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Abstract

In this thesis, we consider a variety of different geometric covering and stabbing
problems in the plane. Stabbing and covering geometric objects are two widely
studied problems in computational geometry. These problems are closely related;
there are many cases where covering problems are dual to stabbing problems.

We first study a problem that was posed by Tamir in 1987 [109]: “Given a set
of geometric objects in the plane, can one decide in polynomial time whether there
exists a convex polygon whose boundary stabs every object ?” This boundary is then
called a convex stabber. We give an answer to this question by proving that deciding
the existence of a convex stabber is NP-hard for many types of geometric objects.
Additionally, we consider an optimization version and prove it to be APX-hard for
most of the considered objects.

A similar problem is deciding whether geometric objects can be stabbed with
the vertices of a rotated, scaled and translated copy of a given polygon. To the
best of our knowledge, this problem was not studied so far and we present the first
polynomial-time algorithm.

Another stabbing problem studied in this thesis, is the problem of stabbing se-
quences of geometric objects: Given a distance measure and two sequences of ge-
ometric objects, compute two point sequences that stab them under the condition
that the distance between these point sequences is as small as possible (using the
given distance measure). We state efficient algorithms for this problem where the
objects are either line segments or disks and the distance measure is the discrete
Fréchet distance.

Then, we consider covering problems. We study a new version of the two-center
problem where the input is a set D of disks in the plane. We first study the problem
of finding two smallest congruent disks such that each disk in D intersects one of
these two disks. Then, we study the problem of covering the set D by two smallest
congruent disks. We also investigate an optimization version. For these problems,
we give efficient exact and approximation algorithms.

Finally, we investigate the problem of computing a largest area rectangle inscribed
in a convex polygon on n vertices. If the order of the vertices of the polygon is given,
we state approximation algorithms whose running times are only logarithmically
dependent on n.
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Zusammenfassung
Wir beschäftigen uns in dieser Arbeit mit verschiedenen geometrischen Überdeckungs-
sowie Transversalenproblemen in der Ebene. Beide Gebiete zeigen ihre Relevanz
durch zahlreiche Untersuchungen in der algorithmischen Geometrie. Die Fragestel-
lungen sind häufig verwandt, da viele Überdeckungsprobleme dual zu Transversalen-
problemen sind.

Die Arbeit beginnt mit der Betrachtung von Transversalenproblemen. Zuerst
beschäftigen wir uns mit einer Frage, die bereits 1987 von Tamir gestellt wurde [109]:
„Sei eine Menge von geometrischen Objekten in der Ebene gegeben. Kann man
in polynomieller Zeit entscheiden, ob ein konvexes Polygon existiert, dessen Rand
all diese Objekte aufspießt?“ Den Rand eines solchen Polygons nennen wir kon-
vexe Transversale. Wir zeigen, dass es für viele geometrische Objekte NP-schwer
ist zu entscheiden, ob eine konvexe Transversale existiert. Zusätzlich betrachten
wir eine Optimierungsvariante für das Problem und zeigen, dass dieses Problem
für die meisten betrachteten Objekte APX-schwer ist. Eine ähnliche Fragestellung
ist zu entscheiden, ob ein gegebenes Polygon so gedreht, verschoben und gestreckt
werden kann, dass seine Ecken eine gegebene Menge von geometrischen Objekten
aufspießen. Dieses Problem wurde, soweit uns bekannt ist, bisher noch nicht betra-
chtet und wir präsentieren den ersten Polynomialzeitalgorithmus. Als Erweiterung
dieser Problematik beschäftigen wir uns mit dem Problem Folgen von geometrischen
Objekten mit Punktfolgen aufzuspießen. Dazu nehmen wir an, dass zwei Folgen
von geometrischen Objekten gegeben sind. Hierzu werden zwei Punktfolgen gesucht,
die die gegebenen Folgen aufspießen und deren Abstand minimal ist (wobei wir als
Abstandsmaß die diskrete Fréchetdistanz wählen). Wir untersuchen dieses Problem
unter der Bedingung, dass die Objekte Strecken oder Kreisscheiben sind.

Im zweiten Teil der Arbeit betrachten wir Überdeckungsprobleme. Insbesondere
untersuchen wir neue Versionen des 2-Zentren Problems, bei denen die Eingabe aus
einer Menge D von Kreisscheiben besteht. Bei der ersten Variante sollen zwei klein-
ste, kongruente Kreisscheiben berechnet werden, die jede Kreisscheibe in D schnei-
den. Bei der zweiten Variante sollen alle Kreisscheiben in D von zwei kleinsten,
kongruenten Kreisscheiben überdeckt werden. Zusätzlich untersuchen wir eine Opti-
mierungsvariante des Problems und geben effiziente exakte Algorithmen und Approx-
imationsalgorithmen an. Zum Schluss untersuchen wir das Problem, ein Rechteck
mit größtem Flächeninhalt zu finden, das in ein konvexes Polygon einbeschrieben
ist. Unter der Annahme, dass die Reihenfolge der Ecken des Polygons gegeben ist,
präsentieren wir Approximationsalgorithmen mit logarithmischer Laufzeit.
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Introduction

This thesis deals with stabbing and covering geometric objects in the plane. These are
two widely studied problems in computational geometry. Both problems have many
applications: Typical examples of applications for covering problems are facility
location problems, see, e.g., [46]. Possible applications for stabbing problems are
motion planning (see [78] for an overview) and curve reconstruction (see [20] and
references therein). Even if stabbing and covering problems might look different at
the first sight, in many cases they are closely related.

A typical example is the k-center problem: Let P be a set of points in the plane
and k > 0 an integer. We would like to compute k smallest congruent disks that
together cover all points in P . (See Figure 1 (a).)

(a) (b)

Figure 1: A covering problem and its corresponding stabbing problem.

Consider now the decision version of the k-center problem: Let P be a set of
points in the plane, k > 0 an integer and r > 0 a real value. Is it possible to place
k disks of radius r in such a way that they together cover all points in P? Hwang
et al. [72] gave an O(n

√
k) algorithm for this problem. If k is part of the input, the

problem was proven to be NP-hard [93]. (See also [5] and references therein.)
In the following we see that the decision version of the k-center problem is dual

to the following stabbing problem: Let D be a set of disks in the plane and let k > 0
be an integer. We want to decide whether this set D can be stabbed by k points;
stabbing problems where the stabbing objects are required to be points are usually
referred to as piercing problems, see, e.g., [77].
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The equivalent stabbing problem for the decision version of the k-center problem
can be stated in the following way: We replace each point of P by a disk; each
disk has radius r and the centers are the points in P . The result is a set of disks
D = {p ⊕ Cr | p ∈ P} where ⊕ is the Minkowski sum and Cr is a disk with radius
r. Then, we want to decide whether there are k points such that each disk in D is
stabbed by at least one of these points.

These two problems are equivalent because when we solve one of these problems,
then we also obtain immediately a result for the other problem: Assume that there
exists a set S of k points that together stab all disks in D, then there exist k disks
whose centers are the points in S and each disk has radius r and these disks cover
all points in P . On the other hand, if there exists a set A of k congruent disks with
radius r that together cover all points in P , then there exist k points, namely the
center points of the disks in A, that together stab all disks in D. (See also Figure 1.)

Another well-studied example of a covering problem that is dual to a stabbing
problem is the problem of covering with hyperplanes: Given a set P of n points in
Rd and an integer k > 0, do there exist k hyperplanes that together cover all points
in P? By using the common concept of hyperplane-point duality [40], we get the
following stabbing problem: Given a set of n hyperplanes in Rd and an integer k > 0,
do there exist k points that stab all hyperplanes? This problem is NP-hard, even in
the plane [94].

(a) (b)

Figure 2: Another example for a covering problem and its dual stabbing problem.

As mentioned in the beginning of the introduction, in this thesis different geo-
metric stabbing and covering problems are considered. All problems are studied in
the plane. While most research on stabbing problems is focused on finding a line
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transversal (also called stabbing line), we will study new variants that have rarely
been studied so far. For example, we investigate the problem of finding a convex
transversal, which we also call a convex stabber. This problem was first introduced
by Tamir in 1987 [109]. We also consider the problem of stabbing sets of geometric
objects with the vertices of a given polygon and the problem of stabbing sequences
of geometric objects.

As examples for covering problems, we study new variants of the two-center
problem where the input is a set of disks instead of a set of points. Finally, we
investigate the problem of computing the largest area inscribed rectangle in a convex
polygon.

Overview of the Thesis

This thesis consists of two parts. The first part deals with stabbing problems, the
second with covering problems. Each part starts with an introduction, which gives
a more detailed account of the related literature.

The first part starts with convex stabbing, which is a rarely studied version of
stabbing geometric objects in the plane. First, we prove the problem of finding a
convex stabber for different kinds of geometric objects to be NP-hard (Chapter 1).
We also study an optimization version of this problem and prove it to be APX-hard
for most cases. Then, in Chapter 2, we study the problem of stabbing a set of
geometric objects with the vertices of a polygon.

(a) An example for a
convex stabber of a set
of segments.

A1

A2

A3

A4

B1

B2

B3

(b) An example for stabbing two se-
quences of disks with two point se-
quences.

Figure 3: Stabbing problems.

In the last chapter, we investigate the problem of stabbing sequences of geometric
objects with point sequences.

The second part deals with covering geometric objects in the plane. There, we
study two different variants of covering objects. First, in Chapter 4, we consider a
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new version of the well-known two-center problem. Here the input is a set of disks
instead of a set of points. We investigate different versions and present efficient exact
and approximation algorithms. Finally, we give efficient approximation algorithms
for the problem of computing the largest inscribed rectangle in a convex polygon
(Chapter 5).

(a) An example for a two-
center problem for disks.

(b) An example for
the largest inscribed
rectangle in a convex
polygon.

Figure 4: Covering problems.



Part I

Stabbing Geometric Objects in
the Plane





Introduction

This part deals with finding transversals for sets of various types of geometric objects.
We will investigate a special variant of transversals: convex transversals, also called
convex stabbers.

Before we explain what a convex transversal is, we give a short overview of the
research on transversals in general.

Let S be a set of geometric objects in Rd. A k-transversal to the set S is a
k-dimensional flat that intersects each object of S. Research on transversals is an
old and rich area, see for instance [38, 62, 115]. If k = 0 the problem reduces to
deciding whether the set has a common intersection point. If the set consists of
convex objects, the existence of such a point can be easily answered by using the
following theorem:

Helly’s Theorem [68]. Let S be a finite family of n convex sets in Rd, n > d.
Then if every d+ 1 of the sets have a common intersection point, all sets in S have
a common intersection point.

The problem of computing an intersection point can be solved in O(nd+1T ) time
where T is the time to compute a point in the intersection of d+ 1 convex sets [26].

However, most of the works consider 1-transversals. In the literature 1-transversals
are mostly called line transversals or stabbing lines. There is no Helly-type theorem
for line transversal as there are families of n convex sets in the plane where every
subset of n− 1 sets has a line transversal but the family has no line transversal. See
for instance [115] for an example of such a family. But Hadwiger proved a similar
theorem adding an ordering condition.

Hadwiger’s Theorem [65]. Let S be a finite family of n disjoint convex sets
in R2. If there exists a linear ordering on S such that every 3 of the sets are inter-
sected by a directed line in the given order, then S has a line transversal.
(Notice that this line transversal to S does not necessarily respect the ordering on S.)

Such a transversal meets the members of S in a specific order; each transversal
determines two permutations of the sets of S where one is the reverse of the other.
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The number of such permutations has been widely studied [50, 76, 114].
There has also been a fair amount of work on computing stabbing lines for sets

of various types of geometric objects. Edelsbrunner et al. [48] presented in 1982 an
algorithm that computes the description of all stabbing lines for a set of n given
line segments in the plane in O(n logn) time. In 1985 Edelsbrunner [47] stated an
O(n logn) algorithm that decides whether a set of translates of a simple object in
the plane can be stabbed by a line. If the input is a set of axis-aligned rectangles
the running time can even be improved to O(n).

Compared to the work on line transversal the work on convex transversal is rather
sparse. The problem was originally proposed by Arik Tamir at the Fourth NYU
Computational Geometry Day (March, 1987) [109]: “Given a collection of compact
sets, can one decide in polynomial time whether there exists a convex body whose
boundary intersects every set in the collection ?” Goodrich and Snoeyink [63] studied
the problem with the restriction that the input set is a set of parallel line segments.
They proposed an O(n logn) algorithm (where n is the number of line segments)
which computes a convex polygon whose boundary intersects each line segment at
least once, or decides that no such polygon exists. Fekete [55] studied the problem
when the input is a set of translates of a convex regular k-gon (for fixed k), he stated a
polynomial-time algorithm for this case. Rappaport [100] considered another variant
of the problem. A set of n line segments in a fixed number of orientations is given and
one wants to find a convex polygon with minimum perimeter that weakly intersects
this set, meaning each line segment is either intersected by the boundary of the
polygon or lies completely inside the polygon. Rappaport presented an O(n logn)
algorithm for this problem.

Besides these results, there has been nearly no progress on Tamir’s problem in
the last 25 years.

Transversal problems are interesting from various perspectives. As already men-
tioned there has been a lot of work on the combinatorial aspect of transversals, like
the complexity of a set of transversals or the order induced by the stabbers. Also
the algorithmic part was widely studied. Possible applications for transversals are
in curve reconstruction, for line simplification, or in motion planning.

In some of these applications it is natural to consider convex transversals as gen-
eralizations of line transversals, like for instance for curve reconstruction or function
approximation.

In Chapter 1 we study Tamir’s problem for different kind of input sets, i.e., line
segments, squares and regular polygons. We show that Tamir’s problem is NP-hard
for these variants and we also consider an optimization version.

In Chapter 2 we study the problem of stabbing a set of geometric objects with
the vertices of a regular polygon. This problem is closely related to the approximate
symmetry detection problem [43, 73, 74]. Later on we show that it is not crucial that
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the stabbing polygon is regular, and generalize our algorithm to scaled, translated,
rotated copies of a given polygon. To the best of our knowledge, this problem was
not studied so far.

In Chaper 3 we consider the problem of stabbing two sequences of geometric
objects with two point sequences such that the discrete Fréchet distance between
these point sequences is as small as possible. This problem can also be considered
as a shape matching problem; for a survey on shape matching see [16, 112].





Chapter 1

Convex Stabbers

Consider a finite set of geometric objects in the plane. We call this set stabbable if
there exists a convex polygon whose boundary intersects every object. The boundary
is then called convex transversal or convex stabber. As mentioned in the introduction
of this part, the problem of finding a convex stabber was originally proposed by Tamir
in 1987 [109] and only restricted versions of the problem have been solved so far.

In Section 1.1 we show that Tamir’s problem is NP-hard when the geometric ob-
jects are line segments. The problem remains NP-hard when the objects are squares
or disjoint simple polygons. This is proven in Section 1.2 and Section 1.3. In Sec-
tion 1.4 we study an optimization version of the problem: Given a set of geometric
objects in the plane, how many of these objects can be simultaneously stabbed by
the boundary of a convex polygon? We prove this problem to be APX-hard if the
set of geometric objects is a set of segments or squares.

The results of Section 1.1 and Section 1.2 are part of research that has been pub-
lished in [22, 23], together with additional results by Arkin, Dieckmann, Knauer,
Mitchell, Polishchuk, and Yang. The results of Section 1.3 and Section 1.4 have
been published in [104]. All results in this chapter have been exclusively found by
the author of this thesis.

Notation. We say a convex stabber stabs or traverses the given objects. The line
segment connecting two points p and q is denoted by pq.

Closed stabbers vs. terrains. As mentioned in [23], in many applications it
might be more relevant to consider stabbers that represent the graph of a function.
Possible applications for this problem are, e.g., in statistics or function approxima-
tion. Thus, there are cases where it is more useful to search for a convex x-monotone
stabber, that is, the stabber intersects every vertical line in at most one point. Since
an x-monotone polygonal chain is also called 1.5-dimensional terrain (see, e.g., [80]),
we will say that we search for a convex 1.5-dimensional terrain stabber, short a con-
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vex terrain stabber. Notice that a convex terrain stabber is a part of the boundary
of a convex polygon.

It turns out, that finding a convex terrain stabber is a special case of finding a
convex stabber. One can see this by placing a point far below the input set and
noticing that there exists a convex stabber for this set if and only if there exists a
convex terrain stabber for the input set, see Figure 1.1 right.

G

p

G

G′

G

p

Figure 1.1: From left to right: Let G be the input set. The tangent between p and
G and the tangent between p and G′ are marked; also the vertical lines through the
rightmost point of G and the leftmost point of G′ are depicted. On the right: A
convex stabber for G ∪ {p} gives immediately a convex terrain stabber for G (and
also the other way round).

The remaining question is how to construct this point; in the following the point
is denoted by p. Let G be a set of geometric objects in the plane. Let G ∈ G be the
object containing the leftmost rightmost point and let GG be the set of objects in G
that are intersected by a vertical line through the rightmost point of G. Let G′ ∈ G
be the object containing the rightmost leftmost point and let GG′ be the objects in
G that are intersected by the vertical line through the leftmost point of G′. Then p
has to fulfill the following conditions: The rightmost tangent between p and G must
not intersect any object in G \ GG. Similarly, the leftmost tangent between p and G′
must not intersect any object of G \ GG′ . (See Figure 1.1 left.)

A convex stabber for the set G ∪ {p} gives a convex terrain stabber for G in the
following way: Either the part of the convex stabber traversing the objects of G is
already a convex terrain stabber for G. Otherwise, take the upper part of the convex
stabber lying between the two vertical lines through the rightmost point of G and
the leftmost point of G′. This part of the convex stabber combined with the two
vertical rays from the endpoints (i.e., the intersection points of the vertical lines and
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the convex stabber) directed downwards represents a convex terrain stabber for G,
see Figure 1.1 right.1

On the other hand, a convex terrain stabber for G gives us immediately a convex
stabber for G ∪ {p}: A convex terrain stabber for G has to stab G and G′. Hence,
the leftmost point of this stabber lies on or to the left of the vertical line through the
rightmost point of G and the rightmost point lies on or to the right of the vertical line
through the leftmost point of G′. Connecting both endpoints of the convex terrain
stabber with the point p gives a convex stabber for G ∪ {p}.

Knowing these conditions of the point p, it is easy to compute p: Take the vertical
line through the rightmost point of G and rotate it slightly in counterclockwise
direction, keeping it tangent to G. The line is rotated by a very small angle, such
that it does not intersect any object in G \GG and all these objects lie to the right of
this line (while G still lies to the left of it). Similarly, rotate the vertical line through
the leftmost point of G′ slightly in clockwise direction, such that it does not intersect
any object in G \ G′G and all these objects lie to the left of this line while G′ lies to
the right of it. The intersection point of these two lines is the point p.

We achieve the following result.

Lemma 1.0.1. Given a set G of objects in the plane, we can compute a point p in
polynomial time such that: there exists a convex terrain stabber for G if and only if
there exists a convex stabber for G ∪ {p}.

This shows that finding a convex terrain stabber is a special case of finding a
convex stabber. And so, if it is NP-hard to find a convex terrain stabber, it follows
immediately that it is NP-hard to find a convex stabber.

The hardness proofs given in the following sections hold actually for both cases:
finding a convex stabber or a convex terrain stabber.

1.1 Convex (Terrain) Stabbers for Line Segments

In this section we prove that Tamir’s problem is NP-hard if the set of objects is a
set of line segments. That is, the problem we consider is the following:

Given a set of line segments in the plane, decide whether there exists a
convex (terrain) stabber that stabs every line segment.

We prove this problem to be NP-hard. This result was independently proven
by Arkin, Mitchell, Polishchuk, and Yang. For the NP-hardness proof we use a
reduction from 3SAT. 3SAT is a decision problem from Boolean logic: The input is

1This actually proves that there is a convex weakly x-monotone 1.5-dimensional terrain stabbing
G. Instead of using vertical lines through the rightmost point of G and the leftmost point of G′, we
rotate them by a suitable small angle in opposite directions. Then the same constructions shows
that there is a convex strongly x-monotone 1.5-dimensional terrain stabbing G.
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a Boolean expression in conjunctive normal form, that is a conjunction of clauses
where a clause is a disjunction of literals, and each clause contains at most 3 literals.
A literal is either a variable or the negation of a variable. The question is, given
such an expression φ, does there exist an assignment that satisfies all clauses in φ?
3-SAT is well known to be NP-complete [75]. (We actually use a reduction from the
special variant of 3-SAT where each clause contains exactly 3 literals. This version
of 3-SAT is also NP-complete [60].)

Given a 3SAT formula φ with n variables and m clauses. In the following we
show how to build a set of line segments L such that there exists a convex (terrain)
stabber for L if and only if φ is satisfiable. We proceed similarly to the techniques
used in [86] where the basic idea of the construction is to place variable and clause
gadgets on a circular arc as shown in Figure 1.4. We start with a half circle with unit
radius and divide half of it into n arcs of equal size and the other half into m arcs of
equal size. Later on, each gadget will be placed along such an arc. (Actually, the arcs
do not have to have the same length, we choose them to be equal for convenience.)
In the following, we denote this half circle by K.

Variable gadgets. A variable gadget consists of three points (degenerate line
segments of length 0) and one line segment, see Figure 1.2. A variable gadget is fit
into an arc as follows:

• The two non-middle points are put on the arc at distance ε away from their
closest endpoints of the arc, for some sufficiently small ε > 0.

• The middle point and the segment lie inside the circle.

• The left non-middle point, the middle point and the right endpoint of the
segment are aligned. Also, the right non-middle point, the middle point and
the left endpoint of the segment are aligned.

There are two ways to traverse the gadget by a convex (terrain) stabber. They
differ in the order in which the middle point and the segment are traversed: One way
traverses the left non-middle point, then the middle point, the right endpoint of the
segment and finally the right non-middle point (the dashed path in Figure 1.2). This
way corresponds to setting the variable to False and is called the False path. The
other way traverses the left non-middle point, then the left endpoint of the segment,
the middle point and then the right non-middle point (the dashed-dotted path in
Figure 1.2). This corresponds to setting the variable to True and is called the True
path.

Notice that the True path and the False path are the only two possibilities to
traverse the gadget with a convex (terrain) stabber while stabbing all segments of
the gadget. This is because the middle point lies inside the convex hull of the two
non-middle points and any point on the segment that is not one of its endpoints.
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Figure 1.2: There are two ways to traverse the gadget: The dashed-dotted path
corresponds to setting the variable to True, the dashed path corresponds to setting
the variable to False. The dashed and the dashed-dotted segments and the dotted
circular arc are not part of the construction.

All variable gadgets are placed next to each other along the half circle K. Recall
that we divided half of K into n arcs of equal size; in each such arc we place one
variable gadget and, hence, each gadget is placed in an arc of length 1/(4n) of a unit
circle, see Figure 1.4. We call this part of K the variable arc.

Recall that the two non-middle point of each variable gadget lie on the arc. A
convex (terrain) stabber has to stab all these points and, hence, it is (partially)
aligned to the convex hull of these points. Thus, a convex (terrain) stabber visits
the gadgets in the order as they appear on the arc, assigning truth values to the
variables in turn in each gadget.

Clause gadgets. A clause gadget is constructed in a way similar to a variable
gadget. It consists of two points (segments of length 0) and a segment. Each clause
gadget is fit into an arc. The two points are put on the arc at distance ε (for some
sufficiently small ε > 0) away from their closest endpoints of the arc and the segment
lies inside the circle. The only way to traverse the gadget is to visit the first point,
then the segment and then the second point – the only flexibility is where to touch
or intersect the segment.

εε

Figure 1.3: A clause gadget.

All clause gadgets are placed next to each other on the half circle K. Recall that
half of K was divided into m arcs of equal size and we place a clause gadget in each
such arc (thus, each clause gadget is placed into an arc of 1/(4m) of a unit circle).
We call this part of K the clause arc.

Since the points of each clause gadget lie on the arc, and a convex (terrain) stab-
ber has to stab all these points, the only way to traverse these gadgets with a convex
(terrain) stabber is to visit them one by one in the order as they appear along the arc.

Recall that the variable arc and the clause arc lie next to each other on K.
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V C
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x2
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Figure 1.4: The half circle K and the placement of the variable and clause gadgets.
From left to right: V and C mark the placement of the variable gadgets and the
clause gadgets, respectively. Each gadget is placed in one of the grey regions. On
the right: The variable gadgets (marked with xi) are placed on an arc of one quarter
of a unit circle; the clause gadget (marked with Ci) are also placed on an arc of one
quarter of a unit circle, next to the variable gadgets.

Observation 1.1.1. A convex (terrain) stabber stabbing all segments of the variable
and clause gadgets has the following properties:

• It stabs all points on the arc K and, hence, it cannot stab any object lying
inside the convex hull of these points or above K.

• It has to take the True or the False path in each variable gadget and stabs the
segment of each clause gadget.

We still have to connect a variable gadget to a clause gadget whenever the variable
appears in the clause. For this, we construct some more segments, which we call the
connector segments.

Connector segments. We place 3m connector segments. Each connector segment
consists of a simple line segment. A connector segment connects a variable gadget to
a clause gadget if the variable appears in the clause. The placement of the endpoints
of the connector segments within the variable gadgets is as follows: Suppose the
variable appears unnegated in the clause. Then the connector segment touches the
True path of the gadget and it does not intersect the False path, see Figure 1.5.
If the variable appears negated in the clause the segment touches the False path
and not the True path. This ensures that a stabber can either stab the connector
segments touching the True path or the segments touching the False path, but never
both. The placement of the endpoints of the connector segments within the clause
gadget is a bit more involved. We want to ensure that a convex (terrain) stabber can
stab any two of these connector segments in each clause gadget, but not all three.
Figure 1.5 shows the placement of the connector segments’ endpoints and the three
possible ways to traverse the gadget.
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Figure 1.5: From left to right: There are three ways to traverse the clause gadget.
Each of them stabs two of the three connector segments. It is possible to stab any
subset of two out of the three segments, but never all three. (The points a, b, c are
not part of the construction.) On the right: A clause C = x̄i ∨ x̄j ∨ xk is shown. All
not solid segments are not part of the construction.

In the following we refer to the labels given in Figure 1.5. The points p1, p2 and
the line segment ac represent the clause gadget. The midpoint of ac is denoted by
b. The endpoint of one connector segment is chosen to be the intersecting point of
the line through p1 and c and the line through p2 and a. The other two endpoints
of the connector segments are chosen in the following way: One lies on the open
segment between p1 and the intersection point of ap2 and bp1, the other lies on the
open segment between p2 and the intersection point of bp2 and cp1.

The following lemma shows that this placement fulfills the required conditions.

Lemma 1.1.2. In each clause gadget, a convex (terrain) stabber can stab any two
of the three connector segments, but not all three.

Proof. A convex (terrain) stabber traversing a clause gadget has to stab p1, p2 and
the segment ac. First notice that a convex (terrain) stabber that intersects the
segment ac in more than one point, stabs less than two connector segments. So we
assume in the following that the stabber intersects ac in exactly one point. Then,
there are 5 combinatorially different ways to traverse this gadget:

1. The convex (terrain) stabber intersects the segment ac in a. Then the stabber
can stab c2 and c3, but not c1.

2. The convex (terrain) stabber intersects the segment ac in the interval (a, b).
The stabber can stab neither c1 nor c2, it can only stab c3.

3. The convex (terrain) stabber intersects the segment ac in b. Then the stabber
can stab c1 and c3, but not c2.

4. The convex (terrain) stabber intersects the segment ac in the interval (b, c).
The stabber can stab c1, but neither c2 nor c3.
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5. The convex (terrain) stabber intersects the segment ac in c. The stabber can
stab c1 and c2, but not c3.

This proves that a convex (terrain) stabber can stab any two of these connector
segments in a clause gadget, but never all three.

Correctness. Assume first that the 3SAT instance is satisfiable and so there exists
a satisfying assignment. The convex (terrain) stabber traverses the variable gadgets
according to this assignment. The clause gadgets are traversed in the following way:
The stabber can stab at most two connector segments in each clause gadget. Since
in each clause at least one variable is satisfied, the stabber can omit the connec-
tor segment connecting the satisfied variable to the clause and stab the other two
connector segments. Hence, the stabber is convex and stabs all segments.

Conversely, assume there is a convex (terrain) stabber that stabs all segments.
From Observation 1.1.1 follows that the connector segments have to be stabbed ei-
ther in a variable or a clause gadget and that the stabber takes the True or the
False path of each variable gadget. Set the variables according to how the stabber
traverses the variable gadgets. If it takes the True path we set the variable True,
otherwise we set the variable False. This is a satisfying assignment for the 3SAT
instance: The setting is consistent because the stabber omits at least one connector
segment in each clause gadget. Thus, these omitted segments have to be stabbed in
the variable gadgets. And there the stabber can either take the True path or the
False path, but not both.

It remains to show that the construction can be done in polynomial time. Each
variable and each clause gadget consists of a constant number of points and line
segments. We have to show that the coordinates of the endpoints of the segments
and the coordinates of all other constructed points are rational and bounded by a
polynomial function of the input size (thus, the number of bits needed to represent
these points are polynomially bounded). This can be shown in a very similar way
to [86]: The rational points are dense on a unit circle. More precisely, for each t ∈ Q,
the point (1−t2

1+t2 ,
2t

1+t2 ) is rational and lies on the unit circle (see, e.g., [71, 110]). So
every arc of a circle, no matter how small, contains infinitely many rational points.

Recall that the gadgets are placed on a half circle; each variable gadget is fit into
an arc of size (1/4n) and each clause gadget into an arc of size (1/4m). The two non-
middle points of a variable gadget lie on the half circle, some ε-distance away from
the vertices of a 4n-gon, defined by the circle. For each non-middle point a sufficient
ε ∈ O(1/n) can be found such that this point is rational and polynomial bounded
by n (notice that the ε-value can be different for each point). The two points of
each clause gadget also lie on the half arc, an ε-distance away from the vertices of
a 4m-gon. Again, ε can be chosen in a sufficient way for each point such that these
points are rational and polynomial bounded by m and ε ∈ O(1/m). Hence, all these
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points are rational and they depend polynomially on n or m. (We can also argue
in a different way: we can construct 2n points on quarter of a unit circle that are
at least π/(8n) radians apart with coordinates that are polynomial bounded by n,
see [86]. These points are then the non-middle points of the variable gadgets. The
non-middle points of the clause gadgets can be constructed analogously.)

To see that the remaining points of the construction are also rational and bounded
by the input size, we can construct a constant size grid parallel to the segment defined
by the two non-middle points of the variable gadgets or the segment defined by the
two points of the clause gadgets. All other points can be chosen to be such grid
points.

Thus, these polynomial size representations of all points can be found in polyno-
mial time.

(Actually, there is an even simpler argument why all points of the construction
are rational. The points in our construction can be perturbed by a very small δ > 0
in order to become rational and polynomial bounded by the input size and the crucial
properties of the construction still hold. Notice that, e.g., the endpoints of connector
segments can be slightly perturbed. The only crucial property is that they intersect
only one of the possible paths to traverse the clause/variable gadgets. Hence, the
placement is not fixed.)

Thus, we have showed the following

Theorem 1.1.3. Let L be a set of line segments in the plane. It is NP-hard to
decide whether there exists a convex (terrain) stabber for L.

1.2 Convex (Terrain) Stabbers for Regular Polygons

We show now that the construction above can be adapted to sets of squares. Each
segment in the construction is replaced by a square in a carefully chosen way, main-
taining the properties of the construction. It follows that Tamir’s problem remains
NP-hard when the objects are squares. Later on, we show that this construction can
even be generalized to sets of simple regular polygons (under a certain assumption
how these regular polygons are represented). So we start with the following problem:

Given a set of squares in the plane, decide whether there exists a convex
(terrain) stabber that stabs every square.

We prove this problem to be NP-hard by generalizing the above construction for
segments to squares. (Hence, the proof is again by a reduction from 3SAT; n denotes
the number of variables and m the number of clauses in the 3SAT formula.)

Here we start with an arc of a quarter of a unit circle; this arc will be denoted
by K. We divide half of K in n arcs of equal size and the other half in m arcs of
equal size. Later on, each gadget will be placed along such an arc.



20 CHAPTER 1. CONVEX STABBERS

Variable gadgets. Recall the construction of a variable gadget in the hardness
proof for segments. Here the gadget is constructed similarly: The points are placed
in exactly the same way (now they are considered as squares of zero area). The
segment is replaced by a square in the following way: Each edge of the square has
the same length as the segment. The edge which is closest to the points is placed in
exactly the same way as the segment before. We call this edge the basic edge, see
Figure 1.6. Summarizing, the gadget consists of three points (squares of area 0) and
a square.

The whole gadget is fit into an arc as before: The two non-middle points are
put on the arc at distance ε away from its closest endpoint of the arc, for some
sufficiently small ε > 0. The middle point and the basic edge lie inside the circle;
the other edges of the square might lie outside the circle. The left non-middle point,
the middle point and the right endpoint of the basic edge are aligned. Also, the
right non-middle point, the middle point and the left endpoint of the basic edge are
aligned.

FT

εε

Figure 1.6: A variable gadget: There are two ways to traverse it. The dash-dotted
path corresponds to setting the variable to True, the dashed path to setting the
variable to False.

There are two ways to traverse a gadget, one corresponds to setting the variable
to True and the other corresponds to setting the variable to False.

All variable gadgets are placed next to each other on the quarter circle K, see
Figure 1.9. Recall that we divided half of K into n arcs of equal size and we fit
a variable gadget in each such arc (thus, a variable gadget is placed into an arc of
1/(8n) of a unit circle). We call this half of K the variable arc. The only way to
traverse these gadgets with a convex (terrain) stabber is to visit them in the order
as they appear on the arc, one after the other.

Clause gadgets. A clause gadget consists of two points and a square. Recall the
construction of a clause gadget for line segments: We place the points in exactly the
same way and the segment is replaced by a square as in the construction for the
variable gadget, see Figure 1.7. Each gadget is fit into an arc.

The clause gadgets are placed next to each other on K, more precisely, they are
fit on the half of K that is divided into m arcs of equal size. Hence, each gadget is fit
into an arc of 1/(8m) of a unit circle. We call this part of K the clause arc. Recall
that the clause arc and the variable arc lie next to each other on K, see Figure 1.9.
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Figure 1.7: A clause gadget.

Connector squares. Instead of connector segments, we place now 3m connector
squares. Each of them connects a variable gadget to a clause gadget whenever the
variable appears in the clause. The crucial part is to place the connector squares in
the right way. For this, we place one edge of the square in exactly the same way as
we placed the connector segments in the construction above (Figure 1.5). We call
this edge the connector edge. Hence, the endpoints of this connector edge within
the variable gadget are placed as follows: If the variable appears unnegated in the
clause, the endpoint lies on the True path of the clause gadget and does not touch
the False path. If the variable appears negated the endpoint lies on the False path.
The placement for the endpoints of the connector edge within the clause gadgets are
shown in Figure 1.8. It is ensured that a convex (terrain) stabber can stab any two
of these connector edges inside the clause gadget, but not all three. The argument
is the same as in the proof for line segments (Lemma 1.3.1).
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Figure 1.8: A clause C = x̄i ∨ x̄j ∨ xk is shown. There are three ways to traverse
the clause gadget. It is possible to stab any subset of two out of the three connector
squares, but never all three.
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It remains to show that a convex (terrain) stabber cannot stab the third connector
square anywhere else except in the corresponding variable gadget. First recall that
the variable arc and the clause arc both occupy an arc of 1/8 of a unit circle; they lie
next to each other on the quarter circle K. Consider a connector square. It connects
a variable gadget to a clause gadget; and so it lies completely inside the circle defined
by K. Thus, it is not possible that such a square intersects any other gadget; by
intersecting a gadget we mean that the convex hull of the arc, in which the gadget is
placed, is intersected. To ensure that a connector square is not intersected anywhere
else (outside all gadgets) we place two more points in the construction, we call these
points the enforcer points. Let the circle defined by K be divided in 4 equal parts
by a horizontal and a vertical line. Let K be the upper left quarter circle. Then one
of the enforcer points is placed on the upper horizontal tangent to the circle and the
other one on the left vertical tangent to the circle. The line defined by these points
does not intersect the circle, Figure 1.9 shows such a placement for these points.
Now a convex (terrain) stabber also has to stab these enforcer points, and hence the
only possible way to stab a connector square by this stabber is to stab its connector
edge in the corresponding clause or variable gadget.

x1

x2

xn

C1

Cm

p

q

V

C

Figure 1.9: From left to right: We start with an arc of 1/4 of a unit circle which
is denoted by K: The variable gadgets are placed next to each other on half of
K, the clause gadgets are placed on the other half. On the right: V and C mark
the placement for the variable and the clause gadgets. The points p and q are the
enforcer points that ensure that the connector squares can either be intersected at
variable or clause gadgets but nowhere else.

Correctness. Assume first that the 3SAT instance is satisfiable. Then the convex
(terrain) stabber traverses the variable gadget according to a satisfying assignment.
In each clause gadget the stabber has to omit one of the connector squares, let this
be the connector square to the satisfying variable. The stabber stabs this square
already in the corresponding variable gadget and the other two in the clause gadget.
Thus, the stabber stabs all squares.

Conversely, assume there is a convex (terrain) stabber that stabs all squares.
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Set the variables according to how the stabber traverses the variable gadget. If it
takes the True path we set the variable True, otherwise False. We argue that this
is a satisfying assignment for the 3SAT instance. The setting is consistent since the
stabber has to omit at least one connector segment in each clause gadget. And hence
these omitted segments have to be stabbed in the variable gadgets. And there the
stabber can either take the True path or the False path, but not both.

The construction can be done in polynomial time. Each variable and each clause
gadget consists of a constant number of points and squares and all constructed points
are rational and bounded by a polynomial function of the input size. This can be
shown in the same way as in the construction for segments: All constructed points
(besides the two enforcer points) and one edge of each square are placed in the same
way as before. The only difference is that now they lie on a quarter circle and not a
half circle (but as we already mentioned before: every arc of a circle, no matter how
small, contains infinitely many rational points). So we know that all these points are
rational. The two enforcer points can easily be chosen to be rational; they can be
perturbed slightly in order to become rational. The remaining part is to prove that
all vertices of the squares are rational points: Each square has two rational vertices,
namely the two vertices of the edge that is placed in the same way as the segment
before. But then it follows immediately that the other two vertices of the square are
also rational. So all constructed points are rational points of polynomial complexity.

Thus, we have shown the following

Theorem 1.2.1. Let S be a set of squares in the plane. It is NP-hard to decide
whether there exists a convex (terrain) stabber for S.

Generalization. The problem of finding a convex (terrain) stabber for a set of
simple regular k-gons (for any k > 2) is also NP-hard. This can be shown by
adapting the above proof. We just replace the squares by k-gons; this is done in
a way similar to replacing the segments by squares. We replace the square by a
k-gon by maintaining the crucial edge of the square and completing it to a k-gon;
Figure 1.10 shows an example for replacing the square in a variable gadget. We start
now with an arc of (1/k) of a unit circle and we fit the variable gadgets into an arc of
1/(2kn) of a unit circle and the clause gadgets are fit into an arc of 1/(2km) of a unit
circle. This ensures that the connector k-gons lie completely inside the circle defined
by this arc of 1/k of a unit circle. Also the enforcer points have to be adapted.

This construction can only be done in polynomial time if we use a certain re-
presentation for the simple regular k-gons: Each regular k-gon is represented by two
points and an orientation. The two points are two adjacent vertices of the k-gon and
the given order determines the remaining vertices of the k-gon. This representation
is crucial for the construction as in general the vertices of regular k-gons are not
rational.
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Figure 1.10: A variable gadget for a regular polygon.

With our assumption it is clear that all points of the construction are rational;
each simple regular k-gon is given by the edge that is constructed in the same way
as the segments in the proof for line segments. Hence, we can use similar arguments
as for this construction in order to show that all points are rational.

Theorem 1.2.2. Let P a set of simple regular k-gons in the plane where k > 2. It
is NP-hard to decide whether there exists a convex (terrain) stabber for P .
Remark: A regular k-gon is represented by two points and an orientation.

1.3 Convex (Terrain) Stabbers for Disjoint Polygons

We show that the problem of finding a convex (terrain) stabber remains NP-hard
for a set of disjoint (non convex) polygons. More precisely, it is already hard to find
a convex (terrain) stabber for a set of disjoint bends, where a bend consists of two
line segments with a common endpoint. We consider the following problem.

Given a set of disjoint bends in the plane, decide whether there exists a
convex (terrain) stabber that stabs every bend.

We reduce from planar, monotone 3SAT. A 3SAT instance can be considered
as a bipartite graph: The graph has a vertex for each clause and each variable and
an edge between a variable vertex and a clause vertex if the variable occurs in this
clause. 3SAT remains NP-hard even when this graph is planar [83]; this problem is
called planar 3SAT. A monotone instance of 3SAT is an instance where each clause
has either only positive or only negative variables. In the following we call a clause
that contains only positive variables a positive clause and a clause that contains
only negative variables a negative clause. De Berg and Khosravi [41] proved planar,
monotone 3SAT to be NP-hard even when a monotone rectilinear representation is
given. In a monotone rectilinear representation the variable and clause gadgets are
represented as rectangles. All variable rectangles lie on a horizontal line. The edges
connecting the clause gadgets to the variable gadgets are vertical line segments and no
two edges cross. All positive clauses lie above the variables and all negative clauses
lie below the variables. See Figure 1.11 for an example of a monotone rectilinear
representation of a planar 3SAT instance.
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Figure 1.11: A monotone rectilinear representation of the 3SAT in-
stance C = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 where C1 = x1 ∨ x3 ∨ x5, C2 = x1 ∨ x2 ∨ x3,
C3 = x3 ∨ x4 ∨ x5, C4 = x2 ∨ x3 ∨ x4, and C5 = x1 ∨ x4 ∨ x5.

Given a monotone rectilinear representation φ of a 3SAT instance, we construct
a set of bends B such that there exists a convex (terrain) stabber for B if and only
if φ is satisfiable.

Letm be the number of clauses and n be the number of variables. Let the number
of positive clauses and negative clauses be m1 and m2 respectively.

We start with a half circle of unit radius; this half circle will be denoted by K.
We divide half of K in 4m1 arcs of equal size and the other half in 4m2 arcs of
equal size. Later on, all gadgets belonging to positive clauses will be placed along
the quarter circle divided in 4m1 parts, and all gadgets belonging to negative clauses
along the other quarter circle.

Variable gadgets. The variable gadgets are constructed in the same way as in the
proof for line segments, see Figure 1.2. Hence, there are two ways to traverse them,
one corresponds to setting the variable to True, the other to setting the variable to
False. Again, the variable gadgets are fit into a circular arc. A variable gadget is
placed into an arc of 1/(16m1) of a unit circle if it represents a variable that appears
in a positive clause; we call this a positive variable gadget. Similarly, a negative
variable gadget is a gadget representing a variable that appears in a negative clause.
Each negative variable gadgets is placed into an arc of 1/(16m2) of a unit circle.

In the construction, we use one gadget for each occurrence of a variable in a
clause.

Clause gadgets. The clause gadgets are constructed in the same way as in the
proof for line segments, see Figure 1.3. Similarly to the variable gadgets the clause
gadgets are fit into a circular arc. Each positive clause gadget is fit into an arc of
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1/(16m1) of a unit circle. Each negative clause gadget is fit into an arc of 1/(16m2)
of a unit circle.

Positive arc. We place the gadgets representing a positive variable or a positive
clause next to each other on K; more precisely, we place these gadgets on the half
of K which we divided into 4m1 arcs of equal size. We place a positive variable or a
positive clause gadget in each such arc. The gadgets have to be placed in a specific
order. Consider the upper part of the monotone rectilinear representation (i.e., the
one representing the positive clauses). The clauses and their corresponding variables
are connected via edges. We use a variable gadget for each edge. In the rectilinear
representation the edges are sorted from left to right. We maintain this order and
place the gadgets according to it, starting at the bottom of the arc. If a variable
gadget corresponds to an edge that connects a clause to its middle variable, we
place the corresponding clause gadget right after this variable gadget. Hence, each
clause gadget is placed to the right of the gadget representing its middle variable,
see Figure 1.12. Notice that all gadgets that represent the same variable lie next to
each other, only a clause gadget can lie between them.
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Figure 1.12: The placement of the gadgets for the instance in Fig. 1.11 is shown.
The arrows show the direction of the ordering.

Negative arc. We place the gadgets representing a negative variable or a negative
clause next to each other on the other half of K; the one we divided into 4m2 arcs of
equal size. The gadgets are ordered in the same way as for the positive arc, but this
time from right to left. Notice that here a clause gadget is placed to the left of the
gadget representing its middle variable. The negative and the positive arc lie next
to each other on K, see Figure 1.12.

Variable connectors. To ensure that a stabber has to traverse all gadgets repre-
senting the same variable in a consistent manner, we place 3m variable connectors.
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All variable gadgets that represent the same variable are connected via segments in
a circular manner. The segment touches the True path of one gadget and the False
path of the next gadget (see Figure 1.13). If a stabber traverses the True path of one
gadget and the False path of the next gadget, it will never stab the corresponding
variable connector segment. Thus, a convex (terrain) stabber traverses all gadgets
representing the same variable in a consistent manner.

Recall that on both the positive and the negative arc all variable gadgets repre-
senting the same variable lie next to each other (only a clause gadget can lie between
them). Hence, these segments are all disjoint and they also do not intersect any other
bend of the construction. In total, we place one segment for each variable gadget.
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Figure 1.13: The variable connectors are shown. These connectors ensure that each
variable gadget that represents the same variable is traversed in the same way: either
the stabber traverses the True path or the False path.

Connector bends. We place 3m more bends in order to connect a clause gadget
with its variables. (Recall that there is a variable gadget for each occurrence of
a variable in a clause and they are placed in a specific way, corresponding to the
monotone rectilinear representation. Thus, each clause gadget has its own 3 variable
gadgets to which it has to be connected.) The connectors either lie inside the circle or
outside. We call them inner connectors and outer connectors, respectively. An inner
connector can be a straight line segment whereas an outer connector has to be a bend.
The remaining parts of the construction are explained for positive clauses. Negative
clauses can be handled similarly. Each clause gadget has two outer connectors and
one inner connector. The inner connector connects the clause gadget to the gadget
representing its middle variable. Note that this gadget is placed next to the clause
gadget in the construction (to its left). The other two variables that occur in this
clause are connected via outer connectors. One endpoint of each connector lies within
the variable gadget as follows: the segment touches the True path through the gadget
and does not intersect the False subpath. The placement of the connector endpoints
within the clause gadget is more involved. We have to ensure that a convex (terrain)
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stabber can stab any two out of the three connector bends in each clause gadget, but
never all three. Hence, it has to stab the third bend at the corresponding variable
gadget.

In every clause gadget, the endpoints of these connectors look the same – see
Fig. 1.14. In the following we refer to the labels given in Figure 1.14. The points
p1, p2 and the line segment ac represent the clause gadget. The midpoint of ac is
denoted by b. The endpoint of the inner connector is chosen to be the intersection
of p1c and ap2. The endpoints of the other two outer connectors are chosen in the
following way: One lies on the open segment between p1 and the intersection point
of p1b and ap2, the other lies on the open segment between p2 and the intersection
point of p1c and bp2. The following lemma shows that this placement fulfills the
required conditions.
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Figure 1.14: From left to right: The placement of the connector bends is shown.
(Notice that this is a sketch, actually these gadgets lie on a quarter of a unit circle
and, hence, the possible stabbers are convex.) To the right: A clause gadget and the
three possible ways to traverse it.

Lemma 1.3.1. In each clause gadget, a convex (terrain) stabber can stab any two
of the three connector bends, but not all three.

Proof. A convex (terrain) stabber traversing a clause gadget has to stab p1, p2 and
ac. Then there are 5 combinatorially different ways to traverse this gadget:
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1. The convex (terrain) stabber intersects the segment ac in a. Then the stabber
can stab d1 and d2, but not d3.

2. The convex (terrain) stabber intersects the segment ac in the interval (a, b).
The stabber can stab neither d2 nor d3, it can only stab d1.

3. The convex (terrain) stabber intersects the segment ac either only in b or in
more than one point. Then the stabber can stab d1 and d3, but not d2.

4. The convex (terrain) stabber intersects the segment ac in the interval (b, c).
The stabber can stab d3, but neither d1 nor d2.

5. The convex (terrain) stabber intersects the segment ac in c. The stabber can
stab d2 and d3, but not d1.

This proves that a convex (terrain) stabber can stab any two of these connector
bends in a clause gadget, but never all three.

It remains to argue that all bends in the construction are pairwise disjoint. First
notice that all bends belonging to a variable or clause gadget can be placed crossing
free.

Recall the order in which we placed the gadgets on the positive and the negative
arc. This order is crucial for maintaining the disjointness of the construction. The
edges in the monotone rectilinear representation do not intersect and the clause
gadgets are nested in a specific order. Based on the placement of the gadgets in
our construction, we maintain this nesting which is now represented by the outer
connectors. Hence, the outer connectors are disjoint and they do not intersect any
other bend of the construction. The inner connectors can be placed in such a way
that they do not intersect with the variable connectors, see Figure 1.15.
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Figure 1.15: The placement of the inner connectors. The left figure shows a positive
clause with middle variable xi, the right figure a negative clause with middle variable
xi. The red segments represent the clause connectors, the black ones the variable
connectors.
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Also, they do not intersect any other bend of the construction. It follows that
our construction can be drawn crossing-free.
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Figure 1.16: A sketch of the construction for the instance in Fig. 1.11 is shown. The
clause connectors are marked in fat and red.

Correctness. Assume there exists a satisfying assignment for the 3SAT formula.
The convex (terrain) stabber traverses the variable gadgets according to this assign-
ment. In each clause gadget the stabber can stab two connector bends. Since at least
one variable is satisfied in each clause, the stabber can omit the connector connecting
the satisfied variable to the clause and stab the other two connectors. Hence, the
stabber stabs all bends.

On the other hand, assume there is a convex (terrain) stabber that stabs all
bends. Set the variables to True or to False depending on how the stabber traverses
the variable gadget. This is a satisfying assignment for the 3SAT instance: The set-
ting is consistent since the stabber has to omit at least one connector in each clause
gadget. And hence these omitted bends have to be stabbed in the variable gadgets.
And there the stabber can either take the True path or the False path, but not both.

The construction can be done in polynomial time. Each variable and each clause
gadget consists of a constant number of points and bends and all constructed points
are rational and bounded by a polynomial function of the input size. This can be
seen in the same way as for the construction for segments. (Notice that the points
of the outer bends are not fixed, they can be slightly perturbed in order to become
rational.)

Theorem 1.3.2. Let B be a set of disjoint bends in the plane. It is NP-hard to
decide whether there exists a convex (terrain) stabber for B.
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1.4 APX-Hardness

In this section we consider the optimization version of the convex (terrain) stabber
problem which we also call the maximum convex (terrain) stabber problem.

Given a set of line segments in the plane, compute a convex (terrain)
stabber that stabs the maximum number of segments.

We prove this problem to be APX-hard. APX is the class of all NP optimiza-
tion problems that have a polynomial-time approximation algorithm with constant
approximation factor. Proving a problem to be APX-hard implies that there is no
polynomial-time approximation scheme, short PTAS, unless P=NP. A PTAS is a
family of algorithms, where for each ε > 0, there is an algorithm that, given an in-
stance of a problem, computes a solution with relative error ε in time polynomial in
the size of the input (see also [116]). APX-hardness is defined similar to NP-hardness:
A problem is APX-hard if there is a PTAS-reduction from every problem in APX
to this problem. Thus, a PTAS-reduction is a reduction that preserves the property
that a problem has a PTAS, meaning if there exists a PTAS-reduction from problem
A to problem B and there exists a PTAS for B then there also exists a PTAS for A
(the formal definition of PTAS-reduction can be found in [113, Definition 8.4.1]).

We start with the APX-hardness proof for the problem of finding a convex (ter-
rain) stabber that stabs the maximum number of segments. Later on we show how
to generalize this result to the problem where the input is a set of squares. (Notice
that it not used in the reduction that we are searching for a convex terrain stabber.
The reduction works also for a convex stabber.)

We use a reduction from a special version of MAX3-SAT, called MAX-E3SAT(5).
MAX-3SAT is defined in the following way: Given a 3SAT formula φ (i.e., a boolean
expression in conjunctive normal form where each clause contains at most 3 literals),
compute an assignment that satisfies the maximum number of clauses in φ. MAX-
E3SAT(5) is a version of MAX-3SAT where each clause contains exactly 3 literals and
every variable occurs in exactly 5 clauses and a variable does not appear in a clause
more than once. It is known to be NP-hard to approximate MAX-E3SAT(5) within
a factor of (1− ε) for some ε > 0 [54]. We first start by reducing MAX-E3SAT(5) to
the decision version of the problem (Given a set of line segments and an integer k,
does there exists a convex (terrain) stabber that stabs k segments?). The reduction
is very similar to the construction of the NP-hardness proof explained before. We
use n,m to denote the number of the variables and clauses. Here 5n = 3m.

We start with a half circle and divide half of it in n arcs of equal size and the
other half in m arcs of equal size. Later on, each gadget will be placed along such
an arc. In the following, we denote this half circle by K.

Variable gadgets. For each variable we have a gadget that consists of 6 line
segments and 18 points (line segments of length 0). The line segments are stacked
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on top of each other (by „stacked on top of each other“ we mean identical). The 18
points are partitioned into 3 sets of equal size. The points of each set are stacked on
top of each other. The stack of line segments and the 3 stacks of points are arranged
in the same way as in the NP-hardness proof for line segments, see Figure 1.2. There
are two ways to traverse the gadget (and to stab all segments in the gadget). One way
corresponds to setting the variable to True, the other to setting the variable to False.
Notice that any other way to traverse the gadget cannot stab all segments/points of
this gadget. Thus, a stabber traversing any other way stabs at least 6 segments less
than a stabber traversing the True or the False path.

The variable gadgets are placed next to each other on the half circle K. Recall
that we divided half of K into n arcs of equal size; in each such arc we place one
variable gadget and, hence, each gadget is placed in an arc of length 1/(4n) of a unit
circle. We call this part of K the variable arc.

Clause gadgets. Each clause gadget consists of 4 segments and 8 points. The
points are partitioned into two sets of equal size, hence each set consists of 4 points.
The segments are stacked on top of each other. The points of a set are also stacked
on top of each other. The stack of segments and the stacks of points are arranged in
the same way as in the proof for line segments, see Figure 1.3. The clause gadgets
are placed on the half of K which was divided into m arcs. Thus, each clause gadget
is fit into an arc of 1/(4m) of a unit circle. We call this part of K the clause arc.
The clause arc lies next to the variable arc on K, see Figure 1.4.

Connector segments. We now place 3m connector segments, connecting a vari-
able gadget to a clause gadget whenever the variable appears in the clause. The
placement of these segments is exactly the same as in the NP-hardness proof for line
segments in Section 1.1. (See also Figure 1.5.)

Observe that there exists a convex (terrain) stabber that stabs all segments of the
variable and clause gadgets and at least 2 out of the 3 connector segments of each
clause gadget. Thus, there always exists a stabber that stabs at least 24n + 14m
segments.

Lemma 1.4.1. There is a convex (terrain) stabber stabbing 24n+14m+k segments
if and only if there is an assignment satisfying k clauses.

Proof. If there is an assignment that satisfies k clauses, the stabber traverses the
variable gadgets according to the assignment. In each satisfied clause at least one of
the connectors is already stabbed, hence the stabber stabs the other two connector
segments. Thus, it stabs 3 connector segments for each of the k satisfied clauses and
2 connector segments for each of the m−k not satisfied clauses. In total, the stabber
stabs 24n+ 12m+ 3k + 2(m− k) = 24n+ 14m+ k segments.
If there is a stabber stabbing 24n+14m+k segments, then there also exists a stabber
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that stabs the gadgets in the right order and stabs at least 24n+ 14m+ k segments.
Stabbing in the right order means that the stabber either takes the True or False
path at each variable gadget and stabs at least two connector segments at each clause
gadget. A variable gadget consists of 24 segments (18 of them are segments of length
0). Moreover, 5 connecting segments have their endpoints inside any variable gadget
because each variable appears in at most 5 clauses. Without traversing the gadget in
the right order, a stabber can stab at most 23 of these segments. A stabber traversing
the gadget in the right order stabs at least 24 segments. A clause gadget consists
of 12 segments, additionally 3 connecting segments have their endpoint inside the
variable gadget. Any stabber stabbing the gadget in the right order stabs exactly 14
segments: 2 connector segments and the 12 segments belonging to the clause gadget.
Any other stabber stabs at most 11 segments. Hence, if a convex stabber stabs
24n+ 14m+k segments and it does not traverse the gadgets in the right order, than
there always exists another convex stabber traversing the gadgets in the right order
and stabbing more than 24n+14m+k segments. So in the following we assume that
the stabber stabs the gadgets in the right order. This stabber stabs already 24n+14m
segments by traversing the gadgets in the right order. The k additional segments are
stabbed in the variable gadgets and represent connector segments. Recall that this
stabber stabs already two connector segments in each clause gadget. Hence, each of
these k additional segment is a connector segment that belongs to a different clause
gadget. We set the variables according to the stabber traversing these gadgets and
so the formula has k satisfied clauses.

Theorem 1.4.2. Let L be a set of line segments in the plane. It is APX-hard to
compute a convex (terrain) stabber that stabs the maximum number of segments of
L.

Proof. We use a PTAS-reduction from MAX-E3SAT(5). Let n be the number of
variables and m be the number of clauses. We reduce the problem to the convex
(terrain) stabber problem as explained before. Let k be the maximum number of
satisfied clauses. Since there always exists an assignment satisfying at least 7/8
of the clauses we conclude that k > 7/8m. Assume there exists a polynomial-time
algorithm for maximum convex (terrain) stabber problem that returns a solution that
is at least (1− ε) times the value of the optimal solution. Then we can approximate
MAX-E3SAT(5) by subtracting 24n+ 14m (note that 3m = 5n):

(1− ε)(24n+ 14m+ k)− 24n− 14m = k − εk − 142/5mε 6 k − εk − 1136/35εk
6 (1− ε′)k

This construction can be generalized to a set of squares and even to set of simple
regular k-gons in the same way as for the NP-hardness proof explained in the section
before (assuming that a regular k-gon is represented by two points and a direction).
So we get the following results.
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Theorem 1.4.3. Let S be a set of squares in the plane. It is APX-hard to compute
a convex (terrain) stabber that stabs the maximum number of segments of S.

Theorem 1.4.4. Let P be a set of simple regular k-gons in the plane. It is APX-hard
to compute a convex (terrain) stabber that stabs the maximum number of segments
of P .
Remark: A regular k-gon is represented by two points and an order.

Since there exists a PTAS for planar MAX SAT [79], we cannot use these ideas
to show APX-hardness for a set of disjoint bends.

1.5 Conclusions and Open Problems

In this chapter we proved that Tamir’s problem is NP-hard if the input set is a set
of line segments. We showed that the problem remains NP-hard for a input set
of squares or a set of regular polygons. These results answer a long-standing open
question.

We also considered the optimization case and proved it to be APX-hard for most
of our studied variants.

However, there are still a lot of interesting open problems in the area of convex
stabbing. We could not show the problem of stabbing a set of disjoint line segments
to be NP-hard. Our reduction for showing that stabbing disjoint bends is NP-hard
cannot be extended to line segments. A polynomial-time algorithm for this problem
would show that there is a clear difference between the complexity of stabbing convex
and non convex polygons regarding disjointness. It is also not known whether finding
a convex stabber for a set of disks is NP-hard. Even the simple case of disjoint unit
disks is still open.

Another interesting variant of the convex stabbing problem is the following: We
are given a set of geometric objects and additionally an order on these objects. We
want to find a convex stabber that stabs these objects in the given order. To the
best of our knowledge this problem has not been studied so far. However, Guibas et
al. [64] studied the problem of computing a minimum-link path that stabs a sequence
of convex objects, more precisely they want to compute a path with the minimum
number of edges that stabs a sequence of convex objects. They presented a linear
time algorithm for a set of convex objects where consecutive objects are disjoint and
an O(n2 log2 n) time algorithm for a set of disks. It is not difficult to see that if
the minimum-link path is not convex, then there is no convex path stabbing this set
of objects. Thus, the results of Guibas et al. help to decide whether there exists a
convex terrain stabber, but it is not obvious whether they can be used in order to
find a convex stabber.

In summary, it seems that convex stabbing opens a whole new research area.



Chapter 2

Stabbing with the Vertices of a
Polygon

In this chapter we study the problem of stabbing a set of geometric objects with the
vertices of a polygon. We say the vertices of a polygon stab a set of objects if there
is a bijective function assigning each object to a vertex of the polygon contained in
it. (Thus, the number of points and the number of vertices has to be the same.)
The polygon whose vertices are supposed to stab the set of objects is then called the
stabbing polygon. In Section 2.1 we assume the stabbing polygon to be regular and
we present the first polynomial-time algorithm for this problem. (To the best of our
knowledge, until now, it was not known whether the existence of a regular polygon
whose vertices stab a set of given objects can be decided in polynomial time.) In
Section 2.2 the stabbing polygon is a scaled, translated, rotated copy of a given
polygon. We show that the results of Section 2.1 can be generalized to this case.

Although it is not difficult to generalize the results in Section 2.1, we still state
the results in two different sections as we believe it is much easier to understand the
algorithm for the case of regular polygons.

Partial results of Section 2.1 are joint work with Claudia Dieckmann and are part
of research published in [22, 23] (together with additional results by Arkin, Knauer,
Mitchell, Polishchuk, and Yang).

Notation. The Euclidean distance between two points p, q in the plane is denoted
by d(p, q). The radius of a disk D is denoted by r(D). The segment between two
points p, q in the plane is denoted by pq and its length by |pq|.

In the following, a regular polygon will be always simple.

2.1 Stabbing with the Vertices of a Regular Polygon

We consider the following problem:
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Given a set of n geometric objects in the plane, decide whether there
exist a regular n-gon whose vertices stab the objects.

We first give an algorithm based on computational algebraic geometry. This
algorithm can be used for different families of objects but the running time of the
algorithm differs, depending on the complexity of the objects.

Later on, we consider in detail the cases where the objects are (i) line segments
or (ii) disks. For the case of line segments we give a faster algorithm.

Before we state our algorithm, we formulate the problem in a different way:

Given a set of geometric objects B = {b1, b2, . . . , bn} in the plane, can
we pick a point in each object such that these points are the vertices of
a regular n-gon?

A regular n-gon has rotational symmetry of order n with respect to its center.
This means that the polygon is invariant under rotation of an angle of 2π/n around
its center. If the center and a vertex are given, the regular n-gon is determined. In
order to compute the remaining vertices of the n-gon, the given vertex is rotated
around the center by an angle of 2kπ/n for k = 1, 2, ..., n− 1. The rotational image
points of this given vertex are the remaining vertices of the regular n-gon.

We present now an algorithm that solves the problem above. The basic idea of
our algorithm is to compute the rotation center and a vertex of the regular n-gon, if
it exists.

We start with introducing some new notation and definitions: Let p, c be points
in the plane and k an integer. The counterclockwise rotational image of p around c
by the angle 2kπ/n is denoted by ρkc (p). Consider two points p, q in the plane and
an integer k. We call a point c the apex point of p, q and k if ρkc (p) = q. For two
geometric objects bi, bj and an integer k we compute for every p ∈ bi all possible
apex points c such that ρkc (p) ∈ bj . We denote the apex region of bi, bj and the angle
2kπ/n by Akij . Thus,

Akij = {(p, c) | c ∈ R2, p ∈ bi, ρkc (p) ∈ bj}

In the following we assume that each geometric object b ∈ B has constant de-
scription complexity, i.e., it can be described with a constant number of polynomial
(in)equalities of constant degree. Because of this, the apex regions can also be de-
scribed with a constant number of polynomial (in)equalities of constant degree. In
the remaining, we assume that each apex region can be described by a constant num-
ber of polynomial (in)equalities of degree a with d variables (note that a is constant
and d 6 4).

Algorithm. Our algorithm proceeds in the following way (the algorithm is also
summarized in Algorithm 1): We start by fixing an object, say b1. There exists a
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regular n-gon whose vertices stab B if and only if there exists a point p ∈ b1 and
a center c such that ρkc (p) ∈ b′k for 1 6 k < n and {b′1, b′2, ..., b′n−1} = B \ {b1}.
Such a point p ∈ b1 and a center c exist when the intersection of the n − 1 apex
regions of b1, b′k and k is non-empty for 1 6 k < n. We consider all possible apex
regions Ak1,j for 2 6 j 6 n and 1 6 k 6 n− 1. Since there are n− 1 possible values
for j and k, in total there are O(n2) such apex regions. Each of these regions can
be described by a constant number of polynomial (in)equalities of degree a with d
variables (as mentioned before); thus, each region can be described by a constant
number of hypersurfaces of degree a in Rd. So the arrangement of these apex regions
has polynomial size. We call a point r = (p, c) ∈ Rd feasible if it belongs to n − 1
apex regions, with each region being from a different object with a different angle.
Our problem has a feasible solution if and only if there exists a feasible point in Rd.
The feasibility of a point does not change when the point moves inside a cell of the
arrangement of the apex regions, thus, in order to determine existence of a feasible
point it is enough to check the feasibility of an arbitrary representative r inside every
cell of the arrangement (notice that we consider all cells of all dimensions).

In order to check the feasibility of a representative r we do the following: For
each representative r = (p, c) we compute a corresponding graphGr. The set of nodes
V = V1∪̇V2 consists of two disjoint sets. The set V1 contains the nodes {v2, v3, . . . , vn},
where vi represents bi. The set V2 contains the nodes {u1, u2, . . . , un−1}, where ui
represents the angle 2iπ/n. There is an edge between a node vi ∈ V1 and a node
uj ∈ V2 if the point p rotated around c by the angle 2jπ/n lies on bi. The graph
Gr is bipartite since each edge connects a vertex of V1 with a vertex of V2 and there
are no edges between two vertices of the same set. The following lemma shows that
if Gr contains a perfect matching, then c is the rotation center and p a vertex of a
regular n-gon whose vertices stab B.

Lemma 2.1.1. Gr contains a perfect matching if and only if c is the rotation center
and p a vertex of a regular n-gon whose vertices stab B.

Proof. Assume Gr contains a perfect matching. Then each vertex in V1 matches a
vertex in V2. This implies that there is a bijective function between the objects of
B \ {b1} and the angles 2iπ/n, i = 1, . . . , n − 1. Let b′i be mapped to 2iπ/n for
1 6 i 6 n − 1 and {b′1, b′2, . . . , b′n−1} = B \ {b1}. Then ρic(p) ∈ b′i for 1 6 i < n and
so c is the rotation center and p a vertex of a regular n-gon whose vertices stab B.

Assume c is the rotation center and p a vertex of a regular n-gon whose vertices
stab B. Then ρkc (p) ∈ b′k for 1 6 k < n and {b′1, b′2, ..., b′n−1} = B \ {b1}. There
exists a bijective function between the objects in B \ {b1} and the angles 2kπ/n,
k = 1, . . . , n− 1; so there also exists a perfect matching in Gr.

We decide for every representative of a cell in the arrangement whether the
corresponding graph has a perfect matching. If one of the graphs contains a perfect
matching, there exists a regular n-gon whose vertices stab B.
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Algorithm 1
Input: Set of geometric objects B = {b1, . . . , bn} in the plane.
Output: TRUE if there exists a regular n-gon stabbing B, and FALSE otherwise.
1: A = ∅
2: for j ← 2 to n do
3: for k ← 1 to n− 1 do
4: A = A ∪ {Ak1,j}

5: Compute a representative r = (p, c) for each cell of the arrangement A.
6: for all r do

//Build corresponding graph Gr = (V1 ∪̇ V2, E):
7: V1 = {v2, v3, . . . , vn}, V2 = {u1, u2, . . . , un−1}, E = ∅
8: for i← 2 to n do
9: for j ← 1 to n− 1 do

10: if ρjc(p) ∈ bi then
11: E = E ∪ {(vi, uj)}
12: if Gr = (V1 ∪̇ V2, E) has a perfect matching then
13: return TRUE
14: return FALSE

We still have to analyze the running time. For this, we need the following theo-
rems:

Theorem 2.1.2 ([98]). The number of cells of all dimensions in an arrangement of
n algebraic hypersurfaces, each of degree 6 a, in Rd is (O(na)/d)d.

Theorem 2.1.3 ([27, Theorem 2]). A sample point of each cell (of all dimensions)
of the arrangement of n algebraic hypersurfaces, each of degree 6 a, in Rd can be
computed in nd+1aO(d) time.

(An overview on arrangements of algebraic surfaces, i.e, their complexity and
how to compute representatives for each cell, can be found in [6].)

In total there are O(n2) apex regions; each of these regions can be described
by a constant number of hypersurfaces of degree a in Rd (recall that a is constant
and d 6 4). From Thereom 2.1.2 follows that the arrangement of all apex regions
consists of O(n2d) cells. We have to compute a representative, i.e, a sample point,
for each cell, this takes O(n2(d+1)) time (Theorem 2.1.3). For each representative r
we compute the corresponding graph Gr which consists of O(n) vertices and O(n2)
edges. Then we decide whether this graph has a perfect matching in O(n2.5/

√
logn)

time [14]. If one of the graphs contains a perfect matching, there exists a regular
n-gon whose vertices stab B. This n-gon can be computed in linear time, since we
know its center and a vertex of it. Thus, we achieve the following result
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Theorem 2.1.4. Let B be a set of n geometric objects in the plane. Assuming the
apex region of two objects in B and an angle can be described by a constant number
of polynomial (in)equalities of constant degree with d variables, we can decide in
O(n2d+2.5/

√
logn) time whether there exists a regular n-gon whose vertices stab B.

The n-gon can be computed in the same time, if it exists.

2.1.1 Stabbing Line Segments

We consider the following problem:

Given a set of line segments L = {l1, l2, .., ln} in the plane, decide whether
there exists a regular n-gon whose vertices stab L and compute the n-gon
if it exists.

Algorithm 1 can be used to solve this problem. In order to analyze the running
time, we have to consider the apex region of li, lj and an angle 2kπ/n. This is,

Akij = {(p, c) | c ∈ R2, p ∈ li, ρkc (p) ∈ lj}

This set is characterized by polynomial (in)equalities for p = (p1, p2) and
c = (c1, c2): Without loss of generality, we assume that all segments in L are non-
vertical (if a segment is vertical we slightly perturb the coordinates [49]).
Let li = {ax + b | x ∈ [x1, x2]} and lj = {sx + t | x ∈ [x3, x4]}. The im-
age point (x′, y′) of a point (x, y) rotated around c by an angle α is given by
x′ = c1 + cosα(x− c1)− sinα(y− c2) and y′ = c2 + sinα(x− c1) + cosα(y− c2) (see,
e.g., [57]). Then,

p2 = ap1 + b (2.1)
x1 6 p1 6 x2 (2.2)
c2 + sin(2πk/n)(p1 − c1) + cos(2πk/n)(p2 − c2) =
s(c1 + cos(2πk/n)(p1 − c1)− sin(2πk/n)(p2 − c2)) + t (2.3)
x3 6 c1 + cos(2πk/n)(p1 − c1)− sin(2πk/n)(p2 − c2) 6 x4 (2.4)

We can eliminate p2 by combining (2.1) and (2.3) and combining (2.1) and (2.4).
Thus, Akij can be considered as subset of R3; the variables are p1, c1, and c2. Applying
Theorem 2.1.4, we get the following result

Corollary 2.1.5. Let L be a set of n line segments in the plane. We can decide
in O(n8.5/

√
logn) time whether there exists a regular n-gon whose vertices stab L.

The n-gon can be computed in the same time, if it exists.

By studying the geometric properties of these apex regions, we can improve the
running time.
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Geometric properties of the apex regions. The apex regions are parallelo-
grams in R3. This can be concluded from the (in)equalities (2.1)-(2.4). But there is
also a nice geometric way to prove this property, which we will state in the following.

Lemma 2.1.6 ([74, Lemma 2.4.6]). Let p, q, r be three points in the plane and let
k > 0 be an integer. Let c1 be the apex point of p, q and k and let c2 be the apex
point of p, r and k. Then d(q, r) = 2 sin(kπ/n)d(c1, c2).

Lemma 2.1.7. Let l be a line segment and p a point in the plane and let k > 0 be an
integer. The apex region of p, l and k is a line segment with length |l|/2 sin(kπ/n).

Proof. Let q be a point on l. We consider the isosceles triangle 4pcq where c is the
apex point of p, q and k and so ∠qcp = 2πk/n (Figure 2.1). Let q′ 6= q a point on
l and let c′ be the apex point of p, q′ and k. Clearly 4pcq and 4pc′q′ are similar
(∠qcp = ∠q′c′p and | q′c′qc | = |pc′pc |). This implies that 4pqq′ and 4pcc′ are similar
since ∠qpq′ = ∠cpc′. It follows that c′ lies on a segment containing c that builds an
angle of ∠pqq′ with the segment pc. Since ∠pqq′ has the same value for all q′ ∈ l,
namely the value of the angle between pq and the line l, we can conclude that for
any point q′′ ∈ l the apex point of p, q′′ and k lies on the same segment. Thus,
we know that that the apex region is a line segment. The length of this segment

c

q

p

q′

c′

2πk
n

l

Figure 2.1: The points p and q and their apex point build an isosceles triangle.

follows immediately from Lemma 2.1.6. Hence, we conclude that the apex region is
a segment with length |l|/2 sin(kπ/n).

We are interested in the apex regions Ak1,j for 2 6 j 6 n and 1 6 k 6 n− 1. We
will prove that these apex regions are parallelograms in R3.

Lemma 2.1.8. Let l1, l2 be two line segments in the plane and k > 0 an integer.
The apex region Ak12 forms a parallelogram in R3. The sides of the parallelogram
have length |l1|/2 sin(kπ/n) and |l2|/2 sin(kπ/n).

Proof. Let s and t be the two endpoints of l1, hence l1 = λ~s+(1−λ)~t, λ ∈ [0, 1]. We
consider a coordinate system with axes x, y, λ, see Figure 2.2. If we consider a point
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p = λ′~s + (1 − λ′)~t ∈ l1, the apex region of p, l2 and k is a line segment of length
|l2|/2 sin(kπ/n) in the plane λ = λ′ (Lemma 2.1.7). Also, if we consider any point
q ∈ l2, the apex region of q, l1 and k is a line segment of length |l1|/2 sin(kπ/n) with
one endpoint in the plane λ = 0 and the other one in the plane λ = 1. It follows that
Ak12 is a parallelogram with height 1, meaning the lower side of the parallelograms
lies in the plane λ = 0 and the upper side lies in the plane λ = 1. One side length is
|l2|/2 sin(kπ/n) and the other |l1|/2 sin(kπ/n).

y

x

λ

1

|l2|
sin(kπ/n)

|l1|
sin(kπ/n)

Figure 2.2: The apex region Ak12 is shown.

Since we know that the apex regions are parallelograms in R3, we can use a
simple idea in order to improve the running time of the algorithm given before.

Faster Algorithm. Again, we start by fixing a segment, say l1. The idea now is
that we also fix a second segment, say l2, and an integer k̃ ∈ {1, 2, ..., n − 1}. We
will repeat the following procedure for all possible values for k̃: We want to decide
whether there exist a point p ∈ l1 and a center c such that ρk̃c (p) ∈ l2 and ρkc (p) ∈ l′k
for 1 6 k 6= k̃ 6 n − 1 and {l′1, l′2, . . . , l′n−2} = L \ {l1, l2}. Such a point p ∈ l1 and
a center c exist if the intersection of Ak̃12 and the n − 2 apex regions of l1, l′k and
k is non-empty, for 1 6 k 6= k̃ 6 n − 1. (This means that there exists a regular
n-gon whose center is c, one vertex is p ∈ l1 and the vertex on l2 is ρk̃c (p) and this
n-gon stabs L.) To this end, we compute Ak̃12 and we compute all apex regions Ak1j
for 1 6 k 6= k̃ 6 n − 1 and 3 6 j 6 n. We compute the intersections Ak̃12 ∩ Ak1j
(all these intersections lie on one plane, namely the plane defined by Ak̃12). We know
that Ak̃12 ∩Ak1j is either empty, a line segment, or a quadrangle P ⊂ Ak̃12. Thus, the
complexity of the resulting arrangement is O(n4). Again, we have to decide whether
there exists a feasible point r = (p, c) ∈ Ak̃12 that means it belongs to n − 1 apex
regions, with each region being from a different segment with a different angle. We
can consider the intersection points of the arrangement as possible candidates. For
each point we construct the bipartite graph as before and decide whether it has a
perfect matching. Since graphs of neighboring cells differ in only one edge and we
know the structure of the arrangement, we can further improve the running time
by using a dynamic matching algorithm. We traverse the cells in depth first search
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order and build the bipartite graph for the representative of each cell. In each step
we have to update the matching. An update in the dynamic matching algorithm can
be done in O(n2) time [13]. We have to check O(n4) representatives. For each we
build a bipartite graph and decide whether the graph has a perfect matching. For
the first representative, this takes O(n2.5) time [70], for all other representative this
needs only O(n2) time.
Hence the running time is O(n6). We have to repeat this procedure for every Ak̃12,
k̃ = {1, ...n− 1}, and thus the total running time is O(n7).

Theorem 2.1.9. Let L be a set of n line segments in the plane. We can decide in
O(n7) time whether there exists a regular n-gon whose vertices stab L. The n-gon
can be computed in the same time, if it exists.

2.1.2 Stabbing Disks

We want to analyze the running time of Algorithm 1 for the case where the objects
are disks. Thus, we consider the following problem:

Given a set of disks D = {D1, D2, .., Dn} in the plane, decide whether
there exists a regular n-gon whose vertices stab D and compute the n-gon,
if it exists.

We consider the apex region of two disks Di, Dj and an angle 2kπ/n:

Akij = {(p, c) | c ∈ R2, p ∈ Di, ρ
k
c (p) ∈ Dj}

This is a set of two polynomial inequalities, one for p = (p1, p2) and one for
c = (c1, c2): Let the center of Di be a = (a1, a2) and let the center of Dj be
b = (b1, b2). Thus, Di = {(x, y) | (x − a1)2 + (y − a2)2 6 r(Di)2} and
Dj = {(x, y) | (x− b1)2 + (y − b2)2 6 r(Dj)2}.

Then,

(p1 − a1)2 + (p2 − a2)2 6 r(Di)2 (2.5)
(c1 + cos(2πk/n)(p1 − c1)− sin(2πk/n)(p2 − c2)− b1)2 +
(c2 + sin(2πk/n)(p1 − c1) + cos(2πk/n)(p2 − c2)− b2)2 6 r(Dj)2 (2.6)

There are four variables, namely p1, p2, c1, c2, and, thus, Akij ⊂ R4. Applying Theo-
rem 2.1.4, we get the following result

Theorem 2.1.10. Let D be a set of n disks in the plane. We can decide in
O(n10.5/

√
logn) time whether there exists a regular n-gon whose vertices stab D.

The n-gon can be computed in the same time, if it exists.
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2.1.3 Optimization Case for Disks

In this section we consider the following problem:

Given a set P of n points in the plane, compute the minimum value δ
such that for each point exists a translation by a vector of length 6 δ

and the translated points lie in symmetric position.

Symmetric position means that the points are vertices of a regular n-gon. This prob-
lem is a simplified version of the so-called approximate symmetry detection problem:
Given a set of n disks and an integer k, is it possible to place a point in each disk such
that this set of points is invariant under rotations by 2π/k. For any fixed k > 3 the
problem is NP-hard [73]. For more details of the approximate symmetry detection
problem see [43, 73, 74].

Our problem is equivalent to the approximate symmetry detection problem where
k = n. This special case seems to be easier than the problem for general k, as an ex-
act solution can be computed in polynomial time (O(n20)) [22, 23]. We will present
a fast and easy constant approximation algorithm and a (1 + ε)-approximation algo-
rithm.

In the following, let δ∗ be the minimum value such that for each point of P exists
a translation by a vector of length 6 δ∗ and the translated points are vertices of a
regular n-gon. This n-gon will be denoted by Q∗ and its center by c∗.

Constant factor approximation. The idea of this algorithm is quite simple.
Take any point p ∈ P and compute a regular n-gon that has p as a vertex and the
centroid of P as center. This can be done in linear time. We denote the resulting
regular n-gon by Q. Constructing Q does not yield an approximation of δ∗, since
we do not know which point of P is moved to which vertex of Q and by what value.
In order to get this value we compute the bottleneck distance between P and the
vertices of Q. (The bottleneck distance between two point sets P and Q is defined as
the minimum over all one-to-one correspondences f : P → Q of maxp∈P d(p, f(p)).)
The bottleneck distance can be computed in O(n1.5 logn) time [51]. Hence, the total
running time is O(n1.5 logn). We still have to analyze the approximation factor. We
will show that Q∗ can be transformed to Q by translating each vertex by at most
3δ∗, hence each point of P has to be translated by at most 4δ∗ in order to be a vertex
of Q. Let λ be be the bottleneck distance between P and the vertices of Q. We want
to prove the following.

Lemma 2.1.11. λ 6 4δ∗

In order to prove Lemma 2.1.11 we need the following two lemmas.

Lemma 2.1.12. Let Q be a regular n-gon with center c and let p be a point in the
plane. Let q be any vertex of Q. There exists a regular n-gon Q′ with center c and
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q

p

c

Q

Figure 2.3: Q can be transformed into the dashed polygon which is still a regular
n-gon with center c.

p as a vertex such that the corresponding vertices of Q and Q′ have distance exactly
d(p, q).

Proof. Q is a regular n-gon and so it has rotational symmetry n. Let the vertices
of Q be q1, q2, . . . , qn in counterclockwise order and let q = qn. We move q on p,
this can be done by the translation vector ~qp. Now we rotate this vector around c
by an angle of 2π/n and translate q2 by this new vector and so on. (More precisely,
each vertex qi of Q is translated by a vector that is defined by rotating ~qp around
c by an angle of 2iπ/n.) Each vertex is translated by a distance of d(p, q) and the
resulting polygon is again a regular n-gon with center c and it has p as a vertex, see
Figure 2.3.

The following lemma was proven by Iwanowski [74].

Lemma 2.1.13 ([74]). Let P = {p1, p2, .., pn} be a set of points in the plane and
let g be the centroid of P . Let Q be a regular n-gon with center c such that the
corresponding vertices of Q and points of P have distance at most δ∗. Then, d(c, g) 6
δ∗.

Now we can state the proof of Lemma 2.1.11.

Proof of Lemma 2.1.11. Let the centroid of P be denoted by g. We start by
translating Q∗ in such a way that the center of Q∗ coincides with g. Hence Q∗ is
translated by ~c∗g. By Lemma 2.1.13 we know that |d(c∗g)| 6 δ∗ and so there is a
vertex of the translated polygon Q∗ that has a distance smaller than 2δ∗ to p (recall
that p is a point of P ). By Lemma 2.1.12, Q can be obtained from the translated
version of Q∗ by translating each vertex by at most 2δ∗. It follows that each point
of P has to be translated by at most 4δ∗ to coincide with its corresponding vertex
of Q.
Lemma 2.1.11 proved the approximation factor of our algorithm and, hence, we have
the following result.
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Theorem 2.1.14. Let P be a set of n points in the plane. A value δ such that
for each point p ∈ P exists a translation by a vector of length 6 δ, the translated
points lie in symmetric position, and δ 6 4δ∗ (where δ∗ is the optimal value) can be
computed in O(n1.5 logn) time.

(1 + ε)-Approximation. We first compute a 4-approximation for the problem
in O(n1.5 logn) time using our algorithm from Theorem 2.1.14. Let δapx be the
computed value. We lay out a 1

ε ×
1
ε -grid in the δapx-neighborhood of the centroid of

P and denote this grid by G1. We also lay out a 1
ε ×

1
ε -grid in the δapx-neighborhood

of any point p ∈ P and denote it by G2. The grid size of these grids is δapxε. Now
we take all possible pairs (c′, p′) of points where c′ is a grid point of G1 and p′ is
a grid point of G2. We construct the regular n-gon that has center c′ and p′ as a
vertex, this takes linear time. Then we compute the bottleneck distance between the
vertices of this polygon and P in O(n1.5 logn) time. Hence, the total running time
is O( 1

ε4n
1.5 logn). We claim that the regular n-gon whose vertices have the smallest

bottleneck distance to the points in P gives a (1 + ε) approximation for the problem.
Let λ be the value of this bottleneck distance. Recall that δ∗ is the minimum value
such that for each point of P exists a translation by a vector of length 6 δ∗ and the
translated points are vertices of a regular n-gon. This n-gon will be denoted by Q∗
and has center c∗. We have the following:

Lemma 2.1.15. λ 6 (1 + ε′)δ∗ for any ε′ > 12
√

2ε.

Proof. There is a grid point c in Gc that has distance at most
√

2δapxε 6 4
√

2εδ∗
to c∗ and there is a grid point p in Gp that has distance at most 4

√
2εδ∗ to p∗

where p∗ is a vertex of Q∗. Compute the regular n-gon Q that has c as center and
p as a vertex. We can translate Q∗ to Q by translating each vertex by at most
12
√

2εδ∗ in the following way. First we translate Q∗ in such a way that the center
of Q∗ coincides c; Q∗ is translated by at most 4

√
2εδ∗. Then there is a vertex of the

translated polygon Q∗ that has distance smaller than 8
√

2εδ∗ to p. By Lemma 2.1.12,
Q can be obtained from the translated version of Q∗ by translating each vertex by
at most 8

√
2εδ∗. It follows that each point of P has to be translated by at most

δ∗+ 12
√

2εδ∗ = δ∗(1 + 12
√

2ε) 6 δ∗(1 + ε′) to coincide with its corresponding vertex
of Q.

We conclude with:

Theorem 2.1.16. Let P be a set of n points in the plane. A value δ such that for
each point p ∈ P exists a translation by a vector of length 6 δ, the translated points
lie in symmetric position, and δ 6 (1 + ε)δ∗ (where δ∗ is the optimal value) can be
computed in O( 1

ε4n
1.5 logn) time.
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2.2 Stabbing with the Vertices of a General Polygon

Last, we consider a generalized version of the problem studied in Section 2.1 where
the restriction to regular polygons is removed. We first state the problem.

Given a set of geometric objects B = {b1, b2, . . . , bn} and a polygon P

with n vertices in the plane, decide whether there exists a scaled, trans-
lated, and rotated copy of P whose vertices stab the objects.

(Notice that P can also be just an ordered sequence of points, it does not have
to be a polygon.)

We start with showing that Algorithm 1 can be generalized by only increasing
the running time by a linear factor. Later on, we consider in detail the cases where
the objects are (i) line segments or (ii) disks. For the case of line segments we will
also give a faster algorithm.

The basic idea of the algorithm in Section 2.1.1 was to compute the rotation center
and a vertex of the stabbing regular n-gon, if it exists. We will use the same idea,
however, a general polygon has no rotation center but we can use two specific ref-
erence points instead. The first reference point can be any fixed point in the plane.
The second reference point is a vertex of P . For simplification we use the centroid
of the vertices of P as the first reference point and we denote it by c. As second
reference point, we fix any vertex of P , we call this vertex v. All other points of
P are now determined by a specific rotation from v around c and a specific scaling
of the vector from c to the image point of v. We compute these specific angles and
scaling factors in advance. Let the angles be α1, α2, ..., αn and their corresponding
scaling factors f1, f2, .., fn. Let the vertices of P be v, v1, v2, . . . , vn−1 in a given or-
der. Then αi = ∠vcvi and the corresponding scaling factor is fi = |cvi|/|cv| for all
i = 1, . . . , n− 1.

Assume that the centroid c′ and a vertex v′ of some scaled, translated, and rotated
copy of P are given. In order to compute the remaining vertices of the polygon, v′ is
rotated around c′ by the angle αi and then the vector from c′ to this image point of
v′ is scaled by the factor fi, 1 6 i 6 n, see also Figure 2.4. (For brevity, we will say
that the point itself is scaled, but actually we mean that the corresponding vector
from c′ to this point is scaled.)

We start now with generalizing the definition of an apex point. For this we need
some new notation. Let p, c be points in the plane, α an angle and f > 0 a value.
The transformed image of p rotated around c by the angle α and then scaled by the
factor f is denoted by θc,αf (p). Consider two points p, q in the plane, an angle α and
a value f > 0. We call a point c the apex point of p, q, α and f if θc,αf (p) = q. For two
geometric objects bi, bj , an angle α and a value f > 0 we compute for every p ∈ bi all
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v

c

α1
α2

v1

α3

Figure 2.4: The image point of v rotated by an angle of α1 around c and scaled by
a factor of |cv1|/|cv| is v1.

possible apex points c such that θc,αf (p) ∈ bj . We denote the apex region of bi, bj , α
and f by Aα,fij . Thus,

Aα,fij = {(p, c) | c ∈ R2, p ∈ bi, θc,αf (p) ∈ bj}

As in Section 2.1, we assume that all geometric objects have constant description
complexity. Therefore, the apex regions have constant description complexity. In the
following, we assume that the apex region can be described with a constant number
of (in)equalities of degree a with d variables (note that d 6 4 and a is a constant).

Algorithm. The pseudocode of the algorithm is given in Algorithm 2.
Our algorithm proceeds in the following way: Assume that we have already

computed the specific angles and scaling factors of P . Let the angles be α1, α2, ..., αn
and their corresponding scaling factors f1, f2, .., fn. We fix an object, say bm, and
we assume that the reference point v of the resulting polygon lies on bm (as we do
not have this information, we have to repeat the following for every m = 1, . . . , n).
Now we use a slightly generalized version of Algorithm 1 as a subroutine. It decides
whether there exists a scaled, translated, and rotated copy of P whose vertices stab
B and the reference point v lies on bm. We repeat the modified version of Algorithm 1
for every m = 1, . . . , n and so we decide whether there exists a scaled, translated,
and rotated copy of P whose vertices stab B.

We still have to analyze the running time. We repeat the following for every
bm, 1 6 m 6 n: We consider all possible apex regions Aαi,fimj for 1 6 i 6 n − 1
and 1 6 j 6= m 6 n. Since there are n − 1 possible values for i and j, there are
O(n2) apex regions in total. Each of these regions can be described with a constant
number of hypersurfaces of degree a in Rd (a is a constant and d 6 4, as mentioned
before). Thus, the arrangement consists of O(n2d) cells (Theorem 2.1.2). We can
compute a representative for each cell in O(n2(d+1)) time (Theorem 2.1.3). For each
representative we construct the corresponding bipartite graph and decide whether
this graph has a perfect matching. Thus, the total running time isO(n2d+2.5/

√
logn).
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Algorithm 2
Input: Set of geometric objects B = {b1, . . . , bn} and a polygon P with n vertices

in the plane.
Output: TRUE if there exists a scaled, translated, and rotated copy of P stabbing

B, and FALSE otherwise.
1: for all m ∈ {1, . . . , n} do
2: A = ∅
3: for j ← 1 to n do
4: for i← 1 to n− 1 do
5: if j 6= m then
6: A = A ∪ {Aαi,fimj }

7: Compute a representative r = (v, c) for each cell of the arrangements A.
8: for all r do

//Build corresponding graph Gr = (V1 ∪̇ V2, E):
9: V1 = {v1, v2, . . . , vn−1}

// vi represents b′i where {b′1, b′2, . . . , b′n−1} = B \ {bm}
10: V2 = {u1, u2, . . . , un−1}, E = ∅

// ui represents αi and fi
11: for i← 1 to n− 1 do
12: for k ← 1 to n− 1 do
13: if θc,αkfk

(v) ∈ b′i then
14: E = E ∪ {(vi, uj)}
15: if Gr = (V1 ∪̇ V2, E) has a perfect matching then
16: return TRUE
17: return FALSE

Since we have to repeat this procedure for m = 1, 2, . . . , n, the total running time is
O(n2d+3.5/

√
logn).

Recall that the algorithm also computes the reference point v and the centroid
c of the scaled, translated, and rotated copy of P , if it exists. Hence, the copy of P
can be computed in additional linear time.

Theorem 2.2.1. Let P be a polygon with n vertices and B be a set of n geometric
objects in the plane. Assuming the apex region of two objects in B and an angle can
be described with a constant number of polynomial (in)equalities of constant degree
with d variables, we can decide in O(n2d+3.5/

√
logn) time whether there exists a

scaled, translated, and rotated copy of P whose vertices stab B. The copy can be
computed in the same time, if it exists.
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2.2.1 Stabbing Line Segments

We consider the problem when the objects are line segments.

Given a set of line segments L = {l1, l2, .., ln} and a polygon P with n

vertices in the plane, decide whether there exists a scaled, translated,
and rotated copy of P whose vertices stab L.

We consider the apex region for two line segments li, lj ∈ L, an angle α, and a value
f > 0:

Aα,fij = {(p, c) | c ∈ R2, p ∈ li, θc,αf (p) ∈ lj}

This set is characterized by polynomial (in)equalities for p = (p1, p2) and
c = (c1, c2): Without loss of generality, assume that all segments in L are non-
vertical. Let li = {ax + b | x ∈ [x1, x2]} and lj = {sx + t | x ∈ [x3, x4]}.
The image point (x′, y′) of a point (x, y) rotated around c by an angle α and
scaled by a factor f is given by x′ = c1 + f cosα(x − c1) − f sinα(y − c2) and
y′ = c2 + f sinα(x− c1) + f cosα(y − c2) (see, e.g., [57]). Then,

p2 = ap1 + b (2.7)
x1 6 p1 6 x2 (2.8)
c2 + f sin(2πk/n)(p1 − c1) + f cos(2πk/n)(p2 − c2) =
s(c1 + f cos(2πk/n)(p1 − c1)− f sin(2πk/n)(p2 − c2)) + t (2.9)
x3 6 c1 + f cos(2πk/n)(p1 − c1)− f sin(2πk/n)(p2 − c2) 6 x4 (2.10)

We can eliminate p2 by combining (2.7) and (2.9), and also combining (2.7) and
(2.10). Thus, Aα,fi,j ⊂ R3; there are three variables p1, c1, and c2. Applying Theo-
rem 2.2.1, we get the following result:

Corollary 2.2.2. Let L be a set of n line segments and P a polygon with n vertices
in the plane. We can decide in O(n9.5/

√
logn) time whether there exists a scaled,

translated, and rotated copy of P whose vertices stab L. The copy can be computed
in the same time, if it exists.

By studying the geometric properties of these apex regions, we can improve the
running time.

Geometric properties of the apex regions. The apex regions are parallelo-
grams in R3. This can be concluded from the (in)equalities (2.7)–(2.10). We addi-
tionally prove it in a geometric way, like in Section 2.1.1.

Recall Lemma 2.1.7 and Lemma 2.1.8; we conclude the following lemmas.

Lemma 2.2.3. Let l be a line segment and p a point in the plane, let α be an angle
and f > 0 a value. The apex region of p, l, α and f is a line segment with length
|l|
√
f2 + 1− 2f cosα.
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p

c

q

c′

q′

l

α

x

fx

Figure 2.5: 4pqq′ and 4pcc′ are similar.

Proof. Let q, q′ ∈ l. Let c be the apex point of p, q, α and f . Let c′ be the apex point
of p, q′, α and f . Then 4qcp and 4q′c′p are similar (Figure 2.5). By exactly the
same arguments as in the proof of Lemma 2.1.7 we can show that the apex region of
p, l, α and f is a line segment.

The length of the segment can be computed in the following way, see also Fig-
ure 2.5: |cc

′|
|qq′|

= |pq′|
|pc′|

= |pq|
|pc| . Thus, the length of the segment is |l| |pq||pc| . We use the

cosine formula to show that |pq|2 = f2x2 + x2 − 2fx2 cosα and hence the length of
the segment is |l|

√
f2 + 1− 2f cosα. This concludes the lemma.

Lemma 2.2.4. Let li, lj be two line segments in the plane, α an angle and f > 0 a
value. The apex region Aα,fi,j is a parallelogram in R3 with side lengths
|li|
√
f2 + 1− 2f cosα and |lj |

√
f2 + 1− 2f cosα.

Proof. From the proof of Lemma 2.1.8 follows easily that Aα,fi,j is a parallelogram.
The side lengths can be proven in the following way: One side has the length of
the apex region of a point p ∈ li, lj , α, and f which is |lj |

√
f2 + 1− 2f cosα. The

other side has the length of the apex region of a point q ∈ lj , li, α and f which is
|li|
√
f2 + 1− 2f cosα.

Now we can use the same idea as in Section 2.1.1 to improve the running time of
the algorithm of Corollary 2.2.2.

Faster Algorithm. Assume that we have already computed the specific angles
and scaling factors of P . Let the angles be α1, α2, ..., αn and their corresponding
scaling factors f1, f2, .., fn. Again, we start by fixing a segment, say l1, and we
assume that v ∈ l1. As we do not have this information, we repeat the following
algorithm for each l ∈ L: The idea is that we also fix a second segment, say l2 and
an integer k̃ ∈ {1, 2, ..., n}. We will repeat the following procedure for all possible
values for k̃: We want to decide whether there exist a point v ∈ l1 and a center c such
that θc,αk̃fk̃

(v) ∈ l2 and θc,αkfk
(v) ∈ l′k for 1 6 k 6= k̃ 6 n − 1 and

⋃
{li} = L \ {l1, l2}.

Such a point v ∈ l1 and a center c exist if the intersection of Aαk̃,fk̃12 and the n − 2
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apex regions of l1, l′k and k is non-empty, for 1 6 k 6= k̃ 6 n − 1. To this end, we
compute Aαk̃,fk̃12 and we compute all apex regions Aαi,fi1j for 1 6 i 6= k̃ 6 n − 1 and
3 6 j 6 n. We compute the intersections Aαk̃,fk̃12 ∩ Aαi,fi1j and this intersection is
either empty, a line segment, or a quadrangle P ⊂ A

αk̃,fk̃
12 . Thus, the complexity of

the resulting arrangement is O(n4). Again, we have to decide whether there exists
a feasible point r = (v, c) ∈ Aαk̃,fk̃12 that means it belongs to n− 2 apex regions, with
each region being from a different segment with a different angle (and, hence, also a
different scaling factor). We can consider the intersection points of the arrangement
as possible candidates. For each point we construct the bipartite graph and decide
whether it has a perfect matching. Since graphs of neighboring cells differ in only one
edge and we know the structure of the arrangement, we can improve the running time
by using a dynamic matching algorithm as in Section 2.1.1. We have to check O(n4)
representative. For each we build a bipartite graph and decide whether the graph has
a perfect matching. For the first representative, this takes O(n2.5) time [70], for all
other representative this needs only O(n2) time. Hence, the running time is O(n6).
We have to repeat this procedure for every Aαk̃,fk̃j2 , k̃ = 1, . . . , n− 1 and j = 1 . . . , n
and thus the total running time is O(n8).

Theorem 2.2.5. Let L be a set of n line segments and P a polygon with n vertices
in the plane. We can decide in O(n8) time whether there exists a scaled, translated,
and rotated copy of P whose vertices stab L. The copy can be computed in the same
time, if it exists.

2.2.2 Stabbing Disks

We analyze the running time of Algorithm 2 when the objects are disks. Thus, we
consider the following problem:

Given a set of disks D = {D1, D2, .., Dn} and a polygon P with n vertices
in the plane, decide whether there exists a scaled, translated, and rotated
copy of P whose vertices stab D.

The apex region of Di, Dj , angle α, and a value f > 0 is defined as

Aα,fi,j = {(p, c) | c ∈ R2, p ∈ Di, θ
c,α
f (p) ∈ Dj}

This is a set of two polynomial inequalities, one for p = (p1, p2) and one for c = (c1, c2)
as is shown in the following. Let the center of Di be a = (a1, a2) and let the center
of Dj be b = (b1, b2). Thus, Di : {(x, y)|(x − a1)2 + (y − a2)2 6 r(Di)2} and
Dj : {(x, y)|(x− b1)2 + (y − b2)2 6 r(Dj)2}.

Then,

(p1 − a1)2 + (p2 − a2)2 6 r(Di)2

(c1 + f cos(2πk/n)(p1 − c1)− f sin(2πk/n)(p2 − c2)− b1)2 +
(c2 + f sin(2πk/n)(p1 − c1) + f cos(2πk/n)(p2 − c2)− b2)2 6 r(Dj)2
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These are two polynomial inequalities with four variables, thus Aα,fi,j ⊂ R4. Applying
Theorem 2.2.1, we get the following:

Theorem 2.2.6. Let D be a set of n disks and a polygon P with n vertices in
the plane. We can decide in O(n11.5/

√
logn) time whether there exists a scaled,

translated, and rotated copy of P whose vertices stab D. The polygon can be computed
in the same time, if it exists.

2.3 Conclusions and Open Problems

We presented algorithms for deciding whether a set of geometric objects can be
stabbed with the vertices of a polygon. First we studied the problem of stabbing a
set of geometric objects with the vertices of a regular polygon. We also considered an
optimization version of the problem which is a restricted version of the approximating
symmetry detection problem. Later on we considered the problem of stabbing objects
with the vertices of a general polygon. As our running times are rather high, the
main remaining question is how these running times can be improved.

Another interesting open problem is the problem of stabbing a set of geometric
objects with the boundary of a given polygon. This problem seems to be much more
involved than the problems studied here.



Chapter 3

Stabbing with Point Sequences

In this chapter we want to stab sequences of geometric objects by point sequences.
We say that a sequence of objects A = A1, . . . , An is stabbed by a sequence of points
P = p1, . . . , pn if pi ∈ Ai for all 1 6 i 6 n. In the following we study the problem of
stabbing two sequences of geometric objects with two sequences of points under the
condition that these point sequences have a distance as small as possible.

The distance of sequences of points can be measured with the discrete Fréchet
distance. The Fréchet distance is a natural distance function for continuous shapes
such as curves and surfaces [15, 18, 19, 102]. The discrete Fréchet distance is a
variant of the Fréchet distance where only the vertices of the polygonal curves are
considered, hence the input is a sequence of points. The discrete Fréchet distance
between two point sequences P = p1, . . . , pn and Q = q1, . . . , qm is defined as follows:
Let a coupling C between P and Q be a sequence of ordered pairs of indices

(π1, ρ1), . . . , (πl, ρl)

such that π1 = ρ1 = 1, πl = n, ρl = m, and for all i = 1, . . . , l one of the following
statements is true:

• πi+1 = πi and ρi+1 = ρi + 1.

• πi+1 = πi + 1 and ρi+1 = ρi.

• πi+1 = πi + 1 and ρi+1 = ρi + 1.

The discrete Fréchet distance is then the minimum over all couplings of
max16i6l dist(pπi , qρi), in short

dF (P,Q) = min
C∈C

max
16i6l

dist(pπi , qρi)

where C is the set of all couplings between P and Q and dist(p, q) denotes the
Euclidean distance between the points p and q. See Figure 3.1.
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Figure 3.1: The discrete Fréchet distance between P = p1, p2, p3 and Q = q1, q2, q3, q4
is achieved by the coupling (p1, q1), (p2, q2), (p2, q3), (p3, q4) and so dF (P,Q) =
dist(p2, q3).

The discrete Fréchet distance for two point sequences with m and n points,
respectively, can be computed in O(nm) time [52]. Recently, Agarwal et al. [2] pre-
sented an algorithm that runs in O(mn log logn

logn ) time (assuming m 6 n).

In Section 3.1 we will consider the problem of stabbing two sequences of segments
with two sequences of points under the condition that the discrete Fréchet distance
between the point sequences is as small as possible. In Section 3.2 we consider the
same problem but here the input is two sequences of disks.

Partial results of this chapter were obtained in collaboration with Ahn, Knauer,
Scherfenberg and Vigneron and have been published in [10, 11]. In these papers the
problems are studied in a different context, namely, shape matching with imprecise
input. Most of the previous work on shape matching assumes that the input is given
precisely. The input, however, could be only an approximation. In many cases,
geometric data come from measurements of continuous real-world phenomenons,
and the measuring devices have finite precision. Such impreciseness of geometric
data has also been studied, see, e.g., [84] for an overview. Imprecise data can be
modeled in different ways. A common way to model data that consist of points is
to assign each point to a region, typically a disk or a square. The point itself is
then known to lie anywhere in the region. These regions are called imprecise points
and if we place a point inside a region we call it a realization of the imprecise point.
Hence, our problem could be stated in the following way: Given two sequences of
imprecise points, find two point sequences that are realizations of the imprecise point
sequences such that the discrete Fréchet distance between these point sequences is
as small as possible. In [10, 11] we solved this problem when the imprecise points are
modeled as squares or as disks. (An earlier result of ours, where one of the sequences
is precise, i.e., a point sequence, has been published in [12] and can also be found
in [103].)
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Notation. Let A = A1, . . . , An and B = B1, . . . , Bm be two sequences of geometric
objects in the plane. Let P = p1, . . . , pn and Q = q1, . . . , qn be two point sequences
in the plane. The subsequence A1, . . . , Ai of A is denoted by Ai (1 6 i 6 n).

If P stabs A, we denote this by P ∈S A. If P ∈S A and Q ∈S B, we denote
this by (P,Q) ∈S (A,B). By (P,Q) ∈(S,δ) (A,B) we mean that (P,Q) ∈S (A,B) and
dF (P,Q) 6 δ, for a value δ > 0.

For an object A ∈ A and a value δ > 0, we denote by A(δ) the set of points that
are at distance at most δ from A.

Recall that dist(p, q) denotes the Euclidean distance between the points p and q.

3.1 Stabbing Sequences of Line Segments

Given two sequences of line segmentsA = A1, . . . , An and B = B1, . . . , Bm
in the plane, compute the minimum value δ such that there exist two
point sequences P , Q with dF (P,Q) = δ and (P,Q) ∈S (A,B).

We first give an algorithm for the decision version of this problem. Later we
show how this decision algorithm can be used in order to get an algorithm for the
optimization problem. The decision version can be formulated as follows

Given two sequences of line segmentsA = A1, . . . , An and B = B1, . . . , Bm
in the plane and a value δ > 0, decide whether there exist two point se-
quences P = p1, . . . , pn and Q = q1, . . . , qm such that (P,Q) ∈(S,δ) (A,B).

Recall that Ai(δ) and Bj(δ) (1 6 i 6 n, 1 6 j 6 m) represent the set of points
that are at distance at most δ from Ai and Bj , respectively. So, Ai(δ) = Ai ⊕ Cδ
where ⊕ is the Minkowski sum and Cδ is a disk with radius δ.

Ai

Figure 3.2: Ai(δ) is marked in green.

Ai(δ) consists of a rectangle that has two half disks glued at two opposite sides.
In the following, we call this geometric object a tube.

Decision algorithm. Our decision algorithm is related to the algorithm of Eiter
and Mannila to compute the discrete Fréchet distance [52]; it is based on dynamic
programming. During the algorithm we build an array with n rows and m columns.
In each cell of the array we store two feasiblity regions, which indicate where the
current points (pi, qj) may lie.
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While the algorithm proceeds, we fill the cells of the array in an iterative manner
from the lower left to the upper right cell, i.e, from (1, 1) to (n,m), where the ith row
represents the region Ai, and the jth column represents Bj . Each cell (i, j) is filled
with two feasibility regions FAδ(i, j) and FBδ(i, j). As we will see in Lemma 3.1.1, the
region FAδ(i, j) represents the possible locations of the point pi under the condition
that (Pi, Qj) ∈(S,δ) (Ai,Bj) and there exists a coupling C whose last two pairs are
not (i − 1, j), (i, j). Similarly, the region FBδ(i, j) represents the possible locations
of the point qj under the condition that (Pi, Qj) ∈(S,δ) (Ai,Bj) and there exists a
coupling C whose last two pairs are not (i, j − 1), (i, j). Thus, there exist two point
sequences P and Q such that (P,Q) ∈(S,δ) (A,B) if and only if the feasibility region
FAδ(n,m) or the feasibility region FBδ(n,m) of the upper right cell is non-empty.

We give our decision algorithm in Algorithm 3. The input are two sequences
of line segments and a value δ > 0. The algorithm returns TRUE if there are two
point sequences that stab the input and their discrete Fréchet distance is smaller
or equal to δ, otherwise the algorithm returns FALSE. The initialization is done in
lines 1-8. We introduce an extra zeroth row and column in the array. It allows
boundary cases when i = 1 and j = 1 to be handled correctly in the main loop.
The main loop is from line 9 to 16. We give a brief description of how the feasible
regions for the cell (i, j) are computed in this loop: The case distinction reflects the
definition of the discrete Fréchet distance. Assume that we have already a coupling
of ordered pairs (π1, ρ1), . . . , (πk, ρk), then there are three possible pairs for the next
pair in the coupling. First, the next pair could be (πk+1, ρk+1) = (πk + 1, ρk + 1).
This case corresponds to a diagonal step in the array and the two feasible regions
of the new cell are only determined by the location of its two corresponding line
segments, i.e., FAδ(i, j) = Ai ∩ Bj(δ) and FBδ(i, j) = Ai(δ) ∩ Bj (line 15 and 16).
The second possibility for the next pair is (πk+1, ρk+1) = (πk, ρk+1) which represents
a horizontal step in the array. The third possibility for the next pair is (πk+1, ρk+1) =
(πk + 1, ρk) which represents a vertical step in the array. Clearly, for the horizontal
step FAδ(i, j) ⊂ FAδ(i− 1, j) and the vertical step FBδ(i, j) ⊂ FBδ(i, j − 1) (line 12
and 13). (Notice that the algorithm first tries to perform a diagonal step. Only when
both feasibility regions in the cell (i− 1, j − 1) are empty, i.e., FAδ(i− 1.j − 1) = ∅
and FBδ(i− 1, j − 1) = ∅, the algorithm tries to reach the cell (i, j) by a vertical or
a horizontal step.) See also Fig. 3.3 for an example of the algorithm.

The following lemma will lead to the correction of the algorithm.

Lemma 3.1.1. For any 2 6 i 6 n, 2 6 j 6 m, there exist two point sequences Pi
and Qj such that (Pi, Qj) ∈(S,δ) (Ai,Bj) if and only if FAδ(i, j) 6= ∅ or FBδ(i, j) 6= ∅.
More precisely, for any x, y ∈ Rd, we have:

(a) x ∈ FAδ(i, j) if and only if there exist two point sequences Pi and Qj
such that (Pi, Qj) ∈S (Ai,Bj) and pi = x and there is a coupling achieving
dF (Pi, Qj) 6 δ whose last two pairs are not (i − 1, j), (i, j) (i.e., the last step
is not vertical).
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Algorithm 3
Input: Two sequences of geometric objects A = A1, . . . , An and B = B1, . . . , Bm in

the plane, and a value δ > 0.
Output: TRUE when there exists two point sequences P and Q such that

(P,Q) ∈(S,δ) (A,B), and FALSE otherwise.
1: for i← 1 to n do
2: FAδ(i, 0)← ∅
3: FBδ(i, 0)← ∅
4: for j ← 1 to m do
5: FAδ(0, j)← ∅
6: FBδ(0, j)← ∅
7: FAδ(0, 0)← R2

8: FBδ(0, 0)← R2

9: for i← 1 to n do
10: for j ← 1 to m do
11: if FAδ(i− 1, j − 1) = ∅ and FBδ(i− 1, j − 1) = ∅ then
12: FAδ(i, j)← FAδ(i, j − 1) ∩Bj(δ)
13: FBδ(i, j)← FBδ(i− 1, j) ∩Ai(δ)
14: else
15: FAδ(i, j)← Ai ∩Bj(δ)
16: FBδ(i, j)← Ai(δ) ∩Bj
17: if FAδ(n,m) = ∅ and FBδ(n,m) = ∅ then
18: return FALSE
19: else
20: return TRUE

(b) y ∈ FBδ(i, j) if and only if there exist two point sequences Pi and Qj
such that (Pi, Qj) ∈S (Ai,Bj) and qj = y and there is a coupling achieving
dF (Pi, Qj) 6 δ whose last two pairs are not (i, j − 1), (i, j) (i.e., the last step
is not horizontal).

Proof. We proof the lemma when i, j > 3. The boundary cases where i = 2 or j = 2
can be easily checked. We only prove Lemma 3.1.1(a); the proof of (b) is similar. Our
proof is done by induction on (i, j). The induction hypothesis is that Lemma 3.1.1
is true for all cells (i′, j′) that have already been handled by the algorithm before
cell (i, j). (Notice that this includes that the assumption is true for all cells (i′, j′)
with i′ 6 i and j′ 6 j, but not i′ = i and j′ = j.) For the induction step we have to
show both directions.

We first assume that x ∈ FAδ(i, j). We have to show that there exist two point
sequences Pi and Qj such that (Pi, Qj) ∈S (Ai,Bj) and pi = x and there is a coupling
achieving dF (Pi, Qj) 6 δ whose last two pairs are not (i− 1, j), (i, j). There are two
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(b) In each cell (i, j) FAδ(i, j), is shown
in the lower-left corner and FBδ(i, j) in
the upper-right corner.

Figure 3.3: Example for Algorithm 3 for sequences of line segments.

cases

• FAδ(i−1, j−1) 6= ∅ or FBδ(i−1, j−1) 6= ∅. Then, by induction hypothesis there
exist two point sequences Pi−1, Qj−1 such that (Pi−1, Qj−1) ∈(S,δ) (Ai−1,Bj−1).
The algorithm sets FAδ(i, j) to Ai ∩ Bj(δ) and FBδ(i, j) to Ai(δ) ∩ Bj . Since
x ∈ FAδ(i, j) and so x ∈ Bj(δ) it follows immediately that there exists y′ ∈ Bj
such that dist(x, y′) 6 δ. The sequences Pi−1 and Qj−1 can be extended
by pi = x and qj = y′. Because dF (Pi−1, Qj−1) 6 δ and dist(pi, qj) 6 δ,
dF (Pi, Qj) 6 δ and the last two pairs of the coupling achieving this distance
is (i− 1, j − 1), (i, j).

• FAδ(i − 1, j − 1) = ∅ and FBδ(i − 1, j − 1) = ∅. Then FAδ(i, j) is set to
FAδ(i, j − 1) ∩Bj(δ) (line 12 of the algorithm). It holds that x ∈ FAδ(i, j − 1)
because FAδ(i, j) ⊂ FAδ(i, j − 1). By induction hypothesis there are two point
sequences Pi and Qj−1 such that (Pi, Qj−1) ∈(S,δ) (Ai,Bj−1) and ai = x. Since
x ∈ Bj(δ) there is a point y′ ∈ Bj such that dist(x, y′) 6 δ. The sequence
Qj−1 can be extended by qj = y′ and so we obtain two sequences Pi and Qj
such that dF (Pi, Qj) 6 δ and the last two pairs of the coupling achieving this
distance is (i, j − 1), (i, j).

Now we assume that there exist two point sequences Pi and Qj such that
(Pi, Qj) ∈S (A,B) and there exists a coupling achieving dF (Pi, Qj) 6 δ whose last



3.1. STABBING SEQUENCES OF LINE SEGMENTS 59

two pairs are not (i − 1, j)(i, j). We want to show that pi ∈ FAδ(i, j). Again, we
distinguish between two cases

• FAδ(i− 1, j − 1) 6= ∅ or FBδ(i− 1, j − 1) 6= ∅. This implies that the algorithm
sets FAδ(i, j) to Ai∩Bj(δ) (line 14). Since Pi ∈S Ai, we know that pi ∈ Ai and
since Qj ∈S Bj we know that qj ∈ Bj . We also know that dF (Pi, Qj) 6 δ and
this implies that dist(pi, qj) 6 δ. Hence, pi ∈ Bj(δ) and so pi ∈ Ai ∩ Bj(δ) =
FAδ(i, j).

• FAδ(i − 1, j − 1) = ∅ and FBδ(i − 1, j − 1) = ∅. Then, FAδ(i, j) is set to
FAδ(i, j − 1) ∩Bj(δ) by the algorithm (line 12) and, by induction hypothesis,
we know that there do not exist two point sequences Pi−1, Qj−1 such that
(Pi−1, Qj−1) ∈(S,δ) (Ai−1,Bj−1). This implies that dF (Pi−1, Qj−1) > δ and so
the coupling achieving dF (Pi, Qj) 6 δ cannot contain (i − 1, j − 1). Hence,
the last three pairs of the coupling can either be (i− 1, j − 2)(i, j − 1)(i, j) or
(i, j − 2)(i, j − 1)(i, j). So by induction we have pi ∈ FAδ(i, j − 1) and, since
dF (Pi, Qj) 6 δ, we have that pi ∈ Bj(δ). Thus, pi ∈ FAδ(i, j − 1) ∩ Bj(δ) =
FAδ(i, j).

This concludes the proof.

The correctness of Algorithm 3 follows immediately from Lemma 3.1.1. It re-
mains to investigate the running time. The initialization step can be done in linear
time. The loop takes O(nm) time since lines 11-16 compute the intersections of line
segments with tubes (Ai(δ) or Bj(δ)). This can be done in constant time. Thus, we
can decide in O(nm) time whether there exists two point sequences P and Q such
that (P,Q) ∈(S,δ) (A,B). The point sequences P and Q themselves can be computed
in the same running time by tracing back the array containing the feasibility regions
(see Algorithm 4). More precisely, we first run Algorithm 3 in order to compute the
feasibility regions FAδ and FBδ. If Algorihm 3 returns TRUE, we call Algorithm 4
with input (FAδ,FBδ, n+ 1,m+ 1,NULL,NULL).

We achieve the following

Theorem 3.1.2. Let A = A1, . . . , An and B = B1, . . . , Bm be two sequences of line
segments in the plane and let δ > 0 be a value. Then we can decide in O(nm) time
whether there exist two point sequences P and Q such that (P,Q) ∈(S,δ) (A,B). The
point sequences P and Q can be computed in the same running time, if they exist.

Optimization Algorithm. We use the parametrized search technique to achieve
an algorithm for the optimization problem. This technique was first introduced by
Megiddo [90]. The overall running time using the parametric search technique is
O(p · Tp + Tp · Td log p), where p denotes the number of processors, Td denotes the
running time of a decision algorithm, and Tp denotes the running time of a paral-
lel decision algorithm using p processors. Observe that the result of Algorithm 3
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Algorithm 4
Input: FAδ, FBδ, i, j, pi, qj .
Output: The point sequences Pi−1, Qj−1.
1: procedure printPoints(FAδ, FBδ, i, j, pi, qj)
2: if i = 1 and j = 1 then
3: print “ ”
4: return
5: if FAδ(i− 1, j − 1) 6= ∅ then
6: choose pi−1 ∈ FAδ(i− 1, j − 1) and qj−1 ∈ pi−1(δ) ∩Bj−1
7: print “pi−1” + “qj−1” + printPoints(FAδ, FBδ, i−1, j−1, pi−1, qj−1)
8: return
9: if FBδ(i− 1, j − 1) 6= ∅ then

10: choose qj−1 ∈ FBδ(i− 1, j − 1) and pi−1 ∈ qj−1(δ) ∩Ai−1
11: print “pi−1” + “qj−1” + printPoints(FAδ, FBδ, i−1, j−1, pi−1, qj−1)
12: return
13: if FAδ(i, j − 1) 6= ∅ then
14: choose qj−1 ∈ pi(δ) ∩Bj−1
15: print “qj−1” + printPoints(FAδ, FBδ, i, j − 1, pi, qj−1)
16: return
17: if FBδ(i− 1, j) 6= ∅ then
18: choose pi−1 ∈ qj(δ) ∩Ai−1
19: print “pi−1” + printPoints(FAδ, FBδ, i− 1, j, pi−1, qj)
20: return

only changes when there is a change in the combinatorial structure of the arrange-
ment of the boundaries of the tubes and segments Ai, Ai(δ), Bj , Bj(δ) for all i, j.
So, as a generic algorithm, we use an algorithm that computes the arrangement of
these 2m+2n tubes/segments. There exists such an algorithm with running time
O(lognm) using O(n2 + m2) processors. This algorithm works exactly in the same
way as the one for disks [1]: The intersection points of every pair of tubes is computed
in constant time with O(n2 +m2) processors. Then, we sort around the boundary of
each tube the points lying on it (obtaining the edges) in O(logmn) using O(n+m)
processors per tube. Finally the edges incident to each vertex of the arrangement
are sorted around the vertex.

The decision algorithm is the algorithm from Theorem 3.1.2, which runs inO(nm)
time. So we need a total running time of O((m2 + n2) logmn+ nm log2mn).

Theorem 3.1.3. Let A = A1, . . . , An and B = B1, . . . , Bm be two sequences of line
segments in the plane. Then we can compute the minimum value δ such that there
exist two point sequences P , Q with dF (P,Q) = δ and (P,Q) ∈S (A,B) in
O((m2 + n2) logmn+ nm log2mn) time. The point sequences P and Q can be com-
puted in the same running time, if they exists.
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3.2 Stabbing Sequences of Disks

We study the following problem

Given two sequences of disks A = A1, . . . , An and B = B1, . . . , Bm in
the plane, compute the minimum value δ such that there exist two point
sequences P , Q with dF (P,Q) and (P,Q) ∈S (A,B).

Like in the section before, we first give an algorithm that answers the decision
version of this problem. Later on we show how this algorithm can be used in order to
solve the optimization problem. The decision problem can be formulated as follows

Given two sequences of disks A = A1, . . . , An and B = B1, . . . , Bm in the
plane and a value δ > 0, decide whether there exist two point sequences
P = p1, . . . , pn and Q = q1, . . . , qm such that (P,Q) ∈(S,δ) (A,B).

Decision algorithm. Our decision algorithm works exactly in the same way as
in Section 3.1. Thus, the algorithm is given in Algorithm 3. Notice that now Ai(δ)
and Bi(δ) are disks and, hence, the feasibility regions FAδ and FBδ are intersection
regions of disks. Figure 3.4 shows an example of the algorithm.

A2

A1

A3

B1

B2

B3

δ

(a) The boundaries of the regions
Aδi and Bδi are dotted. The points
represent the stabbing sequences
(P,Q) ∈S (A,B) where F(P,Q) 6 δ.

A

B

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

(b) In each cell (i, j) FAδ(i, j), is shown
in the lower-left corner and FBδ(i, j) in
the upper-right corner.

Figure 3.4: Example for Algorithm 3 for sequences of disks.

The correctness of the algorithm follows directly from Lemma 3.1.1. (Notice that
the proof of Lemma 3.1.1 also works when FAδ and FBδ are disks.)
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We still have to analyze the running time. The initialization step can be done
in linear time. The analysis of the running time for the loop is more involved. A
naïve way to implement the loop of Algorithm 3 for disks would require to con-
struct the regions FAδ(i, j) and FBδ(i, j) explicitly for each cell (i, j). Since these
regions may be intersections of Ω(n) disks, this would increase the running time
enormously. We improve the running time of line 12-13 to amortized O(lognm)
time. We will show how line 12 can be implemented in amortized O(logm) time,
line 13 can be implemented similarly in amortized O(logn) time. We fix the value
i and we show how to build an incremental data structure that decides in amor-
tized O(logm) time whether FAδ(i, j) = ∅. We do not maintain FAδ(i, j) explic-
itly, we only maintain a data structure that helps us to decide quickly whether
FAδ(i, j) is empty or not. While Algorithm 3 proceeds, either FAδ(i, j) is reset to
Ai ∩ Bj(δ) or it is the intersection of FAδ(i, j − 1) with Bj(δ). Hence, at any time
FAδ(i, j) = Bj′(δ) ∩Bj′+1(δ) ∩ · · · ∩Bj(δ) ∩Ai for some 1 6 j′ 6 j.

Our data structure needs to perform three types of operations:

1. Set S = ∅.

2. Insert the next disk into S.

3. Decide whether the intersection of the disks in S is empty.

When we run Algorithm 3 on row i, the sequence of the m disks B1(δ), . . . , Bm(δ)
is known in advance, but not the sequence of operations. That is, we know the
sequence of disks in advance, but the sequences of operations is given online. Since
it can be decided in linear time whether m disks have a non empty intersection [101],
a trivial implementation would lead to a running time of O(m) per operation. We
will show now how these operations can be done in amortized O(logm) time by using
exponential and binary search [95].

Operation 1 is trivial to implement and needs only constant time. Operation
2 and 3 are implemented together. Suppose that the cardinality |S| of S is k = 2l
before we perform operation 2. We check whether the intersection of S with the next
k disks is empty or not. This can be done in linear time [101]. If this intersection
is empty, we perform a binary search to find the first subsequence of disks, starting
at the disks of S, whose intersection is empty. This needs O(k log k) time. Then we
can perform the operations 2 and 3 in constant time until the next time operation
1 is performed. If the intersection is not empty, operation 2 and 3 can performed in
constant time until |S| = 2l+1 or the next time operation 1 is performed.

It follows that this data structure needs only amortized O(logm) time per oper-
ation. Keeping one such data structure for each value of i, we can perform line 12
of Algorithm 3 in amortized O(logm) time. Similarly, we can implement line 13 in
amortized O(logn) time.

Hence, the main loop of the algorithm takes O(nm lognm) time.
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The point sequences P and Q can be computed in the same running time by
tracing back the array computed in Algorithm 3 as before. We then have to compute
the feasibility regions explicitly, but only for the diagonal steps of the algorithm (see
Algorithm 4). Since there are in total n+m disks and at most min(m,n) diagonal
steps, and computing the intersection of k disks takes O(k log k) time [105], this does
not increase the running time. Hence, we achieve the following theorem.

Theorem 3.2.1. Let A = A1, . . . , An and B = B1, . . . , Bm be two sequences of disks
in the plane and δ > 0 a value. Then we can decide in O(nm lognm) time whether
there exist two point sequences P and Q such that (P,Q) ∈(S,δ) (A,B). The point
sequences P and Q can be computed in the same time, if they exist.

Optimization case. We use parametric search in the same way as for Theo-
rem 3.1.3. Observe that the result of Algorithm 3 only changes when there is a
change in the combinatorial structure of the arrangement of the circles bounding
the disks Ai, Ai(δ), Bj , Bj(δ) for all i, j. So, as a generic algorithm, we use an
algorithm that computes the arrangement of these 2m+2n disks. There exists such
an algorithm with running time O(lognm) using O(n2 + m2) processors [1]. As a
decision algorithm we take the algorithm of Theorem 3.2.1. Hence, we achieve the
following result

Theorem 3.2.2. Let A = A1, . . . , An and B = B1, . . . , Bm be two sequences of disks
in the plane. Then we can compute the minimum value δ such that there exist two
point sequences P , Q with dF (P,Q) = δ and (P,Q) ∈S (A,B) in
O((m2 + n2) logmn+ nm log3mn) time. The point sequences P and Q can be com-
puted in the same running time, if they exists.

Higher dimensions. This algorithm can also be implemented in higher dimen-
sions. For d dimensions, the running time increases to 2O(d2)m2n2log3mn. Details
can be found in [10, 11].

3.3 Conclusions and Open Problems

We considered the problem of stabbing two sequences of segments (resp. disks)
with two point sequences where the discrete Fréchet distance between these point
sequences is as small as possible. We gave efficient algorithms for both cases.

An interesting open problem is to find two point sequences that stab the input
sequences and their discrete Fréchet distance is as large as possible. Our dynamic
programming algorithm does not seem to apply to this case and the problem seems
significantly more involved than the problem studied here.

Also, the problem could be studied under other similarity measures. Knauer et
al. [81] studied the problem in the context of impreciseness for the Hausdorff distance.
For the bottleneck distance the problem reduces to a simple perfect matching problem.





Part II

Covering Geometric Objects in
the Plane





Introduction

This part of the thesis deals with covering geometric objects in the plane. Covering
problems are a wide and intensively studied field in computational geometry. Famous
examples are set cover problems in geometric settings. The original set cover problem
is a combinatorial problem: Given a collection C of subsets of a finite set S, find
the smallest cover for S in C, i.e., compute the smallest subset C ′ ⊆ C such that
each element of S is contained in

⋃
C ′. Its decision version is one of Karp’s 21 NP-

complete problems [75]. Geometric settings of set cover problems have been studied
intensively because they arise naturally in many applications, e.g., in sensor networks
or facility location problems. For instance, let S be a set of points that represent the
set of customers and let C be a set of disks representing the possible location of a
base station of a wireless network. The question is to find the minimum number of
base stations such that all customers are served by a station. Problems of this kind
have been studied in many variations, see [67] and references therein.

In this part we will focus on specific covering problems that can also be considered
as finding a good and simple approximation of geometric objects. The idea is that
geometric objects are covered or substituted by simpler ones. There are two different
ways to do this: The inner approximation and the outer approximation.

Outer approximation: We are given geometric objects and we want to fully cover
them with simpler ones while maintaining a certain sense of similarity. A good ex-
ample is the problem of computing the smallest bounding box [58]. Another example
is the two-center problem: Given a set P of n points in the plane, find two smallest
congruent disks that cover all points in P . The two-center problem is an extensively
studied problem. The first subquadratic algorithm was stated by Sharir and has a
running time of O(n log9 n) [106]. Currently, the best known deterministic algorithm
runs in O(n log2 n log2 logn) time [34] and there is a randomized algorithm with ex-
pected running time O(n log2 n) [53]. There has also been a fair amount of work
on several variants of the two-center problem: Drezner [45] studied the two-center
problem for weighted points, Shin et al. [108] considered the two-center problem for
a convex polygon, and Bespamyatnikh et al. [28] studied the rectilinear two-center
problem.

Inner approximation: Here, we are given a geometric object and we want to sub-
stitute it by a simpler one while still maintaining a certain sense of similarity. In
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contrast to the outer approximation, the simple object has to be contained in the
original object. Most contributions focus on objects that are polygons. De Pano et
al. [42] presented algorithms that find, in O(n2) time, the largest equilateral triangle
and the largest square in a convex polygon with n vertices. Additionally, they gave
an O(n3) algorithm that finds the largest equilateral triangle in general polygons.
McKenna et al. [89] studied the problem of finding the largest rectangle in a rectilin-
ear polygon and gave an O(n log5 n) algorithm. A famous problem of this area is to
compute the largest inscribed rectangle in a convex polygon. Alt et al. [17] presented
an O(logn) algorithm which computes the largest inscribed isothetic rectangle.

In Chapter 4 we study the two-center problem for disks where the input is a set of
disks instead of a set of points. We consider two different versions: the intersection
problem and the covering problem. In the intersection problem we want to compute
two smallest congruent disks that together intersect every disk of the input set,
whereas in the covering problem we want to compute two smallest congruent disks
that together cover all disks of the input set. We present exact and approximation
algorithms for these problems. Additionally, we consider a maximization version of
this problem.

In Chapter 5 we consider the problem of computing the largest area inscribed
rectangle in a convex polygon. We give efficient approximation algorithms and we
also investigate the characterization of such a rectangle.

The work of this part is motivated by many applications. For instance, the two-
center problem for disks could be considered in the context of impreciseness. The
disks may model imprecise data points and our algorithm can be used to perform
clustering on such imprecise data. As already mentioned in the first part of this
thesis, the impreciseness of geometric data has been studied lately and quite a few
geometric algorithms for imprecise points have been published. For example, Löffler
and van Kreveld [87] studied the problem of computing the largest and the smallest
possible disk containing a set of imprecise points. Other geometric algorithms on
imprecise data are, e.g, computing the convex hull for imprecise points [86, 111] and
computing the Delaunay triangulation for imprecise points [30, 85]. See also the
thesis of Löffler [84] and the references therein for further work on impreciseness.

Another application for this problem is to consider the two-center problem as a
facility location problem [45]. The two-center problem for disks models the case of
mobile demand points. For instance, it could be used to place two base stations for
a wireless network.



Chapter 4

Two Center Problems for Disks

In this chapter we consider the problem of covering a set of geometric objects by
simpler ones: Here, the set of geometric objects is a set of n disks in the plane and
the simpler objects are a pair of two congruent disks.

The problems studied in Section 4.1 and Section 4.2 are closely related to the
well-known two-center problem: Given a set P of n points in the plane, find two
smallest congruent disks that cover all points in P . As already mentioned in the
introduction of this part, the two-center problem is well studied and the currently
best known algorithm runs in O(n log2 n log2 logn) time [34].

The problem studied in this chapter can be considered as a new version of the
two-center problem where the input is a set of disks instead of a set of points. We
consider two different versions: the intersection problem and the covering problem.
We are given a set D of disks in the plane. In the intersection problem we want to
compute two smallest congruent disks C1 and C2 such that each disk in D intersects
C1 or C2. In the covering problem we want to compute two smallest congruent disks
C1 and C2 such that all disks in D are contained in the union of C1 and C2. In the
latter we have to distinguish between two cases: Either a disk D ∈ D has to be fully
covered by C1 or C2, we call this the restricted covering case, or D can be covered
by C1 ∪ C2, which we call the general covering case.

Both intersection and covering problems have been studied in the past for the spe-
cial case where only one smallest disk that intersects, respectively covers, the input
disks has to be found. Both problems can be solved in linear time [87] (intersection
case), [56, 91] (covering case).

In Section 4.3, we study an optimization version of the intersection and the
covering problem. The input is again a set of disks in the plane, but additionally a
value δ > 0 is given. We consider two different versions: The maximum intersection
problem and the maximum covering problem. In the maximum intersection problem
we want to compute two disks with radius δ such that these disks intersect the
maximum number of the input disks, whereas in the maximum covering problem,
these two disks should cover the maximum number of input disks.
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To the best of our knowledge, the maximum covering problem has not been stud-
ied so far. The maximum intersection problem has been considered by de Berg et
al. [39] in the context of continuous facility problems, but under the restriction that
the input set is a set of unit disks.

The results of Section 4.1 and Section 4.2 are joint work with Hee-Kap Ahn, Sang-
Sub Kim, Christian Knauer, Chan-Su Shin, and Antoine Vigneron and have been
published in [8, 9].

Notation. The radius of a disk D is denoted by r(D) and its center by c(D). The
circle that forms the boundary of D is denoted by ∂D. The Euclidean distance
between two points p, q is denoted by d(p, q).

In Section 4.1 and Section 4.2 we assume, without loss of generality, that no disk
in D contains another disk in D. (This is no restriction because if a disk is contained
in another disk, we either delete the containing disk for the intersection case or the
contained disk for the covering case.) In Section 4.3 and Section 4.4 we drop this
assumption.

4.1 Intersection Problem

We start with the intersection problem:

Given a set D of n disks in the plane, we want to find two smallest
congruent disks C1 and C2 such that each disk D ∈ D has a nonempty
intersection with C1 or C2.

We can state a simple O(n3) algorithm. It is based on the following observation
(see also Figure 4.1).

Observation 4.1.1. Let C1 and C2 be a pair of smallest congruent disks intersecting
D. Let ` be the bisector of the segment connecting c(C1) and c(C2). Then, D∩Ci 6= ∅
for every D ∈ D whose center lies on the same side of ` as the center of Ci, for
i = {1, 2}.

Proof. We prove the property by contradiction. Suppose there is a disk D ∈ D whose
center lies on the same side of ` as the center of C1 but D∩C1 = ∅. Then D∩C2 6= ∅
because C1 and C2 are a pair of optimal covering disks. But this immediately implies
that D ∩C1 6= ∅ since the center of D lies on the same side of ` as the center of C1,
and hence d(c(C1), c(D)) 6 d(c(C2), c(D)).

A simple algorithm, based on this property, works as follows. For every bipar-
tion of the set of centers of the disks in D by a line `, compute the smallest disks
intersecting all disks on each side of `. (If ` contains the center of a disk, this disk
can be mapped to any side.) There are O(n2) possible partitions and the smallest



4.1. INTERSECTION PROBLEM 71

C1

C2

`

Figure 4.1: A pair of solution disks (C1, C2) and `.

disk intersecting a set of disks can be computed in linear time [87]. So in total, this
algorithm needs O(n3) time.

In order to improve the running time, we start with solving the decision version
of the intersection problem. First, we formulate the problem in a different way: For
a real number δ > 0 and a disk D, let the δ-inflated disk D(δ) be a disk with radius
r(D) + δ concentric to D. We can now state the problem in the following way:

Given a set D of n disks in the plane and a value δ > 0, are there two
points p1 and p2 such that D(δ) ∩ {p1, p2} 6= ∅ for every D ∈ D?

Clearly, there exist two points p1, p2 such that D(δ) ∩ {p1, p2} 6= ∅ for every
D ∈ D if and only if the two disks centered at p1 and p2 with radius δ intersect all
disks D ∈ D.

Therefore, if an optimal solution of the intersection problem consists of two disks
with radius δ∗, then δ∗ is the smallest value for which there exist two points such
that every disk in {D(δ∗) | D ∈ D} contains at least one of these points.

4.1.1 Decision Algorithm

We present an efficient algorithm to solve the decision problem stated above. We
first state a naïve approach, later we show how this approach can be improved.

Naïve Approach. We are given a set of disks {D1, D2, ..., Dn} in the plane and
a value δ > 0. We first construct the arrangement of the δ-inflated disks Di(δ),
i = 1, 2, .., n. This arrangement consists of O(n2) cells and can be computed in
O(n2) time [21]. The idea is to traverse all cells in the arrangement in a depth-first
manner. To this end, we first construct the dual graph of the arrangement. This
graph contains a node for each cell in the arrangement, and two nodes are connected
with an edge if the cells have a common boundary. We now perform a depth-first
search on the graph and traverse the cells in this manner. While traversing the cells
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we do the following: We place one center point, say p1, in the current cell. Then
we decide whether all disks that do not contain p1 have a nonempty intersection. If
they have a nonempty intersection the algorithm returns a positive answer. (The
algorithm can additionally return a pair of solution points, this would be p1 and any
point inside the intersection of all disks that do not contain p1.) If the disks that do
not contain p1 have an empty intersection, we move p1 to the next cell and repeat
the test until we have visited every cell. This approach leads again to a running time
of O(n3): The arrangement consists of O(n2) cells, hence we traverse O(n2) cells.
For each cell we test whether O(n) disks have a nonempty intersection, this can be
done in linear time [101].

Faster Approach. We show now that the running time of the naïve algorithm can
be improved by almost a linear factor. We are given a set of disks {D1, D2, ..., Dn}
in the plane and a value δ > 0. Again, we start with constructing the arrangement
of the δ-inflated disks Di(δ), i = 1, 2, .., n, and the dual graph of this arrangement.
The set of inflated disks is then denoted by D. This time, we consider a traversal
of the arrangement of the δ-inflated disks by a path π that visits each cell at least
once and crosses only O(n2) cells, that is, some cells might be crossed several times
but on average each cell is crossed O(1) times. This can be achieved by choosing the
path π to be the Eulerian tour of the depth-first search tree from the naïve approach
above, see also Figure 4.2 (by Eulerian tour of a tree, we mean that we double every
edge of the tree and take the Eulerian tour of the resulting graph). While we move
the point p1 along π and traverse the arrangement, we want to decide whether the
disks that do not contain p1 have a nonempty intersection. We denote this set of
disks by Dp̄1 . Notice that while moving p1 from one cell to the next cell, the set Dp̄1

varies only by one disk. Either a new disk is inserted in Dp̄1 or a disk is removed
from Dp̄1 .

Next, we use a segment tree [40] in order to decide efficiently whether Dp̄1 has a
nonempty intersection. Each disk of D may appear or disappear several times during
the traversal of π: each time we cross the boundary of a cell, one disk is inserted
or deleted from Dp̄1 . So each disk appears in Dp̄1 along one or several segments of
π. We store these segments in a segment tree. (Figure 4.2 and Figure 4.3 show an
example of a disk arrangement, the path π and the resulting segment tree.) As there
are only O(n2) crossings with cell boundaries along π, this segment tree is built over
a total of O(n2) endpoints and thus has total size O(n2 logn): Each segment of along
which a given disk of D is in Dp̄1 is inserted in O(logn) nodes of the segment tree.
Each node u of the segment tree stores a set Du ⊆ D; from the discussion above,
they represent the disks that do not contain p1 during the whole segment of π that
is represented by u and that are not stored at the ancestors of u. In addition, we
store at each node u the intersection Iu =

⋂
Du of the disks stored at u. Each such

intersection Iu is a convex set bounded by O(n) convex arcs and we store them as an
array of circular arcs sorted along the boundary of Iu. In total it takes O(n2 log2 n)
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time to compute the intersections Iu for all nodes u in the segment tree, since there
are in total O(n2 logn) disks stored at the nodes and the intersection of k disks can
be computed in O(k log k) time [105].

D2

D1

D3

D4

D5

Figure 4.2: The depth-first search tree and the path π. For brevity, we denote the
δ-inflated disks Di(δ) by Di.
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Figure 4.3: The segment tree is depicted for only half of the path π. Since π results
from a depth-first search tree, which is a path, the other part of π is identical.

We now need to decide whether at some point, when p1 moves along π, the
intersection of the disks in Dp̄1 (that is, the disks that do not contain p1) is nonempty.
To do this, we use the segment tree. Each cell of the arrangement is represented by
a leaf of this tree: All disks that are not stabbed by any point inside this cell are
stored at this leaf and all its ancestors. So if p1 is moved to a cell, all disks stored
at the corresponding leaf and its ancestors represent Dp̄1 . Hence, we consider each
leaf of the segment tree separately. At each leaf, we test whether the intersection of
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the disks stored at this leaf and all its ancestors is non-empty. If this intersection is
non-empty, the algorithm returns a positive answer. The algorithm can additionally
return a pair of solution points, this would be p1 and any point inside the intersection
of all disks Dp̄1 .

Recall that we stored at each node u the intersection Iu =
⋂
Du of the disks

stored at u; each of these intersection is a convex circular polygon with O(n) circular
arcs. So deciding whether the intersection of the disks stored at this leaf and all
its ancestors is non-empty reduces to emptiness testing for a collection of O(logn)
circular polygons with O(n) circular arcs each.

This problem can also be stated in the following way: Given a collection C
(a subset of

⋃
Ii) of O(logn) convex circular polygons, decide whether this collection

has a nonempty intersection; more precisely, decide whether there exists a point
p ∈

⋂
C.

We can solve this problem by using convex programming, either randomized or
deterministic:

Using the known methods for randomized convex programming [36, 107], we
can solve the problem using O(logn) expected number of the following primitive
operations:

(i) Given Ii, Ij and vector a ∈ R2, find the point v ∈ Ii ∩ Ij that minimizes a · v.

(ii) Given Ii and a point p, decide whether p ∈ Ii.

Alternatively, we can solve the problem using deterministic convex program-
ming [33]. Then we use O(logn log logn) of the following primitive operations.

(iii) Given Ii, Ij and vector a ∈ R2, find two points v1, v2 ∈ Ii ∩ Ij that minimize
a · v1 and −a · v2.

(iv) Given Ii and a line `, compute the line segment Ii ∩ `.

(For more details on convex programming, see, e.g, [33].)
Each of the operations (i), (ii), (iii), (iv) needs O(logn) time [25, 35, 44, 101]. So we
can decide in O(log2 n) expected time or in O(n2 log2 n log logn) deterministic time
whether the convex circular polygons have a nonempty intersection.

Summarizing, we have the following:

Lemma 4.1.2. Let D be a set of n disks in the plane. We can decide in O(n2 log2 n)
expected time or in O(n2 log2 n log logn) deterministic time whether there exist two
points p1, p2 such that D ∩ {p1, p2} 6= ∅ for every D ∈ D. The points p1, p2 can be
computed in the same running time, if they exist.



4.1. INTERSECTION PROBLEM 75

4.1.2 Optimization Algorithm

In this section, we present an optimization algorithm based on the decision algorithm
from the section above. We start by showing that there are onlyO(n3) possible values
for the optimal radius. Let δ∗ be the radius of an optimal solution for the intersection
problem. Recall that δ∗ is the smallest value for which there exist two points such
that each δ∗-inflated disk contains at least one of them. The following lemma shows
that δ∗ can be found in a set of O(n3) possible values.

Lemma 4.1.3. Let δ∗ be the smallest value for which there exist two points p1, p2
such that each δ∗-inflated disk contains at least one of them. Then, either p1 or p2
is the tangent point of two δ∗-inflated disks, the common boundary point of three
δ∗-inflated disks or δ∗ = 0.

Proof. We prove the lemma by contradiction. Suppose this is not the case. Then the
common intersection of the disks containing p1 has a nonempty interior. Let p′1 be a
point in this interior. Similarly, the common intersection of the disks containing p2
has a nonempty interior and let p′2 be a point in the interior. Then there is a value
δ′ < δ satisfying D(δ′) ∩ {p′1, p′2} 6= ∅ for every D ∈ D. Since we also assumed that
δ∗ 6= ∅, δ∗ could be decreased which leads to a contradiction.

Due to Lemma 4.1.3 we consider only a set of size O(n3) of discrete values in
order to find δ∗. The set consists of all values for which one of the events defined
in Lemma 4.1.3 occurs. Whether δ∗ = 0 can be tested with the decision algorithm
of Lemma 4.1.2 in O(n2 log2 n) expected time or in O(n2 log2 n log logn) worst-case
time. Thus, first we check whether δ∗ = 0, and then we can assume that p1 or p2 is a
common boundary point of three δ-inflated disks or a tangent point of two δ-inflated
disks.

In order to compute all possible values for δ, we construct a frustum Fi ∈ R3 for
each disk Di ∈ D. The bottom base of Fi is Di and lies in the plane z = 0. The
intersection of Fi with the plane z = δ is Di(δ), see also Figure 4.4. The top base
is Di(δmax) where δmax is the radius of the smallest disk intersecting all disks in D.
This disk can be computed in linear time [87]. Clearly, δ∗ ∈ [0, δmax].

There is an obvious correspondence between the event points defined in Lemma 4.1.3
and the intersections of the frustums: Consider the case where p1 = (x, y) is the com-
mon boundary point of the disks Di(δ), Dj(δ), and Dk(δ) in the plane. Then the
point p′1 = (x, y, δ) is the common boundary point of three frustums Fi, Fj , and Fk.
Note that the corresponding value for δ is also obtained as it equals to the height of
p′1. Consider now the case that p1 = (x, y) is the tangent point of Di(δ) and Dj(δ).
Then the point p′1 = (x, y, δ) is the point with the smallest z-value on the intersec-
tion curve of Fi and Fj . We call such a point the tangent point of two frustums.
Again, the corresponding δ value is also obtained, namely the height of p′1. Hence, in
order to find the points p1 and p2, all the tangent points and the common boundary
points of the frustums have to be considered. There are O(n2) tangent points and
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Figure 4.4: The frustum Fi.

O(n3) common boundary points, therefore there are O(n3) candidates for the point
p1 (resp. p2) in total.

Now we can already state a naïve algorithm to compute the optimal δ value. First,
we compute all possible δ values in O(n3) time. Then we check for each candidate
value whether there exist two points such that each δ-inflated disk contains at least
one of them. This can be done by using the decision algorithm above. The solution
is the smallest value for which the decision algorithm returns “yes”.

This leads to a running time ofO(n5 log2 n) expected time orO(n5 log2 n log logn)
deterministic time. If we perform a binary search on the candidate values for δ the
running time can be decreased to O(n3 logn) in both cases, as the running time is
dominated by sorting the candidate values.

As computing the candidate points explicitly takes too much time, we use an
implicit binary search in order to improve the running time for the randomized
algorithm. For the deterministic version we use parametric search.

Implicit Binary Search. We perform an implicit binary search on all possible δ
values. As argued before, the possible δ values correspond to the common boundary
points of the frustums, more precisely one of the solution points p1, p2 is the projec-
tion of a point p′, which is a tangent point of two frustums or the common boundary
point of three frustums. Hence, the point p′ is a vertex of the arrangement A of the
n frustums F1, F2, ..., Fn. The complexity of A is O(n3). We now descibe how to
perform the binary search over the vertices of A in an implicit way:

Binary Search on a Coarse List of Events. We consider O(n2) pairs of frustums
and compute the tangent points of each pair. We also randomly select O(n2 logn)
triples of frustums and compute the common boundary point of each triple. This
takes O(n2 logn) time. Since the optimal value δ∗ for δ lies in [0, δmax] we only con-
sider points whose z-value lies in this interval. These points are clearly vertices of A
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and thus we randomly select O(n2 logn) vertices of A. We sort their radii associated
with them in O(n2 log2 n) time. Then we perform a binary search on these values
with the decision algorithm of Lemma 4.1.2 and we determine two consecutive radii
δi and δi+1 such that δ∗ is between δi and δi+1. This takes O(n2 log3 n) time. Since
the vertices were picked randomly, the strip S[δi, δi+1] bounded by the two planes
z := δi and z := δi+1 contains only k ∈ O(n) vertices of A with probability larger
than 1/2 [96, Theorem 5.1.2].

Zooming into the Interval. We have to compute all k vertices of A in S[δi, δi+1].
This can be done in O(k logn + n2 logn) time by using a standard sweep-plane al-
gorithm: First, we compute the intersection of the frustums F1, F2, .., Fn with the
sweep-plane z = δi. This intersection forms an arrangement of O(n) disks in R2.
The complexity of the arrangement is O(n2) time and it can be computed by simply
computing the arrangement of the δi-inflated disks Dj(δi), j = 1, 2, .., n. We con-
struct the portion of the arrangement A in S[δi, δi+1] incrementally by sweeping a
plane orthogonal to the z-axis from the intersection at z = δi towards z = δi+1. As
a result, we can compute the k ∈ O(n) vertices (and their corresponding radii) in
S[δi, δi+1] in O(n logn) time. If the number of the k vertices inside the strip becomes
too large, we abort the sweep and restart the algorithm with a new random sample.
This only happens with small probability.

In order to find the minimum value δ∗, we perform a binary search on these O(n)
radii we just computed, using the decision algorithm in Lemma 4.1.2. This takes
O(n2 log3 n) expected time. The solution points p1 and p2 can also be computed by
the decision algorithm.

Parametric search. To get a deterministic algorithm, we use the parametric
search technique of Megiddo [90]. The overall running time using the parametric
search technique is O(p · Tp + Tp · Td log p), where p denotes the number of pro-
cessors, Td denotes the running time of a decision algorithm, and Tp denotes the
running time of the parallel decision algorithm using p processors. As generic algo-
rithm, we use a parallel algorithm that computes in O(logn) time the arrangement
of the inflated disks using O(n2) processors [1]. And so we need to run the decision
algorithm O(log2 n) times, and the total running time becomes O(n2 log4 n log logn).

Thus, we have proved the following theorem:

Theorem 4.1.4. Given a set D of n disks in the plane, we can compute two smallest
congruent disks whose union intersects every disk in D in O(n2 log3 n) expected time,
and in O(n2 log4 n log logn) deterministic time.
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4.2 Covering Problem

In this section we consider the covering problem:

Given a set D of n disks in the plane, compute two smallest congruent
disks C1 and C2 such that each disk D ∈ D is covered by C1 or C2.

We distinguish between two cases:

• In the general case, each disk D ∈ D must be covered by C1 ∪ C2.

• In the restricted case, each disk D ∈ D has to be fully covered by C1 or by C2.

Figure 4.5 shows examples for both cases.

C1 C2

C1 C2

Figure 4.5: From left to right: A pair of solution disks for the general covering
problem. Notice that the red disk is covered by C1∪C2 but not fully covered by only
one solution disk. On the right: A pair of solution disks for the restricted covering
problem for the same set of input disks.

4.2.1 The Restricted Case

We start with the restricted covering problem.

Given a set D of n disks in the plane, compute two smallest congruent
disks C1 and C2 such that each disk D ∈ D is covered by C1 or C2.

Observation 4.1.1 can be adapted to the restricted covering case.

Observation 4.2.1. Let C1 and C2 be a pair of smallest congruent disks covering
D. Let ` be the bisector of the segment connecting c(C1) and c(C2). Then, D ⊂ Ci
for every D ∈ D whose center lies on the same side of ` as the center of Ci, for
i = {1, 2}.

The proof is a straightforward adaption of the proof of Observation 4.1.1.
It follows immediately that the restricted covering problem can be solved inO(n3)

time: For every bipartion of the set of centers of the disks in D by a line `, compute
the smallest disk covering all disks on each side of `. This takes O(n3) time, since
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there are O(n2) possible partitions and the smallest disk covering a set of disks can
be found in linear time [91].

Now we show that the algorithm from Section 4.1 can also be adapted to solve
the restricted covering problem. We consider the decision version of the restricted
covering problem:

Given a set D of n disks in the plane and a value δ, decide whether there
exist two disks C1 and C2 of radius δ such that each diskD ∈ D is covered
by either C1 or C2.

This implies that for each disk D ∈ D covered by Ci, the following holds:
d(c(D), c(Ci)) + r(Dj) 6 δ, for i = {1, 2}. Let rmax be the maximum of radii of
all disks in D. It holds that δ > rmax, since if δ < rmax there clearly exist no two
disks with radius δ which cover D. Hence, we can formulated the decision problem
in a different way.

Given a value δ, do there exist two points, p1 and p2, in the plane such
that D∗(δ) ∩ {p1, p2} 6= ∅ for every D ∈ D, where D∗(δ) is the disk
concentric to D with radius δ − r(D) > 0?

Recall the definition of δ-inflated disks from Section 4.1. Every disk D ∈ D was
replaced by a disk concentric to D with radius r(D)+δ. Here we need to replace each
disk D by a disk with radius δ−r(D) concentric to D. Since we know that δ > rmax,
we add an initialization step, in which every disk D is replaced by a disk concentric
to D with radius rmax−r(D). Then we can use exactly the same decision algorithms
as in Section 4.1 and, hence, also the same optimization algorithms in order to
compute a solution for the restricted covering problem: Let δ∗ be the solution value
computed by this algorithm. Then δ∗ + rmax is a solution for the covering problem.
We summarize this result in the following theorem.

Theorem 4.2.2. Given a set D of n disks in the plane, we can compute two small-
est congruent disks such that each disk in D is covered by at least one of them in
O(n2 log3 n) expected time or in O(n2 log4 n log logn) worst-case time.

4.2.1.1 Constant Factor Approximation

In this section we develop efficient constant factor approximation algorithms. We
first present a 2-approximation algorithm, which runs in O(n) time. The algorithm is
based on the well known greedy k-center approximation algorithm by Gonzalez [61].
We give the algorithm in Algorithm 5.

The distance between two disksD1 andD2 is denoted by d′(D1, D2) and is defined
as d′(D1, D2) = d(c(D1), c(D2)) + r(D1) + r(D2).

The algorithm OneCover(U), which is used as a subroutine, computes the smallest
disk covering a set of disks U .
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Algorithm 5
Input: A set of disks D = {D1, D2, . . . , Dn} in the plane.
Output: Two disks C1, C2 such that each disk in D is covered by C1 or C2 and

max(r(C1), r(C2)) 6 2 times the radius of the optimal solution.
1: U1 = ∅ and U2 = ∅.
2: Compute the disk Dl ∈ D such that d′(D1, Dl) > d′(D1, Dj), ∀Dj ∈ D.
3: U1 = U1 ∪ {D1} and U2 = U2 ∪ {Dl}.
4: for all Dj ∈ D do
5: if d′(Dj , D1) < d′(Dj , Dl) then
6: U1 = U1 ∪ {Dj}
7: else
8: U2 = U2 ∪ {Dj}
9: Compute C1 = OneCover(U1) and C2 = OneCover(U2)

10: return C1 and C2

Note that Algorithm 5 returns two disks with different radii. If we want the disks
to be congruent, we have to add a step to decide which disk has the maximum radius
and enlarge the smaller disk accordingly.

Since computing the disk Dl which has the largest distance to D1 takes linear
time, and OneCover(U) takes O(n) time [91], the total running time of the algo-
rithm is O(n). The approximation factor of 2 can be easily proven: Assume that
r(C1) > r(C2) and let Dj be the disk in U1 that has the largest distance dmax to
D1, d′(D1, Dj) = dmax, and so d′(Dj , Dl) > dmax. Then, r(C1) 6 dmax but, since
d′(D1, Dl) > dmax, the optimal solution disks have a radius > dmax/2 and so our
algorithm computes a 2-approximation.

Theorem 4.2.3. Given a set D of n disks in the plane, for the restricted covering
problem a 2-approximation can be computed in O(n) time.

Notice that if the solution disks C∗1 , C∗2 are far apart, i.e., d′(C∗1 , C∗2 ) > 6r(C∗1 ),
this algorithm computes an optimal solution. All disks of D covered by C∗1 have a
distance larger than 2r(C∗1 ) to any point in C∗2 . The analog holds for the disks of D
covered by C∗2 . Thus, the partition of the disks in D then leads to the partition of
the optimal solution.

(Notice that this algorithm improves the approximation algorithm in [9, Theo-
rem 13]. Both algorithms have the same running time, but here the approximation
factor is 2 while in [9, Theorem 13] it is 6.)

4.2.1.2 (1 + ε)-Approximation

Recall Observation 4.2.1. Let C∗1 and C∗2 be a pair of smallest congruent disks
covering D. Let `∗ be the bisector of the segment connecting the centers of C∗1 and
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C∗2 . Then each disk D ∈ D is covered by the disk C∗i whose center lies on the same
side of `∗ as the center of C∗i , for i = {1, 2}.

If we know this bisector `∗ we know the bipartition of the disks and, hence, we
can compute the optimal covering disks. We now start with computing an optimal
pair of covering disks under the assumption that the direction of the bisector `∗ is
known. We present an algorithm with running time O(n logn). Later on we explain
how to obtain a (1 + ε)-approximation by using this algorithm.

Fixed Orientation. Assume the direction of the bisector `∗ is given and with-
out loss of generality it is vertical. We first sort the centers of all D ∈ D by their
x-coordinates. If there are disks having the same x-coordinate, we sort them lex-
icographically, first by their x- and then by their y-coordinate. Then we sweep a
vertical line ` from left to right and we maintain two set of disks: D1 is the set of
disks whose centers lie to the left of ` and D2 = D \ D1.

Let C1 be the smallest disk covering D1 and C2 the smallest disk covering D2.
The crucial property of C1 and C2 is the following: While sweeping ` from left to
right, the radius of C1 is nondecreasing and the radius of C2 nonincreasing. We want
to compute min max(r(C1), r(C2)). This can be done by performing a binary search
on the sorted list of the centers of the disks in D. In each step we compute the radius
of C1 and C2, which takes O(n) time [91]. Thus, the total running time is O(n logn).

In the following we explain how this algorithm can be used in order to get a (1 + ε)-
approximation for the restricted covering problem. The main idea is to find a set of
good sample orientations.

Sampling. We use 2π/ε sample orientations chosen regularly over 2π, and com-
pute, for each orientation, the solution in O(n logn) time. The approximation factor
can be proven by showing that there is a sample orientation that has an angle at
most ε with the optimal bisector. First notice that we can assume that ε < 1, other-
wise we can use the approximation algorithm above which leads to a better solution.
Let b be the bisector of a pair of optimal solution disks C∗1 and C∗2 . Without loss of
generality we assume that b is vertical as in Figure 4.6. Let q denote the midpoint
of c(C∗1 ) and c(C∗2 ).

Let ` be a line which passes through q and that makes an angle at most ε with
b in counterclockwise direction as in Figure 4.6. (To simplify the presentation, the
angle in the calculation is set to exactly ε). Let p1 be the intersection point of ` with
the upper circular arc of ∂C∗1 . Let p2 be the point symmetric to p along b. Clearly
p2 lies on the boundary of C∗2 . We will show that there exist two disks C1 and C2
where C1 covers all disks whose center lie to the left of ` and C2 covers all disks
whose center lie to the right of ` and r(C1) = r(C2) 6 (1 + ε)r(C∗1 ).

We will explain the construction of C2 and prove that C2 covers all disks whose
centers lie to the right of `. C1 can be constructed analogously. The center of C2
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Figure 4.6: r(C2) 6 (1 + ε′)r(C∗2 ) for any ε′ > 6ε.

is set to c(C∗2 ) and its radius is set to |c(C∗2 )p1| 6 |c(C∗2 )p2| + |p2p1|. It holds that
|c(C∗2 )p2| + |p2p1| 6 r(C∗2 ) + 6r(C∗2 ) sin ε, since |qp1| = |qp2| 6 3r(C∗1 ) and so the
distance between p2 and b is at most 3r(C∗2 ) sin ε. Clearly C2 covers all disks that
were covered by C∗2 . In addition, it must cover all disks whose center lie in the region
of C∗1 that is bounded by ` and b and has q as its lowest point (this region is shown
in red in Figure 4.6). Note that the disks whose centers lie in this region are fully
covered by C∗1 , but not necessarily by C∗2 .

It remains to prove that all disks having their center in the red region are fully
covered by C2. Let C ′ be the disk symmetric to C∗1 along `. Then all disks whose
center lie in the red region are covered by C∗1 ∩C ′, because this region is symmetric
along ` and they are fully covered by C∗1 . Since C2 contains the intersection C∗1 ∩C ′,
we conclude that all disks whose centers lie on the right side of ` are covered by C2.
We can prove the analog for C1.

Hence,

r(C1) = r(C2) 6 (1 + 6 sin ε)r(C∗1 ) 6 (1 + ε′)r(C∗1 ) = (1 + ε′)r(C∗2 )

as sin ε 6 ε for ε 6 1 (this can be shown by using the Taylor series:
sin x =

∑∞
n=0(−1)nx2n+1/(2n+ 1)! = x− x3/3! + x5/5!− ...) and for any ε′ > 6ε.

Since any solution whose bisector is parallel to ` has a radius of at most r(C1),
this solution has radius at most (1 + ε′) times the optimal radius.

Hence, we have the following result.

Theorem 4.2.4. Given a set D of n disks in the plane, a (1 + ε)-approximation for
the restricted covering problem for D can be computed in O((n/ε) logn) time.
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We can improve the running time to O(n+ 1/ε3 log 1/ε) by using an adaption of
the algorithm by Agarwal and Procopiuc [4].

We start by computing a 2-approximation in O(n) time using our algorithm
from Theorem 4.2.3. Let Capx

1 , Capx
2 be the disks computed by this approximation

algorithm and let rapx be their radius. We consider a grid of size δ = λεrmax 6 2λεr∗
over the plane, where λ is a small enough constant. That is, we consider the points
with coordinates (iδ, jδ) for some integers i, j. Observe that there are only O(1/ε2)
grid points in Capx

1 ∪ Capx
2 . The center of each disk D is moved to a nearby grid

point. That is, a center (x, y) is replaced by (δdx/δe, δdy/δe). If two or more centers
are moved to the same grid point, we only keep the disk with the largest radius.
We denote this new set by Dg and this set consists of O(1/ε2) disks; all centers of
disks in Dg are grid points inside Capx

1 ∪ Capx
2 or at distance at most

√
2δ from the

boundary of this union.
We compute a (1 + ε′)-approximation for the set Dg in O((1/ε3) log 1/ε) time by

applying our algorithm from Theorem 4.2.4. These computed disks have a radius
6 (1 + ε′)(r∗ +

√
2δ) and we inflate these disks by a factor of

√
2δ. So the radii

of these inflated disks are 6 (1 + ε′)(r∗ +
√

2δ) +
√

2δ 6 (1 + ε)r∗ (if we choose
λ 6 1/(8

√
2), ε′ = 1/4ε, and ε 6 1). Hence, these disks are a (1 + ε)-approximation

for the optimal solution for D.

Theorem 4.2.5. Given a set D of n disks in the plane, a (1 + ε) approximation for
the restricted covering problem for D can be computed in O(n+ (1/ε3) log 1/ε) time,
for any 0 < ε 6 1.

4.2.2 The General Case

In this section we study the general covering case.

Given a set D of n disks in the plane, compute two smallest congruent
disks C1 and C2 such that each disk D ∈ D is covered by C1 ∪ C2.

We start with giving a characterization of the optimal covering. The optimal
covering of a set D′ of disks with one disk is determined by at most three disks of D′
touching the covering disk such that the convex hull of the contact points contains
the center of the covering disk. (See Figure 4.7(a).)

When covering by two disks, a similar argument applies, and thus the optimal
covering disks (C∗1 , C∗2 ) are determined by at most five input disks:

Lemma 4.2.6. The optimal covering by two disks C∗1 , C∗2 satisfies one of the follow-
ing conditions.

1. For some i ∈ {1, 2}, the disk C∗i is the optimal one-covering of the disks con-
tained in C∗i , as in Figure 4.7(a).
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(a) (b) (c)

Figure 4.7: The three configurations for the optimal 2-center covering of disks.

2. There is an input disk that is neither fully contained in C∗1 nor in C∗2 , but
contains one point of ∂C∗1 ∩ ∂C∗2 on its boundary as in Figure 4.7(b).

3. There are two input disks Di, Dj (possible i = j) none of them being fully
covered by C∗1 or C∗2 , such that Di contains one point of ∂C∗1 ∩ ∂C∗2 on its
boundary and Dj contains the other point of ∂C∗1 ∩ ∂C∗2 on its boundary as in
Figure 4.7(c).

In all cases, both covering disks are determined by at most three disks; for one cov-
ering disk C∗, it holds that the contact points of the determining disks contain the
center c(C∗) in their convex hull.

Proof. The optimal solution is a pair of congruent disks that achieves a local mini-
mum in radius, that is, we cannot reduce the radius of the covering disks by trans-
lating them locally. If one covering disk is completely determined by the input disks
contained in it, then case 1 applies. Otherwise, there always exists at least one input
disk D such that D is not contained in C∗i for all i ∈ {1, 2}. Moreover such input
disks always touch C∗1 ∪ C∗2 from inside at the intersection points of ∂C∗1 and ∂C∗2 ,
otherwise we can always get a pair of smaller congruent covering disks. If only one
point of ∂C∗1∩∂C∗2 is touched by an input disk D, both covering disks are determined
by at most two additional disks touching from inside together with D because the
covering disks are congruent. If both intersection points of ∂C∗1 ∩ ∂C∗2 are touched
by input disks Di and Dj , possible i = j, one covering disk is determined by one
additional disk and the other covering disk by at most one additional disk touching
from inside together with Di and Dj because the covering disks are congruent. It
is not difficult to see that for one covering disk C∗, it holds that the contact points
of the determining disks contain the center c(C∗) in their convex hull; otherwise we
can get a pair of smaller congruent covering disks.

Using a decision algorithm and the parametric search technique, we can construct
an exact algorithm for the general covering problem. The main part of this algorithm
was invented by my coauthors Hee-Kap Ahn, Chan-Su Shin, and Antoine Vigneron.
We still state the basic ideas in this thesis since they nicely complement the results
of this section.
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Let r∗ be the radius of an optimal solution for the general case of covering by
two disks. The decision algorithm is based on the following lemma that, for a given
r > 0, returns “yes” if r > r∗, and “no” otherwise. (See also Figure 4.8).

Lemma 4.2.7 ([9, Lemma 6]). Assume that r > r∗. Then there exists a pair of
congruent disks C1, C2 of radius r such that their union contains the input disks, an
input disk D touches C1 from inside, and one of the following property holds.

(a) C1 is identical to D.

(b) There is another input disk touching C1 from inside.

(c) There is another input disk D′ not contained in C2, but it touches a common
intersection t of ∂C1 and ∂C2 that is at distance 2r from the touching point of
D. If this is the case, we say that D and t are aligned with respect to C1.

(d) There are two disks Di and Dj, possibly i = j, such that Di touches a common
intersection of ∂C1 and ∂C2, and Dj touches the other common intersection
of ∂C1 and ∂C2.
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Figure 4.8: Four cases for r > r∗.

Decision Algorithm. Based on the cases discovered in Lemma 4.2.7, we do the
following:
Case (a). Choose an input disk D. C1 has radius r and covers only D. Then C2 is
the smallest disk containing D \D. If the radius of C2 is 6 r, we return “yes”.
Case (b). We simply choose a pair of input disks D and D′. There are two candidates
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for C1, as C1 has radius r and touches D and D′. So we consider separately each
of the two candidates for C1. Then C2 is chosen to be the smallest disk containing
the input disks, or the portions of input disks (crescents), that are not covered by
C1, which can be computed in O(n) time. If for one of the two choices of C1, the
corresponding disk C2 has radius 6 r, we return “yes”.
Case (c). For each input disk D, we do the following.

1. For the circle A with center c(D) and radius 2r − r(D), compute A ∩ D′ for
every other disk D′. Let t be such an intersection point.

2. For each t,

(a) remove (part of) the input disks covered by the covering disk determined
by D and t, and compute the smallest disk covering the remaining input.

(b) If this algorithm returns a covering disk with radius 6 r, return “yes”.

Case (d). For each input disk D that touches C1 from inside, we do the following.
Let i be the index of the first input disk that the circular arc of C1 from the touching
point hits in clockwise orientation. Let j be the index of the last input disk that
the circular arc leaves. For each pair (i, j), we still have some freedom of rotating
C1 around D within some interval (C2 changes accordingly.) During the rotation,
an input disk not covered by the union of C1 and C2 may become fully covered by
the union, or vice versa. We call such an event an I/O event. Note that an I/O
event occurs only when an input disk touches C1 or C2 from inside (otherwise, it is
another pair, (i′, j) or (i, j′).)

We compute all I/O events and sort them. At the beginning of the rotation of
C1 around D, we compute the number of input disks that are not fully covered, and
set the variable counter to this number. Then we handle I/O events one by one and
update the counter. If the counter becomes 0, we return “yes”.

The running time of the algorithm is O(n3 logn); its analysis can be found in [9].
Hence, we get the following lemma.

Lemma 4.2.8 ([9, Theorem 8]). Given a set D of n disks in the plane and a value
r > 0, we can decide in O(n3 logn) time whether there exist two disks with radius r
that cover all disks in D.

Optimization Algorithm. For the optimization algorithm we use parametric
search. To use the parametric search technique, we design a parallel version of the
decision algorithm with running time O(log2 n) using O(n3) processors. This parallel
algorithm can be found in [9]. Then the overall algorithm runs in time O(n3 log4 n).

Theorem 4.2.9. Given a set D of n disks in the plane, we can compute two smallest
congruent disks whose union covers all disks in D in O(n3 log4 n) time.
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4.2.2.1 Constant Factor Approximation.

We apply again the well known greedy k-center approximation algorithm by Gonza-
lez [61] to our general covering problem. The idea is as follows: We start by picking
an arbitrary point p1 inside the union of all disks in D. For instance, we could pick
the center of D1 to be p1. Then we compute the point p2 in

⋃
D that is farthest

away from p1. This can be done in linear time by computing the point farthest away
from p1 for each disk D ∈ D. We take these two points p1, p2 as center points for
our two covering disks and the radius is the maximal distance from any point in

⋃
D

to its closest point in {p1, p2}. This distance can be computed in linear time: The
bisector of p1 and p2 divides the points of

⋃
D into two sets. The points lying on the

same side of the bisector as p1 form one set S1, while the points that lie on the same
side of the bisector as p2 form the other set S2. The points lying on the bisector can
be assigned to any set. In order to compute this maximal distance, we only have to
compute the maximal distance from any point in S1 to p1, and the maximal distance
from any point in S2 to p2.

This algorithm leads to a 2-approximation. This can be shown in the same way
as it is done for the k-center problem [61]: Suppose q is the point in

⋃
D that has

maximal distance to {p1, p2}. We denote this distance by η. The disks computed by
the algorithm above have radius 6 η. Note that |p1p2| > η. It is easy to see that
the radius of the disks in an optimal solution is > 1/2η and, hence, the algorithm
computes a 2-approximation.

Theorem 4.2.10. Given a set D of n disks in the plane, we can compute a 2-
approximation for the general covering problem for D in O(n) time.

4.2.2.2 (1 + ε)-Approximation.

We can improve the approximation factors above significantly. We now present an
(1 + ε)-approximation algorithm: The algorithm is again an adaptation of the algo-
rithm by Agarwal and Procopiuc [4] as in Section 4.2.1.2. We start by computing
a 2-approximation for the general covering case in O(n) time using our algorithm
from Theorem 4.2.10. Let Cmax

1 , Cmax
2 be the disks computed by this approxima-

tion algorithm and let rmax be their radius. As in the proof of Theorem 4.2.5, we
consider a grid of size δ = λεrmax 6 2λεr∗ over the plane where λ is a small enough
constant. Each center is moved to a nearby grid point, so center (x, y) is replaced
by (δdx/δe, δdy/δe). If two or more centers are moved to the same grid point, we
only keep the disk with the largest radius. The centers are now grid points and
these grid points lie either inside Cmax

1 ∪Cmax
2 or have a distance at most

√
2δ from

the boundary of this union, and so we are left with a set of O(1/ε2) disks. We now
replace this set of disks by grid points: Each disk is replaced by the grid points which
are closest to the boundary of the disk and lie inside the disk, see Figure 4.9.

In order to compute these points we consider each column and each row of the
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Figure 4.9: The disk is replaced by the marked points.

grid separately: The intersection of each disk with this column is an interval, and we
replace the interval by the lowest and the highest grid point lying inside this interval.
Since the set of disks has size O(1/ε2) and the number of columns is O(1/ε), it takes
in total O(1/ε3) time. We do the equivalent for each row of the grid. The set of grid
points we obtain is denoted by Pg and its size is O(1/ε2). We compute two smallest
disks E1, E2 that cover Pg in O( 1

ε2 log2 1
ε log2 log 1

ε ) time using the algorithm from
Chan [34]. The radii of E1, E2 are at most r∗+

√
2δ, and if these radii are increased

by 2
√

2δ, these two disks cover D. The radii of these inflated versions of E1, E2 is
r∗ + 3

√
2δ 6 (1 + ε)r∗ if we choose λ 6 1/(6

√
2).

Theorem 4.2.11. Given a set D of n disks in the plane, a (1 + ε)-approximation
for the general covering case for D can be computed in O(n+ 1/ε3) time.

4.3 Maximum Intersection Problem

In this section we consider an optimization version of the intersection problem pre-
sented in Section 4.1.

Given a set D of n disks in the plane and a value δ > 0, compute two
disks with radius δ that intersect the maximum number of disks in D.

De Berg et al. studied a simplified version of this problem where all disks have
the same radii [39]. They presented an O(n3 logn) time algorithm and a (1 − ε)-
approximation algorithm with running time O(n logn+ nε−6 log(1/ε)). If the input
is a set of unit disks and the pair of solution disks has to be disjoint, the problem
can even be solved in O(n8/3 log2 n) time [32].

We study now the problem for a set of disks with different radii. We state two
straightforward algorithms and later on we present an efficient algorithm that is
based on the data structures used in the algorithm for unit disks by de Berg et
al. [39].



4.3. MAXIMUM INTERSECTION PROBLEM 89

We first formulate the problem in a different way, following the approach of
Section 4.1. Recall the definition of δ-inflated disks from Section 4.1: For a real
number δ > 0 and a disk D, let the δ-inflated disk D(δ) be a disk with radius
r(D) + δ concentric to D. Let D(δ) be the set of all δ-inflated disks D ∈ D. We can
now state the problem in the following way:

Given a value δ > 0, compute two points p1, p2 such that they stab the
maximum number of disks in D(δ) (that is |{D(δ)∩{p1, p2} | D ∈ D}| is
as large as possible).

Clearly, there exist two points p1, p2 that stab k disks of D(δ) if and only is there
exist two disks centered at p1 and p2 with radius δ that intersect k disks of D. Hence,
if we compute a pair of points p1, p2 that stabs the maximum number of disks in
D(δ), the disks centered at p1, p2 with radius δ intersect the maximum number of
disks in D.

A straightforward way to solve this problem is the following: Compute the ar-
rangement of the disks D(δ), this can be done in O(n2) time and this arrangement
consists of O(n2) cells [21]. Then we take any possible pair of two cells, place a point
in each of the cells and compute the number of disks in D(δ) that are stabbed by
these points. Since there are O(n2) cells, there are O(n4) such pairs. For each pair,
the maximum number of disks stabbed by the corresponding points can be computed
in O(n) time. So in total we need O(n5) time.

3SUM-Hardness. The problem stated above is 3SUM-hard. 3SUM-hardness was
introduced by Gajentaan and Overmars [59]. 3SUM is the following problem: Given
a set of integers S, are there three integers a, b, c ∈ S with a + b + c = 0. This
problem can be solved in Θ(n2) time but no subquadratic-time algorithm is known.
A problem is 3SUM-hard if it is at least as difficult as 3SUM, meaning a subquadratic-
time algorithm for this problem gives a subquadratic-time algorithm for 3SUM. More
formally, a problem P is 3SUM-hard if and only if every instance of 3SUM of size n
can be solved using a constant number of instances of P of at most linear size and
o(n2) additional time (see also [59, Lemma 2.1]). Proving a problem to be 3SUM-
hard does not prove any lower bound for this problem, however, it implies that there
is not so much hope for a subquadratic-time algorithm.

We will present now the 3SUM-hardness proof for our problem. The proof is very
simple. It follows directly from the fact that the problem of computing the deepest
cell in an arrangement of disks is 3SUM-hard [24] (the depth of a cell is defined as
the number of disks that contain this cell). Thus, computing a point that stabs the
maximum number of disks is 3SUM-hard. This problem reduces to our problem in
the following way: Duplicate the given set of disks and put it somewhere such that
the original set and the duplicated set do not intersect. Computing two points that
stab the maximum number of disks in this new set corresponds to computing one
point that stabs the maximum number of disks in the original set.
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We present now an efficient algorithm to solve the problem stated above. We
first state a naïve approach, later on we show how this approach can be improved.

Naïve Approach. The basic idea is quite similar to the idea of the algorithm in
Section 4.1.1. We are given a set of disks {D1, D2, ..., Dn} in the plane and a value
δ > 0. We first construct the arrangement of the δ-inflated disks Di(δ), i = 1, 2, .., n.
This arrangement consists of O(n2) cells and can be computed in O(n2) time [21].
The idea is to traverse the cells of the arrangement in a way similar to Section 4.1.1.
To this end, we traverse the cells in a depth-first manner. While traversing the cells
we do the following: We place one point, say p1, in the current cell, then we compute
the point that stabs the maximum number of disks that are not stabbed by p1. We
move p1 to the next cell and repeat this until we have visit every cell, then we return
the pair of points that stabs the maximum number of disks. This idea leads to
an algorithm with running time O(n4): There are O(n2) cells and computing the
maximum depth of a set of n disks can be done in O(n2) time [31].

Faster Approach. We show now that the running time of the naïve algorithm
can be improved by almost a linear factor. We use a similar approach as in [39].
Again, we start with a set of disks {D1, D2, ..., Dn} in the plane and a value δ > 0
and we compute the corresponding arrangement of the δ-inflated disks. The set of
these inflated disks is then denoted by D. Before we explain how the arrangement
is traversed, we observe an interesting fact: We do not have to consider all cells in
the arrangement, it is enough to consider only the maximal cells (this idea can also
be found in [77]). A maximal cell has the property that no other cell is defined by a
superset of the disks defining this cell. Hence, if there exist two points that together
stab k disks of the arrangement, there exist two points that both lie in maximal cells
and together stab at least k disks. In order to determine the set of maximal cells
we use a important property of maximal cells: A maximal cell is convex (and all
convex cells are maximal). Note that the number of convex cells can be Ω(n2) (see
Figure 4.10).

Figure 4.10: The disks build a grid and all cells with depth 4 are maximal. Clearly
there are Ω(n2) maximal cells.
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Now we explain how the arrangement is traversed. The crucial part is that we do
not consider all cells, instead we consider a superset of all convex cells. Our traversal
is defined as follows: We traverse the boundary of each disk Di(δ) (i = 1, 2, . . . , n);
that means we traverse all cells that are incident to the boundary of Di(δ) and lie
in Di(δ), see Figure 4.11. While traversing the boundary of this disk, we visit at
most O(n) cells; note that during the traversal of the boundary of a disk a cell can
be visited more than once, see Figure 4.12. We count each visit individually; the
number of visited cells per disk is still O(n).

D(δ)

Figure 4.11: The traversal traverses the marked cells for the disk D(δ).

We start with traversing the boundary of D1(δ), then the boundary of D2(δ)
and so on. The path traversing the boundary of Di(δ) is denoted by γi. Hence, our
traversal consists of n connected paths, namely γi for all i = 1, 2, . . . , n. We denote
the concatenation of all paths by γ = γ1γ2 . . . γn.

We traverse now the arrangement by γ, hence we traverse a set of cells that
contains all convex cells as a subset. Also, we visit cells more than once. However,
per disk we visit at most O(n) cells and, in total, we visit O(n2) cells.

D(δ)

Figure 4.12: The orange cell is visited more than once during the traversal of D(δ).
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We place one point, say p1, in a cell and we will move p1 along γ and traverse
the arrangement. Let Dp1 be the set of disks that are stabbed by p1. Then, while we
move p1 along γ, we want to compute the maximum subset of disks in D \ Dp1 that
have a nonempty intersection. To do this efficiently, we use a segment tree. Each
disk of D may appear or disappear several times during the traversal of γ: Each
time we cross the boundary of a cell, one disk is inserted or deleted from Dp1 . So
each disk appears in Dp1 along one or several segments of the traversal. We store
these segments in a segment tree. Consider a connected part of γ, say γ1. The first
cell, which is traversed by γ1, consists of O(n) disks because each cell is formed by
the intersection of O(n) disks. During the traversal of the boundary of D1(δ) each
disk D′ ∈ D \ {D1(δ)} is inserted and deleted at most once from Dp1 , since the
boundaries of two disks intersect at most twice. Hence, each disk is represented by
O(n) segments and so the segment tree is built over a total of O(n2) segments. Thus
the tree has total size of O(n2 logn): Each segment is stored at O(logn) nodes of
the tree. Additionally, we store the following two values at each node u (the idea of
storing these values, and also the notation, is taken from [39]):

• We store the total number of segments stored at the node u. We denote the
value by Cover(u).

• Each node stores a value maxDepth(u). If u is a leaf then maxDepth(u) =
Cover(u). Else maxDepth(u) is the sum of Cover(u) and the maximum value
of maxDepth of the two children of u. Hence,

maxDepth(u) = Cover(u) + max(maxDepth(c1),maxDepth(c2)),

where c1 and c2 are the two children of u.

Notice that maxDepth(root) stores the value of the deepest cell of the arrange-
ment where root is the root of the tree and, hence, it gives the maximum number of
disks that can be stabbed by a point. The idea is now to update the segment tree
in such a way that it represents the arrangement of disks in D \ Dp1 . So in order to
find the maximum number of disks in D\Dp1 that have a nonempty intersection, we
return maxDepth(root). During the traversal disks are removed or added to Dp1 . A
disk can be removed or added to the segment tree in O(n logn) time, see [39]. For
completeness we still state the ideas here:
Each disk contributes to O(n) segments in total. Each segment is stored in O(logn)
nodes. Assume that a disk D is added to Dp1 . Then we have to update the values
Cover(v) and maxDepth(v) for the nodes that store D and their ancestors. First we
have to find the set of nodes ND that store disk D. This set consists of O(n logn)
nodes and can be found in the same time. The values of the nodes in ND can be
updated in O(1) time, we only have to decrease Cover(u) and maxDepth(u) by 1
for each node u ∈ ND . But we also have to update the ancestors of the nodes in
ND. Since maxDepth(u)=Cover(u)+max(maxDepth(c1),maxDepth(c2)), the values
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Figure 4.13: The traversal of the arrangement. For brevity, we denote the δ-inflated
disks Di(δ) by Di.
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Figure 4.14: The segment tree is depicted. The value Cover(u) is the left value and
maxDepth(u) the right value.

of the ancestors can be updated in a bottom-up fashion in O(1) time: Consider
only one segment representing D. This segment is stored in O(logn) nodes and at
most two of these nodes have the same depth. All nodes and their ancestors can be
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updated in O(logn) time in total. This is based on the properties of a segment tree.
Thus, we need O(n logn) time to update the tree when a disk is removed or added
to Dp1 .
While traversing γ, a disk appears or disappears in Dp1 and hence we have to update
the tree. The path γ traverses O(n2) cells. For each connected part γi of γ, these
cells differ in exactly one disk and, hence, the updating of the tree takes O(n logn)
time per cell. The last cell of γi and the first cell of γi+1 differ in O(n) cells and so
the updating of the tree takes O(n2 logn) time. But since γ consists of n connected
paths, in total, traversing γ and all updates take O(n3 logn) time.

At the end, the algorithm returns the maximum number of disks that can be
stabbed by two points. Notice that the algorithm can additionally return a pair of
solution points.

Thus, we have showed the following

Theorem 4.3.1. Given a set D of n disks in the plane and a value δ > 0, we can
compute two disks with radius δ whose union intersect the maximum number of disks
in D in O(n3 logn) time.

4.3.1 Constant Factor Approximation

We apply the well-known greedy approximation algorithm for the maximum cov-
erage problem [69, Section 3.9]. The maximum coverage problem is formulated as
follows: Given a collection of sets and a natural number k, find k sets such that the
total number of elements covered by these sets is maximized (note that sets may
contain the same elements). The greedy approximation algorithm is very simple:
Add the set with the maximum number of elements into the solution set, in the
next step add the set with the maximum number of elements that are not contained
in the solution sets and so on. This algorithms yields an approximation factor of
(1− (1− 1/k)k) > (1− 1/e) [69, Theorem 3.8].

We can adapt this idea to our problem. First we compute the disk C1 with radius
δ that intersects the maximum number of disks in D. In the second step we compute
the disk C2 with radius δ that intersect the maximum number of disks in D that
are not already intersect by C1. This algorithm leads to an approximation factor of
(1−(1−1/2)2) = 3/4. This follows immediately from the proof of the approximation
factor of the maximum coverage problem, see [69, Theorem 3.8].

We still need to analyze the running time. As we explained above, we consider the
set of the δ-inflated disks of D. The deepest cell of this arrangement of disks can be
computed in O(n2) time [31]. Let p1 be a point inside this cell. Then, all δ-inflated
disks that contain p1 are deleted and the deepest cell in this new arrangement is
computed; let p2 be a point inside this cell. The two disks with radius δ and centers p1
and p2, respectively, give a 3/4-approximation for the maximum intersection problem
and the total running time is O(n2).
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Theorem 4.3.2. Let D be a set of n disks in the plane and δ > 0 a value. We can
compute a 3/4-approximation for the maximum intersection problem for D in O(n2)
time.

The running time can be improved by almost a linear factor at the expense
of slightly decreasing the approximation factor. We use the same algorithm as in
Theorem 4.3.2, but instead of computing the deepest cell exactly we approximate it
within a factor of (1−ε) by using the algorithm of Aronov and Har-Peled [24]. Their
algorithm approximates the deepest cell of a set of n disks by a factor of (1 − ε) in
O(nε−2 logn) expected running time.

We show that our algorithm has an approximation factor of (3/4−ε). The quality
of the approximation factor can be shown in the same way as for the maximum
coverage problem [69, Theorem 3.8]. For completeness we state the proof here. Let
C1 be the disk that the algorithm computes in the first step, and let C2 be the disk
that is computed in the second step. Let nb(C1) and nb(C2) be the number of disks
that are intersected by C1 and C2. Let nb(OPT) be the number of disks intersected
by the optimal solution. The disk that intersects the maximum number of disks in D
intersects at least nb(OPT)

2 disks and so nb(C1) > (1−ε)nb(OPT)
2 . Now consider the set

D′ = D\{D | D ∈ D and D∩C1 6= ∅}. The disk that intersects the maximum number
of disks in D′ intersects at least nb(OPT)−nb(C1)

2 , so nb(C2) > (1−ε)(nb(OPT)−nb(C1))
2 .

Then,

nb(C1) + nb(C2) > nb(C1) + (1− ε)(nb(OPT)− nb(C1))
2

= nb(C1)(1− (1− ε)
2 ) + (1− ε)nb(OPT)

2

>
(1− ε)nb(OPT )

2 (1− (1− ε)
2 ) + (1− ε)nb(OPT)

2

= ((1− ε)− (1− ε)2

4 )nb(OPT)

= (3
4 −

ε

2 −
ε2

4 )nb(OPT)

> (3
4 − ε)nb(OPT) for ε 6 1

Theorem 4.3.3. Let D be a set of n disks in the plane and δ > 0 a value. We can
compute a (3/4 − ε)-approximation for the maximum intersection problem for D in
O(nε−2 logn) time, for 0 < ε 6 1.

4.4 Maximum Covering Problem

We consider the following problem.

Given a set D of n disks in the plane and a value δ > 0, compute two
disks C1, C2 with radius r that together cover the maximum number of
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disks in D. (A disk is covered by C1 and C2 if it is completely contained
in C1 or C2.)

Again, we follow the approach in Section 4.2.1 and formulated the problem in a
different way. Repeat the definition of D∗(δ): D∗(δ) is the disk concentric to D

with radius δ − r(D); if δ − r(D) < 0, the disk is not defined. Notice that a disk
with radius larger than δ can never be fully covered by a disk with radius δ. Let
D∗ = {D∗(δ) | D ∈ D and r(D) 6 δ}.

Given a value δ, compute two points, p1 and p2, such that these points
are contained in the maximum number of disks in D∗(δ).

This problem can be solved with the same algorithm as in Theorem 4.3.1. We
only have to add an initialization step in which each disk D ∈ D is replaced by a
disk concentric to D with radius δ − r(D). If δ − r(D) < 0, the disk D is deleted.
After this initialization step the same algorithm as in Section 4.3 can be used.

Theorem 4.4.1. Let D be a set of n disks in the plane and r > 0 a value. We can
compute two disks with radius r that cover the maximum number of disks in D in
O(n3 logn) time.

4.4.1 Constant Factor Approximation

By the same argumentation as above, we can use the approximation algorithms of
Section 4.3.1. We only have to add the same initialization step where each disk
D ∈ D is replaced by D∗(δ). Thus, we achieve immediately the following results.

Theorem 4.4.2. Let D be a set of n disks in the plane and δ > 0 a value. We can
compute a

• 3/4-approximation for the maximum covering problem for D in O(n2) time.

• (3/4−ε)-approximation for the maximum coverage problem for D in O(nε−2 logn)
time.

4.5 Conclusions and Open Problems

In this chapter we considered new versions of the two-center problem where the input
is a set of disks which we called the intersection and the covering problem. We also
studied optimization versions of these problems. We gave exact and approximation
algorithms; all our results are summarized in the following table.
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Exact algorithm (1 + ε)-approximation

Intersection problem O(n2 log4 n log logn) –
O(n2 log3 n) expected time

General covering problem O(n3 log4 n) O(n+ 1/ε3)
Restricted covering problem O(n2 log4 n log logn) O(n+ (1/ε3) log 1/ε)

O(n2 log3 n) expected time

Exact algorithm (3/4− ε)-approximation

Max intersection problem O(n3 logn) O(nε−2 logn)
Max covering problem O(n3 logn) O(nε−2 logn)

There are still a lot of open problems. Our algorithms for the intersection and
the restricted covering problem are superquadratic. Since the best-known algorithm
for computing the two-center problem of a point set is near-linear [34, 53, 106] an
obvious question is whether our problems can be solved in subquadratic time. These
results for the subquadratic algorithms for the two-center problem are based on
observations and data structures that only work for unit disks, we do not see how
these ideas could help to improve our time bounds.

The decision versions of the intersection problem and the restricted covering
problem are equivalent to deciding whether a set of disks is 2-piercable. We could
neither find any algorithm that solves the latter in subquadratic time nor prove it
to be 3SUM-hard. If someone could prove 3SUM-hardness, this would imply that
there is not much hope for a subquadratic algorithm for the intersection problem
and the restricted covering case. It would also explain why we could not find any
efficient approximation algorithm for the intersection problem. Any constant-factor
approximation algorithm has to decide whether two disks of size 0 intersect the input
set and so it answers the 2-piercing problem for disks.

Another interesting problem is to improve the exact algorithm for the general
covering case.





Chapter 5

Largest Inscribed Rectangle

This chapter deals with the problem of substituting a complex geometric object by
a simpler one that lies completely inside this object while still maintaining a cer-
tain sense of similarity. One famous problem of this type is to compute the largest
rectangle inscribed in a polygon. Alt et al. [17] presented anO(logn) algorithm which
computes the largest inscribed axis-aligned rectangle in a convex polygon with n ver-
tices under the restriction that the vertices are given in counterclockwise direction,
stored in an array. Daniels et al. [37] showed that the largest inscribed axis-aligned
rectangle in a general polygon (allowing holes) with n vertices can be computed in
O(n log2 n) time. Ahn et al. [7] described how to approximate axially symmetric
polygons inside the more general class of convex sets, however the computed poly-
gon is not necessarily a rectangle. Hall-Holt et al. [66] restrict the problem to fat
rectangles, i. e., rectangles with an aspect ratio that is bounded by a constant. Under
the assumption that a largest inscribed rectangle is fat, they (1− ε)-approximate the
largest fat rectangle in simple polygons in time O(n); in polygons with holes, their
approximation algorithm runs in O(n logn) time.

In Section 5.1 we consider the problem of computing the largest area inscribed
rectangle in a convex polygon P on n vertices. To the best of our knowledge, there
is no exact algorithm published so far, but there is a straightforward way in O(n4)
time. We first present this straightforward algorithm and then we focus on approx-
imation algorithms. We present approximation algorithms with running times that
are only logarithmically dependent on n, if the vertices are given in counterclockwise
direction, stored in an array. The assumption on the vertex ordering is common
when handling polygons. (As mentioned before, Alt et. al [17] used the same as-
sumption for their algorithm.) If the ordering is not given in advance, it can be
computed using standard convex hull algorithms in O(n logn) time. We will assume
in the remainder of this chapter that the ordering is given. In comparison to Hall
et al. [66], our results show that fatness is not required for approximating a largest
inscribed rectangle.
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In Section 5.2 we show that our approximation algorithms can also be generalized
to simple polygons with or without holes.

The results of Section 5.1.2 and Section 5.2 were obtained in collaboration with
Christian Knauer, Jens M. Schmidt, and Hans Raj Tiwary and have been published
in [82].

Notation. The area of a polygon P is denoted by |P |. A line segment connecting
two points a and b is denoted by ab and its length by |ab|. For a given convex polygon
P , let Ropt be a largest area inscribed rectangle. Note that in general the largest
area inscribed rectangle is not unique, see Figure 5.1; we will use Ropt to denote any
one of the largest area inscribed rectangles.

For brevity, a largest area rectangle will be referred to as largest rectangle.

Figure 5.1: The largest inscribed rectangle is not unique.

5.1 Largest Inscribed Rectangle in a Convex Polygon

We consider the following problem:

Given a convex polygon P with n vertices given in counterclockwise order,
compute a largest area inscribed rectangle in P .

We first give a slow but exact algorithm that computes an optimal solution. Later
on we present efficient approximation algorithms.

5.1.1 A Slow but Exact Algorithm

To our knowledge, there is no exact algorithm published for computing a largest
inscribed rectangle in a convex polygon. But there is a straightforward way to com-
pute such a rectangle in O(n4) time. We will give such a straightforward algorithm
in this section.

We first investigate the characterization of a largest rectangle. We start with
introducing some new notation: If a corner of Ropt is coincident with a vertex of
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P we call it a vertex-corner ; if it is contained in an edge of the boundary of P we
call it an edge-corner. (Notice that a vertex-corner is also an edge-corner.) The
largest axis-aligned rectangle in a convex polygon either has only two diagonally
opposite edge-corners or at least three edge-corners [17]. We will prove a similar
characterization for Ropt, namely Ropt has either (a) two diagonally opposite vertex-
corners, (b) a vertex-corner and two edge-corners, (c) four edge-corners, or (d) two
edge-corners and a side of Ropt is aligned to a boundary edge of P , see Figure 5.2.
(Recall that a vertex-corner is also an edge-corner and, hence, cases like a rectangle
has four vertex-corners are also included in this characterization.)

(a) Two vertex-corners. (b) A vertex-corner and
two edge-corners.

(c) Four edge-corners. (d) Two edge-corners and a
side of Ropt is aligned to a
boundary edge of P .

Figure 5.2: The four different cases for Ropt.

This implies that Ropt is either aligned to an edge of P or it is determined
by four edges (since a vertex-corner is determined by two edges). Although this
characterization is quite intuitive, it seems that there is no formal proof published.
Therefore, we state a proof for this characterization in the following.

We start with showing that if Ropt contains only two vertex-corners, they have
to be diagonally opposite and Ropt has to be a square.

Lemma 5.1.1. If Ropt has only two vertex-corners (and no other edge-corner) then
they are diagonally opposite and Ropt is a square.

Proof. The proof is by contradiction. If Ropt has only two vertex-corners that are
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adjacent, then Ropt can trivially be increased.
Thus, we consider the case where Ropt has two diagonally opposite vertex-corners

and Ropt is not a square, see Figure 5.3. Let the vertices of Ropt be a, b, c, and d

a

b c

d

Figure 5.3: This rectangle is not a largest one.

in counterclockwise order, and let a and c be the vertex-corners. The vertices b and
d do not touch the boundary of P . Consider the circle C that is determined by a
and c. Now we move b on C in counterclockwise direction, d moves counterclockwise
on C while keeping b and d antipodal (a and c stay fixed). Then the area of the
rectangle defined by a, b, c, d is a concave function which obtains is maximum when
a, b, c, and d form a square. Either this square is contained in P and we are done.
Otherwise the largest rectangle with opposite vertices a and c is obtained when b or
d are on the boundary of P and, hence, the rectangle has at least two vertex-corners
and an edge-corner. Thus, Ropt was not a largest rectangle.

The following lemma shows that an inscribed rectangle that has only 3 edge-
corners (none of them being a vertex-corner) can never be a largest one.

Lemma 5.1.2. An inscribed rectangle with 3 edge-corners is not an optimal one.

Proof. The proof will be by contradiction. Assume that Ropt has exactly 3 edge-
corners (none of them being a vertex-corner). Without loss of generality, let Ropt
be axis-aligned and let the free corner (the corner that is not an edge-corner) be
the upper right corner. Let the lengths of the sides be a and b. Let α be the angle
between the upper edge of the rectangle and the edge of P on which the upper left
corner lies. Let β be the angle between the right edge of the rectangle and the edge
of P on which the lower right corner lies. (See Figure 5.4 left.)

We fix the lower left corner of the rectangle and move its adjacent corners along
the edges of P , while maintaining a rectangle. We will show that the area of this rect-
angle increases by moving these corners in counterclockwise or in clockwise direction;
hence the rectangle can be increased.

Consider Figure 5.4: We first notice that 0 < α, β < π/2. Let x1, y1 and x2, y2
be the lengths of the sides of the orange and the green rectangle, respectively. We
would like to show that either x1y1 > ab or x2y2 > ab.
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a

α

β

b

α

β
εε

x1

x2

y1

y2

Figure 5.4: From left to right: The rectangle has 3 edge-corners. On the right: Either
the area of the orange or the green rectangle is larger than the area of the black one.

α

β

ε
π/2− β − ε

ε

π/2− α

y1

x1

Figure 5.5: The area of the orange rectangle depends on a, b, α, β, and ε.

By using elementary trigonometry, we have that (see also Figure 5.5)

x1 = a cos(α)
cos(α− ε)

y1 = b cos(β)
cos(β + ε)

Similarly, for the green rectangle we have:

x2 = a cos(α)
cos(α+ ε)

y2 = b cos(β)
cos(β + ε)
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and so

x1y1 = ab cos(α) cos(β)
cos(α− ε) cos(β + ε)

= ab cos(α) cos(β)
cos2 ε cos(α) cos(β) + sin(ε) cos(ε)

[
sin(α) cos(β)− sin(β) cos(α)

]
− sin2(ε) sin(α) sin(β)

= ab cos(α) cos(β)
cos(α) cos(β)− sin2(ε)

[
cos(α) cos(β) + sin(α) sin(β)

]
+ sin(ε) cos(ε) sin(α− β)

= ab cos(α) cos(β)
cos(α) cos(β)− sin2(ε) cos(α− β) + sin(ε) cos(ε) sin(α− β)

Similarly,

x2y2 = a cos(α)b cos(β)
cos(α+ ε) cos(β − ε)

= ab cos(α) cos(β)
cos(α) cos(β)− sin2(ε) cos(α− β) + sin(ε) cos(ε) sin(β − α)

(Notice that we choose ε sufficiently small such that cos(α+ε), cos(α−ε), cos(β+ε),
cos(β + ε) are all larger than zero.)

If β > α, then since cos(α− β) > 0 for 0 < α, β < π/2, it holds that

x1y1 = ab cos(α) cos(β)
cos(α) cos(β)− sin2(ε) cos(α− β)︸ ︷︷ ︸

60

+ sin(ε) cos(ε) sin(α− β)︸ ︷︷ ︸
60

> ab

If α > β it holds that

x2y2 = ab cos(α) cos(β)
cos(α) cos(β)− sin2(ε) cos(α− β)︸ ︷︷ ︸

60

+ sin(ε) cos(ε) sin(β − α)︸ ︷︷ ︸
60

> ab

This proves that a rectangle with 3 edge-corners is never a largest one. A rect-
angle with a larger area can always be constructed by fixing the lower left corner
and moving the adjacent corners along the edges of P , either in clockwise or coun-
terclockwise direction. The area of this rectangle increases until one of the following
happens: The rectangle is either (i) aligned to a boundary edge of P , (ii) has a
vertex-corner and two edge-corners, or (iii) has four edge-corners. This concludes
the proof.

It is easy to see that Ropt has not only one vertex-corner (and no edge-corners);
it is also trivial to see that Ropt has more than two edge-corners or a vertex-corner
and an edge-corner. Lemma 5.1.1 shows that if Ropt has only two vertex-corners
then Ropt is a square. From the proof of Lemma 5.1.2 follows that Ropt is either
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aligned to a boundary edge of P , has a vertex-corner and two edge-corners, or has
four edge-corners. Thus, we can conclude that a largest inscribed rectangle either
(a) has two opposite vertex-corners (and, thus, is a square), (b) has a vertex-corner
and two edge-corners, (c) four edges-corners, or (d) a side is aligned to an edge of the
polygon (Figure 5.2). And so our characterization for a largest rectangle is proven.

Algorithm. Our algorithm proceeds in the following way: Given is a convex poly-
gon P with n vertices, first we compute the largest square in P ; this takes O(n2)
time [42]. Then we compute, for each edge of the polygon, the largest inscribed rec-
tangle aligned to this edge. In total this takes O(n logn) time: The largest inscribed
rectangle aligned to a given direction can be computed in O(logn) time [17] and the
polygon has n edges.

It remains to compute the largest inscribed rectangle that has either four edge-
corners or a vertex-corner and two edge-corners. To keep the algorithm simple, we
handle these cases together. Let e1, e2, e3 be the boundary edges of P containing the
edge-corners. (For simplification, we consider the vertex-corner as an edge-corner).
If the fourth corner is also an edge-corner, let e4 be the edge of P containing it;
otherwise, let e4 be a boundary edge that is intersected by extending the longer side
of Ropt.

α

e1

e2

e3

e4

p1

µ

λ

Figure 5.6: If the position of one corner of the rectangle and the orientation is known,
the rectangle is determined.

Two parameters are necessary to determine the rectangle: The position of a
corner of the rectangle on one of the edges, say e1, and the angle α between e1
and the closest side of Ropt in clockwise direction. Without loss of generality we
assume that e1 is parallel to the x-axis. The remaining corners are then given by
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the following equations (see Figure 5.6):

p2 = p1 + λ
~v

||~v||
∈ e2

p3 = p2 + µ
~w

||~w||
∈ e3

p4 = p1 + µ
~w

||~w||

where
~v =

(
− cosα
sinα

)
and ~w =

(
sinα
cosα

)
It has to be ensured that the line

g = p1 + δ
~w

||~w||
, δ ∈ R

intersects e4 at a point with value δ > µ. Our goal is to maximize λµ. This is an
optimization problem with an objective function with two parameters and a constant
number of polynomial inequalities. Solving this problem takes constant time. Since
there are O(n4) different possibilities for the edges e1, e2, e3, e4, we need O(n4) time
in total.

At the end, the algorithm decides which of the computed rectangles has the
largest area. This takes linear time. Thus, the total running time is O(n4).

5.1.2 Approximation Algorithms

If we know the direction of one of the sides of Ropt, we can compute the largest
rectangle Ropt itself in O(logn) time by applying the algorithm of Alt et al. [17].
The general idea of our algorithm is to approximate the direction of alignment of
a largest inscribed rectangle and to prove that the area of the largest inscribed
rectangle aligned along this direction also approximates |Ropt|. For the computation,
we construct a set of candidate directions and find the largest inscribed rectangle
along each of these directions using the algorithm of Alt et al. [17]. The number of
candidate directions will be O(1

ε ) for the randomized version of our algorithm, and
O( 1

ε2 ) or O(1
ε log 1

ε ) for the deterministic one.
In the following let dopt be a direction of Ropt.

5.1.2.1 Approximating the Direction of Ropt

The main idea of our algorithm is to find a direction close enough to the direction
of any side of Ropt. Such a direction will be called an ε-close direction, for a fixed
ε > 0. To define what ε-close actually means, we first suppose that we know Ropt.
The intersection of the diagonals of Ropt is denoted as its center s. Let ab be one
of the two shortest sides of Ropt and let m be the midpoint of the segment ab, see
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Figure 5.7. Then, ∠(asb) 6 π
2 , and we define the triangles T1 and T2 as the two

triangles with vertices s, m and the third vertex being either e := m − ε(b − m)
or f := m + ε(b −m). Analogously, choosing the side of Ropt opposite of ab gives
the two triangles T3 and T4 having the same area. The area for each triangle Ti is
ε | mb || sm | /2 and therefore an ε/8-fraction of |Ropt| = 4 | mb || sm |. We define a
direction to be ε-close if the line containing s with that direction intersects ef .

s

ba

PRopt

T4

m f

T1

T3

T2

e

Figure 5.7: A largest rectangle Ropt in a convex polygon P . The area for each Ti,
1 6 i 6 4, is an ε/8-fraction of |Ropt|.

Now we show that an ε-close direction gives us a rectangle Rapx with
|Rapx| > (1 − cε)|Ropt| for a constant c. (This will lead to an (1 − ε) approxi-
mation by replacing cε with ε′ at the expense of an additional (but small) constant
factor in the running time.) For this we have to prove the following lemma.

Lemma 5.1.3. A largest inscribed rectangle Rapx that is aligned to an ε-close direc-
tion contains an area of at least (1− 6.5ε)|Ropt|.

a

s

a′ m

m′

`

α
θ

b

b′T ′
T

Figure 5.8: The triangle T = asb.

Consider the triangle T = asb in Ropt (see Figure 5.8) and an ε-close direction
dapx. Let ` be the line with direction dapx that contains s; we assume w. l. o. g. that
` intersects mf in Figure 5.7. (The case where ` intersects me is symmetric.) We
denote the angle between sm and ` by θ and the angle between ` and sb by α. Let
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T ′ be the isosceles triangle of maximum area that is contained in T and symmetric
along ` (i. e., with ` as perpendicular bisector of the base side). Note that T ′ must
contain s as a vertex. Let a′ and b′ be the two remaining vertices of T ′ and consider
the midpoint m′ of the segment a′b′.

Instead of comparing |Rapx| with |Ropt| directly, we now compare the triangles T
and T ′. If we can show that |T ′| > (1− cε)|T | for some constant c, then the largest
rectangle aligned to dapx has at least an area of (1 − cε)|Ropt|. The reduction to
triangles does not matter for the approximation, as |Ropt| = 4|T | and |Rapx| > 4|T ′|.

Recalling elementary trigonometry we see that

ε = |mf |
|mb|

>
tan θ

tan (θ + α) ,

|T | = |sa|2 sin(α+ θ) cos(α+ θ), and

|T ′| = |sa′|2 sin(α) cos(α) = |sm|2

cos2(α− θ) sin(α) cos(α)

= |sa|2 cos2(α+ θ)
cos2(α− θ) sin(α) cos(α).

On the other hand, we want to show that

|T ′| > (1− cε)|T |

⇔|T
′|
|T |

> 1− cε

⇔
|sa|2 cos2(α+θ)

cos2(α−θ) sin(α) cos(α)
|sa|2 sin(α+ θ) cos(α+ θ) > 1− cε

⇔ sin(α) cos(α)
cos2(α− θ) tan(α+ θ) > 1− cε

for a constant c. To prove this inequality, we use the following lemma.

Lemma 5.1.4. The function f(α, θ) = sin(α) cos(α)
cos2(α−θ) + c tan(θ)− tan(θ+α) is positive

for 0 6 α 6 π
4 , 0 6 θ 6 π

8 and any constant c > 6.5.

To prove this lemma, we need the following two propositions.

Proposition 5.1.5. 1
4 tan(x) 6 tan(x3 ) for 0 6 x 6 π

4 .

Proof. Consider the function f(x) = 1
4 tan(x) − tan(x3 ). We have to show that

f(x) 6 0 for 0 6 x 6 π
4 . The first and second derivatives of f(x) with respect to

x are:
f ′(x) = 1

4 sec2(x)− 1
3 sec2(x3 ),
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f ′′(x) = 1
2 sec2(x) tan(x)− 2

9 sec2(x3 ) tan(x3 )

Since tan(x) > tan(x3 ), we have

f ′′(x) > 2 tan(x3 )(1
4 sec2(x)− 1

9 sec2(x3 )).

Let x′ be the root of f ′(x) = 0. That is, let x′ ∈ [0, π4 ] be such that

1
4 sec2(x′)− 1

3 sec2(x
′

3 ) = 0

Since tan(x) > 0 in the domain 0 6 x 6 π
4 , we have

f ′′(x′) > 2 tan(x
′

3 )2
9 sec2(x

′

3 ) > 0

Therefore in the range [0, π4 ], f(x) attains a minimum whenever f ′(x) = 0 and the
maxima are attained only at the boundary. Since f(0) = 0 and f(π4 ) < 0, f(x) 6 0
for 0 6 x 6 π

4 .

Proposition 5.1.6. If we choose ε 6 1
4 , then θ 6

α
2 .

Proof. This proof uses Proposition 5.1.5 for the inequality marked with (×).

tan(θ)
tan(α+ θ) 6 ε 6

1
4

tan(θ) 6 1
4 tan(α+ θ)

(×)
6 tan(θ + α

3 )

θ 6
θ + α

3 for [0, π4 ]

θ 6
α

2

Now we can continue with the proof of Lemma 5.1.4.

Proof of Lemma 5.1.4.

sin(α) cos(α)
cos2(α−θ) + c tan(θ)− tan(θ + α)

= tan(α) cos2(α)
cos2(α−θ) + c tan(θ)− tan(θ)+tan(α)

1−tan(θ) tan(α)

= tan(α) cos2(α)
cos2(α−θ) + c tan(θ)− tan(θ)

1−tan(θ) tan(α) −
tan(α)

1−tan(θ) tan(α)

= tan(α) cos2(α)
cos2(α−θ) + tan(θ)(c− 1

1−tan(θ) tan(α))− tan(α)
1−tan(θ) tan(α)
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Recall that 0 6 α 6 π
4 and 0 6 θ 6 π

8 and thus tan(α) 6 1. Hence
1

1−tan(θ) tan(α) 6 1
1−tan(π8 ) < 1.71, so it suffices to show that

tan(α) cos2(α)
cos2(α− θ) + c′ tan(θ)− tan(α)

1− tan(θ) tan(α) > 0

for some constant c′ = c− 1.71 > 0.

tan(α) cos2(α)
cos2(α−θ) + c′ tan(θ)− tan(α)

1−tan(θ) tan(α)

= tan(α)1+tan2(α−θ)
1+tan2(α) + c′ tan(θ)− tan(α)

1−tan(θ) tan(α)

= tan(α)
(

1+tan2(α−θ)
1+tan2(α) + c′ tan(θ)

tan(α) −
1

1−tan(θ) tan(α)

)
= tan(α)

1+ (tan(α)−tan(θ))2

(1+tan(θ) tan(α))2

1+tan2(α) + c′ tan(θ)
tan(α) −

1
1−tan(θ) tan(α)


Replacing tan(θ) by x and tan(α) by y, we want to show that

y(
1 + (y−x)2

(1+xy)2

1 + y2 + c′
x

y
− 1

1− xy ) > 0

y

1+ (y−x)2

(1+xy)2

1+y2 + c′ xy −
1

1−xy


= y

(
(1 + xy)2 + (y − x)2

(1 + y2)(1 + xy)2 + c′
x

y
− 1

1− xy

)

= y

y(1− xy)
(
(1 + xy)2 + (y − x)2

)
+ c′x(1 + y2)(1 + xy)2(1− xy)− y(1 + y2)(1 + xy)2

y(1 + y2)(1 + xy)2(1− xy)


= y

(
y(1− xy)(1 + x2y2 + x2 + y2) + c′x(1 + y2)(1 + xy)2(1− xy)− y(1 + y2)(1 + xy)2

y(1 + y2)(1 + xy)2(1− xy)

)

= y

(
y(1− xy)(1 + x2)(1 + y2) + c′x(1 + y2)(1 + xy)2(1− xy)− y(1 + y2)(1 + xy)2

y(1 + y2)(1 + xy)2(1− xy)

)

= y(1− xy)(1 + x2) + c′x(1 + xy)2(1− xy)− y(1 + xy)2

(1 + xy)2(1− xy)

Since the denominator is always larger than 0, it suffices to show that

y(1− xy)(1 + x2) + c′x(1 + xy)2(1− xy)− y(1 + xy)2 > 0
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y(1− xy)(1 + x2) + c′x(1 + xy)2(1− xy)− y(1 + xy)2

= y(1 + x2 − xy − x3y) + (c′x− c′x2y)(1 + 2xy + x2y2)− y(1 + 2xy + x2y2)
= x2y − xy2 − x3y2 + c′x+ c′x3y2 + 2c′x2y − c′x2y − c′x4y3 − 2c′x3y2 − x2y3 − 2xy2

= x
(
(c′ + 1)xy − 3y2 − x2y2 + c′ − c′x2y2 − c′x3y3 − xy3)

Recall that y = tan(α). Since tan(α) 6 1, it suffices to show that(
−3− x2 + c′ − c′x2 − c′x3 − x

)
> 0. That is (c′ − 3 − x − (c′ + 1)x2 − c′x3) > 0.

Since x = tan(θ) 6 tan(π8 ) it suffices to pick c′ such that
c′−3−tan(π8 )−(c′+1) tan2(π8 )−c′ tan3(π8 ) > 0. Thus c′ > 3+tan(π8 )+tan2(π8 )

1−tan2(π8 )−tan3(π8 ) ≈ 4.734.

This implies that the function sin(α) cos(α)
cos2(α−θ) + c tan(θ) − tan(θ + α) is positive for

0 6 α 6 π
4 , 0 6 θ 6 π

8 and for any c > 6.5.

Using Lemma 5.1.4 and the property ε > tan θ
tan(θ+α) , we obtain the following corol-

lary.

Corollary 5.1.7. Let 0 6 α 6 π
4 , 0 6 θ 6 π

8 and let c > 6.5. Then

|T ′|
|T |

= sin(α) cos(α)
cos2(α− θ) tan(α+ θ) > 1− c tan θ

tan (θ + α) > 1− cε.

From Corollary 5.1.7 follows immediately that |T ′| > (1− 6.5ε)|T |. This implies
that |Rapx| > (1− 6.5ε)|Ropt| since 4|T | = |Ropt| and 4|T ′| = |Rapx|.

5.1.2.2 How to Get an ε-close Direction

It remains to show how to compute a direction ε-close to dopt efficiently. Assume
first that we know the center s of Ropt. If we choose Θ(1

ε ) random points uniformly
distributed inside P , at least one of them lies with high probability in one of the
triangles T1, T2, T3 and T4 since the area of each triangle is an ε/8 fraction of |Ropt|.
Thus, taking the direction from s to this point gives us immediately an ε-close
direction (see Figure 5.7). As we do not have the information about the location of
s, we assume that any other point p inside Ropt is given. Then at least one triangle
Ti, 1 6 i 6 4, has a translated copy T ′i , where the translation maps s to p.

The triangle T ′i is contained in Ropt and therefore also contained in P . Picking
a point q′ in T ′i and taking the direction pq′ has the same effect as picking a point
q in Ti and taking the direction sq. Thus, we do not have to compute s explicitly.
Instead, it is sufficient to find a point inside Ropt (see also Figure 5.9).

Even though we do not know Ropt, picking points from it essentially amounts
to picking points from the input polygon because the area of the largest inscribed
rectangle in a convex polygon is at least half of the area of the polygon. This was
proven by Radziszewski in 1952 [99]. More formally,
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s

p

T1T2

T3T4

T ′
1

Figure 5.9: T ′1 is a translated version of T1 where s maps p.

Lemma 5.1.8 ([99, Theorem 6]). Let P be a convex polygon and Ropt be a largest
inscribed rectangle in P , then |Ropt| > |P |/2.

Randomized algorithm. It follows from Lemma 5.1.8 that if we pick k points
sampled uniformly at random from a convex polygon P , the expected number of
points inside Ropt is k

2 . All these points are distributed uniformly at random inside
Ropt. Moreover, if we pick Θ(1

ε ) points uniformly at random, the expected number
of points inside the triangle T ′i is Θ(1). This obtains a constant success probabil-
ity. More formally, let p, q be two points sampled uniformly at random in P then
Pr[p ∈ Ropt] = 1

2 and Pr[q ∈ T ′i ] = ε
16 . Let k and k′ be constants. We pick k random

points as possible candidates for a point in Ropt and k′

16ε random points as possible
candidates for a point in T ′i . Taking all possible pair of points where each pair con-
sists of one point from each candidate set and computing the lines defined by these
pairs gives a probability of (1 − 1

2k )(1 − (1 − ε
16)k′/16ε) that one line has an ε-close

direction. This is called the probability of success. On the other hand the probability
of failure is 1

2k + (1− ε
16)k′/16ε − 1

2k (1− ε
16)k′/16ε. By using the following inequalities

we can show that these probabilities are constant:

• (1 + x)n > 1 + nx (Bernoulli’s inequality)

• 1− x = 1−x2

1+x 6 1
1+x , for x > −1

It follows that the probability of failure is constant and, hence, so is the probability
of success:

1
2k + (1− ε

16)k′/16ε − 1
2k (1− ε

16)k′/16ε = 1
2k + (1− ε

16)k′/16ε(1− 1
2k )

6
1
2k + 1

(1 + ε
16)k′/16ε (1−

1
2k )

6
1
2k + 1

1 + k′

256
(1− 1

2k ) = O(1).
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The probability of failure can be decreased to an arbitrary low constant t′ > 0 by
using probability amplification, that is, the algorithm is repeated several times. To
achieve a probability of any constant t′ > 0 the algorithm has to be repeatedO(log 1

t′ )
times. Expressed in a different way, to achieve a success probability of any t < 1 the
algorithm has to be repeated O(log 1

1−t) times.
Thus, we have the following lemma.

Lemma 5.1.9. Let P be a convex polygon with n vertices given in cyclic order and
let also a source of random points in P be given. Then we can compute a (1 − ε)-
approximation Rapx for the largest inscribed rectangle in P with probability t in time
O(1

ε logn log 1
1−t) for any 0 < t < 1.

We can achieve the same running time without random points in P being given.
It is easy to see that with a preprocessing time of O(n logn) we can create a data
structure for a (not necessarily convex) polygon P that returns a point distributed
uniformly at random inside P in O(logn) time per sample. This can be achieved by
first computing a triangulation of the point set and then creating a balanced binary
tree with the triangles as leaves, where the weight of any node is the sum of areas of
all triangles contained in the subtree rooted at that node. Sampling a random point
from P then amounts to traversing this tree from root to a leaf and following the left
or the right child at any node with the probability proportional to their weights.

Since the ordering of the vertices of P is given and we want to avoid any pre-
processing for P , we will not sample points from P uniformly at random. Instead,
we take a uniform distribution over a square and fit these points inside the poly-
gon. Thus, the sampling from P will simulate the sampling of random points from
a square. Recall that we assume that the ordering of the vertices of P is known
in advance. Let vt, vb be the topmost and bottommost vertices of P respectively;
their computation takes O(logn) time. We pick a height h between the two vertices
uniformly at random and take the longest horizontal segment that fits inside P at
this height. Again, this segment can be computed in O(logn) time. We pick a point
uniformly at random on this segment. This will be our sample point in P. We can
repeat this process as many times as desired to get a large set of sample points that
are in P. Each of these sample points can be generated in O(logn) time.

We show that such a sampling works for our algorithm. Recall that two points
p and q from P are needed such that p lies in a largest inscribed rectangle Ropt
and q lies in a triangle of area Ω(ε) that is a translated copy of one of the Ti’s
(see Figure 5.7). With our sampling method, the probability that a sample point is
contained in any convex region Q of area ε|P | will be at least ε

2 .
Let Lh be the length of the largest horizontal segment inside P at height h, and

lh be the length of the largest horizontal segment inside Q at height h. Also, assume
that the bottommost and topmost points in P are at heights 0 and 1 respectively

(see Figure 5.10). Then |Q|
|P | =

∫ 1
0 lh dh∫ 1
0 Lh dh

. The probability that a sample point us-
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1

0

P

Q

lh Lh

1

0

P

Q

lh Lh

h1

h2

Figure 5.10: Sampling from a convex region Q in P .

ing the above sampling method lies in Q is
∫ 1

0
lh
Lh
dh. For any value of h, we can

find a quadrilateral that fits inside P and has area at least Lh
2 . This implies that

Lh
2 6

∫ 1
0 Lh dh and

∫ 1

0

lh
Lh

dh >
1
2

∫ 1
0 lh dh∫ 1
0 Lh dh

.

Since each of these sample points can be generated in logarithmic time, the
complexity of our algorithm is O(1

ε logn). We summarize the steps in Algorithm 6.

Algorithm 6
Input: A convex polygon P in the plane.
Output: An inscribed rectangle in P that is a (1− ε)-approximation of the largest

one.
1: Take Θ(1) points in P with the aforementioned distribution and store them in
U .

2: Take Θ(1/ε) points in P with the aforementioned distribution and store them in
V .

3: |Rapx| = 0
4: for all u ∈ U do
5: for all v ∈ V do
6: Compute the largest inscribed rectangle S that is aligned to uv.
7: if |S| > |Rapx| then
8: Rapx = S

return Rapx

Theorem 5.1.10. Let P be a convex polygon with n vertices given in cyclic or-
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der. An inscribed rectangle in P with area of at least (1 − ε) times the area of a
largest inscribed rectangle can be computed with probability t in O(1

ε logn log 1
1−t)

deterministic time for any constant t < 1.

Deterministic algorithm. For the deterministic case, it remains to show how the
algorithm computes sample points in P . First, we compute an enclosing rectangle
Re of P such that |Re| is only a constant factor times bigger than |P |. This can be
done using the following lemma due to Ahn et al. [7].

Lemma 5.1.11 ([7, Lemma 5]). Let P be a convex polygon with n vertices given
in cyclic order. Then there is an algorithm that computes an enclosing rectangle R
such that P ⊂ R and |R| 6 2

√
2|P | in O(logn) time.

Creating a grid of constant size in an enclosing rectangleR of Lemma 5.1.11 allows
us to ensure a constant number of grid points in P . This is proven in Lemma 5.1.13
by using Pick’s theorem.

Theorem 5.1.12 (Pick’s Theorem [97]). Let an integer grid and a simple polygon P
with all vertices lying on the grid points be given. Let i be the number of grid points
contained in P and b be the number of grid points on the boundary of P . Then
|P | = b

2 + i− 1.

Lemma 5.1.13. For a convex set S, a constant c, and every enclosing rectangle R
of S with |R| 6 c|S|, S contains at least k2

2c grid points of an k × k grid on R for k
being a sufficiently large constant (k > 8c).

Proof. Let G be a k × k grid on R and let |R| = 1. We shrink S to a maximum
area polygon S′ ⊆ S having all vertices on grid points of G. Because of convexity,
|S| − |S′| is at most the area of 4k grid cells.

|S′| > |S| − 4k 1
k2 >

1
c
− 4
k

|S′| = ( b2 + i− 1) 1
k2 >

1
c
− 4
k
(by Pick’s theorem)

b+ i >
k2

c
− 4k + 1

Thus, at least 1
2ck

2 grid points lie in S, for k being a sufficiently large constant
(k > 8c).

It follows from Lemma 5.1.13 that choosing a grid with constant size on the
rectangle R implies that Ropt in P contains a constant number of grid points (in
fact k2

2c ). For the next algorithm (Algorithm 7), we will only use one of these grid
points. Additionally, Lemma 5.1.13 shows that every ε-fraction of P , in particular
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Algorithm 7
Input: A convex polygon P in the plane.
Output: An inscribed rectangle in P that is a (1− ε)-approximation of the largest

one.
1: Compute an enclosing rectangle Re with area |Re| 6 2

√
2|P |

2: Compute a Θ(1)×Θ(1) grid on Re. Let G1 be the set of grid points.
3: Compute a Θ(1

ε )×Θ(1
ε ) grid on Re. Let G2 be the set of grid points.

4: |Rapx| = 0
5: for all u ∈ G1 do
6: for all v ∈ G2 do
7: Compute the largest inscribed rectangle S that is aligned to uv
8: if |S| > |Rapx| then
9: Rapx = S

return Rapx

every triangle T ′i , contains many grid points for a big enough grid on R. This fact
will be used later to improve the running time of the algorithm with ε-nets.

The idea is to take two grids G1 and G2 on R of size Θ(1)×Θ(1) and Θ(1
ε )×Θ(1

ε ),
respectively, iterate through all pairs of grid points in G1 ×G2 and get at least one
pair (u, v) with u ∈ Ropt and v ∈ T ′i using Lemma 5.1.13. Hence, the direction of uv
is ε-close. We summarize the steps in Algorithm 7.

Algorithm 7 is deterministic with running time O( 1
ε2 logn). We can further re-

duce the running time to O(1
ε log 1

ε logn+ 1
ε28 ) by using the tools from the theory of

ε-nets. Here we just give an outline of how these tools can be used, and we refer the
reader to [88] for more details.

A subset S′ of a given set S of N points is called an ε-net for S with respect to
a set of objects, if any object containing at least ε

2N points of S contains a point
of S′. For objects with VC-dimension d, a subset S′ of size O(1

ε log 1
ε ) always exists

and can be computed in deterministic time O(N2d). Triangles have VC-dimension
7, and we consider the set S of grid points of a 1

ε ×
1
ε grid, so N = 1

ε2 . Thus, we can
compute an ε-net for S of size O(1

ε log 1
ε ) in time O( 1

ε28 ).

Theorem 5.1.14. Let P be a convex polygon with n vertices given in cyclic order.
An inscribed rectangle in P with area of at least (1 − ε) times the area of a largest
inscribed rectangle can be computed

• in O( 1
ε2 logn) deterministic time.

• in O(1
ε log 1

ε logn+ 1
ε28 ) deterministic time.
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5.2 Largest Inscribed Rectangles in Simple Polygons

The same ideas can be used to approximate the largest inscribed rectangle in a
simple polygon with or without holes. The largest inscribed rectangle Ropt in a
simple polygon (with or without holes) with n vertices has an area of at least 1

2(n−2)
times the area of the polygon. (This can be proven by first triangulated the polygon;
then the area of the largest inscribed rectangle in the largest of these triangles has
an area of at least 1

2(n−2) times the area of the polygon.) Moreover, a largest axis-
aligned rectangle in a simple polygon can be computed in O(n logn) time [29] and in
a simple polygon with holes in O(n log2 n) time [37]. Since |Ropt| is an Ω( 1

n)-fraction
of P and the area of each of the four triangles inside Ropt is an Ω( εn)-fraction of P ,
we get the following running times for computing an inscribed rectangle of area at
least (1− ε)Ropt.

• For simple polygons: With constant probability in time O(1
εn

3 logn).

• For polygons with holes: With constant probability in time O(1
εn

3 log2 n).

In comparison with the algorithm of Hall-Holt et al. [66], which deals only with
fat rectangles, our algorithm can handle general rectangles at the expense of a slower
running time.

5.3 Conclusions and Open Problems

We gave efficient randomized and deterministic approximation algorithms for the
problem of computing a largest area inscribed rectangle in convex and simple poly-
gons.

One related open problem is to approximate a largest perimeter inscribed rect-
angle. Our algorithms base on the fact that the area of a largest area inscribed
rectangle has constant fraction of the area of the polygon itself. This is not the case
for a largest perimeter rectangle. Consider a triangle with two angles being strictly
smaller than π/4. Then the largest perimeter rectangle is exactly the largest side of
this triangle, hence its area is zero.

We have shown how to extend the approximation algorithm for the largest area
inscribed rectangle in convex polygons to simple polygons. However, it is reasonable
to ask whether there is a more efficient algorithm. Another remaining open problem
is to find an efficient exact algorithm for computing a largest area inscribed rectangle
in a convex polygon. The stated straightforward algorithm did not use the given
characterization of Ropt. We believe that this characterization will help finding an
efficient algorithm.





Concluding Remarks

In this thesis we studied different geometric stabbing and covering problems in the
plane. The thesis consists of two parts. The first part dealt with stabbing problems.
We first considered the problem of stabbing geometric objects with the boundary
of a convex polygon; this boundary is then called a convex stabber. We proved the
problem to be NP-hard for most types of geometric objects. Additionally, we studied
the corresponding optimization problem and proved it to be NP-hard in most of our
studied variants. In the next chapter, we studied the problem of stabbing objects in
the plane with the vertices of a polygon. To the best of our knowledge, this problem
was not studied so far. We gave the first polynomial time algorithm. The last chapter
dealt with stabbing sequences of objects with sequences of points. More precisely,
we studied the problem of stabbing two sequences of segments (resp. disks) with two
point sequences where the discrete Fréchet distance between these point sequences
is as small as possible. We gave efficient algorithms for both cases.

The second part of the thesis dealt with covering problem. We first considered a
new version of the two center problem where the input is a set D of disks in the plane.
We distinguished between two different variants: First, we studied the problem of
finding two smallest congruent disks such that each disk in D is intersected by one of
these two disks. Then, we studied the problem of covering the set D by two smallest
congruent disks. We also investigated an optimization version. We gave efficient
exact and approximation algorithms for all of these variants.

Finally, in the last chapter, we investigated the problem of computing a largest
area rectangle inscribed in a convex polygon with n vertices. For the case where
the order of the vertices of the polygon is given, we gave efficient approximation
algorithms whose running times are only logarithmically dependent on n.

At the end of each chapter, we gave some conclusions and stated open problems.
So, problems for future work on the different topics can be found at the end of the
corresponding chapters.

Since we considered all problems in the plane, a question that arises for all studied
problems, is the question how these problems behave in higher dimensions. We give
a short overview of the known results so far:
For the problem of finding a convex stabber, it was proven by Arkin et al. [23] that in
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three dimensions, it is NP-hard to find a convex (surface) stabber for a set of balls.
To the best of our knowledge, the problem of stabbing objects in three dimensions
(or higher) with the vertices of a polytope was not considered so far. However, our
algebraic algorithm can be generalized to higher dimensions with an increase of the
running time.

The algorithms we stated in Chapter 3 for stabbing sequences of segments (or
disks) with two point sequences under the condition that the discrete Fréchet distance
between these point sequences is a small as possible can also be generalized to higher
dimension; for details see [11].

It is known, that the two-center problem for points in Rd is NP-complete, if d is
not fixed [92]. Recently, Agarwal et al. [3] presented efficient randomized algorithms
for the two-center problem in three dimension. We are not aware of if the two-center
problem for balls in three or higher dimension has been considered so far.

As already stated, there is no efficient exact algorithm known that computes a
largest inscribed rectangle in a convex polygon. Hence, it might be more reasonable
to study the planar case more in detail than to consider the problem in higher
dimensions.
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