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Preamble 

During my research at the Macromolecular Modelling Group (AG Knapp) I worked 

in the field of electrostatic energy computations using different methods. 

This cumulative thesis summarizes my doctoral research and is divided into four 

parts. It is mainly based on the peer-reviewed journal paper which was recently 

published [3]: 

 

I. Sakalli, J. Schöberl, and E. W. Knapp, “mFES: A Robust Molecular Finite 

Element Solver for Electrostatic Energy Computations,” J. Chem. Theory 

Comput., vol. 10, no. 11, pp. 5095–5112, Oct. 2014. doi: 10.1021/ct5005092 

 

 I developed a new program called mFES (molecular Finite Element Solver). 

mFES is a publicly available program (under the GNU lesser general public licence 

v2.0) and is suitable to solve two problems in computational chemistry, namely 

evaluating: 

i. solvation energies of proteins ( G∆ ) and 

ii.  pKA values of titratable groups in proteins. 

 

Chapter I describes the theory to solve both computational chemistry problems (i.) 

and (ii.). An introduction in continuum electrostatics is given to solve the Poisson-

Boltzmann equation with different methods: Finite Difference (FD), Finite Element 

(FE) and Boundary Element (BE) method. Subsequently, the framework of pKA 

computations is introduced using thermodynamic cycles and a Monte Carlo method. 
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Chapter II provides a summary of the peer-reviewed article [3] solving problem (i.) 

computing the electrostatics solvation energy of proteins.  

 

Chapter III introduces into the framework of pKA computations using mFES to solve 

problem (ii.). This chapter includes an introduction and discussion about using mFES 

for the computation of pKA values for titratable groups while comparing to results 

obtained by classical FD methods. 

 

Chapter IV. introduces into implementation details of mFES and a web version 

mFES+ web. mFES+ web computes G∆  or pKA values with mFES over a web 

interface. Protein files from RCSB PDB database are prepared using CHARMM. The 

user does not need to install any plugin and the service is ready for use without 

registration. By submitting an mFES+ web-job, computations are performed in the 

background of a compute cluster. It is designed to make the life of a researcher easier 

by presenting results for G∆  or pKA computations in a fresh and informative way.  

 

mFES sources and the online version mFES+ web are available at: 

http://agknapp.chemie.fu-berlin.de/mfes 
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I. Theory 

‘‘Look deep, deep into nature, and then 
you will understand everything better.‘‘ 

— Albert Einstein (†1951) 

Introduction 
Electrostatic interactions play an important role in nature. These interactions 

influence the binding and functioning of proteins. From a macroscopic point of view, 

electrostatic interactions model long-range interactions which cover more than a few 

Ångströms. Every living cell is influenced by electrostatic effects because cells hold 

relatively high concentrations of ions. In general, the ionic effect dominates the 

electrostatic effect in biological systems. From a microscopic point of view, strong 

physical interactions of molecules are electrostatically driven. Chemical bonds are 

dominated by electrostatic interactions because of the opposite charges of atom nuclei 

and electrons while H-bonds are dominated by dipole interactions (e.g. in water). 

Ionic bonds are strong chemical bonds and display large electronegativity differences 

(>1.7, e.g. Na+Cl–), whereas covalent bonds (most organic compounds) have less or no 

electronegativity difference. Furthermore, electrostatic interactions play an important 

role in weak bonds, e.g. hydrogen bonds and dipole-dipole or van-der-Waals 

interactions. 

Classical Electrostatics in Molecular Systems 

This thesis focuses on protein electrostatics. Therefore, one has to model proteins in 

their natural environment. Generally, proteins are inside a cell and are surrounded 

by thousands of water molecules and different ions. Because of the large number of 

molecules in the environment, describing a molecular system in detail is very 

complex and computationally expensive. This is why the protein in its environment 
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is approximated by a mathematical model. Water and ions are described implicitly 

using a dielectric medium (see Fig. 1). Although this mathematical model has an 

approximate character, it is known to provide a suitable description of an 

equilibrated solvent, and electrostatic effects are represented well enough for many 

applications [4].  

 

Fig. 1. Comparison of a discrete (left) with an implicit, continuum model (right). Blue circles 
with arrows represent water molecules with their dipole moment vectors. The solid blue area 
represents implicit water. The grey circle represents a single ion with a given radius (or atoms 
of the whole protein). 

The introduction of a dielectric medium [5] is the main modification in implicit 

modelling. Dielectric media model electrostatic interactions of molecular dipoles 

(Fig 2), in different regions of the model. Classically, a dielectric constant of εout = 80 

is used to model an aqueous solvent and a low dielectric constant (εin = 2–4) is used 

for the solute, a protein. If all electrostatic effects are accounted for (explicitly) in a 

molecular model, the dielectric constant is unity. If this precondition is not fulfilled, 

the dielectric constant used for the protein moiety is higher, and a value of between 2 

and 4 is used to account for electronic polarization and small backbone fluctuations 

[6]. In this thesis, this issue is not discussed in more detail. The choice of the values 

for dielectric constants is controversial, and often different values are used in 

different applications to answer specific questions. The interested reader is referred 

to [5], [7]–[9].  
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Fig 2. Directions of the dipole moment in water; left: sum of both dipoles is zero and  
there is no resulting dipole; right: resulting dipole is the sum of both vectors. 

 Testing different methods to compute electrostatic potentials is challenging, and 

analytical models are useful as a reference. One simple model which has an analytical 

solution with and without a surrounding ion concentration (see appendix B) is the 

solvation of an ion. This so-called Born ion model has one explicit point charge in the 

centre of a sphere. It is a useful model for comparison of different numerical methods 

[3]. 

Coulomb’s Law 

Coulomb’s law was established by Charles-Augustin de Coulomb in 1785 [10]. In 

general Coulomb’s law describes the force between two point charges which can 

approximate the electrostatic interaction between two atoms. Using Coulomb’s law a 

description of the implicit solvent model in an electrostatic homogeneous medium 

(e.g. a vacuum) is obtained. The implicit solvent model uses point charges for atoms 

in a protein. In more detail, an atom is modelled as a point charge inside a sphere 

whose radius is the van-der-Waals (vdW) radius with the atomic nucleus in the 

centre. Atomic charges are given in units of Coulomb [C]. One Coulomb is defined as 

the charge which is flowing through a wire with a current of one Ampere in one 

second. Computing electrostatic energies, the interest of this work lies in potential 

energy differences of homogeneous and inhomogeneous dielectric media which is 

discussed in the following sections. 
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Coulomb’s Law for Computations of an Electrostatic Homogeneous Medium 

The simplest description for an electrostatic potential  is defined by Coulomb’s 

law using an electrostatic dielectric homogeneous medium (e.g. a vacuum). One atom 

is moved in the homogeneous dielectric medium from infinity to position r , as 

shown in the following equation: 

     1( )
4π ε

Φ = − ⋅ = +∫E s



Qr  C
r

,          (1) 

where iQ z e= ⋅  is the point charge of the atom with iz  being the charge number and 

e  the elementary charge, and E  is the electrostatic field along the pathway of the 

displaced point charge. 

The dielectric constant ε  is defined as 0ε ε ε= ⋅ r , where 0ε  is the permittivity of free 

space (= vacuum) and ε r  is a dimensionless dielectric constant which is chosen such 

that it models the polarizability of the dielectric medium. The integration constant C  

is generally set to zero, defining the zero point at infinite distances. The potential 

energy G  necessary to move a charge Q  in this potential is defined as 

     ( )G r Q= Φ ⋅
 .           (2) 

The potential energy allG  for N  charges iQ  is given by 

      homo

1 1 1 0

1 1 1( )
2 2 4 | |π ε= = =

= Φ =∑ ∑ ∑



N N N
j

all i i i
i i j ij

Q
G Q r Q

r
,        (3) 

where ≠i j  and  is the distance between the two charges iQ  and jQ . A simple 

summation is possible, since the energy terms are additive due to a linear 

dependence on the effect of each charge in the homogeneous dielectric medium. 

Computing the electrostatic energy for proteins in solvent is more complicated, since 

the dielectric medium is inhomogeneous.  
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Generalization of Coulomb’s Law in an Inhomogeneous Dielectric Medium 

To model the electrostatic interaction in a protein solvent system the complex-shaped 

molecular surface of the protein, acting as solute and being surrounded by a solvent 

(water), is considered as inhomogeneous dielectric medium. In this case two different 

values of the dielectric constants are used for modelling protein and solvent dielectric 

implicitly. As described in the introduction, a dielectric constant of 4ε =in  is used for 

the protein volume and of 80ε =out  for the solvent, reflecting the large polarization 

because of water due to the large dipole of water molecules.  

 In general, it is not possible to compute the electrostatic potential analytically as 

it can be done for homogeneous dielectric media without interfaces or surfaces, 

eq. (3). Complex molecular models have to be computed numerically solving the 

Poisson-Boltzmann equation by using techniques like Finite Difference (FD), Finite 

Element (FE) or Boundary Element (BE) methods which will be explained beginning 

at page 26 (“Discretizing the Linearized Poisson-Boltzmann Equation”). Furthermore, grid 

artefacts will be discussed (see chapter “Discretization Pitfalls”). 

 An exception to this is the existence of an analytical solution if the 

computation is done for one point charge in a dielectric medium with spherical 

symmetry. With vanishing ion concentration this so-called Born ion model has the 

analytical solution 

      
2 1 1694.6773088

ε ε
   ∆ = ⋅ ⋅ −     

Born
out in

z kJG
r mol

,        (4) 

where z  is the charge number of the point charge with radius r . The derivation of 

the Born ion model for the case of non-vanishing ion concentration is presented in 

appendix B. 
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Gauss’s Law and the Poisson Equation 

Gauss's law is one of the four fundamental Maxwell's equations. Gauss’s law 

describes an electrostatic flux, generated by point charges, through a closed, 

arbitrarily shaped surface, e.g. a molecular surface. Gauss's law for electricity has the 

form 

              ρ∇ ⋅ =D ,          (5) 

where ρ  is the charge density of point charges in a dielectric medium and D  is the 

so-called electrostatic displacement field. D  is the electrostatic field E , which is 

scaled by the constant ε  which is defined as 0ε ε ε= r , where 0ε  is the vacuum 

permittivity and ε r  a constant depending on the polarizability of the medium. Thus, 

                ε=D E ,           (6) 

where 

                = −∇ΦE


.          (7) 

One may imagine creating an electric field E . The vector E  points from positive to 

negative atomic charges. Applying the nabla operator to E , i.e. ∇ ⋅E , yields 4π ρ− , 

where ρ  is the charge density. 

Calculating the volume integral of the charge density ρ , yields dV Qρ
Ω

=∫∫∫ . 

An alternative way of expressing Gauss's law in its integral form is  

      1d dρ
ε εΩ

⋅ = =∫∫ ∫∫∫E S


S

QV . 

This equation describes the overall flux through the entire closed surface S  to equal 

the total charge inside the entire volume. 

Replacing D  in eq. (5) and rearranging the equation leads to  

     ( )ε ρ∇ = −∇ ∇Φ =D
  

  ,             (8) 
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 where Φ  is the electrostatic potential. In a homogeneous dielectric medium ε  is 

a constant. In an inhomogeneous medium the dielectric constant is a spatially 

dependent function, i.e. ( )ε r . More details are given in “Solvent Model Regions” page 

25.  

 For easier comparison with textbook notation, Gaussian units (cgs units) are 

used. A factor of 4π arises from Gauss’s law for spherical symmetries [11], [12], 

leading to: 

        ( ) ( ) 4 ( )ε π ρ∇ ∇Φ = − ⋅
  ρρρ   .       (9) 

This last equation is known in mathematics as Laplace’s equation if 0ε ε=  and in 

physics as Poisson’s equation.  

The Debye-Hückel Approximation 

The Debye-Hückel approximation can be used to generalize the Poisson equation 

with regard to ion concentration. It is important to create a realistic natural 

environment for proteins. By introducing ions (e.g. Na+Cl–) into the water the electric 

conductivity is increased. The charge carriers move in the water depending on the 

concentration of the electrolyte in solution.  

 Modelling ion concentration realistically is difficult, because a large number of 

ions move rapidly and rearrange depending on the surroundings of every single 

ionic charge. Using the Debye-Hückel approximation, discrete ion positions are 

neglected in favour of using an implicit ion description. The Debye-Hückel 

approximation describes ions as spheres, with constant charges, which generate a 

radial electrostatic potential (see Fig. 3). 
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Fig 3. Discrete (left) and continuum model (right) for non-vanishing ion concentration. The 
grey circle represents a single ion of given radius (or atoms of a whole protein); left: circles 
with arrows represent water molecules with their dipole-moment vectors, points are discrete 
ions; right: the blue area represents implicit water with implicit ions.  
 

 Many physical effects play a role in a correct description of the overall influence 

of the ions. Therefore, the validity of the Debye-Hückel model is limited. This 

extension holds true for low ion concentrations up to 0.2 M (molar concentration), 

where Coulomb interactions between the ions are weak.  

 To derive the Debye-Hückel approximation, the Poisson equation, eq. (9), with 

variable ( )r  and ( )rr   is used as starting point: 

      ( ) ( ) 4 ( )ε π ρ∇ ∇Φ = − ⋅
  ρρρ   , 

where the charge density ( )rr   is split into two parts [13]: 

           ( ) ( ) ( )i fr r rrrr  = +
   .        (10) 

In the above sum, (r)fr   denotes the fixed charges of known point charges and ( )i rr   

denotes an unknown non-linear ion contribution to the effective charge density. This 

is determined by a factor 2 ( )rκ   which will be derived and discussed in the following. 
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Fig 4. The central ion acts as a representative for every discrete ion. The centre of the ion is 
denoted by the white cross and the van-der-Waals radius of the central ion is denoted by the 
grey circle. The ion density of this central ion is given by the ion distribution 1(r )jn . The ion 

distribution at infinity with 2  →∞
r  (electrostatic potential at infinity is zero) is given by 0

jn . 

 In general, the effect of the ions is included into Poisson’s equation by deriving 

an expression for the ion charge ( )i rr   in eq. (10). To achieve this, an ion distribution 

function (r)jn  is used, (Fig 4). The central ion acts as a representative for every ion in 

the solvent. 

 The electrostatic potential energy, jg , to move an ion from infinity ( 2r = ∞  with 

2( ) 0rΦ =
 ) to a point 1r  ( 1r  with 1( )r yΦ =

 ) toward the central ion is defined by 

Coulomb’s law, eq. (2), 1( )j jg z e r= ⋅ ⋅Φ
 , where jz  is the charge number and e  the 

elementary charge. As mentioned before, the Debye-Hückel approximation is valid 

for low ion concentrations up to 0.2 M. This is equal to the assumption that 

(r)j Bjg z ke T⋅= ⋅ ⋅Φ 



, where T  is the temperature in Kelvin and Bk  the Boltzmann 

constant.  

 The overall ion distribution 0
jn  (ion distribution at infinity) can be expressed by 

         0
j j An m N= ⋅ ,        (11) 
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where jm  is the mass of ion type j  and AN  the Avogadro constant given in [1 / ]mol .  

 Two types of ions are assumed with the same radius and opposite net unit 

charges. The ion distribution, jn , of the central ion with radius jr  (see Fig 4) is 

Boltzmann-distributed (i.e. temperature-dependent) and can be computed using the 

laws of thermodynamics: 

          0 exp
 

= ⋅ − ⋅ 
j

j j
B

g
n n

k T
.       (12) 

The overall ion charge density is related to the sum of all ion distributions multiplied 

by their charge ( )jz e= ⋅ . Since two oppositely charged types of ion are assumed to be 

present in the solvent, the charge density (r)ir 

 is 

     0( ) exp expρ + −  + −   
= ⋅ ⋅ = ⋅ ⋅ − ⋅ ⋅ = − − ⋅ ⋅ ⋅    ⋅ ⋅  

−


∑

N
j ji

j j j j j j j j
j B B

g g
ρ n z e n z e n z e z e n

k T k T
,   (13) 

where j  denotes the ion type and N  the number of ion types. As mentioned before, 

the Debye-Hückel approximation models 1:1 electrolytes. Therefore, 2N =  and jn+  

denotes the ion with positive net charge and jn−  the ion with negative net charge.  

Now the function ( )1sinh(x) e e
2

x x−= − +  is used to rewrite eq. (13): 

  

0

0 (r)
2 sinh

1( ) 2 exp exp
2

.

r
 

⋅

⋅ ⋅Φ 
−

   
= − − − + + ⋅ ⋅ ⋅    ⋅ ⋅    

= ⋅ ⋅⋅  ⋅
⋅ 





j ji
j j

B B

j j
j

B

g g
r n z e

k T k T

n
k T

z e
z e

      (14) 

Inserting this expression into eq. (9) and making use of eq. (10) results in 

( )
0

( ) ( ) 4 (r)

(r)
sinh

4 ( ) ( )

8 4 ( )

ε π r π rr

π π r

∇ ∇Φ = − ⋅ = − +

=
⋅ ⋅Φ 

⋅ −


⋅ ⋅ 


⋅ ⋅
⋅

 



 

j

i f

f
j j

B

r r r r

n
k T

z ε
z ε r

      (15) 
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A linearization of this equation can be achieved by using the Taylor expansion, 

sinh(x)  ( )
3 5

7x x
6 120

= + + +
x x O , and truncating the series expansion after the first term 

yielding  

  
( )

20 0

( ) ( ) 4 (r) 4

(r

( ) ( )

( ))8 4

i f

f
j j

B

r r r r

n z e r
k T

e π r π rr

π π r

∇ ∇Φ = − ⋅ = −

Φ
⋅ −

+

= ⋅ ⋅ ⋅
⋅

   



        (16) 

Introducing the “ionic strength” I  as defined by Lewis and Randall [14]: 

      2 01
2

= ⋅ ⋅∑
N

j j
j

I z n           (17) 

and the inverse Debye length parameter κ  

               
2

2 8( )
B

e Ir
k T
πk ⋅ ⋅

=
⋅

         (18) 

the linear Poisson-Boltzmann equation (lPBE) is obtained: 

              ( ) 2 (r) ((r) r) 4 ( ).ε κ π rΦ∇ ∇Φ = −− ⋅
 



 f r       (19) 

With this linearization the superposition property is obtained. This equation is 

discussed in more detail in the next section, “The Poisson-Boltzmann Equation”  
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The Poisson-Boltzmann Equation 

It is crucial to have a mathematical model which reproduces the real situation. The 

Poisson-Boltzmann equation (PBE) is a second-order partial differential equation, 

which describes the electrostatics of biomolecular systems in solution. For low ion 

concentrations, a linear description of the PBE the linear Poisson-Boltzmann equation 

(lPBE) is used. One part of the PBE is the Poisson equation, see eq. (9), which 

describes the electrostatics of proteins in solution without ions by considering atoms 

as point charges. Debye and Hückel improved this in 1923 by adding the Boltzmann 

part to the Poisson equation (see previous section). The extension makes it possible to 

add ions to the implicit solvent model by using statistical thermodynamic averaging 

techniques. Ions are omnipresent and can significantly influence results. The non-

linear Poisson-Boltzmann equation (nPBE) possesses the following form: 

 

  2( ( ) ( )) ( ) sinh( ( )) 4 ( )ε κ π ρ∇ ∇Φ − ⋅ Φ = − ⋅
    fρρρρρ     .   

 

Applying the approximation sinh( )x x≈ , the linearized PBE (lPBE) is obtained:  

 

           2( ( ) ( )) ( ) ( ) 4 ( )ε κ π ρ∇ ∇Φ − ⋅Φ = − ⋅
    fρρρρρ     .   

Most textbooks on electrostatics use Gaussian (cgs) units. To obtain Gaussian units, 
2κ  is multiplied with 4π . For the correct units of energy, fρ  has to be multiplied 

with ( )/ ⋅Be k T  (see appendix A for details). 

 In the linear approximation of the PBE, the electrostatic potentials can be 

superimposed. Computations of pKA are one example of using the lPBE, because 

energy terms are split up and combined again in the final results. 

Poisson equation Boltzmann part Charge density 

Poisson equation Boltzmann part Charge density 
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Solvent Model Regions 

It was shown how to derive the PBE from first principles to describe the implicit 

solvent model, which includes also ions. Due to the fact that ions are located in the 

environment and are separated from the molecular surface by the effective ion 

radius, different model regions are defined. Surfaces separate those regions around 

the protein molecule in which different values of ε  and κ  are used (see Fig 5 and 

Chapter II). Generating the model to solve the PBE with different methods is 

described in the next section, “Discretizing the Linearized Poisson-Boltzmann Equation.” 

 

Fig 5. Regions of the implicit solvent model; the different surfaces are the ion exclusion layer 
(IEL), the solvent excluded surface (SES), and the van-der-Waals surface (vdW). The regions 
are numbered I, II and III. 

 

For the dielectric constants,  

the following values are used: 

4 r
(r)

80 r
in

out

ε
ε

ε
= ∈

=  = ∈ ∨







if III
if I II

 

The ion concentration is  

accounted for by: 

0 r
(r)

(r) r
κ

κ
∈ ∨

=  ∈





 

if III II
if I
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Discretizing the Linearized Poisson-Boltzmann Equation 

There are different methods to solve the lPBE numerically [15]. An introduction into 

some commonly used methods, namely the Finite Difference (FD) method, the 

Boundary Element (BE) method, and the Finite Element (FE) method, is given below. 

This work focuses on the comparison of FE and FD methods. BE methods are still 

under development, while FD methods are well-established and have been in for 

many years. It will be shown how to use the FE method to perform electrostatic 

computations for proteins with mFES (molecular Finite Element Solver), a new FE 

program which has been developed in this work. First, the discretization into a linear 

equation system is shown for all three methods. Then, a method to solve these linear 

equation systems numerically is described. 

The Finite Difference Method 

Using the FD method, a protein is discretized on an equidistant grid with a lattice 

constant h  given in [Å]. In general, every Cartesian direction in space may have a 

different h ; in the following, h  is assumed to be equal in all Cartesian directions 

(simple cubic grid). In recent applications, it is possible to refine the grid constant 

adaptively until its length attains a minimum value [16]. This feature is the so-called 

focusing technique used in the FD method [6], [17], [18] (Fig 6). Another approach to 

make the computation of huge molecular systems feasible is a parallel focusing 

method (Fig 7). 

To simplify the discretization steps, eq. (19) is rewritten as 

   2 2( (r) ) 4 ( ) ( )(r) (r)ε κ π r κ βΦ − Φ∇ ∇Φ −= ⋅ =


    f r r .      (20) 
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Fig 6. Example of a three-step focusing procedure using the FD method. In the first step, a 
grid constant of 2 Å is used. The solution of the first step provides the starting point for the 
new boundary of the second focusing step with a finer resolution of 1 Å. A last focusing step 
is done with a grid constant of 0.25 Å. n may be very high at the last focusing step. 
 

 

Fig 7. Parallel focusing technique combining the overlapping partial solutions obtained by 
the FD method. Independent solutions are overlapping by a given overlap region. 

2 Å 1 Å 

0.25 Å 

27 | 



Furthermore, the following notations are used to simplify the formulation of the 
equations: 

   , , , ,( )  i j k i j krΦ ≡ Φ
 ; , , , ,( )  i j k i j krβ β≡



; 1 , , 12 , ,
2

( )i j k
i j k

rε ε+
+

≡


; 1 1, , , ,, ,
2

i i j k i j ki j k +
+

∆ Φ ≡ Φ −Φ . 

 

Fig 8. One cell of an equidistant cubic grid. 0Φ is computed using neighbouring grid 
potentials and dielectric constants at half-grid points, see eq. (22). 

 

The dielectric constant 1 , ,
2

ε
+i j k

 is defined between the two grid points (i, j, k) and (i+1, 

j, k) forming a second half step grid (see Fig 8). On a grid, the charge density 

corresponding to a point charge q  at position (i, j, k) is 3
q
h

ρ =  and, thus, 

, 3,
44i j k

q
h
ππβ ρ= = . If the charge is not located exactly at a grid point, the charge is 

redistributed among the nearest grid points by interpolation. 

 

Using grid constant h , the discretized derivatives are: 

1 1 1 1 1 1, , , , , , , , , , , ,
2 2 2 2 2 2

2 2
, , , , , ,

( ) ( ) ( ) ( ) ( ) ( )

( ).

i i i i i ii j k i j k i j k i j k i j k i j k

i j k i j k i j kh

ε ε ε ε ε ε

k β

+ − + − + −
∆ Φ − ∆ Φ + ∆ Φ − ∆ Φ + ∆ Φ − ∆ Φ

= Φ −
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This series can be rewritten as 

1 1, , , , 1 , , 1, , 1 , 1, , ,, , , , , ,
2 2 2

1 , , , 1, 1 , , 1 , , 1 , , , , 1, , , , , ,
2 2 2

2 2
, , , , , ,

( ) ( ) ( )

( ) ( ) ( )

( ).

i j k i j k i j k i j k i j k i j ki j k i j k i j k

i j k i j k i j k i j k i j k i j ki j k i j k i j k

i j k i j k i j kh

ε ε ε

ε ε ε

k β

+ − +
+ − +

− + −
− + −

Φ −Φ − Φ −Φ + Φ −Φ

− Φ −Φ + Φ −Φ − Φ −Φ

= Φ −

 

 

Omitting those indices that are merely i, j or k yields 

1 1 1 1 1 1
2 2 2

2 2 2
1 1 1 1 1 1
2 2 2

( ) ( ) ( )

( ) ( ) ( ) .

i i ji i j

j k kj k k
h h

ε ε ε

ε ε ε k β

+ − +
+ − +

− + −
− + −

Φ −Φ − Φ −Φ + Φ −Φ

− Φ −Φ + Φ −Φ − Φ −Φ − Φ = −
 

Solving this equation with respect to Φ  yields 
2 2

1 1 1 1 1 1
2 2 2 2 2 2

( )
i i j j k k

h k ε ε ε ε ε ε
+ − + − + −

−Φ + + + + + +  

2
1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2

(  )i i j j k ki i j j k k
hε ε ε ε ε ε β+ − + − + −

+ − + − + −
= − Φ + Φ + Φ + Φ + Φ + Φ − . 

Using the equation 2 2
, , 3

4 4
i j k

q qh h
h h
π πβ⋅ = ⋅ =  a solution for every , ,i j kΦ  is  

       
1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2

2
1 1 1 1 1 1
2 2 2 2 2 2

4

.
( )

i i j j k ki i j j k k

i i j j k k

q
h

h

π ε ε ε ε ε ε

ε ε ε ε ε ε k

+ − + − + −
+ − + − + −

+ − + − + −

+ Φ + Φ + Φ + Φ + Φ + Φ
Φ =

+ + + + + +
     (21) 

With the following abbreviations 

        2
1 1 1 1 1 1
2 2 2 2 2 2

ˆ6 ( )ε ε ε ε ε ε ε κ
+ − + − + −

= + + + + + +ijκ i i j j κκ
h  

  and       1 1 1 1 1
2 2

ˆ
α αα α

ε ε± + −
+ −

Φ = Φ + Φα , { }, ,i j kα∈  

and one obtains  

      
( ) ( )2

1 1 1 1 1 1

, , , ,

4 ˆ ˆ ˆ ˆ ˆ ˆ4
ˆ ˆ6 6

f
i j k i j k

i j k i j k

q
hh

π
π ρ

ε ε

± ± ± ± ± ±
+ Φ + Φ +Φ ⋅ ⋅ + Φ +Φ +Φ

Φ = = .     (22) 
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Using eq. (22) it is possible to build a linear equation system =A


x b , where A  is the 

coefficient matrix which models the protein environment, x  is the unknown potential 

vector that has to be determined, and 


b  is a charge vector with known, fixed atom 

point charges fρ  which are interpolated to the grid positions by trilinear 

interpolation. The number of all equations for a given grid with n  grid points in each 

Cartesian direction is 3n  (Fig 9, [15]).  

 
Fig 9. General discretization procedure to build a linear equation system using the FD 
method in three dimensions. An exemplary numbering of neighbouring grid points is given 
which does not have to be continuous; h is the grid constant. 

In two dimensions, every row in the coefficient matrix A  describes the connectivity 

for one grid point. This means that each row has a length of n  grid points. In three 

dimensions, every grid point is connected with six neighbouring grid points (in Fig 9, 

grid point 0 is connected with 3, 1, 2, 4, 8, 9 and grid point 1 with 0, 7, 6, 5, 10, 11). If a 

grid point is not connected with another point, the corresponding value in the 

coefficient matrix is zero. The coefficient matrix is sparse. This allows to use fast 

algorithms to solve the lPBE. However, it is still necessary to reorder the matrix 

elements so that non-vanishing elements are close to the diagonal to generate a band-

like matrix.  
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The Boundary Element Method 

This section explains how the molecular model is discretized using the Boundary 

Element (BE) method [19]–[21]. The BE method uses triangles (or polygons with more 

vertices) to model molecular surfaces without the need of filling up space with other 

elements like tetrahedrons. In the following section, the molecular system is split into 

region Win (region III in Fig 5) which is the region of the protein interior and Wout 

(regions I+II in Fig 5) which denotes the exterior solvent. A BE description for a one-

surface model without cavities or an ion exclusion layer, IEL is shown in the 

following. It is possible to add more surfaces to the BE method which is explicated by 

Altman et al. [22].  

 Using the Poisson equation, the second derivative of potential ( )Φ
r  inside Win 

follows the superposition principle and writes as 

         ,
1

( ) ( )δ
ε=

∆Φ = − −∑δδδ 

qN
k

in in k
k in

qr r r ,        (23) 

where (..)δ  is the Dirac delta function, kq  is the charge of atom k , qN  is the number 

of charges placed in region Win, ,


in kr  is the position of charge k , and inε  is the 

dielectric constant used for the protein moiety. 

 The Poisson equation is augmented with the Boltzmann term in region Wout to 

include the effect of ionic strength: 

     2( ) ( )φ κ φ∆ =
 

out outr r . 

The Debye screening parameter κ  has been introduced by eq. 18, 

     
2

2 8

out B

e I
k T

πk
e

⋅ ⋅
=

⋅
, 

where I  is the ionic strength, e  the elementary charge, Bk  the Boltzmann constant, T  

the temperature given in Kelvin, and outε  the dielectric constant used for the solvent. 
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At the dielectric boundary between the exterior and the interior region, i.e. molecular 

surface (solvent excluded surface, SES), continuity exists [23]. For all points on the 

surface, r S∈
 : 

   ( ) ( )φΦ =
 

in outr r  and ( ) ( )φε ε∂Φ ∂
=

∂ ∂
 

 

in out
in outr r

n n
,      (24) 

where n  is the normal vector pointing outwards from the molecular surface towards 

the solvent. 

 In 1991, Juffer et al. [23] derived the general solution for ( )Φ
r  using Green’s 

theorem1: 

0
0 0 ,

1
( ) ( , ) ( ) ( , ) ( )  d ( , )

ε=Ω

∂Φ ∂ Φ = ⋅ − ⋅Φ Ω + ∂ ∂ 
∑∫

ddddddddd       

dd



q

in

N
k

in in in in in in k
k in

G qr G r r r r r r G r r
n n

; ∈Ω


inr  (protein), 

 ( ) ( , ) ( ) ( , ) ( )  dκ
κ

φφ φ
Ω

∂ ∂ = − ⋅ + ⋅ Ω ∂ ∂ ∫
ddddddd     

dd



out

out out out out out
Gr G r r r r r r

n n
; ∈Ω


outr  (solvent). 

Gκ  and 0G  are the Greens functions solving the singular Poisson equation in presence 

and absence of ions, respectively 

    ( ) exp( | |),
4 | |κ

κ
p
− −

=
⋅ −

 

 

 

out
out

out

r rG r r
r r

, ( )0
1,

4 | |π
=

⋅ −
 

 in
in

G r r
r r

.      (25) 

The numerator of 0G  is unity because 0κ =  if ∈Ω


inr  (see page 25, “Solvent Model 

Regions”). In the following, let r  approach the surface S from both sides, Sin and Sout. 

This results in 

0
0

0 ,
1

1lim (r) ( ) ( , ) ( ) ( , ) ( ) d
2

( , )
ε

→
Ω

=

∂Φ ∂ Φ = Φ + − Φ Ω ∂ ∂ 

+

∫

∑

d

d ddddddd     

dd

dd



in
in

q

in
in in in in in in in inr S

N
k

in k
k in

Gr G r r r r r r
n n

q G r r

      (26) 

1 ( )2 2 0
0 0 0

ˆˆ ˆ ˆd
Ω

 ∂Φ ∂
∇ Φ −Φ∇ = −Φ Ω 

∂ ∂ 
∫ ∫ dd

V

GG G V G d
n n

; ˆ φΦ =  if Ω = Ωout  or Φ̂ = Φin  if 

Ω = Ωin . 
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1lim ( ) ( ) ( , ) ( ) ( , ) ( ) d
2

φφ φ φ
→

Ω

∂ ∂ = + − + Ω ∂ ∂ ∫d

dddddddd      

dd



out
out

out k
out out k out out out out out outr S

Gr r G r r r r r r
n n

.     (27) 

Eq. (26) can be rewritten: 

0
0 0 ,

1

0
0

1( ) ( ) ( , ) ( ) ( , ) ( ) d ( , )
2

1 ( ) ( , ) ( ) d ( , ) ( ) d
2

ε=Ω

Ω Ω

∂Φ ∂ Φ = Φ + − Φ Ω + ∂ ∂ 

∂Φ ∂   ⇔ Φ − Ω − Φ Ω =   ∂ ∂   

∑∫

∫ ∫

dddddddddd        

dd

ddddddd     

dd



 

q

in

in in

N
in k

in in in in in in in in in k
k in

in k
in in in in in in in in

G qr r G r r r r r r G r r
n n

G qr G r r r r r r
n n 0 ,

1
( , ).

ε=
∑ dd

qN

in k
k in

G r r
 

               (28) 

Using the continuity conditions, eq. (24), eq. (27) is modified further: 

1( ) ( ) ( , ) ( ) ( , ) ( ) d
2

1( ) ( ) ( , ) ( ) ( , ) ( ) d
2

1 (
2

φφ φ φ

ε
ε

Ω

Ω

∂ ∂ = + − + Ω ∂ ∂ 

 ∂Φ ∂
⇔ Φ = Φ + − ⋅ + Φ Ω ∂ ∂ 

⇔ Φ

∫

∫

dddddddd      

dd

dddddddd      

dd





out

out

out k
out out k out out out out out out

in out k
out out k out out out out out

out

out

Gr r G r r r r r r
n n

Gr r G r r r r r r
n n

) ( , ) ( ) d ( , ) ( ) d 0.ε
εΩ Ω

 ∂Φ ∂ + ⋅ Ω − Φ Ω =   ∂ ∂  
∫ ∫

ddddddd     

dd



out out

in out k
k out out out out out out

out

Gr G r r r r r r
n n

 

                          (29) 

The previous two steps are a rearrangement to facilitate the building of a linear 

equation system. To simplify the notation of the general form of the linear equation 

system, Si,j and Di,j are used as follows:  

( ) ( ), 0 , ,
( ) , din i in

i j i in j in j j

j

cS G c r r
n nΩ

∂Φ ∂Φ = Ω ∂ ∂ ∫
d

ddd 

dd



, ( ) ( ) ( )0
, , ,c c , di j i i in j in in j j

j

GD r r
nΩ

∂ Φ = Φ Ω ∂ ∫
dd  dd

d



 

               (30) 

r  is replaced by ic  which denotes the centroid of triangular surface element i  on the 

molecular surface. j  is the index of a corner point of a triangular surface element i  

with position ir
 . With this information, a linear equation system for the description of 

the so-called non-derivative BE formalism is built for every element i  on the 

molecular surface.  
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The general form of this linear equation system is as follows: 

              , 

where 0
0 ( , )=
 

inG G r r  and I  is an identity matrix. 0
,i jS  and ,

κ
i jS  are defined in eq. (30). 

0
,i jS  and ,

κ
i jS  use the Greens functions ( )0 , inG r r  and ( ),κ

 

outG r r , respectively, as 

defined in eq. (25). The four elements of the coefficient matrix A  are submatrices 

which are built by running over the indices i  and j . Si,j and Di,j are computed for 

every vertex so that the number of equations to be solved is 2n , where n  is the 

number of vertices. As for the FE method, boundary conditions have to be set where 

the solution for the potential vector is known.  

 The derivative BE formalism can be derived similarly to the non-derivative BE 

form by one additional differentiation in the direction of 0 (r)n n=
   and the use of the 

continuity conditions, eq. (24). It is known that the non-derivative BE formalism can 

lead to singularities, whereas the derivative BE formalism is well-behaved [20]. 

 In general, the coefficient matrix of the linear equation system for the BE 

method is smaller than that for the FD or FE method. On the other hand, A  is denser, 

and the evaluation of Si,j and Di,j for every vertex of the molecular surface mesh is 

more challenging. There are very fast numerical methods to solve these derivatives, 

e.g., by Gauss quadrature. In addition, one may try to split the equations into an 

analytical and a non-analytical part before solving. Also fast multipole methods are 

used in the BE method. At present, the BE method is still under development [20], 

[24]–[28].  
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The Finite Element Method 

The main focus of this work is on the FE method. The whole FE procedure has been 

described by Sakalli et al. [3]. Here, a summary of the new methodology and a brief 

introduction to the methods used by mFES (molecular Finite Element Solver) are 

given. Using the Finite Element method, it is possible to solve the lPBE very 

accurately. This is achieved by employing higher-order polynomials in the three 

Cartesian directions for discretizing the molecular model. The overall molecular 

model is built by filling the entire space with finite elements. In this work, a 

triangular mesh for the molecular surface and a tetrahedron mesh for the volume of 

the molecular system are used. Similar to the latter, the molecular surface of the 

protein is separated into an interior and an exterior region. While the boundaries in 

the FD method enclose cubes using a constant lattice space, in the FE method, an 

arbitrarily shaped boundary may be used. In this work, a sphere with large radius 

and low density of triangle points is used as asymptotic boundary because the 

electrostatic potential approaches zero at infinity. With mFES, it is possible to use 

more than one surface (e.g. SES, IEL, cavity surface region). 

 mFES uses LSMS (Level-Set method for Molecular Surface generation), which 

was developed by Can et al. [2], to generate a fine-grained molecular surface, and 

NETGEN [1], which is being developed by J. Schöberl and coworkers, to generate a 

regularized molecular surface mesh and an optimized volume mesh. One has to keep 

in mind that covering volume completely with tetrahedrons is a computationally 

hard problem. The aim of this problem is to cover a specified volume regime 

completely with densely packed regular tetrahedrons. Using perfectly regular 

tetrahedrons, volume can be covered only up to 85% [29]. Therefore, the packing of 

space with tetrahedrons is an art. NETGEN faces similar problems when performing 

the volume meshing procedure. 
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 mFES covers the molecular surface by triangles. The shape of the triangles is 

regularized using a predefined resolution, h , given in Ångström. This resolution is 

equivalent to the grid constant used in the FD method but is twice as accurate if 

using a second-order solution. The protein volume is filled by tetrahedrons with a 

resolution of 0.5 Å. In the outer region the resolution decreases towards the 

asymptotic boundary. It is challenging for a meshing algorithm to fill the volume 

regularly because each molecular surface element with its own constraints has to be 

meshed with tetrahedrons simultaneously for the inner and for the outer region. 

Neighbouring tetrahedrons touching the molecular surface from the inside and to the 

outside have congruent faces, so that the previously meshed molecular surface stays 

invariant. An asymptotic boundary surface is defined by using a sphere with the 

radius of 100,000 Å with a low resolution (23 grid points which corresponds to an 

edge length of nearly 80,000 Å). The molecule is placed in the centre of the sphere. 

Subsequently, the external volume is filled. The space between the molecular surface 

and the asymptotic boundary surface is meshed using tetrahedrons. This procedure 

starts from the triangles on the protein surface, enlarges the edge lengths of the 

tetrahedrons regularly by a grading parameter g = 0.5 and proceeds towards the 

triangles on the asymptotic sphere surface. The resulting tetrahedral mesh of the 

molecular model is optimized and simplified while keeping the triangles on the 

protein surface invariant. This step is important to get rid of ill-conditioned 

tetrahedrons (possessing vanishing volume) which can lead to singular behaviour of 

the linear equation solving the lPBE. Finally, the grid points of the tetrahedral mesh 

are used to discretize the lPBE and solve the linear equation system by a direct or 

iterative method. During the optimization procedure, tetrahedrons are assigned to 

quality classes and from the curve progression of the quality class assignment plot 

the user gets an idea about the quality of the final mesh.  
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Discretizing the FE Method 

This subsection explains the determination of the electrostatic potential generated by 

a charge distribution (r)r   in an inhomogeneous dielectric medium using the Finite 

Element (FE) method. For this purpose, the lPBE which has been presented in eq. (19) 

has to be solved: 

    2( (r) (r)) ( ) ( ) 4 (r)ε κ π r∇ ∇Φ − Φ = −
 

    fr r ,    

where (r)ε   is the dielectric constant and 2 ( )κ r  describes the ionic strength. In the 

following, the Poisson’s equation with 2 ( ) 0κ =
r  is considered.  

 For proteins, the charge distribution ( )ρ ρ  is defined by qN  point charges qk 

localized at the atom positions kρ
  yielding the Poisson’s equation, using eq. (23) and 

eq. (9): 

      
1

( (r) (r)) 4 ( r )
qN

k
k

k in

qε π δ r
ε=

∇ ∇Φ = − −∑
δδ

δδδδ  

,      (31) 

where ( )δ δr  is the Dirac delta function.  

For large and flexible proteins, a dielectric constant larger than unity is used, 

typically εin = 4 [5], [30]. A dielectric constant of εout = 80 is used for the solvent. A 

discussion about the dielectric constants can be found on page 13, “Classical 

Electrostatics in Molecular Systems.” 

 In the following, a derivation of the weak form of Poisson’s equation is 

presented. The weak form of Poisson’s equation is solved by minimizing the residual  

    e ( ) ( ) ( )( ( )) 4r r rr re π r= ∇ ∇Φ +  

 



.        (32)  

The minimization of eq. (32) is performed by summing up test functions ( )rω   for the 

inner and outer region in the entire volume Ω: 

   ( ) ( )( ) ( ( ))d 4 ( ) dr rr r r r rω ε π ω r
Ω Ω

∇ ∇Φ = −∫ ∫
dd

dd

ddddd     .      (33) 
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The volume Ω is a sum of small local domains Ωk, i.e. Ω = Σk Ωk, with each Ωk being a 

tetrahedron. The left side of eq. (33) is replaced using the identity  

 [ ( ) ( ) ( )] ( ) [ ( )] [ ( )] ( ) [ ( ) ( )]r r r r r r r r rω ε ε ω ω ε∇ ∇Φ = ∇ ∇ Φ + ∇ ∇Φ
     

        

.      (34)  

Furthermore, Gauss’s integral equation is used  

  [ ( ) ( ) ( )]d ( ) ( ) ( )[ ( )]dr r r r r r n r rω ε ε ω σ
Ω Γ
∇ ∇Φ = ∇Φ∫ ∫

d
dd

ddddddddd       

,       (35) 

where ( )n r   is a surface normal vector pointing outwards and Γ is the spherical 

boundary surface of the molecular system with a dirichlet boundary condition of 

( ) 0Φ Γ = .  

Finally, using eq. (34) and eq. (35) the weak form is rewritten as  

 ( ) [ ( )] [ ( )]d 4 ( ) ( )d ( ) ( ) ( )[ ( )]dr r r r r r r r r n r rε ω π r ω ε ω σ
Ω Ω Γ

∇ ∇ Φ = + ∇Φ∫ ∫ ∫
d

dd

dddddddddddd          

,     (36) 

which avoids a derivative of ( )rε  .  

 As test functions ( )j rω  , Lagrange interpolation polynomials are used, which 

are localized at individual grid points jr
  to expand the electrostatic potential  

     j jj
( ) ( )r rωΦ = Φ∑  .        (37) 

The test functions ( )j rω   have the following properties. They are non-vanishing at 

their reference grid point jr
  and the tetrahedrons (j)

kΩ  that possess jr
  as corner point, 

but vanish at the other corner points of these tetrahedrons and outside of these 

tetrahedrons. The test functions are defined the next subsection. 

 Specifying the test function ( )j rω   in eq. (36) to refer to grid point i and 

inserting the expansion of eq. (37) in eq. (36), one obtains  

 
(i,j)
k

(i) (i,j)
k k

i j jj k

i i j jk j k
( )

( )[ ( ) ( )]d

4 ( )d ( ) ( )[ ( ) ( )]d .r

r r r r

r r r r n r r

ε ω ω

π r ω ε ω ω σ
Ω Γ

Ω
∇ ∇ Φ

= + ∇ Φ

∑ ∑ ∫
∑ ∑ ∑∫ ∫

d

dd

dddd  

d

ddddddd     

     (38) 
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The sums in eq. (38) run over k and refer to tetrahedrons (i,j)
kΩ  that share the corner 

points jr
  and ir

  in common (or only ir
  in case of (i)

kΩ ). Introducing the abbreviations 

 
(i,j) (i)
k k

(i,j)
k

i j i j i ik k

i j i jk

( )( )[ ( ) ( )]d , (b) 4 ( )d ,

( ) ( )[ ( ) ( )]d ,

ε ω ω π ρ ω

ε ω ω σ

Ω Ω

Γ

= ∇ ∇ =

= ∇

∑ ∑∫ ∫
∑ ∫

A

C

d

d
dd

dddddd    

d

ddddd   

ρρρρρρρ    

ρρ  n ρρ
    (39) 

one is able to rewrite eq. (38) in matrix form:  

           ( ) b.+ Φ=A C




        (40) 

 Cij vanishes because each triangle which contributes to the value of Cij belongs 

to two different tetrahedrons except for tetrahedrons at the asymptotic boundary. 

The contributions of the triangles of two neighboring tetrahedrons cancel each other 

precisely, since the surface vectors ( )n r   of these triangles have opposite directions. If 

the electrostatic potential Φ vanishes at the asymptotic boundary surface, the surface 

integrals for triangles at the boundary can be neglected. Hence,  

             bxΦ= =A A




 .        (41) 

The coefficient matrix A  describes the molecular model. Each tetrahedron is 

represented within one row of the matrix with four or ten entries for first-order or 

second-order solution, respectively. Vector b


 on the right side of the equation 

describes the charge distribution.  is the electrostatic potential vector whose 

elements refer to the tetrahedron corner points. The coefficient matrix A is sparse, 

since the matrix elements are non-zero only if ir
  and jr

  are equal or if they are 

adjacent grid points, i.e. being corners of the same tetrahedron.  

 

Introducing Test Functions  

The local test functions ( )ω 

j r  used for the expansion, eq. (37), of the electrostatic 

potential ( )Φ
r  are sums of Lagrange polynomials  
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     j k(j)k(j)
( ) ( )r p rω = ∑  ,        (42) 

one for each tetrahedron, which has one corner at the grid point jr
 . The coefficients of 

the Lagrange polynomials pk(j)( r ) are determined by the geometry of the tetrahedrons 
(j)
kΩ , which possess the grid point jr

  as a corner point. In first order (o = 1) linear 

polynomials with four known coefficients are used yielding  

     (1)
k(j)

3

0 i i
i=1

( )p r c c x= +∑ .        (43) 

Using this definition, the electrostatic potential can be computed, eq. (37). Using 

second-order quadratic polynomials (o = 2), the geometry of the tetrahedron (j)
kΩ  

considered is defined by ten coefficients (see Fig 10):  

    (2)
k(j)

3 3

0 i i i , l i l
i=1 i l 1

( )p r c c x c x x
≥ =

= + +∑ ∑

.        (44) 

Numerical techniques for computing the elements in the coefficient matrix A using 

polynomial contributions of different tetrahedrons are described in [31], [32].  

 

 
Fig 10. The left tetrahedron describes test functions with four control points (vertices). Using 
a higher-order polynomial, the description results in a formulation with ten control points, 
i.e. the six midpoints on the tetrahedron edges in addition to the corner points. Figure 
adopted from [3]. 

 In applications described by Sakalli et al. [3] it is observed that the total 

number of grid points is increased by a factor of about 7, when changing from first- 

to second-order solutions. 
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Solving the Linear Equation System 

In the previous section, a linear equation system (LES) was built ( .) which has 

to be solved. The coefficient matrix is obtained using different methods, like the FD, 

FE or BE method. To arrive at a unique solution, the boundary conditions have to be 

set. With the FE method, a vanishing electrostatic potential is used at the spherical 

boundary because it is possible to construct a boundary sphere which has a very 

large radius without much additional computational cost. Vanishing electrostatic 

potential at the asymptotic boundary is difficult to achieve using the FD method, 

because the space between the protein and the boundary is filled with a uniform grid 

point density in the same way as the protein interior. As a consequence the additional 

computational costs are high. To get rid of this pitfall, some efforts were made to 

approximate the boundary using a single (SDH) or multiple (MDH) Debye-Hückel 

approximation [33]. The Debye-Hückel approximation for the boundary potential 

(r)iΦ
  writes as 

    
1

(r) exp
| |

κ
e e=

 
Φ = ⋅ − −  −  

∑  

 

N
j

i j
j out j out

q
r r

r r
.     (45) 

If the MDH is employed, N  equals the total number of point charges in the 

molecular system with charge positions  and κ  is the Debye screening parameter 

defined in eq. (18). If the SDH is employed, N  equals one, and jr  is the pre-

calculated centroid position of the protein, and Q is the total charge inside the 

protein. Normally, the SDH is used because of its simplicity and lower computational 

cost. One has to keep in mind that the SDH is exact for single charge in the center of a 

sphere (i.e. Born ion model; see appendix B). For a protein relation eq. (45) is only 

approximately valid. Techniques like focusing are used in the FD method to obtain 

accurate results (Fig 6 and Fig 7).  
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Methods to Solve the Linear Equation System 

Solving a linear equation system is formally trivial if there are N  equations with an 

equal number of unknowns. Nevertheless, there are different methods available to 

solve this problem for different cases. The choice of the algorithm depends on the 

structure of the coefficient matrix. In general, the solvers for a linear equation system 

make either use of (i) direct methods or of (ii) iterative methods. Direct methods are 

useful for matrices which are small or large but sparse. For large and dense matrices, 

iterative methods are used. They are able to solve a system approximately until the 

error is converged to a preset value. Depending on the implementation of these 

algorithms, they may run parallel or memory-efficient.  

Direct Methods 

Algorithms that solve a linear equation system with a direct method for a coefficient 

matrix that is quadratic and non-singular are the so-called Gaussian elimination method 

(GEM), the LU-Factorization method (LUM), and the Cholesky decomposition method 

(CDM). In the latter case the coefficient matrix must be also symmetric, which is 

fulfilled in all cases considered here. The GEM consists of a forward and a backward 

stage. By solving some unknowns, the algorithm builds an upper triangular 

coefficient matrix form. At the backward stage, using simple back substitutions to 

reduce the upper triangular matrix form, the algorithm produces the result of the 

linear equation system. The LU-decomposition method decomposes the coefficient 

matrix A  by building a lower triangular part L  and an upper triangular part U . It 

holds that =LU A . Thus, the linear equation system can be rewritten as 

b bx x= ⇔ =A LU
 

  . This method is a variant of the Gaussian elimination method and 

can be solved similarly due to having a well-suited and simpler, decomposed 

coefficient matrix form. Other types of decomposition are for example the CDM 
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which is similar to the LUM but twice as efficient because of employing * =LL A . In a 

first step, y b=L


  is computed using the forward-substitution method and in a second 

step, *x y=L    is computed using the back-substitution method. 

Iterative Methods 

The Jacobi Method. The simplest method to solve a linear equation system 

iteratively is the Jacobi method (JM). The JM is used if the diagonal of the coefficient 

matrix is positive-definite and possesses the largest values, which is true if the 

diagonal values are larger than the sum of their respective row values. In this case the 

result will converge although it might also converge if the diagonal does not 

dominate. Starting from an initial guess (e.g. zero solution), the neighboring 

equations are solved by 

             1 1 n
r r
i i ij j

j iii

x b a x
a

+

≠

 
= − 

 
∑ ,       (46) 

where the next value 1r
tx +  at position i  of iteration (r 1)+  is defined by the diagonal 

element iia  and the solution ib  at same the position i . Every summand consists of a 

multiplication of a row value ija  multiplied by the previous iteration result r
jx  at 

position j . This iterative procedure is repeated for the whole matrix several times 

until a predefined convergence criterion (error residual) is attained. 

Gauss-Seidel Method. The Gauss-Seidel method (GSM) is similar to the Jacobi 

method in that the solution converges if the diagonal is dominant, i.e. the diagonal is 

larger than the sum of its row elements. This can be proved using the convergence 

theorem [34]. The coefficient matrix has to be quadratic. In some cases (e.g. a 

rectangular matrix) this can be achieved by inverting the coefficient matrix if 

possible, but inverting the matrix needs more CPU time. An iteration step of the GSM 

writes as 
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1

1 1

1 1

1 .
i n

r r r
i i ij j ij j

j j iii

x b a x a x
a

−
+ +

= = +

 
= − − 

 
∑ ∑        (47) 

 Here, beside its dependence on the values of iteration r , the value 1r
ix +  of 

iteration 1r +  depends on the sum of the previously calculated 1r
jx +  of the iteration 

step 1r + . The GSM may be very efficient in terms of storage and memory 

requirements. It is fast for sparse matrices and it is possible to adjust the method if a 

predefined error is attained. One drawback is that even if the diagonal is dominant, 

in some cases this method might not converge. 

Successive Over-Relaxation Method. The Successive over-relaxation method (SOR) 

takes the general form of the Gauss-Seidel method with an additional constant ω  for 

the iteration step k , leading to 

   ( )
1

1 1

1 1
1 .

i n
r r r r
i i i ij j ij j

j j iii

x x b a x a x
a
ωω

−
+ +

= = +

 
= − + − − 

 
∑ ∑       (48) 

ω  acts like a scaling factor for the vector, pointing towards the exact result. If 1ω = , 

the SOR is equal to the GSM. The SOR is used because it is known that for some 

applications the solution converges faster. For example, the software MEAD 

(Macroscopic Electrostatics with Atomic Detail) [35] uses 1ω =  for 1k =  and a so-

called Jacobi radius, 0.989Sr = , in every iteration step 1k +  taking the following form: 

     
( )

1
2

1
1 0.25

k
k

Sr
ω

ω
+ =

− ⋅
 .           

Using the Chebyshev acceleration [35]–[37], one may reduce the number of iteration 

steps for faster convergence. 

Conjugate Gradient Method. The Conjugate gradient method (CGM) is a fast and 

reliable method for solving large linear equation systems. It can be applied for a 

quadratic, positive-definite, symmetric coefficient matrix and is best used for sparse 

matrices.  

In this context, conjugate means that vectors u  and v  fulfill the requirement 
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         0Tu Av =


  . 

To explain the CGM, first the quadratic form of bx=A


  is written as 

    1(x)
2

T Tf x x x b= −A


   .        (49) 

 

Fig 11. Example of the conjugate gradient method. Starting from an initial guess (start point), 
an exact solution is reached after a maximum of N  steps, where N  is the number of 
unknowns in the linear equation system. 

This means that if there is an x̂


 (initial guess) which is set as the approximated vector 

x , (x)f   will become smaller if  approaches the exact solution. If (x) 0f =


 , the exact 

solution is attained.  

 After the starting point is defined (see Fig 11; normally it is ˆ 0x =



), one has to 

minimize (x)f   to get the exact solution to find the – hopefully global – sink. Another 

way is to define a residual r  which will be minimized and where 0r =


  results in the 

same exact solution: 

    0 k
kx b b x r= ⇔ = −A A

 

  

 ,        (50) 
where k  is the current iteration step and kr  the current result using ˆk kx x





 . With this 

it is possible to find a vector kp  which points towards a “new direction” (see Fig 11), 

using the expression: 

       
T

T
i k

k k i
i k i i

p rp
p

r p
p<

= −∑ A
A

 

  



,        (51) 
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where kp  is conjugate to the residual kr
 . A new solution vector for the next iteration 

step 1k +  is calculated as  

     1k k k kxx pα+ = +
  , 

where  

   
T T T

1 1 1
T T T

( )k k k k k k
k

k k k k k k

p b r xp r
p p p p

p
p p

α − − −+
= = =

A
A A A

 



   

   

.        (52) 

After k N=  steps, the CGM converges to the exact solution. At first, the CGM looks 

more complicated than other methods, but summarising the method in pseudo-code 

(Listing 1) shows that the CGM just needs one matrix-vector multiplication and a few 

inner products for each step. There are many ways to reduce the computational cost 

of the CGM. Generally, in the worst case it has a runtime of 3(n )O , but if the matrix is 

sparse, the CPU time reduces significantly. Using a preconditioner before solving the 

linear equation system may help to further reduce CPU time [38]. 
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Listing 1. Pseudocode for the conjugate gradient method. 
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Multigrid Method 

The multigrid method (MGM) is a technique to minimize the number of convergence 

steps by using intermediate steps which are called (i) the smoothing, (ii) the 

restriction, and (iii) the prolongation step (see Fig 12). A fine-grained problem is 

reduced into smaller coarse-grained problems. The results of the coarse-grained 

problems are interpolated to obtain boundary solutions to solve the finer-grained 

problems until the original fine-grained problem is solved. Using a good initial guess 

obtained in previous computations results in a minimization of convergence steps for 

the original fine-grained problem. This significantly saves computation time. Within 

a smoothing step (i), some Gauss-Seidel iteration steps are performed (see page 43). 

For example, the software APBS (Adaptive Poisson−Boltzmann Solver) [18], [39]–[41] 

uses an advanced Gauss-Seidel procedure called the Red-Black Gauss-Seidel method 

[39] which boosts the GSM by solving black-labeled indices first and red-labeled 

indices afterwards (this can be imagined as a generalized three-dimensional chess 

board). A restriction step (ii) transforms the fine-grained solution into a coarser one. 

A prolongation step (iii) interpolates the coarser grid solution onto a finer grid. 

 

 
Fig 12. Schematic representation of the multigrid method with (i) smoothing, (ii) restriction 
and (iii) prolongation steps; left: v-cycle; right: w-cycle; here, both cycles have a depth of 5. 
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Multifrontal Method 

Using mFES, it is possible to reduce the number of linear equations and build a 

sparse, positive-definite and symmetric coefficient matrix A. mFES uses MUMPS 

(Multifrontal Massively Parallel sparse direct Solver) [42]–[44] to solve the lPBE 

numerically. MUMPS is adapted to sparse coefficient matrices and utilizes the 

symmetry of the coefficient matrix. It uses a multi-frontal solver method employing 

the Gaussian elimination techniques described on page 43 for every subproblem, a 

so-called front. The frontal solver is designed to skip the large number of zeros in the 

sparse coefficient matrix by building up smaller dense matrices. A front is generated 

by an LU matrix decomposition technique building independent submatrices which 

can be solved independently using Gaussian elimination techniques. On account of 

having independent submatrices to compute the electrostatic potential of a molecular 

system by solving the lPBE, the method is called the multi-frontal method. MUMPS 

generates many fronts which can be used to solve the linear equation system with a 

sparse matrix by parallelization. In standard configuration mFES does not use this 

option. Instead, it uses an iterative procedure of MUMPS for solving the lPBE with a 

second-order solution which leads to converged results after two iteration steps. 

 NETGEN [1] provides the coefficient matrix A and the right-side vector b


 for a 

higher-order solution of the lPBE. For a third- and fourth-order solution three 

iteration steps are necessary to get sufficiently converged results.  
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Discretization Pitfalls 

Artificial Grid Energy 

PDB files contain information about the crystal structure of a protein in terms of atom 

and residue types of Cartesian coordinates and of B-factors (Protein Data Bank file 

[45]). Information about atomic vdW radii and charges are added to these data [46]–

[48] and the molecular model is discretized from free space onto a regular grid (FD 

method), irregular grid (FE method), or onto an irregular molecular surface grid (BE 

method). This preparation is crucial for all following steps.  

 An artefact arises from distributing a point charge iq , over neighbouring grid 

points by linear or polynomial interpolation. Thus, fractional charges appear at the 

grid points, which start to interact. But, even if an atomic charge is by chance exactly 

on a grid point it is subject to self-interaction. Another point charge artefact occurs 

because the electrostatic potential at a point charge is infinite, eq. (3). The resulting 

self-energy depends on the geometrical arrangement of the neighbour grid points 

where the fractional charges are localized, generating artificial grid energies. It is not 

possible to compute the grid energy a priori because every grid may be different and 

the same is true for the self-energy contribution of a grid point to the total 

electrostatic energy of the system. The higher the density of grid points is, the shorter 

is the distance between newly created partial point charges and the higher is the total 

self-energy contribution. The problem is that one generally needs a high grid point 

density to compute very accurate electrostatic energies for a molecular system which 

results in large grid energy artefact.  

 To overcome the divergence of the self-energy resulting from the grid artefact, 

the artefact free electrostatic free energy ∆G  is calculated by computing the energy 

difference solv→∆ = −gas solv gasG G G , where gas refers to the environment where a protein 
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is in the gas phase with homogeneous dielectric medium and solv refers to the model 

considering the protein in a solvent represented by a dielectric continuum using the 

same grid points as in the gas phase. There are alternative techniques for removing 

the singular contribution of point charges in the lPBE equation explicitly by using the 

reaction field energy approach [49], [50].  

Surface Discretization Pitfalls 

Discretizing a molecular surface (Fig 13) is performed by discriminating between the 

inner and outer region at protein surface.  

 

 

Fig 13. Surface types for a protein; IEL: ion exclusion layer; SAS: solvent accessible surface; 
SES: solvent excluded surface; vdW: van-der-Waals surface. A solvent probe with a given 
radius is rolling over the vdW surface creating the SES which is also known as the molecular 
surface. 

When using the FD method, it has to be decided if the intersecting cube in the simple 

cubic grid belongs to the interior or the exterior of a protein moiety. In the following, 

an example of a general FD algorithm creating the SES is sketched (APBS [18], [39]–

[41]): 

o Mark all cubes on the grid as exterior; 

o Iterate over all atom positions with extended sphere radius (vdW radius + 

probe radius) and mark all cubes which are partially inside of the extended 

spheres as belonging to the protein volume; 
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o Create evenly distributed points with a given point density located on the 

vdW spheres (vdW points); 

o Delete all vdW points which are located in intersecting vdW spheres; 

o Draw a sphere with probe radius around each remaining vdW point and mark 

all cubes within this radius as exterior again.  

The determination of molecular surface points, performed by this procedure, bears 

an uncertainty of 0.5h± , where h  is the grid constant of the finest focusing step used 

in the FD method algorithm. In [3] the effect on simple electrostatic solvation energy 

computations for different proteins is shown. The FD and FE methods differ by more 

than a few /kJ mol , depending on the surface area of the protein analysed which in 

general is proportional to the size of the protein. 

 The FE method is flexible in distributing grid points in space to discretize the 

molecular model. To model the protein surface faithfully, a high grid point density is 

selected on the molecular surface, while in the volume of the interior and exterior 

protein region, the density is lower. With mFES, the high molecular surface grid 

point density is achieved using a level set method implemented in LSMS [2]. To 

regularize the resulting molecular surface, NETGEN [1] is employed which uses the 

advancing front method [51], [52] to generate triangles with good quality on the 

surface. In the resulting molecular model, one can establish finer-grained molecular 

models with the same number of grid points or even less than needed for the FD 

method without the necessity of using a focusing technique. In the following, some 

common problems are treated, which have to be solved by establishing an initial fine-

grained molecular surface and compare the performance of different programs 

computing the SES. 
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 In general, one is interested in a triangulated protein surface which is accurate 

and which produces electrostatic energies and pKA values with high quality after 

solving the lPBE. The algorithm has to be robust and flexible to construct triangles on 

the molecular surface which have nearly same edge lengths (regular triangles). 

Different meshing algorithms were explored, like EDTSurf [53], MSMS [54] and 

LSMS [2], as well as other algorithms like ball-pivoting on point clouds [55] to reach 

these goals. 

 EDTSurf turned out to be unusable for the task because EDTSurf eventually 

simplifies the marching cubes algorithm to 23 cases even though up to 82 256=  cases 

are possible to mesh a surface, depending on the inside/outside pattern of the cube-

corner points. In an important but still very easy case, a sphere, EDTSurf was not able 

to mesh its surface with sufficient quality (see Fig 14). 

 
Fig 14. The surface of a sphere is generated with EDTSurf. EDTSurf uses the vertex-
connected marching cubes algorithm which is not performing well in this example. 

There is not much control over the meshing parameters in detail, and every mesh is 

finalized with a Laplacian smoothing by default. From experience this smoothing 

might lead to uncontrollable surface shrinkage which in turn might result in triangles 

with low quality. On the other side, volumes and the solvent accessible surface area 

are approximated well, as stated in the paper by Zhang [53], but EDTSurf is expected 

to have difficulties in meshing the molecular surface with high quality if there are 

titratable groups near the surface which is a challenging task. 
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 MSMS is able to compute an analytical surface and nearly uniformly 

distributed points on the molecular surface, but (1) triangle quality is not measured 

and (2) sometimes the triangulated surface features self-intersections which is a 

difficult problem to solve (see Fig 15 and Fig 16).  

 
Fig 15. Lysozyme (PDB id 2lzt [56]) meshing example with trouble spots (circled in red); 
a) triangulated MSMS mesh; b) upper part: zoom into some trouble spots of the MSMS-
computed surface which are hard to mesh; b) lower part: NETGEN mesh with bad triangles 
using MSMS mesh; c) an attempt of NETGEN to mesh the MSMS surface of lysozyme; some 
trouble spots cannot be repaired. 
 

 
Fig 16. Ribonuclease H (PDB id 2RN2 [57]) meshing example with trouble spots obtained by 
the MSMS algorithm; a) left: exterior of the protein, intersecting (red) faces of the molecular 
surface; b) right: interior of the protein; irregularity in the mesh: a complete sphere inside the 
protein (yellow).  
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 Another possibility is to use a ball-pivoting algorithm, which creates points on 

the molecular surface. This point cloud is generated by extracting information from 

different programs (e.g. APBS [18], [39]–[41], MSMS [54]). A sphere with radius r  

starts at a seed grid point (vertex) and triangulates every three vertices to a face, 

which is repeated until all vertices were visited at least once. With this algorithm 

described by Bernardini et al. [55], it is probable to obtain a surface with holes. It is 

not feasible to close all holes in the surface automatically without getting self-

intersections (see Fig 17), therefore, this method was not used.  

 

Fig 17. Application of the ball-pivoting method [55]. Trouble spots are circled in red. a) point 
cloud generated using e.g. MSMS [54] for modelling the surface of lysozyme (PDB id 2lzt 
[56]); b) result of the ball-pivoting algorithm with holes marked as trouble spots; c) result of 
the automatic hole closing algorithm after some filtering using Meshlab [58]. Not all holes 
could be closed. Hence, the surface remains inconsistent. 
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Applications 

Computation of the Electrostatic Solvation Energy 

The electrostatic solvation energy is part of the solvation free energy which is the 

energy to transfer a molecule from vacuum (gas phase) into water (aqueous phase). 

The presence of ions affect the solvation free energy. Regardless of the specific 

distribution of the ionic charges, the electrostatic solvation energy decreases with 

ionic strength [59]. 

The difference →∆ gas solvG  of the electrostatic energy of a point charge distribution in 

two different dielectric environments (gas and solv) is given by  

    ( )
qN

solv i i i
i=1

1
2→∆ = − = Φ −Φ∑ solv gas

gas solv gasG G G q ,        (53) 

where gas refers to the environment where a protein is in the gas phase (εin = εout = 1 

to 4) and solv refers to the model using same protein in a solvent represented by a 

dielectric continuum (εout = 80 outside and εin = 1 to 4 inside of the protein, see Fig 18).  

 

Fig 18. Schematic representation of a dielectric continuum model. The electrostatic solvation 
energy is computed using the same grid for the protein in gas and aqueous phase. The 
dashed circle denotes the boundary surface used in numerical computations to set up 
boundary conditions. 
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Determination of pKA Values in Proteins 

The Danish chemist Søren Sørensen established the pH scale in 1909 [60]. He 

determined the proton concentration [H+] in solution and defined the pH value as the 

negative decadic logarithm of this concentration. Lawrence Joseph Henderson 

described acid-base equilibration reactions in 1908 [61] and Karl Albert Hasselbalch 

extended Henderson’s equations in 1916 [62] which lead to the Henderson-

Hasselbalch equation, eq. (60), which connects the pH, the acid-base equilibration 

reactions, and the pKA. The latter is defined as the negative decadic logarithm of the 

acid constant in acid-base equilibration reactions. The equilibrium of a pair of 

protonation states of a titratable group can described by the pKA value which has to 

be determined experimentally (if possible) or by computation. 

Table 1. Model pKA values measured in different labs. Table adopted from [66], p. 1215. 

group Cohn and 
Edsall [67] 

Nozaki and 
Tanford [68] 

Gurd Lab 
[69] 

Wuthrich lab 
[70] 

Creighton 
[71] 

α-carboxyl 3.0–3.2 3.8 3.3 - 3.5–4.3 
Asp 3.0–4.7 4.0 3.9 3.9 3.9–4.0 
Glu 4.4 4.4 4.2 4.2 4.3–4.5 
His 5.6–7.0 6.3 6.8 6.9 6.0–7.0 
α-amino 7.6–8.4 7.5 8.1 – 6.8–8.0 
Cys 9.1–10.8 9.5 – – 9.0–9.5 
Tyr 9.8–10.4 9.6 10.0 10.2 10.0–10.3 
Lys 9.4–10.6 10.4 10.5 11.0 10.4–11.1 
Arg 11.6–12.6 12.0 – – 12.0 
The pKA values were measured under different conditions using various approaches, see references 
for details. In general, these measurements have an error of ± 0.1–0.2 pH units.  
 

 Experimental pKA values of titratable groups in solution are determined using 

potentiometric titration that varies the pH value [63] or indirect techniques such as 

NMR to monitor ionization states [64]. The resulting experimental values of the 

degree of protonation are fitted to the Henderson-Hasselbalch equation to obtain so-
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called model pKA values [65]. Table 1 lists measured pKA values. These are sometimes 

controversial, and can be subject to small errors, which dependent on experimental 

conditions [66]. Experimental pKA values of titratable groups in a protein 

environment are more difficult to measure. Hence, computing pK values of titratable 

groups in proteins is an important task.  

pKA Determination in silico 

For the pKA determination in silico, the ionization state of every titratable group has 

to be determined by using the crystal structure information of the protein. The 

ionization state depends on the pH value of the solvent. A high pH value means low 

proton concentration in solution and a low pH value means high proton 

concentration. Depending on the pH value of the solvent environment of a protein, 

the solvated protons interact with atoms of the protein and titratable groups might 

change their protonation state. The different types of titratable groups can either be in 

their protonated or in their deprotonated state, which depends on the difference 

between pKA and pH values. The pKA value lies at that point of the pH scale where 

the probability of a titratable group of being protonated or deprotonated is 0.5. 

Table 2 lists some values used for model pKA computations.  

 MD (molecular dynamic) simulations are one example where an initial 

ionization state has to be assigned to a protein before starting a simulation. In 

general, the “standard” protonation corresponding to the pKA values of titratable 

groups in solution is used for proteins in a physiological environment with a pH 

value of about 7. This assignment is often not correct for protein environment. The 

protonation state of a protein depends on the structure and the environment and has 

to be recomputed for each protein conformation generated by the MD simulation.  
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Table 2. Experimental model pKA values used in thermodynamic cycle computations to 
calculate the energy differences between the charged and the uncharged state of a titratable 
group.  
group pKA

model [68], [72] 

Asp 4.0 
Glu 4.4 
Lys 10.4 
Arg 12.0 
Hisδ 7.0 
Hisε 6.6 
Tyr 9.6 
Nterm 7.5 
Cterm 3.8 
 

Titration Curves for a Single Isolated Titratable Group 

To determine pKA values, one has to compute titration curves which in principle 

follow the Henderson-Hasselbalch equation, eq. (60). This results in the assumption 

that the titration of residues in proteins produces similar sigmoidal curves. In the 

following, the mathematical formulation of the Henderson-Hasselbalch equation is 

derived.  

 An acid-base equilibrium is described by the Henderson-Hasselbalch equation. 

The general forms of an acid, eq. (54), and a base reaction, eq. (55), writes as  

     -HA A + H
A

B

K

K
+

 ,        (54) 

     +BH B + H
A

B

K

K
+

 .        (55) 

The equilibrium constants are defined by the laws of mass action, resulting in 

        
( ) ( )

( )A

c H c A
K

c HA

+ −

=        (acid equilibrium constant),    (56) 

        
( )

( ) ( )BB

c BH
K

c c H

+

+
=

+
     (base equilibrium constant).      (57) 
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AK  equals unity if the concentration of H+ and A- on the right side of eq. (54) equals 

the concentration of HA. If AK  is less than unity, the protonated (neutral) acid 

dominates, and if AK  is greater than unity the dissociated (negatively charged) acid 

dominates. 

 The pH value is the negative decadic logarithm of the H+ concentration and 

the pKA the negative decadic logarithm of the acid constant, one writes 

    10pH log (c(H ))+= − ,         (58) 

    A 10
ln( )pK log ( )
ln(10)

A
A

KK= − = − .       (59) 

Combining eq. (56) and the previous definitions above leads to the Henderson-

Hasselbalch equation which is the dimensionless negative decadic logarithm of the 

acid equilibrium constant:  

 A 10 10

ln(10)

(H ) (A ) (A ) 1 (A )pK log log ln
(HA) (HA) 2.303 (HA)

c c c cpH pH
c c c

+ − − −

=

     
= − = − = − ⋅     

     
.    (60) 

The pKA value of an acid equals the pH value at which the concentrations of its 

protonated and its deprotonated forms are equal. Therefore, the ApK  is measured by 

determining the equilibrium point of a titration curve where ( ) ( )− =c A c HA . For 

titratable groups, these values can be obtained experimentally (page 56 and table 1).  

 Changes in pKA have to be related to changes in free energy to be able to 

perform thermodynamic cycle computations. The Gibbs free energy links the free 

energy with the pKA, eq. (59), at standard conditions (temperature: 298.15 °K; 

pressure: 1 bar). The Gibbs free energy 0
protG∆  is defined as 

   0
A A A

ln( )pK ln( ) ln(10)pK ln(K ) RT ln(10) pK
ln(10)

A
A Aprot

K K G RT= − ⇔ = − ⇒ ∆ = ⋅ = − ⋅ ⋅ ,  (61) 
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where RT  is a scaling factor for the energy defined as B Ak T N⋅  ( Bk  is the Boltzmann 

factor, T is the absolute temperature in Kelvin, and AN  is the Avogadro constant; see 

appendix A).  

Using eq. (61), the acid constant is rewritten as 

       
0

0

ln(K )A A

prot
prot

G
RT

G
K e

RT

∆
∆

= ⇔ = .       (62) 

 The protonation probability x  is computed for every titratable group 

depending on pH. Rewriting the Henderson-Hasselbalch equation, eq. (60), using 

( )1 (A ) / (A ) (HA)− −− = +x c c c  results in 

              A

1
pK pH log

x
x

 −
= −   

 
.       (63) 

The change in the free energy due to a change in the pH environment is defined as 

        ( )0
ART ln(10) pH pKprotG∆ = ⋅ ⋅ − .       (64) 

Using eq. (63) and eq. (64) leads to  

            ( )

0

0
A

RT

pH K

RT

e 1 .
10 1

e 1

∆
−

−∆
−

= =
+

+

prot

prot

G

pG
x       (65) 

 Finally, a titration curve is drawn by plotting the probability x  as a function 

of the pH which results in the well-known sigmoidal titration curve (an example is 

shown in Fig 19) defined by the Henderson-Hasselbalch equation, eq. (60). 
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Fig 19. Exemplary titration curve of Glu with the model pKA value 4.4. The sigmoidal shape 
of the curve is described by the Henderson-Hasselbalch equation. 
 

 

Titration Curves of Multiple Titratable Groups 

In the previous subchapters the determination of pKA values has been explained 

which is sufficient to describe the titration behaviour of one titratable group in 

solution. In the following, the pKA values of multiple interacting titratable groups of a 

single protein conformer will be determined. Observing pKA shifts while e.g. 

changing the protein conformation or the internal charges can give clues to protein 

function or to possible proton transport channels [73].  

 In general, titratable groups obey the Henderson-Hasselbalch equation, i.e. 

they have a sigmoidal titration curve. Inside the protein, their behaviour might be 

different due to interactions between neighbouring titratable groups, other charges of 

polar groups, or interactions with ions near the molecular surface. These effects can 

all be accounted for by electrostatic interactions [68]. Therefore, it is possible to 
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determine the ionization states of titratable groups if all electrostatic effects are 

included in the mathematical description. This is achieved by the continuum 

electrostatic model using different dielectric media. The energetics of different 

protonation patterns are computed in different dielectric media using a 

thermodynamic cycle (Fig 20). A reasonable choice of dielectric constants inε  and outε  

has to be made as well as an accurate description of the protein by discretization 

methods. There are error cancellation effects, and the different philosophies 

regarding the “best” thermodynamic cycle are subject to on-going debate in the 

scientific community [74], [75].  

 Using the thermodynamic cycle displayed in Fig 20, the free-energy difference 

for one titratable group in a dielectric environment is defined by 

       (AH,A) G (A ) G (AH) RT ln(10) (pH pK )X X X
X
AG −∆ = − = − ,     (66) 

where X  denotes one of the three environments: gas phase (G ), aqueous 

phase/solvent ( S ), or protein environment ( P ). Generally, one is interested in 

(AH A )PG −∆ →  which is the free-energy difference between the protonated and the 

deprotonated form of the titratable group within the protein environment. The 

difference PG∆  is obtained by computing the other free-energy differences occurring 

in the thermodynamic cycle and combining them as follows: 

     (AH A ) (AH) (AH) (A ) (A )P S P G S G G S S PG G G G G G− − −
→ → → →∆ → = −∆ − ∆ + ∆ + ∆ + ∆ ,     (67) 

where (AH A )GG −∆ →  is known as the proton affinity (in the gas phase). This 

procedure works for small heterogeneous groups of compounds as has been 

demonstrated to be feasible using the DFT (density functional theory) [74], [76].  
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Fig 20. A general thermodynamic cycle is shown for computing the pKA value of a titratable 
group using a single conformer of the protein. The gas phase, aqueous phase and protein 
environment have varying setups using different dielectric constants for the solvent and/or 
solute. The location of the H+ is denoted by a red dot. For the gas and aqueous phase only the 
titratable group and for the protein environment the whole protein is marked in green; left: 
one titratable group is protonated; right: the same titratable group is deprotonated, i.e. H+ is 
solvated.  

 

Although similar approaches have systematically improved this method for metal 

compounds [77], a large and computationally expensive basis set is needed to achieve 

an appropriate accuracy for ab initio computations of pKA values. This is why an 

alternative way is chosen for skipping the expensive quantum-chemical gas-phase 

calculation by using experimental model
ApK  values for (AH,A )−→∆ G SG  which results in 

a simplified thermodynamic cycle computation: 

      (AH A ) (AH) (A ) (AH,A )− − −
→ → →∆ → = −∆ + ∆ + ∆ 



P S P S P G S

unknown knownunknown
G G G G .     (68) 

The pKA value of titratable group µ  in protein environment correspondingly writes  

      
( )model model

A, A, A,

(A ) (AH)
pK pK pK

ln(10) ln(10)

P
S P S PP

G G G
RT RT

m
mmm 

−
→ →∆ − ∆ ∆∆

= + = +
⋅ ⋅

.     (69) 
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The two unknown parts of PGµ∆∆  are computed by calculating the electrostatic 

energy differences between gas phase and aqueous phase and between aqueous phase 

and protein phase, as shown in Fig 20. For every electrostatic energy term  

 ( ) ( ) ( ) ( ) ( ) ( )( )
qN

solv i i i
i=1

1
2α α α α α α→ →∆ = ∆ = − = Φ −Φ∑ P S

gαs S P P SG G G G q ,    (70) 

is used, where { },AH Aα −∈ , qN  is the number of charges of the titratable group, iq  is 

the ith charge, and iΦ  is the potential at the location of charge iq  for the dielectric 

medium corresponding to the protein ( )P  or in the solvent environment (S) , i.e. the 

aqueous phase. PGµ∆∆  is often computed using a continuum dielectric model with the 

two double differences of bornG∆∆  and backG∆∆  energy terms:  

 
( ) ( )

( ) ( )( ) ( ) ( )( )
q q

, , , ,

N N

i, i i i, i i
i=1 i=1

1 1
2 2 .

solv born S P S P

P S P S

G G G HA G A

q HA HA q A A

µ µ µ µ

µ µ

−
→ →

− −

∆∆ = ∆∆ = −∆ + ∆ =

   
− Φ −Φ + Φ −Φ      
   
∑ ∑

     (71) 

,solvG µ∆∆  is known as the Born energy contribution which is the solvation energy 

needed to transfer a titratable group from an aqueous phase into a protein 

environment. In more detail, the sum qN  runs over all atoms of titratable group µ  

where the atomic partial charges depend on the actual protonation state. The 

equation 

 ( ) ( )( ) ( ) ( )( )
q qN N

, i, i i i, i i
i=1 i=1

S S P P
backG q A HA q A HAµ µ µ

   
∆∆ = − Φ −Φ + Φ −Φ      

   
∑ ∑ ,    (72) 

is used to calculate the influence of charges inside a protein which are due to other 

titratable groups and neutral charges. In this equation, qN  runs over all background 

charges in the protein, i.e. the charges of all other titratable groups in their reference 

state and all charges in the protein which are not located in titratable groups, as well 

as all charges of the titratable groups µ  which are not changing if the protonation 
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state is changed (Fig 21). Hydrogen-bond donors and acceptors might be present and 

have to be accounted for in the pKA computation of a titratable group µ  in protein 

environment by inserting eq. (71) and eq. (72) into eq. (69) [78], [79]: 

   ( )solv,μ back,μ
intrinsic model
A,μ A

1pK pK
ln(10)

G G
RT

= + ∆∆ + ∆∆
⋅

.     (73) 

 

 

Fig 21. A titratable group in protein environment and in aqueous solution is shown; black 
circles: charges are changing if the protonation state of the titratable group is changing; white 
circles: background charges. 

 Eq. (73) for computing the pKA value is the so-called intrinsic pKA value which 

applies if there are no other titratable groups in the protein or if all other titratable 

groups are in their uncharged reference state. This assumption is not necessarily 

fulfilled which is why one has to consider the influence of interactions between 

titratable groups in the protein environment in more detail. This is done using an 

interaction matrix which accounts for the interaction between titratable groups µ  

and v . By summation over all variable charges of the titratable group µ  one obtains: 

    ( )( )
1

vref , ref,vv

N
P PW q qµ

µ
µ µ

=

 = − Φ −Φ ∑ .      (74) 
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This matrix is symmetric. It is multidimensional because titratable groups can be in 

different tautomeric states corresponding to multiple protonation states. The 

diagonal element Wµµ  is zero because the self-energy term is included in the 

intrinsic
A,μpK .  

Summing up the above derivations yields the equation for the electrostatic energy of 

protonation state x  related to the reference protonation state refx  of a titratable group 

µ , which in analogy to eq. (64) writes as 

  ( ) ( ),
intr
A,ln(10) RT pH pKµ

µ µ µ µ
µ

µ δ
≠

= − ⋅ ⋅ ⋅ − +∑prot ref v v
v

G x x W ,      (75) 

where { }0,1xµ ∈  is the current protonation state of titratable group µ ; 0µ =x  if the 

group is in its deprotonated state and 1µ =x  if the group is in its protonated state. 

{ }0,1refx ∈  is the reference protonation state which is the state of the uncharged 

group. 1refx =  if the group is an acid and 0refx =  if the group is a base. 

The delta function vµδ  equals unity if both titratable residues ( µ  and v ) are in their 

non-reference, i.e. the charged state. 

 Determining the occupancy ix  by evaluating the Boltzmann sum for state i  

one gets: 

          i

j

n
i

n
j

G
RT

G
RT

ex

e

−

−

=

∑
.        (76) 

 Here the previous notation is used to write the so-called thermodynamic 

average of xµ  over all its 2N  protonation states. This average is divided by the sum 

over all possible protonation states of every titratable group: 
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1

2

2

e

e

µ

µ
=

=

−

−

⋅
=
∑

∑

n

n

nN

N

G
RT

nG
RT

x
x .       (77) 

 To evaluate the above Boltzmann average it is necessary to compute the 

energy of every protonation pattern, which involves 2N  different protonation states. 

Because a “brute-force” method is computationally expensive, a Monte Carlo method 

(MCM) is used [80], [81].  

 This probability is plotted for every titratable group µ  depending on the pH. 

The pKA value for group µ  is determined as that pH value for which the group is 

half-protonated and, therefore, 0.5xµ =  holds true. This method is very appropriate 

if the titration curve obeys the Henderson-Hasselbalch equation which is the case for 

majority of titratable groups. In cases, where several titratable groups are strongly 

coupled they may possess very irregular titration curves. In these cases a separate 

inspection of the titration curves is necessary in order to obtain meaningful results. 

 In most cases, better results are obtained if protein flexibility is considered, 

allowing relaxation of the protein structure, by using appropriate protocols [82], [83]. 

To account for protein flexibility, one needs to add the electrostatic energy difference 
lG  of conformation l  with respect to the reference conformation n  in its reference 

protonation state to eq. (75): 

   

( ) ( ),
,

1

1

intr
A,μln(10) RT pH pK

.

µ µ
µ

µ µ
µ µ

δ

=

= ≠

= − ⋅ ⋅ ⋅ −

+ ⋅

+

∑

∑∑

N
n l n

ref

N N
l

v v
v

l

G x x

W

G

  

               (78) 
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As a consequence, the probability of a protonation pattern changes from that 

presented in eq. (77) to 

           1 1

2

1 1

,2

,

e

e

µ

µ
= =

= =

−

−

⋅
=
∑∑

∑∑

l n

l n

N

N

n lL

L
n lG

RT

G
RTx

x ,     

               (79) 
where L is the number of conformations. 

 For most of the above-mentioned energy terms it is assumed that the 

electrostatic contributions of all titratable groups are additive. This is true if the lPBE 

that is solved is valid and the electrostatic potentials follow the principle of 

superposition [84]. With a non-linear PBE description, the electrostatic potentials are 

not additive. At low ion concentration the lPBE is a good approximation of the 

general non-linear PBE. High ion concentration might occur for highly charged 

molecules like RNA or DNA requiring high ionic strength to be efficiently solvated 

under physiological conditions. To compute the electrostatic potential for such 

systems with an appropriate accuracy, the electrostatic potential has to be calculated 

explicitly for each protonation state.  
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II. mFES: A Robust Molecular Finite Element Solver for Electrostatic 
Energy Computations  

This chapter is based upon a peer-reviewed publication: 

I. Sakalli, J. Schöberl, and E. W. Knapp, “mFES: A Robust Molecular Finite Element 

Solver for Electrostatic Energy Computations,” J. Chem. Theory Comput., vol. 10, no. 

11, pp. 5095–5112, Oct. 2014.  

http://dx.doi.org/10.1021/ct5005092 

Contributions 

 Development of mFES (research and implementation) 

 Development of webpage 

 Generating results and performing analyses with new tools 

 Manuscript preparation 
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Summary and Discussion 
 

This thesis presents the computation of electrostatic potentials by using the Finite 

Element (FE) method for solving the linear Poisson-Boltzmann equation (lPBE). It 

explains the underlying algorithm of the software mFES (molecular Finite Element 

Solver) and why it is able to outperform the electrostatic solvation energy 

computations compared of well-established programs employing the Finite 

Difference (FD) method.  

”To the best of our knowledge, mFES is the first FE method, which is 

competitive with well-established FD methods and sufficiently robust 

to calculate electrostatic properties for large proteins accurately.“ 

Sakalli, 2014 in Journal of Chemical Theory and Computation. 

After a short introduction to different software using the FE method, the FD method 

and the Boundary Element (BE) method to solve the lPBE, the mathematical 

expressions of the FE method for discretizing the lPBE to an irregular grid are 

derived. Grid artefacts occurring in the course of the discretization of point charges 

are discussed as well as how to obtain a high accuracy for electrostatic potentials. For 

these purposes, higher order polynomials are utilized and are evaluated via test 

functions to obtain second- or even higher-order polynomial solutions. 

 The definition and generation of a protein surface is described and different 

programs to compute molecular surfaces are discussed. Afterwards, a level-set 

method is introduced for generating a fine-grained molecular surface. The LSMS 

(Level-Set method for Molecular Surface generation) fulfils the need for high-quality 

molecular surface generation.  
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 Next, NETGEN is described and how it is used to generate a model of the 

molecular volume to solve the lPBE numerically. First, the molecular surface is 

covered with triangles which are then regularized via an advancing front method 

[51], [52]. Subsequently, the protein volume is filled with tetrahedrons with a given 

resolution. The asymptotic boundary is defined by means of a coarse sphere with the 

protein in the centre. The space between the protein and the asymptotic surface of the 

sphere is filled with tetrahedrons whose edge lengths increase regularly towards the 

asymptotic surface. The resulting tetrahedral mesh of the model is then optimized 

and the grid points of the resulting tetrahedral mesh are used to discretize the lPBE 

and to solve the resulting linear equation system with MUMPS (Multifrontal 

Massively Parallel sparse direct Solver). 

 

 

Fig 22. Computed electrostatic solvation energies in [kJ/mol] for bpti (bovine pancreatic 
trypsin inhibitor), barnase, lysozyme and CcO (cytochrome c oxidase) as a function of the 
average nearest-neighbor grid point distances. mFES: solid line with dots; APBS: for the 
construction of the molecular surface three different point densities on the atomic vdW 
surfaces are considered: , 10 points/Å2; , 3 points/Å2; , 1 point/Å2; MEAD: results are 
marked with  and use same coarse and fine resolutions for the second focusing step as does 
APBS.  

71 | 



 As a proof of principle the Born ion model is computed with different methods 

and with different ion concentration. The highest accuracy is obtained with mFES as 

compared to finely resolved computations performed with other methods.  

 Subsequently, solvation energies are computed for four proteins: bpti (bovine 

pancreatic trypsin inhibitor), barnase, lysozyme and CcO (cytochrome c oxidase) 

(Fig 22). For the FD method it is not clear which point density should be used on the 

vdW sphere surfaces to obtain converged results. The FE method yields results with 

errors smaller than 1%. It is obvious that the accuracy of the FE method is increased 

by lowering the average triangle edge length on the protein surface for all proteins. 

 With lysozyme as a test case, the Hausdorff distance [85], [86] is utilized to 

compare molecular surfaces computed with different FE methods (Fig 23). These 

surfaces are used to compute electrostatic solvation energies.  

 

Fig 23. Comparison of molecular surfaces (SES) generated with different FE methods, 
focusing on a small region of bpti [87]. MSMS [54] is not able to perform solvation energy 
computations but generates molecular surfaces and is known to deliver a fine representation. 
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The CPU times needed for solving the lPBE are stated as well as the parameters used 

in mFES (hS: average edge length of the molecular surface triangles; hV: average edge 

length of the tetrahedrons in molecular volume; g: grading parameter reducing the 

edge lengths of adjacent tetrahedrons while approaching the protein surface) and 

how these parameters influence the results and reduce the number of unknowns. The 

parameters are compared with respect to the resulting accuracy in the computations. 

”Compared to FD methods the number of linear equations to solve the 

lPBE is reduced by one to two orders magnitude.“ [3] 

Maps of the potential-energy surfaces obtained with the FD method and the FE 

method are shown. Both methods yield visually very similar results but the FE 

method outperforms the FD method for large proteins, e.g. the adenovirus with PDB 

id 4CWU [88] containing 193k atoms. This computation demonstrates the robustness 

of mFES. 

 

Fig 24. Electrostatic potential map for the adenovirus (PDB id 4CWU) [88] with 193k atoms in 
the range from -40 to 40 [kT/e] computed with mFES with moderate resolution (hS = 0.5 Å) 
and visualized with PyMOL [89]  
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III. pKA in Proteins Solving the Poisson-Boltzmann Equation with 
Finite Elements  

Introduction 

Knowledge on pKA values is essential to understand protein structure, function, 

dynamics and stability under different environmental conditions. This section 

describes how to determine pKA values from computed titration curves using the 

Finite Element (FE) and Finite Difference (FD) methods. pKA-RMSD (root-mean-

square deviation) values are obtained by comparing computed pKA values with 

experimentally measured pKA values. The respective theory is presented in 

“Determination of pKA Values In Proteins”, beginning at page 56. Although different 

computational methods have been developed in the last three decades to determine 

pKA values [78], [82], [83], [90]–[101], so far there have been no pKA computations 

performed with the FE method which are comparable in accuracy to the well-

established FD method.  

 This chapter is based on a manuscript, which has been submitted for 

publication. In the following, results obtained with the FD and FE methods are 

summarized. Details of the algorithmic procedure are presented for Karlsberg+ 

which was developed by Kieseritzky et al. in 2008–2010 [102], [103]. Karlsberg+ 

provides a framework to compute pKA values with the FD method. The RMSD to 

known pKA values is 1.1 pH units if different minimization protocols are used that 

include protein flexibility. 

 In this proof of concept, lysozyme (PDB id 2lzt [56]) is analysed and a 

benchmark set of 342 experimentally measured pKA values [102], [104] is used to test 

the FE method. A pH adapted conformer (PAC) [102] with variable hydrogen atom 

positions at pH7 is computed where the self-consistent cycle optimizing the 
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hydrogen atom positions for a specific protonation pattern is aborted after first 

iteration step. This simplification is applied to guarantee that the same atom 

coordinates are used for FE and FD method computations.  

 Lysozyme has coupled titratable groups [102] which may pose a challenge to 

the computation of correct electrostatics interactions. A cluster of coupled titratable 

groups is present, consisting of the three aspartates Asp52, Asp48 and Asp66 which 

are all influenced by Tyr53 (Fig 25). Salt bridges are present between Asp48 and 

Arg61, Asp66 and Arg68, and Asp119 and Arg125. A cavity is located near Asp87. 

The distances between this cavity and some titratable groups are stated in Fig 25. 

Computations done with the FD method including or excluding the cavity yields pKA 

values which are deviating from each other by 0.1 pH units only.  

 

 

Fig 25. Aspartates near a cavity in lysozyme (PDB id 2lzt). Tyr53 is highlighted in green. 
Dashed lines indicate distances in Å to the small cavity near Asp87. Asp52, Asp48 and Asp66 
are influenced by Tyr53. Salt bridges are present between Asp48 and Arg61, Asp66 and 
Arg68, and Asp119 and Arg125. The insert shows the enlarged cavity structure as calculated 
by different software (MSMS [54], APBS [18] and mFES [3]). 

 

| 94 



Methods 

A pH adapted conformer (PAC) at pH7 is a protein conformation with fixed 

backbone coordinates [102], [105]. To each protein conformation hydrogen atoms are 

added with the HBUILD functionality of CHARMM (Chemistry at HARvard 

Macromolecular Mechanics) [46]–[48] and the hydrogen atom positions are energy 

minimized. The charges used for different protonation states are listed in appendix 

D, table S3. The experimental pKA values used are listed in table 2 in the chapter 

“Determination of pKA Values in Proteins.”  

 The FE and FD methods use different thermodynamic cycles because of 

algorithmic necessities. The FD method performs a three-step focusing. First, an 

equidistant grid is generated which is nearly four times as large as the largest 

dimension of the protein. It has a varying grid constant of 2–3 Å. In the second step, 

the first focusing with a resolution of 1 Å is performed including the whole protein. 

Finally, a second focusing with a resolution of 0.25 Å is performed fitting the grid 

around the titratable group. Fig 20 and Fig 26 show the thermodynamic cycles, which 

are solved for every protonation state of every titratable group in a protein. Using the 

FD method, only cycle1 (Fig 26) needs to be computed in which the upper gas phase 

part is replaced with the aqueous phase. 
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Fig 26. Two thermodynamic cycles for the computation of pKA values with mFES are shown. 
Two different methods are implemented in mFES: The explicit method using both cycle0 and 
cycle1 (two-cycle approach) and the implicit method using cycle1 and optimized values for 
cycle0 (implicit two-cycle approach). The different dielectric constants used for the aqueous 
phase, the gas phase and the protein environment are stated. The gas phase of cycle0 is set 
equal to the gas phase of cycle1 although a different molecular volume mesh is used with 
different grid point locations. 

Utilizing the FE method, one can choose between two different approaches: the two-

cycle and the implicit two-cycle approach. The two-cycle approach performs both 

cycle1 and cycle0 computations for every titratable group, generating one model 

volume for the protein and one model volume for each titratable group. The implicit, 

two-cycle approach generates one model volume for the protein and uses this for 

every titratable group computation again. cycle0 computations are implicitly included 

by using optimized values for them. Because the generation of model volumes is 

expensive when using the FE method, the implicit two-cycle approach requires less 

CPU time.  

The Algorithmic Procedure for Computing Titration Curves. This subsection 

introduces the algorithmic steps for computing titration curves. It presents a 

pseudocode-like expression verbalising the steps performed by Karlsberg+ using 
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mFES (Fig 27). The three main steps are divided between (i) CHARMM, (ii) mFES, 

and (iii) Karlsberg2. 

Input: A protein is chosen and the charge variable groups are selected which are 

going to be titrated. Charges have to be assigned to the different groups for each 

state. A molecular boundary surface has to be generated. Standard input files are 

used for charge assignment and boundary options. 

CHARMM 

• A standard ionization, the so-called standard protonation pattern, is assigned to 

the protein where every titratable group is in its reference state: all acidic groups 

are protonated and all basic groups including histidines are deprotonated.  

• Hydrogen atoms are added to the crystal structure of the protein by HBUILD and 

are energy minimized while keeping all other atoms fixed because hydrogens are 

not included in protein crystal structures from the PDB [45].  

mFES 

• Either the implicit two-cycle or the two-cycle approach is employed. 

• For every state of every titratable group, mFES computes the energy shift of 

protonation states to the reference state using model pKA values and the energy 

terms bornG∆∆ , eq. (71), and backG∆∆ , eq. (72). This step yields the intrinsic pKA 

values for every titratable group.  

• Finally, the interaction matrix W for the interactions between all titratable groups 

for all different states is computed (Fig 27). 

Karlsberg2 

• The previously computed intrinsic pKA and W matrix values are used as well as 

the reference state information. 
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• The pH range and the step size are chosen for the computation of the titration 

curves. 

• Karlsberg2 uses a Monte Carlo method to perform the Boltzmann averaging, 

eq. (77), of the different protonation patterns. 

• The protonation probabilities of the titratable groups are computed at different 

pH values. In general, if the protonation pattern has changed compared to the 

previous protonation state, all steps are repeated by Karlsberg+, beginning again 

with “CHARMM” and using the latest protonation pattern, until the protonation 

pattern does not change any more. This produces a self-consistent so-called pH 

adapted conformer (PAC). Here, one iteration step is performed to be sure to 

obtain same protonation pattern and atom coordinates using FE and FD method. 

 

Fig 27. Overview of the algorithmic workflow for a single pH-adapted conformer (PAC) 
using either the FD or the FE method within the Karlsberg+ framework [79], [81], [102], [106].  
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Table 3. Comparison of pKA values obtained by the FD and the FE method for lysozyme 
(PDB id 2lzt [56]). For the sake of simplicity the small cavity in lysozyme close to residue 
Asp87 (see Fig 25) is filled with an uncharged dummy atom. All titratable groups for which 
experimental pKA values are available are considered here. Groups marked in bold letters are 
coupled. The FE method computations are done using second-order solution, average edge 
length hS = 0.3 Å (fine) or 0.5 Å (coarse), grading parameter of g = 0.5, ion concentration of 
0.1 M, radius of 2 Å for ions and probe sphere rolling over the IEL with radius of 2 Å.  

group FDa fine FEb coarse FEc fine 
Cter129 3.0 3.1 3.1 
Asp18 1.9 1.8 1.9 
Asp48 -0.7 -0.8 -0.8 
Asp52 1.7 1.2 1.3 
Asp66 -2.5 -2.8 -2.8 
Asp87 -1.2 -1.3 -1.4 
Asp101 4.4 4.4 4.5 
Asp119 2.7 2.7 2.6 
Glu7 3.1 2.9 3.1 
Glu35 4.4 4.3 4.2 
His15 5.7 5.3 5.6 
Lys1 9.3 9.1 9.2 
Lys13 10.6 10.5 10.4 
Lys33 10.7 10.8 10.4 
Lys96 10.7 10.4 10.4 
Lys97 10.9 11.0 10.8 
Lys116 8.7 8.7 8.8 
Tyr20 15.8 15.5 15.7 
Tyr23 10.8 10.9 10.9 
Tyr53 23.7 23.2 23.4 
 RMSD 0.24 0.18 
a The first two focusing steps use n3 = 3813 = 5.5 107 grid points with 1 Å and 0.25 Å 
resolution, respectively, covering the whole protein. The third and last focusing step with the 
same protein center uses n3 = 4493 = 9.1 107 grid points with 0.125 Å lattice constant. 
b The average grid point distance on the triangular surface is hS = 0.5 Å for the protein and 
the group volume model. The resulting protein volume model consists of 1.3 105 grid points 
(1.1 106 grid points for second-order solution).  
c The average grid point distance on the triangular surface is hS = 0.3 Å for the protein and the 
group volume model. The resulting protein volume model consists of 4.7 105 grid points 
(3.8 106 grid points for second-order solution).  
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Results and Discussion 

The pKA values are computed with the FE method [3] and the well-established FD 

method [18], [39]–[41] using the crystal structure of 15 proteins. Lysozyme (PDB id 

2lzt [56], table 3) is analysed in more detail. A single pH-adapted conformer at pH7 is 

generated for every protein by the application Karlsberg+ [102], [103] using one 

iteration step to guarantee that the same coordinates are used for the FD and FE 

method.  

 Tyr53 is forming a salt-bridge with Asp52. Maximum deviations of computed 

pKA values between the high resolution FD and the low (high) resolution FE method 

are observed for Tyr53 [0.56 pH (0.35 pH) units] and for Asp52 [0.44 pH (0.31 pH) 

units] (see table 3). The FE method guarantees that the molecular surface is defined 

by grid points, which are precisely on the surface. This is not the case for the FD 

method and may be the reason for some of these moderate deviations. 

 Analysing the electrostatic energy terms obtained with the FD and FE method 

it was found that the pKA values at the reference protonation state (i.e. the intrinsic 

pKA) are practically the same (appendix D, table S1), as well as the interactions of the 

titratable residues. Hence, a reason for the deviations of the computed pKA values 

between the FD and FE methods could be the different definition of the ion exclusion 

layer. The FD method APBS uses a vdW surface with atom radii extended by 2 Å 

(radius of ions) whereas the FE method rolls with a probe sphere of ion radius 2 Å 

over the same vdW surface. The resulting smoothened ion exclusion layer makes the 

algorithm to mesh the surface by triangles more robust. To explore the effect of the 

difference in the ion exclusion layer, a small rolling sphere radius of 0.3 Å was used 

for the FE method yielding deviations in the pKA values, which are smaller than 

0.2 pH units.  
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Table 4. pKA-RMSD values of computed pKA values compared with measured experimental 
pKA values for lysozyme (PDB id 2lzt [56]). One pH adapted conformer at pH 7 is used to 
obtain pKA values from computations with the Karlsberg+ program [102], [103] utilizing one 
iteration step. mFES uses an average edge length of hS = 0.5 Å, a grading parameter of g = 0.5, 
an ion concentration of 0.1 M, a radius of 2 Å for ions and a probe radius for the rolling-
sphere over the ion-exclusion layer of 2 Å. More detailed values are given in appendix D, 
table S2. Tyr53 is excluded because it does not titrate under physiological conditions using 
the crystal structure information and Lys1 is excluded because it is located at the N-terminus 
and has an unusual structure.  

titratable 
group 

pKA-RMSD 
FD 

pKA-RMSD FE 
(two-cycle,  
2nd order) 

pKA-RMSD FE 
(implicit 2-cycle,  

2nd order) 

pKA-RMSD FE 
(implicit 2-cycle,  

1st order) 
Asp 2.0 2.2 1.9 1.4 
Glu 1.3 1.3 1.8 1.8 
Tyr 3.9 3.8 3.5 3.5 
His 0.3 0.1 0.3 0.2 
Lys 

 

0.7 0.8 1.0 1.3 
 

 Comparing the results from the two methods with the experimental pKA 

values of lysozyme, qualitatively similar pKA-RMSD values are obtained for both 

methods (Table 4). While the pKA-RMSD for the FD method is 1.95, the pKA-RMSD 

for the FE method using the two-cycle approach is 2.00 which, therefore, is practically 

of the same quality. Interestingly, for the implicit two-cycle FE method with 

optimized electrostatic pKA
solv values2 a pKA-RMSD of 1.91 is obtained. The coarse FE 

method using the implicit method with a first-order instead of a second-order 

solution yields a better agreement with the experimental values, resulting in a 

pKA−RMSD of 1.77, because the pKA
solv values were optimized for the coarse FE 

method. The coarse-grained first-order geometry molecular surface yields the same 

2 The following optimized solution pKA values are used for the implicit two-cycle approach: 
Arg: 10.51; Lys: 12.68; Glu: 11.63; His-δ: 8.78; His-ε: 0.29; Tyr: 9.01; Asp: 12.55. 
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accuracy for pKA computations as does the more fine-grained second order geometry 

for solvation energies.  

 Additionally, a benchmark set of 15 proteins involving 185 residues with 

measured pKA values [102] is utilized to compare the FE and FD method. Results are 

shown in Fig 28. The qualitative pKA value difference between both methods is 

comparable to pKA values obtained for lysozyme. The pKA-RMSD between both 

methods is 0.3. The pKA-RMSD of both methods computed based on the crystal 

structures of the considered 15 proteins involving 342 measured pKA values for 185 

residues is 2.5.  

 

Fig 28. pKA values are computed with the FD and FE method. A benchmark set [102] with 15 
proteins (involving 342 measured pKA values) is used for this plot. The FE method uses a 
two-cycle approach, a second-order solution and a resolution of hS = 0.5 Å. The FD method 
performs a three step focusing procedure with a resolution of 0.25 Å. The RMSD value 
between both methods is 0.3.  
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Conclusions  

For the first time it has been demonstrated that both the FD and the FE method yield 

results of similar quality. The FE fine and coarse computations are as precise as the 

FD fine computations using the two-cycle thermodynamic cycle approach of mFES 

for lysozyme. The values obtained by the FE method are compared with 342 

experimentally measured pKA values. Both computational methods, FE and FD, yield 

pKA values of the same quality as shown by the respective pKA-RMSD to the 

experimental values.  

 Solvent pKA values are optimized to be subsequently used in the implicit two-

cycle FE approach. Employing these values, the pKA-RMSD obtained with a two-

cycle approach using the FE or the FD method have the same quality as with the FE 

method with the implicit two-cycle approach, which means that the values used in 

this work are close to optimum values.  

 Although electrostatic solvation energy computations need a second-order 

solution and a meshing of the molecular surface with a resolution of hS = 0.5 Å, 

computing the pKA values needs less accuracy and requires only a first-order 

solution. Combining a first-order solution with the implicit two-cycle approach using 

the FE method delivers nearly the same pKA-RMSD values (table 4). For the pKA 

values, a quality similar to that of the solvation energies is achieved, since in the case 

of the pKA values double differences G∆∆  are computed which are less error-prone 

than single differences G∆ . Hence, single differences like solvation energies need 

higher accuracy of the molecular surface because there is less error cancellation.  
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IV. mFES Implementation and mFES+ Web Services 

Implementation  

mFES is a stand-alone program written in C/C++ and is available for free on the 

respective web page (agknapp.chemie.fu-berlin.de/mfes) of Prof. Knapp’s 

workgroup or at github (github.com/imago). Installation scripts and ebuilds are also 

available on the web page under the GNU lesser general public license v2.0 (LGPLv2) 

and is free for the community to extend and modify provided that the contributors to 

this project are cited.  

 mFES is based on the Boost C++ library and includes vcglib [107] to provide a 

variety of algorithms to process meshes. LSMS [2] is included to perform the level-set 

method [108] as well as the marching cubes algorithm [109]. NETGEN [1] is 

incorporated because of its high quality advancing front method implementation 

[51], [52] as well as its volume meshing, optimization and analyzing capabilities 

[110]–[114]. NGSolve [115], which is on top of NETGEN, provides an interface to 

different solvers like MUMPS [42]–[44], Hypre [116], and Pardiso [117], [118] as well 

as other multigrid, algebraic multigrid [119] or direct methods. 

 Different parallelization techniques are ready to be used. In principle, a large 

molecule can be split into several subproblems, which are then solved in parallel by 

different CPUs. The solutions of the subproblems are subsequently merged in the 

same process (divide-and-conquer method) using ParMETIS [120], [121] which 

implements parallel graph-partitioning algorithms. ParMETIS is compiled together 

with NETGEN and mFES. The parallelization features may be provided in future 

mFES releases.  

 An alternative molecular surface mesher is being developed with the support 

of Joachim Schöberl. The so-called “voxelizer” uses a level-set method. It works well 
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for small molecules without cavities or titratable groups. It runs in parallel, is fast, 

and delivers even more precise molecular surfaces.  

 Utilizing mFES in other frameworks (developed by other groups) may yield 

results which lead to better pKA-RMSD values or deliver new insights into protein 

structure, function and stability. An ongoing project is to insert mFES into CHARMM 

with the help of Milan Hodošček and to make this software useful for a wider 

community. 

  

mFES+ Web Services 

The mFES+ web application is a service for solving different computational problems:  
i. solvation energies of proteins ( G∆ )  

ii. pKA values of titratable groups in proteins. 

These web services are written in PHP and are based on Drupal [122], jQuery [123], 

jsc3d [124] and Google APIs like Google Charts [125]. Several scripts have been 

written during the implementation of mFES and are provided in a tools directory.  

Computation of Solvation Energies. At the current stage a web service is provided 

for computing electrostatic solvation energies. Molecules can be selected by their PDB 

id or by uploading the coordinates of a protein structure in PDB format. The user is 

free to specify different parameters, like ion concentration, solvent probe radius, ion 

radius, resolution of the molecular surface, dielectric constants, and the number of 

Taubin smoothing steps [126] to be performed. Jobs are submitted to a compute 

cluster queue. The user is informed via e-mail when a job is successfully processed, 

and a link to the results is provided. As an example, the output for 1div is presented 

in Fig 29. 

| 106 



 

Fig 29. Screenshot of the mFES+ web results for the computation of the electrostatic solvation 
energy of the ribosomal protein L9 (PDB id 1div [127]). The interactive visualization of the 
molecular surface is shown as well as the quality class assignment of the tetrahedrons for the 
protein volume. 

 The user is able to download the molecular volume model as well as the 

molecular surface and other files, like the input files which may be used to compute 

jobs on a local machine after installing mFES.  

Computation of pKA Values. While this thesis is being written, the module for pKA 

computations is in beta phase. These computations are based on the web service 

Karlsberg+ utilizing mFES instead of APBS. The user can choose a protein structure 
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by providing its PDB id or upload a protein structure in PDB format and will receive 

an e-mail with a link to the results. An example output for 2lzt is presented in Fig 30 

and Fig 31.  

 The pKA values are plotted ordered by titratable group and residue ids and 

titration curves are plotted for every group, showing both the probability for 

protonated and the deprotonated group. It is possible to download the protonation 

pattern at different pH values and temperatures as a PDB or PQR file. The FE lattice 

of the protein, both for the volume and the surface, is provided with 3D navigation or 

as a download. 

 

Fig 30. Screenshot of the pKA values computed with mFES+ for pH7 adapted conformer of 
lysozyme (PDB id 2lzt [56]). This screen is continued in the next figure.  

| 108 



 

Fig 31. Screenshot of titration curves computed with mFES+ for the pH7 adapted conformer 
of lysozyme (PDB id 2lzt [56]). All titratable groups are listed. 
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Conclusion and Outlook 

“We have seen that computer programming is an art,  
because it applies accumulated knowledge to the world,  

because it requires skill and ingenuity,  
and especially because it produces objects of beauty.” 

— Donald E. Knuth (*1955) 

This thesis provides insight into the performance of the new software mFES 

(molecular Finite Element Solver) which employs the Finite Element method. mFES is 

capable of computing solvation energies and pKA values of macromolecules. It 

generates an irregular object adapted protein surface and volume grid and builds a 

linear equation system to solve the lPBE yielding electrostatic potentials of proteins. 

mFES is extendable and available free of charge under LGPLv2 licence conditions. It 

uses a number of open-source software to fulfil its tasks. Before this thesis was 

written, there was no Finite Element solver which had the ability to compete with 

well-established FD methods in terms of reliability, precision and CPU time. mFES 

outperforms the FD method in computing electrostatic solvation energies and yet 

delivers pKA values of the same quality compared to FD computations. 

 Singular behaviour of the linear equation system of the lPBE derived from the 

FE method might occur if the molecular surfaces are not generated with sufficient 

care. Thus, results of this thesis might also help the scientific community when using 

the Boundary Element (BE) method which requires a faithful representation of 

molecular surfaces.  

 Installation scripts are available for the compilation of mFES on general-

purpose UNIX systems. Web services have been set up for public users to perform 

computations without the need to install mFES locally. mFES may help other 

software frameworks to achieve accurate results for other problems which require a 

faithful representation of molecular surfaces and volumes. 

111 | 



Several features are still under development. One of those is the option of using a 

second-order surface definition to reduce the number of molecular grid points while 

maintaining the same precision of results. It might be interesting to try out new 

algorithms like quadric-based mesh decimation [128] techniques that can further 

reduce the number of surface points without loss of molecular surface curvature 

information. The number of grid points is equal to the number of coupled linear 

equations. Hence, reducing the number of grid points results in a faster algorithm. 

Parts of mFES can be parallelized. The most promising approach here lies in splitting 

a molecular model into portions using ParMETIS [120], [121], solving the 

subproblems on different CPUs, and combining the solutions to find the solution of 

the original problem (divide-and-conquer method). 

 Finite Element methods are used in industry to perform stress tests, for 

product optimization, or to compute electromagnetic or fluid dynamics. The 

application of the FE method to such problems is relatively new, so it is believed that 

there will be progress in solving problems with the FE method also in other fields. In 

return, by utilizing the experiences made in the course of this progress, mFES might 

perform better in the future by using e.g. more parallelism techniques to help the 

community to find answers to difficult questions in computational chemistry and to 

deal with large systems. 
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Summary in English 

In this interdisciplinary work, the computer program mFES (molecular Finite Element 

Solver) has been developed for solving electrostatic problems associated with 

proteins. It is fast and yields results with a higher accuracy than that obtained with 

the more traditional software based on finite difference methods.  

 Electrostatics is an important topic in computational chemistry. This work 

focuses on the computation of electrostatic properties of small molecules like 

peptides as well as large proteins like viruses. mFES is based on the well-defined 

Finite Element (FE) method and solves the linear Poisson-Boltzmann equation, a 

second-order partial differential equation, where a solution algorithm was for 

instance described by Warwicker and Watson in 1982 [129]. 

 Besides electrostatic potentials Φ(r), single and double energy differences ∆G 

and ∆∆G are computed to determine different properties, like the electrostatic 

solvation energy and pKA values, using a robust generation of the molecular model. 

 Fundamental progress has been made in this thesis which continues preceding 

approaches of Friesner et al. [130]–[132] and Holst et al. [41], [133] mostly more than a 

decade ago. mFES is based on LSMS [2] and NETGEN [1] in building molecular 

models and on MUMPS [42]–[44] in solving the linear Poisson-Boltzmann equation. 

 The key improvement lies in the way molecular surfaces (solvent excluded 

surfaces) are generated. While the molecular surface itself is well-defined [54], [134], 

[135], it remained difficult up to now to compute very precise molecular surfaces 

without singularities. Using the advancing front method [51], [52] implemented by 

Schöberl et al. [1], this problem is solved by producing a triangulation of the 

molecular surface which is controllable by parameters like the average edge length of 

the triangles on the molecular surface. Another key improvement of the Finite 
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Element solver lies in the way the tetrahedral volume elements are optimized, thus 

producing an overall molecular model of high quality. 

 Comparing the FE method with Boundary Element and Finite Difference 

methods, the focus lies on the latter because it is well-established and most 

commonly used in the electrostatics community. The Finite Element methods that 

have been available up to now and which are directly compared are not able to yield 

an accuracy which could compete with that of the Finite Difference method. This is 

now solved by mFES. 

 Electrostatic solvation energies are computed for average- and large-sized 

proteins (bovine pancreatic trypsin inhibitor, barnase, lysozyme, cyctochrome c 

oxidase) and the adenovirus serves as an example for a very large protein with nearly 

193,000 atoms, including hydrogen atoms. Improvements in accuracy resulted in 

electrostatic solvation energy differences as high as 30 [kJ/mol] for average-sized 

proteins. All molecular systems based on the FE method needed much fewer 

equations to solve the Poisson-Boltzmann equation compared with using the FD 

method and still higher accuracy is achieved. 

 A proof of concept is the computation of pKA values with mFES. pKA values for 

lysozyme and other proteins are computed and compared with 342 experimentally 

measured pKA values as well as with results obtained with the Finite Difference 

method. These computations are done using the classical Karlsberg+ program 

developed by Kieseritzky et al. [102], [103]. pKA-RMSD values with respect to 

measured values computed by mFES are of the same quality compared with the 

values obtained by the FD method. mFES+ web application services for using mFES 

without the need for a local installation are available at 

http://agknapp.chemie.fu-berlin.de/mfes 

Installation routines for the stand-alone mFES program are provided as well as 

example runs and a documentation to facilitate the use of mFES in other frameworks. 
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Zusammenfassung auf Deutsch 

In dieser interdisziplinären Arbeit ist das Softwareprogramm mFES (molecular Finite 

Element Solver) entstanden, um elektrostatische Fragestellungen für Proteine zu 

lösen. mFES ist schnell und berechnet Ergebnisse mit höherer Präzision als 

traditionelle Software, die auf der Finite Differenzen Methode basiert. 

Die Elektrostatik ist ein wichtiges Thema der computergestützten Chemie. Diese 

Arbeit legt ihren Fokus auf die Berechnung elektrostatischer Eigenschaften kleiner 

Moleküle wie Peptide bis hin zu großen Proteine wie z. B. Viren. mFES basiert auf 

einer wohldefinierten Finite Elemente (FE) Methode und löst die lineare Poisson-

Boltzmann-Gleichung, eine partielle Differentialgleichung zweiter Ordnung, für die 

zum Beispiel Warwicker und Watson 1982 einen Lösungsalgorithmus beschrieben 

haben [129]. 

Neben elektrostatischen Potentialen Φ(r) werden einfache und doppelte 

Energiedifferenzen, ∆G und ∆∆G, berechnet, um verschiedene Eigenschaften, wie 

elektrostatische Solvatisierungsenergien und pKA Werte, zu berechnen, wofür 

robuste molekulare Modelle generiert werden.  

Fundamentale Fortschritte gelangen mit dieser Arbeit, welche an die Arbeiten von 

u. a. Friesner et al. [130]–[132] und Holst et al. [41], [133] anknüpft, die meist mehr als 

ein Jahrzehnt zurückliegen. mFES benutzt zur Generierung molekularer Modelle 

LSMS [2] und NETGEN [1] und zur Lösung der linearen Poisson-Boltzmann 

Gleichung MUMPS [42]–[44].  

Eine entscheidende Verbesserung der elektrostatischen Berechnungen liegt in der Art 

der Erzeugung molekularer Oberflächen (solvent excluded surface). Obwohl diese 

Oberfläche wohldefiniert ist [54], [134], [135], ist es bis heute schwierig, eine nahezu 

exakte Oberfläche ohne Singularitäten zu generieren. Durch die Nutzung der 

Advancing-Front-Methode [51], [52], welche u. a. von Joachim Schöberl [1] entwickelt 

wurde, wird dieses Problem gelöst, indem eine Triangulation der molekularen 

Oberfläche generiert wird, die durch verschiedene Parameter, beispielsweise die 

mittlere Kantenlänge der Dreiecke, kontrollierbar ist. Eine weitere entscheidende 

Verbesserung des Finite Elemente Lösers liegt in der Art der Optimierung der 
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Tetraeder-Volumenelemente, welche ein molekulares Gesamtmodell mit hoher 

Qualität erzeugt.  

Beim Vergleich der Finiten Elemente Methode mit der Rand Elemente Methode und 

der Finite Differenzen Methode liegt der Fokus auf letzterer, weil diese etabliert ist 

und überwiegend von den Experten benutzt wird. Die bisher verfügbaren Finite 

Elemente Methoden, die direkt miteinander verglichen werden, liefern im Vergleich 

zur Finite Differenzen Methode keine hohe Genauigkeit. Dieses Problem wird mit 

mFES gelöst. 

Elektrostatische Solvatisierungsenergien wurden für kleine und große Proteine 

berechnet (Rinderpankreas-Trypsininhibitor, Barnase, Lysozym und Cyctochrom-c-

Oxidase), aber auch für Adenovirus-Proteine, welche ein Beispiel für sehr große 

Proteine mit fast 193.000 Atomen inklusive der Wasserstoffatome darstellen. 

Verbesserungen der Präzision ergaben elektrostatische Solvatisierungsenergie 

Unterschiede von bis zu 30 [kJ/mol] für durchschnittlich große Proteine. Alle 

molekularen Systeme, die auf der Finiten Elemente Methode basieren, benötigen 

hierbei weniger lineare Gleichungen zur Lösung der Poisson-Boltzmann-Gleichung 

als die Finite Differenzen Methode. 

Ein Machbarkeitsbeweis ist die Berechnung von pKA-Werten mit mFES. pKA-Werte 

wurden für Lysozym und andere Proteine berechnet und mit 342 experimentell 

ermittelten pKA-Werten und mit den Ergebnissen der Finite-Differenzen-Methode 

verglichen. Für die Berechnungen wurde das klassische Programm Karlsberg+ 

benutzt, welches von Kieseritzky et al. [102], [103] entwickelt wurde. pKA−RMSD-

Werte in Bezug auf gemessene Werte beweisen, dass die mit mFES berechneten pKA-

Werte die gleiche Güte haben wie pKA-Werte, die mit der FD-Methode berechnet 

wurden. Webservices für die Nutzung von mFES+ web ohne eine lokale Installation 

sind verfügbar unter 

http://agknapp.chemie.fu-berlin.de/mfes 

Routinen zur Installation von mFES stehen zur Verfügung, ebenso einige 

Beispielrechnungen und eine Dokumentation, um die Möglichkeit bereitzustellen, 

mFES in andere Frameworks einzubinden. 
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A    Units and Conversions 

A.1 Units 

Table 5. Expressions and units used in mFES. These values are mainly from NIST[136] or 
derived from NIST constants. 

expression Value unit 

0  128.85418782 10−⋅  
As
Vm

 

e  191.60217656 10−⋅  C   

AN  236.0221415 10⋅  
1

mol
 

BornG∆  
2 1 1694.6773088

out in

z
r

 
⋅ ⋅ − 

  
 kJ

mol
 

2κ  8.43249149   2
1I
Å
⋅


 

bk  231.3806488 10−⋅  
J
K

 

T  300   K  

F  96 485.3365   
C

mol
  

 

A.2 Conversions 

Table 6. Useful Conversions 

Conversion 
11
1
VJ
C

=  

1 1C As=  
3

3 31 10mol mol mol
l m dm

= =   
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B    Born Model Derivation 
Born model with charge q , in centre of a sphere with radius a . The dielectric 

constant in the sphere is in , outside of the sphere the dielectric constant is out . 

Outside of the larger sphere with radius b  the ionic strength is 2κ  (Fig 32).  

 

Fig 32. Born ion model. Sketch is used with permission from EW Knapp. 

Close to the charge q  the electrostatic potential φ  is 

     1 1( )
in

qr c
r

φ = +
⋅

.        (80) 

Very far from the charge q , outside of both spheres, the electrostatic potential fulfils 

the Poisson-Boltzmann equation  

     2 2( ) ( )out r rφ κ φ∇ =


 .        (81) 

The radial part of the Laplace operator ∆  is 
2

2
2 2

1 2
radial r

r r r r r r
∂ ∂ ∂ ∂

∆ = = +
∂ ∂ ∂ ∂

. 
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Hence, a solution has to be found to  

2
2

2
2 ( ) ( )r r
r r r

φ α φ
 ∂ ∂

+ = ∂ ∂ 
 with 2 2 / outα κ=  .  

Two special solutions are 

3
1( ) rr c e
r

αφ ±
± = , 

where the solution with the minus sign possesses the proper asymptotic.  

To demonstrate that this is the proper solution, it is noted  

2 2

2 2 3 2
1 1 2 2r r re e e

r r r r r r r r
α α αα α α− − − ⋅  ∂ ∂   = − + ⋅ = + + ⋅     ∂ ∂      

 

such that 
2

2
2 2

1 2 2( ) ( ) ( )r r r
r r r r r

αφ α φ α φ− − −

 ∂ ∂    = − + = + +    ∂ ∂     
 

and 

2
2 2 2( ) ( )r r
r r r r

αφ φ− −
∂  = − + ⋅ ∂  

. 

 

The general asymptotic solution reads  

3 3
1( ) out

r

out

r c e
r

κ

φ
−

= +
⋅




. 

 
In the intermediate regime between the two spheres the electrostatic potential is  

2 2( )
out

qr c
r

φ = +
⋅

. 

 
At the two sphere boundaries the electrostatic potential and the radial component of 

the electrical displacement D E=
 

  must be continuous.  

Hence, at the inner sphere radius r a=  there is  

1 2( ) ( )in outa a
r r
φ φ∂ ∂

= =
∂ ∂

  . 
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This is fulfilled by 1( )rφ  and 2 ( )bφ , eq. (80) and eq. (81), respectively. At the outer 

sphere radius r b=  and there is  

2 3(( ) b)out outb
r r
φ φ∂ ∂

=
∂ ∂

  , 

yielding 

32 2
1 1 out

b

out

b qc e
b b

κ
κ − 

− + = −  
 




 

1

3 ( ) 1 .out out
r b

out out

q br e e
r

κ κ
κφ

−
−  

= +  
 

 

 
 

 
Requesting that the electrostatic potential is continuous at the outer sphere 

3 2( ) ( )b bφ φ=  yields  

1

21
out outout

q b q c
b b

κ
−

 
+ = +  

  
  

and finally 
1 1 1

2 1    1 ,  1 1
out out outout out out out out

q b q b b q bc
b b

κ κ κ κ κ
− − −      

 = + − = − + = − +                 
      

 

such that 

1

2 ( ) 1 1
out out out

q b rr
r

κ κφ
−  

 = − +     
  

. 

 
To determine 1( )rφ  the continuity condition at the inner sphere radius r a= , i.e. 

1 2( ) ( )a aφ φ=  are used yielding  

1

1 1 1
in out out out

q q bc
a a

κ aκ
−  

 + = − +     
   

 

and  

| 144 



1

1
1 1 1
out in outo out

q b qc
a ut

κ κ
−

  
= − − +          

 

such that 
1

1
1 1( ) 1 1 in

in out out inout out

q b r qr
r a

κ κφ
−     = − + + −         


    

. 

 
Born Energy Formula 
 
The self-energy of a point charge in the centre of a sphere as defined above is 

computed by loading the surface of the self-energy: 

 
1 1

2

2
0 0

ˆˆ ˆ( )d 1 1 d 1 1    
2

q q

self
out outout out out out

q b a q b aW a q q
a a

κ κ κ κf
− −      

   = = − + = − +      ⋅         
∫ ∫     

. 

 
For the solvation energy the result is 

1 1
2 2

1 1 1 1
2

 
2solv

out inout out in in

q b a q b aW
a a

κ κ κ κ
− −      

   = − + − − +      ⋅ ⋅         
    

. 

 
 
Example Unit Conversion 
 
This is an example on how to obtain the analytical BornG∆  term to calculate the energy 

for one atom in a dielectric and inhomogeneous medium with two different dielectric 

constants. 

2 12 19 2 2

10
0

1 1 1 10 ( 1.60217656 10 ) 1 1
8 8 8.85418782 1

  
0

 Born
out in out in

Q z Vm CG
r r As mπ π

−

−

     ⋅ ⋅ ⋅
∆ = ⋅ ⋅ − = ⋅ ⋅ −     ⋅ ⋅ ⋅ ⋅        

 

[ ]
2 12 19 2

10
10 (1.60217656 10 ) 1 1

8 8.85418782 10
 

out in

z J
r π

−

−

 ⋅
= ⋅ ⋅ ⋅ − ⋅   
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2 23 12 19 2

10
6.0221415 10 10 (1.60217656 10 ) 1 1

1000 8 8.85418782 1
 

0 out in

z kJ
r molπ

−

−

 ⋅ ⋅  ⇒ ⋅ ⋅ ⋅ −   ⋅    
 

2 1 1694.67 73088
out in

z kJ
r mol

   = ⋅ ⋅ −      
. 

 
Example with Vanishing Ion Concentration 

3 , 1 , 4, 80in outr Å Q C= = = =  . 
21 1 1694.6773088
3 80 4

 Born
kJG

mol
   ∆ = ⋅ ⋅ −      

 

54.995287 kJ
mol
 = −   

. 

 
Calculation of 2κ  

2κ  is defined in eq. (18): 

 
2

2

0

2 A

r B

N e I
k T

k ⋅ ⋅ ⋅
=

⋅ ⋅ 
. 

 
Including known constants, it is obtained 

2
23 19 2 3

2
223

0
2

1
2 6.0221415 10 (1.60217656 10 )

1.3806488 10 30
 

0r

molCI mol dm
As m kg K
Vm s K

k
−

−

 
 ⋅ ⋅ ⋅ ⋅ ⋅

=  
⋅⋅ ⋅ ⋅  ⋅

 ⋅ 
 

. 

2
3

17
2

2

1
(0.1 )8.432 10

r

C
I m

As m kg
Vm s

 
 

= ⋅  
⋅ ⋅  


 

2
2 23

17 20
2 5

2

1

8.432 10 1000 8.432 10
r r

CI I C Vm sm
As m kg As kg m
Vm s

 
   ⋅ ⋅

= ⋅ ⋅ = ⋅   ⋅ ⋅ ⋅  ⋅
  

 
. 

2 2
2

20 20
5 48.432 10 8.432 1 0

r r

JC m sI I J sC
C kg m kg m

 ⋅ ⋅ ⋅   ⋅
= ⋅ = ⋅   ⋅ ⋅ ⋅  

 
 

  

20 20
2 10 2 2

1 1 18.432 10 8.432 10 8.432
1

 
( 0 )r r r

I I I
m Å Å

    = ⋅ = ⋅ = ⋅          
. 
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C    Supporting Information to Chapter II 
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Table S2. ΔGBorn electrostatic solvation energy of a unit charge                                             S3 

Figure S3. Comparison of CPU times                                                                                      S4 

References.                                                                                                                               S4 

 

 
Figure S1. Optimization of tetrahedrons with NETGEN [1]. top: tetrahedron face swap: The 
separating wall between two adjacent tetrahedrons is swapped, which requires that one 
triangle from each tetrahedron must be in the same plane. If two triangles are only nearly in 
the same plane, the corresponding nodes are shifted slightly to establish planarity before 
applying the face swap. middle: tetrahedron split: A tetrahedron with a long edge is split in 
two by a plane which cuts the long edge and contains the two nodes opposite to this edge. 
bottom: tetrahedron collapse: If two triangles have a short common edge, the tetrahedrons 
built on top of such slim triangles can collapse to triangles by merging the two corner points 
of the short common edge. As a result one grid point and two tetrahedrons are eliminated.  
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Figure S2. Four proteins used for the computation of solvation energies. top, left to right: 
bovine pancreatic trypsin inhibitor [87] (bpti), barnase [137], lysozyme [56]. bottom: 
cytochrome c oxidase [138].  
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Table S1. NIST constants and expressions used in calculations  
expression / 

constant 
values units 

ε0 8.85418782×10-12 
4 2

3

s A
m kg
⋅
⋅

 

e0 1.60217656× 10
-19 C 

NA 6.0221415 × 1023 mol-1 

BornG∆  -164.98586 
2z kJ

r mol
⋅  

κ2 
8.43249149 

2

1

r

I
Åε
⋅  

 

Table S2. ΔGBorn electrostatic solvation energy of a unit charge in center of sphere of radius 
r Born = 3 Å, εin = 4, εout = 80. Comparison of APBS and mFES solver with varying ionic 
strength. 

I [mol/l] APBS finea,b APBS coarsea,c mFESd analytical result 

0.01 -40.6542 -40.9927 -40.7276 -40.6188 
0.02 -37.7509 -38.0969 -37.8258 -37.7153 
0.05 -33.9976 -34.3215 -34.0675 -33.9565 
0.1 -31.4309 -31.7182 -31.4927 -31.3823 
0.15 -30.0910 -30.3521 -30.1470 -30.0374 
0.2 -29.2216 -29.4631 -29.2734 -29.1643 

a The point density at the atomic vdW  spheres is set to 10 points/Å2, which is the 
recommended value in APBS.  
b n3  = 1933 = 7.2 106 grid points with 0.05 Å lattice constant  
c n3 = 653 = 2.7 105 grid points with 0.25 Å lattice constant  
d Second-order approximation is used corresponding to an average distance between 
neighbor grid points of 0.175 Å inside the Born ion sphere resulting in a total of 34,335 grid 
points, which is 1/8 of the number grid points used for the coarse resolution with FD. The 
spherical asymptotic boundary surface is at a distance of 105 Å from the center.  
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CPU time ratio of solving linear equation systems 

 Solving the linear equation system is the computationally most expensive part 

in FD methods. Hence, CPU times for solving the linear equations for four different 

proteins are shown as a ratio between APBS and mFES (Fig. S3). Here, CPU times for 

preparing the linear equation system like generating the tetrahedral grid of the 

molecular model are not included. mFES reduces the CPU time to solve the linear 

equation system by at least one order of magnitude because the number of equations 

is significantly smaller with the FE method. mFES uses the linear equation solver 

MUMPS [42]–[44] (Multifrontal Massively Parallel sparse direct Solver). 

 

Figure S3. CPU time ratios solving linear equation systems for four proteins. Solver time 
ratio of APBS fine to mFES () and APBS coarse to mFES () are plotted versus the average 
edge length hS on the molecular surface using mFES. Calculations are done with two APBS 
models (fine and coarse) for every molecule and one model for each average surface edge 
length generated with mFES. The ratio between APBS to mFES is increasing from lower to 
higher lattice constant because the molecular models computed by mFES are getting coarser 
without losing much accuracy in electrostatic calculations compared to FD method.  
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D     Supporting Information to Chapter III 

 
Table S1. Intrinsic pKA values are compared using FD fine (resolution is 0.125 Å) and FE 
coarse (hS = 0.5 Å) and fine (hS = 0.3 Å) method using a second-order solution. Titratable 
groups are listed where experimental values are available. FE method uses an ion exclusion 
layer with a probe sphere which is rolling over inflated vdW surface. This probe sphere has a 
radius of 2 Å. Details about FD fine method is given in table 3. 

group SAS 
[Å2] 

FD fine 
[pK] 

FE coarse 
[pK] 

FE fine 
[pK] 

Cter129 341 3.9 4.0 4.0 

Asp18 292 -1.1 -1.1 -1.0 

Asp48 294 0.3 0.1 0.2 

Asp52 299 1.0 0.7 0.9 

Asp66 291 0.0 0.7 -0.6 

Asp87 291 0.7 0.7 0.6 

Asp101 294 5.7 5.7 5.7 

Asp119 289 4.4 4.5 4.4 

Glu7 321 2.5 2.4 2.3 

Glu35 327 4.5 4.3 4.3 

His15 313 -6.8 -6.5 -6.6 

Lys1 367 -9.1 -8.9 -9.1 

Lys13 353 -9.8 -9.7 -9.7 

Lys33 348 -10.8 -10.9 -10.6 

Lys96 357 -10.3 -10.2 -10.2 

Lys97 343 -10.2 -10.3 -10.1 

Lys116 360 -8.9 -8.9 -9.0 

Tyr20 387 3.9 4.0 4.0 

Tyr23 383 -1.1 -1.1 -1.0 

Tyr53 388 0.3 0.1 0.2 
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Table S2. Comparison between two-cycle and implicit two-cycle approach of mFES is 
performed using a different order of solution for lysozyme (PDB id 2lzt [56]). Tyr53 is 
excluded from RMSD because it does not titrate under physiological conditions using the 
crystal structure. Lys1 has an unusual model pKA due to its position at the N-terminus. FE 
method uses an ion exclusion layer with a probe sphere which is rolling over inflated vdW 
surface. This probe sphere has a radius of 2 Å. An average edge length of hS = 0.5 Å is utilized 
to mesh the titratable groups. 

group 
experimental[65], 

[139] 
FD fine 

(no cavity) 

FE coarse 
(order 2, 

two-cycle) 

FE coarse 
(order 2, 

implicit two-cycle) 

FE coarse  
(order 1, 

implicit two-cycle) 

Cter129 2.75 3.0 3.1 3.1 2.9 
Asp18 2.66 1.9 1.8 1.6 1.7 
Asp48 1.2 -0.7 -0.8 -1.3 -0.5 
Asp52 3.68 1.7 1.2 2.9 3.4 
Asp66 0.4 -2.5 -2.8 -3.2 -2.2 
Asp87 2.07 -1.2 -1.3 0.1 0.5 

Asp101 4.08 4.4 4.4 4.5 4.5 
Asp119 3.2 2.7 2.7 2.8 2.8 

Glu7 3.15 3.1 2.9 4.4 4.8 
Glu35 6.2 4.4 4.3 3.9 4.2 
His15 5.36 5.7 5.3 5.7 5.1 
Lys1 10.8 9.3 9.1 18.5 17.86 

Lys13 10.5 10.6 10.5 10.1 9.6 
Lys33 10.36 10.7 10.8 10.1 8.9 
Lys96 10.8 10.7 10.4 12.1 11.8 
Lys97 10.3 10.9 11.0 11.2 10.5 
Lys116 10.2 8.7 8.7 8.9 8.0 
Tyr20 10.3 15.8 15.5 15.2 15.2 
Tyr23 9.8 10.8 10.9 10.6 10.3 
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Table S3. Atomic partial charges used for pKA computations utilizing CHARMM naming 
scheme. Charges are given in Coulomb [C]. 

histidine   δ-histidine ε-histidine 

atom charmm protonated deprotonated deprotonated (2) 

C-β CB -0.05 -0.09 -0.08 

C-δ2 CD2 0.19 0.22 -0.05 

H-δ2 HD2 0.13 0.10 0.09 

C-γ CG 0.19 -0.05 0.22 

N-ε2 NE2 -0.51 -0.70 -0.36 

H-ε2 HE2 0.44 0.00 0.32 

N-δ1 ND1 -0.51 -0.36 -0.70 

H-δ1 HD1 0.44 0.32 0.00 

C-ε1 CE1 0.32 0.25 0.25 

H-ε1 HE1 0.18 0.13 0.13 
 

 
 

 

 

 

 

 
 

glutamic acid 

atom charmm Protonated deprotonated protonated (2) 

C-γ CG -0.21 -0.28 -0.21 

C-δ CD 0.75 0.62 0.75 

O-ε1 OE1 -0.61 -0.76 -0.55 

O-ε2 OE2 -0.55 -0.76 -0.61 

H-ε1 HE1 0.44 0.00 0.00 

H-ε2 HE2 0.00 0.00 0.44 
 

aspartic acid 

atom charmm Protonated deprotonated protonated (2) 

C-β CB -0.21 -0.28 -0.21 

C-γ CG 0.75 0.62 0.75 

O-δ1 OD1 -0.61 -0.76 -0.55 

O-δ2 OD2 -0.55 -0.76 -0.61 

H-δ1 HD1 0.44 0.00 0.00 

H-δ2 HD2 0.00 0.00 0.44 
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Cysteine 

atom charmm protonated deprotonated 

C-β CB -0.11 -0.25 

S-γ SG -0.23 -0.93 

H-γ1 HG1 0.16 0.00 
 

Tyrosine 

atom charmm protonated deprotonated 

C-γ CG 0.000 -0.341 

C-δ1 CD1 -0.115 0.028 

H-δ1 HD1 0.115 0.072 

C-ε1 CE1 -0.115 -0.525 

H-ε1 HE1 0.115 0.124 

C-ζ CZ 0.110 0.769 

O-η OH -0.540 -0.826 

H-η HH 0.43 0.000 

C-δ2 CD2 -0.115 0.028 

H-δ2 HD2 0.115 0.072 

C-ε2 CE2 -0.115 -0.525 

H-ε2 HE2 0.115 0.124 
 

Arginine 

atom charmm protonated deprotonated 

N-ε NE -0.70 -0.81 

H-ε HE 0.44 0.44 

C-ζ CZ 0.64 0.71 

N-η1 NH1 -0.80 -0.90 

H-η11 HH11 0.46 0.27 

H-η12 HH12 0.46 0.27 

N-η2 NH2 -0.80 -0.90 

N-η21 HH21 0.46 0.27 

N-η22 HH22 0.46 0.27 
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Lysine 

atom charmm Protonated deprotonated 

N-ζ NZ -0.30 -0.97 

H-ζ1 HZ1 0.33 0.22 

H-ζ2 HZ2 0.33 0.22 

H-ζ3 HZ3 0.33 0.22 
 

c-terminus 

atom charmm Protonated deprotonated 

C C 0.34 0.34 

OT1 OT1 -0.17 -0.67 

OT2 OT2 -0.17 -0.67 
 

n-terminus 

atom charmm Protonated deprotonated 

N N -0.300 -0.970 

HT1 HT1 0.330 0.220 

HT2 HT2 0.330 0.220 

HT3 HT3 0.330 0.220 
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