minimum 𝑑-degree threshold for the containment of
a Hamilton -cycle, and suppose that  is (𝛿0, 𝑑)-good for some 𝛿0 ⩾ 𝛿. In the following, the
constant implicit in any 𝑂(⋅) only depends on and, therefore, can be bounded in terms of𝑚.
Constants. Let 𝛼 > 0, let 𝑐 be given by 𝐂𝐨𝐧with 𝛼∕10 and let 𝛽0 be given by 𝐅𝐚𝐜 applied with

𝛼∕6. Choose 𝛽 < 𝛽0 such that 0 < 𝛽 ≪ 𝛼, 1∕𝑐, 1∕𝑚. Next choose 𝜌 and 𝛾 such that 0 < 𝛾 ≪ 𝜌 ≪ 𝛽

and the hierarchy in Lemma 3.8 is satisfied with 𝛾, 𝛽, 𝛼. Let 𝜏 and 𝜂 be given by 𝐀𝐛 with 𝛼 = 𝜌,
so that we have 0 < 𝜏, 𝜂 ⩽ 𝜌. Now choose 𝑇 ∈ ℕ and 𝜔, 𝜈 > 0 with 1∕𝑇 ≪ 𝜔 ≪ 𝜈 ≪ 𝜂 so that the
hierarchy in Lemma 3.10 is satisfied with 𝑇, 𝜔, 𝛼. Finally, let 𝑛 ∈ (𝑚 − 𝓁)ℕ be such that 1∕𝑛 ≪
1∕𝑇 and 1∕𝑛 ≪ 1∕𝑛0 for any of the 𝑛0 coming from the applications of 𝐂𝐨𝐧, 𝐅𝐚𝐜 and 𝐀𝐛 above.
Without loss of generality we assume that 𝛽𝑛 is an integer and that there exists an-chain on 𝛽𝑛
edges. We summarise the dependency between the parameters as follows

1∕𝑛 ≪ 1∕𝑇 ≪ 𝜔 ≪ 𝜈 ≪ 𝜂, 𝜏, 𝛾 ≪ 𝜌 ≪ 𝛽 ≪ 𝛼, 1∕𝑐, 1∕𝑚 .

Set-up. Let𝐇 be a 𝑘-uniform hypergraph collection on vertex set [𝑛] with |𝐇| = 𝑒()−𝑒(𝑠)

𝑚−𝓁
𝑛 and

𝛿𝑑(𝐇) ⩾ (𝛿 + 𝛼)𝑛
𝑘−𝑑. Set 𝑡 ∶= 𝑒()−𝑒(𝑠)

𝑚−𝓁
so that 𝑡𝑛 = |𝐇|. We will use [𝑡𝑛] to refer to our set of

colours. Set 𝑉 ∶= 𝑉(𝐇).
For an easier navigation of the proof, the reader can refer to Figure 4.

(1) Setting up the colour absorber. Let be an-chain on 𝛽𝑛 edges (and thus 𝛽𝑛−𝑒(𝑠)

𝑒()−𝑒(𝑠)
(𝑚 −

𝓁) + 𝓁 = 𝛽𝑛∕𝑡 + 𝑂(1) vertices), which exists by our choice of 𝛽. As the minimum degree
threshold for the containment of  is at most 𝛿, the hypotheses of Lemma 3.8 are satisfied
for  with the hypergraph collection 𝐇 (observe also that we may assume without loss of
generality that |𝐇| = 𝑡𝑛 ⩾ 𝛼𝑛). Therefore, there exist disjoint colour sets 𝐴,𝐶 ⊆ [𝑡𝑛] with
|𝐴| = 𝑒() − 𝛾𝑛 = (𝛽 − 𝛾)𝑛 and |𝐶| ⩾ 10𝛽𝑡𝑛, and an uncoloured copy 1 of  in 𝐇 such
that the following holds.

Given any subset 𝐵 ⊆ 𝐶 with |𝐵| = 𝛾𝑛, there is a rainbow colouring of 1 in𝐇 using
colours in 𝐴 ∪ 𝐵. (1)

We denote the start and the end of 1 by 1 and 2, respectively, and define 𝑆′1 ∶= 𝑉(1) ⧵

(𝑉(1) ∪ 𝑉(2)) to be the set of all vertices of 1 except those in its ends. Note that, as 𝜌 ≪ 𝛽,
we have 10𝛽𝑡𝑛 ⩾ 𝜌𝑛 and, without relabelling, we can fix 𝐶 to be a subset of the original set
𝐶 of size exactly 𝜌𝑛. For convenience, we split the set 𝐶 arbitrarily into two subsets 𝐶1 and
𝐶2, with |𝐶1| = 𝛾𝑛∕2 (and |𝐶2| = (𝜌 − 𝛾∕2)𝑛). Our goal in the remainder of the proof, in
correspondence with Proposition 3.9 from the proof overview, is to find a rainbow-chain,
vertex-disjoint with 𝑆′

1
, starting in 2 and ending in 1, using all colours in [𝑡𝑛] ⧵ (𝐶 ∪ 𝐴),

and some colours from 𝐶. Note that, similarly to the setting of Proposition 3.9, we have (𝑡 −
(𝛽 − 𝛾))𝑛 colours available compared to (𝑡 − 𝛽)𝑛 edges that we need to colour.

(2) Setting up the vertex absorber. As |𝑉(1)| = 𝛽𝑛∕𝑡 + 𝑂(1) ⩽ 𝛼𝑛∕1000, wherewe used that
𝛽 ≪ 𝛼 in the last inequality, we have that 𝛿𝑑(𝐇[𝑉 ⧵ 𝑉(1)]) ⩾ (𝛿 + 9𝛼∕10)𝑛𝑘−𝑑 by Observa-
tion 3.2. We define an auxiliary graph 1 to be the 𝑘-uniform graph on vertex set 𝑉1 ∶=
𝑉 ⧵ 𝑉(1), where 𝑒 is an edge of 1 if and only if 𝑒 ∈ 𝐸(𝑖) for at least 𝛼|𝐶1|∕2 = 𝛼𝛾𝑛∕4
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A GENERAL APPROACH TO TRANSVERSAL VERSIONS OF DIRAC-TYPE THEOREMS 2831

F IGURE 4 The picture illustrates the partitions of the vertex set [𝑛] and the colour set [𝑡𝑛] used in the proof
of Theorem 2.6 while building a rainbow Hamilton-cycle. Each triangle stands for a copy of the building block
 and each square of a path stands for a copy of an-chain. The green curved lines denote the connections
between-chains and are-chains, and we remark that their internal vertices all belong to 𝑅1. Additionally, the
colour of an edge refers to the subset of colours from which the colour assigned to the edge is taken; for example,
the blue edges are those which get a colour from the subset 𝐶2. Moreover, we left 1 and 2 uncoloured to stress
that their edge colours are only assigned at the end of the proof. 1 is the colour absorber for the colour sets 𝐴 and
𝐶 = 𝐶1 ∪ 𝐶2 (Step 1, see (1)); 2 is the vertex absorber with colours in 𝐶1 (Step 2, see (2)); 𝑅1 is the reservoir
connector via colours in 𝐶1 (Step 3, see (3)); 𝑅2 is a vertex set taken to balance colours (Step 4). The family
{𝑖 ∶ 𝑖 ∈ [𝑇]} of rainbow-chains almost covers vertices in 𝑉′ and colours in [𝑡𝑛] ⧵ (𝐴 ∪ 𝐶), with 𝑉0 being the
set of unused vertices and 𝐶0 being the set of unused colours (Step 5). The set 𝐶′ ⊆ 𝐶1 is a minimal size subset of
𝐶1 to make |𝐶′ ∪ 𝐶0| divisible by 𝑒() and the rainbow collection {𝑖 ∶ 𝑖 ∈ [𝓁]} of copies of exhausts 𝐶′ ∪ 𝐶0
inside 𝑅2 (Step 6). Moreover the family { ′

𝑖
∶ 𝑖 ∈ [𝑇]} of rainbow-chains almost covers the leftover vertices in

𝑅2 using colours in 𝐶2, with 𝑉′
0
being the set of unused vertices (Step 7). We connect into an almost spanning

-cycle all the-chains and copies of built so far, using vertices in 𝑅1 and colours in 𝐶1 (Step 8). We then
absorb the leftover vertices via 2 into a longer-chain (with the same ends) and assign to its edges colours from
𝐶1 (Step 9). Finally we assign the colours of 𝐴 and the leftover colours of 𝐶 to 1 (Step 10). This gives a rainbow
Hamilton-cycle.

values of 𝑖 ∈ 𝐶1. Then, using Proposition 3.1 on 1, we get that 𝛿𝑑(1) ⩾ (𝛿 + 𝛼∕2)𝑛
𝑘−𝑑 ⩾

(𝛿 + 𝜌)𝑛𝑘−𝑑. By the choice of the constants 𝜂 and 𝜏 for Ab, we have that there exists a set
𝑆2 ⊆ 𝑉1 of size at most 𝜏𝑛 such that the following property holds.

For any set 𝐿 ⊆ 𝑉1 ⧵ 𝑆2 of size at most 𝜂𝑛 with |𝐿| ∈ (𝑚 − 𝓁)ℕ, there exists an embedding
of an-chain in1 with vertex set 𝑆2 ∪ 𝐿. Furthermore, the embedding of the start
and the end of this-chain does not depend on the subset 𝐿. (2)

In particular, by taking 𝐿 = ∅ in (2), there is a copy 2 of an -chain in 1 with vertex set
𝑆2. We denote its ends by 1 and 2, and define 𝑆′2 ∶= 𝑉(2) ⧵ (𝑉(1) ∪ 𝑉(2)).
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2832 GUPTA et al.

(3) Setting up the reservoir connector. By Observation 3.2, we have that 𝛿𝑑(𝐇[𝑉 ⧵ (𝑆′1 ∪
𝑆′
2
)]) ⩾ (𝛿 + 𝛼∕2)𝑛𝑘−𝑑, where we used that 𝜏, 𝛽 ≪ 𝛼. We define another auxiliary graph 2

as the 𝑘-uniform graph on vertex set 𝑉2 ∶= 𝑉 ⧵ (𝑆′
1
∪ 𝑆′

2
), where 𝑒 is an edge of2 if an only

if 𝑒 ∈ 𝐸(𝑖) for at least 𝛼|𝐶1|∕2 = 𝛼𝛾𝑛∕4 values of 𝑖 ∈ 𝐶1. By Proposition 3.1, we know that
𝛿𝑑(2) ⩾ (𝛿 + 𝛼∕3)𝑛

𝑘−𝑑. Using Lemma 3.3 on 2 with 𝑡 = 2, 𝑛1 = 𝜈𝑛 and 𝑛2 = |𝑉2| − 𝑛1,
we get a set 𝑅1 of size 𝜈𝑛, such that every subset of 𝑑 vertices of 𝑉2 have 𝑑-degree at least
(𝛿 + 𝛼∕6)𝑛𝑘−𝑑

1
into 𝑅1 in the graph 2. Moreover, we can assume that 𝑅1 does not contain

any of the vertices in𝑉(1) ∪ 𝑉(2) ∪ 𝑉(1) ∪ 𝑉(2). FromObservation 3.2, we have that for
any two vertex-disjoint copies  and  of𝑠 in𝑉2 and any 𝑅′ ⊆ 𝑅1 of size |𝑅′| ⩽ 𝛼𝑛1∕50, we
have that theminimum𝑑-degree in (𝑅1 ⧵ 𝑅′) ∪ 𝑉() ∪ 𝑉( ) in2 is at least (𝛿 + 𝛼∕10)𝑛𝑘−𝑑1

.
Then, property Con applied to the hypergraph 2[(𝑅1 ⧵ 𝑅

′) ∪ 𝑉() ∪ 𝑉( )] implies the
following.

For any 𝑅′ ⊆ 𝑅1 of size |𝑅′| ⩽ 𝛼𝑛1∕50 and any two vertex-disjoint copies  and  of𝑠 in
2[𝑉2 ⧵ 𝑅

′], there is an-chain of length at most 𝑐 in (𝑅1 ⧵ 𝑅′) ∪ 𝑉() ∪ 𝑉( ) in2

with start  and end  . (3)

(4) Setting aside a random set to balance vertices and colours. Define 𝑛0 ∶= 𝑛 − |𝐴|+|𝐶|
𝑡

and 𝑟2 so that the equality below holds†

𝑛 − |𝑉(1)| − |𝑆2| − |𝑅1| − 𝑟2 = 𝑛0 .

In particular, we have that

𝑟2 =
|𝐴| + |𝐶|

𝑡
−
𝛽𝑛

𝑡
− |𝑆2| − 𝜈𝑛 + 𝑂(1) = 𝜌 − 𝛾

𝑡
𝑛 − |𝑆2| − 𝜈𝑛 + 𝑂(1).

As 0 ⩽ |𝑆2| ⩽ 𝜏𝑛, 𝜏, 𝜈 ≪ 𝜌 and 𝛾 ≪ 𝜌, we have that

𝜌

2𝑡
𝑛 ⩽ 𝑟2 ⩽

𝜌 − 𝛾

𝑡
𝑛 + 𝑂(1). (4)

As 𝜈, 𝜏, 𝛽 ≪ 𝛼, by Observation 3.2, we have that 𝛿(𝐇[𝑉 ⧵ (𝑉(1) ∪ 𝑉(2) ∪ 𝑅1)]) ⩾ (𝛿 +
𝛼∕3)𝑛𝑘−𝑑. Using Lemma 3.3 on 𝐇[𝑉 ⧵ (𝑉(1) ∪ 𝑉(2) ∪ 𝑅1)] with 𝑡 = 2, we find a subset
𝑅2 of 𝑉 ⧵ (𝑉(1) ∪ 𝑉(2) ∪ 𝑅1) of size 𝑟2, so that every subset of 𝑑 vertices of 𝑉 ⧵ (𝑉(1) ∪
𝑉(2) ∪ 𝑅1) have 𝑑-degree (𝛿 + 𝛼∕6)𝑟𝑘−𝑑2

into 𝑅2 with respect to each of the hypergraphs in
the collection.

(5) Covering most of the leftover vertices via -chains using almost all the colours in
[𝑡𝑛] ⧵ (𝐴 ∪ 𝐶). Set 𝑉′ ∶= 𝑉 ⧵ (𝑉(1) ∪ 𝑉(2) ∪ 𝑅1 ∪ 𝑅2) and note |𝑉′| = 𝑛0. Let 𝐇′ be the
hypergraph collection obtained by restricting𝐇 to the vertex set𝑉′ and colour set [𝑡𝑛] ⧵ (𝐴 ∪
𝐶). Using the upper bound from (4) and that 𝜈, 𝜏, 𝜌, 𝛽 ≪ 𝛼, we have through Observation 3.2
that 𝛿(𝐇′) ⩾ (𝛿 + 𝛼∕8)𝑛𝑘−𝑑

0
. Moreover, by our definition of 𝑛0, we have |𝐇′| = 𝑡𝑛 − |𝐴| −

|𝐶| = 𝑡𝑛0 = (
𝑒()−𝑒(𝑠)

𝑚−𝓁
)𝑛0. Therefore,𝐇′ satisfies the hypotheses of Lemma 3.10 andwe find

a rainbow collection {𝑖 ∶ 𝑖 ∈ [𝑇]} of 𝑇-many vertex-disjoint-chains in𝐇′, covering all but

† Ignoring divisibility issues, 𝑛0 represents the number of vertices an-cycle on 𝑡𝑛 − |𝐴| − |𝐶| edges would have.
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A GENERAL APPROACH TO TRANSVERSAL VERSIONS OF DIRAC-TYPE THEOREMS 2833

a vertex subset𝑉0 of size at most 𝜔𝑛0, and using only colours from [𝑡𝑛] ⧵ (𝐴 ∪ 𝐶). Moreover,
observe that the set of colours from [𝑡𝑛] ⧵ (𝐴 ∪ 𝐶) unused by

⋃
𝑖∈[𝑇] 𝑖 , which we denote by

𝐶0, has size at most 𝑡𝜔𝑛0 + 𝑂(𝑇) ⩽ 2𝑡𝜔𝑛0.
(6) Exhaust 𝐶0 inside 𝑅2. Let 𝐶′ ⊆ 𝐶1 be a minimal size subset of 𝐶1 such that |𝐶′ ∪ 𝐶0| is

divisible by 𝑒(). Note this can be accomplished with a subset 𝐶′ satisfying |𝐶′| = 𝑂(1) and,
as |𝐶0| ⩽ 2𝑡𝜔𝑛0, we have that |𝐶0 ∪ 𝐶′| ⩽ 2𝑡𝜔𝑛0 + 𝑂(1). Let𝐇′′ be the hypergraph collection
obtained by restricting𝐇 to the vertex set 𝑅2 and colour set 𝐶0 ∪ 𝐶′. Recall that, by property
of the set 𝑅2, we have that 𝛿(𝐇′′) ⩾ (𝛿 + 𝛼∕6)𝑟2

𝑘−𝑑. As 1∕𝑛 ≪ 𝜌 and 𝑛 ≫ 𝑛0, we have that 𝑟2
is sufficiently large to apply Fac and deduce that𝐇′′ contains a rainbow collection {𝑖 ∶ 𝑖 ∈

[𝓁]} of 𝓁 = |𝐶0 ∪ 𝐶′|∕𝑒() vertex-disjoint copies of, using all of the colours in 𝐶0 ∪ 𝐶′ and|𝐶0 ∪ 𝐶′| ⩽ 3𝑡𝜔𝑛 ⩽ (6𝑡2𝜔∕𝜌)𝑟2 ⩽ (𝛼∕1000)𝑟2 vertices of 𝑅2, where we used the lower bound
on 𝑟2 in (4) and 𝜔 ≪ 𝜌.

(7) Shrink leftover vertices in 𝑅2 via 𝐶2. Let 𝑅′2 be the subset of 𝑅2 consisting of those vertices
unused in the previous step and set 𝑟′

2
∶= |𝑅′

2
|. As 𝑟2 − 𝑟′2 ⩽ (𝛼∕1000)𝑟2 and using Observa-

tion 3.2, we have that 𝛿(𝐇′′[𝑅′
2
]) ⩾ (𝛿 + 𝛼∕30)𝑟′

2
𝑘−𝑑. Note that by the upper bound in (4) we

have that

𝑡𝑟′2 ⩽ 𝑡𝑟2 ⩽ (𝜌 − 𝛾)𝑛 + 𝑂(1) ⩽ (𝜌 − 𝛾∕2)𝑛 = |𝐶2|.
Let 𝐇′′′ be the hypergraph collection obtained by restricting 𝐇 to the vertex set 𝑅′

2
and

colour set 𝐶2. Then |𝐇′′′| = |𝐶2| ⩾ (𝑒()−𝑒(𝑠)

𝑚−𝓁
)𝑟′
2
. Hence, similarly to Step 5, we can apply

Lemma 3.10 to 𝐇′′′ in order to find a rainbow collection { ′
𝑖
∶ 𝑖 ∈ [𝑇]} of 𝑇-many vertex-

disjoint -chains (with colours coming from 𝐶2) in 𝐇′′′, covering all but a vertex subset
𝑉′
0
⊆ 𝑅′

2
of size at most 𝜔𝑟′

2
.

(8) Connect everything via 𝐶1 and 𝑅1 to build an almost spanning-cycle. We recall that
we built one uncoloured-chain in each of Step 1 and 2, |𝐶0 ∪ 𝐶′|∕𝑒() rainbow-chains in
Step 6 (indeed a copy of is trivially a rainbow-chain of length 1), and𝑇 rainbow-chains
in each of Step 5 and 7. Therefore, at this point there are 2 + 2𝑇 + |𝐶0 ∪ 𝐶′|∕𝑒() ⩽ 3𝑡𝜔𝑛
vertex-disjoint -chains, which we will now connect to build an -cycle, using additional
vertices in𝑅1 and colours in𝐶1. This can be done by repeatedly invoking property (3). Indeed,
suppose that the chains are labelled 1, … ,𝑧 where 𝑧 ⩽ 3𝑡𝜔𝑛. Suppose that for some 1 ⩽
𝑧′ ⩽ 𝑧, we found an-chain in2 such that the following properties all hold.
∙ 𝑉() ⊇

⋃
𝑖∈[𝑧′] 𝑉(𝑖).

∙ With 𝑅′ ∶= 𝑉() ⧵
⋃
𝑖∈[𝑧′] 𝑉(𝑖), we have 𝑅′ ⊆ 𝑅1 and |𝑅′| ⩽ ((𝑚 − 𝓁)𝑐 + 𝓁)𝑧′.

∙ The start of is the start of 1, and its end is the end of 𝑧′ .
We remark that for 𝑧′ = 1, the -chain  = 1 has the above properties. As |𝑅′| ⩽

𝛼𝑛1∕50 = 𝛼𝜈𝑛∕50 (using that 𝜔 ≪ 𝛼, 1∕𝑐, 1∕𝑚), property (3) applies to show that there is an
-chain in 2 of length at most 𝑐 starting in the end of 𝑧′ and ending in the start of 𝑧′+1
(where 𝑧′ + 1 = 1 if 𝑧′ = 𝑧), which uses vertices of 𝑅1 ⧵ 𝑅′ and these shared ends. Observe
that these chain uses fewer than (𝑚 − 𝓁)𝑐 + 𝓁 vertices of 𝑅1 ⧵ 𝑅′. This shows that  can
be extended to satisfy the above properties with respect to 𝑧′ + 1. Inductively, we obtain an
-cycle 0 in2 covering

⋃
𝑖∈[𝑧] 𝑖 , and we denote by 𝑅′1 the vertices from 𝑅1 unused by 0.

Consider the set of edges of 0 not contained in some𝑖 , that is, the edgeswe have found in
the previous steps to connect the various 𝑖 ’s. Note that there are at most ((𝑚 − 𝓁)𝑐 + 𝓁)𝑧𝑡 ⩽
𝛼𝛾𝑛∕1000 such edges, where we used𝜔 ≪ 𝛾, 𝛼, 1∕𝑐, 1∕𝑚. Moreover, each such edge belongs
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2834 GUPTA et al.

to 2 and thus has at least 𝛼|𝐶1|∕2 = 𝛼𝛾𝑛∕4 colours coming from 𝐶1. Therefore, we can
greedily assign a distinct colour of 𝐶1 to each such edge.

(9) Absorb the leftover vertices. Note that0 covers everything in𝑉, except the sets𝑉0,𝑉′0 and
𝑅′
1
that are leftover from Steps 5, 7 and 8, respectively. Note that |𝑅′

1
| + |𝑉0| + |𝑉′

0
| ⩽ 𝜈𝑛 +

𝜔𝑛0 + 𝜔𝑟
′
2
⩽ (𝜈 + 2𝜔)𝑛 ⩽ 𝜂𝑛, where we used that 𝜔, 𝜈 ≪ 𝜂. Therefore, by (2), there exists an

embedding of an-chain ′
2
in1 with vertex set 𝑆2 ∪ 𝑅′1 ∪ 𝑉0 ∪ 𝑉

′
0
, andwith the same ends

as the-chain 2. As in the previous step, we can then colour the edges of  ′2 in a rainbow
fashion, by assigning colours still available in 𝐶1. This is possible as |𝑉(2)| ⩽ (𝜏 + 𝜂)𝑛 and
thus there are at most 𝑡(𝜏 + 𝜂)𝑛 ⩽ 𝛼𝛾𝑛∕10 new edges, where we used 𝜏, 𝜂 ≪ 𝛾, 𝛼. Moreover
these edges belong to the hypergraph 1 and appear in at least 𝛼𝛾𝑛∕4 colours in 𝐶1, while
we only used at most 𝛼𝛾𝑛∕1000 colours from 𝐶1 in the previous step. Therefore, there are at
least 𝛼𝛾𝑛∕8 available colours for each edge, and we can greedily assign distinct colours.

(10) Assign a colouring to 1. Observe that we now have a Hamilton -cycle that is rainbow
except for 1, which is still uncoloured. Moreover, we have used all colours outside 𝐴 ∪ 𝐶
and some colours in 𝐶, and we have not used any of the colours in 𝐴. Therefore, the unused
colours must be those in 𝐴 together with a subset 𝐵 ⊆ 𝐶 of size 𝛾𝑛. We can then assign
colours to 1 in a rainbow fashion by property (1). This completes the rainbow embedding
and finishes the proof. □

5 APPLICATIONS OF THEMAIN THEOREMAND PROOF OF
THEOREM 1.3

In this section, we discuss some applications of our main theorem and, in particular, we prove
Theorem 1.3. The proofs of the statements of Theorem 1.3 all follow the same strategy. Suppose we
want to prove 𝑑-colour-blindness of a family  . We first identify a link such that each member
of  is an -cycle. Then we show that  is (𝛿, 𝑑)-good, with 𝛿 being the uncoloured minimum
degree threshold for the family  . Once this is done, the 𝑑-colour-blindness of  is a consequence
of Theorem 2.6. We will give a full proof of the statement (A) of Theorem 1.3 with 𝑟 = 2, while we
will only sketch how to prove properties 𝐀𝐛, 𝐂𝐨𝐧 and 𝐅𝐚𝐜 for the statement (A) with 𝑟 > 2 and
the statement (B). The reader can then easily complete a full proof, by mimicking the one given
for the square of Hamilton cycles.

5.1 Powers of Hamilton cycles

The (uncoloured) minimum degree threshold for the containment of the 𝑟th power of a Hamil-
ton cycle in a 2-uniform graph was conjectured to be 𝑟

𝑟+1
𝑛 by Pósa (for 𝑟 = 2) and Seymour (for

larger 𝑟). This was proved by Komlós, Sárkozy and Szemerédi [15, 16], using the regularity method
and the Blow-Up Lemma. Later, Levitt, Sárkozy and Szemerédi [18] obtained a proof for the case
𝑟 = 2 that avoids the regularity lemma and is instead based on the absorption method. More
recently, Pavez-Signé, Sanhueza-Matamala and Stein [25] generalised this to 𝑟 ⩾ 2, while study-
ing the hypergraph version of the problem. Both of these fit our framework and allow us to obtain
part (A) of Theorem 1.3. We will first focus on the case 𝑟 = 2, which we will use as a more detailed
example and can be reformulated as follows.
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A GENERAL APPROACH TO TRANSVERSAL VERSIONS OF DIRAC-TYPE THEOREMS 2835

Theorem 5.1 (Rainbow version of Pósa’s conjecture). For any 𝛼 > 0, there exists 𝑛0 such that for
𝑛 ⩾ 𝑛0 the following holds. Any graph collection𝐆 on vertex set [𝑛]with 𝛿(𝐆) ⩾ (2∕3 + 𝛼)𝑛 contains
a transversal copy of the square of a Hamilton cycle.

As mentioned above, in order to prove Theorem 5.1, it is enough to show that the square of a
cycle is an-cycle for a suitable choice of a (2∕3, 1)-good link. Towards that goal, we let be the
2-link coming from an arbitrary ordering of 𝐾3 (see Figure 2) and we prove that such is indeed
(2∕3, 1)-good. The properties Ab and Con for  follow from the proof of the (uncoloured) Pósa
conjecture in [18]. In that proof, the authors give an exact version of the uncoloured threshold,
by distinguishing an extremal and a non-extremal case. They say that a graph is extremal if it has
two (not necessarily disjoint) sets each of size roughly 𝑛∕3 with few edges in between. However,
for any 𝛼 > 0, a graph 𝐺 with 𝛿(𝐺) ⩾ (2∕3 + 𝛼)𝑛 cannot be extremal, thus we can use all lemmas
from [18] dealing with the non-extremal case. We summarise the statements we use from [18] as
follows.

Theorem 5.2. [18, Lemma 3, Lemma 5, and Theorem 1] For any 𝛼 > 0, there exists 𝑛0 such that for
𝑛 ⩾ 𝑛0 the following holds for any 𝑛-vertex graph with minimum degree 𝛿(𝐺) ⩾ (2∕3 + 𝛼)𝑛.

(P1) For any two disjoint ordered edges (𝑎, 𝑏) and (𝑐, 𝑑), there is a square of a path of length at most
10𝛼−4, with end-tuples (𝑎, 𝑏) and (𝑐, 𝑑).

(P2) There exists the square of a path 𝑃 of length at most 𝛼9𝑛 such that for every subset 𝐿 ⊆ 𝑉(𝐺) ⧵

𝑉(𝑃) there exists a square of a path 𝑃𝐿 with𝑉(𝑃𝐿) = 𝑉(𝑃) ∪ 𝐿 that has the same end-tuples as
𝑃.

(P3) There exists the square of a Hamilton cycle in 𝐺.

Finally, the property 𝐅𝐚𝐜 for follows as a special case of a theorem in [24].

Theorem 5.3 [24, Theorem 1.3]. For any integer 𝑟 ⩾ 1 and any 𝛼 > 0, there exists 𝑛0 ∈ ℕ such that
for 𝑛 ⩾ 𝑛0 the following holds. Any graph collection 𝐆 on [𝑛] with 𝛿(𝐆) ⩾ ( 𝑟

𝑟+1
+ 𝛼)𝑛 contains a

transversal copy of a 𝐾𝑟+1-factor.

We are now ready to give a full proof of Theorem 5.1.

Proof of Theorem 5.1. Let 𝛼 > 0 and  be the 2-link of order 3 and uniformity 2 coming from an
arbitrary ordering of𝐾3. Note that an-chain is the square of a path (see Figure 2) and an-cycle
is the square of a cycle.
The minimum degree threshold for a Hamilton -cycle is 𝛿 = 𝛿(, 1) = 2∕3 by (P3) of Theo-

rem 5.2. Let 𝑛0 be large enough for Theorems 5.2 and 5.3 to hold. Then  has property Ab with
𝜏 = 𝛼9 and 𝜂 = 𝛼20 by (P2) of Theorem 5.2, and it has property Con with 𝐶 = 10𝛼−4 by (P1) of
Theorem 5.2. Moreover, has property Fac with 𝛽0 = 1 by Theorem 5.3 (with 𝑟 = 2). Therefore,
 is (𝛿, 1)-good.
Now let 𝐆 be a graph collection on [𝑛] with 𝛿(𝐆) ⩾ (2∕3 + 𝛼)𝑛 with 𝑛 ⩾ 𝑛0 . Then, by Theo-

rem 2.6, there exists a rainbow Hamilton-cycle in 𝐆, that is, a transversal copy of the square of
a Hamilton cycle, as desired. □

To obtain part (A) of Theorem 1.3 for 𝑟 > 2 we can proceed exactly as for 𝑟 = 2. However, the
statements in [25] do not readily match our setup as those given in Theorem 5.2. Nevertheless,
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2836 GUPTA et al.

[25, Lemma 4.3] implies property Con and it is straightforward to check that together with [25,
Lemma 7.2] this also gives property Ab. Indeed, [25, Lemma 7.2] states that if 𝐺 is a graph with
𝛿(𝐺) ⩾ (𝑟∕(𝑟 + 1) + 𝛼)𝑛 and 𝑛 is large enough, then there is a small set of pairwise vertex-disjoint
𝑟th powers of short paths, such that every vertex of 𝐺 can be absorbed into many of them (into
the 𝑟th power of a path). These paths can then be connected into the 𝑟th power of a single path
to fulfil propertyAb (cf. Step 1 of the proof of [25, Theorem 1.1] for more details). As property Fac
still holds by Theorem 5.3, we have that  is (𝛿, 1)-good, for  being the (𝑟 − 1)-link of order 𝑟
and uniformity 2 coming from an arbitrary ordering of𝐾𝑟 and 𝛿 = 𝛿(, 1) = 𝑟∕(𝑟 + 1). The result
follows by Theorem 2.6.

5.2 Hamilton 𝓵-cycles in 𝒌-uniform hypergraphs

The statements in (B) of Theorem 1.3 state 𝑑-colour-blindness of the family of 𝑘-uniformHamil-
ton 𝓁-cycles, for various ranges of 𝑑, 𝑘 and 𝓁. Note that an 𝓁-cycle in a 𝑘-uniform hypergraph is
an -cycle, with  being the 𝓁-link of order 𝑘 and uniformity 𝑘 consisting of a single edge (see
Figure 1). The result will follow from our main theorem, once we will have shown that such is
(𝛿, 𝑑)-good, with 𝛿 being the uncoloured minimum degree threshold of the considered family  .
We start by observing that, as consists of a single edge, Observation 2.5 guarantees that sat-

isfies property𝐅𝐚𝐜 for any 𝑘 ⩾ 3, and 1 ⩽ 𝓁, 𝑑 ⩽ 𝑘. The properties𝐀𝐛 and𝐂𝐨𝐧 can be derived from
the absorption-style proof of the uncoloured minimum degree threshold for  . We summarise
the precise reference for each property and each case of the statements in (B) of Theorem 1.3 in
Table 1. Although some of these lemmas are not stated in the same exact formof the corresponding
property, it is always straightforward to derive the properties from the lemmas.
Nevertheless, we clarify a few points. First, we consider the second row of Table 1, where 1 ⩽

𝓁 < 𝑘∕2 and 𝑑 = 𝑘 − 1. Note that [11, Lemma 6] states that for every integer 𝑘 ⩾ 2 and every pair of
real numbers 𝑑, 𝜀 > 0, there exists an 𝑛0 such that for every 𝑘-uniform hypergraph on 𝑛 vertices
with 𝛿() ⩾ 𝑑𝑛 the following holds. There is a set 𝑅 of size at most 𝜀𝑛 such that each set of 𝑘 − 1
vertices has degree at least 𝑑𝜀𝑛∕2 into 𝑅. This implies property 𝐂𝐨𝐧with 𝑐 = 3. Indeed, given two
edges  and  in , as 2𝓁 ⩽ 𝑑 and using the property of 𝑅, we can find an additional edge of
 and connect  and  into an 𝓁-path of length 3. Second, we consider the last row of Table 1,
where 𝓁 = 𝑘∕2 and 𝑘∕2 < 𝑑 ⩽ 𝑘 − 1 with 𝑘 even. The authors of [10] prove an exact uncoloured
minimum degree threshold, by distinguishing between an extremal and a non-extremal case. It
is easy to see that any hypergraph  with 𝛿𝑑() ⩾ (𝛿 ,𝑑 + 𝛼)𝑛𝑘−𝑑 is non-extremal, and thus we
can use all lemmas from [10] dealing with the non-extremal case.
Statements in (B) of Theorem 1.3 can now be proved using the same arguments as in the proof

of Theorem 5.1.
Of course, Table 1 is not an exhaustive list of all Dirac-type results proven via the absorption

method, rather it is only a small sample.

6 CONCLUDING REMARKS

We remark that any transversal embedding problem for an𝑛-vertex𝑚-edge 𝑘-uniformhypergraph
is equivalent to a non-rainbowembedding problem in a (𝑘 + 1)-uniform2-partite hypergraphwith
parts of size𝑚 and 𝑛. Indeed, each vertex in the class of size𝑚 represents one of the colours and
forms a (𝑘 + 1)-edge together with each edge of this colour. This setup is somewhat unnatural
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A GENERAL APPROACH TO TRANSVERSAL VERSIONS OF DIRAC-TYPE THEOREMS 2837

and has not been studied explicitly, but this perspective was very helpful in many of the results
for rainbow structures [8, 20–22].
We now highlight further directions of research that we find to be of most interest.

6.1 Vertex degree for tight Hamilton cycles

Theorem 1.3(B) proves 𝑑-colour-blindness of the family of 𝑘-uniform Hamilton 𝓁-cycles, for
various ranges of 𝑑, 𝑘 and 𝓁. However, there is a well-known (uncoloured) Dirac-type result
whose rainbow version is missing there: the vertex minimum degree for tight Hamilton cycles
in 3-uniform hypergraphs, corresponding to 𝑑 = 1, 𝑘 = 3 and 𝓁 = 𝑘 − 1.
The proof of the minimum vertex degree threshold for this family is due to Reiher, Rödl,

Ruciński, Schacht and Szemerédi [26], and it uses the absorption method, making this family an
ideal candidate for our main theorem. However, it turns out that we cannot hope for the property
Con to hold in this range of the parameters (see [26, section 2.1] for a discussion). Due to this addi-
tional complication, it would be an interesting challenge to obtain a transversal generalisation of
the result in [26].

6.2 Exact results and stability

For Hamilton cycles in graphs, the exact rainbow minimum degree threshold is known [14], and
the family of Hamilton cycles is exactly colour-blind, meaning that an error-term as in Defini-
tion 1.2 is not required. It is natural to ask whether exact results also hold for other structures
in the rainbow setup and if a general statement similar to our Theorem 2.6 can be proved. For
example, improving on the statement (A) of Theorem 1.3, it would be very interesting to show if
𝛿(𝐆) ⩾ 𝑟𝑛∕(𝑟 + 1) is already sufficient for a transversal copy of the 𝑟th power of a Hamilton cycle
in graphs. Note that already for a rainbow 𝐾𝑟-factor it is not known whether 𝛿(𝐆) ⩾ 𝑟𝑛∕(𝑟 + 1)
suffices. Moreover, resolving this for the 𝑟th power of a Hamilton cycles does not immediately
imply the analogous result for a𝐾𝑟-factors, even though the former contains the latter, because of
the different number of colours needed for a rainbow embedding. A similar observation is true for
tight Hamilton cycles and perfect matchings in hypergraphs. We remark that Lu, Wang and Yu
[20] showed that the family of 𝑘-uniform perfect matchings is exactly (𝑘 − 1)-colour blind, prov-
ing that the rainbow minimum co-degree threshold essentially is 𝑛∕2. Improving on one of the
statements in (B) of Theorem 1.3, we can ask if the same condition 𝛿𝑘−1(𝐇) ⩾ 𝑛∕2 is sufficient for
a transversal copy of a tight Hamilton cycle.
In the non-rainbow setup, exact results can typically be obtained by considering an extremal

and non-extremal case separately, where the latter often gives stability, that is, even a smallermin-
imum degree condition is sufficient if the graph is far from any extremal construction. For graphs
there are also more ad hoc arguments that also work in the rainbow setup, for example, [14]. For
perfect matchings in collections of 𝑘-uniform hypergraphs, Lu, Wang and Yu [20] transform the
problem into a matching problem in a (𝑘 + 1)-uniform 2-partite hypergraph as explained above.
Their arguments uses absorbers and distinguishes between an extremal and non-extremal case.
Roughly speaking, they say that a hypergraph collection is extremal if essentially all of them are
close to one of the extremal graphs for the uncoloured problem. Working with a similar notion
for an extremal collection, it would be interesting to prove an exact version for any of our results,
as many of them hold in the uncoloured setup, for example, [3, 10, 12, 13, 15, 28].
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2838 GUPTA et al.

It seems to be too much to hope for a general theorem that covers all of these applications,
because of the different extremal constructions in each case. But we remark that, besides the
properties Ab, Con and Fac, the additional (𝛼𝑛𝑘−𝑑)-term for the minimum 𝑑-degree in our the-
orem is only necessary for the two applications of Lemma 3.10. Therefore, a major step would be
a variant of this theorem (for specific ) which is applicable with a lower minimum 𝑑-degree,
under the assumption that the hypergraph collection is not extremal. However, Hamilton cycles
give new complications and in this setup it is harder to make a direct use of the results from the
non-rainbow case, which was the main scope of this paper.

6.3 Other potential applications

There are many more structures that can be represented as -cycles, for example, copies of 𝐶4
glued as depicted in Figure 3. In the case of graphs, any -link forms an -cycle with bounded
maximum degree and bounded bandwidth. Thus, the bandwidth theorem by Böttcher, Schacht
and Taraz [4] immediately gives minimum degree thresholds for the existence of a Hamilton
-cycle, but their proof relies on different techniques than we require for the application of The-
orem 2.6. Hence, one would need to prove properties Ab, Con and Fac for such structures in
order to obtain the corresponding rainbow result using our method. More generally, a rainbow
version of the bandwidth theorem would be very interesting. Note that the bandwidth theorem is
not optimal formany graphs, so theminimumdegree conditions for the containment of Hamilton
-cycles is an interesting problem even in the non-rainbow setup, and is related to embedding
factors and the critical chromatic number [17].

Remark 3. After themanuscript became available online, the problem in Subsection 6.1 was solved
by Tang, Wang, Wang and Yan [29], and a rainbow bandwidth theorem for graph transversal was
proved by Chakraborti, Im, Kim and Liu [6].
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