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Abstract

Parkinson’s disease (PD) is a  frequent  neurodegenerative disorder.  It  mainly affects

motor  functions and it  has a long preclinical  phase.  Dopaminergic medication is an

effective treatment but also comes with adverse effects. Therefore, investigating early

biomarkers of PD and effects of dopaminergic medication is crucial for advancing the

understanding  and  treatment  of  this  disease.  In  my  dissertation,  two  studies  are

presented that contribute to this field. 

In the first study, we studied PD-related neuronal biomarkers, including excessive PAC

(phase-amplitude coupling)  between the  beta  phase and amplitude from broadband

gamma and abnormal  beta burst  dynamics in  a  group of  young (N=71,  age 20–35

years)  and  apparently  healthy  elderly  (N=66,  age  59–77  years)  subjects  with

electroencephalography (EEG) recordings. In the second study, based on a group of

patients with PD (N=15),  we investigated the effects of  dopaminergic medication on

non-oscillatory component of the neural activity (estimated by the spectral slope), the

inter-areal functional connectivity and functional network’s configuration properties. 

The results from the first study confirmed that the elderly subjects show elevated PAC

compared to the younger ones; and this effect is most pronounced in motor-related

areas. In addition, the elderly are characterized by prolonged and more often bursting

beta activity compared to the young subjects. In the second study, we observed that the

spectral  slope  is  steeper  after  dopaminergic  medication  intake.  Moreover,  the

medication administration induces an up-regulation of the inter-regional connectivity in

the beta band, mainly in fronto-centro-parietal regions. However, there is no evidence

showing  a  significant  alteration  in  the  global  properties  of  the  functional  network.

Interestingly, we found that only in the Off medication state there is a close association

between the spectral slope and the integrative ability of the brain network. These effects

are consistently present in the centro-parietal region. 

These findings provide evidence that  the electrophysiological  biomarkers associated

with PD are also present in a group of presumably healthy elderly compared to a young

one. This, in turn, indicates that these biomarkers might be promising for the detection
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of a pre-clinical stage of PD given a close relationship between aging and PD. Future

prospective studies should test their unique predictive value in the development of PD.

Furthermore, dopaminergic medication induces changes not only locally in the spectral

slope but also in the interaction between the areas with a specific spatial interaction

pattern.  Crucially,  the  spectral  slope  (which  may index the  local  excitation/inhibition

ratio)  appears  to  be  essential  in  forming  the  global  network’s  ability  to  integrate

information  from remote  areas  in  PD.  This  could  be  relevant  for  the  interventional

studies directed at non-invasive modulation of neuronal activity in these areas. 

Zusammenfassung

Die  Parkinson-Krankheit  (PK)  ist  eine  neurodegenerative  Störung.  Sie  betrifft  die

motorischen  Funktionen  und  hat  eine  lange  präklinische  Phase.  Dopaminerge

Medikamente  (DM)  sind  eine  wirksame  Behandlung,  haben  aber  auch

Nebenwirkungen.  Daher  ist  die  Untersuchung  früher  Biomarker  für  PK  und  der

Auswirkungen DM von Bedeutung,  um das Verständnis  und die  Behandlung dieser

Krankheit voranzutreiben. In meiner Dissertation werden zwei Studien vorgestellt, die

einen Beitrag zu diesem Thema leisten. 

In Studie 1 nutzten wir Elektroenzephalografie (EEG) und untersuchten neuronale PD-

bezogene  Biomarker,  einschließlich  erhöhter  PAC  (Phasen-Amplituden-Kopplung)

zwischen der Beta-Phase und der Breitband-Gamma-Amplitude und abnormaler Beta-

Burst-Dynamik in jungen (N=71, Alter 20-35 Jahre) und gesunden älteren (N=66, Alter

59–77 Jahre) Probanden.  In Studie 2 mit  PK-Patienten (N=15) untersuchten wir  die

Auswirkungen  von  DM  auf  die  nicht-oszillatorische  Komponente  der  neuronalen

Aktivität,  die  interareale  funktionelle  Konnektivität  und  dessen

Konfigurationseigenschaften. 

Die Ergebnisse von Studie 1 bestätigten,  dass ältere Probanden eine erhöhte PAC

aufweisen; dieser Effekt ist  in den motorischen Bereichen am stärksten ausgeprägt.

Darüber  hinaus weisen ältere  Probanden eine  verlängerte  und häufiger  auftretende

Bursting-Beta-Aktivität auf. In Studie 2 beobachteten wir, dass die spektrale Steigung
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nach der DM-Einnahme steiler ist. Außerdem führt DM zu einer Hochregulierung der

Konnektivität  im  Betaband,  vor  allem  in  fronto-zentral-parietalen  Regionen.  Es  gibt

jedoch keine Hinweise auf eine signifikante Veränderung der globalen Eigenschaften

des funktionellen  Netzwerks.  Interessanterweise  haben wir  festgestellt,  dass  nur  im

Zustand „ohne“ DM ein enger Zusammenhang zwischen der spektralen Steigung und

der Integrationsfähigkeit  des Netzwerks besteht.  Diese Effekte sind durchweg in der

zentro-parietalen Region vorzufinden. 

Diese Ergebnisse belegen, dass die EEG-Biomarker, die mit PK in Verbindung gebracht

werden, auch in gesunden, älteren Menschen vorhanden sind. Dies wiederum deutet

darauf  hin,  dass  diese  Biomarker  vielversprechend  für  die  Erkennung  eines

präklinischen Stadiums der PK sein könnten. Künftige prospektive Studien sollten ihren

prädiktiven Wert in der Entwicklung der PK untersuchen. Darüber hinaus induzieren DM

Veränderungen  nicht  nur  lokal  in  der  spektralen  Steigung,  sondern  auch  in  der

Interaktion  zwischen  den  Bereichen  mit  einem  bestimmten  räumlichen

Interaktionsmuster. Entscheidend ist, dass die spektrale Steigung (die möglicherweise

das lokale Verhältnis zwischen Erregung und Hemmung anzeigt) für die Fähigkeit des

globalen Netzwerks, Informationen aus entfernten Bereichen zu integrieren, bei der PK

von Bedeutung ist. Dies könnte für interventionelle Studien relevant sein, die auf eine

nicht-invasive Modulation der neuronalen Aktivität in diesen Bereichen abzielen.  
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1 Introduction

1.1 Parkinson’s disease (PD): symptoms and treatment

PD is a chronic neurodegenerative disorder with a prevalence ranging from 0.25% to

4% for people aged between 65 and 80 years (de Lau et al., 2004; de Lau and Breteler,

2006; Pringsheim et al., 2014). PD demonstrates major motor symptoms and also non-

motor ones. Typical motor-related symptoms include stiffness of the limbs and trunk,

resting tremor, gait imbalance and bradykinesia. Symptoms usually start to be present

on one side of the body and progress to the other, and eventually show presence on

both sides. However,  one side of the symptoms is still  more severe than the other,

which is often called the dominant side of the symptoms. Non-motor symptoms also

appear,  which  may  include,  e.g.,  depression  (and  other  affective  disorders),  sleep

problems, olfactory loss, difficulties in swallowing and speaking, etc. Although typical PD

symptoms are  well  defined,  their  progression  rate  over  time  differs  from patient  to

patient. Even though PD is clinically defined as a movement disorder, the non-motor

manifestations are demonstrated to start even from a very early stage and are present

in most patients. Thus, some of them have been incorporated into the current diagnostic

criteria for prodromal PD (Berg et al., 2015). 

Motor  symptoms remain the core feature by which PD is  diagnosed clinically.  Total

diagnostic certainty is impossible in life; a varied accuracy between 75% to 95% of the

patients  diagnosed  by  clinical  experts  have  been  confirmed  only  by  autopsy  (A.  J.

Hughes et al., 1992; Andrew J. Hughes et al., 2002). This variability can be attributed to

the disease duration, age, the expertise of the clinician, and advancement in disease

understanding. The diagnosis of PD can be robust in most cases, particularly with a

stringent  use  of  the  criteria  by  an  experienced  neurologist.  However,  it  has  been

suggested  that  imaging  modalities  for  instance  dopamine  transporter  single-photon

emission  computed tomography  (DAT-SPECT)  could  be a  helpful  diagnostic  tool  in

routine clinical practice by identifying the presynaptic nigrostriatal dysfunction (Poewe &

Scherfler, 2003). 
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Current treatment of PD mainly includes dopaminergic medication and surgical DBS

(deep brain stimulation). Drugs, for  instance, Levodopa (L-DOPA), are prescribed to

enhance the dopamine concentration in  the brain of  patients.  The precursor  for the

neurotransmitters,  L-DOPA,  can  pass  the  protective  blood-brain  barrier,  unlike

dopamine, which is not able to do so. L-DOPA is converted not only by the neurons in

the  central  nervous  system (CNS),  but  also  by  the  cells  in  the  peripheral  nervous

system. This leads to an undesired increase in dopamine signaling in the periphery as

well, thus resulting in many adverse effects (for instance nausea, vomiting, low blood

pressure  and  restlessness).  L-DOPA  is  typically  administered  along with  other

medications, including carbidopa, to stop the peripheral synthesis of dopamine from L-

DOPA. In addition, the administration of dopamine can lead to changes in the brain

regions affected by PD and in the non-PD related regions (Gershman & Uchida, 2019).

For  instance,  prior  studies  on  PD  have  shown  that  overdose  administration  of

dopaminergic medication can cause adverse cognitive effects (A. A. MacDonald et al.,

2013; P. A. MacDonald et al., 2011; Voon et al., 2010). Therefore, rational management

of  dopaminergic  medication  remains  an  important  topic  and  is  still  challenging.

Identifying  biomarkers,  particularly  derived  from non-invasive  recordings,  underlying

changes corresponding to the improvement of clinical symptoms due to dopaminergic

medication is of great interest. 

With the accumulation of the medication effects, at some point, patients might become

much less or even not responsive to medications anymore. Then, they are subject to an

invasive treatment that involves a surgical procedure - deep brain stimulation (DBS).

DBS  involves  insertion  of  electrodes  into  the  sub-cortical  part  (typically  in  the

subthalamic nucleus (STN) or internal globus pallidus (GPi)) of the brain and connecting

the electrodes via cables to a device that is placed in the chest. By programming the

device depending on the severity and symptoms of the patient, stimulating the brain

structure can usually effectively improve the motor symptoms (Sobesky et al., 2022).  

1.2 Pathology of PD

The loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) is the

primary cause of PD. Cardinal PD symptoms are believed to become clinically present

when around 50%–70% of the dopaminergic cells in the SNc degenerate (Antonini et
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al.,  2002;  Carvey  et  al.,  2006;  Ransmayr  et  al.,  2001).  The  presence  of  fibrillar

aggregates known as Lewy bodies (LBs) is one of the primary characteristics of PD.

Lewy bodies are the abnormal aggregation of protein that develop inside nerve cells. In

PD,  α-synuclein,  a  protein  from the  pre-synaptic  nerve  terminal  (Iwai  et  al.,  1995),

makes up a significant component of Lewy bodies (Wakabayashi et al., 2007, 2013).

The role of LBs concerning neuronal loss in PD is still under debate. LB production has

previously  been  thought  to  be  a  sign  for  neuronal  degeneration;  however,  recent

research has suggested that  fibrillar  aggregates of LBs might instead function as a

cytoprotective mechanism in PD (Wakabayashi et al., 2013). 

Previous studies have demonstrated that the early pathology of PD begins in substantia

nigra (SN) (Damier et  al.,  1999; Fearnley & Lees, 1991).  However,  following the α-

synuclein pathology, it has been recognized that the progression of PD follows cauda-

rostral propagation from the peripheral nervous system to the CNS. Previous studies

have shown that the substantia nigra is not the first structure in the brain to develop PD-

related lesions (Del Tredici et al., 2002). In 2003, Braak and his colleagues proposed a

model that describes PD’s pathological staging scheme (Braak et al., 2003). There, they

suggest that pathology starts in the dorsal nucleus of vagal nerves and olfactory bulb in

stages  1–2.  In  stages  3–4,  it  progresses  into  pontine  tegmentum  and  midbrain,

neostriatum, and medial temporal cortex. Then its invasion into the higher order sensory

association and prefrontal areas and further the whole neocortex is considered as a

final stage of 5–6. Although this model is commonly recognized, very recent work by

(Blesa et al., 2022) suggests that early involvement of the nigrostriatal system in this

bottom-up progression model is a prominent component of pathological mechanism for

PD. 

In terms of brain function, PD mainly affects the basal ganglia-thalamus-cortex (BGTC)

circuitry. In this loop, through innervation of glutamatergic neurons in the striatum, the

cortex provides excitatory input to the striatum, which then projects back to the cortex

via the thalamus (Hammond et al., 2007). The loops can be generally separated into

five functional  zones based on the differential  input  from distinct  cortical  areas:  the

motor, the dorsolateral prefrontal, the lateral orbitofrontal, the anterior cingulate, and the
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oculomotor  loop  (Alexander,  1986).  Evidence  has  demonstrated  that  these  circuits

rather  interact  with  each  other  instead  of  functioning  in  a  segregated  manner  via

projections within the striatum (DeLOng & Wichmann, 2009; Saint-Cyr, 1995). In PD,

investigating  the  motor-related  circuit  is  crucial  for  understanding  its  pathology.  It

comprises three major pathways: direct, indirect, and hyperdirect pathways (see own

representation: Figure 1).  MSNs (medium spiny neurons) within  the striatum project

different nodes within the loop: D1 receptors give rise to the direct pathway, while the

MSNs expressing D2 receptors constitute an indirect pathway (Schwarz et al., 2004;

Wichmann et  al.,  2011).  The  striatum projects  GABAergic  inhibitory  input  onto  GPi

directly through a direct pathway and indirectly excitatory input onto the GPi by involving

the GPe (external globus pallidus; gets inhibitory input from the striatum) and the STN

(gets the inhibitory input from the GPe) via the indirect pathway. In addition, a direct

connection  from  the  motor-related  cortices  (sensorimotor  cortex,  premotor  cortex,

supplementary  motor  cortex,  and  cingulate  motor  area)  to  the  STN  forms  another

pathway: the hyperdirect pathway, which bypasses other nodes in the circuit and thus

can transmit information faster (Hammond et al., 2007). It was previously believed that

the  direct  pathway is  essential  for  motor  initiation and promotion,  while  the indirect

pathway is involved more in the termination of movement (DeLong & Wichmann, 2009).

However, this mechanism could not account for concurrent activation of both pathways

during movement. Recent findings suggest that both pathways are rather structurally

and functionally interconnected through the coordination in the striatum (Calabresi et al.,

2014). In a healthy state, activities of direct and indirect pathways are balanced. Motor

irregularities have been linked to a disruption in the ability of the striatum tio maintain

the  balance between excitation  and inhibition  (Gittis  et  al.,  2010;  Oran  & Bar-Gad,

2018).  Besides,  animal  PD models and computational  work have shown that  PD is

characterized by an overactive hyperdirect  pathway (Ahn et al.,  2015;  Oswal et  al.,

2021; Shi et al., 2021). While a large body of studies focuses on the BG, the cortex, and

their interaction, cortico-cortical interaction is also a crucial part of this pathological loop.

This  notion  can  be  evidenced  by  a  very  recent  study  showing  that  the  functional

connectivity between the subcortical regions and a variety of cortical regions (not only

those mentioned above) closely relates to the movement improvement in PD (Sobesky

et al., 2022).
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Figure 1. A simplified schematic illustration of three motor pathways in PD. The striatum

receives excitatory input from particular cortical regions (MC, PMC, SMA, and CMA). It

exerts inhibitory output to GPi via the direct pathway and GPe, and STN via the indirect

pathway. Two pathways merge at GPi and inhibit the thalamus with excitatory output

projecting back to the cortex. In addition, the cortex directly projects to the STN through

a hyperdirect pathway. Note, apart from these pathways, cortico-cortical interaction is

an important component of the loop which, nevertheless, is less a focus of previous

studies. 

1.3 Electrophysiological neuronal biomarkers of PD

Local Field potentials (LFPs) can be produced by the synchronous electrical activity of

multiple  neurons  in  a  given  area  of tissue.  They  can  be  recorded  by  placing  a

microelectrode nearby the population of neurons of interest (in cortical and subcortical

regions). In addition, there is a lot of interest in employing non-invasive measurements,

such as MEG (Magnetoencephalography)  and EEG,  to  identify  potential  biomarkers

related  to  PD.  This  could  be  valuable  for  PD  diagnosis,  dopaminergic  drug

administration, tracking the development of disease, and as control signals for closed-

loop DBS therapy (A. M. Miller et al., 2019). Compared to a local activity captured by

LFPs,  EEG recording  captures  the  summed  electrical  activity,  generated  along  the

whole cortex and transmits through layers of tissues (cerebrospinal fluid, skull, scalp

skin). The primary source of neuronal activity recorded by EEG is the excitatory and

inhibitory postsynaptic potentials from the pyramidal cells in the cortex (Speckmann et
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al., 2012). Besides, synchronized neuronal currents induce magnitude fields which can

be captured by MEG recording. Electrophysiological biomarkers of PD can be studied

with LFPs recorded in the basal ganglia or non-invasive scalp MEG/EEG recordings or

simultaneous LFPs-MEG/EEG. 

Electrophysiologically,  it  has been consistently  reported that  a  pathological  neuronal

synchronization characterizes PD through the BGTC circuit   (DeLong & Wichmann,

2009; Hirschmann et al., 2011; Litvak et al., 2011; Silberstein et al., 2005; Waschke et

al.,  2017;  Weinberger  et  al.,  2006),  and  this  abnormal  synchronization  is  mainly

reflected in a specific frequency range: beta (13–30 Hz) frequency band. Therefore,

particular  attention  has  been  given  to  this  frequency  band.  The  most  prominent

electrophysiological markers associated with PD are summarized below.  

Beta power. The power of oscillatory activity can be estimated with spectrum density

(PSD) or mean squared amplitude over a specific frequency range when using band-

pass filtered signals. Beta band activity is typically referred to as a narrow band of 13–

30 Hz. It has been shown that neurons in the STN can fire rhythmically at the beta

frequency band (Levy et al., 2000), and further evidence demonstrates that oscillations

in the STN LFP reflect synchronous population activity of local neurons (Brown et al.,

2001; A. A. Kühn et al., 2004; Andrea A. Kühn et al., 2005; Ray et al., 2008). In PD,

studies  using  local  field  potentials  of  the  STN  showed  that  excessive  neuronal

synchronization is observed in the beta frequency range (Brown et al., 2003; Chen et

al.,  2010;  Andrea  A.  Kühn  et  al.,  2006).  Crucially,  both  dopaminergic  medications

(Alonson-Frech et al., 2006; Cassidy et al., 2002; Andrea A. Kühn et al., 2004; Ozturk,

Abosch, et al., 2020; Ozturk, Kaku, et al., 2020; Ray et al., 2008; Tinkhauser, Pogosyan,

Tan, et al., 2017; Weinberger et al., 2006) and DBS (Müller and Robinson, 2018; Ray et

al.,  2008;  Tinkhauser,  Pogosyan,  Little,  et  al.,  2017;  Wingeier  et  al.,  2006)  can

effectively interfere with this excessive beta synchronization, and an improvement in

motor  symptoms (amelioration  of  PD symptoms)  is  closely  correlated  with  the  beta

oscillation  suppression.  In  addition,  cortical  beta  power  has  been  intensively

investigated; however, a link between cortical beta power and parkinsonian state is less

consistently  reported  than  that  from the  subcortical  region.  More  specifically,  some
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studies have demonstrated an increase of beta power in the PD Off state (Gong et al.,

2021) and a decrease after dopaminergic medication, while other studies showed no

power difference in the PD Off compared to healthy controls and no alteration by the

dopaminergic medication (George et al., 2013; A. M. Miller et al., 2019; Silberstein et al.,

2005; Stoffers et al., 2008; Swann et al., 2015; Zhang et al., 2022). 

Beta-gamma PAC (Phase-amplitude coupling).  PAC is one of the commonly used

forms of  cross-frequency coupling with  amplitude from the higher  frequency activity

being modulated by the phase of lower oscillations. Previous studies, particularly in

attention  control  tasks,  have suggested the  role  of  PAC in  coordinating  the  activity

between different associative brain areas (Szczepanski et al., 2014). In addition, it has

been shown that the thalamus regulates the exchange with cortical regions via PAC

(Malekmohammadi et al., 2015). 

As mentioned earlier, aberrant synchronization in the beta frequency band of the basal

ganglia has been commonly recognized as the major neuronal sign characterizing PD.

In the context of PD, in 2013, de Hemptinne and colleagues showed that in patients with

PD, an existence of  abnormal  coupling of  the beta  rhythm phase and amplitude of

broadband gamma activity (beta-gamma PAC, referred to as PAC in the context of PD

in  the  rest  of  the  text)  as  recorded  with  subdural  electrocorticography  (ECoG)  (De

Hemptinne et al., 2013). Compared to patients with craniocervical dystonia and patients

with epilepsy, in patients with PD, excessive PAC was evident not only in the local LFPs

of the primary motor cortex (M1) but also between the LFPs from the STN and the M1

cortex. Significantly, this abnormal cortical coupling could be effectively suppressed by

DBS. Later, more investigations have demonstrated the existence of excessive PAC in

cortical recordings from patients with PD (De Hemptinne et al., 2015; Malekmohammadi

et al., 2018; van Wijk et al., 2016). This enhanced PAC has also been identified using

non-invasive EEG measurement in PD (Jackson et al., 2019; A. M. Miller et al., 2019;

Swann et al., 2015). PAC was also reduced by dopaminergic medication (A. M. Miller et

al., 2019; Swann et al., 2015). Previous studies on PAC used data from sensor space,

reflecting mixed signals from different brain regions due to volume conduction. A more

recent  study  solved  this  issue  by  utilizing  an  advanced  source  reconstruction

15



methodology based on individual head models (Gong et al., 2021). The authors further

proposed that beta and gamma signals originating from distinct sub-networks instead of

from the same network components demonstrate more relevance for  understanding

pathology in PD. Moreover, this study has demonstrated a close relation between this

inter-regional PAC and motor symptoms measured with UPDRS III (unified Parkinson’s

disease rating scale). To date, one very recent study further confirmed the crucial role of

cortical  PAC  about  movement  deficit  (particularly  gait  freezing)  by  using  ECoG

recording at the motor cortex in patients with PD. Here the authors demonstrated an

occurrence of abnormally elevated PAC in freezing trials, and DBS targeting STN could

effectively decouple the oscillations at the cortex, thus alleviating freezing (Yin et al.,

2022). Besides, it is worth noting that all these electrophysiological markers described

(above and below) were only demonstrated on a group level (i.e., not eveyone having a

high PAC will be dianosed with PD). So far, only one study examined the dianostic utility

of PAC at a single subject level, and their analyses showed moderate potential for this

purpose (Swann et al.,  2015). Although PAC is far from being an ideal non-invasive

biomarker of  PD (with high specificity and sensitivity),  it  does appear to have some

intriguing features of being a very promising biomarker characterizing PD. Yet, its full

potential should be explored further. 

Beta burst dynamics.  Earlier in this section, I have mentioned that previous studies

showed a direct link between basal ganglia beta oscillations and the severity of motor

symptoms  (Brown,  2003)  as  well  as  a  reduction  in  beta  power  after  dopaminergic

medication administration or during DBS (Andrea A. Kühn et al., 2006, 2009; Neumann

et  al.,  2018;  Oswal  et  al.,  2016;  Trager  et  al.,  2016).  In  the  meantime,  increasing

evidence  has  shown  that  physiological  beta  activity  is  composed  of  brief  bursting

episodes in the motor circuit (Feingold et al., 2015; Murthy & Fetz, 1992). Breakthrough

evidence was presented by human MEG data, computational modeling, and laminar

recordings, suggesting that neocortical beta activity emerges as short bursts (Sherman

et al., 2016). In 2017, Tinkhauser and colleagues, for the first time, demonstrated that in

PD, spontaneous beta activity in the STN is rather transient and occurs in bursts with a

large portion lasting 150–200 ms. Their experimental studies with PD patients suggest

that pathological beta activity in PD is related to prolonged duration along with a more
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frequent incidence of beta bursting activity. Importantly, this pathological phenomenon

could be alleviated by re-distributing the beta bursts into shorter, less frequent (or, in

other  words,  more  physiological)  ones  through  either  dopaminergic  medication  or

adaptive  DBS,  where  long  beta  bursts  were  selectively  targeted  and  fragmented

(Tinkhauser, Pogosyan, Little, et al.,  2017; Tinkhauser, Pogosyan, Tan, et al.,  2017).

These abnormal burst  dynamics observed in STN LFPs were further present in the

motor cortex using ECoG at M1 by (O’Keeffe et al., 2020) in PD patients. Simultaneous

local field potentials in the STN and EEG over the motor cortex confirmed that beta

bursts take place locally and are also connected to a between-structure coupling in the

basal ganglia-cortical motor network (Tinkhauser et al., 2018). This coupling exerts a

greater impact on burst periods as opposed to non-bursting episodes, and longer beta

bursts than the shorter ones. This finding raises the possibility that beta bursts have a

role in the phasic coupling between sites within the network as well as in the increased

local synchronization, which implies a further impact on the motor-related circuits’ ability

to encode information in PD. 

Spectral slope (also referred to as 1/f slope).  Electrophysiological brain signals are

composed of oscillatory activities and an aperiodic component in the frequency domain.

In  the  brain,  recordings with  LFPs,  EEG,  and fMRI  (functional  magnetic  resonance

imaging) have all demonstrated this characteristic (Bullmore et al., 2001; Bullmore &

Sporns, 2012; Freeman & Zhai, 2009). It has been suggested that this non-oscillatory

aspect of brain activity can shed more light on the complex neuronal dynamics that are

taking  on  at  various  temporal  scales  (He  et  al.,  2010;  Voytek  et  al.,  2015).  In

computational modeling and animal studies, this measure has been shown to have a

close association with the ratio of excitation/inhibition (E/I) from the recorded site (Gao

et al., 2017). Represented by the fitted slope in the log-log space, the aperiodic part of

neural  activity  (referred to as spectral  slope or 1/f)  is  associated with  development,

healthy  aging,  dynamic  cognitive  performance,  and  neurological  diseases  like

schizophrenia  and  ADHD (Attention  deficit  hyperactivity  disorder)  (Donoghue  et  al.,

2020; Molina et al., 2020; Peterson et al., 2017; Robertson et al., 2019; Voytek et al.,

2015). Moreover, clinical studies showed this spectral slope becoming more negative

during anesthesia (Colombo et al., 2019; Gao et al., 2017).  While many studies have
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focused on changes in oscillatory activity, the non-oscillatory part of brain signal has

remained  unexplored in  PD.  It  is  important  to  mention  that  previous  studies  have

demonstrated  that  a  flattening  of  the  spectral  slope is  observed with  healthy  aging

(Cesnaite  et  al.,  2021;  Voytek  et  al.,  2015).  Even  though  this  measure  is  not  yet

investigated in PD studies, based on a close relationship between normal aging and

PD, it seems rational to hypothesize that the flattened slope can also be present in PD

(as  shown in  healthy  aging).  Additionally,  previous  studies  using  TMS (transcranial

magnetic stimulation), with which excitation and inhibition of the neuronal activity can be

directly measured, have demonstrated that PD is associated with alterations in cortical

excitability (Cantello et al., 2002; Ridding et al., 1995); therefore, such alterations can

also be potentially captured with aperiodic 1/f component. 

Distributed beta connectivity (coherence). Coherence is a metric that gauges how

strongly the signals are phase-synchronized over a certain frequency and is one of the

typical approaches for quantifying connectivity. Although the exact mechanism of the

generation and the propagation of abnormal oscillatory activity remains unclear, it  is

commonly recognized that PD is a network pathology (West et al., 2018). The abnormal

oscillation  could  propagate  through  the  basal  ganglia-cortical  network’s  connected

structures. Previous studies have  shown that coherent activity exists within the basal

ganglia  (DeLong  &  Wichmann,  2009;  S.  Little  et  al.,  2012;  Oswal  et  al.,  2013;

Shimamoto et al., 2013; Weinberger et al., 2006) and between the subcortical region

and the motor cortex (Hirschmann et al., 2013; Lalo et al., 2008; Simon Little et al.,

2013;  Litvak  et  al.,  2011;  West  et  al.,  2018).  In  addition,  abnormal  cortico-cortical

interactions are also involved in this pathological loop. Prior work has shown that beta

coherence  between  cortical  regions  is  exaggerated  in  PD  and  could  be  effectively

reduced  by  L-DOPA (George  et  al.,  2013;  Silberstein  et  al.,  2005).  A recent  study,

however, did not replicate this finding, and conversely, no difference was found between

healthy controls and PD patients or between the PD Off medication and On state (A. M.

Miller et al., 2019). It might imply that excessive synchrony between the basal ganglia

and the cortex does not necessarily indicate an increase in connectivity between cortical

regions in PD. This assumption seems to be supported by a very recent study using

combined  STN LFPs-MEG recordings.  By  applying  a  time-resolved  Hidden  Markov
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Model (HMM) to study whole brain interactions, including the STN and whole cortex, the

authors provided evidence showing that  after  dopamine administration,  beta  activity

shifted  from  being  mediated  by  a  STN  to  being  mediated  by  a  cortico-cortical

(frontoparietal-motor)  network  in  PD  (Sharma  et  al.,  2021).  Critical  engagement  of

cortical interactions has also been implied in work by (Gong et al., 2021), where the

authors  reported  a  distributed  presence  of  PAC  over  a  variety  of  cortical  regions,

especially over the somatosensory cortex. Although it has previously been suggested

that the hyperdirect tract is required for excessive PAC production (De Hemptinne et al.,

2013),  this  new finding  might  indicate  that  the  abnormal  PAC does  not  exclusively

involve the hyperdirect pathway – it is very likely to engage other pathways in the BGTC

network (direct and indirect pathways) or cortico-cortical connections. 

What do these biomarkers imply in the context of PD pathology? The abnormal

PAC  in  PD  involves  the  beta-band  phase  and  amplitude  from  broadband  gamma

activity.  Broadband  gamma amplitude  is  proposed  to  reflect  local  non-synchronous

spiking of neural populations (Manning et al., 2009; K. J. Miller et al., 2009); therefore,

excessive PAC indicates a neural recruiting pattern in which the local spiking activity is

preferably  activated  by  some  specific  phase  of  lower  frequency  rhythm  (i.e.,  beta

oscillation). PAC in a healthy state is dynamic, task-related, and responsive to changes

in cognition and behavior  (Ryan T.  Canolty  et  al.,  2010;  Ryan T.  Canolty  & Knight,

2010). In PD, however, the elevation of PAC might render the neurons in an inflexible

state, thus preventing the necessary changes for a dynamic behavior (Jackson et al.,

2019). As pointed out by other studies (Aru et al., 2015; Kramer et al., 2008; Lozano-

Soldevilla et al., 2016), one important note is that the non-sinusoidality of the signals

could confound the estimation of PAC. Therefore, a cautious interpretation of the PAC-

related finding is warranted. Similarly, since spectral coherence in the beta band can

serve  as  an  index  for  communication  between  regions  through  the  coherence

hypothesis (Fries, 2005, 2015), an increase in beta band coherence might also indicate

excessive  synchrony throughout  the  network  (Swann et  al.,  2015).  As  proposed by

(Jackson et al., 2019; Swann et al., 2015), different measures might pick up differential

aspects of  the exact  pathophysiology — excessive beta synchronization and neural

entrainment within the motor network. For beta burst dynamics, since increasing local

19



field potential amplitude reflects the increasing local neural synchronization (Tinkhauser

et al., 2018), more frequent prolonged beta bursts (also naturally with higher amplitude)

in PD may index the excessively synchronous periods. Consequently, the synchronized

neurons  are  less  likely  to  carry  diverse  information,  and  therefore,  the  capacity  of

information  coding  of  the  network  is  constrained.  Interestingly,  a  recent  study  was

dedicated  to  investigating  the  relationship  between  oscillatory  power,  bursting,

synchrony, and PAC over the motor cortex using ECoG (O’Keeffe et al.,  2020). The

authors hypothesized that in PD, individual differences in beta power and PAC may be

explained by beta burst dynamics, evidenced by a higher PAC or beta power relating to

longer bursting periods. However, in my opinion, more work should be performed to

validate or provide more direct evidence for this claim. 

In summary, current research tends to interpret these differential biomarkers as a partial

(thus imperfect) manifestation of the same pathological process underlying PD. Despite

this conclusion, one should acknowledge that none of these biomarkers can completely

explain each other. Therefore, investigating differential biomarkers characterizing PD is

an ongoing  research topic,  and  it  is  crucial  for  understanding  the  pathology  of  PD

reflected in these biomarkers. 

1.4 PD and normal aging

1.4.1 Risk factors for PD and markers for prodromal PD

PD  is  a  chronic  disorder,  and  it  progresses  through  an  early  stage,  where  the

neurodegeneration  has  already  commenced.  This  early  period  usually  lasts  from

several years to decades before the onset of the cardinal motor symptoms, based on

which  a  definite  diagnosis  of  PD  can  be  made.  During  this  prodromal  phase,

neurodegeneration  has  already  started  and  spread  throughout  the  nervous  system

(Berg et al., 2014). Notably, a broad range of motor and non-motor signs characterize

the prodromal phase, and they might progress and evolve further to a fully developed

PD (Berg et al., 2015; Louis & Bennett, 2007). Even though mild symptoms are present,

these signs do not yet match the criteria for a clinical PD diagnosis. According to the

definition of PD by the International Parkinson and Movement Disorder Society Task

Force  (Berg  et  al.,  2014),  PD  should  be  categorized  into  three  stages:  preclinical
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(neurodegeneration  has started  but  without  evident  symptoms)  (Stern  et  al.,  2012),

prodromal (symptoms are present, but they do not meet the criteria for diagnosis) and

clinical PD (cardinal symptoms are present and they are sufficient for clinical diagnosis).

Understanding the origin underlining these features during the early stages and their

pathological evolution may be crucial for the development of potential neuroprotective

treatment, which might halt the development and progression of PD. 

The risk factors for  developing PD, which have been established by previous work,

include age, male sex, regular occupational exposure to pesticides or solvents, non-use

of caffeine, non-smoking, family history with PD (sibling and first-degree family), and

known  genetic  mutation  (such  as  GBA/LRRK2  mutation  carriers)  (Liu  et  al.,  2012;

Noyce et al., 2012; Pezzoli & Cereda, 2013). Except for these risk markers with a broad

consensus, according to the first published criteria, multiple prodromal markers have

been identified and quantified to indicate a likely ongoing neurodegeneration process

(Berg et al., 2015). These prodromal markers comprise PSG (polysomnogram)-proven

RBD  (rapid  eye  movement  (RBM)  sleep  behavior  disorder),  clearly  abnormal

dopaminergic  PET  (positron  emission  tomography)/SPECT  (single-photon  emission

computed  tomography)  to  quantify  the  extent  of  striatal  dopaminergic  denervation,

possible  subthreshold parkinsonism (or  abnormal  motor  testing),  depression,  severe

erectile dysfunction, urinary dysfunction, constipation, olfactory loss, excessive daytime

sleepiness and symptomatic hypotension. As pointed out by (Berg et al., 2015), since

new  data  from  different  fields  (neurobiology,  genetics,  neuroimaging,  etc.)  are

constantly generated, factors or markers used for defining prodromal PD require re-

updating continuously. In 2019, an update, which includes newly defined risk factors (for

instance,  polygenetic  risk  factor,  SN  hyperechogenicity,  diabetes  mellitus,  physical

inactivity, and low plasma urate levels) and identified prodromal markers (for instance,

global  cognitive deficit)  was then published (Heinzel  et  al.,  2019).  According to  this

latest update, one of the promising candidate markers (not yet added to the criteria due

to lack of evidence from prospective studies), is neuroimaging biomarkers (Heinzel et

al.,  2019).  These  candidate  biomarkers  (including  neuroimaging  ones)  could  be

suggested by their associations with RBD, carriers of genetic mutation, dementia with

Lewy  bodies,  and  PD  (Barber  et  al.,  2017).  Therefore,  from  this  point  of  view,
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theoretically, electrophysiological biomarkers which have been associated with PD, as

mentioned above (section 1.3), may also potentially serve as prodromal markers for PD.

1.4.2 Aging is the primary risk factor for PD

Except for the risk factors mentioned above, we focus here on age which remains the

primary risk factor for developing PD (Bennett et al., 1996; Hindle, 2010; Morens et al.,

1996). Both healthy aging and PD are associated with dopamine loss (Cheng et al.,

2010; Darden, 2007). The mild symptoms present in the prodromal phase of PD have

often been demonstrated in the healthy elderly (Louis & Bennett, 2007). The published

criteria for prodromal PD can also evidence a close relationship between aging and PD:

the prior probability and required minimum total LRs (likelihood ratios that highlight a

diagnostic  test’s  potency:  A  positive  LRs  shows  how  much  the  likelihood  of  PD

increases  with  a  positive  test  result)  for  defining  a  prodromal  PD  is  clearly  age-

dependent (Berg et al., 2015). For instance, for people aged between 50–54, the prior

probability (the prevalence of prodromal PD) is 0.4%, and the corresponding required

LRs is 1000, while for the ones who are older than 80, the prior probability increases to

4.0%, and the total LRs for defining a prodromal PD decreases to 95. Another piece of

evidence comes from the age-dependent penetrance of intermediate-strength genetic

mutations  associated  with  PD.  For  example,  the  cumulative  PD  risk  of  an  LRRK2

mutation carrier is ~42% at the age of 80 years, while only 4% in the general population

(Heinzel et al., 2019; Lee et al., 2017). Crucially, evidence from non-human primates

has demonstrated a close link in the cellular mechanisms between aging and PD (see

Figure 2 below, from Collier et al., 2011) (Collier et al., 2011). Specifically, it has been

proposed  that  in  the  dopaminergic  system,  aging  and  PD share  multiple  biological

features (the accumulation of cellular markers in aging occurs, mimicking the pattern

observed in PD). Healthy aging induces a pre-parkinsonian state, and PD develops in a

way that is an accelerated normal aging process due to genetic, environmental and

other factors (Collier et al., 2011, 2017). 

Moreover, data from PD mice models have shown that electrophysiological properties of

dopaminergic neurons are altered, and notably many of the effects are dependent on

age  (Branch  et  al.,  2016).  In  addition,  neuroimaging  studies  have  shown  that  age

remains the most substantial  contributor to the first identified latent variable of brain
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atrophy derived from patients with PD (Zeighami et al., 2019). In a longitudinal study,

both healthy aging and PD data were acquired, and it was found that during one year,

both  healthy  aging  and  PD  are  accompanied  by  cortical  thinning.  Additionally,  PD

showed a more pronounced alteration than what was observed in healthy aging (Yau et

al.,  2018).  These structural changes shared by both healthy aging and PD seem to

additively support the theory that PD is an accelerated or exaggerated aging process.

Based on the evidence from different  lines of  research,  aging has repeatedly  been

shown to be  the primary risk factor for the onset of PD. In this context, we follow the

logic  that  aging  might  represent  a  process  potentially associated  with  a

preclinical/prodromal  PD,  which  might  in  turn  provide  a  window  through  which

appropriate  biomarkers  may relate  to  early  signs of  neurodegeneration  (which  may

progress further to fully developed clinical PD). 

Given  a  close  relation  between  normal  aging  and  PD,  aging-related  neuronal

biomarkers  may  prove  useful  to  index  an  early  stage  of  PD.  These  promising

biomarkers  may  appear  in  the  normal  aging  process  and  can  be  further  amplified

throughout the development of PD. Therefore, an important question arises: Are the

biomarkers  associated  with  a  fully  developed  PD  also  present  during  seemingly

“healthy” aging and could probably eventually reach a pathological level when PD is

fully developed? This question could be accessed by looking at the neurophysiological

changes in both healthy aging and PD. 
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Figure 2. A schematic model describing the relationship between normal aging and PD

in the  dopamine system proposed by  Collier  et  al.  (2011).  With  time passing,  both

normal aging and PD are characterized by dopamine loss. However, due to a stochastic

interaction between multiple factors (for instance, genetic, inflammation, environment,

unknown  factors,  etc.),  in  PD  an  accelerated  dopamine  loss  results  in  dysfunction

passing eventually the clinical threshold for PD. 

1.5 Rationale of the studies

I  have  investigated  electrophysiological  biomarkers  during  apparently  healthy  aging

(perhaps indicating pre-clinical  or prodromal PD) (study 1) and during dopaminergic

medication-induced On- and Off-states in PD patients (study 2). 

Study 1: We hypothesized that the electrophysiological neuronal biomarkers associated

with PD are also present in healthy aging. To address whether the electrophysiological

biomarkers for PD are also present during healthy aging, we have analyzed an open

dataset  that  includes  a  large  number  of  resting-state  EEG recordings  from healthy

young  (age  20–35  years)  and  elderly  (age  59–77  years).  We  hypothesized  that

electrophysiological biomarkers of PD, that is, PAC between beta phase and amplitude

of  broadband  gamma activity,  and  the  occurrence  of  longer  beta  bursts,  are  more

pronounced in the elderly in comparison to the young subjects. These biomarkers are

chosen based on the fact that they are consistently reported in previous studies about
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PD. In addition, these effects are expected to be strongest in the sensorimotor cortex. A

methodological overview of this study is shown in Figure 3 (own representation) below. 

Although regional alterations may provide a in-depth understanding of the underlying

local  circuit,  the  brain  operates  as  a  distributed  network.  Additionally,  as  we  have

mentioned above, PD is a network pathology. While our first study has demonstrated

the presence of PAC and prolonged beta bursts in healthy aging, similar to what has

been  shown in  PD,  the  effect  was  not  manifested  only  in  the  sensorimotor  areas.

Instead, these effects were found to be present in multiple cortical areas (for instance,

the primary motor cortex, the somatosensory cortex, the cingulate cortex, the frontal

cortex,  the  temporal  cortex,  etc.).  It  is  worth  noting  that  the  areas  demonstrating

increased electrophysiological biomarkers in a healthy aging brain in our first study are

consistent with the recent data from patients with PD, where the authors showed the

elevation of PAC in similar cortical regions (Gong et al., 2021). Due to this observation, I

became interested in the interaction between cortical regions and moved beyond the

within-areal  biomarkers.  Besides,  since  it  has  been  shown  that  a  flattening  of  the

spectral  slope is  observed with  healthy  aging  (Cesnaite  et  al.,  2021;  Voytek  et  al.,

2015), I anticipated this effect should also be present in PD. These factors contribute to

the motivation to carry out study 2, which I will introduce below. 

Study 2: In  this  study,  we  hypothesized  that  dopaminergic  Off  and  On medication

administration is accompanied by alterations locally in the non-oscillatory component

(represented  by  spectral  slope)  and  globally  in  the  brain  network.  To  test  this

hypothesis, we analyzed an open-access dataset that includes a patients’ cohort with

On and Off dopaminergic medication states. Specifically, here, we aimed to address the

following  questions.  What  impact  does dopaminergic  medication  have on functional

connectivity? In addition, from the perspective of graph theory, the following research

question was formulated: Does dopaminergic medication produce changes in the global

network architecture? Based on the previous finding of the flattening of spectral slope

observed in healthy aging (Cesnaite et al., 2021; Voytek et al., 2015), we assume that

this measure can also serve as a potential index for the parkinsonian state. We further

wondered:  In  PD,  how  does  the  spectral  slope  alter  after  the  administration  of
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dopaminergic  medication?  Moreover,  based  on  a  hypothesis  of  excitation/inhibition

balance of spectral slope (Colombo et al., 2019; Gao et al., 2017), we hypothesized that

the local non-oscillatory activity should relate to the functional connectivity of the brain

network since local excitation can define and shape the transmission of the activation

locally and globally (Deco et al., 2014; S. Zhou & Yu, 2018). A methodological overview

of this study is shown in Figure 4 (own representation) below. 

Before further details are presented, I would like to clarify a few possible ambiguities.

First, as mentioned above, all the summarized biomarkers associated with PD have not

yet been rigorously tested for their specificity and sensitivity (except for PAC in one

study (Swann et al., 2015)). These “biomarkers” were only demonstrated at group level

and  are  not  yet  proven  as  a  feasible  application  at  single  subject  level  in  clinical

practice. As a result,  a statement like “a subject demonstrating high PAC should be

diagnosed with PD” is not the intended interpretation. Rather, we focus currently on the

interpretation of the effects on a group basis. Secondly, healthy aging (or normal aging),

in  contrast  to  pathological  aging,  here refers to  a natural  process during which the

subjects age without  developing any clinically diagnosed disease including PD. It  is

unclear, though, whether some of the seemingly “healthy elderly” subjects are already in

the stage of the preclinical/prodromal PD. This problem is not resolved in my work as is

also the case for the earlier PD studies (where elderly are often recruited for a control

group). However, through performing these studies, some specific suggestions could be

provided so that such an issue could be possibly addressed in the future studies. Last

but  not  least,  it  may  appear  counterintuitive  that  a  biomarker  characterizing  PD is

hypothesized to be also present in “heathy aging”. However, it should be emphasized

once more that the neuronal  loss and cellular dysfunction in dopamine system is a

common feature  of  both  aging  and PD.  Nevertheless,  the  magnitude of  the  effects

accessed in a longitudinal manner (i.e., the absolute value of PAC increase for instance)

should also be considered in relation to the particular effects we examined in aging and

PD, in addition to the question of whether or not the biomarkers are present as such

(i.e., a PAC elevation or not for instance). 
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2 Methods 

In  this  section,  I  will  briefly  introduce  the  methodologies  we  have  utilized  in  this

dissertation.  For  a  detailed  description  of  all  these  methods,  one  can  refer  to  the

attached original publications (Zhang et al., 2021, 2022). 

2.1 Experimental design

The data analyzed in the first study is an open public dataset that was acquired in a

previous study (Babayan et al., 2019). Participants were instructed to sit calmly in a

chair, and recordings were performed in a sound-shielded room. A 62-channel EEG cap

(BrainAmp MR-plus amplifiers using ActiCAP electrodes) was used to acquire the data.

The  recording  included  eyes-open  (EO)  and  eyes-closed  (EC)  sessions,  with  each

condition (EO or EC) lasting 8 minutes in total. In our study, we only pooled the data

from the eyes-closed condition since, usually, this condition has a higher SNR (signal-

to-noise ratio). The final dataset included an elderly group (with 66 subjects aged 59–77

years,  31 females)  and a gender-matched younger  group (71 subjects aged 20–35

years,  24  females).  Additionally,  we also  included measurements  from a  behavioral

task. The Alertness subtest of TAP (Test of Attentional Performance, Zimmermann &

Fimm, 2002) measures the reaction speed and alertness. Participants were asked to

respond to the randomly appearing cross with varying intervals on the screen as quickly

as possible. As a final measure for intrinsic alertness, the mean reaction time for each

subject  was  calculated:  the  higher  the  reaction  time,  the  lower  the  behavioral

performance. 

Data analyzed in the second study is open-source data which can be acquired with this

link:  https://openneuro.org/datasets/ds002778/versions/1.0.5.  Fifteen patients with  PD

were recruited and measured on two days for dopaminergic medication: On and Off

conditions in a counterbalanced manner. The EEG recordings include approximately 3

minutes  of  resting-state  obtained  with  a  32-channel  EEG  cap  with  the  BioSemi

ActiveTwo system. During the recordings, participants were told to be calmly seated in

front of a screen that displayed a cross in the center. For more details, one could refer

to this original study (George et al., 2013). 
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2.2 Spectral analysis

Power  spectral  density  was  computed  by  the  ‘pwelch’ function  from Matlab  with  a

Hamming window size of 1s (512 samples) and 50% overlap. By averaging the PSD

values  over  the  corresponding  frequency  range,  13–30  Hz,  beta  band  power  was

attained. For the detection of individual beta peaks, we used the function  ‘findpeaks’

from Matlab over the frequency range of the beta band.  

2.3 Phase-amplitude coupling

To quantify the degree of phase-amplitude modulation, modulation index (MI) based

PAC was computed (Tort  et  al.,  2008).  It  estimates the deviation of  the normalized

amplitude distribution based on the sorted phase bins. The MI value ranges from 0 to 1:

0 indicates no coupling and 1 indicates a perfect coupling. To visualize the possible

coupling pattern in a broad range of frequencies, as described in Zhang et al. (2021),

we computed MI across the 4–50 Hz for phase providing frequency (in the step of 2 Hz

with a bandwidth of 2 Hz) and 4–170 Hz for amplitude providing frequency (in the step

of 4 Hz with a bandwidth equal to the slower oscillation’s center frequency), which is

also  called  a  phase-amplitude  comodulogram.  To  obtain  the  phase  and  amplitude

envelope  information,  Hilbert  transform  was  applied  to  the  band-pass  filtered  time

series.  A PAC value  was  accessed  by  taking  the  mean  of  the  MI  values  over  the

frequency of interest within the comodulogram. In our case, MI values over the phase-

providing frequency range of 13–30 Hz and amplitude-providing frequency range of 50–

150 Hz were determined for further statistical analyses. A simplified illustration of PAC is

shown in Figure 3 (own representation). 

2.4 Beta burst characteristics

Referring to the proposed methods by previous studies (Tinkhauser, Pogosyan, Little, et

al.,  2017; Tinkhauser, Pogosyan, Tan, et al.,  2017),  a beta burst  was defined as an

event that exceeds a certain threshold of the amplitude envelope and lasts more than

100 ms (at  least  two cycles of  beta  oscillations;  see own representation:  Figure 3)

above the threshold. For demonstrating the main findings, as described in Zhang et al.

(2021), we used a fixed threshold which in this case was the 65 th percentile. In addition,

to verify the robustness of our results, we also incorporated the analysis encompassing
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a variety of thresholds (percentiles 50th-90th in a step of 5%). To characterize how long

the bursts are and how often they emerge, two parameters were estimated to quantify

the dynamic features of the beta burst event. One is the percentage of the beta burst

with different durations, and the other one is the burst  incidence rate. A normalized

histogram  was  plotted  to  show  the  percentage  distribution  of  bursts  with  different

durations: 0.1–0.2 s, 0.2–0.3 s, 0.3–0.4 s, 0.4–0.5 s, 0.5–0.6 s, 0.6–0.7 s, 0.7–0.8 s,

0.8–0.9 s. The incidence rate was obtained by counting the number of bursts over a

time unit (bursts/second). 

Figure 3. A schematic illustration of PAC and beta burst definition. PAC is calculated

based on the degree to which the phase of beta oscillation modulates the amplitude

from the broadband gamma activity. As illustrated in the PAC panel, the amplitude of the

fast oscillation (in the orange line) is always the highest when the slower oscillation (in

the blue line) reaches a specific phase (in this case, it is a positive peak). For the beta-

burst  detection,  the  amplitude  envelope  of  beta  oscillation  is  obtained,  and  then  a

particular percentile-based threshold (for instance, 65 th) is applied. An episode that is

above this threshold and lasts longer than two cycles is defined as a beta burst event.

We predominantly focus on motor-related areas for both measures, both in sensor and

source space. 
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2.5 Spectral slope

Following the recommendation of a previous study (Colombo et al., 2019), we estimated

the spectral  slope using a robust three-step regression method. The regression was

performed  on  the  computed  PSD  (power  spectral  density)  over  a  wide  range  of

frequencies (2–45 Hz) of the signal. As described in Zhang et al. (2022), briefly, a line

was fitted to the raw PSD in the log-log space using Matlab’s function ‘robustfit’. Then,

oscillatory  peaks  were  identified  and  excluded  based  on  the  deviation  of  the  PSD

residuals according to the fitted line. Lastly, the remaining of frequency bins are fitted for

a second time. The slope of the second fitted line was taken to be a final measure of the

spectral slope (see own representation: Figure 4). This approach is similar to how the

1/f  slope  is  quantified  using  built-in  functions  based  on  the  toolbox  FOOOF

(https://fooof-tools.github.io/fooof/). 

2.6 Functional Connectivity (FC) and network properties

To eliminate the spurious connectivity due to the volume conduction, lagged coherence

(Pascual-Marqui, 2007; Pascual-Marqui et al., 2011) was used to estimate the functional

connectivity by excluding zero-lag phase coupling. As mentioned in Zhang et al. (2022),

with a step of 1 Hz, connectivity between all of the channel pairs was calculated over a

frequency range of 1–35 Hz. By averaging the values of lagged coherence over the

frequency range of interest, functional connectivity in a particular oscillatory frequency

band  was  measured.  Eventually,  a  functional  connectivity  map  (functional  network)

could be represented by a symmetrical 32×32 matrix. 

In  addition,  we estimated theoretical  graph measures for  the functional  network.  As

described in Zhang et al. (2022), the nodal degree was estimated by the node centrality,

which quantifies the importance of the node in a network by the number and weight of

the  connected  node  edges.  To  further  characterize  the  network’s  structure,  we

calculated global efficiency (GE, which can be obtained by the inverse of the shortest

path length, and the shortest path length between two nodes is the path with the fewest

links) and clustering coefficient (CC, which can be calculated by the number of triangles

dividing by the total number of triples, and a triple means a subgraph consisting of three

nodes  and  at  least  two  edges)  to  quantify  the  global  network’s  integration  and
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segregation, respectively. Before doing so, a sparse connection matrix and further a

binary network was obtained by applying a proportional thresholding for the estimation

of the network features based on graph theory. We examined a series of thresholds that

may produce networks with 20 to 200 links, ranging from 36% to 4%. Next, these graph

theory-based metrics (GE and CC) were computed using the functions as implemented

in the Brain Connectivity Toolbox (Rubinov & Sporns, 2010). The greater the functional

integration (segregation) of the network, the larger the GE (CC). 

Figure 4. A schematic illustration of the methodology in study 2. The spectral slope is

measured in a log-log space within each area without including the prominent oscillatory

peaks.  Besides,  phase  coupling  in  the  beta  frequency  band  between  two  areas  is

estimated, and a symmetric matrix (32×32) representing the functional brain network is

obtained. Graph theory-based network measures are employed to quantify the local and

global properties of the network. Specifically,  node degree quantifies the strength of

connections of one node based on the number (and the weight in some cases) of the

edges (for instance, in the bottom of Figure 4, the node degree of the orange one is 3

which is unweighted by the edge strength, only for illustration purpose). The clustering

coefficient quantifies a network’s ability  for functional segregation. It is defined as the

ratio of present triangles to the total possible number of triangles for each node (for

instance, in the bottom of Figure 4, the clustering coefficient of the orange-colored node
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is 1). Global efficiency is the inverse of shortest path length between two nodes, which

is the path with the fewest edges (for instance, in the bottom of Figure 4, the shortest

path length between the two orange-colored nodes is 3). The functional network’s global

properties (CC and GE) are obtained by averaging the estimations over all the nodes

constituting a network. 

2.7 Source reconstruction

To project the sensor data to cortical source space, we employed the New York head

model to acquire the lead field matrix (Huang et al., 2016) and the eLORETA (exact low-

resolution brain electromagnetic tomography) algorithm for inverse modeling. Further,

96 ROIs (regions of interest) were created by grouping the vertices according to the

Harvard-Oxford brain atlas (Desikan et al., 2006). 

2.8 Statistical tests

We  performed  statistical  comparisons  between  groups  using  non-parametric  tests.

Specifically, Wilcoxon signed-rank test was performed for within-subject and Wilcoxon

rank-sum test  was applied for  between-subject  comparisons.  To correct  for  multiple

tests, FDR (false discovery rate) procedure was employed (Yoav Benjamini & Yosef

Hochberg, 1995). In addition, for MI comodulograms in study 1, we applied a cluster-

based permutation test  (“Monte Carlo”,  implemented in  FieldTrip  (Oostenveld et  al.,

2011)) to account for the multiple tests within the two-dimensional frequency-frequency

space  (Zhang  et  al.,  2021).  Similarly,  in  both  studies,  to  account  for  multiple  tests

conducted over all the channels in channel space, the cluster-based permutation was

used. Finally, we provided cluster-level statistics in the empirical data in comparison to

the null distribution derived from the permuted data (1000 times). Clusters with p values

less than 0.05 (two-tailed) were deemed significant. 

3 Results 

3.1 PAC over the motor-related area is elevated in healthy aging

Following  the  previous  PD  studies,  we  computed  the  MI  comodulogram  over  the

sensorimotor area which electrodes C3 and C4 can represent. As shown in Figure 2A in

study 1 (Zhang et al., 2021), one can see a pronounced coupling over the phase from
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beta extending to low gamma frequency range and amplitude from broadband gamma

band  in  healthy  elderly  compared  to  the  younger  ones.  To test  whether  there  is  a

significant  difference  in  the  PAC  value  between  the  beta  (13–30  Hz)  phase  and

broadband gamma (50–150 Hz) amplitude similar to what has already been described

in the PD studies, we averaged PAC over these frequency ranges within the MI map. A

Wilcoxon rank-sum test  demonstrated  a  significant  enhancement  in  beta-broadband

gamma PAC in healthy elderly compared to healthy young group (p=0.0147). 

To  further  characterize  the  spatial  origin  of  the  PAC  effect,  we  performed  similar

analyses for all the channels as we described for channel C3 above. Statistical analysis

revealed a dominant distribution over the centro-temporal regions in the left-hemisphere

with extension to frontal areas (see Figure 3A in the study of Zhang et al., 2021). In

addition, we calculated PAC values for each region of interest for each subject in the

source space. Comparison between the two age groups in the source space confirmed

a spatial pattern where the most pronounced difference originated from left pre- and

post-central gyri (see Figure 3B in the study of Zhang et al., 2021), consistent with what

we have observed at the sensor level. Crucially, to rule out the confounds from the non-

sinusoidality of the beta waveform to the observed PAC effect, we performed additional

analyses (phase-phase coupling and regression analysis), showing that beta-gamma

The non-sinusoidality of the waveform of beta oscillations is unlikely to be the primary

drive of PAC (for details see supplemental analysis 1 in the study of Zhang et al., 2021).

Similarly, the PAC effect was not associated with the power of beta oscillation itself,

either (see supplemental analysis 2 in the study of Zhang et al., 2021). 

3.2 Stronger association between PAC and reaction time with more advanced age

Next, due to the previous suggestion of a link between PAC and the severity of motor

impairment in PD patients, we also examined a possible link between the magnitude of

PAC and behavioral movement readiness which can be indicated by the mean reaction

time in a TAP-alertness task. We took an average of PAC values from the precentral

gyri (left and right) as a reliable measure of PAC for each subject. By increasing the

age-onset for inclusion of the subgroup to calculate the correlation between PAC and

the behavioral reaction times within each age group (elderly and young), we observed

an  increasing  correlation  strength  between  PAC  and  the  reaction  times  with  more
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advanced age onset in the elderly, but not in the young group (see Figure 4 in the study

of Zhang et al., 2021). It demonstrates that for the elderly with more advanced age,

there is a stronger positive association between PAC and reaction time. This means that

if we only take a sub-sample of elderly participants, a higher PAC associates with a

slower  reaction  and  this  association  becomes  even  stronger  when  the  included

participants are older. Importantly, by performing a permutation test, we showed that the

observed tendency was not due to the sub-sampling procedure. 

3.3 Healthy aging is accompanied by longer bursts with a higher incidence rate

Properties of beta burst events were investigated as well. Beta bursts were classified

into nine windows (0.1–0.9 s with steps of 0.1 s and longer than 0.9 s) based on their

duration,  consistent  with  how  it  was  done  in  previous  PD  studies  (Tinkhauser,

Pogosyan, Little, et al., 2017; Tinkhauser, Pogosyan, Tan, et al., 2017). In the centro-

parietal region (represented by channel CP3), we found that the proportion of shorter

bursts  (0.1–0.2  s)  in  the  young  group  was  higher  than  that  of  the  elderly  group

(p=0.0122 after FDR correction). In comparison, the percentage of longer bursts (0.2–

0.3  s,  0.3–0.4  s,  0.4–0.5  s)  are  lower  than  that  from the  elderly  group  (p=0.0132,

0.0132, 0.0184 after FDR correction, respectively) (see Figure 5A in the study of Zhang

et al., 2021). Further, we estimated the percentage of longer bursts (0.2–0.5 s) for each

channel and each subject to examine the spatial pattern of the effect, and statistical

analysis  indicated  that  a  higher  percentage  of  longer  bursts  in  elder  subjects,  in

comparison to young subjects, were present in the bilateral frontal and centro-parietal

sites (see Figure 5B in the study of Zhang et al., 2021). In addition, the same analysis

from  the  source  reconstructed  signals  revealed  a  spatial  pattern  with  the  most

pronounced difference located in bilateral pre- and post-central gyri (see Figure 5C in

the study of Zhang et al., 2021). 

Except for the proportion of short and long bursts, another critical characteristic of beta

burst events is the burst incidence rate. Between the two groups, there is no significant

difference in the burst incidence rate for shorter bursts; however, a significant increase

was found in longer bursts (0.2–0.3 s, 0.3–0.4 s, 0.4–0.5 s) for the elderly compared to

the  younger  group.  The  difference  topographies  were  distributed  over  the  centro-

parietal regions across the longer bursts with various durations (0.2–0.3 s, 0.3–0.4 s,
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0.4–0.5 s) at the sensor level (see Figure 6A in the study of Zhang et al., 2021). In the

source space, we contrasted the two groups’ mean incidence rate of longer bursts (0.2–

0.5 s),  and the analysis further confirmed a spatial  localization over multiple cortical

areas with the strongest effects in the bilateral pre- and post-central gyri (see Figure 6B

in the study of Zhang et al., 2021). 

Of  note,  the  primary  analyses  for  beta  burst  dynamics  were  based  on  the  burst

definition with the representative threshold of the 65 th percentile. Additionally, to address

whether the effect was dependent on this specific threshold applied, we examined two

primary parameters of beta bursts, that is, overall burst duration and amplitude across a

range of thresholds ranging from the 50th to 90th percentile with a step of 5%. This

analysis demonstrated that, in general, the elderly participants have longer bursts with

higher amplitude than the young group, regardless of the thresholds for the definition of

a burst event (see Figure S5 in the supplemental material in the study of Zhang et al.,

2021). 

3.4 Spectral slope is deeper after medication administration in patients with PD

In the second study, we examined the changes in the local aperiodic component and

global network alterations in PD patients in On and Off medication states. Regarding the

regional non-oscillatory component measured by the spectral slope based on the PSD

over a wide band of frequency (2–45 Hz). We found a spatial specificity for both groups:

a steeper power spectra distribution along the front-center-parietal midline of the brain

compared to other regions (see Figure 2B of Zhang et al., 2022). Statistical analysis

revealed an increase of spectral slope (flattening) in the Off condition compared to the

On condition (see Figure 2C of Zhang et al., 2022). The effect was primarily localized in

the  left  central  site  (Monte-Carlo,  p=0.0220).  Furthermore,  we  investigated  the

differences in oscillatory beta power between the two conditions for scenarios both with

and without taking the overall slope effect into account. The result showed a lack of

significant difference in beta power between conditions for these both scenarios (see

Figure 3 of Zhang et al., 2022), despite the fact that after correcting for the slope, there

was a tendency for a decline in the beta power in centro-parietal regions (Off versus On,

Monte-Carlo, p=0.0739, 0.0939). 
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3.5 Functional connectivity is enhanced due to medication intake

Next,  we examined the  functional  coupling  between pairs  of  regions  which  can  be

approximately represented by the corresponding channels. We predominantly focused

on the connectivity between sensorimotor regions which typically includes C3 and C4

(or  frontal  regions covered by  Fz)  and other  areas.  With  a resolution of  1  Hz in  a

frequency range of 1–35 Hz, FC between C3 (or Fz) and Pz (one of the parietal region’s

representative channels) showed clear peaks for both conditions (see Figure 4A in the

study  of  Zhang  et  al.,  2022).  Using  a  channel-space  cluster  permutation  test,  we

performed  a  seed-based  beta  band  connectivity  comparison  between  medication

conditions after averaging the FC values over the beta frequency range. We found there

is a significant increase in the On in comparison to the Off condition in the beta band FC

between C3 (or Fz) and parieto-occipital (or centro-parietal) regions (see Figure 4B in

the study of Zhang et al., 2022). However, no difference was observed for C4-based

connectivity between conditions. This analysis was then repeated for all the rest of the

channels, and eventually, we were able to show a whole head profile (see Figure 4C in

the study of Zhang et al., 2022). The head-in-head topography demonstrated that there

was a synchronization up-regulation between the frontal, central, and parieto-occipital

regions after dopaminergic medication administration. 

3.6  Graph  properties  of  functional  brain  network  are  not  responsive  to

dopaminergic medication

To  gain  a  better  understanding  of  the  properties  of  functional  networks  based  on

theoretical graph analysis, we estimated the local and global features of functional brain

networks. First, we calculated the node degree for each channel and each subject. A

spatial  specificity was revealed by a grand average of node degree across patients

within each group: In comparison to other regions, central regions had a higher level of

node degree (see Figure 5A in Zhang et al., 2022). Statistical comparison between the

two conditions  revealed an increase of  node degree primarily  in  the  centro-parietal

region in the On condition compared to the Off condition (Monte-Carlo,  p=0.0140, see

Figure 5B in Zhang et al., 2022). Further, we examined a possible change in the global

configuration/organization of functional networks: Clustering coefficient measures global

segregation, while global efficiency measures global integration. Statistical analyses did
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not indicate a difference across a broad range of thresholding values in either of these

measures (see Figure 6 in Zhang et al., 2022). 

3.7 Spectral slope is closely related to global network efficiency in Off medication

state

To answer the question of whether the local activity can define the whole network’s

organization, we also looked into a possible association between global network metrics

and spectral slope. Firstly, we conducted the analyses using an example thresholding

value  of  20% to  derive  the  functional  network  metrics. The  global  slope  (averaged

across all the channels for each subject) was found to be negatively correlated with the

GE of the functional brain network (r=-0.7643, p<0.001). This relation was only present

for the Off condition. Further, to investigate the spatial specificity of this relation, we took

each slope value from each channel and performed a correlation analysis across all the

electrodes. The investigation revealed a topographical  pattern where the left  centro-

parietal region showed the most pronounced effect (see Figure 7B in the study of Zhang

et al., 2022). Again, in the On condition, no significant association was found between

the local spectral slope and GE of the network. Next, the correlation analysis between

global  slope  and  GE  in  the  Off  condition  was  extended  using  a  broad  range  of

thresholding  values  ranging  from 36% to  4%.  Consistently,  negative  relations  were

present across almost all these thresholds (36%–6%: p<0.05, 4%: p=0.33) (see Figure

7C in Zhang et al., 2022). 

4 Discussion

This doctoral thesis consists of two studies. The first study demonstrates that the typical

electrophysiological biomarkers associated with PD are also present in an elderly group

in  comparison  with  a  group  of  younger  subjects.  This  might  indicate  that  these

biomarkers,  i.e.,  amplified  PAC  (between  beta  phase  and  amplitude  of  broadband

gamma activity) and prolonged beta burst with higher incidence, could be indicators of

preclinical or prodromal stages of PD. Consistent with this notion, with higher age, there

is an increasing correspondence between PAC and slowing of reaction times derived

from an alertness task (with increasing age of elderly, the positive correlation between

PAC and behavioral reaction time increases). This relationship did not show existence
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in a young group which we investigated, thus indicating a functional relevance of PAC

increase in the elderly. Additionally, the elevation of PAC and prolonged beta bursts are

found to be most prominent over the motor regions, which might reflect abnormal motor

circuitry  pathology.  These  findings  may  help  facilitate  the  early  detection  of

electrophysiological markers of neuronal degeneration, which might eventually progress

and evolve to meet a clinical diagnosis of PD later. 

Apart from demonstrating the presence of PAC in healthy aging, in addition, we were

able  to  show a  preferred  phase specificity  across  the  young and elderly  groups.  It

means  that  the  high-frequency  amplitude  increases  at  a  specific  phase  of  beta

oscillation  for  the  elderly  and  young  subjects.  We  assume  that  in  PD,  this  phase

specificity will remain or become even more pronounced. Since it has been shown that

a  phase-dependent  DBS  treatment  could  suppress  the  beta  amplitude  in  a  more

efficient manner (Holt et al., 2019), it would be intriguing to test, at an individual level in

a patients’ cohort, whether at the preferred beta phase the stimulating effect could be

even further improved. 

In agreement with the proposal from previous studies on non-human primates (Collier et

al., 2011, 2017) demonstrating that aging and PD share the cellular markers and aging

creats a pre-parkinsonian state,  our  study further shows that  healthy aging and PD

share  similar  pathophysiological  processes  reflected  in  the  electrophysiological

biomarkers. It seems reasonable to assume that electrophysiological biomarkers of PD

can  be found in elderly people who are apparently healthy, and are further amplified in

patients with PD. This, specifically, leads to an assumption that the elevation of PAC

and prolonged beta bursts would be even more pronounced in PD compared to healthy

aging. However, due to a lack of inclusion of patients’ data in the first study, it  was

impossible to have a straightforward comparison of the effects shared by healthy aging

and PD. In the first study (Zhang et al., 2021), we were only able to demonstrate that

both healthy aging and PD share the same directionality  of  the electrophysiological

changes  in  the  brain,  which  are  typically  associated  with  PD.  These  shared

characteristics have spectral and spatial specificity. We did observe an overlap of the

PAC  effect  in  our  data  with  what  has  been  reported  in  the  previous  PD  studies.
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Increased PAC in the beta frequency range at the left sensorimotor cortical region, has

been consistently shown in healthy aging (Zhang et al., 2021) and PD (Gong et al.,

2021; A. M. Miller et al., 2019; Swann et al., 2015). 

Methodologically,  a  critical  contribution  of  this  study  also  points  to  a  novel  way  of

controlling for the spurious PAC attributed to the non-sinusoidality of beta oscillations.

Our data showed that the observed PAC effect was only partially (less than 10% of the

variance) explained by the non-sinusoidality of the beta waveform. Separating these two

phenomena  is  crucial  for  understanding  the  underlying  physiological  processes.  A

typical PAC, by definition, is used to quantify the interaction between two independent

processes.  It  has  been  commonly  linked  to  the  assumption  that  phase  from  low-

frequency oscillation modulates the local spiking probability (R. T. Canolty et al., 2006;

De Hemptinne et al., 2013, 2015; Lisman & Jensen, 2013). Instead, a non-sinusoidal

wave-shaped beta oscillation, according to a recent simulation and experimental work,

may suggest a level of input synchronization onto the cortical pyramidal cells (Sherman

et al., 2016). In particular, to disentangle whether the observed PAC is mainly attributed

to  the  non-sinusoidality  of  slower  oscillation,  we  adopted  a  methodology  of

disassociating the harmonic versus non-harmonic driven PAC. For PAC calculation, the

harmonics of base frequency signal  with a non-sinusoidal  waveshape could lead to

spurious amplitude modulation of higher frequency signal. This spurious coupling could

be  picked  up  by  the  measurement  algorithms  for  PAC  detection.  I  speculate  that

estimated  PAC  value  on  cortical  activity  recorded  with  EEG/MEG  is  a  mixture  of

genuine and spurious ones. The core idea is to determine whether the PAC of interest is

mainly or mildly attributed to the non-sinusoidality of the lower frequency oscillation. We

demonstrated one example of possibilities (see supplemental analysis 1 of Zhang et al.,

2021) to disentangle to what degree the non-sinusoidality of  beta oscillations drives

PAC. 

Concerning the beta burst dynamics, the average duration of long beta bursts in healthy

elderly and PD patients is around 0.2–0.3 s,  and the prolongation of beta bursts is

commonly reported in motor regions (O’Keeffe et al., 2020; Tinkhauser, Pogosyan, Tan,

et al., 2017; Zhang et al., 2021). In future work, it would be crucial to test how these
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effects are overlapping  quantitatively while differentiating PD from healthy aging. An

illustration of further evidence provided by our study on the previously proposed model

is shown in Figure 5 (modified from Collier et al., 2011). In agreement with this model,

we added further evidence from the electrophysiological perspective, demonstrating that

both healthy aging and PD indeed share the biomarkers typically found in PD. 

Figure 5. An extended model describing the relationship between normal aging and PD.

It is adapted from the figure in the study by Collier et al. (2011). Here, we have added

one further piece of evidence showing that electrophysiological biomarkers related to

PD are also present in normal aging. These biomarkers include PAC elevation (beta

modulating  broadband  gamma)  and  abnormal  beta  burst  dynamics  (prolonged  and

more  frequent  beta  bursts).  This  might  imply  that  the  processes  underlined  these

biomarkers take place in normal aging and may be further amplified in PD. 

Considering the limitations of our first study, we are also interested in validating and

extending  our  findings  with  comprehensive  data,  which  would  allow  a  quantitative

comparison of the effects between normal aging and PD. Currently, we are conducting a

third  study  based  on  a  large  LIFE  cohort

(https://www.uniklinikum-leipzig.de/einrichtungen/life).  With this study (in  progress)  by

inclusion of three groups (healthy young, elderly and patients with PD), we aim to test
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the hypothesis that both aging (healthy elderly versus young) and PD (patients with PD

versus  age-matched  elderly  control)  share  the  directionality  of  changes  in  these

markers and further the magnitude of the effects (obtained through a longitudinal design

or by cross-sectionally comparing both PD patients and healthy elderly subjects with a

common baseline measure) can differ between PD and healthy aging - the effects will

be more pronounced in  PD compared to  healthy aging. Additionally,  we would also

investigate other potential early biomarkers of PD from the autonomic system and heart-

brain interaction, for instance, heart rate variability (HRV) and heart evoked potentials

(HEPs). 

In the second study (Zhang et al., 2022), we focused on 1) non-oscillatory activity and

2) cross-regional interaction in a group of PD patients. Specifically, we investigated the

local and global brain changes in response to dopaminergic medication in PD. In our

study,  we  demonstrated  that  the  aperiodic  property  of  electrophysiological  activity

underwent a significant change with the administration of dopaminergic medication. We

observed a flattening of the spectral slope in the Off compared to the On condition. The

changes are most prominent in the left central area, including the sensorimotor cortex.

This  finding  implies that  the wideband background arrhythmic activity  is  a  sensitive

marker  for  the  medication-induced  alterations.  This  finding  complements  previous

studies showing that a flattening of the spectral slope is observed with healthy aging

(Cesnaite et al., 2021; Voytek et al., 2015). These findings are important considering

that PD is pathological  aging which is believed to be an accelerated aging process

(Collier et al., 2011, 2017). We postulate a similar change – a flatter slope, also occurs

in PD. Importantly,  spectral  slope,  or power-law exponent of  arrhythmic activity,  has

been shown to differ across brain regions and to be impacted by task performance (He

et al., 2010; Voytek et al., 2015). Dopaminergic medication might bring the flattened

spectral slope in PD back to a normal state (steepened by dopaminergic medication). In

my thesis, a complete picture of the changes related to PD was presented for the first

time: both the arrhythmic (scale-free activity represented by spectral  slope) and the

nested temporal pattern (in terms of PAC) were demonstrated in PD. 
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Moreover,  we  investigated  the  cortical  functional  network  changes  in  different

medication (On and Off) states. An increase in the connectivity between fronto-centro-

parietal regions in the beta frequency band was identified in the On compared to Off

medication  condition.  This  finding  agrees  with  a  previous  report  where  the  authors

demonstrated that dopamine medication modulates the global brain networks in a way

shifting  an  STN-cortex  mediated  motor  network  towards  a  cortico-cortical  (fronto-

parietal)  mediated  one  (Sharma  et  al.,  2021).  An  increase  in  the  cortico-cortical

connectivity after dopamine administration might be due to a reduction in the coherence

between the STN and the cortex since at rest PD is associated with increased cortex-

STN synchrony  (Hirschmann et al., 2013; Sharma et al., 2021), and such excessive

synchrony could prevent or limit the communication between cortical structures (Cruz et

al., 2009; Holt et al., 2019). Moreover, we did not observe any significant difference in

the network global architectures between the medication states, specifically in the global

segregation or integration of the functional networks. It may indicate that modulation by

dopaminergic medication only exhibits limited impact on the interactions between some

specific regions rather than at the global network’s structural level. Future work should

address whether a successful modulation of the network properties relates to an even

more effective improvement of clinical symptoms than an unsuccessful one (as shown

in this data). Given that we only access the network at sensor space with a rather low-

density setup, we did not further quantify other aspects of  the cortical  networks, for

instance, small-world and scale-free characteristics. If one can appropriately address

the concerns regarding  quantifying  the  network’s  structures  (Kaminski  &  Blinowska,

2018),  future  work  should  also  investigate  a  possible  change  in  these  specific

characteristics  of  functional  networks  to  gain  more  insights  into  the  global  network

features in On and Off medication states. 

Finally, our data presented a link between local aperiodic activity and global network

efficiency in patients with PD. This result can be interpreted in a framework of regional

excitation/inhibition  balance shaping the  information  transmission  through the  global

network. Spectral slope has been closely related to excitation/inhibition balance at the

recorded  site  (Gao  et  al.,  2017),  with  shallower  slopes  corresponding  to  stronger

excitation  over  inhibition.  Relating  our  findings  of  spectral  slope  to  the  E/I
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(excitation/inhibition)  balance hypothesis,  a  steeper  slope in  the  On condition might

imply that there was a stronger inhibition in comparison to the Off condition. This line of

interpretation is consistent with the previous studies using TMS (transcranial magnetic

stimulation) showing that in PD at rest in Off condition, there is a reduced inhibition

which can be up-modulated by the intake of dopaminergic medication (Cantello, 2002;

Casula et al., 2017; Hanajima et al., 1996). Our observation regarding the association

between spectral slope and the functional networks’ GE in PD Off condition implies that

local  E/I  balance  could  define  the  network’s  ability  of  global  integration.  This  is  in

agreement  with  a  previous study proposing  that  a  degree of  E/I  ratio  is  negatively

correlated  with  the  global  network’s  property  (X.  Zhou  et  al.,  2021)  (see  Figure  6,

modified  from  X.  Zhou  et  al.,  2021).  We  assume  that  the  PD  Off  condition  is

characterized  by  an  imbalanced  state  (more  excitation  against  inhibition)  and  thus

exhibits  a  close  association  with  the  network’s  global  integration.  Dopaminergic

medication gains a more balanced state, which positions the network in a rather stable

point achieving the optimal network configuration (specifically in integration). In addition,

surprisingly, our data did  show a difference in E/I dynamics (indexed by the spectral

slope) between the two medication conditions, although not exhibiting a difference in the

network’s  GE  property.  As  illustrated  in  Figure  6,  one  intriguing  possibility  of

interpretation would be that the left side of the inverted-U shaped function (GE vs. E/I) is

perhaps  where  the  PD  Off  state  located,  and  GE  grows  rather  slowly  for  rapidly

changing E/I ratio. Thus, along the GE axis, the network in the Off condition is situated

relatively near to the network in the On state. The networks from the two conditions

remain farther apart along the E/I axis. 

Figure 6. Local E/I impacts the global network integration (modified figure from the study
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(X. Zhou et al., 2021)). The dark line and grey areas represent the data samples in the

Off condition, while the red colored ones show the scenario from the On medication

condition. Eglobal represents the global efficiency, and Td means the thresholding values

for binarizing the network to compute the GE. 

Interestingly,  combining all  the findings concerning local  spectral  slope,  connectivity,

and graph measures of the functional network, we found that the left  centro-parietal

area is consistently present for all these effects. Therefore, we can speculate that this

region  might  be  a  critical  area  involved  in  the  alterations  due  to  dopaminergic

medication. Regulating the level of excitation of this area might influence not only local

activity but also distributed network activity. Finally, we are refraining from drawing too

strong conclusions from the current findings, and we suggest that future studies should

further validate these effects in the source space and with a larger sample size.  

Taking these two studies together, one limitation of this thesis is that for neither study,

we have a comprehensive dataset that simultaneously includes the groups of healthy

young,  healthy  elderly,  and PD patients  in  Off  and On medication  states  (see own

representation: Figure 7). This setup would allow us to investigate the measures (PAC,

beta  burst  dynamics,  spectral  slope,  functional  connectivity,  and  graph-based

representations  of  the  network)  straightforwardly  in  healthy  aging  (healthy  elderly

compared to young subjects), PD development (patients with PD compared to healthy

elderly control), and medication-induced effects (medication On compared to Off in PD

patients). In addition, these biomarkers should be further validated longitudinally. 

A refined elderly group should be considered for future work since the inclusion of an

elderly group without PD does not exclude the presence of a preclinical or a prodromal

PD state. Ideally, in a future study elderly people should be screened neurologically for

early preclinical signs of PD. Based on this, subgroups of elderly who are completely

parkinsonism-free and subgroups where the elderly show mild parkinsonian signs could

be defined. For this purpose, the set of criteria for defining prodromal PD proposed by

the MDS could be applied (for instance, by integrating the identified risk factors and

markers of  prodromal PD published in 2015 and 2019).  This  way, it  would become
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possible to differentiate a “truly healthy aging” process from a preclinical/prodromal PD

and a clinical PD. It will be interesting to test how the neuronal biomarkers presented

here will differ in these refined groups and whether those biomarkers could continuously

trace  the  development  and  progression  of  parkinsonian  state.  Also,  one  could  test

whether a subgroup of elderly subjects with a higher LRs (indicating a higher probablity

of prodromal PD) would show a similar effect in comparison to a lower-LRs subgroup,

as we have demonstrated in the elderly in comparison to young group in study 1. 

Figure 7. Overview of the two studies and outlook for future study designs. In study 1,

we only included apparently healthy young and elderly groups to investigate the general

aging effect on the neuronal biomarkers associated with PD in the previous literature.

Note,  in  the  literature,  all  the  PD-related  results  were  indicated  by  comparing  the

patients  with  PD  to  a  general  healthy  control  group  (without  defining  the  level  of

parkinsonism). In study 2, we only investigated the dopaminergic medication-induced

effects  in  a  cohort  of  patients  with  PD.  In  future  studies,  a  comprehensive  design

including all the groups would be desirable for answering the research question as to

whether the identified neuronal biomarkers could indeed indicate different stages of PD

(“completely  healthy”  versus  “preclinical/prodromal  PD”  versus  “clinical  PD”  versus

“medication relieved parkinsonian state”). 

5 Conclusions

My doctoral thesis shows that electrophysiological neuronal biomarkers associated with

PD can also be present and detectable in the apparently healthy elderly people without

PD in comparison to younger subjects, supporting the hypothesis that aging might be

related  to  a  pre-parkinsonian  state,  as  evidenced  previously  in  non-human primate

studies. Specifically, aging-related changes in PAC and beta burst dynamics share the

45



directionality that accompanies the PD development. Our findings suggest that future

prospective  studies  should  be  carried  out  to  test  their  predictive  values  as  early

biomarkers  of  PD  development.  In  addition  to  these  effects,  which  focus  on  the

oscillatory  activities  (specifically  in  the  beta  band),  local  non-oscillatory  wide-band

activity (estimated by spectral slope) can also be a marker differentiating medication-

induced states in PD. We further show that dopaminergic medication not only induces

changes within the local cortical areas which are related to the movement control but

also in the functional interaction across remote areas. Lastly, linking the local and global

network  changes,  the  local  spectral  slope appears  crucial  in  defining  the  network’s

integrative property in PD. Taken together, these findings contribute to identifying early

biomarkers  of  PD  and  differentiating  or  even  tracking  the  progression  course  of

parkinsonian state. 
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