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Introduction: The coronavirus disease 2019 (COVID-19) pandemic caused by

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted

the danger posed by human coronaviruses. Rapid emergence of immunoevasive

variants and waning antiviral immunity decrease the effect of the currently

available vaccines, which aim at induction of neutralizing antibodies. In

contrast, T cells are marginally affected by antigen evolution although they

represent the major mediators of virus control and vaccine protection against

virus-induced disease.

Materials and methods: We generated a multi-epitope vaccine (PanCoVac) that

encodes the conserved T cell epitopes from all structural proteins of

coronaviruses. PanCoVac contains elements that facilitate efficient processing

and presentation of PanCoVac-encoded T cell epitopes and can be uploaded to

any available vaccine platform. For proof of principle, we cloned PanCoVac into a

non-integrating lentivirus vector (NILV-PanCoVac). We chose Roborovski dwarf

hamsters for a first step in evaluating PanCoVac in vivo. Unlike mice, they are

naturally susceptible to SARS-CoV-2 infection. Moreover, Roborovski dwarf

hamsters develop COVID-19-like disease after infection with SARS-CoV-2

enabling us to look at pathology and clinical symptoms.
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Results: Using HLA-A*0201-restricted reporter T cells and U251 cells expressing

a tagged version of PanCoVac, we confirmed in vitro that PanCoVac is processed

and presented by HLA-A*0201. As mucosal immunity in the respiratory tract is

crucial for protection against respiratory viruses such as SARS-CoV-2, we tested

the protective effect of single-low dose of NILV-PanCoVac administered via the

intranasal (i.n.) route in the Roborovski dwarf hamster model of COVID-19. After

infection with ancestral SARS-CoV-2, animals immunized with a single-low dose

of NILV-PanCoVac i.n. did not show symptoms and had significantly decreased

viral loads in the lung tissue. This protective effect was observed in the early

phase (2 days post infection) after challenge and was not dependent on

neutralizing antibodies.

Conclusion: PanCoVac, a multi-epitope vaccine covering conserved T cell

epitopes from all structural proteins of coronaviruses, might protect from

severe disease caused by SARS-CoV-2 variants and future pathogenic

coronaviruses. The use of (HLA-) humanized animal models will allow for

further efficacy studies of PanCoVac-based vaccines in vivo.
KEYWORDS

universal COVID-19 vaccine, coronaviruses, multi-epitope vaccine, T cell epitopes, pan-
coronavirus vaccine, dwarf hamster COVID-19 model, T-cell-directed vaccine
1 Introduction

The coronavirus disease 2019 (COVID-19) pandemic illustrates

the great danger posed by coronaviruses. These enveloped viruses

belong to the subfamily Coronavirinae from the family

Coronaviridae (1). They can jump from bats via bridging hosts

into humans thereby adapting to and spreading in human

populations (2, 3). This happened three times in the past 20

years. Severe acute respiratory syndrome coronavirus (SARS-

CoV)-1 emerged in 2002 (4) and Middle East respiratory

syndrome coronavirus (MERS-CoV) was first detected in 2012

(5). They were responsible for separate viral epidemics with case

fatality rates of up to 10% for SARS-CoV-1 (6) and 35% for MERS-

CoV (7). The currently circulating pandemic SARS-CoV-2 emerged

in 2019 and is causing huge detrimental socio-economic damage

and millions of deaths (8) although it has a much lower case fatality

rate in unvaccinated populations compared to SARS-CoV-1 and

MERS-CoV (9). In South East Asia, numerous bat species are

infected with coronaviruses belonging to the Sarbecovirus

subgenus of the genus Betacoronavirus like SARS-CoV-1 and

SARS-CoV-2 (10–13). In this region, significant levels of bat-to-

human coronavirus spillover are observed suggesting that future

outbreaks with sarbecoviruses are likely (14). Thus, universal

coronavirus vaccines that provide a broad, robust, and durable

protection are urgently needed (15–19).

The coronavirus genome consists of non-segmented, single-

stranded, positive-sense RNA and is the largest known amongst

RNA viruses (20). It encodes non-structural and structural proteins.

The latter encompass the spike (S), envelope (E), membrane (M),

and nucleocapsid (N) protein. A receptor-binding domain (RBD)
02
located on the S protein interacts with host cell surface receptors

thereby facilitating viral entry. Currently available SARS-CoV-2

vaccines are administered via intramuscular injection and aim at

systemic induction of neutralizing antibodies, which mostly bind to

the RBD thereby preventing virus infection (21). Although these

first generation vaccines have mitigated the effects of the pandemic

(22), major problems remain. Firstly, the levels of neutralizing

antibodies quickly decrease after vaccination (23, 24). Secondly,

intramuscular injection only weakly stimulates antiviral mucosal

immunity in the respiratory tract, the site of viral entry (25).

Thirdly, emerging viral variants of concern (VOC) such as B.1.1.7

(Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and the

recently identified B.1.1.529 (Omicron) with its numerous

subvariants (notably BA.1, BA.2, BA.4 and BA.5) evade

neutralizing antibodies due to mutations mainly within the RBD

sequence (26–30). These disadvantages combined explain why the

effectiveness of current vaccines is waning rapidly resulting in loss

of protection from infection and possibly also from disease (31–33).

Besides neutralizing antibodies, T cells originating in the

thymus fulfill essential antiviral functions (34). CD8+ T cells

eliminate virus-infected cells thereby preventing viral cell-to-cell

spread and CD4+ T cells optimize antibody production by B cells

(35). In addition, CD4+ T cells provide signals that help to generate

and program memory CD8+ T cells (36, 37). In non-severe SARS-

CoV-2 infections of unvaccinated virus-naive individuals virus-

specific T cell responses precede PCR detection and occur 1-2 weeks

before virus-specific antibodies (38). T cells, either induced by

infection, by vaccination or by their combination, protect from

severe COVID-19 and are more important players than neutralizing

antibodies in elimination of SARS-CoV-2 (15, 39–43). For example,
frontiersin.org
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patients deficient in B cells but with intact T cell function can cope

with SARS-CoV-2 infection (44–46). In macaques that had

recovered from SARS-CoV-2 infection, depletion of CD8+ T cells

decreases the protective effect of acquired immunity against re-

challenge (47). In line with these observations, a SARS-CoV-2 N

protein-based vaccine, which does not elicit neutralizing antibodies,

established protective immunity in small animal models of COVID-

19 (48).

The T cell responses against SARS-CoV-2 persist most likely for

many years and are detectable even in the absence of memory B cell

responses (49–57). In contrast to neutralizing antibodies that bind

to the RBD, T cell responses are directed against a broad spectrum

of epitopes and are not disrupted by the antigenic evolution of

SARS-CoV-2 (58–70). This is explained by the polymorphic HLA

molecules, which present a highly diverse repertoire of T cell

epitopes derived from all viral proteins thereby preventing

efficient viral immune escape (71).

Intriguingly, pre-existing T cell responses to SARS-CoV-2

epitopes are found frequently in unexposed individuals and pre-

pandemic blood samples (51, 72–77). They are best explained by

previous exposure to the four known endemic coronaviruses

(HCoV-OC43, HCoV-229E, HCoV-HKU1, and HCoV-NL63)

that cause about one-third of common colds in humans (78–80).

There is accumulating evidence that these cross-reactive T cells are

functional in vivo and have a positive effect on COVID-19 outcome

and COVID-19 vaccination (41, 49, 55, 75, 81–88). It has been

reported that pre-existing cross-reactive memory T cells predict

efficient COVID-19 vaccine-induced immune responses (82–84). In

addition, T cell epitopes have been identified that are highly

conserved between human and animal coronaviruses (89) and

bind to common human MHC molecules (90). Thus, induction of

a broad and durable cross-reactive T cell response specific for highly

conserved epitopes of pathogenic coronaviruses in the upper

respiratory tract is an attractive strategy for urgently needed pan-

coronavirus vaccines (91).

In this study, we generated a codon optimized DNA sequence

(PanCoVac) that encodes in a compact form the conserved T cell

epitopes from all structural proteins. For this purpose, we

deconstructed coronavirus genomes and generated a multi-

epitope vaccine with a special architecture facilitating processing

and presentation of epitopes. We cloned PanCoVac into a non-

integrating lentivirus vector (NILV-PanCoVac) and tested the

protective effect of intranasal (i.n.) administration of a single low

dose of NILV-PanCoVac in the Roborovski dwarf hamster model of

COVID-19.
2 Materials and methods

2.1 In silico identification of epitopes

For PanCoVac design, NetMHCpan-4.1 in combination with

data available in the Immune Epitope Database (IEDB, http://

www.iedb.org/) were used to identify peptides potentially binding

to human MHC-I (HLA-I) alleles (HLA-A, HLA-B, and HLA-C).

NetMHCIIpan 4.0 was used for bioinformatic analysis of peptide
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binding to humanMHC-II (HLA-II) alleles (92). Conserved regions

of at least 8 amino acids from the structural proteins of SARS-CoV-

1 (Tor 2), ancestral SARS-CoV-2 (Wuhan-Hu-1), SARS-CoV-2

variants (B.1.1.7, Alpha; B.1.351, Beta; P.1, Gamma), and common

cold coronaviruses (HKU1, 229E, NL63 and OC43) were

considered using the commonly applied half-maximal inhibitory

concentration (IC50) threshold of 500 nM for HLA-I and 1000 nM

for HLA-II.
2.2 In silico testing of antigenicity,
allergenicity, and toxicity

For predicting antigenicity of PanCoVac, we used VaxiJen, the

web server for alignment independent prediction of protective

antigens (http://www.ddgpharmfac.net/vaxijen/VaxiJen/

VaxiJen.html). Prediction is based on auto- and cross-covariance

(ACC) transformation method. The threshold was adjusted to 0.5,

the recommended threshold for maximal accuracy (93). The web

server AllerCatPro 2.0 (https://allercatpro.bii.a-star.edu.sg/) was

used for predicting allergenic potential (94). We analyzed peptide

toxicity using the web server ToxinPred (https://webs.iiitd.edu.in/

raghava/toxinpred/pep_test.php). This tool was adjusted to screen

all PanCoVac peptides at fragment length of 20 amino acids. We

applied a hybrid approach that combines support vector machine

(SVM) output, at a threshold of 1.0, with motif information for a

biologically reliable prediction of toxic peptides (95).
2.3 Codon optimization

PanCoVac amino acid sequence was reverse translated and the

DNA codon usage was optimized for human cell expression using

the Codon Optimization tool from Integrated DNA Technologies

(IDT) (www.idtdna.com). The final PanCoVac DNA sequence was

synthesized by Thermo-Fisher Scientific and cloned into pLeGo-

iG2 (96). LeGO-iG2 was a gift from Boris Fehse (Addgene plasmid #

27341; http://n2t.net/addgene:27341; RRID: Addgene_27341). The

PanCoVac sequences were inserted at the BamHI and NotI

multiple-cloning site, followed by an internal ribosome entry site

(IRES), which drives expression of enhanced green fluorescence

protein (EGFP).
2.4 Detection of PanCoVac protein

We generated a FLAG-tagged version of PanCoVacE6 (see 2.9) by

fusing the FLAG peptide to the C-terminus of PanCoVacE6

(PanCoVacE6-FLAG). U251 cells were left untransfected or

transfected with PanCoVacE6-FLAG mRNA using lipofectamineTM

MessengerMaxTM (Thermo-Fisher Scientific) following the

manufacturer´s instructions. After 24 h, the medium was removed

and the cells were washed two times with PBS and subsequently lysed

with M-PER™ Mammalian protein extraction reagent (Thermo-

Fisher Scientific). Immunoblotting of PanCoVacE6-FLAG and

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) encoded by a
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housekeeping gene was performed using anti-FLAGAntibody (FG4R)

and anti-GAPDH antibody (1A10A10), respectively (both from

Thermo-Fisher Scientific). The membrane was visualized using

SuperSignal™ West Pico PLUS chemiluminescent substrate

(Thermo-Fisher Scientific).
2.5 Cells and media

The glioblastoma cell line U251, which expresses HLA-A*0201,
was a kind gift of L. Wiebusch (The Children’s Hospital, Laboratory

for Molecular Biology, Charité-Universitätsmedizin Berlin, Berlin,

Germany). Human Embryonic Kidney (HEK)-293T cells were

purchased from Sigma-Aldrich. HEK-293 T and U251 cells were

cultured in Dulbecco’s Modified Eagle Medium (DMEM)

(Gibco™) supplemented with 1 mM sodium pyruvate (Gibco), 50

mg/ml gentamicin (Sigma-Aldrich), and 10% heat inactivated FBS

(hiFBS) (HyClone™). Jurkat cells were cultured in RPMI 1640

medium (Gibco) supplemented with 2 mM L-glutamine (Gibco), 25

mM HEPES Buffer (Gibco), 50 mg/ml gentamicin, and 10% heat

inactivated fetal bovine serum (hiFBS). Vero E6 cells (ATCC CRL-

1586) were cultured in DMEM supplemented with 5% fetal bovine

serum (PAN Biotech) as well as 100 IU/ml penicillin G and 100 μg/

ml streptomycin (Corning).
2.6 Production and titration of
lentivirus particles

Non-integrating lentiviral vector (NILV) particles were

produced using HEK-293 T cells, as previously described (97, 98).

Briefly, HEK-293T cells were transiently co-transfected with

pLeGo-iG2-PanCoVac or empty vector, pMD2.G expressing the

envelope glycoprotein of vesicular stomatitis virus Indiana (VSV-

G), and encapsidation plasmid pD64V by using Lipofectamine™

3000 (Thermo-Fisher Scientific). The plasmid pMD2.G (Addgene

plasmid # 12259; http://n2t.net/addgene:12259; RRID:

Addgene_12259) was a gift from Didier Trono (Laboratory for

Virology and Genetics, School of Life Sciences, École Polytechnique

Fédérale de Lausanne, Switzerland). For production of integrating

lentiviral vector (LV) particles, pMDLg/pRRE (99) and pRSV-Rev

(99) were used as packaging plasmids. Both, pMDLg/pRRE

(Addgene plasmid # 12251; http://n2t.net/addgene:12251; RRID:

Addgene_12251) and pRSV-Rev (Addgene plasmid # 12253; http://

n2t.net/addgene:12253; RRID : Addgene_12253) were also gifts

from Didier Trono.

At 24 h after transfection, the medium was changed. The

supernatants were harvested at 48 h after transfection and cell

debris was removed by 10 min centrifugation at 600 × g at 4°C.

The virus particles were concentrated by ultracentrifugation at 30,000

rpm for 90 min at 4°C in thinwall polypropylene tubes (Beckmann

Coulter) containing a 2 ml layer of 20% sucrose in PBS at the bottom.

Lentivirus particles were resuspended in PBS, aliquoted and stored in

-80°C until further use. Lentivirus vector copies were quantified by

RT-qPCR as previously described (100) using SYBRGreen and EGFP
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specific primers (EGFP_F: CACATGAAGCAGCACGACTT and

EGFP_R: TGCTCAGGTAGTGGTTGTCG).
2.7 Transduction of U251 cells

Transduction of U251 cells with lentivirus particles was carried

out as previously described (101). Briefly, the U251 cell suspensions

(1 × 106 cells in 1 ml of DMEM) were transduced with concentrated

viral particles at a multiplicity of infection (MOI) of 2 in the

presence of 8 mg/ml polybrene (Sigma-Aldrich). The cells were

incubated at 37°C for 1 h, then spinoculated by centrifugation for

90 min at 600 × g at room temperature followed by seeding in 1.5 ml

of fresh media in 6-well cell culture plates. Transduced cells were

expanded and passaged in supplemented DMEM. The maximum

number of passages before being included in assays was 2 for NILV-

and 15 for LV-transduced cells.
2.8 In vitro mRNA transcription and mRNA
transfection

First, we amplified the sequences of interest by PCR. The primer

sequences for EGFP were: TAATACGACTCACTATAGATG

GTGAGCAAGGGCGAGGAGC (forward primer) and TTA

CTTGTACAGCTCGTCCATG (reverse primer). PanCoVac was

amplified with GCTAATACGACTCACTATAGGGACAGGCC

ACCATGGACTGGACCTGGATCCT as forward and TCATTT

CTTTTTTTTGTCCTTTTTAGGCT as reverse primers,

respectively. Then, in vitro-transcribed (IVT) mRNA of EGFP

and PanCoVac were synthesized by using the HiScribe™ T7

ARCA mRNA Kit with tailing (New England Biolabs). Pseudo-

UTP and 5-Methyl-CTP (Jena Bioscience) were used as modified

nucleotides for mRNA synthesis. The synthesized mRNA was

purified by the Monarch®RNA Cleanup Kit (New England

Biolabs), aliquoted and stored at -80°C until further use. The

mRNA purity and concentrations were analyzed using

Nanodrop™ spectrophotometer (Thermo-Fisher Scientific). The

mRNA transfection into U251 cells was carried out using

lipofectamine™ MessengerMax™ (Thermo-Fisher Scientific)

following the manufacturer´s instructions.
2.9 Reporter T cell assays

The reporter T cell assay was carried out as described previously

(101). We used Jurkat cells expressing a HLA-A*0201-restricted
TCR recognizing the epitope E629−38 (TIHDIILECV) derived from

the E6 protein of human papillomavirus (HPV) type 16 (102).

These cells also express an EGFP reporter driven by activation of

nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-

kB) (103). In order to investigate processing and presentation, the

HPV 16 E629−38 epitope was inserted in the middle of the S module

of PanCoVac resulting in PanCoVacE6. To address the influence of

the furin cleavage sites on processing and presentation of

PanCovacE6, we generated a version of PanCoVacE6 lacking all
frontiersin.org
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the furin cleavage sites (PanCoVacE6Dfurin). The reporter T cells

were stimulated with HLA-A*0201 expressing U251 cells, which

had been transduced with integrating lentiviral vector (LV) or NILV

encoding PanCoVacE6 (LV-PanCoVacE6 and NILV-PanCoVacE6,

respectively). Moreover, we transfected U251 cells with 100 ng of in

vitro-transcribed PanCoVacE6 mRNA or PanCoVacE6Dfurin. As a
negative control, the cells were transduced with lentiviral vector

encoding untagged PanCoVac (LV-PanCoVac) or transfected with

100 ng of EGFP mRNA. U251 cells pulsed with 1 mg/ml of HPV

E629−38 peptide were used as a positive control. The transduced or

transfected U251 cells as well as positive and negative control cells

were seeded in 96-well plates and incubated for 18 h. Afterwards,

the reporter cells were added at a reporter cell to antigen-presenting

cell (APC) ratio of 2:1. Co-culture was done for 24 h, then cells were

removed and reporter cells were stained with Brilliant Violet 711™

anti-human CD3ϵ antibody (BioLegend) and the viability dye

Zombie Violet™ (BioLegend). Stimulation of the reporter T cells

with HPV E6-peptide bound to HLA-A*0201 was analyzed by

detection of NF-kB driven EGFP fluorescence using FACS.
2.10 Roborovski dwarf hamster model
and vaccination

The COVID-19 model based on Roborovski dwarf hamster (P.

roborovskii) has been described previously (104). All animal

procedures were performed according to the European Guidelines

for Animal Studies after approval by the Institutional Animal Care

Committee and the relevant state authority (Landesamt für

Gesundheit und Soziales, Berlin, Permit number 0086/20). We

obtained male and female Roborovski dwarf hamsters of 5 to 7

weeks of age from the German pet trade. Animals were housed in

groups of 3–6 hamsters in GR-900 IVC cages (Tecniplast,

Buguggiate) and provided with bountiful enrichment and nesting

materials (Carfil, Oud-Turnhout). We randomly distributed

animals into two groups; the test group (9 animals) was

immunized with NILV-PanCoVac whereas the control group (9

animals) was immunized with empty vector (NILV)

(Supplementary Table 1) shows number, sex distribution, and

analysis date of experimental animals). All experimental animals

were individually marked with a subcutaneously implanted IPTT-

300 transponder (BMDS, Seaford) that facilitates remote

identification and measurement of body temperature. The

hamsters were inoculated i.n. with 30 ml PBS containing 1×105

NILV-PanCoVac particles or NILV. After 21 days, the hamsters

were challenged with a sub-lethal dose (1×104 pfu) of the ancestral

SARS-CoV-2 (BetaCoV/Germany/BavPat1/2020) strain in 30 ml
cell culture medium. SARS-CoV-2 infection was performed i.n. as

previously described (104).

RNA was extracted from oropharyngeal swabs and 50 mg lung

tissue using the innuPREP Virus DNA/RNA Kit (Analytic Jena)

according to the manufacturer’s instructions. Genomic virus RNA

was quantified using a one-step RT–qPCR reaction with the NEB

Luna Universal Probe One-Step RT–qPCR (New England Biolabs)

and the 2019-nCoV RT–qPCR primers and probe (E_Sarbeco) on a

qTOWER³ Real-Time PCR System (Analytik Jena), as previously
Frontiers in Immunology 05
described (104, 105). To obtain virus titers, duplicate ten-fold serial

dilutions of lung tissue homogenates were plated on Vero E6

monolayers for 2 h at 37 °C. Afterwards, cells were washed with

PBS and overlaid with semi-solid cell culture medium containing

1.5% microcrystalline cellulose (Vivapur MCG 611P, JRS Pharma)

and incubated for 48 h at 37 °C. Plates were then fixed with 4%

formalin and stained with 0.75% crystal violet for plaque counting
2.11 Lung histopathology

Samples from the lung tissue of hamsters were fixed with

formalin, embedded in paraffin and analyzed as described

previously (106). Briefly, paraffin sections of 2 mm thickness were

prepared and stained with hematoxylin and eosin (HE).

Microscopic changes were qualitatively described and scored

according to standardized reporting criteria using a four-scale

severity grading system (0: no lesions, 1: mild, 2: moderate, and

3: severe).
2.12 Serum neutralization tests

The capacity of sera obtained from dwarf hamsters after SARS-

CoV-2 challenge to neutralize SARS-CoV-2 was assessed in vitro as

previously described (107). After inactivation of complement for

30 min at 56 C°, sera were prepared in duplicates as two fold serial

dilutions in Minimum Essential Medium (MEM) supplemented

with 10% FBS and penicillin/streptomycin in 96-well cell culture

plates (Sarstedt). To each serum dilution and the respective control

wells, 40 pfu of SARS-CoV-2 was added and neutralization was

allowed to proceed for 30 min at room temperature. Afterwards,

approximately 1 × 104 Vero E6 cells were added to each well.

Subsequently, the plates were incubated at 37 C° under a 5% CO2

atmosphere for 3 days, fixed with 4% formaldehyde and stained

with 0.75% crystal violet (aqueous solution) for quantification of

cytopathic effects (CPE). Virus neutralization was considered

successful in wells with no evidence of CPE and the last effective

serum dilution was counted.
2.13 Statistical analysis

FACS results were evaluated with FlowJo V10.8.0 (Tree Star,

Inc). Statistical analyses were performed using GraphPad Prism

9.5.0. The statistical details of all experiments are described in the

respective figure legends. Significance of the data was assumed if p

≤ 0.05.
3 Results

3.1 Design of the pan-coronavirus vaccine

Using bioinformatic tools, we deconstructed coronavirus

genomes and designed a DNA sequence (PanCoVac) encoding
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the conserved T-cell epitopes of all structural proteins (S, E, M, and

N) from coronaviruses (Figure 1). The most essential step during

processing and presentation of T cell epitopes is binding to MHC

molecules, which are extremely polymorphic. CD8+ T cells

recognize peptides bound to the polymorphic regions of MHC

class I (MHC-I) molecules on the surface of virus-infected cells.

These peptides are mostly derived from intracellular proteins

undergoing proteasomal degradation in the cytosol. The resulting

cytosolic peptides are transferred via transporter associated with

antigen processing (TAP) molecules into the endoplasmic

reticulum (ER) and subsequently loaded onto MHC-I molecules

(108). In contrast, CD4+ T cells detect peptides bound to MHC

class II (MHC-II) molecules on the surface of professional APCs.

These peptides are obtained from extracellular proteins after

cellular uptake and digestion (108).

Conserved regions of at least 8 amino acids from the structural

proteins of SARS-CoV-1 (Tor2), ancestral SARS-CoV-2 (Wuhan-

Hu-1), SARS-CoV-2 variants (B.1.1.7, Alpha; B.1.351, Beta;

B.1.617.2, Delta; P.1, Gamma; BA.1, Omicron), and common cold

coronaviruses (HKU1, 229E, NL63 and OC43) were considered.

The alignment of these conserved amino acid sequences with

PanCoVac is shown in Supplementary Figure 1. PanCoVac-

encoded peptides are supposed to bind to all nine HLA-I

supertypes, which are defined as groups of molecules that share

largely overlapping peptide binding specificities (109), as well as
Frontiers in Immunology 06
other common HLA-I alleles (Supplementary Table 2). In addition,

we determined PanCoVAc-encoded peptides that are supposed to

bind to HLA-II molecules (Supplementary Table 3). Due to the high

and comprehensive workload, we have not analyzed all HLA-II

molecules but focused on frequent HLA-DR alleles (HLA-

DRB1*01:01, HLA-DRB1*04:01, HLA-DRB1*07:01, HLA-

DRB1*09:01, HLA-DRB1*1302, HLA-DRB1*15:01, HLA-

DRB5*01:01). A very high percentage of experimentally validated

HLA-I epitopes matches those that have been predicted by in silico

analysis but experimental epitope screenings may be slightly biased

due to the low frequency of some alleles analyzed (110). Thus, most

of the SARS-CoV-2-derived peptides that have been shown to

stimulate T cells from convalescent individuals are present in

PanCoVac (42, 111). PanCoVac also encodes immunodominant

CD8+ T cell epitopes (e.g. N105–113, SPRWYFYYL) and CD4+ T

cell epitopes (e.g. M176–190, LSYYKLGASQRVAGD), which have

broad HLA binding capacity as their main feature (42, 111).

The DNA sequences encoding the identified T cell epitopes

were fused to generate a “string of beads” multi-epitope vaccine. It

has been demonstrated that oligo-alanine spacing of epitopes can

increase their processing and recognition by T cells (112, 113). For

this reason, we joined epitopes belonging to the same structural

protein by double alanine linkers (AA) thereby generating a single

immunogenic compact module. The different immunogenic

modules (S, E, M, and N) were separated by furin cleavage sites
FIGURE 1

PanCoVac design. Structural proteins (S, E, M, N) from coronaviruses were analyzed. Conserved immunogenic peptides from all structural proteins
were identified by bioinformatics analyses. The conserved immunogenic peptides from each protein were linked together with double alanine (AA)
spacers resulting in four polypeptide blocks which were fused together by furin cleavage sites. An IgE leader sequence was attached to the N
terminus. In order to investigate processing and presentation, the HPV 16 E629−38 (TIHDIILECV) epitope, which binds to HLA-A*0201, was inserted in
the middle of the S module (PanCoVacE6). The amino acid sequences of PanCoVac and PanCovacE6 were codon optimized for human expression
and cloned into pLeGo-iG2 plasmids (pLeGo-iG2-PanCoVac, pLeGo-iG2-PanCoVacE6).
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(Figure 1). Furin is a cellular endoprotease that is principally located

in the trans-Golgi network (TGN), which is responsible for sorting

secretory pathway proteins to their final destinations, including the

cell surface, endosomes, lysosomes and secretory granules (114).

Importantly, furin processes T cell epitopes independently from

TAP and the proteasome (115–117). In addition, an immunoglobin

E (IgE) leader sequence consisting of 18 amino acids (118) was

attached to the 5´end (N-Terminus) of PanCoVac to achieve strong

expression (Figure 1). Moreover, the PanCoVac was codon

optimized to further increase its expression. Finally, in-silico

antigenicity prediction using VaxiJen, showed an antigen score of

0.5308 indicating the probable antigenic nature of PanCoVac.

Neither the in silico testing of the allergenic potential of

PanCoVac protein using AllerCatPro 2.0 nor the peptide toxicity

testing using ToxinPred provided evidence that PanCoVac is

allergenic or yields additional toxic peptides as compared to the

original sequences of the viral proteins. Accordingly, bioinformatic

tools predicted that PanCoVac is probably an antigenic protein but

has no allergic or toxic side effects. PanCoVac can be loaded onto

any available vaccine platform to create coronavirus vaccines that

could provide broad, robust, and durable T cell responses.
3.2 Processing and presentation of
PanCoVac-encoded epitopes in vitro

We confirmed that PanCoVac is expressed, processed and

presented in vitro by using a T cell reporter assay. For this

purpose, we tagged PanCoVac in the middle of the S module

with a sequence encoding the HLA-A*0201-binding epitope E629
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−38 (TIHDIILECV) derived from the E6 protein of HPV type 16

resulting in PanCoVacE6 (Figure 1) (102). We transduced U251

cells (HLA-A*0201+) with LV or NILV expressing PanCoVacE6 or

untagged PanCoVac as a negative control. U251 cells were also

transfected with PanCoVacE6 mRNA or EGFP mRNA as a negative

control. U251 cells transfected with PanCoVacE6 mRNA, but not

U251 cells transfected with EGFP mRNA, stimulated HPV E6-

specific reporter T cells (Figure 2A). Moreover, U251 cells

transduced with LV or NILV expressing PanCoVacE6 both

strongly activated HPV E629−38 specific reporter T cells whereas

U251 cells transduced with untagged PanCoVac did not

(Figure 2A). We also transfected U251 cells with PanCoVac

mRNA containing a FLAG tag-encoding sequence and detected

PanCoVac in western blot analysis using antibodies against the

FLAG tag (Supplementary Figure 2).

Finally, we tested whether the furin cleavage sites of PanCoVac

affects processing and presentation the HPV E629−38 –peptide. For this

purpose, we compared PanCoVacE6 with a PanCoVacE6 construct

that has no furin cleavage sites (PanCoVacE6Dfurin). We observed a

very small but significant increase in HPV E6-specific reporter T cell

activation when U251 cells transfected with PanCoVacE6 (containing

furin cleavage sites) were used for stimulation as compared to cells

transfected with PanCoVacE6Dfurin (Figure 2B). However, the binding
affinity of the HPV E629−38 –peptide for HLA-A*0201 is very high

(102) and our reporter T cell assay operates in the saturated range.

Thus, the positive effect of furin cleavage on processing and

presentation of PanCoVac-encoded epitopes with lower binding

affinity for MHC-I molecules is most likely much more pronounced.

Altogether, these results strongly suggest PanCoVac-encoded epitopes

are processed and presented in cells expressing PanCoVac.
A B

FIGURE 2

Stimulation of HPV E6-specific reporter T cells by PanCoVacE6 expressing cells. (A) U251 cells were transduced with PanCoVac or PanCoVacE6 using LV or
NILV. In addition, U251 cells were transfected with either EGFP mRNA or PanCoVacE6 mRNA. After 18 h, the medium was removed and HPV E6 peptide-
specific reporter cells were added at a ratio 2:1 for 24 h. Subsequently, the cells were collected, washed and stained with BV711 mouse anti-human CD3
antibody and live/dead Zombie Violet dye. Stimulation of reporter cells is given as percentage of maximal peptide stimulation, i.e. stimulation of reporter cells
with U251 cells pulsed with HPV E6 peptide (TIHDIILECV). Results are derived from at least 5 independent experiments; error bars represent the mean ±
SEM.; ***P < 0.001; **P < 0.01; ns not significant, unpaired t-test. (B) U251 cells were transfected with PanCoVacE6Dfurin mRNA (control) and PanCoVacE6
mRNA, respectively. HPV E6 peptide-specific reporter cells were added to transfected U251 cells as described in (A). The results are shown as fold change
relative to the control. Results are derived from 4 independent experiments; error bars represent the mean ± SEM.; *P < 0.05, unpaired t-test.
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3.3 Mild course of SARS-CoV-2 infection in
Roborovski dwarf hamsters after
vaccination with NILV-PanCoVac

The protective effect of PanCoVac was tested in Roborovski

dwarf hamsters, which represent an appropriate model for

analyzing the pathology of COVID-19 (104, 119). To this end,

hamsters were vaccinated i.n. either with a single-low dose (1 × 105

pfu) of NILV-PanCoVac (9 animals) or empty NILV particles (9

animals) as a control. After 21 days, the animals were challenged i.n.

with a sublethal dose (1×104 pfu) of the ancestral SARS-CoV-2

(Wuhan) strain. We observed a drop in body temperature in the

control group vaccinated with empty NILV particles (Figure 3A),

which indicates a more severe course of SARS-CoV-2 infection in

Roborovski dwarf hamsters (104). Vis-a-vis, NILV-PanCoVac

vaccinated hamsters kept more steady body temperatures

demonstrating a very mild infection course (Figure 3A). In

addition, body weights of dwarf hamsters that had received empty

NILV particles went down until 5 dpi then returned to pre-infection

values whereas body weights of animals vaccinated with NILV-

PanCoVac were stable (Figure 3B).

At 2 dpi, 5 dpi, and 7 dpi, three animals of each group were

sacrificed and sera, oropharyngeal swabs and lung tissue were

collected for further analysis. The histopathological analysis of

lung tissue also demonstrates the protective effect of a single-low
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dose of i.n. NILV-PanCoVac. The representative histopathology

in Figure 4 shows pathological changes at 2 dpi especially in

lung tissue derived from NILV-vaccinated animals: bronchioli

with mild bronchiolitis and moderate epithelial cell necrosis;

respiratory parenchyma with moderate to severe inflammation,

alveolar wall necrosis and alveolar edema; and blood vessels with

endothelialitis. Cumulative histopathological scoring illustrates

the finding that lung tissue from NILV-PanCoVac vaccinated

animals was less affected by virus-induced damage and

inflammation than the corresponding control tissue from animals

vaccinated with empty NILV particles (Figure 5). The

corresponding histopathological scoring at 2 dpi, 5 dpi and 7 dpi

2 is shown in Supplementary Figure 3. Altogether, these clinical and

histopathological findings demonstrate a comparatively mild course

of SARS-CoV-2 infection in Roborovski dwarf hamsters vaccinated

i.n. with NILV-PanCoVac.
3.4 Independence of NILV-PanCoVac
induced protection from SARS-CoV-2
neutralizing antibodies

Although PanCoVac is a T cell-based vaccine, we could not

exclude a priori that NILV-PanCoVac induces virus-specific

humoral immune responses. To clarify this issue, we performed
B

A

FIGURE 3

Body weight, body temperature and lung histopathology after challenge of vaccinated dwarf hamsters with SARS-CoV-2. Body temperature (A) and
body weight (B) of dwarf hamsters vaccinated with NILV-PanCoVac or NILV were monitored on a daily basis until the experiment was terminated at
7 days post infection (dpi).
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neutralization assays with sera from Roborovski dwarf hamsters

after i.n. vaccination with NILV-PanCoVac and empty NILV

particles, respectively. The systemic humoral immunity induced

by i.n. vaccination is usually comparable to or even stronger than

that after intramuscular injection (25, 120, 121). This is also true for

hamsters immunized against SARS-CoV-2 with a single-low dose of

a vectored S protein-based vaccine administered i.n (120). In serum

neutralization assays, we did not detect any difference in the timing

or level of neutralizing antibody production between animals

vaccinated i.n. with NILV-PanCoVac and those vaccinated i.n.

with empty NILV particles (Figure 6A). Neutralizing antibody

production was not detectable at 2 dpi and started at 5 dpi

(Figure 6A). At 7 dpi, high neutralizing antibody titers were

measured in both NILV-PanCoVac animals and animals

immunized with empty NILV (Figure 6A). This result suggested

that the protective effect of NILV-PanCoVac was not associated

with sterilizing immunity, which requires induction of neutralizing

antibodies at the site of infection (122). To analyze sterilizing

immunity, we determined the viral load in the oropharyngeal

mucosa using quantitative RT-qPCR. As shown in Figure 6B, we

did not observe significant differences between NILV-PanCoVac

vaccinated and control animals regarding the viral load in the

oropharynx. This experiment confirms that NILV-PanCoVac did

not stimulate production of neutralizing antibodies in the

oropharyngeal mucosa. Thus, in Roborovski dwarf hamsters a

single-low dose of NILV-PanCoVac did induce SARS-CoV-2

neutralizing antibodies neither systemically nor in the mucosa of

the oropharynx.
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3.5 Early protective effect of NILV-
PanCoVac in Roborovski dwarf hamsters

Next, we determined the viral load in lung tissue. The

cumulative SARS-CoV-2 genome copy numbers (Figure 7A, right

graph) and virus titers (Figure 7B, right graph) were significantly

lower in lung tissue from NILV-PanCoVac vaccinated animals as

compared to control animals that had received empty NILV

particles. Intriguingly, the protective effect of NILV-PanCoVac

vaccination on the viral load in lung tissue was already very

strong at 2 dpi (Figures 7A, B, left graphs). At this time point,

SARS-CoV-2 neutralizing antibodies were detectable neither in

animals vaccinated with NILV-PanCoVac nor in animals

vaccinated with empty NILV particles (Figure 6A). Taken

together these results provide evidence that the protective effect of

i.n. administered NILV-PanCoVac in Roborovski dwarf hamsters

challenged with SARS-CoV-2 was most likely due to airway

memory T cells that can mount a strong early antiviral response.
4 Discussion

We designed a codon-optimized universal coronavirus vaccine

(PanCoVac) encoding conserved T-cell epitopes derived from all

structural proteins (S, E, M, and N) for use in human populations.

Using a tagged version of PanCoVac, we demonstrated in T cell

reporter assays that the PanCoVac-design allows expression,

processing, and presentation by human cells. Finally, we
frontiersin
FIGURE 4

Representative histopathology of lung tissue derived from NILV or NILV-PanCoVac vaccinated Roborovski dwarf hamsters after challenge with
SARS-CoV-2. At 2 dpi, bronchioli with mild bronchiolitis and moderate epithelial cell necrosis (arrow heads; left panel) were observed. The
respiratory parenchyma presented with moderate to severe inflammation, alveolar wall necrosis (circle; central panel) and alveolar edema (asterisk;
central panel). Histopathological analysis of blood vessels revealed endothelialitis (arrows; right panel). Haematoxylin and eosin stain; bars represent
20 µm.
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evaluated the vaccine in the Roborovski dwarf hamster model of

COVID-19. We observed a milder course of sublethal SARS-CoV-2

infection in Roborovski dwarf hamsters after vaccination with a

single-low dose of NILV-PanCoVac as compared to animals

receiving empty NILV particles. In vaccinated animals the viral

load was reduced within 2 days after challenge. The NILV-

PanCoVac induced immunity, however, was not sterilizing and

independent of neutralizing antibodies.

Conserved T-cell epitopes of coronaviruses can elicit broadly

cross-reactive T cells. For example, CD8+ T cells specific for a

highly conserved N-encoded epitope of SARS-CoV-2 were found in

unexposed donors and could be stimulated by homologous peptide

sequences of seasonal coronaviruses (123). Mounting evidence

suggests that during vaccination or infection, cross-reactive T

cells are integrated into SARS-CoV-2 specific immunity and

contribute to protection from COVID-19 (41, 124, 125).

Epidemiological studies revealed that individuals infected recently

with common cold coronaviruses had less severe COVID-19

outcomes (126, 127). Healthcare workers with cross-reactive T

cells against the virus-encoded RNA polymerase, a protein that is

highly conserved across coronaviruses, cleared subclinical SARS-

CoV-2 infection before seroconversion (88). This is confirmed by

studies of household contacts of COVID-19 patients demonstrating

that induction of virus-specific T cell responses without

seroconversion protect from SARS-CoV-2 infection (81, 128).

Finally, in the absence of neutralizing antibodies, T cells provided

effective protection against the Beta variant of SARS-CoV-2 in a

transgenic mouse model of SARS-CoV-2 infection (129). Thus,

clinical studies and animal experiments suggest that cross-reactive

T cells can clear SARS-CoV-2 independently of humoral immunity.
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Why did pre-existing cross-reactive T cell immunity not have a

greater impact on the course of the pandemic although it was

detected in a large proportion of healthy, SARS-CoV-2–naive

individuals? There are at least two mutually not exclusive

explanations. Firstly, cross-reactive T cells protect from severe

disease but less efficiently from infection and virus transmission

to other persons. Secondly, cross-reactive immunity is virtually

absent in individuals that are at risk of severe SARS-CoV-2

infection. Indeed, functional pre-existing SARS-CoV-2-reactive

memory T cells are induced by common cold coronavirus in early

childhood, peak at age six, and subsequently decline with age (130,

131). This finding explains the age-dependent ability to control

SARS-CoV-2 infection with older adult people, who often suffer

from comorbidities, at risk of an unfavorable outcome (132). In

accordance, CD8+ T cells specific for conserved coronavirus

epitopes are much more abundant in patients with mild COVID-

19 as compared to individuals with more severe illness (133). This

indicates that especially individuals at high-risk of COVID-19 could

benefit from vaccines that strengthen T cell responses against

conserved coronavirus epitopes.

Current COVID-19 vaccines are approved for intramuscular

application notwithstanding that SARS-CoV-2 is spreading via the

mucosa of the respiratory tract. For this type of viral pathogens, the

innate and adaptive immune responses in the lung and airways

following infection and vaccination play a pivotal role (reviewed in

(25, 134). In SARS-CoV-2 susceptible mice, even a single-dose i.n.

immunization with a replication-deficient adenoviral vector

expressing the RBD of SARS-CoV-2 S protein induced robust

immunity both in the mucosa of the respiratory tract and

systemically (135, 136). Along this line, a trivalent vaccine based
FIGURE 5

Histopathological scores of lung tissue derived from NILV or NILV-PanCoVac vaccinated Roborovski dwarf hamsters after challenge with SARS-CoV-
2. At 2 days post infection (dpi), 5 dpi and 7 dpi, three animals of each group were sacrificed and histopathological changes in the lung were scored
using a four-scale severity grading system (0: no lesions, 1: mild, 2: moderate, and 3: severe). The cumulative results are also shown.
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on adenoviral vectors expressing antigens derived from the S-

protein, N protein, and RNA-dependent RNA polymerase

induced local and systemic antibody responses and protected

against both the ancestral SARS-CoV-2 strain and two VOCs (137).

After i.n. immunization with a single-low dose of NILV-

PanCoVac, we observed a strong protective effect at 2 dpi. At this

early time point, we did not detect neutralizing antibodies in the

sera of vaccinated animals suggesting that T cells were responsible.

In accordance, antiviral CD8+ T cells induced by a neutralizing

antibody-independent i.n. vaccine curbed viral spread in the

respiratory tract of macaques after SARS-CoV-2 challenge (138).

PanCoVac also encodes a highly conserved region of the N protein,

which not only cross-protected mice from human and bat

coronaviruses after i.n. vaccination but also is presented by

human MHC-II molecules (139). The protective effect was

observed within 1-2 days after challenge and mediated by

memory CD4+ T cells that secreted interferon-g and supported
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strong innate as well as virus-specific CD8+ T cell responses (139).

Moreover, systemic immunization of mice with dendritic cells

(DCs) presenting a single SARS-CoV-1 epitope followed by i.n.

boosting with recombinant vaccinia virus encoding the same

epitope resulted in accumulation of virus-specific memory CD8+

T cells in lungs and protected from lethal infection (140). Similarly,

repeated booster vaccinations with a single T cell epitope induced

CD8+ T cells that protected against lethal SARS-CoV-2 infection in

a mouse model of COVID-19 (141). Others investigators have also

demonstrated that in the absence of neutralizing antibodies, lung-

resident memory CD4+ and CD8+ T cells provide effective

protection against SARS-CoV-2 (142). It is conceivable that

PanCoVac could induce similar memory T cells in Roborovski

dwarf hamsters. Although virus neutralization is a key function of

antiviral antibodies, they can also contribute to protection by other

means, e.g. via binding to and triggering Fc receptors (143). Thus,

we cannot categorically exclude the possibility that PanCoVac-
B

A

FIGURE 6

Titers of SARS-CoV-2 neutralizing antibodies in sera and SARS-CoV-2 quantification in oropharyngeal swabs derived from of infected dwarf
hamsters. Roborovski dwarf hamsters (P. roborovskii) were immunized i.n. with 1×105 particles either NILV-PanCoVac (9 animals) or NILV (9 animals).
After 21 days, the hamsters were challenged with a sublethal dose (1×104 pfu) of the ancestral SARS-CoV-2 (Wuhan) strain. At 2 dpi, 5 dpi, and 7 dpi,
three animals of each group were sacrificed and sera and oropharyngeal swabs were collected for further analysis. (A) Titers of SARS-CoV-2
neutralizing antibodies were determined. Shown is the maximal serum dilution that still completely neutralized SARS-CoV-2 in a cell culture assay.
(B) SARS-CoV-2 genome copy numbers in oropharyngeal swabs derived from animals vaccinated either with NILV-PanCoVac or NILV (control) were
determined. One animal in the NILV-vaccinated group scheduled for the analysis at 7 dpi (Hamster No. 8) died at 4 dpi. The corresponding serum
and oropharyngeal swab, respectively was analyzed together with the probes scheduled for 5 dpi resulting in 4 measured values at this time point.
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induced antibodies contribute to the immune response against

SARS-CoV-2. Altogether, PanCoVac-encoded conserved T cell

epitopes could generate cross-reactive T cells in vaccinated

humans that act as a first layer of defense. In accordance, T cells

in the respiratory tract of a large proportion of unexposed

individuals cross-react with SARS-CoV-2 and may enable rapid

antiviral immune responses (86, 144, 145).

Vaccination with a single-low dose of NILV-PanCoVac did not

prevent infection of the oropharynx, the site of SARS-CoV-2 entry.

However, sterilizing immunity with prevention of virus

transmission is difficult to achieve by single vaccination i.n. and

requires vaccine boosts (122). Indeed, the protective effect of i.n.

immunization can be enhanced if combined with systemic priming

(prime-boost regime). For example, systemic priming and i.n. boost

with NILV expressing S protein in the Syrian hamster model

resulted in strong vaccine efficacy and only limited lung damage

after challenge with SARS-CoV-2 (97). Similarly, prime and i.n.
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boost with adenoviral vector expressing both the S protein and N

protein resulted in complete protection against SARS-CoV-2 (146).

Moreover, Syrian hamsters immunized via the i.n. route with the S

protein linked to outer membrane vesicles from Neisseria

meningitides were protected from weight loss and viral replication

in the lungs (147). In a mouse model of COVID-19, boosting mice

i.n. with non-replicating adenovirus vectoring S protein after

priming with lipid nanoparticles (LNPs) containing S protein-

mRNA (heterologous prime-boost regime) improved SARS-CoV-

2 immunity in the lung (148). Finally, a heterologous prime-boost

regime using an i.n. unadjuvanted S protein boost after

intramuscular priming with LNPs containing S protein-mRNA

induces neutralizing immunoglobulin A at the respiratory mucosa

and simultaneously increases systemic immunity, which protects

from lethal SARS-CoV-2 infection (149). Intriguingly, i.n. boosting

with a divergent S protein from SARS-CoV-2 induces mucosal

immunity against diverse sarbecovirus clades (149).
B

A

FIGURE 7

SARS-CoV-2 quantification in lung tissue from Roborovski dwarf hamsters after challenge with SARS-CoV-2. Roborovski dwarf hamsters
(P. roborovskii) were immunized i.n. (1×105 particles) with NILV-PanCoVac (9 animals) or NILV (9 animals). After 21 days, the hamsters were
challenged with a sublethal dose (1×104 pfu) of the ancestral SARS-CoV-2 (Wuhan) strain. At 2 dpi, 5 dpi and 7 dpi, three animals of each group were
sacrificed and lung tissue was analyzed. (A) SARS-CoV-2 genome copy numbers per 2.5 mg lung tissue derived from animals vaccinated either with
NILV-PanCoVac or NILV (control) were determined at the indicated time points (left graph). The cumulative results are also shown (right graph).
(B) Virus titers in 50 mg lung tissues from animals vaccinated either with NILV-PanCoVac or NILV (control) were analyzed at the indicated time
points (left graph). The cumulative results are also shown (right graph). Error bars represent the mean ± SEM; ***P < 0.001; **P < 0.01; *P < 0.05,
unpaired t-test. One animal in the control group (Hamster No. 8) scheduled for the analysis at day 7 dpi died at 4 dpi. The corresponding lung tissue
was analyzed together with the probes scheduled for 5 dpi resulting in 4 measured values at this time point.
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The NILV vaccine platform has the advantage that vaccines get

access to non-proliferating cells including DCs, which are located in

the mucosa of the respiratory tract. NILV-transduced DCs show

strong and reliable expression of the vectored protein (150–153).

Importantly, DCs play a pivotal role in successful vaccinations

(154). Firstly, they transport vaccine-encoded antigen to the T cell

areas of lymphoid organs. Secondly, they efficiently process and

present this antigen as peptides bound to MHC molecules to

activate antigen-specific T cells. There are possible advantages of

using NILV as a vaccine platform as compared to adenoviral

vectors. For example, immunization with lentiviral vectors

generates highly multifunctional CD8+ T cells and primes

development of CD8+ T cells with central memory phenotype

(155). In contrast to adenoviral vector, the problem of pre-

existing immunity to the vector, which can prevent successful

vaccination, does not exist for NILV due to pseudotyping with

VSV-G. Thus, after i.n. immunization NILV-PanCoVac could

induce a long-lasting, multi-functional T cell immunity against

SARS-CoV-2.

Our study has several limitations. First of all, PanCoVac was

designed for binding to a broad range of common human MHC

molecules, which are highly polymorphic. Although not

characterized, it is likely that the MHC molecules of dwarf

hamster are less diverse and have different peptide binding traits

when compared to human molecules. This suggests that only a

single or very few PanCoVac-encoded epitopes bind to MHC

molecules of Roborovski dwarf hamsters. Secondly, PanCoVac

was codon optimized for expression in human cells. Thus, it is

unlikely that PanCoVac-based vaccines develop their full protective

potential in the Roborovski dwarf hamster model of COVID-19.

Thirdly, we did not prime via systemic injection of a PanCoVac-

based vaccine, which provides broader mucosal protection against

SARS-CoV-2 after i.n. boosting (97, 149). Fourthly, we used a

single-low dose of NILV particles (1 × 105) i.n. whereas a recent

study, which analyzed the protective effect of NILV expressing S

protein in the Syrian hamster model of COVID-19, primed

systemically and boosted with a high dose of NILV particles (1 ×

108) i.n (97). Moreover, we challenged vaccinated dwarf hamster

only with the ancestral strain of SARS-CoV- 2 but not against

currently circulating VOCs. However, T cell epitopes are very

resistant to antigenic evolution of SARS-CoV-2 as compared to

epitopes recognized by neutralizing antibodies (60, 68, 69, 156).

Thus, PanCoVac is most likely also protective against SARS-CoV-2

variants and subvariants. Finally, we did not study T cell responses

because the necessary tools and reagents for studying specific T cell

responses in Roborovski dwarf hamsters are not available.

In summary, we generated a universal vaccine (PanCoVac)

encoding cross-reactive T cell epitopes that are highly conserved

across structural proteins of human coronaviruses and bind to

common human MHC molecules. Despite of the huge differences

between human and hamster MHCmolecules a single-low dose of a

PanCoVac-based vaccine i.n. induced an early protective effect in

Roborovski dwarf hamsters independently of neutralizing

antibodies. The use of (HLA-) humanized animal models will

allow for further efficacy studies of PanCoVac-based vaccines in

vivo. In humans, PanCoVac could induce broad T cell responses
Frontiers in Immunology 13
that prevent severe disease courses leading to hospitalizations

and death.
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