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Abstract

Parkinson’s disease (PD) is a frequent neurodegenerative disorder. It mainly affects
motor functions and it has a long preclinical phase. Dopaminergic medication is an
effective treatment but also comes with adverse effects. Therefore, investigating early
biomarkers of PD and effects of dopaminergic medication is crucial for advancing the
understanding and treatment of this disease. In my dissertation, two studies are

presented that contribute to this field.

In the first study, we studied PD-related neuronal biomarkers, including excessive PAC
(phase-amplitude coupling) between the beta phase and amplitude from broadband
gamma and abnormal beta burst dynamics in a group of young (N=71, age 20-35
years) and apparently healthy elderly (N=66, age 59-77 years) subjects with
electroencephalography (EEG) recordings. In the second study, based on a group of
patients with PD (N=15), we investigated the effects of dopaminergic medication on
non-oscillatory component of the neural activity (estimated by the spectral slope), the

inter-areal functional connectivity and functional network’s configuration properties.

The results from the first study confirmed that the elderly subjects show elevated PAC
compared to the younger ones; and this effect is most pronounced in motor-related
areas. In addition, the elderly are characterized by prolonged and more often bursting
beta activity compared to the young subjects. In the second study, we observed that the
spectral slope is steeper after dopaminergic medication intake. Moreover, the
medication administration induces an up-regulation of the inter-regional connectivity in
the beta band, mainly in fronto-centro-parietal regions. However, there is no evidence
showing a significant alteration in the global properties of the functional network.
Interestingly, we found that only in the Off medication state there is a close association
between the spectral slope and the integrative ability of the brain network. These effects

are consistently present in the centro-parietal region.

These findings provide evidence that the electrophysiological biomarkers associated
with PD are also present in a group of presumably healthy elderly compared to a young

one. This, in turn, indicates that these biomarkers might be promising for the detection



of a pre-clinical stage of PD given a close relationship between aging and PD. Future
prospective studies should test their unique predictive value in the development of PD.
Furthermore, dopaminergic medication induces changes not only locally in the spectral
slope but also in the interaction between the areas with a specific spatial interaction
pattern. Crucially, the spectral slope (which may index the local excitation/inhibition
ratio) appears to be essential in forming the global network’s ability to integrate
information from remote areas in PD. This could be relevant for the interventional

studies directed at non-invasive modulation of neuronal activity in these areas.

Zusammenfassung

Die Parkinson-Krankheit (PK) ist eine neurodegenerative Storung. Sie betrifft die
motorischen Funktionen und hat eine lange praklinische Phase. Dopaminerge
Medikamente (DM) sind eine wirksame Behandlung, haben aber auch
Nebenwirkungen. Daher ist die Untersuchung friher Biomarker fiur PK und der
Auswirkungen DM von Bedeutung, um das Verstandnis und die Behandlung dieser
Krankheit voranzutreiben. In meiner Dissertation werden zwei Studien vorgestellt, die

einen Beitrag zu diesem Thema leisten.

In Studie 1 nutzten wir Elektroenzephalografie (EEG) und untersuchten neuronale PD-
bezogene Biomarker, einschliellich erhdéhter PAC (Phasen-Amplituden-Kopplung)
zwischen der Beta-Phase und der Breitband-Gamma-Amplitude und abnormaler Beta-
Burst-Dynamik in jungen (N=71, Alter 20-35 Jahre) und gesunden alteren (N=66, Alter
59-77 Jahre) Probanden. In Studie 2 mit PK-Patienten (N=15) untersuchten wir die
Auswirkungen von DM auf die nicht-oszillatorische Komponente der neuronalen
Aktivitat, die interareale funktionelle Konnektivitat und dessen

Konfigurationseigenschaften.

Die Ergebnisse von Studie 1 bestatigten, dass altere Probanden eine erhdohte PAC
aufweisen; dieser Effekt ist in den motorischen Bereichen am starksten ausgepragt.
Darlber hinaus weisen altere Probanden eine verlangerte und haufiger auftretende

Bursting-Beta-Aktivitat auf. In Studie 2 beobachteten wir, dass die spektrale Steigung



nach der DM-Einnahme steiler ist. AuRerdem fluhrt DM zu einer Hochregulierung der
Konnektivitdt im Betaband, vor allem in fronto-zentral-parietalen Regionen. Es gibt
jedoch keine Hinweise auf eine signifikante Veranderung der globalen Eigenschaften
des funktionellen Netzwerks. Interessanterweise haben wir festgestellt, dass nur im
Zustand ,ohne“ DM ein enger Zusammenhang zwischen der spektralen Steigung und
der Integrationsfahigkeit des Netzwerks besteht. Diese Effekte sind durchweg in der

zentro-parietalen Region vorzufinden.

Diese Ergebnisse belegen, dass die EEG-Biomarker, die mit PK in Verbindung gebracht
werden, auch in gesunden, alteren Menschen vorhanden sind. Dies wiederum deutet
darauf hin, dass diese Biomarker vielversprechend fur die Erkennung eines
praklinischen Stadiums der PK sein kdnnten. Kinftige prospektive Studien sollten ihren
pradiktiven Wert in der Entwicklung der PK untersuchen. Daruber hinaus induzieren DM
Veranderungen nicht nur lokal in der spektralen Steigung, sondern auch in der
Interaktion zwischen den Bereichen mit einem Dbestimmten raumlichen
Interaktionsmuster. Entscheidend ist, dass die spektrale Steigung (die mdglicherweise
das lokale Verhaltnis zwischen Erregung und Hemmung anzeigt) flr die Fahigkeit des
globalen Netzwerks, Informationen aus entfernten Bereichen zu integrieren, bei der PK
von Bedeutung ist. Dies konnte fur interventionelle Studien relevant sein, die auf eine

nicht-invasive Modulation der neuronalen Aktivitat in diesen Bereichen abzielen.



1 Introduction

1.1 Parkinson’s disease (PD): symptoms and treatment

PD is a chronic neurodegenerative disorder with a prevalence ranging from 0.25% to
4% for people aged between 65 and 80 years (de Lau et al., 2004; de Lau and Breteler,
2006; Pringsheim et al., 2014). PD demonstrates major motor symptoms and also non-
motor ones. Typical motor-related symptoms include stiffness of the limbs and trunk,
resting tremor, gait imbalance and bradykinesia. Symptoms usually start to be present
on one side of the body and progress to the other, and eventually show presence on
both sides. However, one side of the symptoms is still more severe than the other,
which is often called the dominant side of the symptoms. Non-motor symptoms also
appear, which may include, e.g., depression (and other affective disorders), sleep
problems, olfactory loss, difficulties in swallowing and speaking, etc. Although typical PD
symptoms are well defined, their progression rate over time differs from patient to
patient. Even though PD is clinically defined as a movement disorder, the non-motor
manifestations are demonstrated to start even from a very early stage and are present
in most patients. Thus, some of them have been incorporated into the current diagnostic

criteria for prodromal PD (Berg et al., 2015).

Motor symptoms remain the core feature by which PD is diagnosed clinically. Total
diagnostic certainty is impossible in life; a varied accuracy between 75% to 95% of the
patients diagnosed by clinical experts have been confirmed only by autopsy (A. J.
Hughes et al., 1992; Andrew J. Hughes et al., 2002). This variability can be attributed to
the disease duration, age, the expertise of the clinician, and advancement in disease
understanding. The diagnosis of PD can be robust in most cases, particularly with a
stringent use of the criteria by an experienced neurologist. However, it has been
suggested that imaging modalities for instance dopamine transporter single-photon
emission computed tomography (DAT-SPECT) could be a helpful diagnostic tool in
routine clinical practice by identifying the presynaptic nigrostriatal dysfunction (Poewe &
Scherfler, 2003).



Current treatment of PD mainly includes dopaminergic medication and surgical DBS
(deep brain stimulation). Drugs, for instance, Levodopa (L-DOPA), are prescribed to
enhance the dopamine concentration in the brain of patients. The precursor for the
neurotransmitters, L-DOPA, can pass the protective blood-brain barrier, unlike
dopamine, which is not able to do so. L-DOPA is converted not only by the neurons in
the central nervous system (CNS), but also by the cells in the peripheral nervous
system. This leads to an undesired increase in dopamine signaling in the periphery as
well, thus resulting in many adverse effects (for instance nausea, vomiting, low blood
pressure and restlessness). L-DOPA is typically administered along with other
medications, including carbidopa, to stop the peripheral synthesis of dopamine from L-
DOPA. In addition, the administration of dopamine can lead to changes in the brain
regions affected by PD and in the non-PD related regions (Gershman & Uchida, 2019).
For instance, prior studies on PD have shown that overdose administration of
dopaminergic medication can cause adverse cognitive effects (A. A. MacDonald et al.,
2013; P. A. MacDonald et al., 2011; Voon et al., 2010). Therefore, rational management
of dopaminergic medication remains an important topic and is still challenging.
Identifying biomarkers, particularly derived from non-invasive recordings, underlying
changes corresponding to the improvement of clinical symptoms due to dopaminergic

medication is of great interest.

With the accumulation of the medication effects, at some point, patients might become
much less or even not responsive to medications anymore. Then, they are subject to an
invasive treatment that involves a surgical procedure - deep brain stimulation (DBS).
DBS involves insertion of electrodes into the sub-cortical part (typically in the
subthalamic nucleus (STN) or internal globus pallidus (GPi)) of the brain and connecting
the electrodes via cables to a device that is placed in the chest. By programming the
device depending on the severity and symptoms of the patient, stimulating the brain

structure can usually effectively improve the motor symptoms (Sobesky et al., 2022).

1.2 Pathology of PD

The loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) is the
primary cause of PD. Cardinal PD symptoms are believed to become clinically present

when around 50%—-70% of the dopaminergic cells in the SNc degenerate (Antonini et
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al., 2002; Carvey et al.,, 2006; Ransmayr et al.,, 2001). The presence of fibrillar
aggregates known as Lewy bodies (LBs) is one of the primary characteristics of PD.
Lewy bodies are the abnormal aggregation of protein that develop inside nerve cells. In
PD, a-synuclein, a protein from the pre-synaptic nerve terminal (lwai et al., 1995),
makes up a significant component of Lewy bodies (Wakabayashi et al., 2007, 2013).
The role of LBs concerning neuronal loss in PD is still under debate. LB production has
previously been thought to be a sign for neuronal degeneration; however, recent
research has suggested that fibrillar aggregates of LBs might instead function as a

cytoprotective mechanism in PD (Wakabayashi et al., 2013).

Previous studies have demonstrated that the early pathology of PD begins in substantia
nigra (SN) (Damier et al., 1999; Fearnley & Lees, 1991). However, following the a-
synuclein pathology, it has been recognized that the progression of PD follows cauda-
rostral propagation from the peripheral nervous system to the CNS. Previous studies
have shown that the substantia nigra is not the first structure in the brain to develop PD-
related lesions (Del Tredici et al., 2002). In 2003, Braak and his colleagues proposed a
model that describes PD’s pathological staging scheme (Braak et al., 2003). There, they
suggest that pathology starts in the dorsal nucleus of vagal nerves and olfactory bulb in
stages 1-2. In stages 3-4, it progresses into pontine tegmentum and midbrain,
neostriatum, and medial temporal cortex. Then its invasion into the higher order sensory
association and prefrontal areas and further the whole neocortex is considered as a
final stage of 5—6. Although this model is commonly recognized, very recent work by
(Blesa et al., 2022) suggests that early involvement of the nigrostriatal system in this
bottom-up progression model is a prominent component of pathological mechanism for
PD.

In terms of brain function, PD mainly affects the basal ganglia-thalamus-cortex (BGTC)
circuitry. In this loop, through innervation of glutamatergic neurons in the striatum, the
cortex provides excitatory input to the striatum, which then projects back to the cortex
via the thalamus (Hammond et al., 2007). The loops can be generally separated into
five functional zones based on the differential input from distinct cortical areas: the

motor, the dorsolateral prefrontal, the lateral orbitofrontal, the anterior cingulate, and the
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oculomotor loop (Alexander, 1986). Evidence has demonstrated that these circuits
rather interact with each other instead of functioning in a segregated manner via
projections within the striatum (DeLOng & Wichmann, 2009; Saint-Cyr, 1995). In PD,
investigating the motor-related circuit is crucial for understanding its pathology. It
comprises three major pathways: direct, indirect, and hyperdirect pathways (see own
representation: Figure 1). MSNs (medium spiny neurons) within the striatum project
different nodes within the loop: D1 receptors give rise to the direct pathway, while the
MSNs expressing D2 receptors constitute an indirect pathway (Schwarz et al., 2004;
Wichmann et al., 2011). The striatum projects GABAergic inhibitory input onto GPi
directly through a direct pathway and indirectly excitatory input onto the GPi by involving
the GPe (external globus pallidus; gets inhibitory input from the striatum) and the STN
(gets the inhibitory input from the GPe) via the indirect pathway. In addition, a direct
connection from the motor-related cortices (sensorimotor cortex, premotor cortex,
supplementary motor cortex, and cingulate motor area) to the STN forms another
pathway: the hyperdirect pathway, which bypasses other nodes in the circuit and thus
can transmit information faster (Hammond et al., 2007). It was previously believed that
the direct pathway is essential for motor initiation and promotion, while the indirect
pathway is involved more in the termination of movement (DeLong & Wichmann, 2009).
However, this mechanism could not account for concurrent activation of both pathways
during movement. Recent findings suggest that both pathways are rather structurally
and functionally interconnected through the coordination in the striatum (Calabresi et al.,
2014). In a healthy state, activities of direct and indirect pathways are balanced. Motor
irregularities have been linked to a disruption in the ability of the striatum tio maintain
the balance between excitation and inhibition (Gittis et al., 2010; Oran & Bar-Gad,
2018). Besides, animal PD models and computational work have shown that PD is
characterized by an overactive hyperdirect pathway (Ahn et al., 2015; Oswal et al.,
2021; Shi et al., 2021). While a large body of studies focuses on the BG, the cortex, and
their interaction, cortico-cortical interaction is also a crucial part of this pathological loop.
This notion can be evidenced by a very recent study showing that the functional
connectivity between the subcortical regions and a variety of cortical regions (not only
those mentioned above) closely relates to the movement improvement in PD (Sobesky
et al., 2022).

12
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Figure 1. A simplified schematic illustration of three motor pathways in PD. The striatum
receives excitatory input from particular cortical regions (MC, PMC, SMA, and CMA). It
exerts inhibitory output to GPi via the direct pathway and GPe, and STN via the indirect
pathway. Two pathways merge at GPi and inhibit the thalamus with excitatory output
projecting back to the cortex. In addition, the cortex directly projects to the STN through
a hyperdirect pathway. Note, apart from these pathways, cortico-cortical interaction is
an important component of the loop which, nevertheless, is less a focus of previous

studies.

1.3 Electrophysiological neuronal biomarkers of PD

Local Field potentials (LFPs) can be produced by the synchronous electrical activity of
multiple neurons in a given area of tissue. They can be recorded by placing a
microelectrode nearby the population of neurons of interest (in cortical and subcortical
regions). In addition, there is a lot of interest in employing non-invasive measurements,
such as MEG (Magnetoencephalography) and EEG, to identify potential biomarkers
related to PD. This could be valuable for PD diagnosis, dopaminergic drug
administration, tracking the development of disease, and as control signals for closed-
loop DBS therapy (A. M. Miller et al., 2019). Compared to a local activity captured by
LFPs, EEG recording captures the summed electrical activity, generated along the
whole cortex and transmits through layers of tissues (cerebrospinal fluid, skull, scalp
skin). The primary source of neuronal activity recorded by EEG is the excitatory and

inhibitory postsynaptic potentials from the pyramidal cells in the cortex (Speckmann et
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al., 2012). Besides, synchronized neuronal currents induce magnitude fields which can
be captured by MEG recording. Electrophysiological biomarkers of PD can be studied
with LFPs recorded in the basal ganglia or non-invasive scalp MEG/EEG recordings or
simultaneous LFPs-MEG/EEG.

Electrophysiologically, it has been consistently reported that a pathological neuronal
synchronization characterizes PD through the BGTC circuit (DeLong & Wichmann,
2009; Hirschmann et al., 2011; Litvak et al., 2011; Silberstein et al., 2005; Waschke et
al., 2017; Weinberger et al., 2006), and this abnormal synchronization is mainly
reflected in a specific frequency range: beta (13-30 Hz) frequency band. Therefore,
particular attention has been given to this frequency band. The most prominent

electrophysiological markers associated with PD are summarized below.

Beta power. The power of oscillatory activity can be estimated with spectrum density
(PSD) or mean squared amplitude over a specific frequency range when using band-
pass filtered signals. Beta band activity is typically referred to as a narrow band of 13—
30 Hz. It has been shown that neurons in the STN can fire rhythmically at the beta
frequency band (Levy et al., 2000), and further evidence demonstrates that oscillations
in the STN LFP reflect synchronous population activity of local neurons (Brown et al.,
2001; A. A. Kihn et al., 2004; Andrea A. Kihn et al., 2005; Ray et al., 2008). In PD,
studies using local field potentials of the STN showed that excessive neuronal
synchronization is observed in the beta frequency range (Brown et al., 2003; Chen et
al., 2010; Andrea A. Kuhn et al., 2006). Crucially, both dopaminergic medications
(Alonson-Frech et al., 2006; Cassidy et al., 2002; Andrea A. Kuhn et al., 2004; Ozturk,
Abosch, et al., 2020; Ozturk, Kaku, et al., 2020; Ray et al., 2008; Tinkhauser, Pogosyan,
Tan, et al., 2017; Weinberger et al., 2006) and DBS (Muller and Robinson, 2018; Ray et
al., 2008; Tinkhauser, Pogosyan, Little, et al., 2017; Wingeier et al., 2006) can
effectively interfere with this excessive beta synchronization, and an improvement in
motor symptoms (amelioration of PD symptoms) is closely correlated with the beta
oscillation suppression. In addition, cortical beta power has been intensively
investigated; however, a link between cortical beta power and parkinsonian state is less

consistently reported than that from the subcortical region. More specifically, some
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studies have demonstrated an increase of beta power in the PD Off state (Gong et al.,
2021) and a decrease after dopaminergic medication, while other studies showed no
power difference in the PD Off compared to healthy controls and no alteration by the
dopaminergic medication (George et al., 2013; A. M. Miller et al., 2019; Silberstein et al.,
2005; Stoffers et al., 2008; Swann et al., 2015; Zhang et al., 2022).

Beta-gamma PAC (Phase-amplitude coupling). PAC is one of the commonly used
forms of cross-frequency coupling with amplitude from the higher frequency activity
being modulated by the phase of lower oscillations. Previous studies, particularly in
attention control tasks, have suggested the role of PAC in coordinating the activity
between different associative brain areas (Szczepanski et al., 2014). In addition, it has
been shown that the thalamus regulates the exchange with cortical regions via PAC
(Malekmohammadi et al., 2015).

As mentioned earlier, aberrant synchronization in the beta frequency band of the basal
ganglia has been commonly recognized as the major neuronal sign characterizing PD.
In the context of PD, in 2013, de Hemptinne and colleagues showed that in patients with
PD, an existence of abnormal coupling of the beta rhythm phase and amplitude of
broadband gamma activity (beta-gamma PAC, referred to as PAC in the context of PD
in the rest of the text) as recorded with subdural electrocorticography (ECoG) (De
Hemptinne et al., 2013). Compared to patients with craniocervical dystonia and patients
with epilepsy, in patients with PD, excessive PAC was evident not only in the local LFPs
of the primary motor cortex (M1) but also between the LFPs from the STN and the M1
cortex. Significantly, this abnormal cortical coupling could be effectively suppressed by
DBS. Later, more investigations have demonstrated the existence of excessive PAC in
cortical recordings from patients with PD (De Hemptinne et al., 2015; Malekmohammadi
et al., 2018; van Wijk et al., 2016). This enhanced PAC has also been identified using
non-invasive EEG measurement in PD (Jackson et al., 2019; A. M. Miller et al., 2019;
Swann et al., 2015). PAC was also reduced by dopaminergic medication (A. M. Miller et
al., 2019; Swann et al., 2015). Previous studies on PAC used data from sensor space,
reflecting mixed signals from different brain regions due to volume conduction. A more

recent study solved this issue by utilizing an advanced source reconstruction
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methodology based on individual head models (Gong et al., 2021). The authors further
proposed that beta and gamma signals originating from distinct sub-networks instead of
from the same network components demonstrate more relevance for understanding
pathology in PD. Moreover, this study has demonstrated a close relation between this
inter-regional PAC and motor symptoms measured with UPDRS llI (unified Parkinson’s
disease rating scale). To date, one very recent study further confirmed the crucial role of
cortical PAC about movement deficit (particularly gait freezing) by using ECoG
recording at the motor cortex in patients with PD. Here the authors demonstrated an
occurrence of abnormally elevated PAC in freezing trials, and DBS targeting STN could
effectively decouple the oscillations at the cortex, thus alleviating freezing (Yin et al.,
2022). Besides, it is worth noting that all these electrophysiological markers described
(above and below) were only demonstrated on a group level (i.e., not eveyone having a
high PAC will be dianosed with PD). So far, only one study examined the dianostic utility
of PAC at a single subject level, and their analyses showed moderate potential for this
purpose (Swann et al., 2015). Although PAC is far from being an ideal non-invasive
biomarker of PD (with high specificity and sensitivity), it does appear to have some
intriguing features of being a very promising biomarker characterizing PD. Yet, its full

potential should be explored further.

Beta burst dynamics. Earlier in this section, | have mentioned that previous studies
showed a direct link between basal ganglia beta oscillations and the severity of motor
symptoms (Brown, 2003) as well as a reduction in beta power after dopaminergic
medication administration or during DBS (Andrea A. Kuhn et al., 2006, 2009; Neumann
et al., 2018; Oswal et al., 2016; Trager et al., 2016). In the meantime, increasing
evidence has shown that physiological beta activity is composed of brief bursting
episodes in the motor circuit (Feingold et al., 2015; Murthy & Fetz, 1992). Breakthrough
evidence was presented by human MEG data, computational modeling, and laminar
recordings, suggesting that neocortical beta activity emerges as short bursts (Sherman
et al., 2016). In 2017, Tinkhauser and colleagues, for the first time, demonstrated that in
PD, spontaneous beta activity in the STN is rather transient and occurs in bursts with a
large portion lasting 150-200 ms. Their experimental studies with PD patients suggest

that pathological beta activity in PD is related to prolonged duration along with a more
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frequent incidence of beta bursting activity. Importantly, this pathological phenomenon
could be alleviated by re-distributing the beta bursts into shorter, less frequent (or, in
other words, more physiological) ones through either dopaminergic medication or
adaptive DBS, where long beta bursts were selectively targeted and fragmented
(Tinkhauser, Pogosyan, Little, et al., 2017; Tinkhauser, Pogosyan, Tan, et al., 2017).
These abnormal burst dynamics observed in STN LFPs were further present in the
motor cortex using ECoG at M1 by (O’Keeffe et al., 2020) in PD patients. Simultaneous
local field potentials in the STN and EEG over the motor cortex confirmed that beta
bursts take place locally and are also connected to a between-structure coupling in the
basal ganglia-cortical motor network (Tinkhauser et al., 2018). This coupling exerts a
greater impact on burst periods as opposed to non-bursting episodes, and longer beta
bursts than the shorter ones. This finding raises the possibility that beta bursts have a
role in the phasic coupling between sites within the network as well as in the increased
local synchronization, which implies a further impact on the motor-related circuits’ ability

to encode information in PD.

Spectral slope (also referred to as 1/f slope). Electrophysiological brain signals are
composed of oscillatory activities and an aperiodic component in the frequency domain.
In the brain, recordings with LFPs, EEG, and fMRI (functional magnetic resonance
imaging) have all demonstrated this characteristic (Bullmore et al., 2001; Bullmore &
Sporns, 2012; Freeman & Zhai, 2009). It has been suggested that this non-oscillatory
aspect of brain activity can shed more light on the complex neuronal dynamics that are
taking on at various temporal scales (He et al., 2010; Voytek et al., 2015). In
computational modeling and animal studies, this measure has been shown to have a
close association with the ratio of excitation/inhibition (E/I) from the recorded site (Gao
et al., 2017). Represented by the fitted slope in the log-log space, the aperiodic part of
neural activity (referred to as spectral slope or 1/f) is associated with development,
healthy aging, dynamic cognitive performance, and neurological diseases like
schizophrenia and ADHD (Attention deficit hyperactivity disorder) (Donoghue et al.,
2020; Molina et al., 2020; Peterson et al., 2017; Robertson et al., 2019; Voytek et al.,
2015). Moreover, clinical studies showed this spectral slope becoming more negative

during anesthesia (Colombo et al., 2019; Gao et al., 2017). While many studies have
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focused on changes in oscillatory activity, the non-oscillatory part of brain signal has
remained unexplored in PD. It is important to mention that previous studies have
demonstrated that a flattening of the spectral slope is observed with healthy aging
(Cesnaite et al., 2021; Voytek et al., 2015). Even though this measure is not yet
investigated in PD studies, based on a close relationship between normal aging and
PD, it seems rational to hypothesize that the flattened slope can also be present in PD
(as shown in healthy aging). Additionally, previous studies using TMS (transcranial
magnetic stimulation), with which excitation and inhibition of the neuronal activity can be
directly measured, have demonstrated that PD is associated with alterations in cortical
excitability (Cantello et al., 2002; Ridding et al., 1995); therefore, such alterations can

also be potentially captured with aperiodic 1/f component.

Distributed beta connectivity (coherence). Coherence is a metric that gauges how
strongly the signals are phase-synchronized over a certain frequency and is one of the
typical approaches for quantifying connectivity. Although the exact mechanism of the
generation and the propagation of abnormal oscillatory activity remains unclear, it is
commonly recognized that PD is a network pathology (West et al., 2018). The abnormal
oscillation could propagate through the basal ganglia-cortical network’s connected
structures. Previous studies have shown that coherent activity exists within the basal
ganglia (DeLong & Wichmann, 2009; S. Little et al., 2012; Oswal et al., 2013;
Shimamoto et al., 2013; Weinberger et al., 2006) and between the subcortical region
and the motor cortex (Hirschmann et al., 2013; Lalo et al., 2008; Simon Little et al.,
2013; Litvak et al.,, 2011; West et al., 2018). In addition, abnormal cortico-cortical
interactions are also involved in this pathological loop. Prior work has shown that beta
coherence between cortical regions is exaggerated in PD and could be effectively
reduced by L-DOPA (George et al., 2013; Silberstein et al., 2005). A recent study,
however, did not replicate this finding, and conversely, no difference was found between
healthy controls and PD patients or between the PD Off medication and On state (A. M.
Miller et al., 2019). It might imply that excessive synchrony between the basal ganglia
and the cortex does not necessarily indicate an increase in connectivity between cortical
regions in PD. This assumption seems to be supported by a very recent study using
combined STN LFPs-MEG recordings. By applying a time-resolved Hidden Markov
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Model (HMM) to study whole brain interactions, including the STN and whole cortex, the
authors provided evidence showing that after dopamine administration, beta activity
shifted from being mediated by a STN to being mediated by a cortico-cortical
(frontoparietal-motor) network in PD (Sharma et al., 2021). Critical engagement of
cortical interactions has also been implied in work by (Gong et al., 2021), where the
authors reported a distributed presence of PAC over a variety of cortical regions,
especially over the somatosensory cortex. Although it has previously been suggested
that the hyperdirect tract is required for excessive PAC production (De Hemptinne et al.,
2013), this new finding might indicate that the abnormal PAC does not exclusively
involve the hyperdirect pathway — it is very likely to engage other pathways in the BGTC
network (direct and indirect pathways) or cortico-cortical connections.

What do these biomarkers imply in the context of PD pathology? The abnormal
PAC in PD involves the beta-band phase and amplitude from broadband gamma
activity. Broadband gamma amplitude is proposed to reflect local non-synchronous
spiking of neural populations (Manning et al., 2009; K. J. Miller et al., 2009); therefore,
excessive PAC indicates a neural recruiting pattern in which the local spiking activity is
preferably activated by some specific phase of lower frequency rhythm (i.e., beta
oscillation). PAC in a healthy state is dynamic, task-related, and responsive to changes
in cognition and behavior (Ryan T. Canolty et al., 2010; Ryan T. Canolty & Knight,
2010). In PD, however, the elevation of PAC might render the neurons in an inflexible
state, thus preventing the necessary changes for a dynamic behavior (Jackson et al.,
2019). As pointed out by other studies (Aru et al., 2015; Kramer et al., 2008; Lozano-
Soldevilla et al., 2016), one important note is that the non-sinusoidality of the signals
could confound the estimation of PAC. Therefore, a cautious interpretation of the PAC-
related finding is warranted. Similarly, since spectral coherence in the beta band can
serve as an index for communication between regions through the coherence
hypothesis (Fries, 2005, 2015), an increase in beta band coherence might also indicate
excessive synchrony throughout the network (Swann et al., 2015). As proposed by
(Jackson et al., 2019; Swann et al., 2015), different measures might pick up differential
aspects of the exact pathophysiology — excessive beta synchronization and neural

entrainment within the motor network. For beta burst dynamics, since increasing local
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field potential amplitude reflects the increasing local neural synchronization (Tinkhauser
et al., 2018), more frequent prolonged beta bursts (also naturally with higher amplitude)
in PD may index the excessively synchronous periods. Consequently, the synchronized
neurons are less likely to carry diverse information, and therefore, the capacity of
information coding of the network is constrained. Interestingly, a recent study was
dedicated to investigating the relationship between oscillatory power, bursting,
synchrony, and PAC over the motor cortex using ECoG (O’Keeffe et al., 2020). The
authors hypothesized that in PD, individual differences in beta power and PAC may be
explained by beta burst dynamics, evidenced by a higher PAC or beta power relating to
longer bursting periods. However, in my opinion, more work should be performed to

validate or provide more direct evidence for this claim.

In summary, current research tends to interpret these differential biomarkers as a partial
(thus imperfect) manifestation of the same pathological process underlying PD. Despite
this conclusion, one should acknowledge that none of these biomarkers can completely
explain each other. Therefore, investigating differential biomarkers characterizing PD is
an ongoing research topic, and it is crucial for understanding the pathology of PD

reflected in these biomarkers.

1.4 PD and normal aging
1.4.1 Risk factors for PD and markers for prodromal PD

PD is a chronic disorder, and it progresses through an early stage, where the
neurodegeneration has already commenced. This early period usually lasts from
several years to decades before the onset of the cardinal motor symptoms, based on
which a definite diagnosis of PD can be made. During this prodromal phase,
neurodegeneration has already started and spread throughout the nervous system
(Berg et al., 2014). Notably, a broad range of motor and non-motor signs characterize
the prodromal phase, and they might progress and evolve further to a fully developed
PD (Berg et al., 2015; Louis & Bennett, 2007). Even though mild symptoms are present,
these signs do not yet match the criteria for a clinical PD diagnosis. According to the
definition of PD by the International Parkinson and Movement Disorder Society Task

Force (Berg et al., 2014), PD should be categorized into three stages: preclinical
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(neurodegeneration has started but without evident symptoms) (Stern et al., 2012),
prodromal (symptoms are present, but they do not meet the criteria for diagnosis) and
clinical PD (cardinal symptoms are present and they are sufficient for clinical diagnosis).
Understanding the origin underlining these features during the early stages and their
pathological evolution may be crucial for the development of potential neuroprotective

treatment, which might halt the development and progression of PD.

The risk factors for developing PD, which have been established by previous work,
include age, male sex, regular occupational exposure to pesticides or solvents, non-use
of caffeine, non-smoking, family history with PD (sibling and first-degree family), and
known genetic mutation (such as GBA/LRRK2 mutation carriers) (Liu et al., 2012;
Noyce et al., 2012; Pezzoli & Cereda, 2013). Except for these risk markers with a broad
consensus, according to the first published criteria, multiple prodromal markers have
been identified and quantified to indicate a likely ongoing neurodegeneration process
(Berg et al., 2015). These prodromal markers comprise PSG (polysomnogram)-proven
RBD (rapid eye movement (RBM) sleep behavior disorder), clearly abnormal
dopaminergic PET (positron emission tomography)/SPECT (single-photon emission
computed tomography) to quantify the extent of striatal dopaminergic denervation,
possible subthreshold parkinsonism (or abnormal motor testing), depression, severe
erectile dysfunction, urinary dysfunction, constipation, olfactory loss, excessive daytime
sleepiness and symptomatic hypotension. As pointed out by (Berg et al., 2015), since
new data from different fields (neurobiology, genetics, neuroimaging, etc.) are
constantly generated, factors or markers used for defining prodromal PD require re-
updating continuously. In 2019, an update, which includes newly defined risk factors (for
instance, polygenetic risk factor, SN hyperechogenicity, diabetes mellitus, physical
inactivity, and low plasma urate levels) and identified prodromal markers (for instance,
global cognitive deficit) was then published (Heinzel et al., 2019). According to this
latest update, one of the promising candidate markers (not yet added to the criteria due
to lack of evidence from prospective studies), is neuroimaging biomarkers (Heinzel et
al., 2019). These candidate biomarkers (including neuroimaging ones) could be
suggested by their associations with RBD, carriers of genetic mutation, dementia with

Lewy bodies, and PD (Barber et al., 2017). Therefore, from this point of view,
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theoretically, electrophysiological biomarkers which have been associated with PD, as

mentioned above (section 1.3), may also potentially serve as prodromal markers for PD.
1.4.2 Aging is the primary risk factor for PD

Except for the risk factors mentioned above, we focus here on age which remains the
primary risk factor for developing PD (Bennett et al., 1996; Hindle, 2010; Morens et al.,
1996). Both healthy aging and PD are associated with dopamine loss (Cheng et al.,
2010; Darden, 2007). The mild symptoms present in the prodromal phase of PD have
often been demonstrated in the healthy elderly (Louis & Bennett, 2007). The published
criteria for prodromal PD can also evidence a close relationship between aging and PD:
the prior probability and required minimum total LRs (likelihood ratios that highlight a
diagnostic test's potency: A positive LRs shows how much the likelihood of PD
increases with a positive test result) for defining a prodromal PD is clearly age-
dependent (Berg et al., 2015). For instance, for people aged between 50-54, the prior
probability (the prevalence of prodromal PD) is 0.4%, and the corresponding required
LRs is 1000, while for the ones who are older than 80, the prior probability increases to
4.0%, and the total LRs for defining a prodromal PD decreases to 95. Another piece of
evidence comes from the age-dependent penetrance of intermediate-strength genetic
mutations associated with PD. For example, the cumulative PD risk of an LRRK2
mutation carrier is ~42% at the age of 80 years, while only 4% in the general population
(Heinzel et al., 2019; Lee et al., 2017). Crucially, evidence from non-human primates
has demonstrated a close link in the cellular mechanisms between aging and PD (see
Figure 2 below, from Collier et al., 2011) (Collier et al., 2011). Specifically, it has been
proposed that in the dopaminergic system, aging and PD share multiple biological
features (the accumulation of cellular markers in aging occurs, mimicking the pattern
observed in PD). Healthy aging induces a pre-parkinsonian state, and PD develops in a
way that is an accelerated normal aging process due to genetic, environmental and
other factors (Collier et al., 2011, 2017).

Moreover, data from PD mice models have shown that electrophysiological properties of
dopaminergic neurons are altered, and notably many of the effects are dependent on
age (Branch et al., 2016). In addition, neuroimaging studies have shown that age

remains the most substantial contributor to the first identified latent variable of brain
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atrophy derived from patients with PD (Zeighami et al., 2019). In a longitudinal study,
both healthy aging and PD data were acquired, and it was found that during one year,
both healthy aging and PD are accompanied by cortical thinning. Additionally, PD
showed a more pronounced alteration than what was observed in healthy aging (Yau et
al., 2018). These structural changes shared by both healthy aging and PD seem to
additively support the theory that PD is an accelerated or exaggerated aging process.
Based on the evidence from different lines of research, aging has repeatedly been
shown to be the primary risk factor for the onset of PD. In this context, we follow the
logic that aging might represent a process potentially associated with a
preclinical/prodromal PD, which might in turn provide a window through which
appropriate biomarkers may relate to early signs of neurodegeneration (which may

progress further to fully developed clinical PD).

Given a close relation between normal aging and PD, aging-related neuronal
biomarkers may prove useful to index an early stage of PD. These promising
biomarkers may appear in the normal aging process and can be further amplified
throughout the development of PD. Therefore, an important question arises: Are the
biomarkers associated with a fully developed PD also present during seemingly
“healthy” aging and could probably eventually reach a pathological level when PD is
fully developed? This question could be accessed by looking at the neurophysiological

changes in both healthy aging and PD.
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Figure 2. A schematic model describing the relationship between normal aging and PD
in the dopamine system proposed by Collier et al. (2011). With time passing, both
normal aging and PD are characterized by dopamine loss. However, due to a stochastic
interaction between multiple factors (for instance, genetic, inflammation, environment,
unknown factors, etc.), in PD an accelerated dopamine loss results in dysfunction

passing eventually the clinical threshold for PD.

1.5 Rationale of the studies

| have investigated electrophysiological biomarkers during apparently healthy aging
(perhaps indicating pre-clinical or prodromal PD) (study 1) and during dopaminergic

medication-induced On- and Off-states in PD patients (study 2).

Study 1: We hypothesized that the electrophysiological neuronal biomarkers associated
with PD are also present in healthy aging. To address whether the electrophysiological
biomarkers for PD are also present during healthy aging, we have analyzed an open
dataset that includes a large number of resting-state EEG recordings from healthy
young (age 20-35 years) and elderly (age 59-77 years). We hypothesized that
electrophysiological biomarkers of PD, that is, PAC between beta phase and amplitude
of broadband gamma activity, and the occurrence of longer beta bursts, are more
pronounced in the elderly in comparison to the young subjects. These biomarkers are

chosen based on the fact that they are consistently reported in previous studies about
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PD. In addition, these effects are expected to be strongest in the sensorimotor cortex. A

methodological overview of this study is shown in Figure 3 (own representation) below.

Although regional alterations may provide a in-depth understanding of the underlying
local circuit, the brain operates as a distributed network. Additionally, as we have
mentioned above, PD is a network pathology. While our first study has demonstrated
the presence of PAC and prolonged beta bursts in healthy aging, similar to what has
been shown in PD, the effect was not manifested only in the sensorimotor areas.
Instead, these effects were found to be present in multiple cortical areas (for instance,
the primary motor cortex, the somatosensory cortex, the cingulate cortex, the frontal
cortex, the temporal cortex, etc.). It is worth noting that the areas demonstrating
increased electrophysiological biomarkers in a healthy aging brain in our first study are
consistent with the recent data from patients with PD, where the authors showed the
elevation of PAC in similar cortical regions (Gong et al., 2021). Due to this observation, |
became interested in the interaction between cortical regions and moved beyond the
within-areal biomarkers. Besides, since it has been shown that a flattening of the
spectral slope is observed with healthy aging (Cesnaite et al., 2021; Voytek et al.,
2015), | anticipated this effect should also be present in PD. These factors contribute to

the motivation to carry out study 2, which | will introduce below.

Study 2: In this study, we hypothesized that dopaminergic Off and On medication
administration is accompanied by alterations locally in the non-oscillatory component
(represented by spectral slope) and globally in the brain network. To test this
hypothesis, we analyzed an open-access dataset that includes a patients’ cohort with
On and Off dopaminergic medication states. Specifically, here, we aimed to address the
following questions. What impact does dopaminergic medication have on functional
connectivity? In addition, from the perspective of graph theory, the following research
question was formulated: Does dopaminergic medication produce changes in the global
network architecture? Based on the previous finding of the flattening of spectral slope
observed in healthy aging (Cesnaite et al., 2021; Voytek et al., 2015), we assume that
this measure can also serve as a potential index for the parkinsonian state. We further

wondered: In PD, how does the spectral slope alter after the administration of

25



dopaminergic medication? Moreover, based on a hypothesis of excitation/inhibition
balance of spectral slope (Colombo et al., 2019; Gao et al., 2017), we hypothesized that
the local non-oscillatory activity should relate to the functional connectivity of the brain
network since local excitation can define and shape the transmission of the activation
locally and globally (Deco et al., 2014; S. Zhou & Yu, 2018). A methodological overview

of this study is shown in Figure 4 (own representation) below.

Before further details are presented, | would like to clarify a few possible ambiguities.
First, as mentioned above, all the summarized biomarkers associated with PD have not
yet been rigorously tested for their specificity and sensitivity (except for PAC in one
study (Swann et al., 2015)). These “biomarkers” were only demonstrated at group level
and are not yet proven as a feasible application at single subject level in clinical
practice. As a result, a statement like “a subject demonstrating high PAC should be
diagnosed with PD” is not the intended interpretation. Rather, we focus currently on the
interpretation of the effects on a group basis. Secondly, healthy aging (or normal aging),
in contrast to pathological aging, here refers to a natural process during which the
subjects age without developing any clinically diagnosed disease including PD. It is
unclear, though, whether some of the seemingly “healthy elderly” subjects are already in
the stage of the preclinical/prodromal PD. This problem is not resolved in my work as is
also the case for the earlier PD studies (where elderly are often recruited for a control
group). However, through performing these studies, some specific suggestions could be
provided so that such an issue could be possibly addressed in the future studies. Last
but not least, it may appear counterintuitive that a biomarker characterizing PD is
hypothesized to be also present in “heathy aging”. However, it should be emphasized
once more that the neuronal loss and cellular dysfunction in dopamine system is a
common feature of both aging and PD. Nevertheless, the magnitude of the effects
accessed in a longitudinal manner (i.e., the absolute value of PAC increase for instance)
should also be considered in relation to the particular effects we examined in aging and
PD, in addition to the question of whether or not the biomarkers are present as such

(i.e., a PAC elevation or not for instance).
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2 Methods

In this section, | will briefly introduce the methodologies we have utilized in this
dissertation. For a detailed description of all these methods, one can refer to the
attached original publications (Zhang et al., 2021, 2022).

2.1 Experimental design

The data analyzed in the first study is an open public dataset that was acquired in a
previous study (Babayan et al., 2019). Participants were instructed to sit calmly in a
chair, and recordings were performed in a sound-shielded room. A 62-channel EEG cap
(BrainAmp MR-plus amplifiers using ActiCAP electrodes) was used to acquire the data.
The recording included eyes-open (EO) and eyes-closed (EC) sessions, with each
condition (EO or EC) lasting 8 minutes in total. In our study, we only pooled the data
from the eyes-closed condition since, usually, this condition has a higher SNR (signal-
to-noise ratio). The final dataset included an elderly group (with 66 subjects aged 5977
years, 31 females) and a gender-matched younger group (71 subjects aged 20-35
years, 24 females). Additionally, we also included measurements from a behavioral
task. The Alertness subtest of TAP (Test of Attentional Performance, Zimmermann &
Fimm, 2002) measures the reaction speed and alertness. Participants were asked to
respond to the randomly appearing cross with varying intervals on the screen as quickly
as possible. As a final measure for intrinsic alertness, the mean reaction time for each
subject was calculated: the higher the reaction time, the lower the behavioral

performance.

Data analyzed in the second study is open-source data which can be acquired with this
link: https://openneuro.org/datasets/ds002778/versions/1.0.5. Fifteen patients with PD
were recruited and measured on two days for dopaminergic medication: On and Off
conditions in a counterbalanced manner. The EEG recordings include approximately 3
minutes of resting-state obtained with a 32-channel EEG cap with the BioSemi
ActiveTwo system. During the recordings, participants were told to be calmly seated in
front of a screen that displayed a cross in the center. For more details, one could refer

to this original study (George et al., 2013).
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2.2 Spectral analysis

Power spectral density was computed by the ‘pwelch’ function from Matlab with a
Hamming window size of 1s (5612 samples) and 50% overlap. By averaging the PSD
values over the corresponding frequency range, 13-30 Hz, beta band power was
attained. For the detection of individual beta peaks, we used the function findpeaks’

from Matlab over the frequency range of the beta band.

2.3 Phase-amplitude coupling

To quantify the degree of phase-amplitude modulation, modulation index (MI) based
PAC was computed (Tort et al., 2008). It estimates the deviation of the normalized
amplitude distribution based on the sorted phase bins. The MI value ranges from 0 to 1:
0 indicates no coupling and 1 indicates a perfect coupling. To visualize the possible
coupling pattern in a broad range of frequencies, as described in Zhang et al. (2021),
we computed MI across the 4-50 Hz for phase providing frequency (in the step of 2 Hz
with a bandwidth of 2 Hz) and 4-170 Hz for amplitude providing frequency (in the step
of 4 Hz with a bandwidth equal to the slower oscillation’s center frequency), which is
also called a phase-amplitude comodulogram. To obtain the phase and amplitude
envelope information, Hilbert transform was applied to the band-pass filtered time
series. A PAC value was accessed by taking the mean of the MI values over the
frequency of interest within the comodulogram. In our case, MI values over the phase-
providing frequency range of 13-30 Hz and amplitude-providing frequency range of 50—
150 Hz were determined for further statistical analyses. A simplified illustration of PAC is

shown in Figure 3 (own representation).

2.4 Beta burst characteristics

Referring to the proposed methods by previous studies (Tinkhauser, Pogosyan, Little, et
al., 2017; Tinkhauser, Pogosyan, Tan, et al.,, 2017), a beta burst was defined as an
event that exceeds a certain threshold of the amplitude envelope and lasts more than
100 ms (at least two cycles of beta oscillations; see own representation: Figure 3)
above the threshold. For demonstrating the main findings, as described in Zhang et al.
(2021), we used a fixed threshold which in this case was the 65" percentile. In addition,

to verify the robustness of our results, we also incorporated the analysis encompassing
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a variety of thresholds (percentiles 50"-90" in a step of 5%). To characterize how long
the bursts are and how often they emerge, two parameters were estimated to quantify
the dynamic features of the beta burst event. One is the percentage of the beta burst
with different durations, and the other one is the burst incidence rate. A normalized
histogram was plotted to show the percentage distribution of bursts with different
durations: 0.1-0.2 s, 0.2-0.3 s, 0.3-04 s, 0.4-0.5 s, 0.5-0.6 s, 0.6-0.7 s, 0.7-0.8 s,
0.8-0.9 s. The incidence rate was obtained by counting the number of bursts over a

time unit (bursts/second).
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Figure 3. A schematic illustration of PAC and beta burst definition. PAC is calculated
based on the degree to which the phase of beta oscillation modulates the amplitude
from the broadband gamma activity. As illustrated in the PAC panel, the amplitude of the
fast oscillation (in the orange line) is always the highest when the slower oscillation (in
the blue line) reaches a specific phase (in this case, it is a positive peak). For the beta-
burst detection, the amplitude envelope of beta oscillation is obtained, and then a
particular percentile-based threshold (for instance, 65") is applied. An episode that is
above this threshold and lasts longer than two cycles is defined as a beta burst event.
We predominantly focus on motor-related areas for both measures, both in sensor and

source space.
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2.5 Spectral slope

Following the recommendation of a previous study (Colombo et al., 2019), we estimated
the spectral slope using a robust three-step regression method. The regression was
performed on the computed PSD (power spectral density) over a wide range of
frequencies (2—45 Hz) of the signal. As described in Zhang et al. (2022), briefly, a line
was fitted to the raw PSD in the log-log space using Matlab’s function ‘robustfit’. Then,
oscillatory peaks were identified and excluded based on the deviation of the PSD
residuals according to the fitted line. Lastly, the remaining of frequency bins are fitted for
a second time. The slope of the second fitted line was taken to be a final measure of the
spectral slope (see own representation: Figure 4). This approach is similar to how the
1/f slope is quantified using built-in functions based on the toolbox FOOOF

(https://fooof-tools.github.io/fooof/).

2.6 Functional Connectivity (FC) and network properties

To eliminate the spurious connectivity due to the volume conduction, lagged coherence
(Pascual-Marqui, 2007; Pascual-Marqui et al., 2011) was used to estimate the functional
connectivity by excluding zero-lag phase coupling. As mentioned in Zhang et al. (2022),
with a step of 1 Hz, connectivity between all of the channel pairs was calculated over a
frequency range of 1-35 Hz. By averaging the values of lagged coherence over the
frequency range of interest, functional connectivity in a particular oscillatory frequency
band was measured. Eventually, a functional connectivity map (functional network)

could be represented by a symmetrical 32x32 matrix.

In addition, we estimated theoretical graph measures for the functional network. As
described in Zhang et al. (2022), the nodal degree was estimated by the node centrality,
which quantifies the importance of the node in a network by the number and weight of
the connected node edges. To further characterize the network’s structure, we
calculated global efficiency (GE, which can be obtained by the inverse of the shortest
path length, and the shortest path length between two nodes is the path with the fewest
links) and clustering coefficient (CC, which can be calculated by the number of triangles
dividing by the total number of triples, and a triple means a subgraph consisting of three

nodes and at least two edges) to quantify the global network’s integration and
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segregation, respectively. Before doing so, a sparse connection matrix and further a
binary network was obtained by applying a proportional thresholding for the estimation
of the network features based on graph theory. We examined a series of thresholds that
may produce networks with 20 to 200 links, ranging from 36% to 4%. Next, these graph
theory-based metrics (GE and CC) were computed using the functions as implemented
in the Brain Connectivity Toolbox (Rubinov & Sporns, 2010). The greater the functional
integration (segregation) of the network, the larger the GE (CC).

Functional connectivity
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Figure 4. A schematic illustration of the methodology in study 2. The spectral slope is
measured in a log-log space within each area without including the prominent oscillatory
peaks. Besides, phase coupling in the beta frequency band between two areas is
estimated, and a symmetric matrix (32x32) representing the functional brain network is
obtained. Graph theory-based network measures are employed to quantify the local and
global properties of the network. Specifically, node degree quantifies the strength of
connections of one node based on the number (and the weight in some cases) of the
edges (for instance, in the bottom of Figure 4, the node degree of the orange one is 3
which is unweighted by the edge strength, only for illustration purpose). The clustering
coefficient quantifies a network’s ability for functional segregation. It is defined as the
ratio of present triangles to the total possible number of triangles for each node (for

instance, in the bottom of Figure 4, the clustering coefficient of the orange-colored node
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is 1). Global efficiency is the inverse of shortest path length between two nodes, which
is the path with the fewest edges (for instance, in the bottom of Figure 4, the shortest
path length between the two orange-colored nodes is 3). The functional network’s global
properties (CC and GE) are obtained by averaging the estimations over all the nodes

constituting a network.

2.7 Source reconstruction

To project the sensor data to cortical source space, we employed the New York head
model to acquire the lead field matrix (Huang et al., 2016) and the eLORETA (exact low-
resolution brain electromagnetic tomography) algorithm for inverse modeling. Further,
96 ROls (regions of interest) were created by grouping the vertices according to the
Harvard-Oxford brain atlas (Desikan et al., 2006).

2.8 Statistical tests

We performed statistical comparisons between groups using non-parametric tests.
Specifically, Wilcoxon signed-rank test was performed for within-subject and Wilcoxon
rank-sum test was applied for between-subject comparisons. To correct for multiple
tests, FDR (false discovery rate) procedure was employed (Yoav Benjamini & Yosef
Hochberg, 1995). In addition, for Ml comodulograms in study 1, we applied a cluster-
based permutation test (“Monte Carlo”, implemented in FieldTrip (Oostenveld et al.,
2011)) to account for the multiple tests within the two-dimensional frequency-frequency
space (Zhang et al., 2021). Similarly, in both studies, to account for multiple tests
conducted over all the channels in channel space, the cluster-based permutation was
used. Finally, we provided cluster-level statistics in the empirical data in comparison to
the null distribution derived from the permuted data (1000 times). Clusters with p values

less than 0.05 (two-tailed) were deemed significant.

3 Results

3.1 PAC over the motor-related area is elevated in healthy aging

Following the previous PD studies, we computed the MI comodulogram over the
sensorimotor area which electrodes C3 and C4 can represent. As shown in Figure 2A in

study 1 (Zhang et al., 2021), one can see a pronounced coupling over the phase from
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beta extending to low gamma frequency range and amplitude from broadband gamma
band in healthy elderly compared to the younger ones. To test whether there is a
significant difference in the PAC value between the beta (13-30 Hz) phase and
broadband gamma (50-150 Hz) amplitude similar to what has already been described
in the PD studies, we averaged PAC over these frequency ranges within the Ml map. A
Wilcoxon rank-sum test demonstrated a significant enhancement in beta-broadband

gamma PAC in healthy elderly compared to healthy young group (p=0.0147).

To further characterize the spatial origin of the PAC effect, we performed similar
analyses for all the channels as we described for channel C3 above. Statistical analysis
revealed a dominant distribution over the centro-temporal regions in the left-hemisphere
with extension to frontal areas (see Figure 3A in the study of Zhang et al., 2021). In
addition, we calculated PAC values for each region of interest for each subject in the
source space. Comparison between the two age groups in the source space confirmed
a spatial pattern where the most pronounced difference originated from left pre- and
post-central gyri (see Figure 3B in the study of Zhang et al., 2021), consistent with what
we have observed at the sensor level. Crucially, to rule out the confounds from the non-
sinusoidality of the beta waveform to the observed PAC effect, we performed additional
analyses (phase-phase coupling and regression analysis), showing that beta-gamma
The non-sinusoidality of the waveform of beta oscillations is unlikely to be the primary
drive of PAC (for details see supplemental analysis 1 in the study of Zhang et al., 2021).
Similarly, the PAC effect was not associated with the power of beta oscillation itself,

either (see supplemental analysis 2 in the study of Zhang et al., 2021).

3.2 Stronger association between PAC and reaction time with more advanced age

Next, due to the previous suggestion of a link between PAC and the severity of motor
impairment in PD patients, we also examined a possible link between the magnitude of
PAC and behavioral movement readiness which can be indicated by the mean reaction
time in a TAP-alertness task. We took an average of PAC values from the precentral
gyri (left and right) as a reliable measure of PAC for each subject. By increasing the
age-onset for inclusion of the subgroup to calculate the correlation between PAC and
the behavioral reaction times within each age group (elderly and young), we observed

an increasing correlation strength between PAC and the reaction times with more

33



advanced age onset in the elderly, but not in the young group (see Figure 4 in the study
of Zhang et al., 2021). It demonstrates that for the elderly with more advanced age,
there is a stronger positive association between PAC and reaction time. This means that
if we only take a sub-sample of elderly participants, a higher PAC associates with a
slower reaction and this association becomes even stronger when the included
participants are older. Importantly, by performing a permutation test, we showed that the

observed tendency was not due to the sub-sampling procedure.

3.3 Healthy aging is accompanied by longer bursts with a higher incidence rate

Properties of beta burst events were investigated as well. Beta bursts were classified
into nine windows (0.1-0.9 s with steps of 0.1 s and longer than 0.9 s) based on their
duration, consistent with how it was done in previous PD studies (Tinkhauser,
Pogosyan, Little, et al., 2017; Tinkhauser, Pogosyan, Tan, et al., 2017). In the centro-
parietal region (represented by channel CP3), we found that the proportion of shorter
bursts (0.1-0.2 s) in the young group was higher than that of the elderly group
(p=0.0122 after FDR correction). In comparison, the percentage of longer bursts (0.2—
0.3 s, 0.3-0.4 s, 0.4-0.5 s) are lower than that from the elderly group (p=0.0132,
0.0132, 0.0184 after FDR correction, respectively) (see Figure 5A in the study of Zhang
et al., 2021). Further, we estimated the percentage of longer bursts (0.2-0.5 s) for each
channel and each subject to examine the spatial pattern of the effect, and statistical
analysis indicated that a higher percentage of longer bursts in elder subjects, in
comparison to young subjects, were present in the bilateral frontal and centro-parietal
sites (see Figure 5B in the study of Zhang et al., 2021). In addition, the same analysis
from the source reconstructed signals revealed a spatial pattern with the most
pronounced difference located in bilateral pre- and post-central gyri (see Figure 5C in
the study of Zhang et al., 2021).

Except for the proportion of short and long bursts, another critical characteristic of beta
burst events is the burst incidence rate. Between the two groups, there is no significant
difference in the burst incidence rate for shorter bursts; however, a significant increase
was found in longer bursts (0.2-0.3 s, 0.3-0.4 s, 0.4-0.5 s) for the elderly compared to
the younger group. The difference topographies were distributed over the centro-

parietal regions across the longer bursts with various durations (0.2-0.3 s, 0.3-0.4 s,
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0.4-0.5 s) at the sensor level (see Figure 6A in the study of Zhang et al., 2021). In the
source space, we contrasted the two groups’ mean incidence rate of longer bursts (0.2—
0.5 s), and the analysis further confirmed a spatial localization over multiple cortical
areas with the strongest effects in the bilateral pre- and post-central gyri (see Figure 6B
in the study of Zhang et al., 2021).

Of note, the primary analyses for beta burst dynamics were based on the burst
definition with the representative threshold of the 65™ percentile. Additionally, to address
whether the effect was dependent on this specific threshold applied, we examined two
primary parameters of beta bursts, that is, overall burst duration and amplitude across a
range of thresholds ranging from the 50" to 90" percentile with a step of 5%. This
analysis demonstrated that, in general, the elderly participants have longer bursts with
higher amplitude than the young group, regardless of the thresholds for the definition of
a burst event (see Figure S5 in the supplemental material in the study of Zhang et al.,
2021).

3.4 Spectral slope is deeper after medication administration in patients with PD

In the second study, we examined the changes in the local aperiodic component and
global network alterations in PD patients in On and Off medication states. Regarding the
regional non-oscillatory component measured by the spectral slope based on the PSD
over a wide band of frequency (2-45 Hz). We found a spatial specificity for both groups:
a steeper power spectra distribution along the front-center-parietal midline of the brain
compared to other regions (see Figure 2B of Zhang et al., 2022). Statistical analysis
revealed an increase of spectral slope (flattening) in the Off condition compared to the
On condition (see Figure 2C of Zhang et al., 2022). The effect was primarily localized in
the left central site (Monte-Carlo, p=0.0220). Furthermore, we investigated the
differences in oscillatory beta power between the two conditions for scenarios both with
and without taking the overall slope effect into account. The result showed a lack of
significant difference in beta power between conditions for these both scenarios (see
Figure 3 of Zhang et al., 2022), despite the fact that after correcting for the slope, there
was a tendency for a decline in the beta power in centro-parietal regions (Off versus On,
Monte-Carlo, p=0.0739, 0.0939).
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3.5 Functional connectivity is enhanced due to medication intake

Next, we examined the functional coupling between pairs of regions which can be
approximately represented by the corresponding channels. We predominantly focused
on the connectivity between sensorimotor regions which typically includes C3 and C4
(or frontal regions covered by Fz) and other areas. With a resolution of 1 Hz in a
frequency range of 1-35 Hz, FC between C3 (or Fz) and Pz (one of the parietal region’s
representative channels) showed clear peaks for both conditions (see Figure 4A in the
study of Zhang et al., 2022). Using a channel-space cluster permutation test, we
performed a seed-based beta band connectivity comparison between medication
conditions after averaging the FC values over the beta frequency range. We found there
is a significant increase in the On in comparison to the Off condition in the beta band FC
between C3 (or Fz) and parieto-occipital (or centro-parietal) regions (see Figure 4B in
the study of Zhang et al., 2022). However, no difference was observed for C4-based
connectivity between conditions. This analysis was then repeated for all the rest of the
channels, and eventually, we were able to show a whole head profile (see Figure 4C in
the study of Zhang et al., 2022). The head-in-head topography demonstrated that there
was a synchronization up-regulation between the frontal, central, and parieto-occipital

regions after dopaminergic medication administration.

3.6 Graph properties of functional brain network are not responsive to

dopaminergic medication

To gain a better understanding of the properties of functional networks based on
theoretical graph analysis, we estimated the local and global features of functional brain
networks. First, we calculated the node degree for each channel and each subject. A
spatial specificity was revealed by a grand average of node degree across patients
within each group: In comparison to other regions, central regions had a higher level of
node degree (see Figure 5A in Zhang et al., 2022). Statistical comparison between the
two conditions revealed an increase of node degree primarily in the centro-parietal
region in the On condition compared to the Off condition (Monte-Carlo, p=0.0140, see
Figure 5B in Zhang et al., 2022). Further, we examined a possible change in the global
configuration/organization of functional networks: Clustering coefficient measures global

segregation, while global efficiency measures global integration. Statistical analyses did
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not indicate a difference across a broad range of thresholding values in either of these

measures (see Figure 6 in Zhang et al., 2022).

3.7 Spectral slope is closely related to global network efficiency in Off medication

state

To answer the question of whether the local activity can define the whole network’s
organization, we also looked into a possible association between global network metrics
and spectral slope. Firstly, we conducted the analyses using an example thresholding
value of 20% to derive the functional network metrics. The global slope (averaged
across all the channels for each subject) was found to be negatively correlated with the
GE of the functional brain network (r=-0.7643, p<0.001). This relation was only present
for the Off condition. Further, to investigate the spatial specificity of this relation, we took
each slope value from each channel and performed a correlation analysis across all the
electrodes. The investigation revealed a topographical pattern where the left centro-
parietal region showed the most pronounced effect (see Figure 7B in the study of Zhang
et al., 2022). Again, in the On condition, no significant association was found between
the local spectral slope and GE of the network. Next, the correlation analysis between
global slope and GE in the Off condition was extended using a broad range of
thresholding values ranging from 36% to 4%. Consistently, negative relations were
present across almost all these thresholds (36%—-6%: p<0.05, 4%: p=0.33) (see Figure
7C in Zhang et al., 2022).

4 Discussion

This doctoral thesis consists of two studies. The first study demonstrates that the typical
electrophysiological biomarkers associated with PD are also present in an elderly group
in comparison with a group of younger subjects. This might indicate that these
biomarkers, i.e., amplified PAC (between beta phase and amplitude of broadband
gamma activity) and prolonged beta burst with higher incidence, could be indicators of
preclinical or prodromal stages of PD. Consistent with this notion, with higher age, there
is an increasing correspondence between PAC and slowing of reaction times derived
from an alertness task (with increasing age of elderly, the positive correlation between

PAC and behavioral reaction time increases). This relationship did not show existence
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in a young group which we investigated, thus indicating a functional relevance of PAC
increase in the elderly. Additionally, the elevation of PAC and prolonged beta bursts are
found to be most prominent over the motor regions, which might reflect abnormal motor
circuitry pathology. These findings may help facilitate the early detection of
electrophysiological markers of neuronal degeneration, which might eventually progress

and evolve to meet a clinical diagnosis of PD later.

Apart from demonstrating the presence of PAC in healthy aging, in addition, we were
able to show a preferred phase specificity across the young and elderly groups. It
means that the high-frequency amplitude increases at a specific phase of beta
oscillation for the elderly and young subjects. We assume that in PD, this phase
specificity will remain or become even more pronounced. Since it has been shown that
a phase-dependent DBS treatment could suppress the beta amplitude in a more
efficient manner (Holt et al., 2019), it would be intriguing to test, at an individual level in
a patients’ cohort, whether at the preferred beta phase the stimulating effect could be

even further improved.

In agreement with the proposal from previous studies on non-human primates (Collier et
al., 2011, 2017) demonstrating that aging and PD share the cellular markers and aging
creats a pre-parkinsonian state, our study further shows that healthy aging and PD
share similar pathophysiological processes reflected in the electrophysiological
biomarkers. It seems reasonable to assume that electrophysiological biomarkers of PD
can be found in elderly people who are apparently healthy, and are further amplified in
patients with PD. This, specifically, leads to an assumption that the elevation of PAC
and prolonged beta bursts would be even more pronounced in PD compared to healthy
aging. However, due to a lack of inclusion of patients’ data in the first study, it was
impossible to have a straightforward comparison of the effects shared by healthy aging
and PD. In the first study (Zhang et al., 2021), we were only able to demonstrate that
both healthy aging and PD share the same directionality of the electrophysiological
changes in the brain, which are typically associated with PD. These shared
characteristics have spectral and spatial specificity. We did observe an overlap of the

PAC effect in our data with what has been reported in the previous PD studies.
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Increased PAC in the beta frequency range at the left sensorimotor cortical region, has
been consistently shown in healthy aging (Zhang et al., 2021) and PD (Gong et al.,
2021; A. M. Miller et al., 2019; Swann et al., 2015).

Methodologically, a critical contribution of this study also points to a novel way of
controlling for the spurious PAC attributed to the non-sinusoidality of beta oscillations.
Our data showed that the observed PAC effect was only partially (less than 10% of the
variance) explained by the non-sinusoidality of the beta waveform. Separating these two
phenomena is crucial for understanding the underlying physiological processes. A
typical PAC, by definition, is used to quantify the interaction between two independent
processes. It has been commonly linked to the assumption that phase from low-
frequency oscillation modulates the local spiking probability (R. T. Canolty et al., 2006;
De Hemptinne et al., 2013, 2015; Lisman & Jensen, 2013). Instead, a non-sinusoidal
wave-shaped beta oscillation, according to a recent simulation and experimental work,
may suggest a level of input synchronization onto the cortical pyramidal cells (Sherman
et al., 2016). In particular, to disentangle whether the observed PAC is mainly attributed
to the non-sinusoidality of slower oscillation, we adopted a methodology of
disassociating the harmonic versus non-harmonic driven PAC. For PAC calculation, the
harmonics of base frequency signal with a non-sinusoidal waveshape could lead to
spurious amplitude modulation of higher frequency signal. This spurious coupling could
be picked up by the measurement algorithms for PAC detection. | speculate that
estimated PAC value on cortical activity recorded with EEG/MEG is a mixture of
genuine and spurious ones. The core idea is to determine whether the PAC of interest is
mainly or mildly attributed to the non-sinusoidality of the lower frequency oscillation. We
demonstrated one example of possibilities (see supplemental analysis 1 of Zhang et al.,
2021) to disentangle to what degree the non-sinusoidality of beta oscillations drives
PAC.

Concerning the beta burst dynamics, the average duration of long beta bursts in healthy
elderly and PD patients is around 0.2-0.3 s, and the prolongation of beta bursts is
commonly reported in motor regions (O’Keeffe et al., 2020; Tinkhauser, Pogosyan, Tan,

et al., 2017; Zhang et al., 2021). In future work, it would be crucial to test how these
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effects are overlapping quantitatively while differentiating PD from healthy aging. An
illustration of further evidence provided by our study on the previously proposed model
is shown in Figure 5 (modified from Collier et al., 2011). In agreement with this model,
we added further evidence from the electrophysiological perspective, demonstrating that

both healthy aging and PD indeed share the biomarkers typically found in PD.
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Figure 5. An extended model describing the relationship between normal aging and PD.
It is adapted from the figure in the study by Collier et al. (2011). Here, we have added
one further piece of evidence showing that electrophysiological biomarkers related to
PD are also present in normal aging. These biomarkers include PAC elevation (beta
modulating broadband gamma) and abnormal beta burst dynamics (prolonged and
more frequent beta bursts). This might imply that the processes underlined these

biomarkers take place in normal aging and may be further amplified in PD.

Considering the limitations of our first study, we are also interested in validating and
extending our findings with comprehensive data, which would allow a quantitative
comparison of the effects between normal aging and PD. Currently, we are conducting a
third study based on a large LIFE cohort
(https://www.uniklinikum-leipzig.de/einrichtungen/life). With this study (in progress) by

inclusion of three groups (healthy young, elderly and patients with PD), we aim to test
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the hypothesis that both aging (healthy elderly versus young) and PD (patients with PD
versus age-matched elderly control) share the directionality of changes in these
markers and further the magnitude of the effects (obtained through a longitudinal design
or by cross-sectionally comparing both PD patients and healthy elderly subjects with a
common baseline measure) can differ between PD and healthy aging - the effects will
be more pronounced in PD compared to healthy aging. Additionally, we would also
investigate other potential early biomarkers of PD from the autonomic system and heart-
brain interaction, for instance, heart rate variability (HRV) and heart evoked potentials
(HEPS).

In the second study (Zhang et al., 2022), we focused on 1) non-oscillatory activity and
2) cross-regional interaction in a group of PD patients. Specifically, we investigated the
local and global brain changes in response to dopaminergic medication in PD. In our
study, we demonstrated that the aperiodic property of electrophysiological activity
underwent a significant change with the administration of dopaminergic medication. We
observed a flattening of the spectral slope in the Off compared to the On condition. The
changes are most prominent in the left central area, including the sensorimotor cortex.
This finding implies that the wideband background arrhythmic activity is a sensitive
marker for the medication-induced alterations. This finding complements previous
studies showing that a flattening of the spectral slope is observed with healthy aging
(Cesnaite et al., 2021; Voytek et al., 2015). These findings are important considering
that PD is pathological aging which is believed to be an accelerated aging process
(Collier et al., 2011, 2017). We postulate a similar change — a flatter slope, also occurs
in PD. Importantly, spectral slope, or power-law exponent of arrhythmic activity, has
been shown to differ across brain regions and to be impacted by task performance (He
et al., 2010; Voytek et al., 2015). Dopaminergic medication might bring the flattened
spectral slope in PD back to a normal state (steepened by dopaminergic medication). In
my thesis, a complete picture of the changes related to PD was presented for the first
time: both the arrhythmic (scale-free activity represented by spectral slope) and the

nested temporal pattern (in terms of PAC) were demonstrated in PD.
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Moreover, we investigated the cortical functional network changes in different
medication (On and Off) states. An increase in the connectivity between fronto-centro-
parietal regions in the beta frequency band was identified in the On compared to Off
medication condition. This finding agrees with a previous report where the authors
demonstrated that dopamine medication modulates the global brain networks in a way
shifting an STN-cortex mediated motor network towards a cortico-cortical (fronto-
parietal) mediated one (Sharma et al., 2021). An increase in the cortico-cortical
connectivity after dopamine administration might be due to a reduction in the coherence
between the STN and the cortex since at rest PD is associated with increased cortex-
STN synchrony (Hirschmann et al., 2013; Sharma et al., 2021), and such excessive
synchrony could prevent or limit the communication between cortical structures (Cruz et
al., 2009; Holt et al., 2019). Moreover, we did not observe any significant difference in
the network global architectures between the medication states, specifically in the global
segregation or integration of the functional networks. It may indicate that modulation by
dopaminergic medication only exhibits limited impact on the interactions between some
specific regions rather than at the global network’s structural level. Future work should
address whether a successful modulation of the network properties relates to an even
more effective improvement of clinical symptoms than an unsuccessful one (as shown
in this data). Given that we only access the network at sensor space with a rather low-
density setup, we did not further quantify other aspects of the cortical networks, for
instance, small-world and scale-free characteristics. If one can appropriately address
the concerns regarding quantifying the network’s structures (Kaminski & Blinowska,
2018), future work should also investigate a possible change in these specific
characteristics of functional networks to gain more insights into the global network

features in On and Off medication states.

Finally, our data presented a link between local aperiodic activity and global network
efficiency in patients with PD. This result can be interpreted in a framework of regional
excitation/inhibition balance shaping the information transmission through the global
network. Spectral slope has been closely related to excitation/inhibition balance at the
recorded site (Gao et al., 2017), with shallower slopes corresponding to stronger

excitation over inhibition. Relating our findings of spectral slope to the E/I
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(excitation/inhibition) balance hypothesis, a steeper slope in the On condition might
imply that there was a stronger inhibition in comparison to the Off condition. This line of
interpretation is consistent with the previous studies using TMS (transcranial magnetic
stimulation) showing that in PD at rest in Off condition, there is a reduced inhibition
which can be up-modulated by the intake of dopaminergic medication (Cantello, 2002;
Casula et al., 2017; Hanajima et al., 1996). Our observation regarding the association
between spectral slope and the functional networks’ GE in PD Off condition implies that
local E/I balance could define the network’s ability of global integration. This is in
agreement with a previous study proposing that a degree of E/I ratio is negatively
correlated with the global network’s property (X. Zhou et al., 2021) (see Figure 6,
modified from X. Zhou et al.,, 2021). We assume that the PD Off condition is
characterized by an imbalanced state (more excitation against inhibition) and thus
exhibits a close association with the network’s global integration. Dopaminergic
medication gains a more balanced state, which positions the network in a rather stable
point achieving the optimal network configuration (specifically in integration). In addition,
surprisingly, our data did show a difference in E/I dynamics (indexed by the spectral
slope) between the two medication conditions, although not exhibiting a difference in the
network’'s GE property. As illustrated in Figure 6, one intriguing possibility of
interpretation would be that the left side of the inverted-U shaped function (GE vs. E/I) is
perhaps where the PD Off state located, and GE grows rather slowly for rapidly
changing E/I ratio. Thus, along the GE axis, the network in the Off condition is situated
relatively near to the network in the On state. The networks from the two conditions

remain farther apart along the E/I axis.

Figure 6. Local E/l impacts the global network integration (modified figure from the study
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(X. Zhou et al., 2021)). The dark line and grey areas represent the data samples in the
Off condition, while the red colored ones show the scenario from the On medication
condition. Egopa represents the global efficiency, and T4 means the thresholding values

for binarizing the network to compute the GE.

Interestingly, combining all the findings concerning local spectral slope, connectivity,
and graph measures of the functional network, we found that the left centro-parietal
area is consistently present for all these effects. Therefore, we can speculate that this
region might be a critical area involved in the alterations due to dopaminergic
medication. Regulating the level of excitation of this area might influence not only local
activity but also distributed network activity. Finally, we are refraining from drawing too
strong conclusions from the current findings, and we suggest that future studies should

further validate these effects in the source space and with a larger sample size.

Taking these two studies together, one limitation of this thesis is that for neither study,
we have a comprehensive dataset that simultaneously includes the groups of healthy
young, healthy elderly, and PD patients in Off and On medication states (see own
representation: Figure 7). This setup would allow us to investigate the measures (PAC,
beta burst dynamics, spectral slope, functional connectivity, and graph-based
representations of the network) straightforwardly in healthy aging (healthy elderly
compared to young subjects), PD development (patients with PD compared to healthy
elderly control), and medication-induced effects (medication On compared to Off in PD

patients). In addition, these biomarkers should be further validated longitudinally.

A refined elderly group should be considered for future work since the inclusion of an
elderly group without PD does not exclude the presence of a preclinical or a prodromal
PD state. Ideally, in a future study elderly people should be screened neurologically for
early preclinical signs of PD. Based on this, subgroups of elderly who are completely
parkinsonism-free and subgroups where the elderly show mild parkinsonian signs could
be defined. For this purpose, the set of criteria for defining prodromal PD proposed by
the MDS could be applied (for instance, by integrating the identified risk factors and
markers of prodromal PD published in 2015 and 2019). This way, it would become
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possible to differentiate a “truly healthy aging” process from a preclinical/prodromal PD
and a clinical PD. It will be interesting to test how the neuronal biomarkers presented
here will differ in these refined groups and whether those biomarkers could continuously
trace the development and progression of parkinsonian state. Also, one could test
whether a subgroup of elderly subjects with a higher LRs (indicating a higher probablity
of prodromal PD) would show a similar effect in comparison to a lower-LRs subgroup,

as we have demonstrated in the elderly in comparison to young group in study 1.

Elderly

Study 2

Study 1

Figure 7. Overview of the two studies and outlook for future study designs. In study 1,
we only included apparently healthy young and elderly groups to investigate the general
aging effect on the neuronal biomarkers associated with PD in the previous literature.
Note, in the literature, all the PD-related results were indicated by comparing the
patients with PD to a general healthy control group (without defining the level of
parkinsonism). In study 2, we only investigated the dopaminergic medication-induced
effects in a cohort of patients with PD. In future studies, a comprehensive design
including all the groups would be desirable for answering the research question as to
whether the identified neuronal biomarkers could indeed indicate different stages of PD
(“completely healthy” versus “preclinical/prodromal PD” versus “clinical PD” versus

“‘medication relieved parkinsonian state”).

5 Conclusions

My doctoral thesis shows that electrophysiological neuronal biomarkers associated with
PD can also be present and detectable in the apparently healthy elderly people without
PD in comparison to younger subjects, supporting the hypothesis that aging might be
related to a pre-parkinsonian state, as evidenced previously in non-human primate

studies. Specifically, aging-related changes in PAC and beta burst dynamics share the

45



directionality that accompanies the PD development. Our findings suggest that future
prospective studies should be carried out to test their predictive values as early
biomarkers of PD development. In addition to these effects, which focus on the
oscillatory activities (specifically in the beta band), local non-oscillatory wide-band
activity (estimated by spectral slope) can also be a marker differentiating medication-
induced states in PD. We further show that dopaminergic medication not only induces
changes within the local cortical areas which are related to the movement control but
also in the functional interaction across remote areas. Lastly, linking the local and global
network changes, the local spectral slope appears crucial in defining the network’s
integrative property in PD. Taken together, these findings contribute to identifying early
biomarkers of PD and differentiating or even tracking the progression course of

parkinsonian state.
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ABSTRACT
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The prevalence of Parkinson's disease (PD) increases with aging and both processes share similar cellular mech-
anisms and alterations in the dopaminergic system. Yet it remains to be investigated whether aging can also
demonstrate electrophysiological neuronal signatures typically assoriated with PD. Previous work has shown
that phase-amplitude coupling (PAC) between the phase of beta oscillations and the amplitude of gamma oscilla-
tions as well as beta bursts features can serve as electrophysiological biomarkers for PD. Here we hypothesize that
these metrics are also present in apparently healthy elderly subjects. Using resting state multichannel EEG mea-
surements, we show that PAC between beta oscillation and broadband gamma activity (50-150 Hz) is elevated
in a group of elderly (59-77 years) compared to young volunteers (20-35 years) without PD. Importantly, the
increase of PAC is statistically significant even after ruling out confounds relating to changes in spectral power
and non-sinusoidal shape of beta escillation. Moreover, a trend for a higher percentage of longer beta bursts (>
0.2 =) along with the increase in their incidence rate is aleo observed for elderly subjects. Using inverse modeling,
we further show that elevated PAC and longer beta bursts are most pronounced in the sensorimotor areas. More-
over, we show that PAC and longer beta bursts might reflect distinet mechanisms, since their spatial patterns
only partially overlap and the correlation between them is weak. Taken together, our findings provide nowvel ev-
idence that electrophysiclogical biomarkers of PD may already occur in apparently healthy elderly subjects. We
hypothesize that PAC and beta bursts characteristics in aging might reflect a pre-clinical state of PD and suggest
their predictive value to be tested in prospective longitudinal studies.

1. Introduction

ing and PD is further supported by the findings in non-human primates
demaonstrating that both processes have multiple similar biological fea-
tures and share the directionality of alterations in the nigrostriatal DA

Aging is associated with alterations in metabolism, neurotransmis-
sion, hormonal and immune dysregulation, and inflammation; thus
leading to diverse neurocognitive impairments (Kim et al., 2017;
Sibille, 2013; Zhuang et al., 2018). Healthy aging is accompanied by
the loss of dopaminergic (DA) neurons (Rudow et al., 2008), and it is
assumed that the clinical signs of Parkinson's disease in humans ap-
pear when the DA in the substantia nigra pars compacta (SNc) are de-
generated by up to 60%—70% (Cheng et al., 2010; Darden, 2007). Al-
though elderly people often demonstrate mild parkinsonian signs in-
cluding rigidity, bradykinesia, tremor and problems with gait balance
(Louis and Bennett, 2007), these signs do not meet the established clin-
ical criteria for Parkinson's disease (PD) (Marsili et al., 2018). Yet, ag-
ing is the single most significant factor influencing the clinical presence
and progression of PD (Hindle, 2010). A close association between ag-
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system. This in turn leads to a hypothesis that aging is associated with
binlogical changes (particularly in dopamine system) creating vulnera-
ble conditions potentially serving as a foundation for PD (Collier et al,
2017).

Given a close relationship between PD and aging, it is tempting to
speculate that this relation can also be reflected in electrophysiological
brain signals. Interestingly, using invasive and non-invasive electrophys-
iological methods, several signatures of PD have been identified. But,
to the best of our knowledge, it is not known whether similar changes
are also present in apparently healthy elderly subjects compared to
the young ones. The most pronounced electrophysiological signature
of PD is represented by abnormally elevated beta oscillatory activity in
the subthalamic nuclens (STN) (Alexandre Eusebio and Brown, 2009;

1053-8119/D 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
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Brittain et al., 2014; Brown, 2003; Crowell et al., 2012; De Hemptinne
et al., 2015; Hammond et al., 2007; Kihn et al., 2009 Little and
Brown, 2014; Oswal et al., 2013; Weinberger et al., 2006). Beta power
in the STN is correlated with bradykinesia (A. Eusebio et al., 2011;
Chen et al., 2010; R. Levy et al., 2002) and is attenuated by levodopa
(Kiihn et al., 2009; Weinberger et al., 2006) and by deep brain stimula-
tion (DBS) (Miiller and Robinson, 2018; Ray et al., 2008; Wingeier et al.,
2006). Moreover, a higher incidence of longer beta bursts in the
STN has been shown to correlate positively with clinical impairment
(Tinkhauser et al., 2017a, 2017b). At the level of the cortex, however,
divergent studies demonstrated that either a decrease (Stoffers et al.,
2007; Whitmer et al., 2012) or an increase {(Melgzari et al., 2014) in corti-
cal beta power can occur during successful symptomatic therapy of PD.
Notably, an alternative cortical biomarkers for PD is phase-amplitude
coupling (PAC) between the phase of beta oscillations and the amplitude
of broadband activity (also referred to here as “broadband gamma™) ex-
tending from 50 to 200 Hz {De Hemptinne et al., 2013, 2015). Increased
cortical PAC observed in PD patients reflects a rather stereotypical neu-
ronal recruitment pattern of sensorimotor areas and is hypothesized to
promote rigidity and akinesia—cardinal symptoms of PD. Moreover,
cortical beta-gamma PAC is considerably decreased during clinically
effective DBS in the STN and by levodopa treatment (De Hemptinne
et al., 2013; Swann et al., 2015). Non-invasive scalp-EEG analyses of
cortical beta-gamma PAC (A. M. Miller et al., 2019; Swann et al., 2015)
confirmed that PAC is indeed stronger in PD patients compared to age-
matched healthy subjects. With respect to beta burst dynamics, a study
by Tinkhauser et al. (2018) showed that longer beta bursts in the cor-
tex coincide with longer burst in the STN showing further that episodes
of elevated beta occur simultaneously in the basal ganglia and cortex
thus limiting information coding capacity and leading to deterioration
of movement performance. And more recently, a study using ECoG in
M1 demonstrated a higher percentage of longer beta bursts in PD pa-
tients compared to the subjects without PD (0'Keeffe et al., 2020). Taken
together, these cortical features, namely PAC and beta burst dynamics,
have been consistently reported in PD. Whether the two PD biomarkers
are related to each other, so far, has been studied only in very few stud-
ies which suggested a close relationship between the two (Meidahl etal.,
2019; O'Keeffe et al., 2020). However, none of them investigated their
relationship in a topographical manner. Yet, a different topographical
pattern may indicate distinct underlined pathophysiology. Thus, inves-
tigating the presence and relationship of such biomarkers using multi-
channel EEG might aid to better understanding the associated neuro-
physiological processes in PD and healthy aging.

Given the above-mentioned association between aging and PD, in the
present study, we tested the hypothesis that electrophysiological signa-
tures of PD at the cortical level, that is, PAC between the phase of beta
oscillations and the amplitude of broadband gamma activity, as well as
the incidence of longer beta bursts, is more pronounced in elderly com-
pared to young subjects. Moreover, we expected that this effect would be
mast prominent in the sensorimotor areas of the cortex. We tested these
hypotheses using the recently acquired LEMON dataset (Babayan et al.,
2019) containing a large number of healthy young and old subjects with
multichannel EEG.

2. Materials and methods
2.1. Subjects and task

The recruitment of the participants was carried out in two steps.
First, participants were pre-screened by telephone with a semi-
structured interview. Before the study, further individual screening was
performed by a study physician who assessed for exclusion eriteria such
as diagnosis of hypertension, cardiovascular disease, history of neuro-
logical disorder or psychiatric disease, history of malignant disease ete.
(Babayan et al.. 2019). Participants were instructed to sit calmly and
comfortably in a chair and the recording was conducted in a sound-
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shielded room. The sessions consisted of 16 segments each lasting 60 s
with each such segment related to interleaved eyes-closed (EC) or eyes-
open (EQ) condition. Therefore, each condition (EC or EO) lasted 8 min.
In this study, only the data during eyes closed periods were included for
further analysis. We included all the elderly subjects and selected an
equally sized group of gender-matched young subjects. In total, there
were 137 subjects: 71 young (age 20-35 years, mean age = 25.61,
S0 = 3.17, 24 females) and 66 old (age 59-77 years, mean age = 67.35,
SD = 4.81, 31 females).

The Alertness subtest of the Test of Attentional Performance (TAP;
orig. “Testbatterie zur Aufmerksamkeitsprifung”; version 2.3; Zimmer-
mann & Fimm, 2012) measures alertness and reaction speed. During this
test, a cross appears on a screen at randomly varying intervals to which
the subject should respond as quickly as possible by pressing a key. The
mean reaction time over the trials is derived as a measure of intrin-
sic alertness for each subject, i.e. higher reaction time scores indicate a
lower performance.

2.2, EEG recordings

62-channel EEG was acquired with BrainAmp MR-plus amplifiers us-
ing ActiCAP electrodes (both Brain Products, Germany). Electrode mon-
tage was based on the international standard 10-20 system with FCz be-
ing the reference during recording. Electrode impedance was kept below
5k0). Recordings were digitized at a sampling frequency of 2500 Hz and
bandpass filtered between 0.015 Hz and 1 kHz

2.3, Dara analysis

2.3.1. Data pre-processing

In order to keep our data pre-processing comparable to previous
EEG PD studies, we implemented it in an analogous manner to A. M.
Miller et al. (2019) and Jackson et al. (2019). EEG data were ana-
lyzed with Matlab (The MathWorks Inc, Natick, Massachusetts, USA)
using custom scripts and EEGLab toolbox (version 14.1.2; (Delorme and
Makeig, 2004)) functions. At the first step, the data were down sam-
pled to 512 Hz. A highpass filter at 1 Hz was then applied to remove
low frequency drifts (two-way FIR filter, order = 1536, eegfilt.m from
EEGLab). The continuous EEG data were then segmented into EC and
EO conditions. Subsequently, independent component analysis (ICA —
Infomax algorithm implemented in EEGLab) was used to remove phys-
iological and non-physiological artifacts including cardiographic com-
ponent, eye movements and blinks, muscle activity and line noise in the
EC data. Next, the data were re-referenced to a common average. In the
last stage, data were still examined visually for the presence of residual
artifacts and segments contaminated by these events were marked and
then excluded from the analysis. There was no difference between the
groups in the length of the data (on average 444.36 s for elderly and
455.22 s for younger groups, respectively) included for further analysis
(Wilcoxon rank sum test, p = 0.2015).

2.3.2. Spectral analysis

Power spectral density (PSD) was calculated using ‘pwelch’ function
in MATLAB, with a Hamming window of 512 samples and a 50% over-
lap. The average PSD for beta band was obtained by averaging the spec-
tral density in the beta frequency range (13-30 Hz). Individual beta
peaks were detected using ‘findpeaks” function in the frequency range
13-30 Hz.

2.3.3. Phase amplinde coupling (PAC)

PAC was calculated using the Kullback-Leibler-based modulation in-
dex method (Tort et al., 2008). Briefly, the modulation index (MI) quan-
tifies the degree of deviation of the phase-modulated amplitude from the
uniform distribution. The distribution of the normalized instantanecus
amplitude envelope was computed for 18 phase bins, each covering 20
radians. A comparison of this distribution to the uniform distribution
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was guantified with the Kullback-Leibler distance measure. The com-
puted MI value is between 0 and 1 (0 for no coupling, and 1 for when
the phase of the slower oscillation and the amplitude of the faster os-
cillation is fully coupled). Mls were calculated for phase-providing fre-
quency across the 4-50 Hz range using a sliding window with a step size
of 2 Hz and a bandwidth of 2 Hz, whilst the range for the amplitude-
providing frequency varied from 4 to 170 Hz with a step size of 4 Hz.
Since PAC measures require the filter for the amplitude extraction from
faster frequency activity to have a bandwidth at least as great as the
range of slower frequencies of interest, at each amplitude-providing fre-
quency, we used a filter with a bandwidth as wide as that of the center-
frequency of the phase-providing oscillation. The phase of the lower fre-
quency and the amplitude of the higher frequency components were ob-
tained using Hilbert transform after bandpass filtering using a two-way
finite impulse response filter (FIR) (eegfilt.m with *fir]l” parameters from
EEGLab, with the order of three cycles of lower cutoff frequency). To ob-
tain meaningful values, we started the calculation between frequency
pairs in which amplitude-providing frequency was always higher than
the phase-providing one. The Mls acrass all the possible frequency pairs
can be displayed as a phase-amplitude comodulogram.

A PAC value was derived for each channel and each subject as
the mean of the MI values over the beta range (13-30 Hz) for phase-
providing frequency and broadband gamma frequency range (50—
150 Hz) for the amplitude-providing frequency. This approach has also
been used in previous studies (A. M. Miller et al., 2019; Swann et al.,
2015).

2.3.4. Non-sinusoidal waveform shape measure

In order to rule out the possibility that the statistical PAC could
be due to the sharp edges of the waveforms (Kramer et al.. 2008),
non-sinusoidality of beta oscillation was quantified using sharpness and
steepness ratios. The method proposed by (Cole et al., 2017) was used
for this purpose. Below we elaborate on these calculations.

2.3.4.1. Sharpness ratin. First, we bandpass filtered (13-30 Hz, eeg-
film from EEGLab, order = 118) the raw time series to obtain beta
ascillations, for which we then identified rising and falling zero-crossing
points. Then, in the raw signal, indices of maximum and minimum volt-
ages between zero-crossings were found as the locations of peaks and
troughs. Peak (trough) sharpness was defined as the mean voltage dif-
ference between the peak (trough) and neighboring three time points,
which are ~6 ms before and after the peak (trough) (Cole et al., 2017).
Finally, the sharpness ratio was calculated as the absolute value of the
log-transform of the ratio of peak sharpness to trough sharpness.

2.3.4.2. Steepness ratio. The rise steepness was defined as the largest
voltage rise between two subsequent data points (first derivative) in
the time period between a trough and the peak after it. In the same
manner, the decay steepness was calculated as the largest voltage drop
between a peak and the trough following it. Similarly, steepness ratio
was calculated as the absolute value of the log-transform of the ratio of
rise steepness to decay steepness.

2.3.5. Beta bursts definition and characteristics

We referred to the methods proposed by Tinkhauser et al
(2017a) and Tinkhauser et al. (2017b) to estimate beta burst dynamics.
First, we identified the mean beta peak frequency for each individual by
averaging the peak frequencies over the channels. Then we detected the
beta bursts in a frequency range of + 5 Hz around the individual beta
peak frequency (~15-25 Hz). Raw signal was bandpass filtered, and
the amplitude envelope of the filtered data was extracted using Hilbert
transform. A beta burst was defined as the time interval where the am-
plitude exceeds a certain threshold and stays above threshold for more
than 100 ms (at least two cycles). We explored the region-specific dif-
ferences of bursts characteristics with the threshold fixed at the 65th
percentile of the amplitude. Moreover, to investigate the impact of the
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burst thresholds, we included the analysis for a wide range of thresholds
(percentiles 50, 55, 60, 65, 70, 75, 80, 85, and 90).

The histogram of the burst duration for each channel was investi-
gated by binning the duration of the beta bursts into nine windows,
namely 0.1-0.2 s, 0.2-0.3 5, 0.3-0.4 5, 0.4-0.5 5, 0.5-0.6 5, 0.6-0.7 s,
0.7-0.8 5, 0.8-0.9 5, and >0.9 s. Since total burst duration varies across
channels and subjects, the histogram was normalized by the total num-
ber of beta bursts. Another feature of bursts, that is, incidence rate, was
defined as the number of bursts per time unit (bursts/(second)). For the
analysis across different threshold percentiles, we forused on two key
features, namely mean burst duration and mean burst amplitude across
all beta bursts.

2.3.6. Source space analysis

For the localization of neuronal sources we applied inverse model-
ing to project the EEG sensor recordings to cortical source level. After
the EEG was preprocessed, EEG sensor signals were bandpass filtered
within the frequency range of interest (eegfilt.m from EEGLab). We used
the eLORETA algorithm (exact low resolution brain electromagnetic to-
mography, as implemented in the M/EEG Toolbox of Hamburg (METH,
hitps:/ /www.nitre.org/projects/meth/) (Haufe and Ewald, 2016)) for
inverse modeling and the New York head model with approximately
2000 vertices (Huang et al., 2016) to acquire the leadfield matrix. The
cortical vertices were grouped into 96 regions of interest (ROIs) based on
Harvard-Oxford atlas (Desikan et al., 2006). The time series estimated
for each vertex was used for further analysis.

Specifically, for the PAC and beta band power analysis, we first es-
timated the metrics based on the time series from each vertex. Sub-
sequently, we averaged the values across all the vertices within each
ROL To calculate PAC in a uniform way, we obtained the source re-
constructed signal from beta band (13-30 Hz) and broadband gamma
(50-150 Hz) to estimate the phase for lower frequency and amplitude
for higher frequency components for each vertex, respectively. Then MI
values were estimated for each vertex and further for each ROI from
each subject. Beta power values were computed analogously by averag-
ing PSD values over beta frequency range (13-30 Hz) for each vertex.
Then, the ROI-based power value was estimated by averaging over the
vertices within each ROL

With respect to beta burst dynamics, we bandpass filtered data using
the approach presented above for the sensor level (see Section 2.3.5.)
and then projected the bandpass filtered sensor data to the cortical
sources, Afterwards, singular value decomposition (S5VD) was applied
to the signals within each ROI in order to extract a representative ROI-
based signal. Using SVD of the time series of all vertices within each ROI,
the dominant time course of each ROI was extracted by preserving the
first dominant SVD component. Thus, the 61-channel sensor level sig-
nal was transformed to 96-ROI signal at source level. Further analysis
remained the same as for the sensor level.

2.3.7. Statistical tests

Statistical comparisons across groups were performed using a non-
parametric Wilcoxon rank sum test between the old and young groups.
To correct for multiple comparisons, false discovery rate (FDR) method
was used according to Benjamini and Hochberg (1995) when multiple
electrodes in sensor space, ROIs in source space, frequency bins and
burst window bins were compared.

For the Ml-comodulogram comparison between two groups at a
single channel (C3), we performed frequency-frequency space cluster-
based permutation procedure by using the ‘Monte Carlo” method, as im-
plemented in FieldTrip (Oostenveld et al., 2011). In brief, with 2000 per-
mutations across the randomly shuffled labels for old and young groups,
one can create the distribution of cluster statistics under the null hypoth-
esis that there is no significant cluster. For each randomization, cluster
level statistics (taking the sum of t values of all the frequency pair points
within each cluster) were computed and the largest cluster statistic was
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entered into the null distribution. Finally, the observed cluster in the em-
pirical data was compared against the null distribution, and a p value
below 0.05 (two tailed) was considered significant.

A correlation between different measures was performed using
Spearman’ approach. For the topographical correlation pattern, corre-
lation strength was calculated for each channel or each ROI across the
subjects, and then FDR was applied to correct for multiple comparisons
across the channel/source space. The final correlation pattern was dis-
played as a head topography or on a standard reconstructed cortical
surface model.

3. Results

3.1. PAC between beta band and broadband gamma activity is elevated
with aging

3.1.1. PAC is elevated in sensorimotor areas in the elderly

To test the hypothesis that in the sensorimotor areas of the cortex
PAC is elevated in the elderly, we first analyzed MI values from one
of the electrodes typically attributed to the sensorimotor cortex (C3)
(Swann et al., 2015). Fig. 2A shows mean comodulograms of Ml at elec-
trode C3 for each group. A prominent coupling can be observed between
the phase of beta to low gamma and the amplitude of 50-150 Hz fre-
quency range in the elderly (left panel) compared to the young group
(right panel). Using cduster analysis, we examined the Ml comodulo-
grams for significant differences between the two groups. Fig. 2B shows
a significant beta-gamma coupling group difference at electrode C3. The
outlined cluster indicates a significant difference of PAC between the
beta phase {13-30 Hz) and broadband gamma (50-150 Hz) frequency
range, as well as PAC between low gamma phase frequency (30-50 Hz)
and broadband gamma amplitude frequency. Further, we investigated at
which phase providing frequencies the average FAC between the gamma
amplitude and the phase from examined frequency differs between the
two groups. This was done by computing PAC for the amplitude from
50 to 150 Hz for each phase-providing frequency window from 4 to
50 Hz (2 Hz width). The panel C of Fig. 2 depicts a significant PAC dif-
ference profile occurring starting from around 12 Hz extending up to
low gamma range(“p < 0.05, after FDR). Boxplots for PAC values from
Mis averaged over 13-30 Hz for beta phase and 50-150 Hz for broad-
band gamma amplitude are presented in Fig. 2D. Although there was a
cansiderable overlap between PAC values in two groups, the statistical
analysis confirmed that the elderly group was characterized by signif-
icantly elevated PAC between beta oscillation and broadband gamma
activity (*p = 0.0147). Finally, we used normalized amplitude of broad-
band gamma (50-150 Hz) sorted according to the phase bins from beta
band (see Section 2.3.3.) in order to see how it is modulated by the
phase of beta oscillations (13-30 Hz). The upper panel E in Fig. 2 shows
the mean of the normalized amplitude distribution at C3 in each group.
Generally, broadband gamma amplitude is largely coupled to non-peak
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Fig. 1. Schematic illustration of the waveform
shape estimation. Peaks and troughs in the raw
signal that lie between the adjacent zero cross-
ings identified from filtered beta band signal
are color coded *: orange for peaks and purple
for troughs. The light green area marks the rise
period between a trough and subsequent peak
to determine the rise steepness. Dark green area
indicates the decay area where the decay steep-
ness was estimated.

phase of the beta oscillations by showing a strongest amplitude after
(not at) x/2 radian in both groups. In addition, one can see elderly sub-
jects showed a higher degree of modulation compared to young sub-
jects. Circular bar plot in the bottom further confirms there is a certain
age-dependent phase specificity: beta phase predominantly distributed
within pi/6 ~ 2°pi/3 when the highest amplitude occurred for both age
groups.

Although we have found that the amplitude from broadband gamma
range is coupled to the phase of beta and low gamma bands, further
tests revealed that low-gamma phase driven PAC could be, to a very
large extent, accounted for by simultaneous phase-phase coupling. This
in turn indicates that low-gamma modulated PAC is likely to be driven
by the sharpness of the low-gamma band waveform which is proba-
bly due to residuals of muscle activity (see supplemental analysis 1.1.).
These results further justified our focus on beta-gamma PAC, which has
previously been shown to be exaggerated in PD (de Hemptinne et al.,
2013; Swann et al., 2015; Jackson et al., 2019; A. M. Miller et al_, 2019).

3.1.2. PAC difference topography in aging demonstrates a left-hemisphere
dominant pattern

To investigate the spatial pattern of PAC difference, we caleu-
lated the PAC values across all channels and performed comparisons
(Wilcoxon rank sum test) between the two age groups using FDR-
correction. Fig. 3A depicts the scalp topography of the difference be-
tween the two age groups. The comparison was conducted for the PAC
values which were derived by averaging MI values over the beta range
(13-30 Hz) for phase frequency and broadband gamma range (50-
150 Hz) for amplitude frequency. Electrode labels are present only for
the significant differences (p < 0.05, FDR corrected). The pattern has
left-hemisphere dominant distribution over the centro-temporal areas
and also extends to frontal areas. Moreover, we demonstrated the statis-
tical PAC values using surrogate procedure are significant over sensori-
motor areas within each group and the difference pattern based on the
statistical PAC value are well overlapping with Fig. 3A obtained from
raw PAC values (see details in Figure 57 in the supplemental material).
At source space, we calculated the PAC value for each ROl and each sub-
ject (see Section 2.3.6.) and performed the comparison (Wilcoxon rank
sum test) between groups (old vs. young) for all ROIs. Fig. 3B shows
that PAC values are significantly increased in the elderly group. This
result confirms the pattern which demonstrates left hemisphere domi-
nance in PAC differences, with the most profound difference being local-
ized in the left pre- and post-central gyri (extending to superior frontal
and supramarginal gyri). Additionally, to rule out possible confounders
which might contribute to age-related statistical PAC differences, we
performed additional analyses on the power and non-sinusoidal wave-
form shape of beta oscillations (see supplemental analyses 1 and 2).
These analyses confirmed further that the beta phase driven PAC differ-
ence between the two age groups is not likely to be driven by either beta
band power or non-sinusoidality of beta waveform, although waveform
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Fig. 2. PAC between beta, low-gamma band oscillations and broadband gamma activity is increased in the old compared to the young group at electrode C3. A. Mean
comodulograms of modulation index across subjects in each group. Color bar indicates the PAC strength. B. The dashed black line shows the identified significant
MI cluster of the difference-comodulogram (cluster-based permutation test, p = 0.01). Color bar represents the statistical value. C. Red and black lines show the
mean of MI values across old and young subjects, respectively, within each phase-frequency window (estimated from broadband gamma amplitmde frequency range
(50-150 Hz)). Gray shaded areas show the phaze fr cies which are coupled significantly stronger to the broadband gamma activity in elderly compared to young
subjects. This is after FDR correction for multiple comparisons (across all the analyzed phase frequencies, “p < 0.05). D. Boxplots of the averaged MI values over
13-30 Hz for beta phase and 50-150 Hz for broadband gamma amplitude for each age group. There is a significant difference between old and young groups (old
i, young) (two tailed Wilcoxon rank sum test, “p = 0.0147) although one can also observe a considerable overlap between PAC values belonging to both groups.
E. The upper panel shows the mean of the normalized broadband gamma amplitude according to the beta phase (from —= to x). Red and black lines represent the
mean of the normalized amplitude for the elderly and young group, respectively. Shaded areas indicate the standard error of the mean (SEM) across subjects within
a group. Circular bar plot in the bottom shows the distribution of preferred beta phase at which the maximal coupling occurred across the subjects within the elderly
(in red) and the young group (in gray). Beta phase predominantly distributed within pi/6 ~ 2*pi/3 when the highest amplitude oceurred for both age groups.

Fig. 3. Spatial topography of PAC difference
between the two age groups (old vs. young).
PAC values were calculated by averaging over
beta range (13-30 Hz) for phase frequency and
broadband gamma (50-150 Hz) range for am-
plitude frequency. A. Statistical comparisons
(Wilcoxon rank sum test) were performed be-
tween the two age groups (old vs. young). The
elecrodes with labels show significant differ-
ences after FDR correction across all channels.
B. Spatial difference pattern of PAC caleulated
in source space between the two age groups af-
ter FDR correction acress ROIs. The topogra-
phy demonstrated that the most significant dif-
ference occurred in the left precentral gyrus.
Color bar indicates the test statistic. Positive
values indicate stronger PAC values in the el-
derly group.

A B

of the oscillation could represent another neural signatures characteriz- how PAC could relate to movement performance. However, in this open

ing aging (see supplemental discussion 1.). dataset, movernent task was not specifically designed. Yet, to a certain

degree a motor readiness can be assessed with the TAP-alertness task.
3.1.3. Behavioral relevance of PAC shows differential pattern within two This task measures cognitive alertness (alertness of Test of Attentional
‘age groups Performance, Zimmermann et al., 2012) which is an objective marker

PAC has been shown to be associated closely to the severity of move- of the ability to maintain an alert state of response readiness, and it
ment dysfunction in patients with PD. We were also interested to test has been shown to decline with age (McAvinue et al., 2012). Here, the
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Fig. 4. Correlation between PAC and reaction time in subgroups with increasing age onset. A. Correlation between PAC and TAP-alertness reaction time in young
group. X axis represents the age onset for which the subjects were included from for the subgroup. For instance, for the young subjects with age older than 26 (but
still younger than 35), there is a negative but non-significant correlation between PAC and reaction time (Rho = —0.2106, p = 0.2320). The red dashed line shows
the regression line for the correlation coefficients. The histogram shows the distribution of the slopes from permuted data (1000 times) while the vertical red line
indicates the value where the obzerved acrual slope (slope = 000135, p = 0.3260) is siuated. B. The same analysiz for the elderly group. There is a tendency for
increasing correlation strengths with the age from which the subgroup starts. The red dashed line shows the regression line for the correlation coefficients within
each subgroup while including older subjects from 59 years to 74 years old. The histogram shows the distribution of the slopes from randomized data (1000 tmes)
‘while the vertical red line indicates where the regression slope obtained by the unpermuted data (slope = 0.0364, p = 0.0320) stands. P value is thus a fraction of

slopes which are larger than the value corresponding to the red line.

mean reaction time for each subject was utilized to quantify the alert-
ness where lower scores indicate better performance. To obtain a reli-
able measure of PAC from the sensorimotor areas for each subject, we
took the mean of PAC values from left and right precentral gyri. First,
we performed correlation analysis between PAC and the reaction time
within each age group, and no significant results were observed either
in the elderly group (Rho = 0.0542, p = 0.6654), or in the young group
(Rho = —0.0524, p = 0.6645). We hypothesized that this might be due to
the fact that the included elderly subjects were generally rather healthy
(due to very strict exclusion criteria) and if we narrow down the ag-
ing group, the relationship probably would be more obvious. To test
this hypothesis, we performed correlation analyses on the subgroups
in which the inclusion eriteria of age onset were increased stepwise,
both for elderly and younger groups. In Fig. 4A, the strengths of cor-
relations with increasing age onsets from 20 to 30 years in the young
group are shown; all the correlations were not significant (sample size
== 7). Fig. 4B demonstrates the results of the same analysis for the el-
derly group (59 to 74 years old, sample size »= 8). We observed a trend
for increased correlation strengths with increasing age.

To rule out the possibility that the observed tendency may result
from a sub-sampling procedure itself (with age onset increasing, less
samples are available), we further performed a permutation procedure
to test the significance of the trend in correlation between PAC and re-
action time in elderly participants. In brief, we randomized the elderly
subjects and then performed all the steps as deseribed above for the ex-
perimental data. Then, a linear regression line was fitted to the correla-
tion coefficients and the slope of a linear regression was taken to build
the null distribution. In total, the randomization was performed 1000
times, and a final p value was obtained for the observed regression slope
compared to the null distribution obtained by permutations. As shown
in the histograms of Fig. 4, the vertical red lines indicate the value of the
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regression line for the younger group (slope = 0.0135, p = 0.3260) and
the older group (slope = 0.0364, p = 0,0320), respectively. This demon-
strates that the observed tendency to increase the positive association
between PAC and reaction time oceurred only for the group of elderly
subjects while we controlled for the possible biasing effects associated
with the sub-sampling procedure.

3.2 Properties of beta bursts are altered with aging

3.2.1. Aging is accompanied by a higher percentage of long burst events
Fig. 5A illustrates the change of relative percentage distribution of
burst durations for two age groups with the 65th percentile threshold
at representative channel CP3 (see Section 2.3.5.). Statistics (Wilcoxon
rank sum test) showed that compared to the young group, elderly sub-
jects showed a tendency for bursts with longer duration windows (0.2-
0.5 s). The percentage of shorter beta bursts (0.1-0.2 5) was higher in
young compared to elderly subjects (*p = 0.0122, after FDR). In con-
trast, across the nine burst duration windows, the percentage of rela-
tively longer bursts in a given interval (0.2-03 s, 0.3-0.4 5, 0.4-0.5 5)
was higher in the elderly group (*p = 0.0132, *p = 0.0132, "p = 0.0184,
respectively, FDR corrected) compared to the young group. However,
for the longer bursts lasting more than 0.5 5 we did not observe any
difference between the groups. Moreover, the relative number of the
bursts in intervals (> 0.5 s) was much smaller compared to bursts last-
ing less than 0.5 5. These results showed that in the resting state EEG
of the aged brain, beta thythm commonly appears with a duration of
around 2-6 cycles, with a few portions of bursts lasting ~10 cycles and
rarely with a longer duration time (> 10 cycles). In order to investigate
a spatial pattern of this effect, we categorized the windows into two
categories, namely short windows (0.1-0.2 5) and long windows (0.2—
0.5 s). Next, we compared the percentages of bursts with long windows
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between the two groups for all channels. In Fig. 5B, we plotted the to-
pographical pattern of the difference in relative number of beta bursts
with long duration between two age groups. The cortical areas demon-
strating strongest age-related beta burst differences are clustered over
bilateral frontal and centro-parietal sites. Additionally, the analysis in
source space further located the spatial difference pattern mostly in the
bilateral sensorimotor cortices (Fig. 5C). To demonstrate how overall
differences in burst duration and amplitude between two groups con-
verge across various threshold percentiles for definition of beta burst
event, we analyzed these two key parameters across a family of nine
thresholds from the 50th to 90th percentiles (see supplemental analysis
3 and Figure 55). The analysis showed that generally the elderly subjects
have longer beta burst events together with higher amplitude, regard-
less of the threshold definition. Additionally, we obtained similar results
for this part of analysis with a different threshold for burst definition,
i.e., 70th percentile (see Figure 58 in supplemental material).

3.2.2. Incidence rate of bursts with long duration is increased in elderly
subjects

In addition, we investigated how often beta bursts occur with a given
duration window. Burst incidence rate was calculated as the number
of beta bursts per second. We compared the burst incidence rate for
all windows across all channels. We found that there is no difference
in incidence rate for shorter windows (0.1-0.2 5) between two groups,
whereas for the longer windows (0.2-0.3 5, 0.3-0.4 5, 0.4-0.5 5) the inci-
dence rates showed an increase in a region specific pattern in the elderly
compared to the young group. The result for each window is shown in
Fig. 6A. Specifically, for bursts with a duration 0.2-0.3 s, the frequency
of bursts increased with most prominent changes occurring in fronto-
central regions. The regions showing significant differences were more
focally clustered for longer bursts (= 0.3 5). For the relatively longer 0.4-
0.5 s window, the prominent difference was present in a small cluster of
regions over centro-parietal sites. Furthermore, Fig. 6B shows a spatial
difference pattern in source space. Burst incidence rate was averaged
over all the bursts with long duration windows (0.2-0.5 5) and com-
pared across all brain areas between the two groups (old vs. young).
The pattern showed significant differences after FDR correction. With
this analysis we further confirmed that the elderly subjects, compared
to young subjects, were indeed characterized by more frequent long
beta burst events, which occurred in multiple cortical regions but most
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Fig. 5. Changes in burst duration distribution.
A. The relative number of bursts in each bin is
given as a percentage of the total number of
bursts. The bar graph shows the mean of each
age group across burst events with diffesent bin
duration at representative electrode CPF3. For
both groups, with increasing burst duration the
percentage of bursts decreases. Elderly subjects
had a lower percentage of short bursts (burst
window: 0.1-0.2 s} (*p = 0.0122, after FDR)
and larger percentage of long bursts (burst win-
dowr: 0.2-0.3, 0.3-0.4,0.4-0.5 5) ("p = 0.0132,
0.0132, 0L0184, respectively, after FDR) com-
pared to young subjects. B. Scalp topography
of differences (old vs. young) in percentages of
long burst (0.2-0.5 s). Labeled electrodes are
those showing significantly higher percentage
of long bursts in elderly than in young subjects
after FDR correction (p < 0.05). C. Spatial dif-
ference pattern in the percentage of long bursts
({old vs. young) in source level. Positive values
indicate larger values in the group with elderly
suhjects.

prominently in bilaterally pre- and post-central gyri. To show the distri-
bution of the incidence of bursts for all channels and subjects in differ-
ent groups regardless of window duration, we additionally obtained the
mean burst incidence for each channel by averaging the burst incidence
rate across the three above-mentioned windows, and then plotted a cor-
responding normalized histogram (see Fig. 6C). A trend was observed
for the higher incidence rate in the elderly group in comparison to the
young subjects.

3.3 Relationship between PAC and bera burst dynamics

Finally, to investigate whether PAC and bursts characteristics relate
to the same neuro-physiological mechanism, we investigated a correla-
tion between them topographically within each age group (PAC versus
percentage of beta bursts with specific intervals showing the largest dif-
ferences between the groups (short window of 0.1-0.2 s and mean of
long windows of 0.2-0.5 s)), results are shown in Fig. 7. Spearman’s
correlations were performed for all channels and across all the subjects
for young and old group, respectively. For the young group, there was no
significant relationship between PAC and percentage of short bursts ar
long bursts. As shown in Fig. 7, the percentage of bursts with short (0.1-
0.2 5, Fig. 7A) and long durations (0.2-0.5 s, Fig. 7B), were significantly
related to PAC values only in a small cluster of electrodes primarily lo-
cated in right frontal area in the elderly group. Specifically, PAC was
positively carrelated with the percentage of short bursts (Fig. 7A), and
the opposite was observed for long bursts (Fig. 7B). Spatial correlation
maps were distinct from those corresponding to PAC differences (Fig. 3)
and beta burst differences (Fig. 5), thus suggesting that the PAC and beta
bursts are likely to reflect distinet processes in healthy aging. In order to
further localize the source of correlation map that we observed in sensor
space, we performed correlation analysis similarly on metrics estimated
from the signal reconstructed in the source space. Specifically, for each
ROI, PAC and burst percentage (short and longer bursts) was estimated
and then correlation analysis was performed across the subjects within
the elderly group for all the ROIs. Before applying FDR correction, for
the short bursts (0.1-0.2 ), strongest positive relations were observed
in bilateral cingulate gyri, and left occipital pole. And analogously the
strongest negative correlations were present in the bilateral cingulate
gyri, left superior frontal gyrus and right insula cortex between longer
burst (0.2-0.5 5) and PAC. After applying correction for multiple com-
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parisons, none of the significance remained. The lack of significant re-
lations between these two measures estimated in the source space may
further support the idea that these two parameters might reflect differ-
ent aspects of healthy aging.

4. Discussion

Despite previous clinical evidence in support of a close association
between aging and PD, electrophysiological neuronal correlates of such
an association have been rather elusive. Here, we showed that the elec-
trophysiological biomarkers recently discovered for PD, are also present
in apparently healthy elderly subjects. Specifically, we found the ele-
vated PAC and more frequent beta bursts with longer duration being
pronounced in the elderly group compared to the young one. Impor-
tantly, such differences were particularly manifested in sensorimotor
areas. Furthermore, we found only a weak correlation between PAC
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Fig. 6. Changes in incidence rate of longer du-
ration windows (0.2-0.5 5) {old vs. young).

A. Spatial topography of the difference in inci-
dence rates of bursts with different durations.
Electrodes with labels showed significant dif-
fesence berween the two groups (old vs. young)
after FDR correction (p < 0.05). For bursts
with a duration of 0.2-0.3 5, a significant in-
crease was observed in many scalp sites but
maost prominently in fronto-central regions. For
bursts with a duration between 0.4 and 0.5 5,
the most prominent differences were found in
centro-parietal areas. B. Spatial difference pat-
tern (old vs. young) in burst incidence rate of
long beta bursts (0.2-0.5 5) in source level. C.
Normmalized histogram of mean incidence rates
of longer bursts (0.2-0.5 s) across all channels
and subjects for the old (in red) and young (in
black) group. Each count represents one chan-
nel from one subject. Color bar indicates the
test statistic. Positive values indicate stronger
bursting incidence in the elderly subjects.

0.40.55

and beta bursts metrics, suggesting that these phenomena may reflect
different aspects of healthy aging. Overall, our findings indicate that
electrophysiological alterations detected in PD already exist in the ap-
parently healthy aging brain and their further amplification may even-
tually manifest in clinical symptoms typically found in fully developed
PD.

4.1. Topography of PAC changes in the healthy aging brain

PAC has been increasingly suggested to be a biomarker for pathol-
ogy in PD, being a proxy for the locking of local spiking activity to
beta oscillation within and across the basal ganglia-cortical network
(De Hemptinne et al., 2015; Malekmohammadi et al., 2018; Swann et al.,
2015; Weinberger et al., 2006). Although we were initially interested in
testing the assumption that during apparently healthy aging an increase
in PAC between beta band (13-30 Hz) and broadband gamma activity
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Fig. 7. Correlation maps between PAC values and percentage of burst with short
and long durations. A. Correlation map between PAC and percentage of short
bursts (0.1-0.2 5) within elderly group. B. Correlation between PAC values and
long bursts (0.2-0.5 5} across all subjects within elderly group. The significance
is indicated after applying FDR-correction across multiple comparisons for all
the channels.

(50-150 Hz) could be observed over the sensorimotor cortex, as it has
been repeatedly indicated in previous PD studies using ECoG or EEG
(A. M. Miller et al., 2019; De Hemptinne et al., 2013; Jackson et al.,
2019; Swann et al., 2015), we nonetheless investigated changes in
PAC over the whole cortex. Given a premise that PAC in elderly sub-
jects can resemble behavior of PAC in patients with PD, our results
confirmed previous findings showing that PAC is primarily increased
over the sensorimotor areas. This is in agreement with previous stud-
ies showing age-related alterations in cortical motor areas (Haug and
Eggers, 1991; Ward and Frackowiak, 2003), as well as changes in the
functioning of these areas (C. Clark and L. Taylor, 2012; Fathi et al.,
2010; Heuninckx et al., 2005; Michely et al., 2018; Rowe et al., 2006).
In addition, we also observed stronger differences over the left hemi-
sphere. Such hemispheric asymmetry in PAC might relate to the stronger
dopaminergic defect in the dominant compared to the non-dominant
hemispheres defined by a subject’s dominant hand, one of the major
factors causing PD symptoms to emerge more often on the dominant
hand-side (5hi et al., 2014). In our dataset, the majority of subjects are
right-handed (129 out of 137).

Cortical broadband gamma is thought to reflect asynchronous spik-
ing activity (K. J. Miller et al., 2009; Manning et al., 2009). Therefore,
elevated coupling of beta and broadband gamma activity can represent
a higher synchronization of local spiking activity to the phase of beta
oscillation. Excessive PAC in the aging brain may reflect a physiclogical
state in which the cortex is restricted to more rigid activity patterns,
rendering it less able to respond dynamically to signals from higher or-
der cortical regions. Such dynamic inflexibility is in line with previous
studies, showing that aging is accompanied by decreased neuronal com-
plexity estimated with fractal dimension using resting state measures
of neuronal activity (Zappasodi et al.. 2015). In addition, fMRI studies
have also shown a lower level of spontanecus BOLD signal variability
(another frequently used measure of neuronal complexity) in older sub-
jects (Grady and Garrett, 2014; Kumral et al., 2020; Nomi et al_, 2017).

4.2 Cortical beta bursts in the healthy aging brain

Beta oscillations are associated with prefrontal working mem-
ory (Lundgvist et al, 2011, 2018), stopping action and thought
(Michelmann et al., 2016; Wessel and Aron, 2017), and most widely
— to sensorimotor funection (Baker, 2007; Espenhahn et al., 2019;
Feingold et al., 2015; Gehringer et al., 2018; Pfurtscheller et al., 1996;
Follok et al., 2014). Age-related increase in beta band power over the
bilateral sensorimotor cortices has been reported in previous studies
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(Heinrichs-Graham and Wilson, 2016), consistent with that which we
observed in our study (see supplemental analysis 1.2 and Figure 52). As
beta power has been linked to the level of inhibitory GABAergic neural
transmission, age related increase of beta power at baseline may suggest
increased intracortical GABAergic inhibition (Rossiter et al., 2014).

Beta activity is characterized by shortlived burst events
(Feingold et al., 2015; Murthy and Fetz, 1992; Sherman et al,
2016), instead of a continuous oscillatory pattern. Importantly, beta
bursts have been investigated in the STN in PD studies which showed
longer burst duration and increase of incidence rate in OFF compared
to ON levodopa state (Tinkhauser et al., 2017b). Moreover, movement-
associated reduced incidence rate and amplitude of bursts contributed
to the pathological decrease of movement velocity (Lofredi et al,
2019) in PD patients. These distinct functional roles of transient beta
events indicate the importance of episodic nature of beta bursts in
flexible coordination of responses in tasks. In our study we extended
previous findings to spontaneous resting state brain activity measured
from scalp EEG, confirming the transient nature of cortical beta
events. Furthermore, we demonstrated an age-related increase in the
duration and occurrence of beta bursts in a region-specific pattern.
Such re-distribution of burst duration to longer windows together
with an increased occurrence of longer bursts may compromise the
flexible coordination of brain dynamics, especially in motor processing,
reflected in a central motor clustered spatial pattern.

The mechanistic origin of neocortical beta burst events was inves-
tigated in detail in the work of (Sherman et al., 2016). Their simula-
tion results have shown that beta events could emerge from nearly syn-
chronous bursts of excitatory synaptic drive targeting proximal and dis-
tal dendrites of pyramidal neurons in the cortex. Additionally, they sug-
gested that the ventral medial/pallidal thalamus was particularly well
suited for this distal drive. Importantly, the ventromedial (VM)/pallidal
thalamus project dominantly and diffusely to the supragranular layers
in the sensory and motor cortex as well as the prefrontal cortex, which
is quite consistent with the spatial distribution in beta burst duration
changes observed in our study (see Fig. SB). This might lead to the
assumption that thalamo-cortical loops of motor related pathway are
a fundamental component in generation and age-related alteration in
cortical beta burst dynamics. More frequent and longer beta bursts are
probably due to the increased drive from the thalamus, which has been
shown to be affected by age through complex changes in macrostrue-
ture, microstructure and neural connectivity (Fama and Sullivan, 2015).
Meanwhile, cortical beta bursts could also be generated independently
in the STN-Gpe (external globus pallidus) network within the basal gan-
glia (Kumar et al., 2011) and propagate via thalamo-cortical loops to
the cortex {(McFarland and Haber, 2002).

In fact, a very recent study revealed a possible mechanism of prop-
agation of beta bursts within the cortical-basal ganglia circuit in PD
(Cagnan et al., 2019). The authors showed an association between cor-
tical and basal ganglia beta bursts, when especially longer cortical beta
bursts were associated with longer periods of increased beta amplitude
in GPe following the burst onset. This is in line with a previous study
showing that cortical beta changes preceded changes in sub-cortical re-
gions, suggesting an important role for cortical feedback in maintain-
ing pathological basal ganglia oscillations (De Hemptinne et al., 2013).
Additionally, it has also been reported that the effective STN-DBS treat-
ment not only modulates the local STN beta oscillations, but also atten-
uates the coherence between motor cortices and the STN (Oswal et al |
2016). These findings suggest that pathological coupling across nodes
(cortical and sub-cortical) in the basal ganglia-thalamo-cortical (BGTC)
network might play an important role in motor function impairment.
Moreover, in the present study, we showed that cortical sensorimotor
beta dynamics were also modulated due to physiological aging. This in
turn indicates that cortical beta dynamics might serve as a proxy for the
coordination of structures within the motor related network and under-

lie physiological and pathological changes.
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4.3. Relationship between different measures of PAC and beta burst in
healthy aging

Both PAC and beta bursts in the STN have previously been linked
to symptom severity in PD. Dopamine replacement in PD patients sup-
presses both burst length (Cagnan et al., 2015; Tinkhauser et al., 2017b)
and PAC (Lopez-Azcdrate et al., 2010; van Wijk et al., 2016). However,
how these two different phenomena relate to each other remains rather
elusive. To our best knowledge, one recent paper studied PAC during pe-
rinds of beta bursting using macro and micro electrode recordings in the
STN in PD patients {Meidahl et al., 2019). The authors provide converg-
ing evidence demonstrating that the coupling of spiking to the network
beta oscillations is significantly higher during beta bursts and increases
progressively with beta burst duration. Therefore, the authors suggested
that PAC and beta bursts might reflect similar neurophysiology due to
excessive synchronization. More recently, one study using ECOG at M1
demaonstrated PAC was more pronounced during periods of beta burst
than non-bursts in PD, but without showing significant difference be-
tween PD and non-PD groups during bursts (O'Keeffe et al., 2020). In
our resting EEG study, we also showed significantly elevated PAC and
prolonged beta bursts with more frequent occurrence in healthy elderly
compared to young subjects. We acknowledge that higher PAC is very
likely to occur during episodes of beta bursts since a higher signal-to-
noise ratio may play a critical role, which is, nevertheless, challenging to
disentangle. However, by investigating an association between PAC and
beta bursts features within each age group in a topographical manner
with multichannel EEG, we found no spatial overlap between them, ex-
cept for the focally distributing right frontal region (AF4, AF8, F2, F4)
and several other isolated channels in the elderly group. In addition,
by localizing the signal in the source space none of the cortical regions
showed a significant correlation. We therefore suggest that in healthy
aging, at the level of cortex PAC and beta burst dynamics may reflect
rather different neurophysiological processes.

4.4. PD: accelerated aging phenomenon?

Aging and PD related brain alterations share similarities (G.
Levy, 2007; Pang et al, 2019%; Reeve et al., 2014). They can be man-
ifested at the level of cellular mechanisms where dopamine cellular risk
factors accumulate with age in a pattern which mimics the pattern of
dopamine degeneration in PD based on the evidence from studies of
non-human primates (Collier et al., 2011). Moreover, the evidence from
midbrain dopamine neurons of aging non-human primates further sup-
ported that the view that age-related changes in the dopamine system
approach the biological threshold for parkinsonism (Collier et al., 2017).

Zeighami et al. (2019) used a data driven approach to investigate
anatomical brain signatures of PD. In their first identified latent vari-
able, age was the strongest contributor to brain atrophy. Further, in a
longitudinal study, they showed that both healthy aging and PD were as-
sociated with cortical thinning over a one-year period, but with a more
prominent alteration in PD patients than in healthy controls (Yau et al.,
2018). This again demonstrates a similar directionality of alteration in
aging and PD in terms of cortical anatomy. Age remains the largest risk
factor for many diseases and in our study we showed that it can also
be associated with electrophysiological biomarkers of PD. Importantly,
our results demonstrated that not in all elderly subjects we observed in-
creased PAC and longer beta bursts, which in turn indicates that other
factors such as genes, life style, environment and other factors shape the
carresponding neuronal processes and account for the individual varia-
tions.

Further, to address to what degree our estimated effects in healthy
aging relate to the previously reported PD biomarkers, we compared
them in rather a qualitative manner since factors such as the record-
ing setup, data length and signal-processing steps could result in a
different scale of the estimated metrics. With respect to the spectral
and spatial overlap of PAC in healthy aging and PD, we refer here to
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three previous studies in PD in which spatial distributions were pro-
vided offering a chance to have a general comparison. In the studies by
Swann et al. (2015) and A. M. Miller et al. (2019), one could see a promi-
nent PAC region over beta and further lower gamma phase frequency
ranges (their Fig. 2A) and a slightly prominent cluster region over beta
phase frequency (their Fig. 2A) in the PD Off-medication group, respec-
tively. In a very recent paper, the authors also showed a pronounced
PAC pattern over beta phase frequency in patients with PD compared
to healthy controls (see their Fig. 2B) (Gong et al., 2021). However,
since in all these studies there was no cluster-based permutation test
or demonstration to which phase frequency the amplitude from broad-
band gamma was phase locked to, we may only draw the conclusion
that the beta band phase modulating PAC in the current study, w a
large extent, overlaps with the frequency range presented in previous
studies. Regarding the spatial distribution, from the Fig. 5B from the
first study (Swann et al., 2015) and Fig. 3B from the second one (A. M.
Miller et al., 2019), together with what has been observed in the current
study (Fig. 3A), one can see that the left central regions are consistently
found in all three studies. In addition, in the study Gong et al. (2021) the
authors averaged the data from the two hemispheres and the area with
the largest differences was localized mainly in the sensorimotor re-
gion (premotor cortex (PMC) and primary motor cortex (M1)). Com-
paring the beta burst properties to that in the study by Tinkhauser et al.
(2017b), we found that although in healthy aging a relatively larger per-
centage of longer bursts was observed, there was no difference in terms
of the very long bursts, for instance bursts longer than 0.5 s. The other
difference is that in the LFP of STN in PD during off medication, the
percentage of bursts longer than 900 ms is abnormally high. The mean
of the burst duration in PD off medication is thus higher than what we
observed in healthy aging subjects and after the medication the mean
duration dropped to less than 0.3 s which is comparable to the results
from the healthy elderly participants in our study. In a recently pub-
lished study using ECoG over motor cortices, the authors showed that
in the motor cortex of patients with PD, a relative increase of beta burst
duration was demonstrated in comparison to the patients with essential
tremor (O'Keeffe et al., 2020). Comparing our results to their Fig. 2B, we
note that the mean duration of beta bursts in PD (around 0.2 5) is indeed
more comparable to that from healthy elderly in the current study. Im-
portantly, our findings regarding the burst features were well localized
in the bilateral motor cortices (pre- and post- central gyri, see Fig. 5C
and Fig. 6B). In conclusion, PAC features obtained in the present study
largely overlap in frequency and spatial content in both aging and PD
processes. Moreover, the effect of beta burst dynamics in healthy aging
shows the same direction with that of PD during off state compared to
the state after effective therapy (DBS or medication) or to the patients
with essential tremor (instead of comparing to healthy controls), and it
is commonly reported in the cortical motor region.

4.5. Potential non-invasive electrophysiological biomarker for detection of
parkinsonian stute

Early diagnosis of potential PD development is crucial for effective
clinical intervention. Here, we provide evidence that the altered PAC
and beta bursts are associated with aging in a manner similar to PD.
Moreover, we conducted a correlation analysis between PAC and beta
bursts across the whole scalp and cortical areas, and did not find a strong
relationship between them. Therefore, we suggest that a combination of
these two different metrics may lead to a more comprehensive estima-
tion of age-related changes in the brain potentially culminating in the
development of clinical symptoms typical for PD.

We have linked apparently healthy aging and PD by investigat-
ing electrophysiological signatures in a cross-sectional way. These non-
invasive metrics might be helpful in estimating a proximity of neu-
ronal dynamics relating to parkinsonian state. A recent study exam-
ined changes in cortical PAC in a progressive model of parkinsonism
(Devergnas et al., 2019). Although the authors reported that cortical
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PAC only reached significance when the animals became fully parkin-
sondan, their results showed a trend towards increased PAC in parallel
with the development of parkinsonism. In the present study, although
we did not find differences in TAP reaction times in elderly participants
with high and low PAC values, a future prospective study may identify
that participants with particularly strong PAC are more likely to develop
parkinsonian symptoms. In this study, we observed in the elderly group,
that there was a trend of increasing correspondence between PAC and
age-related behavioral reaction times. Importantly, this relationship was
not present in the young group. This may provide a hint regarding the
functional relevance of the PAC increase in healthy aging, which might
be related to a reduced readiness of the motor system to be engaged in
the production of movements. Although we regard this as an interest-
ing finding, we refrain from drawing a strong conclusion from it since
these behavioral data are not a straightforward measure of movement
performance.

Clearly, an objective set of criteria is needed to define a threshold
for normal or abnormal brain aging. For this purpose, we suggest that
longitudinal studies in which motor performance is specifically mea-
sured to be an indicative of potential parkinsonian state, measuring EEG
over a long period, for instance 5-20 years, starting already in the mid-
dle age could provide additional information on the progression of PAC
and beta burst dynamics in relation to possible development of parkinso-
nian symptoms. By combining both approaches, we may better identify a
turning-point indicating a disruption of apparently healthy aging course,
potentially relating to pathological aging process. Finally, applying in-
terventions, such as medication or early non-invasive brain stimulation
during sleep (Romanella et al., 2020), before healthy aging switches to
a pathological trajectory might slow down or even restore pathological
neural alterations relating to the development of PD.

5. Limitations

The first limitation of the study is that it was not based on the direct
comparison of the EEG parameters obtained in cohorts of patients with
FD and healthy subjects with aging. Besides, a comparison to the previ-
ous literature quantitatively is difficult since those studies have differ-
ent settings such as cap electrodes density, postural condition, recording
time length ete. Yet our main idea related to the effect of aging on EEG
characteristics typically associated with PD. Certainly for further appli-
cability of our findings to PD, patients should be recruited.

Furthermore, although we have performed a careful cleaning of the
data based on ICA and removal of noisy segment via visual inspection,
some residual artifacts might still be present. This is especially relevant
for high gamma activity which lies in the frequency range of artifactual
muscle activity. However, our source analysis has shown that the main
differences in PAC between two groups of participants were over sen-
sorimotor areas rather than over the temporal areas where one would
expect the largest contribution from scalp muscles. Additionally, we pro-
vide further extensive discussion on the relevance of muscle activity for
PAC effect (see supplemental discussion 2.). We would also like to note
that due to the limitations of non-invasive recordings, we can't rule out
completely the effect of residual muscle activity on the generation of
PAC. Future studies, utilizing direct invasive measurement of cortical
activity, should be more informative about such influence.

In our study, we applied standard head modeling and ROIs based
analysis in the source space. Mare precise estimates could be obtained
if the analysis is performed with individual head models. Yet, in our
study we used a relatively large number of ROIs which at least partially
negates a lack of spatial accuracy.

Conclusion
In this study, using resting state EEG, we found that apparently

healthy aging is associated with the cortical neuronal signatures resem-
bling those typically found in patients with PD. The differences in PAC
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and in the burst characteristics of beta oscillations between elderly and
young subjects exhibited distinct spatial patterns with a considerable
presence over sensorimotor areas of the cortex. Aging related changes
in PAC and beta burst dynamics share the directionality with that char-
acterizing PD. Such a similarity may suggest that the electrophysiologi-
cal signatures typically found in PD might already be detectable in the
apparently healthy aging brain. Consequently we assume that further
exaggeration of such neuronal changes may eventually result in the de-
velopment of motor abnormalities typical for PD. Furthermore, once
established and validated in other studies, the investigated metrics may
have potential to serve as the biomarkers for the early detection of the
gradually developing neuronal changes characterizing pre-parkinsonian
state. Finally, our findings highlight the importance of adequate control
for aging effects in PD studies via the inclusion of both patients and
healthy controls.
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Dopaminergic medication for Parkinson's disease (PD) modulates neuronal oscillations
and functional connectivity (FC) across the basal ganglia-thalamic-cortical circuit.
However, the non-oscillatory component of the neuronal activity, potentially indicating
a state of excitation/inhibition balance, has not yet been investigated and previous
studies have shown inconsistent changes of cortico-cortical connectivity as a response
to dopaminergic medication. To further elucidate changes of regional non-oscillatory
component of the neuronal power spectra, FC, and to determine which aspects of
network organization obtained with graph theory respond to dopaminergic medication,
we analyzed a resting-state electroencephalography (EEG) dataset including 15 PD
patients during OFF and ON medication conditions. We found that the spectral slope,
typically used to quantify the broadband non-oscillatory component of powsr spectra,
steepened particularly in the left central region in the ON compared to OFF condition.
In addition, using lagged coherence as a FC measure, we found that the FC in the
beta frequency range between centro-parietal and frontal regions was enhanced in the
ON compared to the OFF condition. After applying graph theory analysis, we observed
that at the lower level of topology the node degree was increased, particularly in the
centro-parietal area. Yet, results showed no significant difference in global topclogical
organization between the two conditions: either in global efficiency or clustering
coefficient for measuring global and local integration, respectively. Interestingly, we
found a close association between |local/global spectral slope and functional network
global efficiency in the OFF condition, suggesting a crucial role of local non-oscillatory
dynamics in forming the functional global integration which characterizes PD. These
results provide further evidence and a more complete picture for the engagement of
multiple cortical regions at various levels in response to dopaminergic medication in PD.

Keywords: Parkinson's disease, dopaminergic medication, spectral slope, functional connectivity, graph theory
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INTRODUCTION

Parkinson’s disease (PD) is the second most common neural
degenerative disorder characterized by massive degeneration of
dopaminergic neurons in the nigrostriatal dopamine system
(Olanow et al, 2009). It has been increasingly recognized
that PD is accompanied by functional disturbances both at
subcortical and cortical levels (Braak et al., 2003; Boon et al,
2019). Clinically, dopamine loss is managed via dopaminergic
therapy (DT). The dopaminergic system has been shown to have
considerable and widespread modulatory influences on many
brain structures including the cortex (Steiner and Kitai, 2001).
While dopamine replacement therapy is efficient for improving
the motor symptoms, the neural mechanisms of dopaminergic
medication are not yet fully understood (Schapira, 2005).

In PD, it has been repeatedly reported that it is characterized
by abnormal oscillatory synchrony in the basal ganglia-thalamus-
cortical (BGTC) network in the beta frequency band (13-30 Hz)
that could be modulated by dopaminergic medications and deep
brain stimulation (DBS) (Brown, 2003; Wingeier et al, 2006;
Kithn et al, 2009; De Hemptinne et al, 2015 Miller and
Robinson, 2018). In the frequency domain, electrophysiological
brain signals typically consist of a power-law 1/f component
and periodic oscillatory activities. While a majority of studies
have so far been dedicated to the oscillatory activity, increasing
evidence shows that non-oscillatory (aperiodic) activity also
provides information about the intricate neuronal dynamics
unfolding at different temporal scales (He et al., 2010; Voytek
et al,, 2015). A broadband aperiodic component of the spectrum
is often represented by the slope of the fitted line in log-
log space (known as spectral slope). The changes in spectral
slope have been associated with neural development, healthy
aging, and performance in working memory tasks (Voytek et al.,
2015; Donoghue et al, 2020). In addition, previous studies
have reported that it is altered in different pathologies, such
as schizophrenia (Peterson et al, 2017; Molina et al, 2020)
and ADHD (attention deficit/hyperactivity disorder) (Robertson
et al, 2019). Importantly, it has also been demonstrated
that the spectral slope is a potential indicator of the local
excitation/inhibition balance (Gao et al, 2017; Colombo et al,
2019). In addition, TMS (transcranial magnetic stimulation)
studies, which can directly probe the changes in excitation and
inhibition, have shown that PD is accompanied by changes in
cortical excitability (Ridding et al,, 1995; Hanajima et al., 1996;
Cantello, 2002). Thus, it would be important to test whether
and how this measure is altered in PD, in particular with
dopaminergic medication.

While regional changes could provide comprehensive
understanding of the underlying local circuitry, the brain rather
functions as a distributed network. Functional connectivity (FC)
analysis allows us to understand how distinct regions interact,
and graph-theory based approach enables a macroscopic
perspective of brain connections on the regional and whole-brain
network level. Many previous studies showed that network
architecture is related to brain function or dysfunction (Bassett
and Bullmore, 2009; Bullmore and Sporns, 2009). Using resting
state fMRI (functional magnetic resonance imaging), it has

been intensively investigated how dopaminergic medication
modulates brain FC in the BGTC network (Tahmasian et al.,
2015). The most consistent finding across different rs-fMRI
studies revealed decreased connectivity within the posterior
putamen in PD (Tessitore et al, 2019), and that its cortical
projections are modulated by dopaminergic medication (Herz
et al, 2014). To date, few fMRI studies have adopted graph
theoretical approach in PD), and the reported findings have been
inconsistent. Specifically, compared to healthy controls, PD
patients showed lower global efficiency (GE) (Sang et al., 2015),
while no abnormalities in topographical property at the global
level were observed in PD (Berman et al,, 2016; Hou et al., 2018;
Ruan et al., 2020). Both increase (Sang et al., 2015) and decrease
(Hou et al,, 2018) in nodal centrality have been observed in PD
compared to healthy controls. In addition, it was found that
levodopa administration significantly decreased local efficiency
of the network (Berman et al,, 2016), and conversely resulted in
an increase in eigenvector centrality of cerebellum and brainstem
in PD (Jech et al., 2013).

As for the EEG/MEG (electro- and magnetoencephalography)
studies, compared to healthy controls, increased cortico-cortical
FC in PD has been found primarily in alpha and beta frequency
ranges, and cortico-cortical coherence was linked to the severity
of the clinical symptoms (Silberstein et al., 2005; Stoffers et al.,
2007, 2008; Boshoom et al,, 2009; George et al,, 2013; Miller et al.,
2019). Dopaminergic medication induced changes in cortical
synchronization have also been investigated by computing pair-
wise coherence across the entire montage using multi-channel
EEG/MEG. However, both reduction of FC after dopamine
medication (Silberstein et al., 2005; George et al., 2013; Heinrichs-
Graham et al., 2014) and the absence of connectivity modulation
were previously reported (Miller et al, 2019). Very recently,
using advanced modeling analysis, in response to dopaminergic
medication, increased cortico-cortical synchronization in beta
band has been detected by taking into account the contribution
from other sub-networks (Sharma et al, 2021). To capture
the changes across the whole cortex, through the application
of graph theoretical measures in EEG/MEG, previous studies
have demonstrated abnormalities in topographical organizations
of functional network in PD compared to healthy controls,
suggesting that the interactions between cortical areas become
abnormal and contribute to PD symptoms at various stages
(Utianski et al, 2016). Furthermore, the alterations in network
attributes were linked to both motor and cognitive dysfunctions
{Olde Dubbelink et al, 2014; Boon et al, 2017). However,
how the topological organization of the cortical functional
network changes after dopaminergic administration remains
rather elusive. To address this issue, we applied graph theory-
based network analysis to investigate further changes in cortical
connectivity in patients with PD after the administration
of dopaminergic medication. Besides, previous studies have
suggested a close link between the local excitation/inhibition
balance and information transmission locally and globally (Deco
et al., 2014), and the network’s organizational structure (Zhou
et al., 2021). Therefore, we asked whether and how the spectral
slope, as a proxy of the local E/l ratio, would relate to the
network-wise activity in the context of PD.

Frontiers in Aging Meurosciencs | www. frontiersin .o

April 2022 | Violume 14 | Article 546017

85



Thang at al.

Dopaminergic Modulation of EEG in Parkineon's Dissase

To further characterize the regional and functional network
changes due to dopaminergic medication, we address the
following questions. Regarding local properties: (1) How does
the aperiodic property of the electrophysiological brain signal
change in response to dopaminergic medication administration?
With respect to cross-area interactions: (2) What is the effect of
dopaminergic medication on functional connectivity? (3) Does
dopaminergic medication induce alterations in the lower and/or
higher level of the network architectures? (4) Do local changes in
non-oscillatory component of neural activity influence functional
network topology/organization? To answer these questions, we
analyzed a publicly available dataset including EEG data of PD
patients from ON and OFF dopaminergic medication conditions
(George et al., 2013; Rockhill et al,, 2020).

MATERIALS AND METHODS

Participants

The data analyzed in this study is open-source data (George
et al, 2013% Swann et al, 2015; Jackson et al, 2019). This
dataset includes resting state EEG data with a duration of around
3 min. Data were collected from 15 PD patients (8 female,
average age = 63.2 + 8.2 years, mild to moderate disease with
average disease duration of 4.5 & 3.5 years) during OFF and ON
dopaminergic medication sessions. All participants were right-
handed and provided written consent in accordance with the
Institutional Review Board of the University of California, San
Diego and the Declaration of Helsinki. For more information you
may refer to George et al. (2013).

Data Collection

EEG of patients with PD were recorded on two different days for
ON and OFF medication sessions which were counterbalanced
across subjects. For the OFF medication session, patients were
requested to withdraw from their medication at least 12 h
prior to the EEG recording. For the ON medication session,
subjects took their medication as usual. A 32-channel EEG cap
with BioSemi ActiveTwo system was used to acquire the EEG
data with a sampling rate of 512 Hz. Two additional electrodes
were placed over the left and right mastoids used for reference.
During the EEG recording, participants were instructed to sit
comfortably and fixate on a cross presented on the screen. Each
recording session lasted at least 3 min. In addition, participants
completed a few clinical assessments which were previously
reported in George et al. (2013). In this study, we did not link
the clinical scores of patients to the EEG measures as the authors
of the original paper mentioned some uncertainty about these
scores. Yet, to assure these two conditions represent two distinct
parkinsonian states, we examined the change in the motor section
of unifined Parkinson’s disease rating scale (UPDRS I1I) scores
between the two conditions. Statistical analysis showed that there
was a significant reduction of the clinical scores in ON condition
(mean £ SD: 32.67 + 10.42) compared to that in OFF condition
(mean £ SD: 39.27 & 9.71). Note, that in this dataset a healthy
control group was also included. However, we focused on the
comparison of data between ON and OFF conditions which is

also a standard study setup for differential parkinsonian states
induced by medication in PD (Tinkhauser et al,, 2017; Sharma
etal., 2021).

Data Pre-processing

EEG data were analyzed using EEGLAB (version 14.1.2; Delorme
and Makeig, 2004) and FieldTrip toolboxes, together with
customized scripts in Matlab (The MathWorks Inc., Natick, MA,
United States). First, a high-pass filter at 1 Hz was applied to
remove low frequency drifts (two-way FIR filter, order = 1,536,
eegfilt.m from EEGLab). Subsequently, independent component
analysis (ICA - infomax algorithm implemented in EEGLab) was
used to remove artifactual sources of cardiographic components,
eye movements and blinks, and muscle activity in the data.
Further, channels with inadequate quality were rejected by
visually inspecting whether their spectra demonstrated residual
EMG at higher frequency ranges [on average 54 =+ 3.1 for
OFF and 5.2 £ 2.8 for ON, no difference between conditions
{p = 0.6606)]. Bad channels were interpolated with neighboring
electrodes using a method of spherical splines (EEGLab function
“eeg_interp”). Next, data were examined visually for the presence
of residual artifacts and segments contaminated by gross artifacts
and these events were marked and then excluded from further
analysis [on average 172.5 + 22.7 s in OFF and 1655 £ 336 s
in the ON condition remained, no difference in the number
of rejected data points (p = 0.3591)]. Subsequently, data were
re-referenced to the common average.

DATA ANALYSIS

Power Spectral Density

Power spectral density (PSD) was calculated using the function
“pwelch” in MATLAB, with a Hamming window of 512 samples
{i.e., 1 s) and a 50% overlap. Beta band power was estimated as
the averaged PSD in the beta frequency range (13-30 Hz). In
addition, in line with a previous study (Donoghue et al, 2020),
we utilized another way of estimating the oscillatory beta power
by accounting for the overall spectral slope. For this purpose, we
subtracted the spectral slope (measured by a fitted line in a log-log
space) and estimated the beta power on the residuals of the PSD.

Power Spectral Density Slope

To reduce contamination from high frequency non-neuronal
noise, we estimated the slope of the PSD in a frequency range
of 2-45 Hz. A three-step robust regression method was used to
estimate the slope based on the computed PSD. This method
was proposed and applied by Colombo et al. (2019). First, a
least-squares linear line was fitted to the raw PSD using the
function “robustfit” in MATLAB in the log frequency-log PSD
space. Second, frequency points with larger than 1 median
absolute deviations of the PSD residuals were identified as
oscillatory peaks. Continuous frequency bins surrounding these
peak frequencies were considered as the base of the oscillatory
peaks and were also excluded for the further step. Last, a second
least-squares fit was performed on the rest of the frequency
ranges. We took the slope (with the sign) of the second fitted

Frontiers in Ag ing Meunoecience | wew. frontiarsin.org

April 2022 | Violuma 14 | Article 846017

86



Thang at al.

Dopaminergic Modulation of EEG in Parkineon's Disease

line as the final spectral slope of the PSD. Thus, a more
negative slope demonstrates a steeper decay, while a less negative
slope represents a flatter one. One advantage of this method
is that it considers the potential bias resulting from linearly
spaced frequency bins being estimated with a logarithmic scale.
Therefore, before the regression procedure, the PSD curve was
up-sampled with logarithmically distributed frequency bins. For
more details, please refer to the study by Colombo et al. (2019).

Functional Network Analysis

A network is constructed by a collection of nodes and links
between pairs of nodes. In this study, we defined each node
as a brain region approximately represented by each channel,
while links represent the connectivity between pairs of channels.
FC between the brain areas was determined by computing the
lagged coherence which accounts for the volume conduction
issue. Each network can be represented by a symmetrical 32 x 32
adjacency matrix.

Functional Connectivity

Functional connectivity measure was quantified by the lagged
coherence between all the channel pairs in a frequency range
of 1-35 Hz with resolution of 1 Hz. This metric quantifies the
strength of phase coupling between two signals by eliminating
the effects of volume conduction (Pascual-Marqui, 2007; Pascual-
Marqui et al., 2011), and it has been shown to be even more
suitable than phase lag index for the application of connectivity
estimation when using EEG and MEG (Hindriks, 2021). Its
value ranges between [0, 1]: 0" stands for no coupling, and
“1” represents perfect coupling. This measure has been utilized
in earlier EEG studies (Milz et al., 2014; Vecchio et al., 2021).
FC in an oscillatory frequency band was acquired by averaging
the FC values over the respective frequency range (for instance
beta band FC was obtained by averaging the FC values over 13-
30 and 8-12 Hz for the alpha band). To investigate whether
medication could result in changes in FC in oscillatory frequency
band across the whole brain (neighboring areas and remote
regions), we applied a seed-based connectivity comparison
approach. This means that the connectivity was calculated
between a given electrode (seed) and all other electrodes for each
subject. Then, whole-head connectivity was compared between
conditions using a cluster-based permutation test to account for
multiple comparisons.

Network Measure

We estimated the brain network metrics based on the
scalp sensor-based EEG connectivity matrix. Although often
performed in source space, due to a small number of channels
(Lantz et al.,, 2003) we did it rather in sensor space similar to
previous studies (Stam et al., 2007; Zeng et al,, 2015; Chai et al.,
2019; Sun et al., 2019; Mitsis et al., 2020; Smith et al., 2021). In the
discussion, we mention and discuss limitations associated with
the estimation of graph metrics in sensor space.

Node Degree
Node degree estimates the number of edges connected to
each node. To estimate the importance of each node (each

channel in our case), node degree centrality weighted by edge
importance (the connection is stronger, edge weights are larger)
was utilized for this purpose. Specifically, we used the function
“Centrality” implemented in Matlab for this measure (parameter
“importance” specified by edge weights).

Graph Theory Based Complex Network Measures

Overall Functional Connectivity. For each individual FC matrix,
the overall FC was obtained by averaging all the connectivity
wvalues across all the pairs of the connection in a matrix.

Proportional Thresholding. Proportional thresholding is a
commonly applied approach to remove connections with
lower strength and to obtain a sparse connectivity matrix for
computing the network properties based on graph theory. Here,
we applied a proportional threshold to keep a consistent density
of the connections across individuals (Bassett and Bullmore,
2009; van den Heuvel et al,, 2017). If a proportional threshold
(PT%) is applied to a functional network, all the strongest
PT% of the connections are preserved and set to 1; the other
connections are set to 0. As suggested by Rubinov and Sporns
(2010}, networks should be ideally characterized and show
consistent patterns across a broad range of thresholds. These
threshold values are often determined differently across studies.
Therefore, in this study we examined a wide range of thresholds
ranging from 36 to 4% (resulting in networks with around
20-200 links) in steps of 2%, similar to a previous study (van
den Heuvel et al., 2017). To show how the network looks like, in
Figure 1, we plotted the grand mean networks within each group
at differential thresholding values (20, 10, and 2%).

Graph Metrics. Various measures characterize a networks
structure. Two fundamental ones are included here: clustering
coefficient (CC) and global efficiency (GE). These two basic
graph metrics were computed as implemented in the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010). Clustering
coefficient is a commonly used measure to quantify the functional
network segregation. It is defined as the fraction of triangles
(ratio of the present and total possible number of connected
triangles) around an individual node and is equivalent to
the fraction of a nodes neighbors that are neighbors of each
other (Watts and Strogatz, 1998). The clustering coefficient
of a network CC is the average clustering coefficient across
all the nodes in the network. It reflects the prevalence of
clustered connectivity around individual nodes (Rubinov and
Sporns, 2010): the larger the CC, the greater the degree of
functional segregation.

The other metric, GE, was used to quantify the functional
network integration. This is based on a basis measure - shortest
characteristic path length. Paths are sequences of distinct nodes
and links, with shortest paths between two nodes defined as the
path with the fewest edges in a network (the sum of the number
of its constituent edges is minimized). GE for a network, obtained
by the average inverse shortest path length between all the pairs,
is a measure of functional network integration: the larger the GE,
the greater the degree of global integration. All these measures
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were computed with an open source Matlab toolbox (Rubinov
and Sporns, 2010).

Statistical Tests

Non-parametric Wilcoxon signed rank test was performed for
the comparisons of measures in PD OFF and ON states.
Spearman’s correlation coefficients were calculated to estimate
the relations between different measures. We applied the false
discovery rate (FDR) procedure (Benjamini and Hochberg,
1995) to correct for multiple tests (correlation calculation)
across channels. Significance is reported when FDR-corrected
p-values are below 0.05.

To account for multiple comparisons of metrics across
all channels, we performed a channel space cluster-based
permutation test using the “Monte Carlo”™ method, as
implemented in FieldTrip (Oostenveld et al, 2011). At sample
level (each channel in this case), a dependent f-test was utilized
to estimate the effect. A total of 1,000 randomizations were
performed across groups (ON and OFF conditions) and for
each permutation. Additionally, the single sample t-values are
thresholded at the 95th quantile, and cluster-level statistics
(sum of t-values within each cluster) were computed and the
largest cluster statistic was taken to build a null distribution.
We then compared the observed cluster-level statistic from
the empirical data against the null distribution derived from
the permutation procedure. p-Values below 0.05 (two-tailed)
were considered significant. A positive or negative cluster
demonstrates a significant difference between two conditions
(OFF = ON) or (OFF < ON).

RESULTS

Spatial Specificity and Effects of
Medication on Spectral Slope

The grand mean of PSD averaged from all channels across
subjects in each group is shown in Figure 2A. One can observe
that the PSD decay in PD OFF was shallower compared to the
PSD decay in PD in the ON condition. The spectral slope was
computed for each channel and each subject. Figure 2B shows
the topography of the grand mean of the spectral slope across
all subjects within each group (upper panel for OFF and lower
panel for ON condition). As shown in Figure 2B, for both groups,
spectral slopes were more negative (steeper slopes) along the
fronto-central-parietal midline of the brain and flatter in the
other regions. In general, the ON condition was characterized by
a more negative slope than that in the OFF condition.

We investigated the difference between the two conditions for
all channels. As described in section “Materials and Methods,”
we applied a non-parametric cluster-based permutation test
to correct for multiple comparisons in the channel space.
When comparing slope values in PD OFF with those of
PD ON, a significant positive cluster (p = 0.0220) indicated
an increased slope (flatter) in PD OFF. This difference

Uhttp://www.brain- connectivity- toolbox.net

demonstrated a lateralized pattern covering mostly left central
region (Figure 2C).

No Beta Power Difference Between
Conditions Before and After Correcting
for the Slope Effect

Previous studies have demonstrated inconsistent changes in
cortical beta power: an increase of beta power after dopaminergic
medication (Melgari et al, 2014) and insignificant cortical
beta power changes after DT in PD (George er al, 2013
Miller et al, 2019). Since we showed that the background
slope was significantly modulated by dopaminergic medication
(significantly steepened by the medication), we assumed that
insignificant beta power reports might partly be attributed to
the overall broadband slope changes. To test this assumption,
we first applied a traditional approach to estimate the beta band
power on the raw PSD. We computed the mean PSD value
in the beta frequency range (13-30 Hz) for each channel and
each subject in each group. Cluster-based permutation tests in
channel space showed no significant difference in beta power
between conditions (Figure 3A). Next, to address whether this
finding might be due to a flattened background spectral slape
{as observed in the PD OFF vs. ON comparison) on the top
of which oscillations were present, we used a second approach
controlling for the spectral slope to estimate beta-oscillation
power for each channel and subject. Figure 3B shows the grand
mean of the residuals of the PSD across all channels after
accounting for spectral slope. By averaging the PSD values in
the same frequency range of 13-30 Hz, beta band power for
each channel and each subject was re-calculated. Cluster-based
permutation tests identified two non-significant negative clusters
(OFF-ON) (p = 0.0739, 0.0939), mainly localized in bilateral
centro-parietal regions (CP5, CP1 and C4, CPé, Figure 3C). This
demonstrates that even after accounting for the background slope
effect, there were no significant beta power changes between the
two medication conditions.

Functional Connectivity in Beta Band Is
Increased After Medication

First, we predominantly focused on the sensorimotor seed-
based connectivity changes, which typically include C3 and C4
electrodes (Swann et al, 2015; Miller et al, 2019). The upper
panel of Figure 4A depicts the FC between C3 and one of
the representative channels from the parietal region (Pz) along
a wide frequency range (1-35 Hz). One can observe clear
peaks around the alpha and beta frequency bands for both the
ON and OFF conditions. Next, we averaged the connectivity
values in the beta frequency range (13-30 Hz) as a measure
of beta band FC. As described above, C3 seed-based beta
band connectivity was compared between medication conditions.
A negative cluster localized in the parieto-occipital region
{OFF = ON, p = 0.007) was identified as shown in the upper
panel of Figure 4B, demonstrating a lower connectivity between
C3 and parieto-occipital regions in the OFF compared to the ON
conditions. However, there was no significant difference in the
comparison of C4 seed-based connectivity between conditions.
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FIGURE 1 | Circular graph plot for the grand mean networks within each group under diffarent FT%. Upper panal: in OFF condition, the networks under the
thresholding values of 20, 10, and 2%. Lower pamel: in ON condition, the networks under the thresholding values of 20, 10, and 2%. The degree of transparency
reprasents how relatively strong the connection ia within the networkc the leas transparency, the stronger the connection is.

Furthermore, to investigate whether the frontal region showed
altered synchronization with other regions, we chose one of
the representative channels in the frontal area [Fz, which is
typically within the cluster of electrodes near the supplementary
motor area (Casarotto et al, 2019)] and performed the same
analysis as for electrode C3. As shown in the lower panel of
Figure 4A, there were obvious peaks in the broad oscillatory
frequency range (alpha and beta) for both conditions. The lower
panel of Figure 4B shows the topographical pattern for the
comparison between OFF and ON conditions, and a significant
negative cluster (p = 0.0250) localized primarily in the parietal
region. This demonstrated that the synchronization between
Fz and parietal regions in the beta band was significantly
enhanced in the ON compared to OFF condition in PD.
Finally, we performed the same analysis for the other channels
to demonstrate whole-head comparisons in a head-in-head
plot (Figure 4C). As in C3 and Fz seed-based connectivity
comparisons, the other channels in seed-based connectivity also
showed significant increase in ON compared to OFF conditions.
Significant clusters (p < 0.05) are marked by warm color.
In general, the topographies showed significant alterations in
synchronization between frontal, central, and parieto-occipital
regions. T'o show that these connectivity effects are not mainly
driven by the power of the beta oscillation itself, we also examined
the PSD and connectivity profiles and found that in the beta
band the peaks of the connectivity between the two channels
do not coincide with the peaks of the power from either of
the relevant channels (see Supplementary Figure 1). Therefore,
we conclude that the connectivity effect estimated from the

lagged coherence is not driven by the power and rather reflects
phase-driven interaction. In addition, due to presence of peaks
of the FC in the alpha band, we used the same approach to
explore the FC changes in alpha band (8-12 Hz). Yet, there was
no significant cluster detected for all the possible seeds when
comparing the two conditions. Due to our predominant interest
in the beta frequency range and pronounced effects observed in
this frequency band, in the rest of the study we focus on the
measures from the beta band.

Node Degree in Centro-Parietal Region
in Beta Band Is Increased After
Medication

Next, we tested whether the local level of a network feature,
namely the node degree, was modulated by the medication
effect. For this purpose, we calculated the node degree (from the
connectivity in the beta band) for each channel and each subject.
Figure 5A shows the topographical maps of the grand mean of
the node degree across subjects within each group. As can be
seen from Figure 5A, both groups showed a spatial specificity
regarding the degree distribution (left for OFF and right for ON
conditions): a higher level of the node degree in central areas than
in other regions. This demonstrates that the central region might,
in general, interact more with other regions in the whole brain
network. Next, we compared the node degree between conditions
for all channels using a cluster-based permutation test. Figure 5B
shows the spatial difference pattern - a significant negative
cluster was detected (p = 0.0140, OFF vs. ON, shown by labels)
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FIGURE 2 | (A) Grand mean of FSD across &l channels and sulbjects within each group [OFF in black and OM in red. and the shaded erea indicates the standand
emror of the mean (SEM)]. (B) Grand mean spatial distribution of spectral slope estimated from power spectra over 2-45 Hz across subjects within each group {upper
pane for OFF, lower panel for ON condition). Color bar indicates the slope value. (C) Spatial-difference petiem of spectral slope betwean OFF and ON (OFF-ORN)
condition (cluster-based permutation test, p = 0.0220). Significant positive custers are labeled. Color bar indicates the statistical t-valua.

‘.

mainly in the centro-parietal region, suggesting that medication
modulated the node degree of the beta band functional network
in a way that the connectivity of the centro-parietal region
became more pronounced in the whole network. Thus, this
analysis further confirmed our findings obtained from seed-based
connectivity analyses, revealing that synchronization was up-
regulated by medication specifically between the centro-parietal
region and other regions.

No Significant Change in the Global
Network Topology: Either in Network
Segregation or Network Integration

Measure

To answer the question whether the global network structure
is modulated by medication, we estimated the two fundamental
features of a network: the GE for measuring functional network

integration and the CC for measuring network functional
segregation. We report the comparison results for both of the
measures across a wide range of proportional thresholding
values (36-4%, with a step of 2%) between the two conditions.
Since it has been shown that differences in overall FC could
have predictable consequences for between-group differences
in network topology (van den Heuvel et al, 2017), we here
first checked whether in our data there could be a possible
bias for the comparison. However, no significant difference in
overall FC between condition comparisons was found (Wilcoxon
signed rank test, two-tailed, p = 0.1514). Thus, the overall FC is
probably not a significant bias in the comparisons we performed
as shown below. As seen in Figure 6A, across the whole range of
thresholding (36-4%), the mean GE across subjects in the OFF
condition (in black) almost overlapped with that from the ON
condition (in red). As for clustering coefficient, the grand mean
of CC in the OFF condition (black line} showed higher values
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comparison of cscilatory beta band power betwean PD OFF ve. ON conditions after accounting for the beckground spectral slope. Two negative clusters wers
identified 25 shown by the labels, but none of them reached significance {p = 0.0739. 0.0930). Color bar indicates the statistical t-valee.

than those in the ON condition (red line) across all thresholding
values (Figure 6B). However, the statistical comparison did not
indicate a significant difference in GE (p = 0.05, p-values shown
in dashed orange line, right y-axis), or in CC between the two
conditions (p = 0.05, p-values shown in dashed orange line,
right y-axis). Thus, controlling for the overall FC values and
across a wide range of thresholding values, we were not able
to demonstrate a significant impact of medication on global
network configuration.

Spectral Slope (Local and Global)
Predicts the Network Global Efficiency in

OFF Medication

Mext, we asked how the spectral slope, as a proxy of measuring
local E/I balance, would relate to the brain functional network;
thus, we investigated a possible relationship between spectral
slope and network topology. First, we averaged the spectral slope
across all channels to represent an overall slope (referred to
as global slope) for each subject. Spearman’s correlation was
performed between global slope and network metrics (GE and
CC) derived under an exemplary thresholding value at 20%
in both groups. As shown in the scatter plot in Figure 7A,
GE negatively correlated with global slope (Rho = —0.7643,
p < 0.001) in the OFF condition. In contrast, no such association
was observed in the ON condition (Rho = —0.1036, p = 0.7144).
Next, we performed a correlation analysis for the channel-
wise slope (referred to as local slope) and network GE in the
OFF condition. This analysis revealed a significant negative
relationship between local slope values and network GE as shown
in the topographical map (channels demonstrating significance
are highlighted by label, FDR-corrected) in Figure 7B, and this
relationship was most pronounced in the left centro-parietal area.
There was no significant relationship between local slopes and GE
in the ON condition. In addition, we examined if the relationship
we observed at the 20% thresholding could be obtained regardless
of the specific thresholding value. We performed the correlation

analyses between global slope and network GE across the whole
range of thresholding values (36-4% with a step of 2%) in the
OFF group. As shown in Figure 7C, almost across all PT%,
the negative association between global slope and network GE
was present consistently (p < 0.05, p-values shown in dashed
orange line, right y-axis), except under an extreme thresholding
wvalue of 4%. The spatial correlation pattern between local slope
and network GE was also examined under the same range of
thresholding values, and consistently negative relations between
local slope from the centro-parietal region and network GE
were observed (see Supplementary Figure 4). These results
showed that global slope negatively correlated with network
GE across a wide range of thresholding values, and a further
topographical correlation map between local slope and network
GE demonstrated a region-specific pattern.

Control for the Discontinuity in the Data

To assure that the estimation of the metrics is not affected by
signal discontinuity introduced by removing the artifacts, we
additionally performed the main analyses respecting the cutting
borders. Consistently, we obtained wvery similar results with
respect to spectral slope and lagged coherence. The differences
between the two medication conditions remained unchanged.
A detailed report can be found in Supplementary Figures 2, 3.

DISCUSSION

In this study, we investigated local and global changes induced
by dopaminergic medication in a cohort of PD patients using
non-oscillatory spectral slope measure and connectivity analysis
in resting state EEG. Locally, we estimated the slope of the non-
oscillatory wideband background activity and showed that the
left central region had a significantly decreased (steeper) spectral
slope during the ON compared to OFF medication state. In
addition, in ON compared to OFF, we observed an increase in
the FC in the beta band, mainly between centro-parietal and

Frontiers in Aging Meurosciencs | www. frontiersin .o

April 2022 | Violume 14 | Article 546017

91



Thang at al. Dopaminergic Modulation of EEG in Parkineon's Dissase

B €3 seed based connectivity: OFF vs. OM

C3-Pz
A 0.0z
006 -
8
E Lz |
Q
o
Eums-
-
4
0004
z
o W 15 20 25 30 35
Frequency (Hz)
Fz-Pz —0N Fz seed based connectivity: OFF vs. ON o —E
004 —OFF B
2
alf

w18 20 25 3 35
Freguency (Hz)

)

FIGURE 4 | (A) Lagged coherence plot over a frequency remge of 1-35 Hz. Upper panel shows the mean connectivity (measured by lagged coherence) estimated
from C3 and Pz, whila the lower panel hows the connectivity estimated from Fz and Pz, across the subjects within each group (OFF in black and ON in red, and the
shaded area indicates the SEM). (B) Upper panel: topography for C2 seed-based connectivity {lagged coherence in beta band) comparizon between OFF vs, ON
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and outlined by & square bos:_ Lower panel: the same analysia performed for the seed channel Fz. and a significant negative cluster {OFF < OM) was detected
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relationship between spectral slope (locally and globally) and
network’s GE in the OFF condition, where a flatter slope was
associated with a smaller degree of GE of the functional network.
These findings provide further evidence for the engagement of

frontal regions. Further, graph theory-based analysis showed an
enhanced node centrality in particular in the centro-parietal
regions but no significant alteration in the complex level of
network topology (GE or CC). Lastly, we found a strong negative
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For both groups, the electrodes in the central area have a higher level of node degree than that of other regions. Color bar indicates the magnitude of node degrea.
(B} Spatial differance pattern for comparison of node degree between two conditions (OFF ve. ON). The lebeled channals show the identified significant negative

cluster {OFF < ON, p = 0.0140) using cluster-based pemutation test. Color bar indicates the stetistical t-value.

multiple cortical regions in response to dopaminergic medication
in PD, which in turn may indicate that the therapeutic efficacy of
dopaminergic medication may relate to both regional and global
changes in cortical activity.

Non-oscillatory Background Spectral

Slope

Using multi-channel resting state EEG, we observed that patients
with PD in the medication OFF condition had an increased
(flatter) spectral slope compared to medication ON condition.
This effect was found to be spatially specific to the left central
region. The spectral slope, a metric to quantify this background
power spectrum, has been reported to be altered in the first
year of development, healthy aging and in mental disorder such
as schizophrenia (Peterson et al., 2017; Donoghue et al, 2020;

Molina et al,, 2020; Schaworonkow and Voytek, 2021), and could
also predict the dynamic behavioral outcome in working memory
tasks (Voytek et al, 2015 Donoghue et al., 2020). In our study,
we observed that the spectral slope steepened in ON compared
to OFF conditions. Given that previous studies demonstrated
that healthy aging is accompanied by flattening of the spectral
slope (Voytek et al,, 2015; Cesnaite et al, 2021) and that neural
electrophysiological biomarkers associated with PD are already
present in the apparently healthy aging brain (Zhang et al,
2021), one can speculate that PD might be accompanied by a
flattening of the power spectra and that dopaminergic medication
might reverse this flattening effect. The effect was found most
pronounced in the left central area (strongest at C3 electrode in
the detected cluster), which might indicate a modification over
the sensorimotor area by the medication. The broadband spectral
slope underlying the dopamine medication modulation effect
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in patients with PD may thus potentially serve as a biomarker
sensitive to dopamine replacement therapy. At the same time,
even though we carefully cleaned the data and removed artifacts
which might contribute to the estimation of spectral slope, we
could not completely rule out this confounder. However, we
would like to emphasize that this is unlikely to drive the effect
of spectral slope we observed, otherwise one would expect a
spatial pattern which shows strongest difference over the frontal
or temporal areas (which cover large muscle groups and prone
to be contaminated by the muscle activity). Additionally, as we
mentioned before, the spectral slope has been shown to index the
E/l balance, and we will discuss the implication of this finding
below (see section “Spectral Slope and Network Global Efficiency:
Local Ef1 Balance and Global Network™).

Power of Beta Oscillation

Previous studies have demonstrated an increase in cortical beta-
band power in PD compared to healthy controls and alleviated
beta band synchrony after medication administration (Stanzione
et al,, 1996) and attenuation by DBS (Whitmer et al., 2012). On
the other hand, other studies have also reported an opposite
effect—an increase of beta band power after dopaminergic
medication (Melgari et al, 2014). In addition, some studies
demonstrated that dopaminergic medication did not have any
effect on cortical beta power (Stoffers et al., 2007; George et al.,
2013; Swann et al, 2015; Miller et al, 2019). Importantly, all
previous PD studies on this topic have only considered total
power of beta without separating it into oscillatory and 1/f
aperiodic components. In the present study, we tested the impact
of the removal of the aperiodic part of the spectrum on the
estimation of oscillatory power. We found that a conventional
approach to estimate oscillatory power based on the raw PSD
resulted in a non-significant difference in beta band in the PD
OFF compared to ON state. After accounting for the spectral
slope changes, a marginal increase of beta power was detected
in the centro-parietal regions in the comparison between the
ON and OFF conditions, yet this difference failed to reach
significance. Our data thus suggests that even though the beta-
band power estimation by the conventional approach might
be partly affected by the background wideband PSD spectra,
correcting the effect still does not yield a clear and statistically
significant difference between the ON and OFF conditions. Thus,
in line with some previous studies (George et al, 2013; Swann
et al., 2015; Miller et al, 2019), we further confirm that with
and without considering the background slope effect, there was
no difference in beta power between the medication conditions.
In addition, we discuss a possible relation of our findings to
prior studies which were based on the same dataset. The only
intersecting aspect across all these prior studies and ours is the
investigation of beta-band power change during resting state.
Consistently with what have been reported by George et al
(2013) and Swann et al. (2015), our study demonstrated there
was no beta power change between the two medication states.
Importantly, in our study, we have examined a possible bias
from the overall PSD slope effect and showed that even when
considering it there was no spectral power change in beta
frequency range between the two conditions. Yet, we suggest

that future studies should take into account the effect of the
aperiodic spectral component for the comprehensive evaluation
of oscillatory power changes in PD.

Functional Connectivity

We observed a significant increase in FC of beta oscillations
in the ON compared to OFF condition, in particular between
the centro-parietal regions with frontal regions. Previous studies
have demonstrated a presence of beta-band coherence between
STN (subthalamic nucleus) and multiple cortical regions,
including sensorimotor (Hirschmann et al., 2011, 2013; Litvak
et al, 2011), parietal and frontal areas (Litvak et al, 2011) in the
OFF medication condition in patients with PD. Dopaminergic
medication can also alter the beta-band connectivity between
STN and cortical regions (Stoffers et al, 2008; Litvak et al,
2011; Hirschmann et al, 2013; van Wijk et al, 2016). As
for the cortico-cortical connectivity, dopaminergic medication
administration was shown to either reduce interactions between
cortical areas (Silberstein et al, 2005; George et al, 2013;
Pollok et al, 2013; Heinrichs-Graham et al., 2014) or not to
produce any significant changes (Miller et al, 2019). In a very
recent study using combined STN-LFP (local field potential)
and MEG recordings, the authors discovered differential effects
of dopaminergic medication in different levels of networks
(Sharma et al, 2021). Specifically, in the cortico-cortical network,
sensorimotor-cortical connectivity across multiple regions was
enhanced in the beta band during the ON medication state.
Therefore, our observations of the enhancement of such a
coherent fronto-parietal motor network in the ON condition
is consistent with this recent report. Such enhancement of FC
is partially in agreement with another study which employed
simultaneous fMRI/EEG recordings and showed that a higher
dose of dopaminergic medication increased FC between motor
areas and the default mode network in fMRI, whereas EEG
connectivity remained unaffected (Evangelisti et al, 2019). In
general, the dopaminergic effect over the cortico-cortical motor
network might relate to the motor decision-making associated
network, which has been shown to involve cortical fronto-parietal
regions (Siegel et al, 2015), or it might relate to the default-
made network changes associated with non-motor symptoms in
PD as suggested by other fMRI studies (Gao and Wu, 2016).
Notably, a recent EEG study in PD using source localization
demonstrated the presence of strong phase-amplitude coupling
between the phase of beta and the amplitude of broadband
gamma oscillations in a variety of cortical regions (including
sensorimotor, somatosensory, and prefrontal areas) involved
in motor and executive control (Gong et al, 2021). In line
with this study, our findings of increased connectivity between
centroparietal-frontal regions after dopaminergic medication
further emphasize the importance of cortico-cortical connections
in PD. These electrophysiological findings are consistent with
previous fMRI studies suggesting a critical role of motor circuitry
in PD in response to dopamine administration (Shen et al., 2020).

Global and Local Network Organization

Using graph theory, we demonstrated that in the ON condition,
there was a significant increase in node degree in centro-parietal
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regions implying that these regions became more influential in
the communication within the network. However, the network
topology does not seem to undergo a major re-configuration
as we did not identify significant changes in GE or CC in the
brain network. This seems consistent with findings of previous
studies in which PD patients were compared to healthy controls
and no differences in topographical properties were found at
the global level either in fMRI (Ruan et al, 2020) or in EEG
in all frequency bands (Hassan et al., 2017). Another previous
study also investigated the topographical structure of functional
network using graph analysis based on MEG of patients with
PD {Olde Dubbelink et al., 2013). Compared to healthy controls,
their longitudinal study revealed a tendency toward a more
random brain functional organization which was associated with
lower local integration in multiple frequency bands and lower
GE in the upper alpha band. However, another study using
EEG found an increase in local integration and a decrease
in GE across all the frequency bands in PD compared to
healthy subjects (Utianski et al., 2016). In the present study, we
explored the alterations in a functional spectral network using
graph metrics and showed that dopaminergic medication intake
did not significantly alter the brain network organization but
did exert a significant enhancement in node degree of some
particular regions within the network. The absence of significant
changes in global integration and segregation of the functional
network might suggest that dopaminergic medication does not
re-configure the network at a global organizational level. Instead,
these observations appear to imply that the brain network as a
whole does not respond to medication at the complex (global
integration and segregation) but rather at the low-level network
topology (local node). It would be interesting for future studies to
test whether this relates to the clinical improvement of symptoms
and whether it is possible to significantly alter the network
organization through different therapeutic interventions based
on brain stimulation.

Spectral Slope and Network Global
Efficiency: Local E/I Balance and Global
Network

A steeper spectral slope after dopaminergic medication intake
was evident in PD. As proposed by previous computational work,
the scaling property of the power spectrum of the membrane
potentials and EEG could be due to the frequency attenuation
of the extracellular medium itself (Bédard et al.,, 2006), or the
intrinsic low-pass filtering effect of the electrical properties of
the neural dendrites (Lindén et al, 2010; Einevoll et al., 2013).
Alternatively, steepening of the slope could be a consequence of
dampened activity propagation (Freeman and Zhai, 2009). More
recently, by applying a realistic computational model, it has been
demonstrated that stronger inhibitory activity results in steeper
spectral decay compared to a situation with a stronger excitatory
drive and thus the spectral slope value can be linked to the local
excitation/inhibition ratio (Gao et al, 2017). Importantly, this
spectral slope derived from ECoG recording dynamically reflects
the effects of anesthesia induced by propofol. Furthermore, other
pharmacological studies on resting state EEG confirmed further

that spectral slope can differentiate the states of wakefulness
compared to a reduction or a complete loss of consciousness
induced in the anesthesia (Colombo et al., 2019). Even though
an exact generative mechanism of the 1/f shaped arrhythmic
brain activity is still unclear (He, 2014), these recent prior work
from simulations and experiments with the recordings across
different spatial scales have indicated that the spectral slope
could be a sensitive marker of the E/I dynamics. Following the
E/l balance hypothesis of the spectral slope, a steeper slope
after medication, observed in this study, may indicate that
dopamine induced a state characterized by stronger inhibition
over excitation. This line of interpretation agrees with previous
TMS studies reporting a reduction of intracortical inhibition
at rest in PD OFF medication (Ridding et al, 1995; Hanajima
et al, 1996; Cantello, 2002) and an enhancement of evoked
inhibitory activity (reflected in late TMS-evoked activity and beta
TM5-evoked oscillations) after dopaminergic medication intake
{Casula et al., 2017).

In addition, we found a close relationship between broadband
non-oscillatory background activity measured by the spectral
slope and the beta-band GE of the functional network. Global
network efficiency represents the ability of integration of activity
of widely distributed regions within a network, impacting
information transmission and communication (Bullmore
and Sporns, 2012). Notably, a previous simulation work
demonstrated that synaptic E/I balance is crucial for efficient
neural coding (Zhou and Yu, 2018), and the local E/I ratio plays
a role in information transmission at large scale brain level
(Deco et al,, 2014). This theory concurs with our findings: the
local and global spectral slope, reflecting the local and global
tune of E/l balance, is closely associated with the functional
network global integration property. The negative relationship
between them implies that more excitation over inhibition
corresponds to a lower level of functional network integration.
Consistently, a recent study from both fMRI recording and
simulation data showed that the local E/I ratio could have a
significant impact on the organization of whole brain functional
networks: GE of the functional network is an inverted-U shaped
function of local EfI ratio and the more deviation from the
balanced E/I state (in either direction), the lower GE of the
whole functional network (Zhou et al, 2021). Our observation
about the relationship between local and global slopes with the
global network integration property can potentially be explained
by this model: in OFF medication, an imbalanced E/I state
{indexed by flatter slope) deviating from balanced E/1 ratio exerts
a monotonous negative relation with functional network GE.
A presence of a negative relation between the spectral slope and
GE might indicate that the network in PD OFF state resides
within the left part of the inverted-U shaped function [GE
ws. Efl ratio, refer to the Figure 8A of the study (Zhou et al,
2021)] where a monotonous correlation can be expected. Such
a close association did not hold for the medication ON group.
We assume that the medication moves the network back closer
to a more balanced state, reflected in a steeper spectral slope
{steepening of the flattened slope in OFF state); thus, functional
network organization was no longer closely related to the E/I,
since in a close-to balanced E/I state the GE would rather remain
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stable (i.e., it reaches a maximum at the optimal E/I state). Our
data did not show a difference in the network’s GE property
and in contrast did demonstrate a difference in Efl dynamics
(reflected by the spectral slope) between the two conditions,
thus actually providing a possibility which allows us to more
specifically identify a position of the network in the OFF state.
One intriguing explanation would be that GE changes rather
slowly for quickly changing E/I ratio; therefore, the network in
OFF condition stays relatively close to the one in ON condition
along the GE axis, and along the E/I axis the networks from two
conditions stay further apart.

The spatial distribution of local slope and GE demonstrated
a specific pattern where the slope from the centro-parietal
regions showed strongest relations with the GE of the brain
network. In line with previous fMRI studies demonstrating that
the nodal property of the parietal cortex is closely associated
with motor outcome and decreased with progressing disease
stage (Hoehn and Yahr stage) in PD (Sang et al, 2015; Fang
et al, 2017; Suo et al, 2017), we assume that centro-parietal
regions play an important role in orchestrating the whole global
network organization. This is congruent with the finding that the
connectivity patterns in these cortical regions are also affected by
dopaminergic medication, as discussed above.

LIMITATIONS

The first limitation of this study is that due to a rather
low density of electrodes, we performed all connectivity
analysis in sensor space. Thus, we refrain from making any
conclusions about the specific structure of the networks (e.g.,
small-world and scale-free networks) as is also suggested in
a critical study on the application of graph measures in
EEG/MEG (Kaminski and Blinowska, 2018). It should also
be noted that even if the analysis were to be conducted
in source space, the volume conduction issue may still
be present. Importantly, we applied a connectivity measure
that is specifically used to overcome the volume conduction
issue. Moreover, we were able to show that our findings
remained consistent for a wide range of thresholds for the
networks’ properties.

Another limitation of our study is that clinical measures
were not available and therefore, we could not associate
EEG measures with the severity of clinical symptoms. We
acknowledge this and suggest that future studies could include
such a design so that the link between EEG parameters and
clinical phenotypes can be explored. Future work should test
whether and how local and global EEG parameters relate to
clinical symptoms.

Lastly, due to the lack of EEG comparison with the
healthy control group and the possibility to link the observed
effects to differential components of the clinical symptoms
in PD, we are rather restricted in our interpretation of the
neuronal effects due to dopaminergic modulation. In particular,
significant modulation of the spectral slopes and connectivity
in some specific regions might potentially indicate a successful
improvement associated with particular motor aspects (for

instance bradykinesia), while non-significant changes might
indicate the absence of such modulation for other motor
components such as internal motor control as shown in a
recent study (Michely et al., 2015). Alternatively, the absence of
neuronal changes in some regions might imply a co-existence of
possible non-dopaminergic alterations (for instance serotonergic
dysfunction) that could also become present in the course
of PD and are not modulated by dopaminergic medication
{Politis and Niccolini, 2015).

CONCLUSION

Using multi-channel resting EEG recordings in PD patients,
we showed differential effects of dopaminergic medication on
local non-oscillatory components and connectivity parameters.
Both from the local-level and brain-network perspective, the
centro-parietal area was identified as the region where significant
alterations in non-oscillatory wideband activity, measured by
spectral slope and node centrality within the spectral functional
network in the beta band, occurred. However, the network’s
global topologies, namely global integration (measured by GE)
and global segregation (measured by CC) remained unaffected
by the dopaminergic medication. Furthermore, during the OFF
state, a close association between the spectral slopes (local and
global) and network global integration was observed. These
findings align with the theory that local E/I balance impacts global
network structure, which might in turn demonstrate a crucial role
of local non-oscillatory dynamics in forming the functional global
integration in PD.
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