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Abstract

Mathematical modelling of biological networks can help us understand
the complex mechanisms that are behind cell proliferation, differentiation
and other cellular processes. From these models, we are able to replicate and
predict system behaviour that can help in the design of experiments in the
systems biology context.

Multiple formalisms capture the evolution or dynamics of a system as
implied by the network. Ordinary differential equation (ODE) models pro-
vide a precise representation of the system, where the concentrations of net-
work components evolve based on chemical kinetics, e.g. mass action kinetics.
The kinetic parameters required to generate the dynamics accurately, how-
ever, are often lacking, which has led to the development of more qualitative
or discrete modelling methods. Discrete formalisms, like the well known
Thomas formalism, provide a very coarse but realistic representation of the
systems dynamics, whilst still highlighting fundamental features of the net-
work structure.

When modelling a given system, it could occur that the different ap-
proaches yield contrary dynamics. From a modelling perspective, this is
highly impractical as we expect the system to behave uniquely irrespective
of the modelling approach used. By mathematically relating different for-
malisms, we can analyse the dynamics of the formalisms and determine con-
ditions for which the dynamics of each formalism are common or contrary
between formalisms.

Hybrid modelling approaches, that is formalisms that combine discrete
and continuous methods, help in relating the purely discrete Thomas formal-
ism with the purely continuous ODE formalism. Approximating the ODEs,
we obtain piecewise affine differential equations (PADEs), which have well
defined dynamics that can be discretised to reflect features of the Thomas
formalism. Incorporating the hybrid formalism of PADEs into our analy-
sis, we can break up the otherwise rough transformation between ODE and
Thomas formalisms. In doing so, we can specify with greater accuracy the
conditions for contrary dynamics to occur between formalisms.

Our main result compares the qualitative approach of PADEs with the
Thomas formalism. In particular, we show that even though the qualitative
parameter information of the PADEs is inherent in the Thomas formalism
and vice versa, the dynamics in both models still yield contrary dynamics.
However, with the well-defined correspondences of the transition systems
implied by the two approaches, we can either provide proofs of paths and
terminal strongly connected components that are common between both for-
malisms or present counterexamples that display contrary dynamics.
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From this result, we can also show that specific behaviours of the ODE for-
malism that normally require the quantitative kinetic parameters can also be
deduced from the qualitative parameter information present in the Thomas
formalism.

With our analysis, we bridge the gap between discrete and continuous
modelling methods so that the formalisms are united in their statements
about the system. More specifically, we establish the dynamics that is com-
mon regardless of the choice of formalism and the dynamics that can be seen
as artefacts of the formalism, which have to be interpreted with greater care.
From this analysis, therefore, we achieve a more rigorous modelling frame-
work that allows us to model and predict biological systems with greater
accuracy.
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Zusammenfassung

Mathematische Modellierung von biologischen Netzwerken hilft uns, die kom-
plexen Mechanismen hinter Zelldifferenzierung, Proliferation und anderen
zellulären Prozessen zu verstehen. Abstrakte Modelle erlauben uns, das Ver-
halten eines Systems bis zu einem gewissen Grad nachzubilden und vorher-
zusagen. Die dabei gewonnenen Erkenntnisse können zum Beispiel beim Ent-
wurf von Experimenten im systembiologischen Kontext eingesetzt werden.

Die Evolution bzw. Dynamik eines durch ein Netzwerk implizierten Sys-
tems kann durch verschiedene Formalismen beschrieben werden. Modelle
auf Basis gewöhnlicher Differentialgleichungen (ODE-Modelle) geben eine
präzise Beschreibung eines Systems, in dem sich die Konzentrationen der
Netzwerkkomponenten gemäß chemischer Kinetik, z.B. Massenwirkungsge-
setzes, verhalten. In der Praxis sind die kinetischen Parameter eines ODE-
Models, die für die Beschreibung der Dynamik notwendig sind, oft unbe-
kannt, was verstärkt zur Entwicklung von qualitativen und diskreten Mo-
dellierungsmethoden geführt hat. Diskrete Modelle, wie zum Beispiel der be-
kannte Thomas-Formalismus, liefern oft nur eine sehr grobe Beschreibung der
Systemdynamik in der Form eines Transitionssystems, zeigen aber dennoch
die fundamentalen Eigenschaften, die durch die Netzwerkstruktur vorgege-
ben sind.

Obwohl ein System sich eindeutig verhalten sollte, können verschiede-
ne Modellierungsansätze widersprüchliche Ergebnisse liefern. Dies kann die
Verlässlichkeit der Modelle grundsätzlich in Frage stellen. Ein mathemati-
scher Vergleich der unterschiedlichen Formalismen kann Bedingungen aufzei-
gen, unter denen sie sich gleich bzw. verschieden verhalten.

Hierbei können hybride Modellansätze, die diskrete und kontuierliche Me-
thoden kombinieren, helfen, den rein diskreten Thomas-Formalismus mit dem
rein kontuierlichen ODE-Formalismus in Verbindung zu bringen.

ODE-Modelle können durch stückweise affine Differentialgleichungen
(PADEs) approximiert werden, die sowohl eine wohldefinierte Dynamik vor-
weisen, gleichzeitig aber auch diskretisiert werden können und dabei Ei-
genschaften des Thomas-Formalismus zeigen. Mit dieser Eigenschaft bil-
den PADEs eine Brücke zwischen den ODE-Modellen und dem Thomas-
Formalismus, die uns erlaubt, die Bedingungen für widersprüchliche Dyna-
miken zu analysieren.

Unser Hauptergebnis besteht in einem detaillierten Vergleich von qua-
litativen PADE-Modellen und dem Thomas-Formalismus. Insbesondere zei-
gen wir, dass die qualitative Parameterinformation der PADEs inhärent im
Thomas-Formalismus enthalten ist und umgekehrt, obwohl beide Metho-
den widersprüchliche Ergebnisse liefern können. Die entsprechenden Tran-
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sitionssysteme, welche aus den jeweiligen Methoden hervorgegangen sind,
zeigen auf, dass es sowohl Modelle mit gemeinsamen Dynamiken als auch
Gegenbeispiele mit widersprüchlichen Ergebnissen gibt. Daraus leiten wir
ab, ob die kompliziertere Dynamik, nämlich Pfade und terminal stark zu-
sammenhängende Komponenten, in beiden Formalismen sich entsprechen
oder nicht. Wir nutzen diese Ergebnisse um zu zeigen, dass sich gewisse
Verhaltenseigenschaften von quantitativen ODE-Modellen, die normalerwei-
se Wissen über spezifische kinetische Parameter erfordern, bereits aus einer
qualitativen Analyse des Thomas-Formalismus ableiten lassen.

Unsere Analyse schlägt eine Brücke zwischen diskreten und kontinuierli-
chen Modellierungsmethoden und macht die Aussagen mehrerer Formalismen
einheitlich. Insbesondere trennen wir die Dynamiken, die den Formalismen
gemeinsam sind, von denen, die sich als Artefakte des gewählten Modellie-
rungsansatzes ergeben und bei deren Interpretation daher besondere Vorsicht
geboten ist. Damit führen unsere Ergebnisse zu einem genaueren Rahmen für
die Modellbildung und erlauben akkuratere Modelle und Vorhersagen über
biologische Systeme.
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CHAPTER 1
Introduction

1.1 General Introduction

When modelling a biological system, it is important to understand how
molecular components such as genes or proteins interact to give rise to spe-
cific behaviour. The interplay of many different components and molecular
species takes part in the regulatory mechanism that gives rise to cellular pro-
cesses such as proliferation, differentiation, circadian rhythms, and the cell
cycle. Large interaction networks are constructed so that modelling methods
can replicate and predict behaviours of the biological system.

A first step of the modelling procedure is to capture the network of inter-
actions in a directed graph. The so-called interaction graph represents the
network structure, where the vertices of the graph correspond to the network
components and edges signify dependencies between components. Analysis
of the network from a graph theoretical perspective can yield results that
inform us about the network structure. Such statements, however, are static
in that they do not describe how the system evolves over time as expected
by biological processes. Dynamical modelling of the network helps us gain
information about the evolution of the system.

A popular dynamical modelling method of biological networks is with a
set of coupled ordinary differential equations (ODEs). The continuous vari-
ables, that is non-negative finite real variables, represent the concentrations
of the components in the network. The temporal evolution of these variables
can be described by functions that express the dependence of a component
on the concentrations of other components or other substances present in the
cell. These functions usually represent the synthesis or degradation of net-
work components and are derived from basic principles of chemical kinetics or
simplified expressions, e.g. Michaelis-Menten enzymatic kinetics. One such
simplified expression is captured by the Hill function, which monotonically
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increases between zero and one taking the value half at a threshold value.
The Hill function allows the synthesis or degradation of one component in the
network to be described in terms of the concentration of that component’s
predecessors in the network. In the context of gene regulatory networks, the
Hill function simplifies the process of expression, where the highest rate of
expression is achieved when an activating protein concentration is above the
threshold value.

System-specific information, like reaction rate constants and sensitivities,
is encoded as constant kinetic parameters. The system of differential equa-
tions with specific kinetic parameters is what we call an ODE model, which
is then studied using the mathematics of non-linear dynamics. By solving
the ODE model, we obtain a solution trajectory that describes the evolution
of the system from any given initial concentration of network components.
Because of the non-linearities, the ODE model cannot easily be solved and
thus only simulating the ODEs allows us to determine how the system evolves
[21, 42, 68]. The long term behaviour of these simulations or attractors of the
ODEs, e.g. the stable equilibria and limit cycle oscillations, are thus inter-
preted as the stable behaviours of the network, where a small perturbation
from an attractor would return to the attractor after some time.

In order to model the system accurately, that is have a reasonable rep-
resentation of the network based on the fundamental principles, we need
precise values of the kinetic parameters. These kinetic parameters, however,
are not necessarily obtainable from the experimental data. Still, the experi-
mental data share some qualitative information about how the system tends
to evolve. As a result, qualitative formalisms, such as discrete modelling
methods, have been developed to incorporate the qualitative parameter in-
formation. In general, the discrete modelling methods generate dynamics
represented as transition systems with states of the system defined as nodes
and transitions between nodes describing the evolution of the system. Al-
though the discrete models provide a coarse representation of the biological
system, a question that arises is whether this alternative dynamical mod-
elling method is consistent with the network behaviour generated by the
ODE formalism.

In the 1960s, S. Kauffman [31] introduced the very abstract representation
of a gene regulatory system in terms of Boolean networks. In particular, the
network components are interpreted as Boolean variables, where the value
1 represents gene activity. The state of the network is then described by a
Boolean vector of values for all network components. The behaviour of each
component is described by a Boolean function on the state space, often called
the update function, which depends only on the values of the predecessors of
that component in the interaction graph.
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While the network structure provides information about the interdepen-
dencies of the different variables in the Boolean function, the values of the
Boolean function still need to be specified. In other words, the evolution of
each network component needs to be specified in terms of the presence or
absence of the component’s predecessors. In that sense, each Boolean vari-
able can be defined by a truth table of all variables, where the specific values
are determined through logic NOT, AND and OR gates of the predecessors.
We refer to the specification of the truth table as the logical parameters.
Hence, the update function captures the dynamics of the system based on
the network structure and the logical parameters.

The update function then maps a state to an image state. In other words,
the update function represents the dynamics of the system via transitions
from a given state to its image state. This method to derive state transitions
is called synchronous update. The dynamics of the system is represented by
a directed graph, the state transition graph, where the vertices correspond
to the states and edges connect each state to its image. Hence, the inter-
pretation of the synchronous update is that all processes involved in a state
transition are executed in the same amount of time. The state transition
graph can be used to interpret the dynamics of the system, where trajecto-
ries are represented by paths and attractors by terminal strongly connected
components.

In order to generalise the Boolean modelling approach, R. Thomas and
colleagues [62, 63, 64] suggested the extension to multi-valued discrete vari-
ables, which accounts for multiple activity levels of network components.
They also introduced the asynchronous update method that only allows one
component to be updated per discrete time step, i.e., a state and its succes-
sor only differ in one component value. Consequently, the resulting Thomas
formalism provides a non-deterministic representation of the dynamics. In
other words, in the corresponding state transition graph, the out-degree of
a vertex will generally be greater than one, reflecting the different choices of
components that could be updated. In that sense, the asynchronous update
method provides a more realistic representation of the systems behaviour,
where no two components can switch simultaneously. Moreover, the activ-
ity of a component increases and decreases without bypassing intermediate
levels of activity in a single transition.

Although the asynchronous state transition graph is more difficult to
analyse than its synchronous counterpart, the more realistic behaviour im-
plied by asynchronous update suggests a more accurate representation, which
also reflects the dynamics in the ODE formalism [22, 63]. In particular, the
threshold values of the Hill function partition the real values of the continu-
ous variable, which naturally discretises into a multi-valued discrete variable.
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By relating the Thomas and ODE formalisms, we can mathematically com-
pare the dynamics implied by both formalisms. From this relation of ODE
and Thomas formalisms, we can then observe consistent and inconsistent be-
haviours, that is paths and attractors in the Thomas model that are either
consistent or inconsistent with the solutions and long term behaviour of the
ODE model respectively.

The major focus of this dissertation is to identify the consistent and in-
consistent behaviours between the ODE and Thomas formalisms, from which
we can better understand how each formalism handles the parameter infor-
mation in order to generate the dynamics. This is advantageous from a mod-
elling perspective because the consistent dynamics imply the same behaviours
regardless of the formalism chosen, whereas the inconsistent dynamics imply
that the behaviours should be interpreted with caution. From a mathemat-
ical perspective, relating the Thomas and ODE formalisms bridges the gap
between discrete and continuous modelling. On the one hand, we determine
how sensitive the precise dynamics of the ODE formalism are when interpo-
lating the abstract dynamics of the Thomas formalism. On the other hand,
we discover how well the Thomas formalism can be used to analyse the ODE
formalism.

1.2 State of the Art

Throughout the literature, the Thomas formalism is related to the ODE
formalism either by discretising the ODE model [8, 12, 22, 58] or by interpo-
lating the discrete states of the Thomas model to construct an ODE model
[69, 34].

There are results in the literature that have already stated some consis-
tent dynamics between the Thomas and ODE formalisms. In particular, a
steady state in the Thomas model corresponds to an asymptotically stable
equilibrium in the related ODE model [56, 8, 22, 69, 34]. Here, an asymp-
totically stable equilibrium means that all trajectories that start in a small
neighbourhood of the equilibrium point will approach the equilibrium point
with increasing time. Also, a steady state is referring to a discrete state in
a directed graph, in this case of the state transition graph, that is its own
successor or has no outgoing edges.

Three major inconsistencies between the Thomas (or Kauffman) and
ODE models have already been observed by Glass and Kauffman in [22].
More specifically,

• there are some cyclic attractors of the Thomas model, that is attractors
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of the state transition graph that are not steady states, that correspond
to solutions that approach equilibria in the ODE model.

• there are equilibria of the ODEmodel that do not appear in the Thomas
model, and

• there are discrete paths in the Thomas model that have no correspond-
ing trajectory in the ODE model.

For now, we can only claim that these inconsistent dynamics arise due to
the transformation between the ODE and Thomas formalisms. In particu-
lar, when discretising an ODE model to obtain a Thomas model, the exact
values of the kinetic parameters are traded for the more qualitative logical pa-
rameters and the deterministic properties of the solution trajectories are not
conserved in the discrete paths. Also, when interpolating a Thomas model
to construct an ODE model, the choice of the kinetic parameters could have
large effects on the ODE solutions. Because the transformation between the
Thomas and ODE formalisms is very rough in the sense that the former is
discrete and the latter is continuous, we are unable to specify at what stage
of the discretisation resp. interpolation the inconsistent dynamics arises. For
this reason, in order to identify the conditions for consistent and inconsis-
tent dynamics between the ODE and Thomas formalisms, we break up the
transformation between the formalisms.

Hybrid formalisms, that is modelling approaches that combine discrete
and continuous methods, provide a compromise between the purely discrete
Thomas and purely continuous ODE approaches. Examples of hybrid for-
malisms include approximating the ODE formalism [12, 21, 41, 10] or intro-
ducing continuous dynamics to the Thomas formalism [1, 2, 20, 55, 9]. Hence,
hybrid methods help break up the otherwise rough transformation between
Thomas and ODE models and help in identifying consistent and inconsistent
dynamics between the Thomas and ODE formalisms.

One popular hybrid modelling method is that of piecewise affine differ-
ential equations (PADEs) [21], which are also known as piecewise linear dif-
ferential equations. The PADE formalism simplifies the ODE formalism by
approximating the Hill functions with step functions, which take the values
zero below and one above the threshold value. Because the step function
can be interpreted as a Hill function with infinite slope at the threshold, it is
considered to be a reasonable approximation of the Hill function. Thus, the
PADE formalism is also a reasonable approximation of the ODE formalism.

The step functions, which are piecewise constant, make the differential
equations piecewise affine, hence PADEs. Therefore, all points of the phase
space that are located in a so-called regular domain satisfy the same system
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of affine differential equations, where regular domains are defined such that
the differential equations have no discontinuities on them. Hence, the PADE
system is solvable within the regular domains. More specifically, all solutions
starting in a regular domain converge towards a point in the phase space, the
so-called focal point, which is uniquely defined for every regular domain by
the kinetic parameters. A solution starting in a regular domain, whose focal
point is not contained within itself, eventually leaves the regular domain. The
piecewise nature of the PADEs, however, means that after a solution crosses
a threshold hyperplane into a new regular domain, the solution converges
towards the focal point of that regular domain. This switching behaviour
caused by the step functions is the discrete feature that makes the PADEs a
hybrid formalism.

Although the PADEs are a clear approximation of the ODE formalism,
the relation between trajectories of the ODE and PADE formalisms is less
clear. Polynikis et al. [42] andWidder et al. [68] used simulations to show that
the PADE and ODE solutions have some corresponding stable equilibria, but
their results come from small and simple networks. Unfortunately, the non-
linear nature of the ODE formalism makes it difficult to compare solutions
[21].

In 1989, Snoussi [56] uses the regular domains to discretise the PADEs,
where the threshold values partition each continuous variable into discrete
multi-valued variables. By exploiting the association of regular domains and
their corresponding focal points, Snoussi captures the dynamics of the PADE
system in a discrete function, where the regular domains and their focal
points correspond to a discrete state and its image respectively. The asyn-
chronous state transition graph of the discrete function then has a form
similar to that of the Thomas formalism. For this reason, we consider the
PADE formalism to be an excellent intermediate formalism that helps break
up the transformation between the Thomas and ODE formalisms.

By discretising the PADEs to obtain a Thomas model, Snoussi [56] ob-
served two important results. The first immediate result is that every steady
state in the asynchronous state transition graph corresponds to an asymp-
totically stable equilibrium in the corresponding regular domain. The second
result sheds some light on one of the three inconsistent dynamics observed
by Glass and Kauffman (see above and [22]): Snoussi showed that a cyclic
attractor that oscillates in one or two variables always corresponds to a sta-
ble equilibrium in either the threshold hyperplanes or in the intersection of
threshold hyperplanes, which are also referred to as singular domains, in the
PADEs. He showed that the remaining cyclic attractors, namely attractors
that oscillate in three or more variables, correspond to limit cycle oscillations
in the related PADEs. Because the PADEs approximate the ODE model, the
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PADEs capture some qualitative dynamics of the ODE model. In that sense,
Snoussi determined conditions for the existence of inconsistent dynamics be-
tween the Thomas and ODE formalisms with the help of the intermediate
PADE modelling method.

Even though Snoussi found some stable equilibria on the singular do-
mains, he does not clearly define the specific dynamics on singular domains.
That is, the step functions of the PADEs give rise to the discontinuities that
cannot be solved by standard ODE theory. In 1993, Thomas and Snoussi [57]
suggested a discrete extension or refinement of the Thomas formalism, known
as the singular state formalism, with the introduction of singular states, that
is states that lie between adjacent (regular) states of the Thomas formalism.
The intention of these singular states is to have a logical representation of
the singular domains of the PADE formalism. Richard et al. [48] formally de-
fined the singular state formalism, where all states, i.e., including the singular
states, have an update, which are determined by the well-defined interaction
graph and logical parameters. Furthermore, the asynchronous update scheme
of the singular state formalism is inherited from the Thomas formalism. In
their work, Richard et al. [48] prove the statement claimed in [57] that the
singular steady states, that is the singular states that are their own successors
in the respective transition graph, are characteristic of feedback loops in the
interaction graph. Our focus, however, is purely on the relation of dynamics
between different modelling approaches and not the relation of dynamics and
structure of a network, which is otherwise very well studied in the literature
[49, 46, 47, 61, 59, 45]. In any case, the authors in [57, 48] claim that the
singular steady states are representative of equilibria in the corresponding
ODE formalism.

To avoid the complications of defining the dynamics on singular domains,
Plahte et al. [41] introduced a differential equation formalism, which is a not
as rough an approximation of the ODE formalism as the PADEs. In partic-
ular, they introduced the approximation of the Hill function known as the
logoid function [41], which rises monotonically from zero to one in a narrow
threshold interval and takes the value zero below and the value one above
this interval. The logoid function is not only a continuous approximation of
the Hill function but also has constant values, which would then imply solv-
able regions of the phase space similar to the step function. One particular
logoid function that has a linear increase or decrease in the threshold inter-
val is referred to as the ramp function. Replacing the Hill functions in the
ODE model with ramp functions makes the resulting differential equations
piecewise multi-affine. Hence, we refer to the resulting differential equations
as the PMA model. Here, multi-affine means that the right hand side of the
differential equation is composed of polynomials such that each variable has
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degree of at most one. In other words, the PMA model is a compromise
between the discontinuities of the PADE as well as the non-linearities of the
ODE model.

In [40, 36], E. Plahte and colleagues showed that the PMA model can
help provide insight into what occurs on the singular domains in PADEs. In
particular, they show that a PMA model, whose ramp functions have a very
steep slope, has solutions that approach the limit solutions uniformly in a
finite time interval, where the limit solutions refer to the solutions when ramp
functions of the PMA model approach step functions. An interpretation of
this is that the solutions of the PMA model interpolate the solutions on
singular domains of the PADEs. In other words, the PMA model bridges the
gap between PADEs and the ODE model.

There is still the issue of defining the dynamics on the singular domains of
the PADEs. In [23, 16, 14, 15], H. de Jong and colleagues dealt with the dis-
continuities of the PADEs by converting the PADEs to differential inclusions
(following the methods of A. Filippov [18]). Consequently, the differential in-
clusions imply a generalised concept of solution such that the PADEs can be
solved on the regular and singular domains giving rise to what we call PADE
solutions. In [51, 50], Ropers et al. compare the numerical simulations of the
ODE and PADE models. In their comparison, they define distance and cor-
relation measures to show that the solutions of both models are very closely
related. For this reason, we interpret the PADE approximation as legitimate
in conserving the solution trajectories of the ODE formalism.

Solving the differential inclusion on singular domains could often imply
non-unique dynamics. For this reason, there was a need to define the so-called
singular equilibria, that is points in singular regions that have equilibrium
properties, but due to non-unique dynamics cannot be defined identically to
ODE equilibria. In 2006, Casey et al. [7] defined and observed the proper-
ties of singular equilibria in greater detail. In particular, they adapted the
concept of stability from ODE equilibria to singular equilibria, from which
they conjectured the stability of these singular equilibria in terms of the
transitions that are present in the qualitative transition graph. Our focus in
the thesis is not on the stability but rather on the existence of the singular
equilibria and the claim that they represent equilibria in the ODE model.

With the defined solutions on the singular domains, de Jong et al. [15]
could discretise all dynamics implied by the PADEs into a so-called quali-
tative transition graph. In particular, the node set consists of regular and
singular domains and the transitions between these nodes occurs whenever
a solution exists that traverses two adjacent domains. This discrete repre-
sentation of the PADE system is more representative of the ODE formalism
compared to Snoussi’s discretisation because the singular domains have a
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Thomas ODEs

PADE-R

PADE-Q

PADE-D

PADE Solutions

Singular State PMA

Discrete Continuous

[57, 48]
[9, 1

7, 56
]

[41, 36]

[22, 12, 69]

[21, 42]

[4, 50]
[15] [7]

Figure 1.1: Our formalisms of interest, which make up a spectrum that
ranges from discrete on the very left to continuous on the very right. The
PADE, PMA and singular state formalisms bridge the gap between the purely
continuous ODE formalism and the purely discrete Thomas formalism. The
different analysis approaches of the PADEs also range between discrete and
continuous in terms of either their parameters or dynamics. The arrows
depict transformations between the respective formalisms and are labelled
with the references that deal with the transformation. The dashed arrows
represent the formalisms that have not yet been compared in the literature
and will be addressed in the thesis.

discrete representation similar to the singular state formalism. Still, because
of the discrete representation of the dynamics, we consider the qualitative
transition graph to be a formalism on its own and refer to it as the discretised
PADE (PADE-D) formalism.

One major advantage of the discrete representation of the PADEs in a
qualitative transition graph is that it can incorporate qualitative information
about the kinetic parameters, where the kinetic parameters satisfy a set of
strict inequalities rather than taking specific values. In 2004, de Jong et al.
[15] introduced an overapproximation of the PADEs to account for all the
dynamics in the PADEs implied by the range of kinetic parameters. We refer
to this overapproximation as the qualitative PADE (PADE-Q) formalism.
Their main result was that the qualitative transition graph that arises from
specific kinetic parameters is a subgraph of the overapproximated qualitative
transition graph, which is constructed from the qualitative information of the
kinetic parameters. One interpretation of this result is that the dynamics
implied by multiple parameter sets are combined into one discrete transition
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system.
To incorporate more qualitative parameter information as well as a finer

representation of the dynamics, Batt et al. [4] developed the refined approach
of the PADEs, where sign of derivative information is included in the nodes of
the respective transition graph. Different biological descriptions of different
component concentrations, e.g. increasing or decreasing, are often difficult
to interpret in the standard PADE formalism. Such descriptions, however,
can be directly translated to discrete paths in the refined PADE (PADE-R)
analysis and thus allow us to confirm the model more easily with experimental
data or observations [51].

It has been claimed in [22] that some paths of the Thomas model do not
have a corresponding trajectory in the ODE model. This problem has been
shown to crop up when discretising more general ODE systems [6]. Intro-
ducing continuous dynamics to the discrete model can reobtain the distinct
trajectories [1, 55, 9] but in all cases the existence of these corresponding
trajectories is dependent on the specific kinetic parameters. As a result, no
general statement can be made about which discrete paths in the Thomas
model have no corresponding trajectory in the ODE model.

Although the different formalisms have been developed to either approx-
imate the ODE model, i.e., the PADE and PMA models, or to add detail to
the Thomas formalism, i.e., the singular state formalism, they are in their
own right valid modelling methods. Hence, by incorporating all formalisms
mentioned above into our analysis, we not only break up the transforma-
tion between the Thomas and ODE formalisms but also identify the consis-
tent and inconsistent dynamics with other valid modelling approaches. This
thesis, therefore, investigates the consistent and inconsistent dynamics be-
tween multiple formalisms but with the overall aim of relating and comparing
the purely discrete Thomas and the purely continuous ODE formalisms (see
Fig. 1.1).

1.3 Thesis Overview

After this introductory chapter on modelling methods of biological networks,
six chapters will follow. One chapter to introduce the notation, three to
present the main results, one to apply the results to a biological system and
a final chapter to conclude the thesis. Chapter 2 introduces the different for-
malisms of interest that have been described above. Going from continuous
to discrete, the ODE and PMA model are introduced, followed by the PADE
formalism and its different analysis methods, and finally the Thomas and sin-
gular state formalisms. In addition to describing how the dynamics of each
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Figure 1.2: The thesis structure depicted by the comparisons that are ad-
dressed in each chapter. The major formalisms of interest are classed in
terms of whether they need qualitative parameter information or explicit ki-
netic parameters and whether their dynamical representation is by transition
graphs or solution trajectories.

formalism is generated by the logical or kinetic parameters, we also analyse
how much parameter information can be determined from the dynamics.

Because the Thomas formalism is a coarse and abstract representation
of the fundamental characteristics of the network, it has structural and dy-
namical features that are expected to be present in all other formalisms. In
that sense, by relating the above formalisms with the Thomas formalism, we
see how the dynamics of other formalisms contribute to the dynamics of the
Thomas formalism. For this reason, we begin the thesis by relating the very
abstract Thomas formalism to the other qualitative formalisms before incre-
mentally increasing the detail of the formalisms towards the ODE formalism
(Fig. 1.2).

Chapter 3 looks at the different qualitative formalisms, namely the
Thomas and singular state formalisms, and their relation with the qualitative
analysis of the PADEs. One important result that we present is the equiva-
lent parameter information of all three approaches, that is no information is
gained or lost when transforming between the methods. Consequently, the
dynamics of all three approaches are directly relatable, meaning we can de-
termine the correspondences of edges between the different transition graphs.
From this information, we can then compare the more complex dynamical
behaviour of paths and attractors in each of the formalisms and present
proofs of consistent dynamics as well as construct examples of inconsistent
dynamics.
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The PADEs and their multiple analysis approaches are compared in Chap-
ter 4. Here, we are especially interested in the consequences of qualitative and
kinetic parameters. Other than establishing the consistent and inconsistent
dynamics of the different PADE formalisms, we also present how the quali-
tative information encoded in the logical parameters suffices in determining
the existence of some singular equilibria in the PADEs.

Chapter 5 concentrates on relating the differential equation formalisms,
for which we assume the kinetic parameters. We deduce conditions on the
kinetic parameters that will ensure that the dynamics are conserved given
the relation between the formalisms.

Chapter 6 shows how the analysis over all the formalisms can be applied
to model the cytokinin signal transduction network of Arabidopsis thaliana.
More specifically, after constructing an ODEmodel frommass action kinetics,
we discretise the ODEs into a Thomas model. Then, we simulate the ODEs
using kinetic parameters that have been estimated based on the findings in
the previous chapters.

The final chapter summarises all our results and gives an outlook of the
thesis.



CHAPTER 2
Formalisms

In this chapter, we introduce our formalisms of interest starting with the ODE
and the PMA modelling approaches. Then, the hybrid method of PADEs is
presented and its multiple analysis approaches. Finally, the Thomas formal-
ism and it’s extension known as the singular state formalism. Our focus is
in presenting the dynamics of each formalism and not how the formalism is
constructed from a specific network.

2.1 Continuous Models

2.1.1 ODE Model

Here, we present the ODE modelling approach, which refers to a specific
ODE system that involves Hill functions. Consider an n-dimensional phase
space Ω = Ω1 × · · · × Ωn ⊂ R

n
≥0, where Ωi = {xi ∈ R | 0 ≤ xi ≤ maxi},

and maxi ∈ R>0. For every continuous variable xi ∈ Ωi we assume pi ∈ N

thresholds θ1i , · · · , θ
pi
i satisfying the ordering

0 < θ1i < · · · < θpii < maxi, for all i ∈ {1, . . . , n}. (2.1)

We consider a set of ODEs in Ω of the form

ẋi = FH
i (x)−GH

i (x)xi, i ∈ {1, . . . , n}, (2.2)

where the functions GH
i : Ω → R>0 and FH

i : Ω → R≥0 are linear combina-
tions of products of Hill functions ,

H+(xi, θ
j
i , ǫij) =

x
ǫij
i

x
ǫij
i + (θji )

ǫij
,

and H−(xi, θ
j
i , ǫij) = 1 − H+(xi, θ

j
i , ǫij), where the Hill coefficient ǫij ≥

1 determines the steepness of the function at the threshold θji for i ∈
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Figure 2.1: The solution trajectories of the ODE model in Ex. 2.1. The
initial values of these trajectories are along the borders of the phase space
Ω = [0, 2]× [0, 1]. All trajectories approach either the focus close to the point
(0.5,0.5) or the equilibrium point close to (2,1).

{1, . . . , n}, j ∈ {1, . . . , pi}. The kinetic parameters are then the constant
coefficients of the terms in GH

i and FH
i . We refer to (2.2) as the ODE model .

Example 2.1 Consider an ODE model consisting of the two variables x1
and x2, where variable x1 has the two thresholds, θ11 and θ21, and variable x2
has the single threshold θ2.

ẋ1 = κ1H
−(x2, θ2, ǫ21) + κ2H

+(x1, θ
2
1, ǫ12)−

−κ4H
−(x2, θ2, ǫ21)H

+(x1, θ
2
1, ǫ12)− λ1x1,

ẋ2 = κ3H
+(x1, θ

1
1, ǫ11)− λ2x2.

The parameter values κ1, κ2, κ4 = 2, κ3, λ1, λ2 = 1, θ11 = θ2 = 1
2
, θ21 =

3
2
,max1 = 2,max2 = 1, ǫ11, ǫ12, ǫ21 = 17 yield the trajectories in Fig. 2.1.

2.1.2 PMA Model

Here we introduce the piecewise multi-affine model for which we retain some
notation of the ODE model, namely the n-dimensional phase space Ω and
the pi thresholds for every i ∈ {1, . . . , n} with the threshold ordering (2.1).
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θ
j
i θ

j,0
i θ

j,1
i θ

j
i

Figure 2.2: Starting from left to right, the Hill, ramp and step function, which
give rise to the ODE, PMA and PADE models respectively. In particular,
going from left to right are the functions H+(xi, θ

j
i , ǫij), L

+(xi, θ
j,0
i , θj,1i ) and

S+(xi, θ
j
i ) with the y-axes ranging from zero to one.

Consider the threshold interval [θj,0i , θj,1i ] for every threshold θji of the
ODE model, where the bounds of each threshold interval satisfy the ordering
0 < θj,0i < θj,1i < maxi.

We consider the threshold intervals do not overlap, that is θj,1i < θ
(j+1),0
i ,

for all i ∈ {1, . . . , n} and j ∈ {1, . . . , pi − 1}. Non-overlapping threshold
intervals will later make relating the PMA and PADE models simpler. So,
we disregard the PMA models with overlapping threshold intervals.

Consider a set of ODEs in Ω, which we refer to as the piecewise multi-
affine (PMA) model , of the form

ẋi = FL
i (x)−G

L
i (x)xi, i ∈ {1, . . . , n}, (2.3)

where the functions GL
i : Ω → R>0 and FL

i : Ω → R≥0 are linear combina-
tions of products of ramp functions

L+(xi, θ
j,0
i , θj,1i ) =







0 if xi < θj,0i

1 if xi > θj,1i

mijxi + bij if θj,0i ≤ xi ≤ θj,1i

and L−(xi, θ
j,0
i , θj,1i ) = 1−L+(xi, θ

j,0
i , θj,1i ), where mij , bij ∈ R are chosen such

that the ramp function is continuous (see Fig. 2.2). Note that a function
F̄ : Rn → R is called multi-affine if for all x ∈ R

n we have

F̄ (x) =
∑

ij∈{0,1},j∈{1,...,n}

ci1,...,inx
i1
1 . . . x

in
n ,

where ci1,...,in ∈ R. In other words, a multi-affine function is a polynomial of n
variables such that the degree of each variable is either zero or one. Therefore,
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to ensure that the right hand side of (2.3) is piecewise multi-affine, we have
the additional constraint that the function GL

i (x) is not dependent on xi for
all i ∈ {1, . . . , n}.

With the ordering of the threshold intervals, we can partition the phase
space into hyperrectangular regions, which we refer to as rectangles.

Definition 2.1 (Rectangles) Consider a PMA model of the form (2.3)
with phase space Ω and non-overlapping threshold intervals [θj,0i , θj,1i ],i ∈
{1, . . . , n},j ∈ {1, . . . , pi}. A rectangle R ⊂ Ω is defined by R = R1×· · ·×Rn,
where every Ri is given by one of the following equations.

Ri = {xi | 0 ≤ xi < θ1,0i },

Ri = {xi | θ
k,1
i < xi < θ

(k+1),0
i } for k ∈ {1, . . . , pi − 1},

Ri = {xi | θ
pi,1
i < xi ≤ maxi},

Ri = {xi | θ
k,0
i ≤ xi ≤ θk,1i } for k ∈ {1, . . . , pi}.

By R, we denote the set of all rectangles in Ω.
We can define a rectangle R ∈ R by two vectors (a1, . . . , an), (b1, . . . , bn) ∈

Ω, where ai := infx∈Ri
x and bi := supx∈Ri

x, from which we define the set of
corners

V(R) := {v = (v1, . . . , vn) ∈ Ω | ∀i ∈ {1, . . . , n} either vi = ai or vi = bi}.

Within each rectangle R, we have that the right hand side of the ODE is
multi-affine. The findings of Belta et al. [6, 33, 5] state that the vector field
within R is a subset of the convex hull of the vector fields at the corners of
R, which implies that for all x ∈ R

ẋ ∈ co({F (v)−G(v)v | v ∈ V(R)}),

where F (v) = (FL
1 (v), . . . , F

L
n (v)), G(v) = diag(GL

1 (v), . . . , G
L
n(v)) and co(P )

is the closed convex hull of all points in P .
When analysing any ODE system, i.e., ODE and PMA models, it is

important to identify the equilibria, where an equilibrium point is a point
x0 ∈ Ω such that x0 ∈

⋂

i∈{1,...,n}Nulli, where

Nulli := {x ∈ Ω | F ∗
i (x)−G

∗
i (x)xi = 0}

denotes the nullcline of variable xi for ∗ ∈ {H,L}. In other words, an
equilibrium point x0 ∈ Ω implies ẋ0 = 0.

Because the ODE and PMA models have a continuous and finite right
hand side, we are able to solve the system (2.2) and (2.3) given an initial
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value x0 ∈ Ω. Solving the ODEs gives a trajectory ξ̄(t) ∈ Ω, which is defined
for all t ≥ 0 with ξ̄(0) = x0. The non-linearity of the Hill function makes
the ODE model difficult to solve, whereas the piecewise linearity of the ramp
function makes the PMA model easier to solve. We can numerically simulate
both the ODE systems using ODE solvers in computer programs such as
Matlab.

2.2 Piecewise Affine Differential Equations

In the following, we discuss piecewise affine differential equations (PADEs)
and the different modelling approaches following Filippov’s method [23], the
discretised (PADE-D) and qualitative (PADE-Q) approaches introduced by
de Jong et al. [15], and the refined approach (PADE-R) introduced by Batt
et al. [4].

Since the PADEs are an approximation of the ODEmodel, we also retain a
lot of the notation, namely the n-dimensional phase space Ω, the pi thresholds
θji for i ∈ {1, . . . , n}, and their ordering (2.1). We denote the union of the

threshold hyperplanes by Θ :=
⋃

i∈{1,...,n},j∈{1,...,pi}

{x ∈ Ω | xi = θji }. Consider

a set of PADEs in Ω\Θ of the form

ẋi = F S
i (x)−G

S
i (x)xi, i ∈ {1, . . . , n}, (2.4)

where the functions GS
i : Ω\Θ → R>0 and F S

i : Ω\Θ → R≥0 are linear

combinations of products of step functions S+(xl, θ
k
l ) =

{
0 if xl < θkl ,
1 if xl > θkl ,

and S−(xl, θ
k
l ) = 1− S+(xl, θ

k
l ).

The threshold hyperplanes Θ partition the phase space Ω into a set of
so-called domains.

Definition 2.2 Consider a set of PADEs of the form (2.4) with phase space
Ω and thresholds θji . The (n − 1)-dimensional hyperplanes corresponding
to the equations xi = θji , j ∈ {1, . . . , pi}, divide Ω into hyper-rectangular
regions called domains. A domain D ⊂ Ω is defined by D = D1 × · · · ×Dn,
where every Di is given by one of the following equations

Di = {xi | 0 ≤ xi < θ1i },

Di = {xi | θ
k
i < xi < θk+1

i } for k ∈ {1, . . . , pi − 1},

Di = {xi | θ
pi
i < xi ≤ maxi},

Di = {xi | xi = θki } for k ∈ {1, . . . , pi}.
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By D, we denote the set of all domains in Ω. A domain D ∈ D is called a
singular domain, if there exists i ∈ {1, . . . , n} such that Di = {xi | xi = θki }
for some k ∈ {1, . . . , pi}. The variable xi is then called singular variable.
The order of a singular domain is the number of its singular variables. A
domain D ∈ D is called a regular domain, if it is not a singular domain. The
set of regular and singular domains are denoted by Dr and Ds respectively.

It follows immediately that for any regular domain D ∈ Dr, the functions
FD
i := F S

i (x) and GD
i := GS

i (x) are constant for all x ∈ D. Thus, (2.4)
can be written as a linear system ẋ = FD − GDx for all x ∈ D, where
GD = diag(GD

1 , . . . , G
D
n ) is a diagonal matrix with strictly positive entries

and FD = (FD
1 , . . . , F

D
n ) a positive vector.

Solving the differential equation (2.4) within a regular domain D gives
trajectories that converge to the focal point , φ(D) := (GD)−1FD. Mathemat-
ically speaking, the solution ξ : R≥0 → D of the PADEs in domain D ∈ Dr

starting at x0 ∈ D is

ξi(t) = φi(D)− (φi(D)− x0i )e
−GD

i t, i = 1, 2, . . . , n. (2.5)

Therefore, if φ(D) ∈ D for some D ∈ Dr, then limt→∞ ξ(t) = φ(D) for all
x0 ∈ D, that is φ(D) is an asymptotically stable equilibrium point, which is
a common result throughout the literature [56, 17, 7].

It has been argued in [15, 14, 56] that due to the zero Lebesgue measure
of the threshold hyperplanes, the probability (with respect to the Lebesgue
measure) that a focal point is situated on a singular domain is zero. In
agreement with these arguments, we assume that each focal point lies in a
regular domain.

Although we are able to solve (2.4) inside regular domains, the step func-
tion approximation implies that the dynamics on the singular domains re-
mains undefined. The complication of defining the dynamics on singular
domains is best demonstrated with an example.

Example 2.2 Consider the one-dimensional PADE for x ∈ Ω = {x ∈ R |
0 ≤ x ≤ 2},

ẋ = 2S−(x, 1)− x, x(0) = x0

Solving this PADE, we have that the solution is ξ(t) = 2− (2− x0)e−t when
x0 < 1 and ξ(t) = x0e−t when x0 > 1. In both cases, there exists τ > 0 such
that ξ(τ) = 1. Because ẋ > 0 for x < 1 and ẋ < 0 for x > 1, a continuous
solution that has a well defined derivative is only possible if ξ(t) = 0 for
x0 = 1. This solution however implies ẋ = 0 when x = 1, which is neither
the dynamics of x < 1 nor x > 1.
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Therefore, the dynamics on the discontinuities requires a generalised concept
of solution so that all solutions on Ω have a well-defined derivative. Fil-
ippov [18] defines this general concept with the introduction of differential
inclusions . For Ex. 2.2, the differential inclusion takes the form:

ẋ ∈







{2− x} if x < 1,
{λ− x | 0 ≤ λ ≤ 2} if x = 1,
{−x} if x > 1.

That is, with this definition, we are able to obtain an absolutely continuous
solution of the system, which implies that the derivative exists almost ev-
erywhere for every point along a solution trajectory. The definition of the
differential inclusion is described in detail for general differential equations
with discontinuous right hand side in [18]. In the following, we present the
differential inclusion for general PADEs as presented in [23, 16, 14, 15].

In order to define the differential inclusion on the singular domains for-
mally, we require the following topological concepts.

Definition 2.3 Consider a set of PADEs of the form (2.4) with domain set
D. For every D ∈ Ds of order k, let supp(D) be the (n − k)-dimensional
hyperplane in Ω containing D. If D ∈ Dr, let supp(D) = Ω. The boundary
of D in supp(D) is the set ∂D of all points x ∈ supp(D) such that each ball
BD(x, ǫ) of center x and radius ǫ > 0 in supp(D) intersects with both D and
supp(D)\D. For all D ∈ Ds, we define the set

ρ(D) = {D′ ∈ Dr | D ⊂ ∂D′}.

So, ρ(D) is the set of all regular domains that have D in their boundary.
The differential inclusion on Ω is then:

ẋ ∈ H(x) :=

{
{FD −GDx} if x ∈ D ∈ Dr,
co({FD′

−GD′

x | D′ ∈ ρ(D)}) if x ∈ D ∈ Ds,
(2.6)

where co(P ) is the closed convex hull of the set P . In other words, the
dynamics of a singular domain D is a convex combination of the dynamics
of the neighbouring regular domains in ρ(D).

Since the regular domain dynamics implies that the solution tends to-
wards the focal point, the differential inclusion implies that in the singular
domain D the solutions would converge to the convex hull of the focal points
of domains in ρ(D). However, because D is of Lebesgue measure zero, only
solutions that continue along the supporting hyperplane supp(D) remain in
D. If the solution does not continue along the supporting hyperplane, then
the solution would immediately exit D. These observations suggest the fol-
lowing concept.



Chapter 2. Formalisms 20

Definition 2.4 Consider a set of PADEs with domain set D. We define the
focal set Φ(D) for every domain D as follows:

Φ(D) :=

{
{φ(D)} if D ∈ Dr

supp(D) ∩ co({φ(D′) | D′ ∈ ρ(D)}) if D ∈ Ds
.

Note that when the focal set is empty then solutions that start in the domain
would immediately exit the domain. From [15], we know that in a singular
domain D with (non-empty) focal set Φ(D) for every point x0 ∈ D and
ψ ∈ Φ(D), solution trajectories of (2.4) starting at x0 converge monotonically
in D towards ψ. In other words, the focal set allows us to define solutions
on singular as well as regular domains.

An absolutely continuous function ξ : [0,∞) → Ω is called a PADE
solution of (2.6) on [0, τ ] if ξ(0) = x0 ∈ Ω and for almost all t ∈ [0, τ ] it
holds that ξ(t) ∈ H(ξ(t)), where ’for almost all t’ means that the set of time
points, for which the condition does not hold, is of Lebesgue measure zero.
By the findings in [18, 23], for all initial values x0 ∈ Ω, there exists a PADE
solution of (2.6). In other words, from the differential inclusion (2.6), we can
define the dynamics of (2.4) on the entire phase space Ω.

In the case that |Φ(D)| > 1 for a singular domain D, the dynamics in
D is non-unique. Because of the non-unique dynamics on singular domains,
we need to redefine equilibria with respect to the differential inclusion (2.6).
More specifically, we have a singular equilibrium point x0 ∈ Ω if

0 ∈ H(x0).

Consequently, if for some D ∈ Ds it holds that Φ(D)∩D 6= ∅, then D is said
to have a singular equilibrium set , where all points in Φ(D)∩D are singular
equilibria. Examples of singular equilibria are presented in Ex. 2.3.

2.2.1 Discretised Approach (PADE-D)

The non-uniqueness of the PADE solutions in (2.6) suggests the need for
a more qualitative representation of the dynamics. In other words, by dis-
cretising the PADE solutions, we are able to summarise all possible dynamics
implied by the differential inclusion. The following discretisation approach,
which we refer to as the discretised PADE (PADE-D) formalism, aims to
represent all the dynamics of (2.6) in a directed graph.

The domains D conveniently discretise the phase space Ω to define the
node set of the transition graph. We are then able to represent the dynamics
between domains via transitions, where a transition exists if a PADE solution
traverses two adjacent domains in finite time.
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Definition 2.5 Consider a set of PADEs with domain set D. LetD,D′ ∈ D,
where D′ ⊂ ∂D, and PADE solution ξ(t), which is defined on a finite time
interval [0, τ ].

1. The transition (D,D′) exists if

ξ(t) ∈ D for 0 ≤ t < τ , and

ξ(τ) ∈ D′.

2. The transition (D′, D) exists if

ξ(0) ∈ D′, and

ξ(t) ∈ D for 0 < t ≤ τ .

This definition describes when a solution trajectory exists that reaches D′

from D or vice versa in finite time without passing through a third domain.
All transitions of a PADE system are summarised in the following directed

graph.

Definition 2.6 Let A be a set of PADEs of the form (2.4). The qualitative
transition graph, QTGΦ(A) = (D, T Φ), is a directed graph with D being the
set of domains and T Φ the set of transitions as in Def. 2.5.

The qualitative transition graph, therefore, represents all qualitative be-
haviours in the PADE model incorporating the non-unique PADE solutions.

2.2.2 Qualitative Approach (PADE-Q)

The PADE solutions and the discretised PADE formalism both require ki-
netic parameters, which are often lacking. For this reason, de Jong et al.
[15] developed the following qualitative approach, referred to as the qualita-
tive PADE (PADE-Q) formalism, which assumes that the kinetic parameters
satisfy inequalities rather than taking explicit values.

Definition 2.7 (Ordering Constraints) Let A be a PADE with domain
set D. The ordering constraints are the set of constraints on the kinetic
parameters such that for every regular domain D ∈ Dr and variable i ∈
{1, . . . , n} one of the following inequality pairs is satisfied

0 ≤ φi(D) < θ1i ,

θ1i < φi(D) < θ2i ,

· · ·

θpii < φi(D) ≤ maxi.
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In other words, each focal point component satisfies strict inequalities with
respect to the thresholds, where the ordering of the focal point components
with respect to each other is not fixed. The qualitative PADE formalism
then aims to express the dynamics of (2.6) in a transition graph assuming
the ordering constraints.

In order to incorporate all dynamics implied by the multiple kinetic pa-
rameter sets of the ordering constraints into the analysis, de Jong et al. [15]
overapproximate the differential inclusion (2.6). One interpretation of the
overapproximated differential inclusion is the superposition of all the differ-
ential inclusions with specific kinetic parameters that all satisfy the same set
of ordering constraints. For this reason, the overapproximated differential
inclusion takes the form

ẋ ∈

{
{FD −GDx} if x ∈ D ∈ Dr,
rect({FD′

−GD′

x | D′ ∈ ρ(D)}) if x ∈ D ∈ Ds,

where rect(P ) is the smallest closed hyperrectangular set that contains P .
Consequently, the corresponding focal set is also overapproximated.

Definition 2.8 Consider a set of PADEs with domain set D. We define the
overapproximated focal set Ψ(D) for every domain D as follows:

Ψ(D) :=

{
{φ(D)} if D ∈ Dr

supp(D) ∩ rect({φ(D′) | D′ ∈ ρ(D)}) if D ∈ Ds,
.

Similar to the differential inclusion, we interpret the overapproximated focal
set Ψ as the union of all focal sets Φ that have been generated from all
kinetic parameters that satisfy the same ordering constraints. For this reason,
solutions starting in D\Ψ(D) for some domain D converge monotonically to
the (non-empty) focal set Ψ(D) [22, 23, 15]. However, the behaviour of
solutions starting in D ∩ Ψ(D) cannot be generalised for each set of kinetic
parameters that satisfies the ordering constraints.

Remark 2.1 In order to discern between the two focal sets Φ and Ψ, we say
that if Φ(D) 6= ∅, then D has a non-empty focal set (also known as sliding
mode [15, 23] or black/white wall [41]), while if Ψ(D) 6= ∅, then D is a non-
transparent domain. On the other hand, if Φ(D) = ∅, then D has an empty
focal set (also known as a spontaneous domain [15, 23]), while if Ψ(D) = ∅
then D is a transparent domain. Therefore, by definition, Φ(D) ⊂ Ψ(D) for
all D ∈ D and thus a domain with a non-empty focal set is always a non-
transparent domain and a transparent domain always has an empty focal
set.
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The hyperrectangular form of the domains and the overapproximated
focal set means that we can express them as product sets. In consequence,
the dynamics of each domain for each dimension can be calculated separately.
Hence, we can define the transitions between domains using the relative
position.

Definition 2.9 (Relative Position) Consider a set of PADEs of the form
(2.4). Let D ∈ D and e ∈ Ω. We call the mapping v : D × Ω → {−1, 0, 1}n

the relative position vector and define it as follows

vi(D, e) =







−1 if ei < xi, for all x ∈ D
0 if ei = xi, for some x ∈ D
+1 if ei > xi, for all x ∈ D

.

Let E ⊂ Ω be a non-empty set of points. The set V (D,E) is defined as

V (D,E) := {v(D, e)|e ∈ E}.

Taking into account the above considerations about the behaviour of the
system with respect to the focal points, we can interpret the i-th component
of ν ∈ V (D,Ψ(D)) as an instruction for the variable xi to increase (νi = 1),
decrease (νi = −1) or remain steady (νi = 0) in domain D. Note that the
definition of the domains in D ensures that V (D,D′) is a singleton for all
D,D′ ∈ D.

The dynamics in a domain D can be determined by the relative position
of the focal set Ψ(D) with respect to the domain D.

Definition 2.10 Consider a set of PADEs of the form (2.4). Let D,D′ ∈ D
such that D′ ⊂ ∂D.

1. There is a transition (D,D′) from D to D′ if

(a) Ψ(D) 6= ∅, and

(b) for V (D,D′) = {w} there exists ν ∈ V (D,Ψ(D)) such that νiwi =
1 for every xi, i ∈ {1, . . . , n} that is a singular variable in D′ but
not in D.

2. There is a transition (D′, D) from D′ to D if

(a) Ψ(D) 6= ∅, and

(b) for V (D′, D) = {w′} there exists ν ∈ V (D,Ψ(D)) such that νiw
′
i 6=

−1 for every xi, i ∈ {1, . . . , n} that is a singular variable in D′ but
not in D.
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Def. 2.10 is extracted from Propositions 6.4 and 6.5 in [15], whose proofs
describe the relation between Def. 2.10 and Def. 2.5.

With this definition, we construct the corresponding overapproximated
qualitative transition graph, which summarises all the dynamics in (2.4) as-
suming the ordering constraints.

Definition 2.11 Let A be a set of PADEs of the form (2.4). The overap-
proximated qualitative transition graph, QTGΨ(A) = (D, T Ψ), is a directed
graph with D being the set of domains and T Ψ the set of transitions as
defined in Def. 2.10.

As shown in [15], all systems in the class of PADEs satisfying the same order-
ing constraints have the same QTGΨ. Given that QTGΨ is superimposing
all dynamics implied by the ordering constraints, it is intuitively clear that
every QTGΦ is a subgraph of a QTGΨ [15].

From Def. 2.10, we can easily see that we do not need the full information
inherent in the ordering constraints to determine the outgoing transitions for
a given domain D. In particular, we can utilize just the set V (D,Ψ(D)) for
all D ∈ D to determine the QTGΨ. For a regular domain D, we have

V (D,Ψ(D)) = {v(D, φ(D))},

by Def. 2.8. For a singular domain D, the situation is not as clear-cut. How-
ever, Propositions 6.2 and 6.3 in [15] characterize the set V (D,Ψ(D)) also for
singular domains. The characterization is rooted in the overapproximation
of the set of focal points of adjacent regular domains by a hyperrectangle.
The results in [15] are not formulated in terms of relative position vectors,
but they can easily be rephrased. Thus, we derive the following proposition.

Proposition 2.1 Consider a set of PADEs of the form (2.4) and let D ∈ Ds.
We have Ψ(D) 6= ∅ if and only if for all singular variables xi in D, we have

min
D′∈ρ(D)

vi(D, φ(D
′)) = −1 and max

D′∈ρ(D)
vi(D, φ(D

′)) = 1. (2.7)

Let D ∈ Ds and Ψ(D) 6= ∅. Define Vi(D,Ψ(D)) := {νi | ν ∈ V (D,Ψ(D))}.
Then, for all i ∈ {1, . . . , n}, if xi is a singular variable, Vi(D,Ψ(D)) = {0},
and if xi is a non-singular variable

Vi(D,Ψ(D)) = [ min
D′∈ρ(D)

vi(D
′, φ(D′)), max

D′∈ρ(D)
vi(D

′, φ(D′))], (2.8)

where [a, b] = {a, a+1, . . . , b−1, b} denotes the discrete interval for a ≤ b ∈ N.



25 2.2. Piecewise Affine Differential Equations

To determine the transitions of the QTGΨ, we only need to know the set
V (D,Ψ(D)) for all domains D. Obviously, we can derive this set immedi-
ately from v(D, φ(D)) for regular domains D. For a singular domain D′,
easy calculation using Prop. 2.1 and the definition of Ψ(D′) show that the
information inherent in the set {v(D, φ(D)) | D ∈ Dr} is sufficient to derive
V (D′,Ψ(D′)). We summarize these observations in the following lemma.

Lemma 2.1 Let A be a set of PADEs. The positions of the focal points in
relation to their corresponding regular domains, i.e., {v(D, φ(D)) | D ∈ Dr},
is sufficient to calculate QTGΨ(A)=(D, T ).

Conversely, it is easy to see from the definitions that we can derive the
relative position vectors v(D, φ(D)) for regular domains from both QTGΨ

and QTGΦ.

Example 2.3 Consider the following PADEs, which approximate Ex. 2.1
using step functions,

ẋ1 = κ1S
−(x2, θ2) + κ2S

+(x1, θ
2
1)− λ1x1,

ẋ2 = κ3S
+(x1, θ

1
1)− λ2x2,

with the ordering constraints

0 < θ11 < θ21 <
κ1
λ1
,
κ2
λ1
,
κ1 + κ2
λ1

< max1 and (2.9)

0 < θ2 <
κ3
λ2

< max2. (2.10)

The system has six regular domains with corresponding focal points, e.g. the
focal point of D = [0, θ11) × [0, θ2) is (κ1

λ1
, κ3

λ2
). Consider the regular domain

D = [0, θ11) × [0, θ2) and singular domain of order one D′ = [θ11] × [0, θ2).
We have the corresponding focal sets Ψ(D) = {(κ1

λ1
, κ3

λ2
)} and Ψ(D′) = ∅.

The relative positions yield V (D,Ψ(D)) = {(1, 1)} and V (D′,Ψ(D′)) = ∅.
Because D′ ⊂ ∂D and V (D,D′) = {(1, 0)}, we have (D,D′) ∈ T . The phase
space of the above PADEs and the corresponding QTGΨ are displayed in
Fig. 2.3. We recognise the point [θ11]× [θ2] to be a singular equilibrium point
and the domain [θ21]× (θ2,max2] to have a singular equilibrium set.

2.2.3 Refined Approach (PADE-R)

A compromise between the lack of kinetic parameters and demand for con-
tinuous dynamics is the finer partitioning of the phase space Ω. In particular,
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θ
1

1
θ
2

1

θ2

(a) (b)

Figure 2.3: In (a), the partitioned phase space of the PADEs in Ex. 2.3,
where the dashed grey lines represent the threshold hyperplanes. In (b), the
corresponding QTGΨ, which overlays the partitioned phase space to allow
identification of nodes representing singular and regular domains. The arrows
within each regular domain in (a) are directed towards their focal point.

the regular and singular domains described above are further partitioned by
means of the (n − 1)-dimensional hyperplanes corresponding to the compo-
nents of the focal point vectors. The formalism that comes from this refined
partition of the phase space is referred to as the refined PADE (PADE-R)
formalism. To maintain the terminology used by Batt et al. [4], where the
refined PADE formalism is introduced, the remainder of this section refers
to the domains in D as mode domains .

In order to determine the finer partitioning of Ω, we assume a total order-
ing, that is strict inequalities, of the threshold concentrations {θ1i , . . . , θ

pi
i }

and the components of the focal point vectors {φi(D)|D ∈ Dr}. This or-
dering is referred to as the parameter inequality constraints . Note that the
parameter inequality constraints have the additional ordering of the focal
point components with respect to each other, which is otherwise lacking in
the ordering constraints of the qualitative PADE formalism. From the pa-
rameter inequality constraints, we can obtain the finer partitioning of Ω.

Definition 2.12 Consider a set of PADEs with mode domain set D. We
define MD = MD

1 × · · · × M
D
n , where MD

i is the partition of minimal
cardinality of Di such that for every Mi ∈M

D
i ,

• if D is regular, either Mi = {xi ∈ Di|xi = φi(D)} or Mi ⊂ Di such
that φi(D) /∈Mi , and

• if D is singular, either Mi = {xi ∈ Di|xi = φi(D
′) for some D′ ∈ ρ(D)}



27 2.2. Piecewise Affine Differential Equations

or Mi ⊂ Di such that φi(D
′) /∈Mi for any D

′ ∈ ρ(D).

M :=
⋃

D∈DM
D is a partition of Ω and a set M ∈ M is called a flow

domain.

The term ’flow domain’ is used because the flow of the system is qualitatively
identical, meaning that in a flow domain each variable has the same sign of
derivative. In mathematical terms, we can define a function S : M →
2{−1,0,1}n that represents the sign of derivative of a flow domain M ∈ M,
where

Si(M) = {sgn(ẋi) | x ∈M}.

The non-uniqueness of the differential inclusion means that the cardinality
of Si(M) need not be equal to one.

Every flow domain is included in a single mode domain, a relation cap-
tured by the surjective function mode :M→ D defined as mode(M) = D if
and only if M ⊂ D. The flow domains M and the overapproximated focal
sets Ψ(D) are hyperrectangular meaning that we can express them as prod-
uct sets. In consequence, we can compute the qualitative dynamics of each
flow domain for each dimension separately. As a result, all the qualitative
dynamics of the refined PADE is given by the following graph.

Definition 2.13 Let A be a PADE whose parameter values satisfy a set
of parameter inequality constraints. The qualitative transition system
QTS(A) = (M,→) is a directed graph with the node set M. The tran-
sitions → ⊂ M ×M are defined as follows. Let M,M ′ ∈ M such that
M ′ ⊂ ∂M ,

1. M → M ′ if and only if Ψ(mode(M)) 6= ∅ and there exists x ∈ M,x′ ∈
M ′ and ψ ∈ Ψ(mode(M)) such that either

(a) for all i ∈ {1, · · · , n} for which M ′
i ⊂ ∂Mi, it holds that

(ψi − x
′
i)(x

′
i − xi) > 0,

or

(b) it holds that ψ = x′.

2. M ′ → M if and only if Ψ(mode(M)) 6= ∅ and there exists x ∈ M,x′ ∈
M ′ and ψ′ ∈ Ψ(mode(M)) such that for all i ∈ {1, · · · , n} for which
M ′

i ⊂ ∂Mi, it holds that

(ψ′
i − x

′
i)(xi − x

′
i) > 0.
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Figure 2.4: The transition system (QTS) of Ex. 2.3 corresponding to the
parameter inequality constraints in Ex. 2.4. The phase space is bounded
by the unbroken grey line and the dashed grey lines represent either the
threshold hyperplanes or the focal point components that partition the phase
space into flow domains (depicted by the black dots).

The transition definitions above are extracted from Prop. 7 and 8 in [4].

Example 2.4 Consider the running example in Ex. 2.3 with the parameter
inequality constraints:

0 < θ11 < θ21 <
κ1
λ1

<
κ2
λ1

<
κ1 + κ2
λ1

< max1 and

0 < θ12 <
κ3
λ2

< max2.

Note that the inequalities above contain the ordering of the focal point com-
ponents with respect to each other unlike the ordering constraints in (2.9).
In the QTS in Fig. 2.4, we see that the focal point φ(D) = (κ1/λ1, 0) parti-
tions the regular mode domain D = [0, θ11)× [0, θ2) into the two flow domains
(0, θ11)× [0, θ2) and [0]× [0, θ2), that isM

D
1 = {[0], (0, θ11)}.

2.3 Discrete Models

Here, we present our two discrete formalisms of interest, the Thomas formal-
ism [64, 63] and its extension referred to as the singular state formalism [57].
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In the following, we use the dimension n and the number of thresholds pi of
the ODE model for related objects in the discrete models.

2.3.1 Thomas Formalism

Consider a gene regulatory network of n components. The activity level of
component i ∈ {1, . . . , n} is modeled by a discrete variable qi, which takes
its values in a finite set of natural numbers Qi = {0, . . . , pi}. The state space
of the Thomas model is Q = Q1 × · · · × Qn and the regulatory interactions
are captured by a discrete update function f = (f1, . . . , fn) : Q → Q. The
logical parameters are interpreted as the images f(q) of each state q ∈ Q.

From f , we obtain the state transition graph STG(f) = (Q,E), which
is a directed graph with node set Q and edge set E ⊂ Q × Q. For any
i ∈ {1, . . . , n} with fi(q) 6= qi, q ∈ Q, there is an edge (q, q′) ∈ E, where

q′i = qi + sgn(fi(q)− qi) and q
′
j = qj , for all j ∈ {1, . . . , n} \ {i}.

Here, sgn : R → {−1, 0, 1} denotes the sign function. If f(q) = q, then
(q, q) ∈ E and q is called a fixed point .

The update function uniquely determines the state transition graph. Un-
less f is Boolean, it is not possible to recover f from G = STG(f). However,
we may obtain a unitary update function fG : Q→ Q from G by setting

fG
i (q) = qi +

∑

q′∈AS(q)

(q′i − qi), for i ∈ {1, . . . , n}.

Here, AS(q) := {q′ ∈ Q | (q, q′) ∈ E} denotes the set of asynchronous
successors of q in G. Note that the superscript notation is used throughout
the thesis, where fX represents the update function derived or constructed
from the object X .

Lemma 2.2 Let f : Q→ Q be an update function and G = STG(f). Then

STG(f) = STG(fG).

Proof Let j ∈ {1, . . . , n} and q ∈ Q. By definition of AS(q), there exists at
most one q′ ∈ AS(q) such that |q′j − qj | = 1. This implies sgn(fj(q)− qj) =
q′j−qj . Therefore, sgn(fj(q)−qj) =

∑

q′∈AS(q)(q
′
j−qj), and the result follows.

�

The unitary update function fG captures the information from the origi-
nal update function f contained in G = STG(f). If f is Boolean, f and fG

are the same. An example of a Thomas model is displayed in Fig. 2.5.
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Figure 2.5: For Q = {0, 1, 2} × {0, 1}, the update function f : Q → Q and
corresponding unitary update function fG on the left and state transition
graph G = STG(f) on the right.

2.3.2 Singular State Formalism

Because the singular state formalism is built on an interaction graph and
logical parameters, we introduce them here as in [48]. However, recall that
our focus is on relating the dynamics of different formalisms and not the
relation of dynamics and structure of a network.

The interaction graph, Ḡ = ({1, . . . , n}, Ē), is a directed graph where
Ē ⊂ {1, . . . , n} × {1, . . . , n} is the set of interactions. Each interaction i →
j ∈ Ē is labeled by a pair (αij, tij) ∈ {+,−} × {1, . . . , pi}, such that for
all j′ 6= j it holds that tij 6= tij′, where i ∈ Pred(j) and i ∈ Pred(j′),
pi = |{j ∈ {1, . . . , n} | i→ j ∈ Ē}| and

Pred(j) = {i ∈ {1, . . . , n} | i→ j ∈ Ē}.

Although pi is specifically defined here it will later be related to the thresh-
olds of the ODE model. Note that there are more general definitions of the
interaction graph in the literature that allow multiple interactions per com-
ponent (e.g. [37]). However, in order to define the dynamics in the singular
state formalism, we require the definition above.

The logical parameters , {Ki,ω}, are a family of integers that describe the
evolution of component i ∈ {1, · · · , n} depending on the nodes ω ⊂ Pred(i)
and satisfy the properties:

• Ki,∅ = 0 and Ki,ω ∈ {0, . . . , pi} otherwise, and

• ω ⊂ ω′ =⇒ Ki,ω ≤ Ki,ω′. (Monotonicity property)

The logical parameter Ki,ω represents the activity level that variable i tends
towards given the activating influences of the components in ω. Therefore,
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we interpret the monotony property as a component’s activity level increas-
ing with increasing activating influences. This assumption, therefore, rules
out the case where two activating components have a neutral effect on the
target component rather than an activating effect. In other words, the logical
parameters and the interaction graph restrict the dynamics generated by the
singular state formalism.

The component i ∈ {1, . . . , n} is modelled with the discrete variable si,
which takes qualitative values between 0 and pi.

Definition 2.14 • A qualitative value, denoted |a, b| is a pair of integers
(|a, b| ∈ N

2) where a ≤ b.

• The relations =, <,>,⊂ are defined for 2 qualitative values |a, b| and
|c, d|:

– |a, b| = |c, d| if (a = c) and (b = d).

– |a, b| < |c, d| if (b < c) or (b = c and (a < b or c < d))

– |a, b| > |c, d| if |c, d| < |a, b|

– |a, b| ⊂ |c, d| if







|a, b| = |c, d| or
(a = b) and (c < a) and (b < d) or
(a < b) and (c ≤ a) and (b ≤ d)

Therefore, a state s = (s1, . . . , sn) in the extended state space Σ = Σ1×· · ·×
ΣN is composed of the discrete variables si ∈ Σi := {|0|, |0, 1|, |1|, . . . , |r −
1|, |r − 1, r|, |r|, · · · , |pi|}, where |a| := |a, a|. A state s is singular if it has
at least one singular value, that is si = |r − 1, r| for some i ∈ {1, . . . , n},
otherwise it is regular. The function ord : Σ → {0, 1, . . . , n} denotes the
number of singular values of a state s ∈ Σ. Note that the function ord is
acting on singular states in the singular state formalism, whereas the term
order is referring to singular domains in the PADEs.

The dynamics inferred by the interaction graph Ḡ coupled with the logical
parameters {Ki,ω} are encoded into the function g : Σ → 2Σ called the
extended update function, such that for all s ∈ Σ and i ∈ {1, . . . , n},

gi(s) = |Ki,Regi(s), Ki,Regi(s)∪Singi(s)|, (2.11)

where 2Σ is the power set of Σ, the set of regular resources Regi(s) is

Regi(s) = {j ∈ Pred(i) | (sj > |tji−1, tji|∧αji = +)∨(sj < |tji−1, tji|∧αji = −)}
(2.12)

and the set of singular resources Singi(s) is

Singi(s) = {j ∈ Pred(i) | sj = |tji − 1, tji|}.
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Figure 2.6: Interaction graph of Ex. 2.5. The component X has two outgoing
edges, which implies three activity levels, namely 0,1 and pX := 2, while the
component Y has one outgoing edge corresponding to two activity levels,
namely 0 and pY := 1.

The extended update function is extracted from Theorem 3.3 in [48]. With
the definition (2.11), we see why the logical parameters are defined as they
are. In particular, we need the monotony property to hold so thatKi,Regi(s) ≤
Ki,Regi(s)∪Singi(s), which gives a valid qualitative value (2.11).

From the extended update function g, we present the dynamics of the
interaction graph in an extended state graph ESG(g) = (Σ, T ), which is a
directed graph with node set Σ and transition set T ⊂ Σ× Σ, where

• (s, s) ∈ T if s is steady, that is si ⊂ gi(s) for all i ∈ {1, . . . , n}.

• (s, s′) ∈ T if there exists j ∈ {1, . . . , n} such that either






s′j = ∆+
j (s) and sj < gj(s)

or
s′j = ∆−

j (s) and sj > gj(s)
and s′i = si for all i ∈ {1, . . . , n}\{j},

where ∆+
j and ∆−

j are the evolution operators defined as follows:

∆+
j (s) =

{
|r, r + 1| if sj = |r|
|r| if sj = |r, r − 1|

, and

∆−
j (s) =

{
|r, r − 1| if sj = |r|
|r| if sj = |r, r + 1|

.

Similar to the Thomas formalism, the extended update function uniquely
determines the extended state graph and unless pi = 1 for all i ∈ {1, . . . , n},
it is not possible to recover g from ESG(g).

Example 2.5 Consider the interaction graph Ḡ = ({X, Y }, E) in Fig. 2.6
with logical parameters, KX,∅ = KY,∅ = 0, KY,X = 1 and KX,X = KX,Y =
KX,XY = 2. The two states s := (|1|, |0|) and s′ := (|1|, |0, 1|) have updates
g(s) = (|2|, |0|) and g(s′) = (|0, 2|, |1|). That is, g1(s

′) = |KX,∅, KX,X | = |0, 2|
and g2(s

′) = |KY,X, KY,X | = |KY,X| = |1|. The resulting extended state
graph is displayed in Fig. 2.7
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|0|, |0| |0, 1|, |0| |1|, |0| |1, 2|, |0| |2|, |0|

|0|, |0, 1| |0, 1|, |0, 1| |1|, |0, 1| |1, 2|, |0, 1| |2|, |0, 1|

|0|, |1| |0, 1|, |1| |1|, |1| |1, 2|, |1| |2|, |1|

Figure 2.7: The extended state graph of Ex. 2.5 displayed on the extended
state space, Σ := {|0|, |0, 1|, |1|} × {|0|, |0, 1|, |1|, |1, 2|, |2|}.

A summary of all the formalisms presented in this chapter is given in
Table 2.1.

Formalism Parameter Information Dynamical information

ODE kinetic parameters + θji + ǫij ξ̄(t)

PMA kinetic parameters + [θj,0i , θj,1i ] ξ̄(t)

PADE solutions kinetic parameters + θji ξ(t)

PADE-D kinetic parameters + θji QTGΦ

PADE-Q ordering constraints QTGΨ

PADE-R parameter inequality constraints QTS
Thomas update function STG
Singular state logical parameters ESG

Table 2.1: A summary table of all the formalisms of interest in terms of their
parameter and dynamical information.
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CHAPTER 3
Qualitative Formalisms

We start our investigation by relating the Thomas, singular state and quali-
tative PADE formalisms. All three modelling approaches have the common
feature of using qualitative parameter information in the form of logical pa-
rameters for the Thomas [63] and singular state formalisms [48], and ordering
constraints for the qualitative PADE (PADE-Q) formalism [15]. In this chap-
ter, we show that the logical parameters and ordering constraints share the
same information in the sense that we can convert the logical parameters to
ordering constraints and vice versa without losing information. This com-
mon underlying parameter information then allows us to directly compare
the transition graphs of each formalism. We will see that in spite of the
existence of a direct relationship between the edges in the transition graphs,
we still are able to find inconsistent complex dynamics, that is paths and
attractors do not generally coincide. In other words, we aim to show that
the singular state and qualitative PADE formalisms are not refinements of
the Thomas formalism. Then, we discuss how the singular state and qual-
itative PADE formalisms attempt to represent the equilibria in the ODEs.
We start this chapter with the already published result [29] that relates the
qualitative PADE and Thomas formalisms.

3.1 The Thomas and PADE-Q Formalisms

In the following, we show that the qualitative PADE and the Thomas for-
malism contain the same information in the sense that we can transform a
PADE system with given ordering constraints into a discrete update function
and vice versa.

To obtain a discrete update function from a PADE system, we can use
a straightforward method originally proposed by Snoussi in [56]. First, we
discretise the continuous phase space of the PADE system according to its
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threshold values.

Definition 3.1 Let A be a set of PADEs as in (2.4), where each variable xi
has pi threshold values that satisfy the ordering (2.1). Let Q := Q1×· · ·×Qn,
where Qi := {0, 1, . . . , pi}, i ∈ {1, . . . , n}. Define the bijective mapping
dA : Dr → Q, where

dAi (D) :=







0 if Di = {x ∈ R | 0 ≤ x < θ1i },
q if Di = {x ∈ R | θqi < x < θq+1

i },
pi if Di = {x ∈ R | θpii < x ≤ maxi}.

Second, we exploit the localisation of the focal points in the regular do-
mains in order to construct an update function on the discretised state space
Q that shares the dynamical properties of the PADE system A. Note that, in
general, such a focal point may lie on a threshold plane, which by definition
has no corresponding value in Q. As in the previous chapter, we exclude the
comparatively small set of PADE systems with focal points on a threshold
plane.

Definition 3.2 Let A be a set of PADEs as in (2.4) such that all focal points
lie in regular domains and let d = dA be the mapping in Def. 3.1. Define an
update function fA : Q→ Q by

q 7→ d(Dφ((d−1(q))),

where Dφ(D′) denotes the regular domain containing the focal point φ(D′) of
the regular domain D′.

The function fA is uniquely determined by the ordering constraints for
A. Consequently, the set of PADE systems A satisfying given ordering con-
straints can be associated with a single discrete update function fA. Con-
versely, a discrete update function can easily be transformed into a PADE
system that shares the same qualitative dynamics.

Definition 3.3 Let f : Q → Q be an update function. We denote by
PADE(f) the system of PADEs on Ω :=

∏n
i=1[0,maxi], maxi ∈ R>0 for all

i ∈ {1, . . . , n}, of the form ẋi = Fi(x)− xi, i ∈ {1, . . . , n}, where

Fi(x) =
∑

q∈Q

fi(q)

n∏

j=1

S(xj , qj), with

S(xj , qj) =







S+(xj , θ
qj
j )S−(xj , θ

qj+1
j ) if qj ∈ {1, . . . , pj − 1},

S−(xj , θ
1
j ) if qj = 0,

S+(xj , θ
pj
j ) if qj = pj ,

and θkj = k − 1/2 for j ∈ {1, . . . , n}, k ∈ {1, . . . , pj}.
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The choice of threshold values is generic, ensuring an obvious correspon-
dence between the values 0, 1, . . . , pi in Qi, i ∈ {1, . . . , n}, and the intervals
[0, θ1i ), (θki , θ

k+1
i ) for k ∈ {1, . . . , pi − 1}, and (θpii ,maxi]. If we calculate

the regular domains according to the threshold values and their focal points,
we have φ(D) = F (x) = f(d(D)) for all x ∈ D, where d := dPADE(f)

and D ∈ Dr. Equivalently, it holds that φ(d−1(q)) ∈ d−1(f(q)) for q ∈ Q,
which immediately implies that the focal points of PADE(f) satisfy the set
of corresponding ordering constraints. Therefore, we can apply Def. 3.2 to
PADE(f) and by construction, we then have fPADE(f) = f .

In contrast, we generally do not have equality of the PADE systems
A and PADE(fA) due to the normalised form of PADE(fA). However,
threshold order and relative focal point positions obviously coincide, i.e.,
A and PADE(fA) satisfy the same ordering constraints. In consequence,
the two corresponding overapproximated qualitative transition graphs are
isomorphic, and only differ in the specific set of real vectors contained in
corresponding domains, i.e., the designation of the vertices of the QTGΨs.
We summarise the preceding observations in the following proposition.

Proposition 3.1 Let f : Q → Q be an update function and A be a PADE
system such that all focal points lie in regular domains. We then have

fPADE(f) = f and therefore STG(fPADE(f)) = STG(f).

Furthermore,

QTGΨ(A) ∼= QTGΨ(PADE(fA)),

where ’∼=’ denotes graph isomorphism.

Using these two transformations, we can associate a class of PADE sys-
tems characterised by their ordering constraints with a unique discrete up-
date function, and vice versa. In other words, the information necessary
for constructing the STG resp. QTGΨ is inherent in both representations. In
that sense, we can identify every STG with a QTGΨ and vice versa. However,
this does not imply that the resulting qualitative dynamics are the same. In
the following, we analyse differences and similarities between the STG and
QTGΨ of a discrete function resp. the corresponding set of PADE systems.

Example 3.1 Our update function f in Fig. 2.5 generates PADE(f) whose
parameter values satisfy the ordering constraints of the PADE system A
introduced in Ex. 2.3. Therefore, PADE(f) belongs to the class of PADEs
represented by A in Fig. 2.3. Similarly, if we discretise A using Snoussi’s
method, we obtain the update function f in Fig. 2.5.
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Correspondence of Edges

Throughout this section we consider an update function f : Q → Q and
the PADE system A := PADE(f) representing the class of PADE systems
corresponding to f according to the preceding section. In particular, dis-
cretisation of A via the function d := dA yields f . The aim of this section is
the comparison of STG(f) = (Q,E) and QTGΨ(A) = (D, T ).

Although we can obtain STG(f) from QTGΨ(A) and vice versa, it is not
clear whether the two graphs can be constructed from each other without
knowing the underlying fomalisms. In the multi-valued other than in the
Boolean setting, the state transition graph STG(f) generally does not carry
enough information to reconstruct f . However, by definition it is possible to
derive the unitary update function f̃ := fSTG(f). We have already seen that
f̃(q) − qj = sgn(fj(q) − qj) for all q ∈ Q, j ∈ {1, . . . , n}. Furthermore, we
know from the preceding section that φ(d−1(q)) ∈ d−1(f(q)). Applying the
definition for the relative position vector vj(d

−1(q), φ(d−1(q))) (see Def. 2.9),
we immediately obtain the following lemma.

Lemma 3.1 For all q ∈ Q and j ∈ {1, . . . , n}, we have

vj(d
−1(q), φ(d−1(q))) = f̃j(q)− qj , (3.1)

and similarly,
vj(D, φ(D)) = f̃j(d(D))− dj(D)

for all D ∈ Dr.

Given the right hand side of (3.1), we are able to reconstruct STG(f) by
definition of the state transition graph, while Lemma 2.1 ensures that we can
build QTGΨ(A) knowing the relative position vectors given by the left hand
side of (3.1). In addition, given STG(f) and QTGΨ(A), we can extract the
unitary update function and the relative position vectors for regular domains.
Consequently, we can construct STG(f) given QTGΨ(A) and vice versa. In
the following, we will see that despite this correspondence of STG(f) and
QTGΨ(A), it is difficult to relate the dynamical behaviours that the different
graphs represent.

The discretisation in Def. 3.1 implies that the vertices of STG(f) cor-
respond to the regular domain vertices of QTGΨ(A). However, there is no
representation of the singular domains in the purely discrete setting. To
overcome this problem, we associate with every singular domain D the set
H(D) ⊂ Q corresponding to the discretisation of those regular domains that
have D in their boundary. We thus introduce the mapping H : D → 2Q,
where

H(D) :=

{
{d(D)}, if D ∈ Dr,
{d(D′) ∈ Q | D′ ∈ ρ(D)} if D ∈ Ds.
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For example, for a singular domain D′ of order one, H(D′) constitutes the
set {d(D), d(D̃)} for the two regular domains D, D̃ adjacent to D′. With
this definition, we are able to state the correspondences between edges in
QTGΨ(A) = (D, T ) and STG(f) = (Q,E).

Theorem 3.1 Let D ∈ D and D′ ⊂ ∂D. Denote by I (resp. I ′) the index
set of singular variables in D (resp. D′). Then we have: (cf. Fig. 3.1)

(1) Ψ(D) 6= 0 if and only if for all i ∈ I one of the following conditions
holds (where ei = (0, . . . , 1, . . . , 0) denotes the i-th unit vector in R

n):

(a) there exist q, q′ ∈ H(D) with q′ = q + ei such that (q, q′) ∈ E and
(q′, q) ∈ E.

(b) there exist q, q′ ∈ H(D) with q′ = q + ei such that (q, q′) /∈ E and
(q′, q) /∈ E.

(c) there exist q, q′ ∈ H(D) and q̃, q̃′ ∈ H(D) with q′ = q+ei, q̃′ = q̃+
ei such that both (q, q′) ∈ E, (q′, q) /∈ E, and (q̃′, q̃) ∈ E, (q̃, q̃′) /∈
E.

(2) (D,D′) ∈ T if and only if Ψ(D) 6= 0 and for all i ∈ I ′ \ I there exist
q ∈ H(D) and q′ ∈ H(D′) \H(D) with qi 6= q′i and (q, q′) ∈ E.

(3) (D′, D) ∈ T if and only if Ψ(D) 6= 0 and for all i ∈ I ′ \ I there exist
q ∈ H(D) and q′ ∈ H(D′) \ H(D) such that qi 6= q′i, q

′
j = qj for all

j 6= i and (q, q′) /∈ E.

Proof The conditions for the existence of transitions in QTGΨ(A) are ba-
sically the two conditions given in Def. 2.10 reformulated in the context of
edges of STG(f).

We start by showing that the condition Ψ(D) 6= ∅ is equivalent to condi-
tion (1) in the theorem. IfD is a regular domain, then Ψ(D) 6= ∅ by definition
and condition (1) is true by default since I is empty. Therefore, we now as-
sume D ∈ Ds. We observe |qi−q

′
i| ≤ 1 for all q, q′ ∈ H(D) and i ∈ {1, . . . , n}

by definition of H(D). In particular, 1 + minq̃∈H(D) q̃i = maxq̃∈H(D) q̃i for all
i ∈ I.

First, we want to transform the condition Ψ(D) 6= ∅ into a condition
expressed in terms of the unitary update function f̃ . Suppose Di = {xi |
xi = θki } for some i ∈ I. By Prop. 2.1, a domain D ∈ Ds is non-transparent
(cf. Rem. 2.1), i.e., Ψ(D) 6= ∅, if for all i ∈ I there exist D′, D′′ ∈ ρ(D) such
vi(D, φ(D

′)) = −1 and vi(D, φ(D
′′) = 1.

We now look at the condition vi(D, φ(D̃)) = 1 and what it is equivalent
to in terms of the update function. For fixed i ∈ I and due to the adjacency
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of each D̃ ∈ ρ(D) to D, we have for all D̃ ∈ ρ(D) that vi(D, φ(D̃)) = 1 is
equivalent to

vi(D̃, φ(D̃)) ∈

{
{1} if wi = −1
{0, 1} if wi = 1

, (3.2)

where V (D, D̃) = {w}. That is, if D̃ ∈ ρ(D) is below the threshold θki
and vi(D, φ(D̃)) = 1, then its focal point is definitely above θki and hence
vi(D̃, φ(D̃)) = 1. If, however, D̃ is above θki and vi(D, φ(D̃)) = 1, then
its focal point is either within or above D̃i, that is vi(D̃, φ(D̃)) ∈ {0, 1}.
Applying Lemma 3.1 and the definition of H(D), (3.2) can be reformulated
such that for all D̃ ∈ ρ(D), the condition vi(D, φ(D̃)) = 1 is equivalent to

f̃i(d(D̃))− di(D̃) ∈

{
{1} if di(D̃) = minq̃∈H(D) q̃i
{0, 1} if di(D̃) = maxq̃∈H(D) q̃i

. (3.3)

Analogously, we can derive for all D̃ ∈ ρ(D) that the condition vi(D, φ(D̃)) =
−1 is equivalent to

f̃i(d(D̃))− di(D̃) ∈

{
{−1, 0} if di(D̃) = minq̃∈H(D) q̃i
{−1} if di(D̃) = maxq̃∈H(D) q̃i

. (3.4)

We next show that there exists D̃ ∈ ρ(D) with vi(D, φ(D̃)) = 1 iff there
exist q, q′ ∈ H(D) with q′ = q+ei such that (q, q′) ∈ E or (q′, q) /∈ E. Suppose
D̃ ∈ ρ(D) with vi(D, φ(D̃)) = 1. If di(D̃) = minq̃∈H(D) q̃i, let q = d(D̃).

Then, f̃i(q) − qi = 1, i.e., for q′ = q + ei, we get (q, q′) ∈ E. If di(D̃) =
maxq̃∈H(D) q̃i, let q

′ = d(D̃). Then f̃i(q
′) − q′i 6= −1, i.e., for q = q′ − ei, we

have (q′, q) /∈ E. The reverse direction uses the same arguments. Analogous
arguments imply that there exists D̃ ∈ ρ(D) with vi(D, φ(D̃)) = −1 iff there
exist q, q′ ∈ H(D) with q′ = q + ei such that (q, q′) /∈ E or (q′, q) ∈ E.

As stated before, we have Ψ(D) 6= ∅ iff there exist D′, D′′ ∈ ρ(D) such
vi(D, φ(D

′)) = −1 and vi(D, φ(D
′′) = 1. Logical reformulation leads to

the three cases (a), (b), (c) in condition (1) of the theorem, cf. Fig. 3.1 for
illustration.

Next, we consider conditions (2) and (3) of the theorem, provided that
condition (1), and thus Ψ(D) 6= ∅, holds. Condition 1(b) of Def. 2.10 states
that there exists ν ∈ V (D,Ψ(D)) such that νiwi = 1 for every i ∈ I ′\I, where
V (D,D′) = {w}. Let us first remark that wi 6= 0 iff i ∈ I ′\I. Moreover, wi =
q′i−qi for all q ∈ H(D), q′ ∈ H(D′)\H(D) for i ∈ I ′\I. Now, let i ∈ I ′\I, i.e.,
wi 6= 0, and choose q ∈ H(D), q′ ∈ H(D′)\H(D) with (q, q′) ∈ E and qi 6= q′i
according to condition (2) of the theorem. Let us assume that wi = 1, the
case wi = −1 can be treated analogously. Then, 1 = wi = q′i−qi, i.e., q

′
i > qi.

It follows that f̃i(q) > qi, and thus maxq̃∈H(D) f̃i(q̃)− q̃i = 1. If D is a regular
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D

q q′

(b)

D

q q′

(a)

D

q q′

(c)

q̃ q̃′

Figure 3.1: Illustration of the condition (1) of Theorem 3.1 for a singular do-
main D. The property Ψ(D) 6= ∅ translates to edge constraints for outgoing
edges of discrete states in H(D). Here are the three cases in (1) of Theo-
rem 3.1, where the vertical line denotes the threshold of a singular variable
of D separating either two (in (a) and (b)) or four (in (c)) regular domains.
Edges that do not conflict with the conditions in the theorem are depicted as
dotted lines, mandatory edges are depicted as solid lines and the edges that
are not allowed are crossed out.
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domain, then vi(D, φ(D)) = 1 by Lemma 3.1. If D is a singular domain,
then 1 ∈ [minq̃∈H(D) f̃i(q̃)− q̃i,maxq̃∈H(D) f̃i(q̃)− q̃i] = Vi(D,Ψ(D)) according
to Prop. 2.1 and Lemma 3.1. In both cases, there exists νi ∈ V (D,Ψ(D))
with νiwi = 1. Since the definition of V (D,Ψ(D)) for regular domains and
Prop. 2.1 allow for a componentwise argument, the existence of a vector
ν ∈ V (D,Ψ(D)) with νiwi = 1 for all i ∈ I ′ \ I follows.

To show the reverse statement, assume that there exists ν ∈ V (D,Ψ(D))
with νiwi = 1 for all i ∈ I ′ \ I, and choose i ∈ I ′ \ I. Again, we restrict
ourselves to the exemplary case wi = 1. Then, νi = 1, and therefore, there
exists q ∈ H(D) with f̃i(q)− qi = 1 according to Lemma 3.1 and Prop. 2.1.
In particular, (q, q′) ∈ E for q′ ∈ Q with q′i = qi + 1 and q′j = qj for all j 6= i.
Then q′ /∈ H(D), since q′i 6= qi and i /∈ I, but q

′ ∈ H(D′), since q′i = qi + wi.
Thus, condition (2) of the theorem holds.

Lastly, we show equivalence of the condition (3) of the theorem and condi-
tion 2(b) in Def. 2.10. Suppose there exists ν ∈ V (D,Ψ(D)) with νiwi 6= −1
for all i ∈ I ′\I. Let i ∈ I ′\I, then wi 6= 0. Again, we only show the exemplary
proof for the case wi = 1. Then, νi 6= −1, and thus, maxq̃∈H(D) f̃i(q̃)− q̃i ≥ 0
according to Prop. 2.1 and Lemma 3.1. Then, there exists q ∈ H(D) with
qi ≤ f̃i(q), which yields qi ≤ pi for all asynchronous successors p ∈ AS(q).
Now, let q′ ∈ H(D′) \ H(D) with q′i 6= qi and q′j = qj for all j 6= i. Since
wi = 1, we have q′i < qi. In particular, q′ cannot be an asynchronous successor
of q, i.e., (q, q′) /∈ E.

Conversely, given i ∈ I ′ \ I and q, q′ according to condition (3) of the
theorem, i.e., q ∈ H(D), q′ ∈ H(D′) \ H(D) with qi 6= q′i, qj = q′j for
all j 6= i, and (q, q′) /∈ E, then wi = qi − q′i. Again, let us just focus on
the case wi = 1, i.e., qi > q′i. Since (q, q′) /∈ E, we have pi ≥ qi for all
p ∈ AS(q), i.e., f̃i(q)− qi ∈ {0, 1}. It follows from Prop. 2.1 and Lemma 3.1
that maxD̃∈ρ(D) vi(D̃, φ(D̃)) ≥ 0. Thus, we can find ν ∈ V (D,Ψ(D)) with
νi 6= −1, and in particular νiwi 6= −1. Again, the definition of V (D,Ψ(D))
for regular domains and Prop. 2.1 allow for a componentwise argument, and
we can fulfill condition 2(b) of Def. 2.10. �

Example 3.2 Using Thm. 3.1, we can determine whether the singular do-
main D′ := [θ11] × [θ12] of order two in the QTGΨ on the right of Fig. 3.2a)
is transparent or non-transparent, by looking at the edges within H(D′) :=
{00, 01, 10, 11} in the STG on the left of Fig. 3.2a). For the second variable,
the edges (00, 01) and (11, 10) satisfy 1(c) of Thm. 3.1, while for the first
variable the edges (00, 10) and (10, 00) satisfy 1(a), which means that D′ is
non-transparent. The edges (00, 10) and (10, 00) also mean that the singular
domain D := [θ11]× [0, θ12) of order one is non-transparent. Thus, transitions
between D and D′ can be determined from the edges between the states
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H(D) = {00, 10} and H(D′)\H(D) = {01, 11}. From the conditions (2) and
(3) of Thm. 3.1, we have that (00, 01) ∈ E corresponds to (D,D′) ∈ T and
(10, 11) /∈ E corresponds to (D′, D) ∈ T respectively.

In the same example in Fig. 3.2a), the singular domain D̃ := [0, θ11)× [θ22]
of order one is non-transparent as reflected by the edges (01, 02) and (02, 01),
which also imply that 1(a) is satisfied for the second variable of D̃′ := [θ11]×
[θ22]. For the first variable, however, we have that the edges (01, 11) and
(02, 12) do not satisfy any subcase in (1) of Thm. 3.1, which means that D̃′

is transparent. We see that either (01, 11) ∈ E or (02, 12) ∈ E corresponds
to (D̃, D̃′) ∈ T by (2) of Thm. 3.1. However, both edges (01, 11) and (02, 12)
correspond to (D̃′, D̃) /∈ T because (3) of Thm. 3.1 is not satisfied.

Looking at the simplest case of the theorem, we can see how edges (or
missing edges) between two nodes q, q′ ∈ Q, q 6= q′, in STG(f) = (Q,E)
always correspond to edges in QTGΨ(A) = (D, T ) for the singular domain
D′ of order one with H(D′) = {q, q′}.

Corollary 3.1 Let D ∈ Dr, and let D′ ⊂ ∂D be a singular domain of
order one. Set q := d(D) and denote by q′ the unique element in the set
H(D′)\H(D). Then, (D,D′) ∈ T if and only if (q, q′) ∈ E, and (D′, D) ∈ T
if and only if (q, q′) /∈ E.

This statement agrees with the observations of [8] for boolean discrete
models and with [23]. Thus, the basic correspondences of edges known from
the literature is also incorporated in the result. Moreover, Thm. 3.1 pro-
vides the basis for elucidating the correspondences between more complex
structures, such as paths or attractors. On the one hand, it can be used for
proof building on local considerations concerning the edges involved. On the
other hand, it provides ideas for the construction of counterexamples. In the
following, we illustrate both uses of the theorem.

Comparing Paths and Attractors

We start by considering reachability properties. In simple cases, we can
find conditions ensuring the existence of corresponding paths. The following
proposition applies Cor. 3.1 repeatedly and states the paths that correspond
in the two graphs.

Proposition 3.2 There exists a path (D1, . . . , D2k+1) in QTGΨ(A) with
Di ∈ Dr for i ∈ {1, . . . , 2k + 1} odd and Di a singular domain of order
one for i ∈ {1, . . . , 2k + 1} even, if and only if (q1, . . . , qk) is a path in
STG(f) such that (qj , qj−1) /∈ E for all j ∈ {2, . . . , k} and qi = d(D2i+1) for
all i ∈ {0, . . . , k}.
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In spite of Prop. 3.2, we are able to construct examples of paths that do
not correspond in the two graphs.

Example 3.3 We see in Fig. 3.2 (a) that state (0,2) is reachable from (1,0) in
the STG via the path indicated in grey. In contrast, all paths starting in the
regular domain corresponding to (1,0) and all adjacent singular domains do
not cross the first threshold plane of the second component. In Fig. 3.2 (b), we
see by considering the reachability of state (1,1) from (0,0) that reachability
properties of the QTGΨ are also not conserved in the corresponding STG.

These two examples thus illustrate that in general reachability properties
are not conserved between the two graphs. A further important characteristic
of QTGΨ(A) and STG(f) are their respective attractors. The next definition
introduces our terminology.

Definition 3.4 Let G be a directed graph and S a subset of the nodes of
G. The set S is strongly connected if any two nodes in S are connected by a
path in S. The set S is a trap set if there is no path leaving S. An attractor
of a graph is a strongly connected trap set. A steady state is an attractor
consisting of a single node. A cyclic attractor is an attractor of cardinality
greater than one. A complex attractor is a cyclic attractor that has at least
one node that has two or more outgoing edges.

Note that we consider each node set of cardinality one to be strongly
connected by default, i.e., not depending on the existence of a loop on the
respective node. The steady states in a discrete state transition graph cor-
respond to the fixed points of the update function f , and by definition there
exists an edge (q, q) for each fixed point q. In contrast, the steady states
of the QTGΨ are, by definition of the transitions, nodes without outgoing
edges. Note that here a steady state is simply a singleton terminal strongly
connected component in a graph.

We often denote a cyclic attractor {s1, . . . , sk}, which is not a complex
cyclic attractor, by the path (s1, . . . , sk, s1) traversing the cycle and refer
to it as a non-complex cyclic attractor. Similar to the reachability proper-
ties, we are able to find correspondences between attractors of STG(f) and
QTGΨ(A).

Proposition 3.3 The following relations hold for attractors in QTGΨ(A)
and STG(f).

1. A regular domain D is a steady state in QTGΨ(A) if and only if d(D)
is a steady state in STG(f). A singular domain D of order one is a
steady state in QTGΨ(A) if and only if H(D) is a non-complex cyclic
attractor in STG(f).
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Figure 3.2: Corresponding STGs and QTGΨs. The partitioned phase space
of a corresponding PADE underlying a QTGΨ is shown in fine grey lines
(dashed for threshold planes) underneath the QTGΨ and allows identifica-
tion of nodes representing singular resp. regular domains. In (a), the STG
of a two-component network on the left with the corresponding QTGΨ on
the right. In (b), the STG of a two-component Boolean network with the
corresponding QTGΨ below it. Heavier grey edges illustrate reachability
properties discussed in the text.
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2. There is a non-complex cyclic attractor (D1, D2, . . . , D2m, D1) with
D2j ∈ Dr for j ∈ {1, . . . , m} in QTGΨ(A), if and only if
(d(D2), d(D4), . . . , d(D2m), d(D2)) is a non-complex cyclic attractor in
STG(f).

Proof 1. The first statement immediately follows from Lemma 3.1, where
a regular domain D is a steady state if and only if v(D, φ(D)) = 0, which
is equivalent to f(d(D)) = d(D). Now, let {q̃, q̃′} be a non-complex cyclic
attractor in STG(f) andD be the singular domain of order one with H(D) =
{q̃, q̃′}. According to Thm. 3.1, if there exists an edge from D to a singular
domain D′ of higher order, then we could find q ∈ H(D), q′ ∈ H(D′) \
H(D), i.e., q ∈ {q̃, q̃′} and q′ /∈ {q̃, q̃′}, with (q, q′) ∈ E, which would be
contradictory to H(D) being a non-complex cyclic attractor. If there exists
an edge from D to a regular domain D̃, then, since H(D) \H(D̃) = {q} and
H(D̃) = {q′} for some q, q′ ∈ H(D) with q 6= q′, we would have (q′, q) /∈ E
according to Thm. 3.1, which contradicts {q̃, q̃′} being a non-complex cyclic
attractor. In summary, D has no outgoing edges and is a steady state.

If H(D) = {q, q′} is not a non-complex cyclic attractor, then either one of
the edges (q, q′), (q′, q) is missing in STG(f) or there exists an edge leaving
H(D). In the first case, there exists a transition from D to a regular domain,
as we can see immediately from Thm. 3.1. If (q, q′), (q′, q) ∈ E, then condition
1(a) of Thm. 3.1 holds for D, i.e. Ψ(D) 6= ∅. If we find an additional edge
leaving H(D), then condition (2) of Thm. 3.1 holds as well, and we find an
edge from D to some singular domain. In any case, D is not a steady state.

2. If there is a non-complex cyclic attractor (D1, D2, . . . , D2m, D1)
in QTGΨ(A), then (d(D2), d(D4), . . . , d(D2m), d(D2)) is a non-complex
cyclic attractor in STG(f) according to Cor. 3.1. If, on the other
hand, (d(D2), d(D4), . . . , d(D2m), d(D2)) is a non-complex cyclic attractor
in STG(f), then, again according to Cor. 3.1, each regular domain D2j has
only one outgoing edge, namely (D2j , D2j+1), where 2m+1 is identified with
index 1. For the singular domains D2j+1 in the cycle, we can derive the ex-
istence of only one outgoing edge, namely (D2j+1, D2j+2), from condition (3)
of Thm. 3.1.

�

In spite of the findings in Prop. 3.3, the number of attractors is not
necessarily preserved in general.

Example 3.4 While in Fig. 3.2(a) both systems have one attractor, the STG
in Fig. 3.2(b) exhibits two attractors, a fixed point and a cyclic attractor.
However, the corresponding QTGΨ has only one attractor, namely a steady
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(a) (b)

Figure 3.3: Two examples for networks with two components and three activ-
ity levels for each component. In each case, the STG is depicted on the left,
the corresponding QTGΨ on the right. Depiction of the graphs corresponds
to that in Fig. 3.2, only the explicit labeling of the STG nodes is omitted.
In (a), the STG consists of a single cyclic attractor, while the QTGΨ has
an additional steady state at the lower right singular node depicted by a fat
dot. In (b), both STG and QTGΨ have a steady state in the upper left node,
but the STG has an additional cyclic attractor. The QTGΨ has no cyclic
attractor, but an additional singular steady state at the upper right singular
node depicted by a fat dot.

state in the upper right node. In Fig. 3.3(a), the STG has fewer attractors
than the corresponding QTGΨ.

In addition, the relation between the attractor structure is not clear-cut.
While the cyclic attractor of the STG in Fig. 3.2(a) comprises all nodes of the
STG and contains nodes with multiple outgoing edges, the cyclic attractor
in the QTGΨ is a non-complex cyclic attractor consisting only of two nodes
joined by the heavier grey double edge in the lower part of the graph. In
Fig. 3.2(b), the cyclic attractor in the STG vanishes in the corresponding
QTGΨ. The same happens in Fig. 3.3(b), but here an additional steady
state can be observed in a singular node.

Let us also consider a singular domain D of order greater than 1 which
is a steady state in the QTGΨ. Translating the condition of D having no
outgoing edges obviously imposes constraints on a corresponding STG via
Thm. 3.1. However, these constraints are generally not strong enough to link
D to some unique structure in the STG.

Example 3.5 In Fig. 3.4, we see two examples, where both QTGΨs contain
a singular domain of order two, which is a steady state. However, the cor-
responding STGs differ, the one in (a) consisting of a complex attractor and
the one in (b) consisting of a non-complex cyclic attractor.
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So, in general the number, structure and uniqueness of the corresponding
attractors cannot be assured. Nevertheless, we are able to narrow down the
locations of attractors by observing the trap sets. In particular we can show
that hyper-rectangular trap sets correspond in the two graphs.

Proposition 3.4 Let Y := Y1 × · · · × Yn ⊂ Q be a discrete hyperrectangle,
i.e., Yi is an integer interval [ai, bi] ⊂ Qi for all i ∈ {1, . . . , n}. Then Y is
a trap set in STG(f) if and only if U := {D | H(D) ⊂ Y} is a trap set in
QTGΨ(A).

Proof Let U be a trap set in QTGΨ(A). Let q ∈ Y and q′ ∈ Q with
(q, q′) ∈ E. Then Thm. 3.1 ensures that there exists D′ ⊂ ∂D, D := d−1(q),
with (D,D′) ∈ T andH(D′) = {q, q′}. Since U is a trap set, we have D′ ∈ U .
Then, by definition, H(D′) ∈ Y , i.e., q′ ∈ Y .

Now, let Y be a trap set in STG(f). Let D ∈ U and D′ ∈ D with
(D,D′) ∈ T . If D ⊂ ∂D′, then H(D′) ⊂ H(D) ⊂ Y , and therefore, by
definition, D′ ∈ U . If D′ ⊂ ∂D, then condition (2) of Thm. 3.1 yields
the existence of an edge (q, q′) ∈ E such that q ∈ H(D), i.e., q ∈ Y , and
q′ ∈ H(D′) \H(D) with qi 6= q′i for all indices i indicating singular variables
of D′ but not of D. Since Y is a hyperrectangle, we then have H(D′) ⊂ Y ,
that is, D′ ∈ U . �

The above proposition may be helpful in elucidating the correspondences
of attractors in the STG and the QTGΨ further. Since a trap set always
contains at least one attractor, we can relate attractors that we can separate
using hyperrectangles.

Overall, we see that the relations between attractors in corresponding
STGs and QTGΨs are not clear-cut. The examples illustrate that, in general,
neither number nor properties of attractors are preserved.

3.2 The Discrete Formalisms

In the following, we show that the singular state and the Thomas formalisms
(see Sect. 2.3) contain the same information in the sense that we can trans-
form an extended update function (2.11) into an update function of the
Thomas formalism and vice versa. For the sake of the singular state for-
malism, we consider for the remainder of this section an interaction graph
Ḡ = ({1, . . . , n}, Ē) with logical parameters {Ki,ω}, from which we can define
the extended state space Σ = Σ1 × · · · × Σn (see Sect. 2.3.2).
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(a) (b)

Figure 3.4: STGs and QTGΨs for networks with two components and two
activity levels for each component, the STG shown on the left, the corre-
sponding QTGΨ on the right of each figure. Both the QTGΨs in (a) and (b)
have a steady state in the singular domain of order two.

First, we relate the state spaces of both formalisms. Using the maximum
qualitative value pi of Σi, we can define Qi := {0, 1, . . . , pi} and thus the
state space Q = Q1 × · · · × Qn of the Thomas formalism can be defined.
We observe that Σ is constructed in order to refine the state space Q. More
specifically, we have an intuitive correspondence of every qualitative value
|qi| ∈ Σi with the integer value qi ∈ Qi for each variable i, and thus every
state q ∈ Q conveniently maps to a regular state |q| := (|q1|, . . . , |qn|) ∈ Σ.
Since the extended update of the regular states is also a regular state, we are
able to transform an extended update function into an update function such
that the extended update of a regular state |q| ∈ Σ is related to the update
of the state q ∈ Q.

Definition 3.5 Let Ḡ be an interaction graph, {Ki,ω} logical parameters
and g the extended update function in (2.11). Define the mapping f g : Q→
Q, where for all i ∈ {1, . . . , n}

f g
i (q) = Ki,Regi(|q|),

where |q| := (|q1|, . . . , |qn|) ∈ Σ and Regi(s) is as in (2.12).

In other words, we are able to capture the regular state dynamics of the
extended update function in an update function.

Since the singular states in Σ have no direct representation in Q, the re-
verse transformation of an update function into an extended update function
is not as straightforward. In particular, the singular states have no represen-
tation in Q. Nonetheless, the singular states are shown in [57] to have an
association with their adjacent regular states, which suggests the mapping
δ = δ1 × · · · × δn, where δi : Σ→ 2Qi is defined as

δi(s) =

{
{r} if si = |r|
{r, r + 1} if si = |r, r + 1|

, (3.5)
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and 2Qi is the power set of Qi. That is, δ maps every singular state s ∈ Σ to
the states in Q that correspond to the 2ord(s) regular states neighbouring s.

By exploiting the transformation in Def. 3.5, we see how the singular
state dynamics can be determined from the regular state dynamics. Given
an extended update function g, the monotonicity property of the logical
parameters implies that for any s ∈ Σ,

min
q∈δ(s)

f g
i (q) = Ki,Regi(s) and max

q∈δ(s)
f g
i (q) = Ki,Regi(s)∪Singi(s). (3.6)

Therefore, the dynamics of a singular state s ∈ Σ can be determined from
the dynamics of the states δ(s) ⊂ Q. This observation suggests the following
transformation of an update function into an extended update function.

Definition 3.6 Let f : Q → Q be an update function. Define gf : Σ → Σ
such that for all s ∈ Σ and i ∈ {1, . . . , n},

gfi (s) = |min
q∈δ(s)

fi(q), max
q∈δ(s)

fi(q)|. (3.7)

Remark 3.1 The transformation above assumes that gf has not been con-
structed from an interaction graph and strictly defined logical parameters.
Therefore, with the transformation in Def. 3.6, we are suggesting a general
form of the singular state formalism.

From our previous observations, we see that the dynamics on singular states
can be deduced from the dynamics on regular states. That is, the dynamics
of the Thomas and singular state formalisms is captured by the dynamics
on the states q ∈ Q and the regular states in Σ respectively. Using the
transformations in Def. 3.5 and Def. 3.6, we get that every update function
has a unique corresponding extended update function and vice versa, which
yields the following result.

Proposition 3.5 Let f : Q→ Q be an update function. From Def. 3.5 and
Def. 3.6, we have

f = f gf and thus STG(f) = STG(f gf ).

Let Ḡ = ({1, . . . , n}, Ē) be an interaction graph, {Ki,ω} logical parameters
and g the extended update function (2.11). From Def. 3.5 and Def. 3.6, we
have

g = gf
g

and thus ESG(g) = ESG(gf
g

).

Using Prop. 3.5, we can associate an update function with a unique extended
update function, and vice versa. In the following, we analyse differences
and similarities between the STG and ESG given this association of the
underlying update functions.
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|0|, |0| |0, 1|, |0| |1|, |0| |1, 2|, |0| |2|, |0|

|0|, |0, 1| |0, 1|, |0, 1| |1|, |0, 1| |1, 2|, |0, 1| |2|, |0, 1|

|0|, |1| |0, 1|, |1| |1|, |1| |1, 2|, |1| |2|, |1|

00 10 20

01 11 21

Figure 3.5: The transition graphs of the running example with the STG on
the left and the corresponding ESG on the right.

Correspondence of Edges

Throughout the remainder of this section, we consider an update function
f : Q → Q with unitary update function f̃ := fSTG(f) and corresponding
extended update function gf according to Def. 3.6. In the following, we want
to compare the transition graphs STG(f) = (Q,E) and ESG(gf) = (Σ, T ).

Because it is not possible to recover f from STG(f) or gf from ESG(gf)
(except in the case that pi = 1 for all i ∈ {1, . . . , n}), it is not clear whether
the information in the STG is sufficient to construct an ESG and vice versa.
We are able to deduce the unitary update function f̃ from ESG(gf) and also
construct ESG(gf) from f̃ . More specifically, for a singular state s ∈ Σ and
i ∈ {1, . . . , n}, it holds by definition of f̃ that

min
q∈δ(s)

fi(q) ≤ min
q∈δ(s)

f̃i(q) and max
q∈δ(s)

f̃i(q) ≤ max
q∈δ(s)

fi(q).

Therefore, by definition of the qualitative relations, si#g
f
i (s) if and only if

si#g
f̃
i (s), where # ∈ {<,>,⊂}, which immediately implies that ESG(gf) =

ESG(gf̃). In other words, the unitary update function suffices in construct-
ing both STG(f) and ESG(gf). Consequently, we can construct an STG
given an ESG and vice versa.

In spite of this common underlying information, we see in the following
that the dynamics implied by the STG and ESG do not always coincide. The
next result describes the overall correspondence of edges between the STG
and ESG.

Theorem 3.2 Let f : Q → Q be an update function with corresponding
transition graphs STG(f) = (Q,E) and let gf be an extended update function
according to Def. 3.6 with corresponding extended state graph ESG(gf) =
(Σ, T ). The function ord : Σ→ {0, 1, . . . , n} describes how many qualitative
values are singular for state s ∈ Σ. Consider states s, s′ ∈ Σ.
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1. If ord(s) < ord(s′), then (s, s′) ∈ T , where si 6= s′i, if and only if

• for some q ∈ δ(s) there exists q′ ∈ δ(s′)\δ(s) such that (q, q′) ∈ E,
and

• for all q ∈ δ(s) and p ∈ Q with (q, p) ∈ E it holds that either

– qi ≤ pi if si < s′i, or

– qi ≥ pi if si > s′i.

2. If ord(s) > ord(s′), then (s, s′) ∈ T if and only if (q, q′) ∈ E and
(q′, q) /∈ E for all q ∈ δ(s)\δ(s′) and q′ ∈ δ(s′), where |q − q′| = 1.

Proof By definition of the qualitative values and the relation of the two
update functions (Def. 3.6), for all s ∈ Σ, i ∈ {1, . . . , n} and si = |a, b|, it
holds that

si < gfi (s) ⇐⇒ b = min
q∈δ(s)

fi(q) < max
q∈δ(s)

fi(q) or b < min
q∈δ(s)

fi(q), (3.8)

si > gfi (s) ⇐⇒ min
q∈δ(s)

fi(q) < max
q∈δ(s)

fi(q) = a or max
q∈δ(s)

fi(q) < a,

(3.9)

si ⊂ gfi (s) ⇐⇒ a = min
q∈δ(s)

fi(q) and max
q∈δ(s)

fi(q) = b or

min
q∈δ(s)

fi(q) < a and b < max
q∈δ(s)

fi(q). (3.10)

These equivalencies allow us to address the two cases in the theorem.

1. Let ord(s) < ord(s′), (s, s′) ∈ T and i ∈ {1, . . . , n} such that si =
|a| < s′i, i.e., a := maxq∈δ(s) qi = minq∈δ(s) qi. The case si > s′i is done

analogously. We have si < gfi (s), which by (3.8) is valid if and only if
either

a = min
q∈δ(s)

fi(q) < max
q∈δ(s)

fi(q) or a < min
q∈δ(s)

fi(q). (3.11)

For both cases in (3.11), the inequality a < maxq∈δ(s) fi(q) holds, which
occurs if and only if (q, q′) ∈ E for some q ∈ δ(s) and q′ ∈ Q with
q′i − qi = 1, by definition of STG edges. Moreover, q′ ∈ δ(s′)\δ(s).

Combining the remaining equality and inequality of the two cases in
(3.11) gives a ≤ minq∈δ(s) fi(q), which occurs if and only if (q, p) ∈ E
for all q ∈ δ(s) and p ∈ Q with qi ≤ pi. The reverse statement follows
the same arguments.
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2. Let ord(s) > ord(s′), (s, s′) ∈ T and i ∈ {1, . . . , n} such that si =
|a, a + 1| < s′i. We have si < gfi (s), which by (3.8) is valid if and only
if

a+1 := max
q∈δ(s)

qi = min
q∈δ(s)

fi(q) < max
q∈δ(s)

fi(q) or a+1 < min
q∈δ(s)

fi(q). (3.12)

Simplifiying these two inequalities gives the following two cases:

• qi ≤ fi(q) for all q ∈ δ(s) with qi = a + 1, i.e., q ∈ δ(s′), and

• qi < fi(q) for all q ∈ δ(s) with qi = a, i.e., q ∈ δ(s)\δ(s′).

The first case then implies that (q′, q) /∈ E for all q′ ∈ δ(s′) and q ∈
δ(s)\δ(s′) such that |q − q′| = 1. The second case, however, implies
that (q, q′) ∈ E for all q ∈ δ(s)\δ(s′) and q′ ∈ δ(s′) such that |q −
q′| = 1, which are the conditions in the theorem. Again, the reverse
statement follows the same arguments. The argument for si > s′i follows
analogously with the help of (3.9). �

Example 3.6 We illustrate the two conditions in Thm. 3.2 via our running
example in Fig. 3.5. The condition 1 of Thm. 3.2 does not hold for the state
s′′ := (|1|, |0, 1|) because s′′ has no transition to (|0, 1|, |0, 1|) = ∆−

1 (s
′′) or

(|1, 2|, |0, 1|) = ∆+
1 (s

′′). This lack of transition is reflected in the outgoing
edges of the states δ(s′′) = {10, 11} in the STG. In other words, the STG
edges (10, 20) and (11, 01) make the singular value of s′′ steady, that is s′′1 ⊂
gf1 (s

′′) and thus s′′ has no outgoing edge in the direction of the first variable
in the ESG.

The transition from s := (|1, 2|, |0, 1|) to s′ := (|1, 2|, |1|) satisfies condi-
tion 2 of Thm. 3.2. The STG shows that there exists edges from states in
δ(s)\δ(s′) = {10, 20} to states in δ(s′) = {11, 21} but not vice versa, and
thus the transition (s, s′) ∈ T exists.

From Thm. 3.2, we state the basic correspondences that have already
been observed by Richard et al [48].

Corollary 3.2 Let q, q′ ∈ Q such that |q − q′| = 1, and s, s′, s′′ ∈ Σ such
that δ(s) = {q}, δ(s′) = {q′} and δ(s′′) = {q, q′}. Then

• (q, q′) ∈ E and (q′, q) ∈ E if and only if (s, s′′) ∈ T and (s′, s′′) ∈ T .

• (q, q′) ∈ E and (q′, q) /∈ E if and only if (s, s′′) ∈ T and (s′′, s′) ∈ T .

• (q, q′) /∈ E and (q′, q) /∈ E if and only if (s, s′′) /∈ T and (s′′, s′) /∈ T .
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Figure 3.6: On the left the STG of the two-component network as in
Fig. 3.2a) and on the right the corresponding ESG. Heavier grey edges
illustrate reachability properties discussed in the text.

• (q, q) ∈ E if and only if (s, s) ∈ T .

Despite the correspondences of edges in STG(f) and ESG(gf), we are
able to find differences in the paths and attractors of the two graphs.
Thm. 3.2 can help in proving correspondences as well as providing ideas
for counterexamples, where the paths and attractors are consistent resp. in-
consistent between the two graphs. In the following, we look at these two
applications of the theorem.

Comparing Paths and Attractors

First, we look at reachability properties between STG(f) and ESG(gf).
Repeating Cor. 3.2 gives the following correspondences of paths between the
two graphs.

Lemma 3.2 There exists a path (q1, · · · , qk) in the STG, such that
(qj, qj−1) /∈ E, for all j = 2, . . . , k, if and only if there exists a path
(s1, . . . , s2k−1) in the ESG such that δ(s2j−1) = {qj}, for all j = 1, . . . , k.

Thus, Lemma 3.2 shows that some simple paths in the STG have correspond-
ing paths in the ESG. Still, we are interested if reachability properties are
generally conserved between the two graphs.

To test whether paths in the ESG that start or end at a singular state
have a corresponding path in the STG, we would first need to define a state
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or states in Q that correspond to a singular state s ∈ Σ. The association of
a singular state with the adjacent regular states in the mapping δ gives such
a correspondence, i.e., q ∈ δ(s). Hence, we exploit the mapping δ to show
the following correspondence of any path in the ESG.

Lemma 3.3 If we have a path (s1, · · · , sk) in the ESG, then for all q1 ∈ δ(s0)
there exists qk

′

∈ δ(sk) and a path (q1, . . . , qk
′

) in the STG.

Proof Let (s1, · · · , sk) be a path in the ESG. Because of the asynchronous
update of the singular state formalism, the path can be decomposed into
subpaths, where sj and sj+1 differ by exactly one singular value. Consider
a subpath (sj , . . . , sl) such that ord(si) < ord(si+1) for i ∈ [j, l] ⊂ [1, k].
Because ord(sj) < ord(sj+1), we have δ(sj) ⊂ δ(sj+1). Therefore, iterating
over the subpath gives δ(sj) ⊂ δ(sl).

Consider a subpath (sl, . . . , sj
′

) such that ord(si) > ord(si+1) for i ∈
[l, j′] ⊂ [1, k]. By Thm. 3.2, we know that for all q ∈ δ(sl)\δ(sl+1) and
q′ ∈ δ(sl+1), where |q−q′| = 1, it holds that (q, q′) ∈ E and (q′, q) /∈ E. That
is, every state in δ(sl)\δ(sl+1) has an edge to a state in δ(sl+1). Applying
this over the entire subpath (sl, . . . , sj

′

) yields: for all q̃ ∈ δ(sl) there exists
q̃′ ∈ δ(sj

′

) such that there is a path from q̃ to q̃′. Because the path (s1, · · · , sk)
can be decomposed into the above subpaths, by iteration for all q1 ∈ δ(s1),
there exists qk

′

∈ δ(sk) such that a path (q1, . . . , qk
′

) in the STG exists. �

One consequence of Lemma 3.3 is that a path between two regular states in
the ESG, where the path does not pass through any other regular states, has
a corresponding path in the STG. However, the proof above shows that an
ESG path between two regular states would immediately imply the existence
of an ESG path of the simple form described in Lemma 3.2.

Despite these correspondences of paths, we are still able to find cases
where reachability is not conserved between the ESG and STG.

Example 3.7 In Fig. 3.6, we see that the path (10, 00, 01, 02) in the STG
does not have a corresponding path in the ESG. In particular, the only
path starting from (|1|, |0|) = δ−1(10) ends up in the singular steady state
(|0, 1|, |0, 1|) in the ESG.

That is, not all paths in the STG have corresponding paths in the ESG.
Therefore, the reachability properties between the Thomas and singular state
formalisms are not conserved.

We now look at the attractors of the two graphs using the same termi-
nology as in Sect. 3.1.1. We start by studying the correspondences of steady
states, which are otherwise not accounted for in Thm. 3.2. The regular steady
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states have already been addressed in Cor. 3.2, but the correspondences of
the singular steady states still need to be determined.

Recall that the singular steady states are representative of equilibria in
the related ODE model. Similar to Thm. 3.2, we are able to determine
conditions on the STG that a singular steady state in the ESG exists. In
other words, we are determining conditions on the STG that represent the
existence of an equilibrium point in the related ODE model.

Lemma 3.4 Let s ∈ Σ be a singular state. Then (s, s) ∈ T if and only if
the following two conditions hold:

1. For all i ∈ {1, . . . , n} where si is singular, one of the following condi-
tions holds (where ei = (0, . . . , 1, . . . , 0) denotes the i-th unit vector in
R

n):

(a) there exist q, q′ ∈ δ(s) with q′ = q + ei such that (q, q′) ∈ E and
(q′, q) ∈ E.

(b) there exist q, q′ ∈ δ(s) with q′ = q + ei such that (q, q′) /∈ E and
(q′, q) /∈ E.

(c) there exist q, q′ ∈ δ(s) and q̃, q̃′ ∈ δ(s) with q′ = q + ei, q̃′ = q̃ + ei

such that both (q, q′) ∈ E, (q′, q) /∈ E, and (q̃′, q̃) ∈ E, (q̃, q̃′) /∈ E.

2. For all i ∈ {1, . . . , n} where si is regular, either

(a) there exists q1, q2 ∈ δ(s) and p1, p2 ∈ Q such that (q1, p1), (q2, p2) ∈
E and

p1i < q1i = q2i < p2i ,

or,

(b) for all q ∈ δ(s) and p ∈ Q with (q, p) ∈ E it holds that pi = qi.

Proof Let s be singular and (s, s) ∈ T . By (3.10), for all i ∈ {1, . . . , n}
where si = |a, a+ 1|, we have that si ⊂ gfi (s) if and only if

min
q∈δ(s)

fi(q) ≤ a < a + 1 ≤ max
q∈δ(s)

fi(q).

The inequality minq∈δ(s) fi(q) ≤ a implies that there exists either q ∈ δ(s)
such that fi(q) ≤ qi = a or there exists q′ ∈ δ(s) such that fi(q

′) < q′i = a+1.
By the STG definition, this implies that there exists q, q′ ∈ δ(s) such that
q′i − qi = 1 and either (q, q′) /∈ E or (q′, q) ∈ E. Similarly, we can show
that the inequality a + 1 ≤ maxq∈δ(s) fi(q), holds if and only if there exists
q, q′ ∈ δ(s) such that qi− q

′
i = 1, and either (q, q′) /∈ E or (q′, q) ∈ E. Logical
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reformulation of these two conditions leads to the three cases (a), (b), (c) in
condition 1 of the lemma.

Now, we look at the regular variables and how they correspond. If si = |a|,
that is qi = a for all q ∈ δ(s), then si ⊂ gfi (s) if and only if either

min
q∈δ(s)

fi(q) < a < max
q∈δ(s)

fi(q), or min
q∈δ(s)

fi(q) = a = max
q∈δ(s)

fi(q),

by the definition of qualitative values. The former pair of inequalities imply
2.a) of the lemma while the latter pair of equalities imply 2.b) of the lemma by
the STG definition. The reverse statements follow with the same arguments.
�

In other words, for a singular steady state s to exist, we need that for each
variable i either there exists a transition from a state in δ(s) that increases
in variable i and there exists a transition from a state in δ(s) that decreases
in variable i (1. and 2a) of Lemma 3.4), or all transitions from states in δ(s)
do not increase or decrease in variable i (1b) and 2b) of Lemma 3.4).

Using Lemma 3.4, we are able to relate some of the non-complex cyclic
attractors in the STG with singular steady states in the ESG.

Corollary 3.3 Let q, q′ ∈ Q such that (q, q′, q) is a simple cycle in the STG.
Then s ∈ Σ is a singular steady state in the ESG where δ(s) = {q, q′}. Let
(q1, q2, q3, q4, q1) be a non-complex cyclic attractor in the STG. Then, s′ ∈ Σ
is a singular steady state, where δ(s′) = {q1, q2, q3, q4}.

Despite the constraints on the STG imposed by Lemma 3.4, the STG has
no unique correspondence to a singular steady state in the ESG, which is
reflected by the results in Cor. 2 and the singular steady state (|1, 2|, |1|) in
the ESG of Fig. 3.5. Also, in Fig. 3.5, we see the case of an oscillation in two
variables that gives rise to the singular steady state (|0, 1|, |0, 1|). Therefore,
the trap set property of the STG attractor in the above corollary is not
necessary for getting a singular steady state in the ESG. Moreover, we are
able to show that the trap set property of the STG attractor does not suffice
in obtaining a singular steady state in the ESG.

Example 3.8 Consider a cyclic attractor, C := {q1, . . . , q6}, in the STG,
where n > 3, and there exists s ∈ Σ such that q1, . . . , q6 ∈ δ(s). Because
C oscillates in three variables, the first condition of Lemma 3.4 is satisfied.
For the variables i where si = |a, a + 1|, suppose there exists q̃ ∈ δ(s)\C
and q̃′ ∈ Q\δ(s) such that (q̃, q̃′) ∈ E, which would imply by Thm. 3.2 that
(s, s′) ∈ T for s′ ∈ Σ, where ord(s′) = 4 and q̃′ ∈ δ(s′). Therefore, s is not a
singular steady state even though C is a trap set.
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Ex. 3.8 results from the general form of the singular state formalism (cf.
Rem. 3.1), where such an STG cannot be generated from an interaction
graph and logical parameters. If we had not used the general singular state
formalism, then by the findings of Richard et al [48], the state s in Ex. 3.8
would be characteristic of the cycle C and consequently s would be a singular
steady state. Therefore, every singular steady state in the general form of
the singular state formalism does not necessarily characterise a feedback loop
in the interaction graph.

In order to ensure that any cyclic attractor in the STG could correspond
to an attractor in the ESG, i.e., the case in Ex. 3.8 does not occur, we require
that the discrete hyperrectangle that encases the STG attractor is a trap set,
which gives the following result.

Lemma 3.5 Let Y := Y1×· · ·×Yn ⊂ Q be a discrete hyperrectangle, where
Yi = [ai, bi] ⊂ Qi. Then Y is a trap set in STG(f) if and only if U ′ := {s ∈
Σ | δ(s) ⊂ Y} is a trap set in ESG(gf).

Proof Let Y be a discrete hyperrectangle in STG(f). Let U ′ := {s ∈ Σ |
δ(s) ⊂ Y} be a trap set. We assume for some q ∈ Y there exists q′ /∈ Y such
that (q, q′) ∈ E. Let s ∈ U ′ such that δ(s) = {q}. Thm. 3.2 implies that
there exists s′ ∈ Σ, where δ(s′) = {q, q′}, such that (s, s′) ∈ T , which due to
the trap set property implies s′ ∈ U ′, which further implies δ(s′) ⊂ Y and
we have a contradiction.
Let Y be a trap set and s, s′ ∈ Σ such that (s, s′) ∈ T . Let s ∈ U ′ and assume
s′ /∈ U ′, i.e., U ′ is not a trap set. If ord(s) < ord(s′) then Thm. 3.2 implies
there exists q′ ∈ δ(s′)\δ(s) and q ∈ δ(s) ⊂ Y such that (q, q′) ∈ E, i.e., q′ ∈ Y
because Y is a trap set. However, because Y is a discrete hyperrrectangle
and δ(s)∪{q′} ⊂ Y , we have that δ(s′) ∈ Y and a contradiction. If ord(s) >
ord(s′) then Thm. 3.2 implies there exists q′ ∈ δ(s′)\δ(s), for all q ∈ δ(s) ⊂ Y ,
such that (q, q′) ∈ E, which directly implies that δ(s′) ∈ Y and we have a
contradiction. �

With the above trap set conditions, we are able to determine the association
of attractors given that every trap set contains at least one attractor. Un-
fortunately, the number and form of the attractors is generally not deducible
from the trap set alone. Nevertheless, the constraints imposed by the STG
can be used to determine the structure of attractors in the ESG.

Example 3.9 Suppose that only one STG attractor is contained in
the smallest hyperrectangular trap set Y . Moreover, assume that
max
q∈Y

qi −min
q∈Y

qi ≤ 1 for all i ∈ {1, . . . , n}, which means there exists s ∈ Σ

such that δ(s) = Y . The strongly connected and trap set properties of the
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STG attractor satisfy the conditions in Lemma 3.4, which imply that s is a
singular steady state. Moreover, repeating condition 1 of Thm. 3.2 we have
that, for any regular state s′ ∈ Y such that δ(s′) is in the STG attractor, we
can find a path from s′ to s in the ESG.

The example above suggests that cyclic attractors in the STG often corre-
spond to singular steady states in the ESG. In other words, although the ESG
is not a refinement of the STG, we can still use the STG to analyse the ESG.
This reflects that the Thomas formalism contains fundamental dynamics of
the system that we expect to see in all other formalisms.

3.3 Representation of ODE Equilibria in the

Qualitative Formalisms

Because the singular state formalism and the qualitative PADE formalism
each have a discrete representation of the thresholds in the ODE model,
we expect that both formalisms are representing the same dynamics. In
this section, we are particularly interested in how the singular state and
qualitative PADE formalisms represent the equilibria in the ODE model with
respect to each other. Therefore, we are comparing the QTGΨ(A) = (D, T Ψ)
and ESG(g) = (Σ, T ), where the extended update function g and PADE
system A, which satisfies a fixed set of ordering constraints, have a common
standard update function, that is f g = fA.

A direct consequence of the common underlying update function is that
the node sets of the qualitative transition graph and the extended state graph
are comparable. In mathematical terms, the functions H and δ map to the
same subsets of Q, that is for any D ∈ D, we can find a unique s ∈ Σ such
that δ(s) = H(D). Consequently, we can construct the mapping µ : D → Σ,
where

µ(D) := s ∈ Σ such that δ(s) = H(D).

This mapping implies that ord(µ(D)) is the order of domain D. Because
the intention of the singular state formalism is a logical representation of the
thresholds in the PADE model [48], it is not surprising that µ is bijective.

With the bijection of the node sets, we are also able to compare the over-
approximated focal set of a singular domain D with the (extended) update of
the corresponding singular state µ(D). Consider a singular domain D with a
non-empty overapproximated focal set Ψ(D). The hyperrectangularity of the
focal set means that we can represent Ψ(D) as Ψ(D) = Ψ1(D)×· · ·×Ψn(D),
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where for the regular variable xi in D

Ψi(D) :=

[

min
D′∈ρ(D)

φi(D
′), max

D′∈ρ(D)
φi(D

′)

]

. (3.13)

Next, we want to see what Ψi(D) represents in the Thomas formalism. Be-
cause every focal point lies in a regular domain, we can discretise the domains
that contain the focal points of the above interval using the discrete map-
ping d := dA of Def. 3.2 and thus project Ψi(D) onto Qi to give the discrete
interval [

min
D′∈ρ(D)

fi(d(D
′)), max

D′∈ρ(D)
fi(d(D

′))

]

.

With the fact that δ(µ(D)) = {d(D′) ∈ Q | D′ ∈ ρ(D)}, we recognise
the bounds of the above discrete interval to be the same as the bounds of
gfi (µ(D)) in Def. 3.6. In other words, there is similarity between the dynamics
being represented by the overapproximated focal set and the extended update
function. Also, previous observations (Prop. 3.1 and Prop. 3.5) imply that
every ESG is associated with a QTGΨ and vice versa. Consequently, we
expect the singular domains in the QTGΨ to have common dynamics with
the singular states in the ESG.

Some common dynamics of the two graphs is already reflected in our
previous results, where one set of conditions on the STG edges of previous
lemmas corresponds not only to a specific behaviour in the QTGΨ but also
to a specific behaviour in the ESG. For example, Prop. 3.2 with Lemma 3.2
and Prop. 3.4 with Lemma 3.5 give the following results respectively

Lemma 3.6 A path (D1, . . . , D2k+1) in the QTGΨ, where D2j+1 ∈
Dr for all j ∈ {0, . . . , k}, exists if and only if there is a path
(µ(D1), µ(D2), . . . , µ(D2k+1)) in the ESG, where µ(D2j+1) is regular for all
j ∈ {0, . . . , k}.

Lemma 3.7 Let f : Q→ Q be an update function and Y := Y1×· · ·×Yn ⊂
Q be a discrete hyperrectangle, where Yi = [ai, bi] ⊂ Qi. Then U := {D ∈
D | H(D) ⊂ Y} is a trap set in QTGΨ(PADE(f)) = (D, T Ψ) if and only if
U ′ := {s ∈ Σ | δ(s) ⊂ Y} is a trap set in ESG(gf) = (Σ, T ).

In other words, paths that alternate between regular and singular domains
in QTGΨ correspond to paths that alternate between regular and singular
states in ESG. Also, hyperrectangular trap sets (as defined in the above
lemma) of QTGΨ and ESG coincide.

We are able to determine the correspondence of specific edges between
the QTGΨ and the ESG by combining the results in Thm. 3.1 and Thm. 3.2.
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|0|, |0| |0, 1|, |0| |1|, |0| |1, 2|, |0| |2|, |0|

|0|, |0, 1| |0, 1|, |0, 1| |1|, |0, 1| |1, 2|, |0, 1| |2|, |0, 1|

|0|, |1| |0, 1|, |1| |1|, |1| |1, 2|, |1| |2|, |1|

θ2
1

θ1
1

θ2

Figure 3.7: Transition graphs of the running example with the ESG on the
left and QTGΨ on the right.

However, the transitions in QTGΨ are between domains that differ by multi-
ple singular variables, whereas the transitions in the ESG are between quali-
tative values that differ by at most one singular value. In that sense, the ’up-
date’ of discrete transitions in the QTGΨ can be interpreted as synchronous,
which is unlike the asynchronous update of the ESG. For this reason, we
can immediately conclude that there is no simple correspondence of edges
between the two graphs.

Example 3.10 The transition (D,D′) ∈ T in the QTGΨ displayed on the
right of Fig. 3.7, where D := [θ21]× (θ2, max2] and D

′ := (θ11, θ
2
1)× (θ2, max2]

has no corresponding transition in the ESG, that is µ(D)→ µ(D′) /∈ T . We
also observe that µ(D) is a steady state in the ESG while D is not a steady
state in the QTGΨ. In the same example, the transition from (|0, 1|, |0|) to
(|0, 1|, |0, 1|) in the ESG does not correspond to a transition in the QTGΨ,
that is (D,D′) /∈ T , where µ(D) = (|0, 1|, |0|) and µ(D′) = (|0, 1|, |0, 1|).

In other words, the singular state and qualitative PADE formalisms generally
do not conserve reachability properties.

Nevertheless, this section wants to focus on the discrete representation of
equilibria in the ODE model. We already know from Prop. 3.3 and Cor. 3.2
that a regular steady state in the ESG corresponds to a regular domain that
is a steady state in QTGΨ. We now look at singular steady states in the
ESG and their correspondences in the QTGΨ. By combining the results in
Lemma 3.4 and Thm. 3.1, we get the following result.

Lemma 3.8 Let s ∈ Σ be singular and D ∈ D such that µ(D) = s. We
have (s, s) ∈ T if and only if for all i ∈ {1, . . . , n} where si is regular, either

• for all D̃ ⊂ ∂D with D̃i ⊂ ∂Di, it holds that (D̃,D) ∈ T and (D, D̃) /∈
T , or
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• for all D̃ ⊂ ∂D with D̃i ⊂ ∂Di, maxx∈D xi 6= maxi and minx∈D xi 6= 0,
it holds that (D̃,D) ∈ T and (D, D̃) ∈ T .

Proof Let s be singular and i ∈ {1, . . . , n} such that si = |a, a + 1|. By
Lemma 3.4, we have that si ⊂ gfi (s) if and only if condition (1) of Thm. 3.1
is satisfied for the domain D, where µ(D) = s. Therefore, if D is non-
transparent, i.e., has transitions from higher order domains, then the singular
variables of s are steady, which is implied by both conditions in the lemma.
Consider the regular variables of D, that is si = |a|. Lemma 3.4 implies that
if si = |a|, then either fi(q) = qi for all q ∈ δ(s) or minq∈δ(s) fi(q) < qi <
maxq∈δ(s) fi(q), for all q ∈ δ(s).

• The former case occurs if and only if {0} = Vi(D,Ψ(D)) by Lemma 3.1,
which by Thm. 3.1 is equivalent to (D̃,D) ∈ T and (D, D̃) /∈ T , for all
D̃ ⊂ ∂D with D̃i ⊂ ∂Di.

• The latter case occurs if and only if Vi(D,Ψ(D)) = {−1, 0, 1} by
Lemma 3.1. Then it must hold that Di is bounded by thresholds,
that is maxx∈D xi 6= maxi and minx∈D xi 6= 0. Furthermore, we have
that (D̃,D) ∈ T as well as (D, D̃) ∈ T , for all D̃ ⊂ ∂D such that
D̃i ⊂ ∂Di.

�

Therefore, one sufficient condition of a singular steady state µ(D) to exist
in the ESG is that there are no outgoing transitions from D to neighbour-
ing domains in QTGΨ. One natural implication of Lemma 3.8 is then the
conservation of some steady states.

Corollary 3.4 If D ∈ D is a steady state in the QTGΨ, then µ(D) is a
steady state in the ESG.

The inverse statement, however, is not true, i.e., not every steady state in
the ESG corresponds to a steady state in the QTGΨ, as we have already seen
in Ex. 3.10.

It is important to note that both Lemma 3.8 and the above Corollary only
compare the nodes and transitions of QTGΨ and ESG, but not the dynamics
that is represented by these nodes and transitions. Next, we discuss how the
singular steady states in the singular state formalism and singular equilibrium
sets in the PADEs relate, both of which claim to represent equilibria in the
ODE model.

For a singular equilibrium set to exist, we require ∅ 6= Φ(D) ∩ D ⊂
Ψ(D) ∩ D for a singular domain D, which can only be determined with a
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specific set of kinetic parameters that satisfy the ordering constraints. Still,
with another set of kinetic parameters, it could be that Φ(D) ∩ D = ∅.
In that sense, we can only determine potential singular equilibrium sets in
QTGΦ from qualitative parameter information, namely Ψ(D) ∩D 6= ∅ for a
singular domain D.

The proof of Lemma 3.8 shows that a singular steady state, µ(D), always
implies that 0 ∈ V (D,Ψ(D)) for a singular domain D, where 0 is the zero
vector. In other words, a singular steady state µ(D) implies that Ψ(D) ∩
D 6= ∅. Therefore, if µ(D) is a singular steady state in ESG, then D has
a potential singular equilibrium set in QTGΦ. Unfortunately, the singular
steady states in ESG do not account for all potential singular equilibrium sets
in QTGΨ. For example, if we have a domain D with a non-singular variable i
such that V (D,Ψ(D)) = {0, ei}, where e

i = (0, . . . , 1, . . . , 0) denotes the i-th
unit vector in R

n, then µ(D) is not a steady state in ESG even though D has
a potential singular equilibrium set. Except for the case above, the singular
steady states in the singular state formalism have a close correspondence
with potential singular equilibrium sets in the PADEs. The singular state
formalism is otherwise mentioned in the final chapter when comparing the
Thomas and ODE models.

Summary:

• The information in the Thomas, singular state and PADE-Q formalisms
is equivalent in the sense that an extended update function or ordering
constraints can be constructed from an update function and vice versa.

• Many simple behaviours are conserved but neither the singular state
nor the PADE formalism is a refinement of the Thomas model.

• The Thomas formalism with it’s coarser representation can be used to
impose constraints on the singular state and PADE-Q formalisms.
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CHAPTER 4
The PADE Formalisms

The Thomas and ODE formalisms each have different representation of dy-
namics, which have been generated from different parameter information. In
the PADE setting, from both qualitative parameter information as well as
precise kinetic parameters, we can represent the dynamics of the PADEs as
transition graphs [15, 4, 7] and as solution trajectories [23]. More specifi-
cally, from kinetic parameters, we can represent the dynamics of the PADEs
in terms of continuous solutions and the transition graph QTGΦ. This tran-
sition graph conveniently has a common node set to the transition graph
QTGΨ, which is constructed from qualitative parameter information, i.e.,
the ordering constraints. Increasing the qualitative parameter information
of the ordering constraints to get the parameter inequality constraints (see
Sect. 2.2.2 and 2.2.3), we could also include sign of derivative information into
the transition system QTS. In other words, the different parameter informa-
tion required for each analysis method of the PADEs yields subtle differences
in the dynamics. In this chapter, we want to investigate these differences and
moreover, determine how much of the precise dynamics generated from the
kinetic parameters can be deduced from the ordering constraints.

4.1 Comparing the PADE-Q and PADE-R

Formalisms

This section investigates the similarities and differences in the dynamics be-
tween the qualitative PADE (PADE-Q) [15] and the refined PADE (PADE-R)
[4] formalisms. We first discuss the parameter information required for the
two models.

A decrease in parameter information often implies a decrease in dynam-
ical information. Suppose we have a PADE A and a set of parameter in-
equality constraints (see Ex. 2.4), from which we can construct the QTS(A)
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(Sect. 2.2.3). The parameter inequality constraints satisfy a set of ordering
constraints and thus the QTS is associated with a unique QTGΨ(A). The
extra partitioning of the mode domains in the QTS, however, often leads to
a larger node set than the QTGΨ. Consequently, the QTS and QTGΨ are
very rarely isomorphic.

Conversely, supposing that the PADE A has fixed ordering constraints
but unknown parameter inequality constraints, i.e., the ordering of the focal
point components with respect to each other is not known, there could be
multiple QTSs related to QTGΨ(A). We want to see if from a set of ordering
constraints and corresponding QTGΨ, we are able to determine the possible
number of QTSs that are associated with the single QTGΨ.

To discern between the different levels of parameter information, we in-
troduce the following notation. We label a parametrisation as a set of pa-
rameter inequality constraints that also satisfy the ordering constraints of
PADE A. In other words, a parametrisation is the ordering of all focal
point components φi(D), D ∈ Dr within each regular domain component
Pij , i ∈ {1, . . . , n}, j ∈ {0, . . . , pi}, where Pi0 = [0, θ1i ),Pij = (θji , θ

j+1
i ), j ∈

{1, . . . , pi − 1} and Pipi = (θpii , maxi]. We denote the number of focal
point components within each regular domain component Pij by mij , where
mij := |{φi(D) | φi(D) ∈ Pij , D ∈ Dr}|.

Each parametrisation gives rise to a QTS and so, theoretically the max-
imum number of parameterisations should yield the number of QTSs asso-
ciated to a single QTGΨ. Because the parameter inequality constraints are
strict inequalities, there are mij ! different orderings of the focal point com-
ponents within Pij. Therefore, the maximum number of parametrisations

for a class of PADEs with fixed ordering constraints is
∏

i∈{1,...,n},j∈{0,...,pi}

mij!.

Nevertheless, even in the case that the parameter inequality constraints are
equal to the ordering constraints, we can associate multiple QTSs to a single
QTGΨ.

Example 4.1 Suppose that mij = 1 for all i ∈ {1, . . . , n}, j ∈ {0, . . . , pi}
and let there be a regular domainD withDi = [0, θ1i ) such that vi(D, φ(D)) =
0 and vj(D, φ(D)) 6= 0 for all j ∈ {1, . . . , n}\{i}, which can be determined
from the QTGΨ. It is clear that in the related QTS, the focal point φ(D)
partitions D, that is φi(D) ∈ Di. However, if φi(D) = 0, then D is par-
titioned into two flow domains, M̃1 and M̃2 say, where M̃1

i = [0] and
M̃2

i = (0, θ1i ), whilst if φi(D) ∈ (0, θ1i ), then D is partitioned into three
flow domains, M1,M2 andM3 say, where M1

i = [0, φi(D)),M2
i = [φi(D)] and

M3
i = (φi(D), θ1i ).

Therefore, even with a single parametrisation, we are still unable to associate
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the QTGΨ with a unique QTS. Let us look at a case where we know the
partitioning of the regular domain component [0, θ1i ).

Example 4.2 Consider Ex. 2.3, where the regular domain component [0, θ12)
is partitioned into [0] and (0, θ12) by the focal point component φ2([0, θ

1
1) ×

[0, θ12)) = 0, and the regular domain component [0, θ11) is partitioned into
[0] and (0, θ11) by the focal point component φ1([0, θ

1
1) × (θ12, max2]) = 0.

Then, we have m2j = m1j = 1 for j ∈ {0, 1} and m12 = 3, which implies 6
parametrisations of the ordering constraints (2.11). These parametrisations
are presented as follows in terms of the ordering of the focal point components
within the regular domain component (θ21, max1]:

1.κ1 < κ2 < κ1 + κ2 2.κ2 < κ1 < κ1 + κ2 3.κ2 < κ1 + κ2 < κ1

4.κ1 < κ1 + κ2 < κ2 5.κ1 + κ2 < κ1 < κ2 6.κ1 + κ2 < κ2 < κ1

If we say that QTSi represents the QTS of the parametrisation associated
with the ordering i ∈ {1, . . . , 6} above, then we have that

QTS1 ∼= QTS2 ∼= QTS3 6∼= QTS4 ∼= QTS5 ∼= QTS6,

where ∼= denotes isomorphism. In Fig. 4.1, we see QTS1 on the left and
QTS4 on the right. We observe that the focal point component κ1 does not
influence the form of the QTS for either parametrisation.

Therefore, not all the extra parameter information that is provided by a
parametrisation contributes in determining the refined dynamics in the QTS.
For example, although there are 6 different parametrisations of Ex. 2.3 we
only have two different partitions of the regular domain component (θ21, max1]
and thus only two different QTSs (see Fig. 4.1) are associated with theQTGΨ

of Ex. 2.3. In other words, the increase in qualitative parameter information
means that we cannot associate a QTS to a QTGΨ.

Next, we want to determine whether the refined PADE model is indeed
a refinement of the qualitative PADE model. Let A be a PADE with a fixed
set of parameter inequality constraints. In the following, we compare the
transition graphs QTGΨ(A) = (D, T ) and QTS(A) = (M,→).

Because they are modelling the same set of PADEs, we expect the tran-
sitions of the two graphs to be consistent, that is transitions in one graph
to have corresponding transitions in the other graph. From the function
mode : M→ D, we immediately have a mapping between the respective
node sets. Also, we see by the transition definitions of the QTGΨ and QTS
that there are many similarities. In particular, the conditions 1a) and 2 of
Def. 2.13 are similar to conditions 1 and 2 of Def. 2.10 respectively, where
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Figure 4.1: Two QTSs of the running example that are related to a common
QTGΨ, where (a) illustrates the parameterisation κ2 < κ1 + κ2 and (b) the
parametrisation κ2 > κ1 + κ2.

the former definition uses flow domains while the latter uses mode domains.
We want to make sure that the similarity of these two definitions implies
the same transitions in the two graphs, i.e., the dynamics is consistent be-
tween the refined and qualtitative PADEs. Here, we again refer to domains
in D as mode domains and domains in M as flow domains following their
introduction in [4].

Proposition 4.1 Let D,D′ ∈ D such that D′ ⊂ ∂D. Then:

1. (D,D′) ∈ T Ψ if and only if for all M1 ⊂ D there exists a path M1 →
· · · → Mk, such that M2, . . . ,Mk−1 ⊂ D and Mk ⊂ D′.

2. (D′, D) ∈ T Ψ if and only if for all M ⊂ D there exists a M ′ ⊂ D′ such
that M → M ′.

Proof Let I and I ′ be the singular variable sets of D and D′ respectively
and D′ ⊂ ∂D. Now consider the two cases of the proposition.

1. Let (D,D′) ∈ T Ψ. Reformulating 1) of Def. 2.10, there exists a
ψ ∈ Ψ(D) such that (ψ− xi)(x

′
i− xi) > 0 for all x ∈ D,x′ ∈ D′ and i ∈ I ′\I.

For any flow domain M1 ⊂ D, there exists M2 such that (x̃′i − x̃i)(x
′
i −

xi) > 0 for x̃ ∈ M1, x̃′ ∈ M2, x ∈ D,x′ ∈ D′ and either M2
i ⊂ ∂M1

i or
M1

i ⊂ ∂M2
i for all i ∈ I ′\I, by the flow domain partition. With the point ψ,

1a) and 2 of Def. 2.13 is satisfed for the cases M2
i ⊂ ∂M1

i and M1
i ⊂ ∂M2

i

respectively, which in both cases implies that M1 → M2. Assume that
M2 ⊂ D and repeat the above step, which implies there exists M3 such that
M2 → M3. Repeating this process further, we then obtain a path from M1

to a flow domain Mk−1 ⊂ D such that ∂Mk−1 ∩D′ 6= ∅.
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By the definition of the flow domain partition, there exists a Mk ⊂ D′

such that Mk
i ⊂ ∂Mk−1

i for all i ∈ I ′\I. Once again, with the point ψ, 1a) of
Def. 2.13 is satisfied for Mk−1 and Mk, which implies Mk−1 → Mk and we
are done. The reverse statement uses the same arguments.

2. Let (D′, D) ∈ T Ψ. Reformulating 2) of Def. 2.10, there exists ψ′ ∈
Ψ(D) such that (ψ′ − xi)(xi − x

′
i) > 0 for all x′ ∈ D′, i ∈ I\I ′, and for some

x ∈ D. By the flow domain partition, for all M ′ ⊂ D′ there exists M ⊂ D
such that M ′

i ⊂ ∂Mi for all i ∈ I\I
′. So, with ψ′, the flow domains M and

M ′ satisfy 2 of Def. 2.13 and thus M ′ →M . The reverse statement uses the
same arguments. �

Therefore, although the transition definitions of the QTGΨ and QTS
(Def. 2.10 and Def. 2.13) are not precisely the same, the transitions, and
by extension paths and attractors, are conserved in both the QTGΨ and
QTS. In particular, a transition in the QTGΨ has a corresponding path in
the QTS and vice versa. In other words, the refined PADE model is indeed a
refinement of the qualitative PADE model. Still, we continue our comparison
by looking at the attractors.

Because of the extra sign of derivative information encoded in the flow
domains, it could occur that the QTS describes the attractors of the QTGΨ

differently. For example, if we have an attractor A ⊂ D in theQTGΨ, then by

Prop. 4.1 the set
⋃

D∈A

MD ⊂M is a trap set in the QTS. However, because

a trap set can contain more than one attractor, it is not clear whether the
number of attractors is conserved between a QTS and its associated QTGΨ.
We look at some simple cases, where the number of attractors either do or
do not coincide.

In the case that A is a steady state in the QTGΨ, we can find a unique
corresponding attractor in the related QTS.

Lemma 4.1 A steady state D ∈ D in the QTGΨ exists if and only if an
attractor A′ ⊂M exists in the QTS where M̃ ⊂ D for all M̃ ∈ A′.

Proof Let A′ ⊂ M be an attractor in the QTS such that M̃ ⊂ D for all
M̃ ∈ A′. By Prop. 4.1 and the trap set condition of A′, there are no outgoing
transitions from D, and thus D is a steady state in QTGΨ.

Let D ∈ D be a steady state in the QTGΨ, which by Prop. 4.1 implies
that

⋃

M̃⊂D M̃ is a trap set. By 1b) of Def. 2.13, there must exist ψ ∈ Ψ(D)
such that {ψ} =:M ⊂ D is in the QTS attractor. Assume that there are two
attractors in the trap set

⋃

M̃⊂D M̃ . Then in addition to M , there must also
exist a ψ′ ∈ Ψ(D) such that {ψ′} =:M ′ ⊂ D and no path exists between M
and M ′.
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a) b)

Figure 4.2: In (a), the QTGΨ and in (b), the QTS of a set of PADEs of a
two component network. The two regular mode domains D,D′ in QTGΨ,
which are depicted by the grey boxes, are each partitioned into three flow
domains in the QTS. The focal points φ(D) ∈ D′ and φ(D′) ∈ D satisfy the
parameter inequality constraints φ2(D) 6= φ2(D

′). The attractors in both
graphs are depcited by the black nodes. The singular mode domain of order
one contains a steady state in the QTGΨ but a cyclic attractor in the QTS.

There exists a sequence of flow domains M1, . . . ,Mk such that M1 =M ,
Mk = M ′ and either M j ⊂ ∂M j−1 or M j−1 ⊂ ∂M j for all j ∈ {2, . . . , k}.
With ψ′, we have that M j−1 → M j for all j ∈ {2, . . . , k}, by 1a) or 2
of Def. 2.13, and thus a path exists that connects M1 to M2. The same
argument allows us to trace a path fromM ′ toM using ψ, which contradicts
M and M ′ belonging to two disjoint attractors. That is, there is at most one
attractor in the trap set

⋃

M⊂DM . Fig. 4.2 displays an example of a QTS
attractor that corresponds to a steady state in the QTGΨ. �

Because it holds true for steady states in the QTGΨ, we ask whether a
cyclic attractor in the QTGΨ corresponds to a unique attractor in the QTS.
Unfortunately, we are able to find a counterexample, where the QTS has a
greater number of attractors than the QTGΨ.

Example 4.3 Consider the PADE system of three variables with explicit
kinetic parameters

ẋ1 = S−(x2,
1

2
)− x1,

ẋ2 = S+(x1,
1

2
)− x2,

ẋ3 = −x3,
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where maxi = 1 for i = 1, 2, 3. The kinetic parameters clearly satisfy a set of
parameter inequality constraints, which are equal to the ordering constraints.
The only focal point component of the third variable is equal to zero for
all regular domains. As a result, for every mode domain D, we have that
D3 = [0, 1] is partitioned into the flow domain components [0] and (0, 1].
Fig. 4.3 displays the QTGΨ and QTS of the PADEs above. Focussing on
the attractors, we see that the QTGΨ has a non-complex cyclic attractor
of length 8 and steady state [1

2
] × [1

2
] × [0, 1], whereas the QTS has two

non-complex cyclic attractors of length 8 and steady state [1
2
]× [1

2
]× [0].

Remark 4.1 If we consider the continuous behaviour of the PADE system
in Ex. 4.3, we see that for every flow domain M , where M3 = (0, 1], it holds
that ẋ3 < 0 for all x ∈ M . That is, the PADE solutions in these flow
domains are always decreasing and thus approaching x3 = 0. In other words,
although two non-complex cyclic attractors exist in the QTS, they could
be representing a single non-complex cyclic attractor when considering the
continuous dynamics of the PADE solutions. However, we also know from
Snoussi’s findings [56] that the non-complex cyclic attractor in the QTGΨ

in Fig. 4.3 is a damped oscillation, when considering the PADE solutions.
That is, all solution trajectories of Ex. 4.3 converge to the point (1

2
, 1
2
, 0) with

increasing time, which is not accounted for in either the QTS or QTGΨ.

In other words, the number of attractors in the QTS is not always equal
to the number of attractors in the QTGΨ. Still, the correspondence of edges
as implied by Prop. 4.1 means that the location of attractors in the QTS is
given by the attractors in QTGΨ. However, the additional sign of derivative
information may not contribute more information about the attractors.

4.2 How do the PADE-Q and PADE-D For-

malisms differ?

The logical parameters of the Thomas formalism and the kinetic parameters
of the ODE formalism imply large differences between the resulting dynamics.
In contrast, the PADE setting is more advantageous in distinguishing how
the parameters generate specific dynamics. In particular, from the ordering
constraints and kinetic parameters, we can generate two transition graphs
that have the same node set, QTGΨ and QTGΦ respectively, from which we
can observe how sensitive the kinetic parameters are in generating specific
dynamics. First, we look at how the ordering constraints and the kinetic
parameters relate.
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x3 > 0

x3 = 0

(a) (b)

Figure 4.3: The PADE system in Ex. 4.3 generates the QTS in (a) and the
QTGΨ in (b). In the QTS there are two copies of the same dynamics in
black and grey that correspond to the partitions x3 ∈ (0, 1] and x3 = 0
respectively. The only transition from the black layer to the grey layer in the
QTS is between the flow domains of the singular mode domain of order two,
which corresponds to the steady state in the QTGΨ.
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Consider the PADE A with a fixed set of kinetic parameters, from which
we can generate the qualitative transition graph QTGΦ(A) = (D, T Φ). Since
every set of kinetic parameters satisfies a set of ordering constraints, we can
also generate QTGΨ(A) = (D, T Ψ). In other words, for each QTGΦ there
exists a unique QTGΨ.

It is less trivial to generate a QTGΦ from a QTGΨ. Although there are
infinitely many kinetic parameters that satisfy a set of ordering constraints,
only a finite number of QTGΦs can be associated with a given QTGΨ be-
cause there are finitely many subgraphs of QTGΨ (subgraph property shown
in [15]). Nevertheless, calculating the convex hull of focal points is non-
trivial. In turn, from a fixed set of ordering constraints, grouping the kinetic
parameter sets that generate a single QTGΦ is a difficult task. In other
words, there is no simple way of deriving an explicit QTGΦ from a QTGΨ in
terms of conditions on the kinetic parameters.

Although the kinetic parameters cannot be specified by the ordering con-
straints, we still relate the two transition graphs for a given set of kinetic
parameters. Consider the PADE system A and a set of kinetic parameters
that generate QTGΦ(A) = (D, T Φ), from which we have a set of ordering
constraints that generate QTGΨ(A) = (D, T Ψ). In the following, we want
to determine the differences in dynamics between the two transition graphs.

By definition of the focal sets Φ and Ψ, it is clear that the overapprox-
imation only affects the dynamics on singular domains, where the overap-
proximation is referring to the hyperrectangular definition of the differential
inclusion instead of the convex hull definition as in (2.6). As a result, the ma-
jority of transitions are conserved between the two graphs QTGΦ and QTGΨ

because the regular domains exhibit the same dynamics by definition, and
QTGΦ is a subgraph of QTGΨ by Thm. 7.1 of [15].

Lemma 4.2 For D ∈ Dr and D′ ⊂ ∂D, we have that:

• (D,D′) ∈ T Φ iff (D,D′) ∈ T Ψ

• (D′, D) ∈ T Φ iff (D′, D) ∈ T Ψ

For D,D′ ∈ Ds, we have that:

• if (D,D′) ∈ T Φ then (D,D′) ∈ T Ψ

In other words, the only difference between QTGΦ and QTGΨ are some
transitions between singular domains. For example, if (D,D′) /∈ T Φ for
D,D′ ∈ Ds then it could be that (D,D′) ∈ T Ψ.

Example 4.4 Fig. 4.4 and Fig. 4.5 show that multiple behaviours implied
by the ordering constraints are not all possible in a single PADE system with
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kinetic parameters. Fig. 4.4 shows that different kinetic parameters for one
PADE system yield only steady states in the QTGΦ, while the QTGΨ implies
an oscillation between these steady states. In Fig. 4.5, different sets of kinetic
parameters yield either (D,D′) ∈ T Φ or (D′, D) ∈ T Φ between the two
singular domains D := [0, θ1)× [θ2] and D

′ := [θ1] × [θ2] in QTG
Φ, whereas

(D,D′) ∈ T Ψ and (D′, D) ∈ T Ψ are both present in the corresponding
QTGΨ.

In the framework of the differential inclusion (2.6), an oscillation in
QTGΦ could occur between two singular domains D and D′, that is
(D,D′), (D′, D) ∈ T Φ. In other words, even with an explicit set of kinetic
parameters there exists PADE solutions that imply an oscillation between
D and D′ due to the non-unique dynamics of the differential inclusion (2.6).
However, an oscillation between two singular domains in QTGΨ often corre-
sponds to a single transition between the same singular domains in QTGΦ,
as shown by the above example.

For a singular domain D of order one, the convex hull of two focal points
of ρ(D) always traces a line, which can intersect supp(D) at most once, that
is |Φ(D)| ≤ 1. So, if D has transitions to and from an adjacent domain
D′ ⊂ ∂D in QTGΨ, that is (D,D′), (D′, D) ∈ T Ψ, then it is guaranteed that
either (D,D′) /∈ T Φ or (D′, D) /∈ T Φ, because either Φ(D) ⊂ D or Φ(D) 6⊂ D
respectively.

In summary, the qualitative parameter information encoded in the order-
ing constraints can imply transitions between adjacent singular domains in
theQTGΨ that are not necessarily present in aQTGΦ. Such transitions occur
when the focal set of a non-transparent domain is empty, that is Φ(D) = ∅
when Ψ(D) 6= ∅. In other words, the major difference between QTGΨ and
QTGΦ is whether the focal sets of singular domains are empty or non-empty.

From the QTGΨ, we may already know which singular domains have a
non-empty focal set. More specifically, for a singular domainD to have a non-
empty focal set, D must also be non-transparent, that is Φ(D) 6= ∅ implies
Ψ(D) 6= ∅. In the following, we investigate whether the non-emptiness of a
focal set Φ(D) for a singular domain D can be determined by the information
encoded in QTGΨ.

It is intuitively clear that if each regular domain in ρ(D), for a singu-
lar domain D, has exactly one focal point, which can be determined from
the QTGΨ, then the convex hull of these focal points would intersect the
supporting hyperplane of D. That is, from the ordering constraints, we can
determine the non-emptiness of a focal set.

Lemma 4.3 Let D be a singular domain of order k with singular variable
set I and Di = {θ

ri
i } for i ∈ I. We define an orthant O ⊂ Ω such that for
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Figure 4.4: Each of the three QTGΦs of a two-component network on the top
have kinetic parameters that satisfy a fixed set of ordering constraints, which
generate the QTGΨ on the bottom. The upper right hand regular domain D
of all four graphs has the origin as the focal point, i.e., φ(D) = (0, 0), and the
remaining regular domains have a common focal point, ψ ∈ D. The three
different QTGΦs correspond to three different choices of kinetic parameters
and thus different positions of the focal point ψ within D.
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Figure 4.5: On the left of (a) is the phase space of a PADE system of a two-
component network with explicit kinetic parameters. The grey dots depict
the focal points, where we see that the convex hull of focal points does not
intersect the domain D := [θ1]× [θ2] and thus Φ(D) = ∅. The corresponding
QTGΦ is displayed on the right. On the left of (b) is the phase space of
the same PADE system as in (a) but with another set of explicit kinetic
parameters. We see in (b) that the convex hull of focal points does intersect
withD, which gives rise to the singular equilibria depicted as black dots. Note
that both kinetic parameters used in (a) and (b) satisfy the same ordering
constraints to generate a common QTGΨ.
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all i ∈ I either xi < θrii for all x ∈ O or θrii > xi for all x ∈ O. That is, there
are 2k orthants corresponding to domain D. If a focal point φ(D′), D′ ∈ ρ(D)
lies in each of the 2k orthants, then Φ(D) 6= ∅.

Proof Let D be a singular domain of order k and each of the 2k orthants
corresponding to D have exactly one focal point φ(D′), D′ ∈ ρ(D). We want
to show that the convex hull of the focal points intersects with the supporting
hyperplane of D. We prove by induction that the convex hull of 2m, m < k
focal points intersects with m threshold hyperplanes.

We initiate the induction for i ∈ I, i.e., m = 1. If φi(D
1) < θrii < φi(D

2)
for D1, D2 ∈ ρ(D), and for all j ∈ I\{i} either φi(D

1), φi(D
2) < θrii or

θrii > φi(D
1), φi(D

2), then there exists x ∈ co({φ(D1), φ(D2)}) such that
xi = θrii . That is, when the two focal points are on either side of a threshold
hyperplane, then the convex hull of these two focal points intersects the
hyperplane.

Next, we show the induction step for I ′ ⊂ I, where we let D1, . . . , Dl ∈
ρ(D), m := |I ′| and l := 2m. We assume that if for all j ∈ I\I ′ either
φj(D

k) < θ
rj
j for all k = 1, . . . , l or φj(D

k) > θ
rj
j for all k = 1, . . . , l then

there exists x ∈ co({φ(Dk) | k = 1, . . . , l}) such that xj = θ
rj
j for all j ∈ I\I ′.

That is, we assume the convex hull of 2m focal points intersects with m
threshold hyperplanes, from which we want to prove that the property also
holds for m + 1. Consider j∗ ∈ I\I ′ and D1, . . . , Dl, D̃1, . . . , D̃l ∈ ρ(D)
such that φj∗(D

k) < θ
rj∗
j∗ < φj∗(D̃

k) for all k = 1, . . . , l, and for each j ∈

I\(I ′ ∪ {j∗}), either φj(D
k) < θ

rj
j and φj(D̃

k) > θ
rj
j for all k = 1, . . . , l or

φj(D
k) > θ

rj
j and φj(D̃

k) > θ
rj
j for all k = 1, . . . , l. By our assumption,

there exists x ∈ co({φ(Dk) | k = 1, . . . , l}) and x′ ∈ co({φ(D̃k) | k = 1, . . . , l})
such that xj , x

′
j = θ

rj
j for all j ∈ I\(I ′ ∪ {j∗}). However, we also have that

xj∗ < θ
rj∗
j∗ < x′j∗ , which implies that there exists x′′ ∈ co({φ(D∗) |D∗ ∈

{D1, . . . , Dl, D̃1 . . . , D̃l}}) such that x′′j∗ = θ
rj∗

j∗ . Therefore, by induction
there exists x∗ ∈ co({φ(D′) |D′ ∈ ρ(D)}) such that x∗i = θrii for all i ∈ I,
that is x∗ ∈ Φ(D) 6= ∅. �

In other words, we do not always need the kinetic parameters to determine
the non-emptiness of a focal set. Sometimes, we can determine whether a
focal set is non-empty from the information encoded in QTGΨ. Now, we
want to find a graph-theoretical condition on QTGΨ that would imply a
non-empty focal set for one of the domains.

We see in both examples of Fig. 3.4 that the condition in Lemma 4.3
is satisfied for the singular domain of order two. This observation suggests
that there may be some correlation between a steady state in the QTGΨ and
the condition in Lemma 4.3. We exploit Thm. 3.1 by imposing restrictions
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on the corresponding update function and STG in order to determine the
conditions for a steady state in QTGΨ.

As we see in Fig. 3.4, if the singular domain of order two is a steady state
in QTGΨ, then the restrictions imposed by Thm. 3.1 on the corresponding
update function and STG are not unique. We also see, after experimentation,
that Fig. 3.4 depicts the only two examples that lead to the singular domain
of order two being a steady state in QTGΨ (the only exception being the
reflection of the non-complex cyclic attractor in Fig. 3.4(b)). That is, the
restrictions imposed by the STG to yield a singular domain, which is a steady
state in QTGΨ, imply very particular STG edges. From the examples in
Fig. 3.4, we observe that a singular domain of order two that has no transition
to lower order domains in QTGΨ has a non-empty focal set. We generalise
this observation in the following theorem to account for higher order singular
domains.

Theorem 4.1 Let A be a PADE with QTGΨ(A) = (D, T Ψ). Let D be
a singular domain. If it holds that (D,D′) /∈ T Ψ for all D′ ∈ D, where
D ⊂ ∂D′, then Φ(D) 6= ∅.

We first introduce some notation and then two lemmas that break up the
task of proving the theorem. In the following, we consider D ∈ Ds to be
of order k as in the theorem with singular variable set I. We want to show
that the conditions in the theorem, i.e., (D,D′) /∈ T Ψ for all D′ ∈ D, where
D ⊂ ∂D′, imply specific dynamics on the surrounding domains. This will
then allow us to use Lemma 4.3 to show that the corresponding focal set is
non-empty.

As a first step, we take advantage of the correspondence of STG to QTGΨ

edges (Thm. 3.1) by converting the conditions in the theorem to conditions
on STG(fA) = (Q,E). From Thm. 3.1, we know that in order to determine
whether (D,D′) /∈ T for all D′ such that D ⊂ ∂D′, we only need to consider
the edges in H(D), i.e., the discretisation of the regular domains ρ(D). Con-
sequently, we are able to transform the conditions of the theorem into STG
conditions within H(D), for which we identify each domain D′ of lower order
using the following notation.

Consider the 2k singular domains Diα of order (k − 1), where i ∈ I and
α ∈ {+,−}, such that V (D,Diα) = {w}, where wi = 1 if α = + and wi = −1
if α = −, wj = 0 for j ∈ I\{i} and D ⊂ ∂Diα. In other words, Di+(Di−) is
the domain of order k − 1 that has D in its boundary, has singular variable
set I\{i}, and xi < x′i(resp. xi > x′′i ) for all x ∈ D and x′ ∈ Di+(resp.
x′′ ∈ Di−).

This notation then implies that H(Diα) defines a (k−1)-dimensional face
of the hypercube H(D). Using these faces, we are able to identify smaller
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sub-hypercubes of H(D). In particular, for every domain D′ of order k −m,
where D ⊂ ∂D′, there exists {i1, . . . , im} ⊂ I and α1, . . . , αm ∈ {+,−} such
that

H i1α1...imαm :=
⋂

j=1,...,m

H(Dijαj ) = H(D′).

In other words, {i1, . . . , im} are the singular variables of D that are non-
singular variables in D′ and thus have fixed values in the sub-hypercube
H i1α1...imαm . The sign αj denotes whether the variable ij is fixed at a lower or
higher level. For example, for m = k, we have that H i1α1...ikαk = {q}, where
q ∈ H(D) such that qij = minq′∈H(D) q

′
ij
for αij = − and qij = maxq′∈H(D) q

′
ij

for αij = +, j ∈ {1, . . . , k}. With the above notation, we can identify all
domains that are neighbouring D and that are of order less than k.

In order to describe transitions between these sub-hypercubes, we intro-
duce the following notation.

H i1α1...im−1αm−1imαm → H i1α1...im−1αm−1im−αm

denotes (q, q′) ∈ E for all q ∈ H i1α1...im−1αm−1imαm and q′ ∈
H i1α1...im−1αm−1im−αm , where |q − q′| = 1, −α = − if α = + and −α = +
if α = −. In other words, there is an STG edge from every state in
H i1α1...im−1αm−1imαm to another state in H i1α1...im−1αm−1im−αm . Also,

H i1α1...im−1αm−1imαm 6← H i1α1...im−1αm−1im−αm

denotes (q′, q) /∈ E for all q ∈ H i1α1im−1αm−1...imαm and q′ ∈
H i1α1...im−1αm−1im−αm , where |q − q′| = 1. In other words, there is no
STG edge from any state in H i1α1...im−1αm−1imαm to any other state in
H i1α1...im−1αm−1im−αm .

We now look at a domain D′, where D ⊂ ∂D′, and determine conditions
in terms of edges on the STG that imply whether (D,D′) /∈ T Ψ. Let D′

be of order k −m with {i1, . . . , im} ⊂ I and α1, . . . , αm ∈ {+,−} such that
H i1α1...imαm = H(D′). In the case when D′ is transparent, that is Ψ(D′) = ∅,
there are no transitions to or from D′, that is (D,D′) /∈ T Ψ. The STG edges
that imply D′ is transparent can be derived by negating (1) of Thm. 3.1.
In the case when D′ is non-transparent, that is Ψ(D′) 6= ∅, we need that
(D,D′) /∈ T Ψ, which can be deduced by negating the second part of condition
(3) of Thm. 3.1. These two cases then imply the following conditions onH(D)
respectively.

(1*) D′ is transparent iff there exists im+1 ∈ I\{i1, . . . , im} and αm+1 ∈
{+,−} such that

H i1α1...imαmim+1−αm+1 → H i1α1...imαmim+1αm+1
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and
H i1α1...imαmim+1−αm+1 6← H i1α1...imαmim+1αm+1 .

(2*) For a non-transparent domain D′, there exists j ∈ {1, . . . , m} such
that H i1α1...ijαj ...imαm → H i1α1...ij−αj ...imαm .

That is, (1*) implies that between any two states in H i1α1...ijαj ...imαm that
differ in variable im+1 there is only an edge that is increasing(resp. de-
creasing) and not decreasing(resp. increasing). Condition (2*) implies that
there is an edge that either increases in the variable ij from every state in
H i1α1...ijαj ...imαm if αj = − or decreases in the variable ij from every state in
H i1α1...ijαj ...imαm if αj = +.

We require that either (1*) or (2*) is satisfied for every sub-hypercube
H i1α1...imαm in order for the conditions of the theorem to be satisfied. If
neither (1*) nor (2*) is satisfied for H i1α1...imαm , we then have (D,D′) ∈
T Ψ, which contradicts the theorem assumptions. Note that for every i ∈ I
and α ∈ {+,−}, if the face H iα satisfies (2*), then every sub-hypercube
H i1α1...imαm ⊂ H iα also satisfies (2*). We will show that if for every H iα

either (1*) or (2*) is satisfied, then every sub-hypercube also satisfies either
(1*) or (2*). That is, our primary objective is to show how every face H iα

can satisfy either (1*) or (2*).
We break up this task into the following two lemmas.

Lemma 4.4 If a face H i1−α1, i1 ∈ I, α1 ∈ {+,−} satisfies (2*), i.e.,
H i1−α1 → H i1α1, then under the conditions of the theorem, the opposite face
H i1α1 also satisfies (2*).

Proof We prove by induction that H i1α1 satisfying (1*) would contradict
the conditions of the theorem. Assume that H i1α1 satisfies (1*). Then there
exists i2 ∈ I\{i1} and α2 ∈ {+,−} such that H i1α1i2−α2 → H i1α1i2α2 and
H i1α1i2−α2 6← H i1α1i2α2 . Repeating this procedure, we obtain the k − 1 as-
sumptions, namely H i1α1...ijαj satisfies (1*), where ij ∈ I\{i1, . . . , ij−1} and
αj ∈ {+,−} for j = 2, . . . , k. Therefore, there exists q ∈ H i1α1 such that
(q, q′) /∈ E for all q′ ∈ H i1α1\{q}.

ForH i1α1...ikαk to satisfy (2*), it must hold thatH i1α1...ikαk → H i1−α1...ikαk .
However, H i2α2...ikαk cannot satisfy (1*) and thus must satisfy (2*), which
would contradict the list of assumptions. Now comes the induction step
where we assume m assumptions and then show why the m-th assumption
contradicts the conditions of the theorem.

Consider the m assumptions that H i1α1...ijαj satisfies (1*), where ij ∈
I\{i1, . . . , ij−1} and αj ∈ {+,−} for j = 2, . . . , m and H i1α1...imαm does
not satisfy (1*). Because H i1α1...imαm must satisfy (2*), it must hold that
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H i1α1...imαm → H i1−α1...imαm , which also means that H i2α2...imαm cannot sat-
isfy (1*). However, H i2α2...imαm satisfying (2*) would contradict the m as-
sumptions. Therefore, by induction, when a face H iα does not satisfy (1*),
then both H iα and H i−α satisfy (2*), which implies that (q, q′)(q′, q) ∈ E for
all q ∈ H i+ and q′ ∈ H i− with |q − q′| = 1. �

An example of Lemma 4.4 for a singular domain of order two is displayed in
Fig. 3.4(a). For a singular domain of order one, the corresponding faces con-
sist of single states and thus cannot satisfy (1*). After applying Lemma 4.4,
the singular domain of order one has corresponding STG transitions as im-
plied by Cor. 3.1. Now we introduce a lemma that considers the case where
all faces in H(D) satisfy (1*).

Lemma 4.5 If each face satisfies (1*) then under the conditions of the the-
orem, all transitions in H(D) are defined by the permutation σ : I → I and
function β : I → {+,−} such that

H i±σ(i)β(i)∓ → H i±σ(i)β(i)± and H i±σ(i)β(i)∓ 6← H i±σ(i)β(i)±

for all i ∈ I, and
∑p

j=1 1{β(σj (i))=−} is odd, where 1 is the indicator function
and p ∈ Z is a minimal integer such that σp(i) = i.

Proof Consider the case that (1*) is satisfied for all H iα. First we con-
centrate on the edges implied by condition (1*). Every element iα ∈
I × {+,−} represents a face H iα. For H iα to satisfy (1*), there must
exist jα′ ∈ I\{i} × {+,−}, such that (q, q′) ∈ E and (q′, q) /∈ E for all
q ∈ H iα\Hjα′

and q′ ∈ Hjα′

such that |q − q′| = 1. We introduce the func-
tion η : I × {+,−} → I × {+,−} such that η(iα) = jα′. In other words,
the function η describes all the STG edges that ensure (1*) is satisfied for
all H iα. In particular, η(iα) = jα′ implies that i 6= j and every transition
between states that only differ in variable j is only increasing if α′ = +
and only decreasing if α′ = −. For example, in Fig. 3.4(b) we have that
η4(1+) = η3(2+) = η2(1−) = η(2−) = 1+. Note that for now, not all the
edges of the STG are specifically defined by η. Fig. 4.6 depicts the above
notation.

Now we look closely at the properties of the mapping η such that the
conditions of the theorem are met, i.e., all sub-hypercubes of H(D) satisfy
either (1*) or (2*). Let i ∈ I and α ∈ {+,−}. Because η is an endomorphism
of a finite set, there exists p ≤ 2k and p′ ∈ {0, 1, . . . , p} such that ηp

′

(iα) =
ηp(iα). Consider the sequence ijαj = ηj(iα) for j ∈ {p′, . . . , p}, that is a
sequence that repeats itself after p − p′ iterations of η. We show in the
following that this repeating sequence results in either the transitions in the
lemma that are described by the functions σ and β or a contradiction.
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(a) (b)

1−

2−

3−

1+

2+

3+

Figure 4.6: In (a), the hypercubeH(D) corresponding to a singular domainD
of order 3 with singular variables {1, 2, 3}. The dashed circles represent H1+

and the unbroken circles represent H1−. The striped circles represent H2+

while the white circles represent H2−. The thickly drawn circles represent
H3+ while the thinly drawn circles represent H3−. The function η is displayed
in (b) corresponding to the edges of the STG in (a). The thick arrows in (b)
show the repeating sequence that is implied by this choice of η. Note that
the edges in H1+2+, H1−3+ and H2−3− are not determined by η depicted by
the dotted lines.
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The first case considers when the sequence implies STG edges that in-
crease and then decrease in a single variable i∗. Let j, j′ ∈ {p′, . . . , p}
such that ij+1 = ij′+1 =: i∗ and αj+1 = −αj′+1, i.e., η(ijαj) = i∗+ and
η(ij′αj′) = i∗−. If j 6= j′, then condition (1*) would imply H ijαj i∗− →
H ijαj i∗+ and H ij′αj′ i

∗+ 6← H ij′αj′ i
∗−, which implies a contradiction be-

cause H ijαj ∩ H ij′αj′ 6= ∅. Therefore, j = j′ by the argument above and
αj = −αj′ ∈ {+,−} because one pre-image cannot map to two different im-
ages. Repeating this for the whole sequence, we have that ij−m = ij′−m and
αj−m = −αj′−m for m ∈ {1, . . . , p′− p}, where p+ 1 is identified with p′ + 1.
Therefore, it must hold that ip′−1αp′−1 = ip−1αp−1, which implies that p′ = 0,
p is divisible by two and because ij cannot be equal to ij−1 by definition of η,
it holds that p ≥ 4. In other words, the component ij = ij+p/2 has a unique
pre-image variable ij+1 = ij+p/2+1, which we can simplify with a function
σ : I → I, i.e. σ(ij) = ij+1. Also, either the sign remains the same, i.e.
αj = αj+1 or the sign changes, i.e. αj = −αj+1, which can be defined by a
function β : I → {+,−}. To ensure that both i∗+ and i∗− are in this re-

peating sequence described by σ and β, we also need that
∑p/2

j=1 1{β(σj (i))=−}

is odd. If this sum of indicator functions is even then we have the second
case below.

The second case considers when the sequence implies STG edges that
only increase or only decrease in a single variable of the sequence. Consider
the case where j∗ ∈ {p′, . . . , p} such that ij∗ 6= il for all l ∈ {p

′, . . . , p}\{j∗}.
If there was a variable i that has both i+ and i− in the sequence then we
would have the previous case. Therefore, all indices in the sequence only
appear once, that is ij 6= ij′ for all j, j′ ∈ {p′, . . . , p}. By condition (1*)
and definition of η, it holds that (q, q′) /∈ E for all q ∈ H ip′αp′ ...ipαp and
q′ ∈ H(D)\H ip′αp′ ...ipαp. In other words, H ip′αp′ ...ipαp is a trap set within
H(D), which cannot satisfy (2*) and must satisfy (1*). So, by condition (1*),
there exists i∗ ∈ I\{ip′, . . . , ip} and α

∗ ∈ {+,−} such thatH ip′αp′ ...ipαpi∗−α∗

→
H ip′αp′ ...ipαpi∗α∗

and H ip′αp′ ...ipαpi∗−α∗

6← H ip′αp′ ...ipαpi∗α∗

. Once again, by the
previous restrictions, H ip′αp′ ...ipαpi∗α∗

cannot satisfy (2*) and must satisfy
(1*). We can then repeat this procedure until we obtain a fixed point in
H(D), which cannot satisfy (1*) or (2*). So, we would have a contradiction,
which can be seen in Fig. 4.6 for the sub-hypercube H1−3+. Therefore, we
cannot have a sequence ijαj , where there exists j∗ ∈ {p′, . . . , p} such that
ij∗ 6= il for all l ∈ {p

′, . . . , p}\{j∗}.

Therefore, when (1*) is satisfied for all H iα then the function η has a spe-
cific form that can be reduced to the functions σ : I → I and β : I → {+,−},
such that η(iα) = σ(i)β(i)α and

∑m
j=1 1{β(σj (i))=−} is odd. We now show

surjectivity of σ. Because for all i it is true that H i±σ(i)β(i)∓ → H i±σ(i)β(i)±



Chapter 4. The PADE Formalisms 84

and H i±σ(i)β(i)∓ 6← H i±σ(i)β(i)±, we have that 1c) of Thm. 3.1 is satisfied
for all j ∈ I\{i}. In particular, there exists q, q′, q̃, q̃′ ∈ Hj± such that
(q, q′)(q̃′, q̃) ∈ E and (q′, q)(q̃, q̃′) /∈ E for qσ(i) − q′σ(i) = 1 = q̃σ(i) − q̃′σ(i).

Hence, σ(j) 6= σ(i), i.e., σ is surjective and a permutation of I. �

We are able to show that the permutation σ and function β from
Lemma 4.5 imply that every sub-hypercube of H(D) satisfies either (1*)
or (2*). For all i ∈ I, we have that H i+ ∪H i− = H(D), which implies that
the edges between every q ∈ Hσ(i)+ and q′ ∈ Hσ(i)−, where |q − q′| = 1, are
strictly defined by condition (1*). In other words, all edges of the STG are
accounted for by this specific definition of the permutation σ and function β.
If H i1α1 satisfies (1*), then all sub-hypercubes H i1α1...imαm ⊂ H i1α1 , where
ij 6= σ(i1) for all j ∈ {1, . . . , m}, also satisfy (1*). The sub-hypercubes
H i1α1...imαm ⊂ H i1α1 , where ij = σ(i1) for some j ∈ {1, . . . , m}, satisfy
(2*) either because H i1α1 satisfies (1*) or because Hσ(i1)β(i1)α1 satisfies (1*).
Therefore, we have confirmed that the conditions of the theorem are satisfied
with the particular form of σ and β.

Finally, we prove Thm. 4.1 by combining the cases in Lemma 4.5 and
Lemma 4.4.

Proof (Proof of Thm. 4.1) From the theorem conditions, each faceH iα

must satisfy either (1*) or (2*). From Lemma 4.4, we know that if a face
H i+ satisfies (2*) then H i− must also satisfy (2*). So, let I ′ ⊂ I such that
H i′± satisfies (2*) for each i′ ∈ I ′, that is for all i′ ∈ I ′ it is implied that
(q, q′), (q′, q) ∈ E for all q, q′ ∈ H(D) with |qi′ − q

′
i′ | = 1. Consequently, in

order for H i±, i ∈ I\I ′ to satisfy (1*), there must exist j ∈ I\(I ′ ∪ {i}) and
α ∈ {+,−} such that H i±j−α → H i±jα and H i±j−α 6← H i±jα. However, for
this condition to be satisfied for all i ∈ I\I ′, we need to define a function of
the same form as η except with variable set I\I ′ instead of I. In other words,
when there is some H iα that satisfies (2*), then the variable i is no longer
in the co-domain of η and simultaneously is no longer in the image of η.
Therefore, the theorem is just a combination of Lemma 4.5 and Lemma 4.4.
Moreover, when H i± satisfies either (1*) or (2*) for each i ∈ I, every edge in
the STG is still determined.

Conveniently, the above mixed case can be incorporated into the functions
σ and β, where for all i ∈ I ′ σ(i) = i and β(i) = −. As a result, all edges in
H(D) are defined, namely for every i ∈ I

H i− → H i+ and H i+ → H i− if σ(i) = i
H i±σ(i)β(i)∓ → H i±σ(i)β(i)± and H i±σ(i)β(i)∓ 6← H i±σ(i)β(i)± if σ(i) 6= i

From the specific edges of the STG implied by σ and β above, we can define
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the unitary update function f̃ , where for all q ∈ H(D)

f̃σ(i)(q) =







minq′∈H(D) q
′
i if β(i) = − and qi = maxq′∈H(D) q

′
i,

or β(i) = + and qi = minq′∈H(D) q
′
i.

maxq′∈H(D) q
′
i if β(i) = + and qi = maxq′∈H(D) q

′
i,

or β(i) = − and qi = minq′∈H(D) q
′
i.

Although f̃ above is an incomplete unitary update function, it holds sufficient
information to determine in which orthants the focal points are located. In
particular, from this update function and Lemma 3.1, we know that for
D′ ∈ ρ(D)

vσ(i)(D, φ(D
′)) =







−1 if β(i) = − and Vi(D,D
′) = −1,

or β(i) = + and Vi(D,D
′) = +1.

+1 if β(i) = + and Vi(D,D
′) = −1,

or β(i) = − and Vi(D,D
′) = +1.

Because each orthant Q (and domain D′ ∈ ρ(D)) can be identified by a k-
tuple (vi(D, x))i∈I for all x ∈ O(resp. x ∈ D

′), a focal point φ(D′), D′ ∈ ρ(D),
is in the orthant O when Vi(D,O) = {vi(D, φ(D

′))} for all i ∈ I. For a focal
point to be in each of the 2k orthants, it must hold that (vi(D, φ(D

′)))i∈I 6=
(vi(D, φ(D

′′)))i∈I for all D′ 6= D′′ ∈ ρ(D). Therefore, because σ is a per-
mutation, there is a focal point in each of the 2k orthants of D, which by
Lemma 4.3 gives the result. �

This result is particularly surprising because the conditions of the theorem
have assumed general dynamics (see Rem. 2), where the QTGΨ has not
been constructed from a strictly defined interaction graph with parameters.
Nonetheless, a singular domain, which is a steady state in QTGΨ, immedi-
ately implies that the local dynamics in the related STG exhibit oscillations
in the singular variables. In the case where each continuous variable has at
most one threshold, the result is less surprising as it is directly related to
the findings of Thomas and Snoussi [57], who showed that the existence of
a singular steady state would imply an oscillating attractor in the STG (see
also Cor. 3.4).

The theorem above displays the strength of Thm. 3.1, where we are able
to impose restrictions on the behaviour of the regular domains depending on
the dynamics we want to observe on the singular domains.

Still, the theorem only says whether the focal set is non-empty, that is
D could still have an outgoing edge to a singular domain of higher order.
Nevertheless, the theorem would imply the following.

Corollary 4.1 Every steady state in QTGΨ is also a steady state in QTGΦ.
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Therefore, we have that the QTGΨ sheds some light on the singular equi-
librium sets in QTGΦ and not just the potential singular equilibrium sets
that are dependent on the kinetic parameters. In other words, even though
we require specific kinetic parameters to determine the specific dynamics in
QTGΦ, the singular domains that are steady states in QTGΨ are conserved
in QTGΦ irrespective of the choice of kinetic parameters.

We shortly discuss the significance of this result with respect to the find-
ings of Casey et al. [7], who conjectured (recently proven in [67]) the stability
of singular equilibrium sets in QTGΦ. More specifically, they claim that if
a singular domain D with non-empty focal set has no outgoing transitions
in QTGΦ and there is no cycle in {D′ ∈ D |D ⊂ ∂D′} then Φ(D) is weakly
asymptotically stable (see [7] for their stability definition). Thm. 4.1 implies
that for such a steady state to exist in QTGΨ either there is at least one cycle
in {D′ ∈ D |D ⊂ ∂D′}, or (D′, D) ∈ T Φ for all D ⊂ ∂D′ (corresponding to
the case in the proof of Thm. 4.1 when σ(i) = i for all i ∈ I). In other words,
Thm. 4.1 agrees with the findings of Casey et al., but only accounts for the
steady states in QTGΦ that are present in QTGΨ. In contrast, Casey et al.
assume explicit kinetic parameters, which share information about all steady
states in QTGΦ unlike the result above. Nonetheless, further refinement of
Thm. 3.1 could determine under what conditions the steady state in Casey
et al.’s conjecture exists.

4.3 From Transition Graphs to PADE Solu-

tions

The Thomas formalism represents dynamics by means of a discrete transition
graph, whereas the ODE formalism represents dynamics through solution tra-
jectories. In the PADE setting, we have the advantage that both a transition
graph and solution trajectories can be extracted from a single PADE system
with explicit kinetic parameters [13, 15]. In general, however, information
is lost when discretising a differential equation system as shown in Fig. 4.7.
Also, as stated in Rem. 4.1, the discrete representations of the PADEs do
not always capture the dynamics implied by the PADE solutions. In this
section, we assume explicit kinetic parameters for the PADE A and explore
how the dynamics implied by the PADE solutions ξ(t) and the transition
graph QTGΦ(A) = (D, T Φ) differ [13, 7].

Because the differential inclusion implies non-unique dynamics on the
singular domains, we focus on the unique dynamics on regular domains. By
Def. 2.5, the transitions in QTGΦ represent the existence of a PADE solution
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Figure 4.7: On the left is a phase space with constant vector field. The
area in dark grey displays the reachability of starting values in the bottom
left corner. On the right is a directed graph, where the nodes represent the
boxes that partition the phase space and the transitions imply a solution that
exists between the adjacent boxes. The dashed path, which is increasing in
one variable but remains constant in the other, clearly has no corresponding
solution in the phase space on the left.

between adjacent domains. In the following, we show the case of a path in
QTGΦ, which is composed of just two transitions, that does not have a
corresponding PADE solution.

Lemma 4.6 Let f̃ be a unitary update function and QTGΦ(PADE(f̃)) =
(D, T Φ), where PADE(f̃) is as in Def. 3.3. Let D ∈ Dr. If
(D′′, D), (D,D′) ∈ T Φ for some D′, D′′ ⊂ ∂D, where V (D′′, D) =
V (D,D′) 6= {v(D, φ(D))}, then no PADE solution ξ(t) exists such that
ξ(0) ∈ D′′, ξ(τ) ∈ D′ and ξ(t) ∈ D for 0 < t < τ .

Proof We know that for each variable the solutions within D ∈ Dr are
of the form (2.5). Because of the specific parameter values of PADE(f),
namely the degradation coefficients GD

l = 1, l = 1, . . . , n, we have that

ξi(t, x
0)− φi(D)

x0i − φi(D)
=
ξj(t, x

0)− φj(D)

x0j − φj(D)
,

for all i, j ∈ {1, . . . , n} and t ∈ (0, τ), where τ := τ(x0) is the time that
the solution remains in domain D for the initial value x0 ∈ D. That is, if
Gi(x) = λ ∈ R>0 for all i ∈ {1, . . . , n} and x ∈ Ω, then the trajectories
within a regular domain are straight lines.
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We assume that variable i tends to increase (the cases that variable i
tends to decrease follows analogously) and thus φi(D) = di(D) + 1 by the
definition of PADE(f̃). Suppose that x0 ∈ D′′ and i ∈ {1, . . . , n} such that
(D′′, D), (D,D′) ∈ T Φ for someD′, D′′ ⊂ ∂D, where V (D′′, D) = V (D,D′) 6=
{v(D, φ(D))}. We then have that x0i = θki := k − 1

2
, where k = di(D).

Therefore, the maximum amount of time it takes for a solution starting at

x0 to end up at a state x∗ with x∗i = θk+1
i is −ln(

k+ 1
2
−k−1

k− 1
2
−k−1

) = −ln(1/3) by

(2.5).
If j ∈ {1, . . . , n}\{i} such that φj(D) = dj(D) + 1, then either x0j ∈

(k′ − 1
2
, k′ + 1

2
) for some k′ ∈ {1, . . . , pj − 1} or x0j ∈ [0, 1

2
). For the case

φj(D) = dj(D)− 1, either x0j ∈ (k′ − 1
2
, k′ + 1

2
) for some k′ ∈ {1, . . . , pj − 1}

or x0j ∈ (pj −
1
2
, pj +

1
2
]. In both cases, the time it takes to leave domain D

is less than −ln(
k′+ 1

2
−k′−1

x0
j−k′−1

), which is always less than −ln(1/3). Hence, no

solution starting from D′′ traverses D and exits into D′. �

In other words, with explicit kinetic parameters a path in QTGΦ going
through a regular domain that is a non-deterministic node has no correspond-
ing PADE solution that starts at the lower threshold bound and ends at the
upper threshold bound of the regular domain. Here, a non-deterministic node
is a node that has more than one outgoing transition in QTGΦ.

The result of Lemma 4.6 implies that we can justify the exclusion of some
discrete paths from QTGΦ because not all paths correspond to solution tra-
jectories or PADE solutions. For example, the dashed path in Fig. 4.8 can be
excluded from the QTGΦ because there is no solution trajectory that corre-
sponds to the path. Consequently, the remaining paths in the QTGΦ imply
the existence of a cyclic attractor in addition to the two steady states. That
is, by excluding the discrete paths in QTGΦ that are of the form mentioned
in Lemma 4.6, we attempt to make the discrete paths and continuous solu-
tions more consistent. However, in order to exclude the paths that have no
corresponding PADE solution, we require specific kinetic parameter values.

Because the above analysis focusses on the regular domain dynamics,
the discrete paths in question are also present in the QTGΨ. That is, the
paths in QTGΦ that are of the form in Lemma 4.6 are also present in the
corresponding QTGΨ. In that sense, we can impose restrictions on the kinetic
parameters such that a PADE solution exists that corresponds to the QTGΨ

path of the form in Lemma 4.6. In other words, unlike the previous sections,
where we relate the parameters to compare the dynamics, here we compare
the dynamics to estimate the kinetic parameters.

Consider the PADE A with unknown kinetic parameters but known or-
dering constraints so that we can generate QTGΨ(A) = (D, T Ψ). LetD ∈ Dr
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Figure 4.8: The QTGΦ of Ex. 2.3 on the left where the dashed path satisfies
the conditions in Lemma 4.6. On the right are the corresponding PADE
solutions, where we see there is no solution starting at θ11 = 0.5 that ends up
at θ21 = 1.5, i.e., there is no solution that corresponds to the dashed path.

and (D′′, D), (D,D′) ∈ T Ψ for D′, D′′ ⊂ ∂D , where V (D′′, D) = V (D,D′) 6=
{v(D, φ(D))}. We want to find restrictions on the kinetic parameters that
would imply the existence of a solution ξ(t) such that ξ(0) ∈ D′′, ξ(τ) ∈ D′

and ξ(t) ∈ D for 0 < t < τ , where ξ(t) is as in (2.5).
Let k ∈ J := {i ∈ {1, . . . , n} | vi(D, φ(D)) 6= 0} such that Dk = Pkl =

(θlk, θ
l+1
k ) for some l ∈ {1, . . . , pi− 1} and for all i ∈ J\{k} we have Di = Pil′

for some l′ ∈ {0, . . . , pi}. In other words, Dk is a regular domain component
that is bounded by thresholds, whereas Di can also be bounded by 0 or
maxi and J is the set of all variables that either are only increasing or only
decreasing.

Suppose that D′
k = [θl+1

k ], D′′
k = [θlk] and D′

j = D′′
j = Dj for all j ∈

{1, . . . , n}\{k}. The inverse case, where D′
k = [θlk], D

′′
k = [θl+1

k ] follows
analogously. Therefore, vk(D, φ(D)) = 1, that is the PADE solution ξk(t) is
increasing in D with time t. We define τ > 0 such that

ξk(τ) = θl+1
k and ξk(0) = θlk.

Solving (2.5) for τ gives

τ =
1

GD
k

log

(
φk(D)− θlk
φk(D)− θl+1

k

)

.

Now, we want to make sure that ξ(t) ∈ D for all 0 < t < τ , for which we
need to consider the other variables.

For the variables i′ ∈ {1, . . . , n}\J we have that φi′(D) ∈ Di′ and so
ξi′(t) ∈ Di′ for all 0 < t <∞. For the remaining variables, i ∈ J\{k}, where



Chapter 4. The PADE Formalisms 90

Di = Pil′ for some l′ ∈ {0, . . . , pi}, we define a time τi, which is defined
similar to τ

τi =







1
GD

i

log

(

φi(D)−θl
′+1
i

φi(D)−θl
′

i

)

if vi(D, φ(D)) = −1,

1
GD

i

log

(

φi(D)−θl
′

i

φi(D)−θl
′+1
i

)

if vi(D, φ(D)) = 1.
,

where θ0i = 0 and θpi+1
i = maxi. Therefore, there exists a PADE solution

ξ(t) such that ξ(0) ∈ D′′, ξ(τ) ∈ D′ and ξ(t) ∈ D for all 0 < t < τ only if

τ < min
i∈J\{k}

τi.

This condition imposes restrictions on the kinetic parameters given that τ
an τi are dependent on the focal points and thresholds.

Because the PADE solution on a singular domain D̃ with empty focal
set is of Lebesgue measure zero, there could be paths in QTGΨ that connect
two regular domains via D̃. Repeating the above analysis to these longer
paths in the QTGΨ, that is combining the PADE solutions of different reg-
ular domains, we can obtain further restrictions on the kinetic parameters.
Therefore, from a fixed set of ordering constraints, we can estimate the ki-
netic parameters based on an observed behaviour of the biological system.

Summary:

• The PADE-R formalism is a refinement of the PADE-Q formalism.

• The dynamics on singular domains is the main difference between the
PADE-Q and PADE-D formalisms. More specifically, the kinetic pa-
rameters are required to determine the emptiness or non-emptiness of
the focal set for singular domains.

• The qualitative parameter information can suffice in describing some
singular domain dynamics. For example. all steady states of the PADE-
Q formalism are conserved in the PADE-D formalism.

• We can identify some discrete paths of the PADE-D formalism that may
not have a corresponding PADE solution. With the aim of consistency,
we can restrict kinetic parameters such that these discrete paths have
corresponding PADE solutions.



CHAPTER 5
Relating PADE, PMA
and ODE models

To finalise our investigation, we would like to see whether the solution trajec-
tories are consistent between the ODE, PMA and PADE formalisms. First,
we assume the expression and degradation rate constants to be the same
between the three formalisms. That is, the kinetic parameters are common
between the differential equation modelling approaches because they repre-
sent the same reaction rates of the biological system. In the following, we
show how the kinetic parameters and Hill coefficients are then restricted so
that the three formalisms generate corresponding solution trajectories.

In order to compare the PADE, PMA and ODE models, we first show why
approximating the ODE model with a PADE model can lead to qualitatively
different dynamics.

By replacing all the Hill functions in the ODE model with step functions,
we obtain a PADE model. This transformation means that except for the
Hill coefficients, that is ǫij for all i ∈ {1, . . . , n}, j ∈ {1, . . . , pi}, all other
parameter values are common in both models.

Conversely, to transform a PADE model to an ODE model, we need to
choose appropriate Hill coefficients. When choosing the Hill coefficients, we
want the dynamics in the PADE model to be also present in the ODE model.
Polynikis et al. [42] and Widder et al. [68] show that for increasing values
of the Hill coefficients the ODE trajectories converge to the PADE trajecto-
ries. In other words, for sufficiently large values of the Hill coefficients, the
trajectories of the PADE model have corresponding trajectories in the ODE
model.

For smaller values of the Hill coefficient, however, there could exist PADE
solutions that have no corresponding trajectory in the ODE model.

Example 5.1 In Ex. 2.3, there is an asyptotically stable equilibrium φ(D)
in the regular domain D = (θ21, max1]× (θ12, max2], which could also exist in
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Figure 5.1: Trajectories of Ex. 2.1 with Hill coefficients ǫ11 = 10 on the left
and ǫ11 = 15 on the right. Note for ǫ11 = 10 the asymptotically stable equi-
librium in the region (θ21, max1]×(θ2, max2] is absent and thus all trajectories
converge to the focus close to the point (θ11, θ2).

the related ODE model. That is, using fixed parameter values, we observe
in Fig. 5.1 the equilibrium point in the upper right region of the phase space
is present for larger values of the Hill coefficient ǫ11, but is absent for smaller
values of ǫ11. In other words, a bifurcation with respect to ǫ11 can occur.

The reason for the bifurcation in Ex. 5.1 is the rough approximation of
the Hill function by a step function. In Ex. 5.1, the equilibrium in the upper
right hand region of the phase space would only exist ifH+(x∗, 3

2
, ǫ11)−x

∗ = 0
for some x∗ ∈ Ω1\{0}. In Fig. 5.2, we see that x∗ would not exist for smaller
values of ǫ11, whereas x

∗ exists for larger values of ǫ11. Ex. 5.1, therefore,
shows why the step function is a reasonable approximation of a Hill function
only for larger values of the Hill coefficient.

The ramp function is, on the other hand, a less rough approximation
of a Hill function with a smaller value of the Hill coefficient in that the
sudden rise at the threshold value of the Hill function is replaced by a linear
rise in the threshold interval of the ramp function. Furthermore, the ramp
function is not only continuous but also piecewise linear. In that sense, the
ramp function removes the discontinuities in the PADE model as well as
the non-linearities in the ODE model. For that reason, we want to use the
PMA model as an intermediate formalism when relating the PADE and ODE
models. In the following, we first relate the PADE and PMA models, which
imposes restrictions on the kinetic parameters, and then we relate the PMA
and ODE models, which imposes restrictions on the Hill coefficient.
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5.1 The Kinetic Parameters

In the following, we relate the PMA model B (see (2.3) in Sect. 2.1.2) with
the PADEs A (see (2.4) in Sect. 2.2) and determine restrictions on the kinetic
parameters such that there is consistent dynamics between both models. We
assume that every threshold θji in A corresponds to a threshold interval
[θj,0i , θj,1i ] ∋ θji in B and all other parameter values are common in both
models. In other words, every step function in A is replaced by a ramp
function with the above threshold intervals to give B.

We also assume that the threshold intervals in the PMA model are arbi-
trary but do not overlap. This assumption allows the rectangles of the PMA
model to have a bijective correspondence with the domains of the PADE
model.

Definition 5.1 Let D be the domain set of A and R be the set of rectangles
in B. We define the mapping χ : R → D, where χ(R) = χ1(R)×· · ·×χn(R)
and

χi(R) =







{xi | 0 ≤ xi < θ1i } if Ri = {xi | 0 ≤ xi < θ1,0i }

{xi | θ
k
i < xi < θk+1

i } if Ri = {xi | θ
k,1
i < xi < θ

(k+1),0
i }

for k ∈ {1, . . . , pi − 1},
{xi | θ

pi
i < xi ≤ maxi} if Ri = {xi | θ

pi,1
i < xi ≤ maxi},

{xi | xi = θki } if Ri = {xi | θ
k,0
i ≤ xi ≤ θk,1i }

for k ∈ {1, . . . , pi}.

Accordingly, we can label the rectangle R as either singular or regular de-
pending on whether χ(R) is a singular or regular domain respectively. Note
that a singular rectangle R is not singular in the sense that R has zero
Lebesgue measure, rather it is only labelled singular because of its related
singular domain χ(R).

With this labelling of rectangles, we observe the properties of every regu-
lar rectangle R to be common with its corresponding regular domain χ(D).
More specifically, φi(χ(R)) = FL

i (x)/G
L
i (x) for all x ∈ R, which means that

the regular rectangles have the same focal points as their corresponding regu-
lar domains and thus the same solution trajectories (2.5). For this reason, in
what follows, we associate a regular rectangle R with the focal point φ(χ(R)).

In order for the regular domains and regular rectangles to display the
same dynamics, we need that for all D,D′ ∈ Dr, where φ(D) ∈ D′, it should
hold that φ(D) ∈ R′, where D′ = χ(R′). In other words, all focal points lie
in regular rectangles. We refer to these constraints on the focal points as the
PMA parameter constraints.
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Figure 5.2: The right hand side of the first variable of the ODE model in
Ex. 2.1 displayed as a function of x1 with Hill coefficient ǫ11 = 10 (circles)
and ǫ11 = 15 (crosses). When one of these curves intersects zero (the dotted
line), there exists a nullcline for the first variable. The dashed line displays
the right hand side of the first variable of the related PADE model.

By assuming the PMA parameter constraints, we are restricting the ki-
netic parameters of the PMA and PADE models. That is, we are studying
a reduced class of general PMA models, where the focal points do not lie in
the singular rectangles. Nonetheless, the PMA parameter constraints ensure
that the dynamics of the regular rectangles in the PMA model correspond
to the regular domain dynamics in the PADE model.

Proposition 5.1 Let A be a PADE model with QTGΦ(A) = (D, T Φ). Con-
sider a PMA model with solutions ξ̄(t) and rectangle set R such that for every
threshold θji in A there exists a threshold interval [θj,0i , θj,1i ] ∋ θji , where the
threshold intervals do not overlap and the PMA parameter constraints are
satisfied. Let D ∈ Dr and D′ ∈ ∂D and R,R′ ∈ R such that χ(R) = D and
χ(R′) = D′.

1. If (D,D′) ∈ T Φ, then there exists τ <∞ such that

ξ̄(t) ∈ R for 0 ≤ t < τ , and

ξ̄(τ) ∈ R′

2. If (D′, D) ∈ T Φ, then there exists τ <∞ such that

ξ̄(0) ∈ R′, and
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ξ̄(t) ∈ R for 0 < t ≤ τ

Proof The non-overlapping threshold intervals allow us to map the rectan-
gles to the domains using the mapping χ. The common focal point of the
regular rectangle R and the regular domain D := χ(R) implies the same
solution (2.5) for all x0 ∈ R, where x0 ∈ R would also imply x0 ∈ D. The
PMA parameter constraints ensure that sgn(φi(χ(R)) − xi) = vi(D, φ(D))
for all x ∈ R, i ∈ {1, . . . , n}. That is, the relative position of a focal point
to its associated rectangle is the same as the relative position of the focal
point with its related domain. So, by definition of the solution (2.5) every
transition in T Φ between D ∈ Dr and D′ ⊂ ∂D corresponds to the exis-
tence of a trajectory between R := χ−1(D) ∈ R and R′ := χ−1(D′) ∈ R.
That is, if (D,D′) ∈ T Φ then exists x0 ∈ R and finite time τ such that
ξ̄(0) = x0, ξ̄(t) ∈ R for 0 ≤ t < τ and ξ̄(τ) ∈ R′. Similarly, if (D′, D) ∈ T Φ

then exists x0 ∈ R′ and finite time τ such that ξ̄(0) = x0, ξ(t) ∈ R for
0 < t ≤ τ . �

Therefore, if the PMA parameter constraints are satisfied for B, then the
transitions between a regular domain D and D′ ⊂ ∂D in the QTGΦ (resp.
QTGΨ) also represent the existence of solution trajectories between R and
R′, where χ(R) = D and χ(R′) = D′, in B. In other words, the PMA param-
eter constraints ensure that there is consistent dynamics between the regular
rectangles and regular domains of the PMA and PADE models respectively.
Because a PMA model with focal points in singular rectangles does not guar-
antee the consistent dynamics described above, we do not consider them in
what follows, even though they are still a valid and interesting class of PMA
models.

Now, we look into how the dynamics of singular rectangles in the PMA
model can be determined from the corresponding singular domains in the
related PADE model.

Here, we focus on the existence of equilibria within the singular rectangles
and whether they can be determined by the singular equilibrium sets. In
the following, we assume that the PADE A has QTGΦ(A) = (D, T Φ), the
threshold intervals of B do not overlap, and the PMA parameter constraints
are satisfied for B.

In order to find equilibrium points in a singular rectangle R, we would
first need to deduce whether the nullclines intersect R. Conveniently, we
can determine whether nullclines intersect the singular rectangle from the
corresponding qualitative PADE model.

Lemma 5.1 Let QTGΨ(A) = (D, T Ψ) and D ∈ Ds with singular variable
set I. If D has transitions to or from higher order domains, that is Ψ(D) 6=
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∅, then for all i ∈ I we have Nulli ∩ R 6= ∅, where R := χ−1(D) and
Nulli := {x ∈ Ω | FL

i (x)−G
L
i (x)xi = 0}.

Proof Recall the result by [5], where ẋi ∈ co({FL
i (v) − GL

i (v)vi | v ∈
V(R)}) for any point x ∈ R of any rectangle R. Because a corner v ∈ V(R)
is in the boundary of a regular rectangle, that is v ∈ ∂R′ for an R′ :=
χ−1(D′), D′ ∈ ρ(χ(R)) and by continuity of the ramp function, it holds that
v̇i = GL

i (v)(φi(χ(R
′))− vi) for i ∈ {1, . . . , n}.

So, for the nullcline Nulli to intersect R, we need that

0 ∈ co({GL
i (v)(φi(D

′)− vi) | D
′ ∈ ρ(χ(R)), v ∈ V(R)}).

This condition is satisfied if there exists D′, D′′ ∈ ρ(D) such that φi(D
′)−vi <

0 and φi(D
′′) − vi > 0 for all v ∈ V(R), which reformulated gives φi(D

′) <
minx∈R xi and φi(D

′′) > maxx∈R xi. Let I be the singular variable set of
χ(R). Due to the PMA parameter constraints, the first condition in Prop. 2.1
implies that there exists D′, D′′ ∈ ρ(D) such that φi(D

′) < minx∈R xi and
φi(D

′′) > maxx∈R xi for all i ∈ I. Therefore, when χ(R) is non-transparent,
that is has transitions to or from higher order domains, then Nulli ∩ R 6= ∅
for all i ∈ I. �

In other words, the nullclines of the singular variables of χ(R) intersect with
the singular rectangle R if the singular domain χ(R) is non-transparent.
However, nullclines intersecting with the singular rectangle does not mean
that they intersect with each other within the rectangle to give an equilibrium
point. Now, we give a necessary condition for the existence of an equilibrium
point in the PMA model, which cannot be determined by the qualitative
PADE formalism but perhaps the discretised PADE formalism.

Lemma 5.2 Let R ∈ R be a singular rectangle, where R is the set of rect-
angles of the PMA model B. A necessary condition for an equilibrium point
to exist in R is that

co({φ(D′) | D′ ∈ ρ(χ(R))}) ∩ R 6= ∅. (5.1)

Proof Reformulating the condition for the nullcline Nulli to intersect
with the rectangle R, we have that there exist λv, v ∈ V(R) such that
∑

v∈V(R)

λv(φi(D
v) −vi) = 0 and

∑

v∈V(R) λv = 1. However, for an equilib-

rium point to exist we require that there exists λv, v ∈ V(R) such that for all
i ∈ {1, . . . , n} it holds that

∑

v∈V(R) λv(φi(D
v)−vi) = 0 and

∑

v∈V(R) λv = 1.
That is,

∑

v∈V(R)

λvφi(D
v) =

∑

v∈V(R)

λvvi,
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Figure 5.3: The vector field in the singular rectangle [1
2
, 1
4
]× [1

2
, 1
4
] of the two-

component system in Ex. 5.2 with parameters (k1, k2) = (1, 0), (κ1, κ2) =
(0, 1) on the left and (k1, k2) = (2, 0), (κ1, κ2) = (0, 2) on the right. The lines
represent the vector field at each point within the rectangle and the circles
trace the nullclines of the two variables. Equilibria are only present when
the two nullclines intersect as on the right.

By definition of the convex hull the above condition is equivalent to (5.1) �

In other words, for a singular rectangle R to have an equilibrium point, it
is necessary that the convex hull of all focal points φ(D′), D′ ∈ ρ(χ(R))
intersects with R. Still, the lemma above claims that (5.1) is only necessary
for R to have an equilibrium point. Next, we look at an example that shows
that (5.1) is not sufficient for an equilibrium point to exist.

Example 5.2 Consider the PMA model

ẋ1 = k1L
+(x1,

1

4
,
1

2
)L−(x2,

1

4
,
1

2
) + κ1L

−(x1,
1

4
,
1

2
)L+(x2,

1

4
,
1

2
)− x1

ẋ2 = k2L
+(x1,

1

4
,
1

2
)L−(x2,

1

4
,
1

2
) + κ2L

−(x1,
1

4
,
1

2
)L+(x2,

1

4
,
1

2
)− x2.

For the set of parameters (k1, k2) = (1, 0), (κ1, κ2) = (0, 1), we would have
that R ⊂ co({φ(D′) | D′ ∈ ρ(χ(R))}), that is condition (5.1) is satisfied,
for the singular rectangle R := [1

4
, 1
2
] × [1

4
, 1
2
] = χ−1(D). Nonetheless, we

see in Fig. 5.3(a) that the nullclines do not intersect in R, meaning that
there is no equilibrium. However, with another set of parameters (k1, k2) =
(2, 0), (κ1, κ2) = (0, 2) displayed in Fig. 5.3(b), the nullclines intersect twice
giving two equilibria. Therefore, condition (5.1) is not necessary for one
equilibrium point to exist in R := χ−1(D).
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We recognise that (5.1) has a form similar to the existence of a singular
equilibrium set in the discretised PADE model, that is co({φ(D′) | D′ ∈
ρ(D)}) ∩ D 6= ∅. In combination with the PMA parameter constraints, we
have that the existence of a singular equilibrium set immediately implies
that (5.1) holds. In other words, the singular domains in A that contain
singular equilibrium sets imply that the corresponding singular rectangle
has potential equilibria. Again, potential means that the nullclines could
intersect depending on the explicit kinetic parameters.

In the remainder of this section, we want to see if an equilibrium point
in a singular rectangle of the PMA model can be deduced from the related
discretised (resp. qualitative) PADE model.

Thm. 4.1 shows that a singular domain D, which has no transitions to
domains of lower order in QTGΨ, has very particular dynamics in the sur-
rounding regular domains ρ(D). In particular, each singular variable i of
D either is steady or oscillates with other singular variables (see Proof of
Thm. 4.1). Both of these dynamics also happen independently, that is sin-
gular variables that oscillate do not influence the singular variables that are
steady and vice versa. From this very particular dynamical behaviour, we
can show that all nullclines of the singular variables of D are sure to intersect
within R := χ−1(D)

Lemma 5.3 Let D be a singular domain with singular variable set I. If
D has no transitions to lower order domains in QTGΨ, that is satisfies the

conditions of Thm. 4.1, then R ∩
⋂

i∈I

Nulli 6= ∅, where χ(R) = D.

Proof Consider D ∈ Ds with singular variable set I and ri ∈ {1, . . . , pi}, i ∈
I such that Di = [θrii ]. We want to use the results from previous chapters
to prove the lemma, for which we need the associated Thomas formalism.
Let STG(fA) = (Q,E) be the transition graph associated with the PADE
A, that is using d := dA from Def. 3.2. The conditions of the lemma are the
same conditions as in Thm. 4.1, which implies that the dynamics in H(D)
can be defined by the permutation σ : I → I and function β : I → {+,−},
which uniquely defines the restricted update function f̂ (see Lemma 4.3). In
particular, for every i ∈ I

f̂σ(i)(q) ∈

{
Hσ(i)− if qi ∈ H

i+ ∧ β(i) = − ∨ qi ∈ H
i− ∧ β(i) = +,

Hσ(i)+ otherwise,

where H iα, α ∈ {+,−} is defined as in the proof of Thm. 4.1. By definition,
if H(D′) ⊂ H i+ for D′ ∈ ρ(D) then q ∈ H i+ for d(D′) = q.

The restricted update function f̂ is associated with the focal points of the
domains in ρ(D). Therefore, summarising the information encoded in f̂ for
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D′ ∈ ρ(D) and i ∈ I, it holds that vσ(i)(D, φ(D
′)) < 0 if H(D′) ⊂ H iβ(i), and

vσ(i)(D, φ(D
′)) > 0 if H(D′) ⊂ H i−β(i). In other words, all regular domains

that are below the threshold hyperplane θrii have focal point components that
are either all below or all above θ

rσ(i)

σ(i) .

Translating the conditions vσ(i)(D, φ(D
′)) < 0 and vσ(i)(D, φ(D

′)) > 0
into the PMA model with corresponding PMA parameter constraints gives
φσ(i)(D

′) < minx∈R xσ(i) and φσ(i)(D
′) > maxx∈R xσ(i) respectively. That is,

for all v, v′ ∈ V(R), where vi 6= v′i and vj = v′j for all j ∈ I\{i}, it holds
that sgn(v̇σ(i)) 6= sgn(v̇′σ(i)). Note that the vector field of any point between
two neighbouring corners of R is a convex combination of the vector field at
these corners by definition of multi-affinity, i.e., for any v, v′ ∈ V(R), where
vi 6= v′i and vj = v′j for all j ∈ I\{i}, it holds that ẋ = λv̇ + (1 − λ)v̇′ for
x = λv + (1 − λ)v′ and λ ∈ (0, 1). Consequently, we have that sgn(ẋσ(i)) 6=
sgn(ẋ′σ(i)) for all x, x′ ∈ R, where xi = maxx∈R xi and x′i = minx∈R xi. In
other words, the two facets in R that are constant in variable i have opposite
derivative sign for variable σ(i).

By multi-affinity, it holds that for all xj ∈ Rj, j ∈ I\{i} there exists a
unique x∗i ∈ Ri such that (x1, . . . , x

∗
i , . . . , xn) ∈ Nulli. Therefore, the vector

x̄ ∈
⋂

i∈I Nullσ(i), where x̄i = x∗i for i ∈ I and x̄j ∈ Rj for j ∈ {1, . . . , n}\I.
�

So, within the singular rectangle R, the nullclines of all singular variables of
χ(R) intersect each other given that there are no transitions to lower order
domains from χ(R) in QTGΨ. We can extend this result so that the nullclines
of the non-singular variables are also included.

Corollary 5.1 If D is a steady state in QTGΨ of the PADE model, then
there exists an equilibrium point x∗ ∈ R = χ−1(D) in the PMA model.

Proof Let i be a non-singular variable ofD. The steady state D means that
V (D,Ψ(D)) = {0}. In particular, Vi(D,Ψ(D)) = {0} which implies the two
facets in R that are constant in variable i have opposite derivative sign for
variable i, i.e., for all v, v′ ∈ V(R), where vi 6= v′i and vj = v′j for all j ∈ I\{i},
it holds that sgn(v̇i) 6= sgn(v̇′i). Therefore, it holds that for all xj ∈ Rj , j 6= i
there exists a unique x∗i ∈ Ri such that (x1, . . . , x

∗
i , . . . , xn) ∈ Nulli. So only

the point x∗ := (x∗1, . . . , x
∗
n) ∈ ∩i∈{1,...,n}Nulli is an equilibrium point. �

In other words, the singular equilibrium sets in the discretised PADE model
shed light on potential equilibria in the PMA model. But, only steady states
in QTGΨ guarantee a unique corresponding equilibrium point in the PMA
model.
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5.2 The Hill Coefficient

In general, when transforming a PMA model to an ODE model, we want
the equilibria to be conserved based on suitable choices of Hill coefficients.
The reason for this is to ensure that the Thomas and ODE formalisms are
modelling the same system. One example of equilibria being conserved is in
the ODEfy transformation in [69], which transforms a Boolean function to an
ODE model. The Hill functions in the ODEfy transformation are normalised,
i.e., kinetic parameters are altered, so that the fixed points of the Boolean
function correspond to asymptotically stable equilibria in the corresponding
ODE model. We want to ensure that the same consistent dynamics occurs
when we compare the Thomas and ODE models, but we assume the PADE,
PMA and ODE models to have the same kinetic parameters. Therefore,
the only parameter values that can be altered to ensure consistent dynam-
ics between the PMA and ODE models are the Hill coefficients. In other
words, we want the asymptotically stable equilibria in the regular rectangles
of the PMA model to also correspond to equilibria in the ODE model with
appropriate choices of the Hill coefficients.

In the following, we assume that for every threshold θji in the ODE model
there is a threshold interval [θj,0i , θj,1i ] ∋ θji in the PMA model. Because the
PMA model is a continuous approximation of the ODE model, we expect
both formalisms to have common dynamics. The fact that both formalisms
are ODE systems means that we can utilise perturbation theory of dynamical
systems [24] to ensure that the regular rectangle dynamics of the PMA model
is also present in the ODE model. Here, we do not present perturbation
theory in full detail but merely sketch how it can mathematically prove the
conservation of equilibria between ODE systems.

Proposition 5.2 [Perturbation theory] Consider a system of differential
equations

ẋ = f(x, δ̃), x ∈ R
n,

where f : R
n+1 → R

n and δ̃ ∈ R. Equilibria are given by the equation
f(x, δ̃) = 0. Assuming that f(x0, 0) = 0 and that the Jacobian Dxf(x

0, 0)
has maximal rank, the Implicit Function Theorem guarantees existence of a
function x(δ̃) with x(0) = x0 such that f(x(δ̃), δ̃) = 0 for δ̃ ≪ 1.

In other words, if we can show that one ODE system is a small perturbation
of a second ODE system, then for every equilibrium point in the former,
there exists a corresponding equilibrium point in the latter and vice versa.
For our purposes, we want to show that the ODE model is a perturbation
of the PMA model. More specifically, we want to show that the right hand
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side of (2.2) within a regular rectangle is a perturbation of (2.3) in the same
rectangle.

Proposition 5.3 Consider an ODE model (2.2) and PMA model (2.3) such
that for every threshold θji in the ODE model there is a threshold interval
[θj,0i , θj,1i ] ∋ θji in the PMA model. We assume that the threshold intervals do
not overlap and that all focal points lie in regular rectangles. Let every Hill
function in the ODE model have the Hill coefficent ǫ∗ij such that

|b−H+(θj,bi , θ
j
i , ǫ

∗
ij)| < δ̃ for b ∈ {0, 1},

where δ̃ ≪ 1. Then, all equilibria in the regular rectangles of the PMA model
correspond to equilibria in the ODE model.

Proof The conditions in the lemma imply that there is a related PADE
system with domain set D such that we can map the rectangles of the PMA
model to the domains via the mapping χ. Consider a regular rectangle R of
the PMA model which contains an equilibrium point, namely φ(χ(R)) ∈ R.

By the definition of ǫ∗ij , taking the limit δ̃ → 0 implies thatH+(x, θji , ǫ
∗
ij) =

0 for all x ≤ θj,0i and H+(x, θji , ǫ
∗
ij) = 1 for all x ≥ θj,1i . Therefore, δ̃ → 0

would imply that FL
i (x)−G

L
i (x)xi = FH

i (x)−GH
i (x)xi for all x ∈ R. Now,

we want to show that the ODE model is a perturbation of the PMA model
in R.

The functions FH
i (x) and GH

i (x) in the ODE model (2.2) are mainly
composed of Hill functions. The derivative of the Hill function simplifies to

dH+(x, θ, ǫ)

dx
=

θǫ

θǫ + xǫ
ǫxǫ−1

θǫ + xǫ
.

Also, dH−(x,θ,ǫ)
dx

= 1− dH+(x,θ,ǫ)
dx

by definition.
By the chain rule, the derivative of (2.2) with respect to xj would be of

the form

dẋj
dxi

=
(θji )

ǫ
ji

(θji )
ǫji + x

ǫji
j

︸ ︷︷ ︸

≤δ̃

ǫjix
ǫji−1
i

(θji )
ǫ
ji + x

ǫji
i

(

∂FH
j (x)

∂Hi
−
∂GH

j (x)

∂Hi
xi

)

−Gj(x)1{i = j}.

where 1 is the indicator function, ∂FH
j (x)/∂Hi := ∂FH

j (x)/∂H+(xi, θ
j
i , ǫji)−

∂FH
j (x)/∂H−(xi, θ

j
i , ǫji) and ∂G

H
j (x)/∂Hi := ∂GH

j (x)/∂H
+(xi, θ

j
i , ǫji)−

∂GH
j (x)/∂H

−(xi, θ
j
i , ǫji). We recognise the first term as being less than or

equal to δ̃ for any x ∈ R by the definition of ǫ∗ij . Therefore, for all x0 ∈ R,
the Jacobian Dxẋ(x

0, 0) = diag(GH
1 (x

0), . . . , GH
n (x

0)) has maximal rank. By
Prop. 5.2, there exists a function x(δ̃) such that x(δ̃) ∈ R is an equilibrium
point of the ODE model, where x(0) := φ(χ(R)). �
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In other words, the Hill coefficient ǫ∗ij minimises the difference between the
asymptotic values of the Hill function and the value at the bounds of the
threshold interval. Note that the choice of δ̃ decides whether the right hand
side of the PMA model within a regular rectangle R is a small enough pertur-
bation of the right hand side of the ODE model restricted to R. Therefore,
with a small enough δ̃, there are consistent dynamics between PMA and
ODE models.

Applying the above procedure for singular domains, i.e., defining a Hill
coefficient that minimises the difference between the right hand side of (2.2)
and (2.3) within a singular rectangle, we could ensure that the equilibria in
the singular rectangles of the PMA model are also present in the ODE model.
In order to prove consistent dynamics within singular rectangles, however,
we may need to choose a Hill coefficient that is different from ǫ∗ij . For the
dynamics in some regions of the phase space to be guaranteed, we consider
only ǫ∗ij when relating PMA and ODE models. This then implies that fixed
points of the update function in the related Thomas formalism correspond
to asymptotically stable equilibria in the ODE model.

Summary:

• Using the PMA model, we can relate the ODE and PADE models such
that equilibria in the regular domains of the PADE model are conserved
in the PMA and ODE models.

• The PMA parameter constraints imply that a lot of the dynamics be-
tween the PMA and PADE-D formalisms is conserved.

• Asymptotically stable equilibria are conserved when transforming a
PMA model to an ODE model based on the choice of Hill coefficents
in the ODE model.



CHAPTER 6
Case Study: Cytokinin
Signalling in
Arabidopsis thaliana

In this chapter, we apply our previous analysis to the biological system of
the cytokinin signal transduction network of the model plant Arabidopsis
thaliana. We first construct a set of ODEs, where the components of the
network follow basic mass action laws. Then, we approximate and discretise
the ODE system to obtain a PADE and Thomas model respectively. Using
the results of the previous chapters, we can then restrict the kinetic param-
eters of the ODE model. The main focus of this chapter is not a thorough
investigation of the biological system, but rather to illustrate the results of
the thesis.

6.1 Biological Background

Cytokinin plays an important role in many physiological and developmental
processes in the plant, such as regulation of shoot and root growth, leaf senes-
cence, chloroplast development, stress response and pathogen resistance. The
literature [26] provides a biological model of the cytokinin signal transduction
pathway, which we present in the following.

The signalling system in Arabidopsis uses a multi-step phosphorelay sys-
tem, which comprises additional signalling steps. The naturally occurring
cytokinins are molecules that have an aromatic side chain, which can bind
to the receptor histidine kinase (AHK) causing it to autophosphorylate. The
phosphoryl group is then transferred to a histidine phospho-transfer protein
(AHP), which translocates to the nucleus, where it activates the B-type re-
sponse regulators (ARRs) by further transference of the phosphoryl group.
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Figure 6.1: The cytokinin signal transduction network. Picture taken from
[52].

The phosphorylated B-types activate the transcription of the cytokinin target
genes, one group of which is the A-type ARRs. These regulate the activity
of the signalling pathway and initiate other cellular signalling pathways [26].
An overview of the signalling network is depicted in Fig. 6.1.

Before we start modelling, we look at each of the protein classes AHKs,
AHPs and ARRs in detail.

AHKs: In the class of AHKs there are three proteins, which dimerize and
autophosphorylate upon binding with cytokinin. It was shown that all three
AHKs can interact with all proteins in the AHP protein class [30, 27, 38].
The analysis of single, double and triple receptor mutants of Arabidopsis
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demonstrated that the three AHK receptors have at least a partial overlap
of their function. Simultaneous mutation of all three receptors, however,
caused complete cytokinin resistance and strong plant growth inhibition.
Single mutant experiments have shown that the receptors can mediate signal
transfer of the gene to some extent, but full induction is only possible by the
combined activities of the receptors.

AHPs: There are five proteins in the AHP protein class. The model of
cytokinin transduction predicts that the phosphorylated AHPs transport the
phosphoryl group from the cell membrane to the nucleus. Experiments that
test this transportation can be found in [43, 28]. The central role of the
AHPs as mediator of the cytokinin signal requires that they can interact
with AHKs and the ARRs. In the presence of phosphorylated A-type ARRs,
the AHPs (phosphorylated and non-phosphorylated) are said to accumulate
in the nucleus [65], that is the AHP translocation from the nucleus to the
cytoplasm is hindered.

ARRs: The ARR protein class has been identified in more than 25 different
plant species. The ARR protein class contains 23 elements, which can be
further subdivided into two major protein classes, the A-types consisting of
12 elements and the B-types consisting of 11 elements [26].

B-type ARRs: The B-types have a DNA binding domain and are there-
fore shown to function as transcriptional activators but are not induced by
cytokinin. That is, all the B-types are found in the nucleus without the pres-
ence of cytokinin [27], which is consistent with their predicted role as tran-
scription factors. Several of the target genes of the phosphorylated B-types
have been identified, namely the A-types. Other genes that are activated
by the B-types are also included in the list of cyokinin regulated genes and
are labelled as Cytokinin Response Factors (CRFs) [44]. In accordance with
the model for cytokinin signal transduction, interactions between AHPs and
B-types have been detected [60].

A-type ARRs: A-types are induced by cytokinin and are thought to be
involved in a negative feedback mechanism of the cytokinin signalling and in
the modulation of the cellular response to cytokinin. The molecular function
of the A-types, however, is not yet known. A-types are divided into five
subclasses, which are closely related to each other. One would expect that
closely related proteins have similar expression patterns, where experiments
have been conducted that confirm [65] or reject [11] this statement. Several
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Figure 6.2: The northern blot analysis of the different A-types that are listed
on the left side. Listed at the top are the times, in minutes, after which
cytokinin is introduced.

A-types have been shown to be negative regulators of cytokinin signalling and
the corresponding feedback regulation of the signalling pathways has been
proposed [27, 66] but not confirmed. There are also examples of some A-
types being positive regulators, that is they enhance the cytokinin response
[39]. The wild-type expression patterns of the A-type ARRs were measured
by D’Agostino et al. (2000) [11] as displayed in Fig. 6.2.

6.2 Model

Now that we have established the known components of the system, we
wish to model the cytokinin signal mathematically. As most of the network
is composed of kinetic reactions rather than gene regulation, we use mass
action kinetics to derive an ODE system of the signalling pathway.

We begin by constructing the general ODE model from the essential reac-
tions of the protein classes. For now, we assume functional overlap of proteins
within each class, that is we do not distinguish between the individual pro-
teins within a class but claim that all proteins within one class have the same
function in our model. This assumption, however, implies that single mutant
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experiments cannot be used to check the model.
To each of the phosphorylated and dephosphorylated protein classes, we

assign a continuous variable, which represents the respective protein concen-
tration over time.

Protein Class Variable
Cytokinin Cyto

AHK K
Phosporylated AHK Kp

AHP P
Phosporylated AHP Pp

B-type ARRs B
Phosporylated B-type ARR Bp

A-type ARRs A
Phosporylated A-type ARRs Ap

The variable Cyto is an input variable, which we assume takes a constant
value. Still, we leave it as a variable in the case that we want to include the
change of cytokinin concentration over time into the model.

To accurately model the diffusion between the cytoplasm and the nucleus
for the components P and Pp, we would need to use partial differential equa-
tions (PDEs). However, with the PDEs, we require spatial factors such as
diffusion rates that are not available. Therefore, to avoid the use of PDEs, we
define the variable P to represent the concentration of AHP in the cytoplasm
and Pp to represent the concentration of phosporylated AHP in the nucleus.
Otherwise, we assume all proteins are well-stirred in their compartments, i.e.,
cytoplasm or nucleus.

Now that the variables are established, we state the reactions that they
take part in:

1. Cyto+K → Kp

2. P +Kp → Pp +K

3. Pp +B → Bp + P

4. Pp + A→ Ap + P

5. Bp activates A

Further to these reactions, we assume that each non-phosphorylated pro-
tein X has an expression rate γX and for each phosphorylated and non-
phosphorylated protein Y , there is a degradation rate βY .

To model the activation of the A-types by the phosphorylated B-types,
we assume that the expression of the A-types increases sigmoidally with
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respect to the concentration of the phosphorylated B-types. In particular,
the expression of the A-types is represented by the term γAH

+(Bp, θBp
, ǫ),

where θBp
∈ R>0 and ǫ ∈ N.

To mimic the direct inhibition caused by Ap, we assume that the AHPs
accumulate in the nucleus in the presence of phosphorylated A-types [27, 66].
In order to replicate this behaviour, we first assume that the rate of inhibition
with respect to the concentration of Ap follows a sigmoidal curve, that is
H−(Ap, θAp

, ǫ′), where θAp
∈ R>0 and ǫ′ ∈ N. Also, the inhibition acts on

reaction 2 or 3 because the translocation of the AHPs is occuring during these
reactions. We apply the inhibition on reaction 3 because it is responsible for
the increase of P , that is AHPs in the cytoplasm.

By mass action kinetics, the reaction rates of the signalling pathway take
the following mathematical form.

v1 = α1CytoK v9 = βPp
Pp

v2 = α2KpP v10 = βBB

v3 = α3H
−(Ap, θAp

, ǫ′)PpB v11 = βBp
Bp

v4 = α4PpA v12 = βAA

v5 = γAH
+(Bp, θBp

, ǫ) v13 = βAp
Ap

v6 = βKK v14 = γK

v7 = βKp
Kp v15 = γP

v8 = βPP v16 = γB,

where αx denotes the rate constant of reaction x ∈ {1, 2, 3, 4}. Hence, we
obtain the ODE system

K̇ = −v1 + v2 − v6 + v14

K̇p = v1 − v2 − v7

Ṗ = −v2 + v3 + v4 − v8 + v15

Ṗp = v2 − v3 − v4 − v9

Ḃ = −v3 + v16 − v10 (6.1)

Ḃp = v3 − v11

Ȧ = −v4 + v5 − v12

Ȧp = v4 − v13

This model, therefore, describes the signalling pathway of cytokinin.
Unfortunately, the only restrictions that we can force upon the parameters

are concerning the decay terms as suggested in the literature, namely Ap has
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a lower degradation rate compared to A [3, 32], i.e., βAp
< βA. Because no

further restrictions can be made to the kinetic parameters from the literature,
we model the system qualitatively. For this reason, we want to convert the
ODEs (6.1) to a more qualitative model, e.g. a PADE-Q or Thomas model,
so that we can capture the essential behaviours of the cytokinin network.

6.3 Reduction

As a first step of converting the ODEs to a Thomas formalism, we reduce
the ODE system (6.1) into a more manageable five-dimensional model. The
reduced dimension of the system would then allow us to illustrate the results
of the thesis better.

The reduction method introduced by Heinrich et al. [25] is tailored for
two-component phospho-relay, where we assume that the system is saturated,
which means that the expression and degradation of each component is bal-
anced out. For our model, this means that the sum of phosphorylated and
non-phosphorylated proteins of each component have reached equilibrium.
For example, we assume that

K̇ + K̇p = γK − βKK − βKp
Kp = 0.

Assuming that the degradation rates are equal, i.e., βK = βKp
, gives that

K + Kp = γK/βK =: CK ∈ R≥0. In other words, the coupling of the two
variables K and Kp means that we can describe one variable in terms of
the other, hence reducing the dimension of the system. Similarly, we can
relate the AHP and B-type variables to get P + Pp = CP := γP/βP and
B + Bp = CB := γB/βB respectively. We do not apply the reduction for A
and Ap because the expression rate changes with the system, i.e., γA has a
coefficient that is dependent on the value of Bp. Also, the degradation rates
of A and Ap are not equal.

Applying the reduction described above for K,P and B, we reduce the
reaction rates of the eight-dimensional model to the following

v′1 = α1Cyto(CK −Kp) v′6 = βKp
Kp

v′2 = α2Kp(CP − Pp) v′7 = βPp
Pp

v′3 = α3Pp(CB −Bp)H
−(Ap, θAp

, ǫ′) v′8 = βBp
Bp

v′4 = α4PpA v′9 = βAA

v′5 = γAH
+(Bp, θBp

, ǫ) v′10 = βAp
Ap.
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Therefore, we have the ODE system

K̇p = v′1 − v
′
2 − v

′
6

Ṗp = v′2 − v
′
3 − v

′
4 − v

′
7

Ḃp = v′3 − v
′
8 (6.2)

Ȧ = −v′4 + v′5 − v
′
9

Ȧp = v′4 − v
′
10

Hence, we have a more manageable ODE system of five dimensions.

Now, we want to convert the five-dimensional ODE (6.2) to an ODE
model of the form (2.2) so that we can apply the analysis in the thesis. We
first group the terms on the right hand side of (6.2) into expression and
degradation terms, where the former is composed of the positive terms and
the latter the negative. Because the ODE model (2.2) is almost entirely
constructed from Hill functions, we need to deal with the linear terms in
(6.2).

Note that the following infinite sum of ramp functions equates with a
linear term, i.e., for x ∈ R≥0 it holds that

x =
∞∑

i=0

L+(x, i, i+ 1).

Because we are dealing with finite variables, i.e., maxj < ∞, we can ap-
proximate this sum by a finite number of ramp functions so that xj =
∑maxj−1

i=0 L+(xj , i, i+1). For simplicity, we let each linear term xj in (6.2) be
approximated by a single ramp function L+(xj , 0, 1).

In order to approximate these ramp functions with Hill functions, we as-
sign the threshold 1

2
to the variables Kp, Pp, Bp and A and choose the Hill

coefficient ǫ∗ij = 7 for each pair i, j ∈ {1, . . . , n} corresponding to the pertur-

bation δ̃ = 0.01 (see Prop. 5.3). Because CX is referring to the maximum
value of the variable X ∈ {Kp, Pp, Bp}, we let the terms CX −X be replaced
by the Hill function H−(X, 1

2
, 7). Because each variable can be scaled, we

set the threshold θAp
= 1

2
. Finally, for convenience, we combine the two

thresholds associated with the variable Bp, that is θBp
= 1

2
. Transforming all

linear terms into ramp functions and then all ramp functions to Hill functions
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yields the ODE model,

K̇p = α1H
+(Cyto,

1

2
, 7)H−(Kp,

1

2
, 7)− (βKp

+ α2H
−(Pp,

1

2
, 7))Kp

Ṗp = α2H
+(Kp,

1

2
, 7)H−(Pp,

1

2
, 7)−

−

(

βPp
+ α3H

−(Bp,
1

2
, 7)H−(Ap,

1

2
, ǫAp

) + α4H
+(A,

1

2
, 7)

)

Pp

Ḃp = α3H
+(Pp,

1

2
, 7)H−(Bp,

1

2
, 7)H−(Ap,

1

2
, ǫAp

)− βBp
Bp (6.3)

Ȧ = γAH
+(Bp,

1

2
, ǫBp

)− (βA + α4H
+(Pp,

1

2
, 7))A

Ȧp = α4H
+(A,

1

2
, 7)H+(Pp,

1

2
, 7)− βAp

Ap

Replacing the Hill functions in (6.3) with step functions gives the related
PADE model.

K̇p = α1S
+(Cyto,

1

2
)S−(Kp,

1

2
)− (βKp

+ α2S
−(Pp,

1

2
))Kp

Ṗp = α2S
+(Kp,

1

2
)S−(Pp,

1

2
)− (βPp

+ α3S
−(Bp,

1

2
)S−(Ap,

1

2
) + α4S

+(A,
1

2
))Pp

Ḃp = α3S
+(Pp,

1

2
)S−(Bp,

1

2
)S−(Ap,

1

2
)− βBp

Bp (6.4)

Ȧ = γAS
+(Bp,

1

2
)− (βA + α4S

+(Pp,
1

2
))A

Ȧp = α4S
+(A,

1

2
)S+(Pp,

1

2
)− βAp

Ap

Now, we deduce the ordering constraints of the PADE model above so that
(6.4) can be discretised using Def. 3.2 to yield a Thomas model. That is, for
all i ∈ {Kp, Pp, Bp, A, Ap} and D ∈ Dr, where Dr denotes the set of regular
domains in (6.4), we discuss whether the focal point component φi(D) is
above or below the threshold 1

2
, based on how we expect the system to evolve

from states in D. We first consider the variables that have only two focal
point component values.

The focal point components of variable Bp take only two values, namely
either φBp

(D) = 0 or φBp
(D) = α3/βBp

for a regular domain D ∈ Dr.
If α3/βBp

< 1
2
, then S+(Bp,

1
2
) = 0 for all solutions that have an initial

condition Bp = 0, which would imply that A converges to zero over time.
Because we expect to see some increase in A, we choose the constraint

α3/βBp
>

1

2
.
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Similarly, the focal point components of variable Ap take two values,
namely either φAp

(D) = 0 or φAp
(D) = α4/βAp

for regular domain D ∈ Dr.
If α4/βAp

< 1
2
, then S−(Ap,

1
2
) = 1 for all solutions that have an initial

condition Ap = 0, which would imply that Ap has no inhibiting influence on
the other variables. Because we assume direct inhibition of the signal by the
A-types, we let

α4/βAp
>

1

2
.

The focal point components of variable A take the three values 0, γA/βA
and γA/(βA +α4). By similar reasoning as for Ap and Bp, we let γA/βA >

1
2
.

However, we need to consider the value γA/(βA + α4), which is the focal
point component of A when Bp, Pp >

1
2
. Because this case corresponds to

the A-types being expressed and simultaneously phosphorylated, the con-
dition γA/(βA + α4) <

1
2
would imply that A does not increase beyond 1

2
,

representing the case that the A-types are being expressed and immediately
phosphorylated. However, the phosphorylated A-types would not increase
in such a case due to the switch-like behaviour of the PADE model. There-
fore, for the event of expression and simultaneous phosphorylation to still
imply an increase in the overall concentration of the A-types in our model,
we choose the constraints

γA/βA, γA/(βA + α4) >
1

2
.

The variable Kp is similar to A in that its focal point components take
three values, namely 0, α1/βKp

and α1/(βKp
+ α2). Following similar argu-

ments, we choose the constraints

α1/βKp
, α1/(βKp

+ α2) >
1

2
.

The focal point components of variable Pp take five different values, which
following similar arguments as for A gives the ordering constraints

α2/βPp
, α2/(βPp

+ α3), α2/(βPp
+ α4), α2/(βPp

+ α3 + α4) >
1

2
.

Because each variable is associated to a single threshold value, we expect
the related Thomas model to be Boolean. Accordingly, we define the Boolean
variables cyto, kp, pp, bp, a and ap to correspond to the continuous variables
Cyto,Kp, Pp, Bp, A and Ap respectively. Note that cyto is an input variable
that takes a constant value, i.e., either 0 or 1. Because we are only interested
in the transduction of the signal when cytokinin is present, we only consider
the case cyto = 1 in the following. The state space of the related Thomas
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model can be defined using these Boolean variables, namely Q := {0, 1}5.
Discretising the PADE system (6.4) using the method in Def. 3.2, we obtain
a unique update function f : Q → Q from the ordering constraints above.
Furthermore, we observe the individual Boolean variables to obey the fol-
lowing logical rules, which follows from the discretisation of (6.4) using the
method in Def. 3.2.

kp = cyto ∧ ¬kp

pp = kp ∧ ¬pp

bp = pp ∧ ¬bp ∧ ¬ap

a = bp

ap = a ∧ pp.

From these logical equations, we have a single update function of the cy-
tokinin network that satisfies the basic assumptions of the system. Fig. 6.3
displays part of the state transition graph, STG(f), of the update function
f : {0, 1}5 → {0, 1}5.

As expected discretisation has reduced the system to its very basic com-
ponents, where particular interactions of the signalling pathway are missing.
In particular, if we were to construct a PADE model from the Thomas model
above using Def. 3.3, we would have constant degradation terms, which are
unlike the degradation terms in (6.4). This inconsistency between models
emphasises the problem of discretisation and interpolation because multiple
ODE models are related to a single Thomas model. That is, transforming
a Thomas model to an ODE model is not a trivial task and can have very
different implications on the resulting system behaviours.

6.4 Parameter Estimation

In this final section, we estimate the kinetic parameters of the ODE model
(6.3) starting from the ordering constraints of the related PADE model (6.4),
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Figure 6.3: Subgraph of the STG of the reduced Thomas model of the sig-
nalling network. Each state is a 5-tuple representing the Boolean values of
(kp, pp, bp, a, ap).

which are

1

2
< φ1 :=

α1

βKp
+ α2

1

2
< φ2 :=

α2

βPp
+ α3

1

2
< φ3 :=

α3

βBp

(6.5)

1

2
<

γA
βA + α4

,
α1

βKp

,
α2

βPp
+ α3 + α4

,
α4

βAp

.

Note that because reaction rates take positive values, some of the inequali-
ties above imply the focal point component restrictions that have not been
labelled above, e.g. 1

2
< α2

βPp+α3+α4
< α2

βPp+α4
< α2

βPp
. From the ordering con-

straints, we want to incrementally add constraints on the kinetic parameters
so that the observed behaviour, that is the A-types are expressed given an
initial value of zero for all components, is present in the different models.

At first glance, the lack of steady states in the STG implies that there
are no asymptotically stable equilibria in the regular domains of the PADE
model by Thm. 3.1. Nevertheless, we can find a path in the STG that
reflects the observed behaviour, namely (00000, 10000, 11000, 11100, 11110).
We want this observed behaviour to be reflected in the QTGΨ.
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Thus, we want that there exists a path from the regular domain corre-
sponding to 00000, i.e. D0 := [0, 1

2
) × [0, 1

2
) × [0, 1

2
) × [0, 1

2
) × [0, 1

2
), to a

domain where the value of A is strictly positive. However, an STG path does
not always correspond to a QTG path (Ex. 8) and thus we trace a QTG path
from D0 by considering a small set of transitions in the STG (Thm. 3.1).

The STG edge (00000, 10000) ∈ E implies that (D0, D1) ∈ T Ψ, where
D1 := [1

2
] × [0, 1

2
) × [0, 1

2
) × [0, 1

2
) × [0, 1

2
). The edge (10000, 00000) ∈ E

then implies that D1 is non-transparent by 1a) of Thm. 3.1. The edges
(10000, 11000) ∈ E and (01000, 00000) /∈ E imply by (2) and (3) of Thm. 3.1
respectively that (D1, D2), (D2, D1) ∈ T Ψ, where D2 := [1

2
] × [1

2
] × [0, 1

2
) ×

[0, 1
2
) × [0, 1

2
). From Fig. 6.3, we see that the edges to and from the state

11000 satisfy 1a) of Thm. 3.1 for the variables kp, pp and bp. Hence, D
2 and

D3 := [1
2
] × [1

2
] × [1

2
] × [0, 1

2
) × [0, 1

2
) are non-transparent. Furthermore, the

edge (01000, 01100) ∈ E implies by (2) of Thm. 3.1 that (D2, D3) ∈ T Ψ

and the edge (00000, 00100) /∈ E implies by (3) of Thm. 3.1 that (D3, D2) ∈
T Ψ. Finally, the edge (01100, 01110) ∈ E implies by (2) of Thm. 3.1 that
(D3, D4) ∈ T Ψ and the edge (01000, 01010) /∈ E implies by (3) of Thm. 3.1
that (D4, D3) ∈ T Ψ, where D4 := [1

2
] × [1

2
] × [1

2
] × [1

2
] × [0, 1

2
), i.e., A has a

strictly positive value. Therefore, we have that the path (D0, D1, D2, D3, D4)
in the QTGΨ reflects the observed behaviour. Because we are focussing on
this particular path in the QTGΨ, rather than displaying the entire graph,
we overlay the path of the QTGΨ on the STG(f) in Fig. 6.4.

Next, we look at the individual transitions in the path and discuss whether
they are present in QTGΦ. By Lemma 4.2, we have that (D0, D1) ∈ T Φ for
QTGΦ(A) = (D, T Φ). However, as we showed in Fig. 4.4 and Fig. 4.5, a
transition between singular domains in QTGΨ may not be present in QTGΦ

depending on the kinetic parameters. Although the transition (D3, D4) ∈ T Ψ

yields a positive value for A, by nature of the PADE solutions the value
A begins to increase as soon as Bp = 1

2
, i.e., A obtains a strictly posi-

tive value. Therefore, for the discretised PADE formalism to reflect the
observed behaviour, we want the path (D1, D2, D3) to be present in the
QTGΦ(A) = (D, T Φ). That is, we want to restrict the kinetic parameters
such that (D1, D2), (D2, D3) ∈ T Φ and (D2, D1), (D3, D2) /∈ T Φ.

For the transition (D1, D2), we consider the focal points associated with
D1, that is (φ1, 0, 0, 0, 0) and (0, φ2, 0, 0, 0). If the line connecting these two
focal points intersects D1, then D1 has a singular equilibrium set, which
would not reflect the observed behaviour. To avoid this, we impose the
condition

1

φ1
+

1

φ2
< 2, (6.6)

which ensures that the focal set of D1 in the variable pp is beyond the thresh-
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Figure 6.4: The same subgraph of the STG as in Fig. 6.3 is depcited in
gray. Nodes and transitions of the QTGΨ are overlaid in black such that
the location of the domains corresponds to their location with respect to the
nodes of the STG.

old 1
2
. Moreover, the same condition ensures that D2 has a non-empty focal

set.
For the next transition (D2, D3), we look at the focal points,(φ1, 0, 0, 0, 0),

(0, φ2, 0, 0, 0), (0, 0, φ3, 0) and (α1/βKp
, 0, φ3, 0, 0). If the plane produced by

the three focal points (φ1, 0, 0, 0, 0), (0, φ2, 0, 0, 0) and (0, 0, φ3, 0, 0) intersects
with D2, then there exists a singular equilibrium set in D2. Because we want
all solutions to exit D2, we impose the constraint

1

φ1
+

1

φ2
+

1

φ3
< 2. (6.7)

Fig. 6.5 displays examples of conditions (6.6) and (6.7) not being satisfied
for the ODE model (6.3), where the former has a steady state such that
Pp <

1
2
with zero concentration for Bp, A and Ap, and the latter has a steady

state such that Bp <
1
2
with zero concentration for A and Ap. Therefore, the

constraints (6.6) and (6.7) ensure that the observed behaviour is present in
QTGΦ, that is (D1, D2), (D2, D3) ∈ T Φ.

As discussed in Sect. 5.1, to ensure that the PADE solutions are conserved
in the ODE model, we look at the PMA model. As mentioned above, the
related PMAmodel replaces every step function with threshold 1

2
in (6.4) with

a ramp function with the threshold interval [0, 1]. The threshold intervals
have the upper bound of 1, from which we can extend the ordering constraints
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Figure 6.5: Trajectories of the PADE model (6.4), where (6.6) is not satisfied
on the left with φ1 = 1 and φ2 = 2/3 and (6.7) is not satisfied on the right
with φ1 = 2, φ2 = 1 and φ3 = 3/5. The trajectory on the left has zero values
for variables Bp, A and Ap and the trajectory on the right has zero values for
variables A and Ap.

to give the PMA parameter constraints, namely

1 < φ1, φ2, φ3

1 <
γA

βA + α4

,
α1

βKp

,
α2

βPp
+ α3 + α4

,
α4

βAp

.

We extend the conditions (6.6) and (6.7) so that the path (D1, D2, D3) in the
QTGΦ has corresponding trajectories between R1 and R2 as well as between
R2 and R3, where Rj := χ−1(Dj), j = 1, 2, 3 in the PMA model. Although
the conditions (6.6) and (6.7) may suffice for some trajectories to leave R1

and R2 in the direction of R2 and R3 respectively, we want to be sure that no
solution stays in R1 or R2. That is, we want to deduce conditions that there
are no equilibria in Rj, j = 1, 2, 3 so that all solutions leave the rectangle.
For this we need to check that the condition (5.1) is not satisfied.

Adapting the conditions (6.6) and (6.7) to incorporate the threshold in-
tervals such that (5.1) is not satisfied for R1 and R2 yields

1

φ1

+
1

φ2

< 1, and
1

φ1

+
1

φ2

+
1

φ3

< 1. (6.8)

From these restrictions, we see how the different reaction rates are coupled
and thereby determine the sensitivities of the kinetic parameters with respect
to each other. In particular, we see that decreasing the reaction rate α2 we
need to increase the reaction rate α3 such that (6.6) holds in order for the
observed behaviour to be replicated. In other words, with our parameter
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restrictions, we establish some coupling and interdependencies of the different
kinetic parameters.

With the above observations, we can simulate the ODE model (6.3) with
kinetic parameters that satisfy the PMA parameter constraints as well as
(6.8). Still, parameters that satisfy both conditions in (6.8) can be chosen in
multiple ways. Fig. 6.6 displays two different parameter sets that satisfy the
PMA parameter constraints as well as (6.8). We observe that both trajecto-
ries of the ODE model (6.3) reach a stable equilibrium point with increasing
time. In other words, although we have restricted the parameters, there are
still many kinetic parameters that satisfy these restrictions.

Note that in both trajectories of the ODE model in Fig. 6.6, the final
values of each variable have the same ordering with respect to each other. In
that sense, we claim that the qualitative behaviour of the two sets of kinetic
parameters are equivalent. Similarly, the trajectories of the five dimenional
and eight dimensional models also display an ordering of the equilibrium con-
centrations that also reflects the ordering of the ODE model. Before reaching
an equilibrium, each trajectory in all the models and for all sets of kinetic
parameters exhibits a damped oscillation. The longest oscillation is observed
in the five-dimensional model, followed by the eight-dimensional model and
then the ODE model, which exhibits a very slight damped oscillation af-
ter the initial increase in concentration. In other words, replacing the linear
terms in (6.2) with Hill functions to create (6.3) conserves the qualitative dy-
namics, where qualitative dynamics refers to the ordering of the variables at
the final concentration. Moreover, the reduction method of two-component
phosphorelay systems in [25] also conserves the qualitative dynamics.

Our experience from modelling the cytokinin signal transduction path-
way is that qualitative modelling can be done when analysing general ODE
systems that consist of more than just Hill functions. More specifically, after
converting the general ODE system into an ODE model of the form (2.2),
we are able to transform the ODE model into the Thomas or PADE mod-
els, and thus can use the different available analysis techniques to study the
ODE model. As we have shown in this section, we have been able to infer
the kinetic parameters of the ODE model from the qualitative parameter
information of the update function in the Thomas model resp. the ordering
constraints in the PADEs. These kinetic parameters, which are more con-
strained than prior to the analysis, can then be applied to the ODE model
to obtain dynamics that are consistent with the other modelling methods,
thus reducing the artefacts of the formalisms. In summary, by comparing the
dynamics that are generated from different modelling methods, we hope to
gain a better understanding of how the biological system behaves as opposed
to how the modelling method abstracts the system.
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Figure 6.6: Trajectories of the different models that we have considered.
The two top, two middle and two bottom diagrams display simulations of the
ODE model (6.3), the five-dimensional model (6.2) and the eight-dimensional
model (6.1) respectively. The left column displays the simulations resulting
from the parameters (φ1, φ2, φ3) = (3, 3, 4), whereas the right column uses
the parameters (φ1, φ2, φ3) = (2, 5, 5). Note that both parameter sets satisfy
(6.8).
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Summary:

• Qualitative modelling methods can help analyse general ODE systems.

• Kinetic parameters of the ODE model can be inferred from the qual-
itative parameter information of the update function in the Thomas
model resp. the ordering constraints in the PADEs.

• Simulations of different parameter sets showed similar dynamics for the
cytokinin signal transduction network.



CHAPTER 7
Conclusion

Mathematical modelling helps in the understanding of biological processes.
However, there are many modelling approaches that provide either coarse or
fine representations of system behaviour. By relating different formalisms,
the behaviours represented by each formalism can be compared to reveal
consistencies or inconsistencies in the dynamics. In order to find conditions
for such consistent or inconsistent dynamics, we need to conduct a thorough
mathematical analysis.

In this thesis, we have established a relation between the discrete Thomas
formalism and the continuous ODE formalism in order to discuss the con-
sistent and inconsistent dynamics between them. Direct transformations
between ODE and Thomas formalisms are very rough in the sense that a lot
of explicit parameter information is lost resp. required in the transformation.
To break up the large gap of information between the Thomas and ODE for-
malisms, we incorporated the hybrid modelling approach of PADEs as well
as the discrete singular state formalism and the continuous PMA formalism.
Fig. 7.1 displays the formalisms in our analysis and how they differ in terms
of either their dynamics or their parameters. These modelling approaches
provide a stepwise transformation, which is less rough than the direct trans-
formation between Thomas and ODE models (see Fig. 7.2). We are then
able to see at which step the inconsistent dynamics arises. In consequence,
we are able to discuss the consistent and inconsistent dynamics between the
Thomas and ODE models using the stepwise transformations.

When using stepwise transformations between ODE and Thomas models,
we choose the parameters so that there is dynamics that is consistent between
all formalisms. In particular, if the kinetic parameters of the ODE model
satisfy the PMA parameter constraints (Sect. 5.1) and the Hill coefficient
are chosen as in Sect 5.2, then a steady state in the Thomas formalism does
not only correspond to an asymptotically stable equilibrium point in the
related PADE model (cf. [56]), but also in the ODE model. Furthermore,
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Figure 7.1: A plot of the different formalisms that have been addressed in
the thesis in terms of how they relate with each other. The x-axis displays
increasing parameter information going from left to right and based on the
parameter relations established in the thesis. The y-axis is ranked by in-
creasing detail of dynamical information, where the transition systems are
ranked first by increasing node set size and then by update scheme and the
solution trajectories are ranked by uniqueness and smoothness of solutions.
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the result in [56, 17, 42, 21] (see Introduction) that a cyclic attractor in the
Thomas model corresponds to an asymptotically stable equilibrium point or
a limit cycle oscillation in the ODE model is confirmed by the results in
Prop. 3.3, Prop. 3.2 and Prop. 5.1. In other words, by the results developed
in the thesis, there are some behaviours that are conserved by the stepwise
transformations.

Despite the coarse representation, the Thomas formalism also provides
information about other equilibria that are not accounted for by the steady
states in the state transition graph. Thm. 4.1 exploits the association of
the Thomas and PADE-Q formalisms to show that every steady state in the
PADE-Q formalism is also a steady state in the PADE-D formalism, which
by Cor. 5.1 corresponds to exactly one equilibrium point in the PMA model.
Assuming that the perturbation argument in Prop. 5.3 holds for singular
rectangles of the PMA model, all equilibria are conserved between the PMA
and ODE models. Therefore, the Thomas formalism can also determine
equilibrium points in the ODE model that are not necessarily asymptotically
stable.

By the proof of Thm. 4.1, a steady state in QTGΨ of the PADE-Q formal-
ism, which is a singular domain, is characteristic of negative feedback loops
in the interaction graph. By Cor. 4, we know that the singular state corre-
sponding to this singular domain is also a steady state in the singular state
formalism. This reflects the findings in [57, 48] that singular steady states are
characteristic of feedback loops in the interaction graph. Moreover, the proof
of Cor. 5.1 does not need the assumption that feedback loops be negative,
which would imply that the singular steady states that are characteristic of
positive feedback loops in the interaction graph would also lead to exactly
one equilibrium point in the ODE model. In that respect, the original singu-
lar steady state formalism, whose dynamics is derived from a strictly defined
interaction graph and logical parameters, is very successful in determining
equilibria in the ODE model. This shows that, there is information encoded
in the Thomas formalism that implies the existence of multiple equilibria in
the ODE model.

We shortly address the role of the PADE-R formalism in the analysis of
the Thomas and ODE formalisms. On the one hand, the PADE-R formalism
is a refinement of the PADE-Q formalism (Sect. 4.1). On the other hand,
the kinetic parameters of the PADE-D formalism convey more specific dy-
namics than the parameter inequality constraints of the PADE-R formalism
(Sect. 4.2). Because of the close relation between the Thomas and PADE-Q
formalisms (Sect. 4.1) as well as the relation between the PADE-D and ODE
formalisms (Chap. 5), the PADE-R formalism does not improve our under-
standing of the consistent and inconsistent dynamics between Thomas and
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ODE models and thus we disregard it in this final discussion.
When considering general attractors in the Thomas and ODE models, we

can determine the location of attractors via hyperrectangular trap sets. More
specifically, a hyperrectangular trap set in the Thomas formalism implies that
a hyperrectangle U exists in the related PADE-Q formalism, which is also a
trap set by Prop. 3.4. The subgraph property [15] would then imply that U is
also a trap set in the PADE-D formalism. By Def. 2.5, the PADE solutions are
restricted to the union of domains in U . The construction of the PMA model
and the PMA parameter constraints then imply that the sign of the vector
field on the boundary of a domain in the PADE model is reflected in the sign
of the vector field at the corners of the corresponding rectangle in the PMA
model (see [5, 33] and Prop. 5.1). Therefore, the union of rectangles, whose
corresponding domains are in U , defines a positive invariant set in the PMA
model. Here a positive invariant set means that a solution starting in the set
will remain in the set with increasing time. Finally, we expect the trajectories
in the PMA model to be conserved in the ODE model (Sect. 5.2). In other
words, a hyperrectangular trap set in the Thomas model corresponds to a
positive invariant hyperrectangular region of the ODE model. That is, the
Thomas model can uncover the location, but not the number, of attractors
in the ODE model.

Finally, we discuss the potential dynamics between formalisms, which
refers to the dynamics that is potentially consistent between formalisms de-
pending on explicit kinetic parameters. For example, the PADE-Q shares
information about the potential singular equilibrium sets in PADE-D (end of
Sect. 3.3), and singular equilibrium sets in PADE-D are potential equilibria
in the PMA model (Sect. 5.1.1). Also, many discrete paths in PADE-D have
potential PADE solutions (Sect. 4.3). In order for the potential dynamics to
be consistent under a stepwise transformation, we impose restrictions on the
kinetic parameters. Applying these restrictions over all the stepwise trans-
formations allows mainly consistent dynamics to exist between the Thomas
and ODE models. In other words, with the goal of maximising consistent dy-
namics between all formalisms, explicit kinetic parameters that are otherwise
lacking can be inferred by the potential dynamics.

The interdependencies between different modelling approaches presented
here are just the beginning. Other than expanding on the relations estab-
lished above, one could also incorporate more complex formalisms such as
stochastic models [53] and delay equations [19, 20] in order to shed some light
on the random resp. delay features of the biological system. Also, including
the relation between network structure and dynamics can help analyse some
systems using their network topologies [54, 35]. These topics would help
improve our understanding of how modelling methods represent a systems
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Figure 7.2: Our formalisms of interest from the introduction. The arrows
depict transformations between the respective formalisms and are labelled
with the references and results or sections of the thesis that deal with the
transformation.

behaviour and are possibilities for future work.
In conclusion, the relations between the different formalisms allow us to

use their respective analysis methods to analyse a single biological network.
In particular, when explicit kinetic parameters are lacking, the qualitative
parameter information allows us to identify some equilibria and limit cycle
oscillations in the ODE model that are also present in the other formalisms.
The stepwise transformations then allow us to see how the more precise dy-
namics firstly builds on the coarse representation, and secondly is sensitive
to the kinetic parameters. When determining the more precise dynamics,
e.g. existence of a trajectory implied by a time series, the kinetic parameters
can be restricted so that there is consistent dynamics between the different
modelling methods. This procedure does not only ensure that the dynam-
ics are consistent regardless of the modelling method used, but also helps
estimate the kinetic parameters that were lacking. In other words, the quali-
tative formalisms can be used as an analysis tool for the differential equation
formalisms. In summary, by understanding the interdependencies between
multiple formalisms, we are able to reduce the artefacts of the modelling
methods and thereby model biological networks with greater precision.



Chapter 7. Conclusion 126



Bibliography

[1] J. Ahmad, G. Bernot, J.-P. Comet, D. Lime, and O. Roux. Hybrid
Modelling and Dynamical Analysis of Gene Regulatory Networks with
Delays. ComPlexUs, 3(4):231–251, 2006.

[2] J. Ahmad, O. Roux, G. Bernot, and J.-P. Comet. Analysing formal
models of genetic regulatory networks with delays. International Journal
of Bioinformatics Research and Applications, 4(3):240–262, 2008.

[3] Y. Asakura, T. Hagino, Y. Ohta, K. Aoki, K. Yonekura-Sakakibara,
A. Deji, T. Yamaya, T. Sugiyama, and H. Sakakibara. Molecular charac-
terization of His-Asp phosphorelay signaling factors in maize leaves: Im-
plications of the signal divergence by cytokinin-inducible response regu-
lators in the cytosol and the nuclei. Plant molecular biology, 52(2):331–
341, 2003.

[4] G. Batt, H. de Jong, M. Page, and J. Geiselmann. Symbolic reachabil-
ity analysis of genetic regulatory networks using discrete abstractions.
Automatica, 44(4):982–989, Apr. 2008.

[5] C. Belta, L. Habets, and V. Kumar. Control of multi-affine systems
on rectangles with applications to hybrid biomolecular networks. In
Decision and Control, 2002, volume 1, pages 534–539. IEEE, 2002.

[6] S. Berman, A. Halasz, and V. Kumar. MARCO: A Reachability Algo-
rithm for Multi-Affine Systems with Applications to Biological Systems.
In International Conference on Hybrid Systems: Computation and Con-
trol (HSCC’07), pages 76–89. Springer, LNCS 4416, 2007.

[7] R. Casey, H. de Jong, and J.-L. Gouzé. Piecewise-linear models of ge-
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APPENDIXA
Nomenclature

Ordinary Differential Equations (ODE) model
Ω : phase space

θji : j-th threshold of variable i
ξ̄(t) : solution trajectory over time t > 0
ǫij : Hill coefficient

H±(xi, θ
j
i , ǫij) : Hill function of variable xi at threshold θ

j
i with Hill

coefficient ǫij
Nulli : Nullcline of variable i
0 : zero vector

Piecewise Multi-Affine (PMA) model
R : rectangles
V(R) : corners of R ∈ R
θj,0i , θj,1i : j-th threshold interval of variable i

L±(xi, θ
j,0
i , θj,1i ) : ramp function of variable xi with linear

increase/decrease in the threshold interval [θj,0i , θj,1i ]
Piecewise Affine Differential Equations (PADEs)
S±(xi, θ

j
i ) : Step function of variable xi at threshold θ

j
i

D : (mode) domains
Dr : regular domains
Ds : singular domains
φ(D) : focal point of domain D ∈ Dr

∂D : boundary of domain D
supp(D) : supporting hyperplane of domain D
ρ(D) : regular domains that have D ∈ Ds in their boundary
co(P ) : closed convex hull of all points in P
Φ(D) : focal set of domain D
ξ(t) : PADE solution over time t > 0
QTGΦ(A) : qualitative transition graph of PADEs A
rect(P ) : closed hyperrectangular set of all points in P
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Ψ(D) : overapproximated focal set of domain D
v(D, φ(D)) : relative position of the domain D ∈ Dr with its focal point
V (D,Φ(D)) : relative position of the domain D ∈ D with its focal set
QTGΨ(A) : overapproximated qualitative transition graph of PADEs A
M : flow domains
QTS : qualitative transition system of the refined PADE formalism
Si(M) : sign of derivative of variable i for flow domain M ∈M

Thomas formalism
Q : state space
AS(q) : asynchronous successors of q ∈ Q
f : update function
STG(f) : state transition graph of f

f̃ : unitary update function
Singular State Formalism
Ḡ : interaction graph
{Ki,ω} : logical parameters
Pred(i) : predecessors of variable i in the interaction graph
|a, b| : qualitative value
ord(s) : number of singular values of s ∈ Sigma
Σ : extended state space
g : extended update function
Regi(s) : regular resources of variable i for s ∈ Σ
Singi(s) : singular resources of variable i for s ∈ Σ
ESG(g) : extended state graph of g
∆±

i (s) : evolution operators of the state s ∈ Σ in variable i
Mappings between Formalism
d : discretises the regular domains in the PADEs into states in the

Thomas formalism
µ : maps a domain in the PADEs to a state in the singular state

formalism
H : maps a domain in the PADEs to a group of states in the

Thomas formalism
δ : maps a state in the singular state formalism to a group of states

in the Thomas formalism
χ : maps a rectangle in the PMA model to a domain in the PADEs
mode : maps a flow domain to a mode domain in the PADEs
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fahren vorausgegangen sind.

Shahrad Jamshidi


