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ABSTRACT
Finite-size effects are challenging in molecular dynamics simulations because they have significant effects on computed static and dynamic
properties, in particular diffusion constants, friction coefficients, and time- or frequency-dependent response functions. We investigate the
influence of periodic boundary conditions on the velocity autocorrelation function and the frequency-dependent friction of a particle in a
fluid, and show that the long-time behavior (starting at the picosecond timescale) is significantly affected. We develop an analytical correction
allowing us to subtract the periodic boundary condition effects. By this, we unmask the power-law long-time tails of the memory kernel and
the velocity autocorrelation function in liquid water and a Lennard-Jones fluid from simulations with rather small box sizes.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0151406

With the progress in computational power, molecular dyna-
mics (MD) simulations have become an essential tool to investi-
gate the properties of matter at the microscopic scale. The accessible
timescales have not ceased to increase and with them the accuracy
of the simulations. However, simulation boxes are still limited to
the nanometer scale and delimited, for example, by repulsive walls
or more commonly by periodic boundary conditions (PBC). This
finite system size introduces constraints and interactions with the
walls or other replicas and yields a multitude of static finite-size
effects for various observables and phenomena, including surface
tension, stress tensors and capillary waves,1–3 nucleation,4 phase
transitions,5,6 and critical phenomena.7,8 Periodicity is particularly
relevant for electrostatic interactions:9 for inhomogeneous systems,
significant dipole interactions between replicas occur, which are
tackled by the Yeh–Berkowitz dipole correction.10,11 Dynamic prop-
erties also present finite-size effects due to hydrodynamic interac-
tions, which have mostly been investigated in the stationary limit,
for example for the thermal conductivity,12,13 the diffusion coef-
ficient D14–16 or the friction coefficient γ = kBT/D (with kBT the
thermal energy). Recently, research has shifted toward time (and
frequency)-dependent response phenomena to characterize tran-
sient and non-equilibrium dynamics in complex systems. Finite-size
effects have been found in polymer, glass, or supercooled fluid

dynamics, by investigating the time-dependent dynamic structure
factor;17–19 however, studies of the effect of PBC on transient
response functions are rare.20 In this work, we investigate the finite-
size dependence of the velocity autocorrelation function (VACF)
and of the time-dependent friction function Γ(t) (or memory ker-
nel), which quantifies the non-Markovian friction effects in gen-
eralized Langevin equations (GLEs). For illustrating our general
method, we address the simple case of the position fluctuations of
a tagged molecule in a fluid. The associated memory kernels have
recently been investigated by using molecular dynamics simulations
to bridge the gap between macroscopic hydrodynamics, where the
particle is subject to friction, and Hamiltonian dynamics.21,22 Simu-
lations were compared to hydrodynamic predictions of the friction
experienced by a sphere in a fluid. Indeed, hydrodynamic and mode
coupling theories predict a negative long-time friction kernel with
an asymptotic power-law decay,21,23–26

Γtail(t) = −
2γ2

3ρ
[4π(D +

η
ρ
)t]

−3/2

, (1)

with ρ being the mass density and η being the shear viscosity of the
fluid. The contribution proportional to the diffusion coefficient D
comes from the particle diffusion and is often negligible with respect
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to the kinematic viscosity η/ρ (see supplementary material Sec. A).
Such long-time decay is reflected in the VACF Cvv, for which a pos-
itive t−3/2 decay is predicted.23–25 The simulation results were found
to agree with the predicted power-law decays only for Lennard-Jones
(LJ) fluids; instead, a decay of t−5/2 was extracted for water and a
supercooled fluid.21,22 Here, we find that the long-time behavior of
these time-dependent properties is significantly affected by finite-
size effects arising from hydrodynamic interactions with periodic
replicas, which masks the predicted long-time tails. Analytic cor-
rections were previously developed in the stationary limit for the
diffusion and friction coefficients27–29 based on the stationary Stokes
equation. By extending the calculations of Dünweg et al.14,27 and
Yeh and Hummer,28 we derive a frequency-dependent finite-size
correction allowing to retrieve the predicted asymptotic behavior
from finite-size simulations. The method developed in this work
is also applicable to other kinds of friction responses and more
complex coarse-grained coordinates.

In this study, we investigate SPC/E water30 and a Lennard-
Jones (LJ) fluid with parameters corresponding to liquid argon,31 for
which results are shown in supplementary material Sec. B. In both
cases, we simulate cubic boxes of length L by using 3D PBC for a
range of box lengths L from 1.5 to 5.0 nm (simulation details are pro-
vided in supplementary material Sec. A). Figure 1(a) shows a typical
snapshot of the water simulation box, alongside a typical trajectory
of the x component of a single water molecule (tagged in blue) in
Figs. 1(b) and 1(c), at different timescales. Figure 1(c) focuses on
the picosecond timescale, which displays ballistic motion, while the
nanosecond scale in Fig. 1(b) shows the Brownian diffusive regime.
For longer times, the unwrapped water position diffuses away from
its initial position.

We consider in this work the Mori GLE32 for the position of a
particle of mass m = kBT/⟨v2

⟩ with velocity v⃗, given in the absence
of a potential, using the Einstein convention, as

mv̇i(t) = −∫
t

−∞

ds Γi j(t − s)v j(s) + FR
i (t), (2)

where the random force FR has zero mean and is related to the mem-
ory kernel Γ by the fluctuation-dissipation theorem ⟨FR

i (t)F
R
i (0)⟩

= kBTΓii(t), with i = x, y, z. In an equivalent version of the GLE,
the lower bound of the integral is zero;33 we show the equiva-
lence of the two different formulations in supplementary material
Sec. C. We introduce here a memory tensor Γij(t) = δijΓ(t), which
by isotropy has no off-diagonal components. To extract the memory
kernel from simulation trajectories, we use a second-order Volterra
iterative scheme34 (see supplementary material Sec. C), which only
depends on the VACF Cvv. Figure 1 showcases the kernel extraction
from a water simulation: Fig. 1(d) shows Cvv, and Fig. 1(e) displays
the memory kernel Γ (solid line) and its running integral (dashed
line). The integral of the memory kernel links the GLE formalism
to the steady-state hydrodynamic picture with a friction coefficient
γ = ∫

∞

0 ds Γ(s). Finally, Fig. 1(f) shows the Fourier transform (FT) of
the memory kernel, which plays a key role in this work, as we derive
the finite-size correction in frequency space. We take the FT of a
function f (r⃗, t) to be f̃ (r⃗, ω) = ∫

−∞

∞
dt eiωt f (r⃗, t) and consider for

the memory kernel the single-sided FT Γ̃+(ω) = ∫
∞

0 dteiωtΓ(t). The
real part of Γ̃+ in Fig. 1(f) plateaus for low frequencies and decays to

FIG. 1. (a) Snapshot of a cubic simulation box of length L = 1.5 nm filled with
SPC/E water molecules. In blue, a single water molecule is highlighted. Position
trajectory x of a single water molecule center of mass as a function of time t on the
nanosecond (b) and on the picosecond timescale (c). (d) Velocity autocorrelation
function Cvv averaged over all water molecules in the simulation box as a function
of time. (e) Memory kernel Γ (solid line) and integrated friction ∫

t
0 dsΓ(s) (dashed

line). (f) Single-sided Fourier transform (FT) of the memory kernel Γ̃+.

zero for high frequencies, while the imaginary part vanishes both at
low and high frequencies.

From extensive molecular simulations, we extract memory ker-
nels for different box sizes L ranging from 1.5 to 5 nm. Figures 2(a),
2(c), and 2(e) show the extracted VACF, memory kernels, and ker-
nel integrals for water, respectively. These properties show little
variations for short times, while the long-time behavior displays a
significant box-size dependence. Note that this long-time regime is
particularly susceptible to numerical noise so that the L-dependence
is most visible in the integral of the memory kernel in Fig. 2(e),
which plateaus at different friction coefficient values γ depending
on the box size. The dependence of γ on box size was investigated
earlier,14,27,28 and we verify in supplementary material Sec. D that
γ−1 is inversely proportional to L with the expected proportionality
constant.28 Most importantly, for the investigated box sizes, we do
not observe the long-time tail predicted by Eq. (1), neither for the
memory kernels nor for the VACF.

To correct for the effect of PBC on the memory kernel, we start
from the transient Stokes equation: the frequency-dependent veloc-
ity field ṽ(r⃗, ω) due to an external force F̃(r⃗, ω) acting on the fluid
is given by a convolution of the force with the tensorial Green’s
function G. It can be separated into a transverse GT and a longi-
tudinal GL contribution, given explicitly both in Fourier and real
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FIG. 2. (a) and (b) Velocity autocorrelation function Cvv
(t), (c) and (d) memory

kernels Γ(t), and (e) and (f) integrated friction ∫
t

0 dsΓ(s) for the center of mass
position of an SPC/E water molecule in water, for different box sizes L ∈ [1.5, 5]
nm, denoted by different colors, extracted directly from MD simulations (a), (c), and
(e) and corrected for finite size effects using Eq. (8) (b) and Eq. (6) (d) and (f). The
dashed lines in log–log plots indicate negative values and the data are smoothed
by using a Gaussian filter in the log space. The dotted black lines are power-law
decays t−3/2 as predicted by the long-time tail Eq. (1).

space in Ref. 35 and supplementary material Sec. E. We only need
the trace of the Green’s functions for the calculation, which are
given by

1
3

Tr [G̃T
i j(r⃗, ω)] =

e−αr

6πηr
and

1
3

Tr [G̃L
i j(r⃗, ω)] =

λ2

α2
e−λr

12πηr
, (3)

where we introduced two characteristic lengths α−1
(ω) and λ−1

(ω),

α2
=
−iωρ

η
and λ2

=
−iωρ

4η/3 + ζ + iρc2
/ω

, (4)

with ζ being the volume viscosity and c being the speed of sound. In
the limit of an incompressible fluid, c→∞, one has λ→ 0, and thus,
the longitudinal contribution vanishes.

Let us now consider a cubic system of size L with PBC, where
we apply a point force at r⃗ = 0⃗. The force applied in the unit
cell has infinitely many periodic images so that the total force
field is expressed as F̃i(r⃗, ω) = [(∑n⃗ δ(r⃗ + n⃗L)) − 1/L3

]F̃i(ω), where
n⃗ = nx e⃗x + nye⃗y + nz e⃗z is a lattice vector with nx, ny, nz integers and e⃗i
are the unit vectors in the directions x, y, and z. Note that we added
a uniform background force to ensure momentum conservation.28

The force within the periodic images results in hydrodynamic inter-
actions and induces a spurious velocity field contribution, which
depends on the box size and can be written as a convolution of the
tensor G and the applied forces. For r⃗ = 0⃗ and by using the Einstein
summation convention, this gives

Δṽcorr
i (ω) = ∫ dr⃗ ′G̃i j(r⃗ ′, ω)

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
∑

n⃗,n⃗≠0⃗

δ(n⃗L − r⃗ ′)
⎞

⎠
−

1
L3

⎤
⎥
⎥
⎥
⎥
⎦

F̃ j(ω)

=

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
∑

n⃗,n⃗≠0⃗

G̃i j(n⃗L, ω)
⎞

⎠
−

1
L3 ∫ dr⃗ ′G̃i j(r⃗ ′, ω)

⎤
⎥
⎥
⎥
⎥
⎦

F̃ j(ω).

(5)

Indeed, Δṽcorr
i results from the response to the point forces in

the periodic images, excluding the central image, and from the back-
ground neutralizing force. Next, by introducing the friction kernel
extracted from MD simulations ΓMD

(t) and the one in the limit of an
infinite system Γ∞(t), and using the GLE Eq. (2), we obtain the rela-
tionship between the velocity Δṽ corr and the friction force exerted
by the fluid on the tagged particle as Δṽcorr

i (ω) = ([Γ̃ MD
+,i j(ω)]−1

− [Γ̃∞+,i j(ω)]−1
)F̃ j(ω). By combining this with Eq. (5), the force

F̃ j(ω) drops out. After taking the trace, we obtain

[Γ̃∞+ (ω)]
−1
= [Γ̃ MD

+ (ω)]
−1
− ΔG̃ corr

(ω), (6)

where we introduced

ΔG̃ corr
(ω) =

⎡
⎢
⎢
⎢
⎢
⎣

∑
n⃗,n⃗≠0⃗

1
3

Tr [G̃i j(n⃗L, ω)]
⎤
⎥
⎥
⎥
⎥
⎦

−
1

3L3 ∫ dr⃗ ′ Tr [G̃i j(r⃗ ′, ω)].

(7)
This is the main result of this work, which gives an explicit expres-
sion for the effect of PBC on the memory kernel and allows us
to calculate the infinite box size friction kernel Γ∞(t) from the
simulated finite box size kernel ΓMD

(t). This frequency-dependent
correction can readily be applied to the velocity autocorrelation
function Cvv (see supplementary material Sec. F) and yields

C̃vv,∞
+ (ω) =

C̃vv,MD
+ (ω)

1 + (kBT)−1C̃vv,MD
+ (ω)Γ̃∞+ (ω)Γ̃MD

+ (ω)ΔG̃ corr
(ω)

. (8)

The mean-squared displacement follows by double integration of
C̃vv,∞
+ in the time domain. We further provide explicit forms to

compute the transverse contribution to the correction ΔG̃ T,corr. By
using Eq. (3), we explicitly write the transverse correction defined by
Eq. (7) as

ΔG̃ T,corr
(ω) =

1
6πη

⎡
⎢
⎢
⎢
⎢
⎣

∑
n⃗,n⃗≠0⃗

e−α∣n⃗ ∣L

∣n⃗∣L

⎤
⎥
⎥
⎥
⎥
⎦

−
2

3ηα2L3 . (9)

For large α, the real space sum in Eq. (9) converges quickly. To cover
the low-frequency regime, i.e., for small α, we transform Eq. (7) by
using an Ewald summation (for explicit expressions, comparison,
and convergence studies, see supplementary material Sec. G). For
ω→ 0, we retrieve Yeh and Hummer’s zero-frequency correction28

as expected. Equivalent results are straightforwardly derived for the
longitudinal contribution (see supplementary material Sec. H). In
the following, we show the results for the hydrodynamic correction
with both transverse and longitudinal contributions computed with
the Ewald expression.

Figures 2(b), 2(d), and 2(f) present the corrected VACF Cvv,∞,
memory kernels Γ∞, and memory kernel integrals. All curves from
different box sizes fall onto a master curve, as is particularly clear
in Fig. 2(f), validating our method to correct these time-dependent
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response functions for finite-size effects. In addition, we show in
supplementary material Sec. I that using frequency-dependent vis-
cosity spectra η̃(ω) and ζ̃(ω) extracted from MD simulations results
in an even better superposition of the different curves, pointing to a
more accurate finite-size correction. Strikingly, our correction mod-
ifies the long-time power-law decay of the VACF and the memory
kernel. In Fig. 3, we compare the extracted ΓMD for a box length
L = 4 nm (blue line) and the corrected Γ∞ (red line) with the pre-
dicted hydrodynamic long-time tail Eq. (1). For long times, ΓMD

(t)
is positive and decays as +t−5/222 (blue dotted line). However, this
is only a spurious decay due to the PBC: the finite-size correction
modifies the kernels at times longer than 1 ps and, as a consequence,
reveals the negative long-time tail in Eq. (1) proportional to −t−3/2 in
the kernels, which results in a decay as −t−1/2 of the memory kernel
integral for times larger than ∼1 ps. The agreement with the ana-
lytical prediction Eq. (1) (green dashed line) is excellent. We draw
similar conclusions for the VACF and its long-time tail, as shown
in Fig. 2 (dotted lines) and in supplementary material Sec. F. The
results for an LJ particle in an LJ fluid are given in supplementary
material Sec. B and support our conclusions. This demonstrates
the importance of considering hydrodynamic interactions due to
PBC and correcting time-dependent quantities such as the memory
kernel and the VACF when investigating hydrodynamics and long-
time behaviors. This correction further allows us to reduce the
computational effort and memory (in terabytes) of such studies, and
to explore even longer-time behaviors.

Finally, to simplify the use of our frequency-dependent finite-
size correction scheme, we introduce an exactly solvable model

FIG. 3. (a) Memory kernel Γ(t) and (b) integrated friction ∫
t

0 dsΓ(s) for the cen-
ter of mass position of an SPC/E water molecule in water, extracted from MD
simulations (blue line) and corrected for finite-size effects by using Eq. (6) (red
line). The dashed lines in log–log plots indicate negative values and the data are
smoothed using a Gaussian filter in log space. We show the predicted hydrody-
namic long-time tail Γtail(t) in Eq. (1) (green dashed line), computed using the
corrected value of the friction coefficient γ∞ (see supplementary material Sec. D)
for γ and D = kBT/γ, as well as a power-law fit sim t−5/2 to the extracted kernel
(blue dotted line) suggested by Ref. 22.

consisting of concentric spherical shells at a radial separation D,
at which constant surface force densities act, as schematized in
Fig. 4(d), instead of the cubic periodic lattice considered up until
now and drawn in Fig. 4(c). The distance of the innermost spher-
ical shell from the origin is (1 +m0)D, with m0 being a geometric
parameter. This spherical shell model yields a simple functional
form,

ΔG̃ sph
(ω) =

D2

3ηL3 [2 f (α−1
) +

λ2

α2 f (λ−1
) −

3
D2α2 ], (10)

where f (x) = e−m0D/x
[eD/x

(1 +m0) −m0]/(eD/x
− 1)2 comes from

the sum over periodic spheres. The derivation of this expression
is given in supplementary material Sec. J, and includes both trans-
verse and longitudinal contributions. We fix the separation D so
that the zero-frequency limit equals the Yeh–Hummer expression
D2
= 3ξL2

/[π(6m2
0 + 6m0 + 1)], with ξ = 2.837 297, and we fit the

parameter m0 to the numerically determined correction ΔG̃ corr,
yielding m0 = 0.387. Figure 4 shows the comparison of the real part
[panel (a)] and imaginary part [panel (b)] of the different correc-
tions derived in this work. The agreement of ΔG̃ sph with ΔG̃ corr

is excellent so that ΔG̃ sph can safely be used in practical applica-
tions. Interestingly, the transverse contribution is the major part of
ΔG̃ corr, while the longitudinal part is almost negligible, i.e., using
only the transverse part of ΔG̃ corr is a good approximation. As
expected, the real part of the correction retrieves Yeh and Hummer’s
for zero frequency [horizontal dashed-dotted lines in Fig. 4(a)], and
the correction increases in magnitude with 1/L. Moreover, there is

FIG. 4. (a) Real and (b) imaginary parts of the frequency-dependent finite size
correction ΔG̃ corr

(ω), using the viscosity and density of SPC/E water, for a range
of box sizes L ∈ [1.5, 5] nm, denoted by different colors. We show the total cor-
rection including transverse and longitudinal contributions ΔG̃ corr in Eq. (7) (solid
line), the transverse contribution to the correction ΔG̃ T, corr [supplementary material
Eq. (G13), dotted lines], and the spherical shell model ΔG̃ sph given in Eq. (10)
(dashed black lines). For reference, we give the correction derived by Yeh and
Hummer in the zero-frequency limit ΔGYH

≈ −2.837 297/(6πηL)28 (horizontal
dashed-dotted lines).
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a shift toward higher frequencies of the main features of the cor-
rection for smaller box lengths L, suggesting that the smaller the
box size, the shorter the timescales influenced by hydrodynamic
interactions.

The frequency-dependent finite-size correction scheme devel-
oped in this work retrieves long-time dynamics, such as the
long-time tails predicted by hydrodynamics, from simulations of
relatively small systems, which is helpful for MD simulations
of aqueous systems and important to encode the correct long-
time dynamics, for example, in coarse-grained molecular simu-
lations.36 This work opens the way to the treatment of more
complex systems and observables37 but could also be extended to
other time-dependent transport properties such as electrophoresis,
diffusiophoresis, and thermal conductivity.

The supplementary material contains simulation details, results
for the Lennard-Jones system, details for the correction of the
velocity autocorrelation function, explicit Ewald expressions for the
finite-size correction, details on the extraction of and results using
frequency-dependent viscosities, and the derivation of the spherical
shell model.
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