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Abstract

Data analysis has become fundamental to our society and comes in multi-
ple facets and approaches. Nevertheless, in research and applications, the focus
was primarily on data from Euclidean vector spaces. Consequently, the majority
of methods that are applied today are not suited for more general data types.
Driven by needs from fields like image processing, (medical) shape analysis, and
network analysis, more and more attention has recently been given to data from
non-Euclidean spaces—particularly (curved) manifolds. It has led to the field of
geometric data analysis whose methods explicitly take the structure (for example,
the topology and geometry) of the underlying space into account. This thesis
contributes to the methodology of geometric data analysis by generalizing sev-
eral fundamental notions from multivariate statistics to manifolds. We thereby
focus on two different viewpoints. First, we use Riemannian structures to derive a
novel regression scheme for general manifolds that relies on splines of generalized
Bézier curves. It can accurately model non-geodesic relationships, for example,
time-dependent trends with saturation effects or cyclic trends. Since Bézier curves
can be evaluated with the constructive de Casteljau algorithm, working with data
from manifolds of high dimensions (for example, a hundred thousand or more)
is feasible. Relying on the regression, we further develop a hierarchical statistical
model for an adequate analysis of longitudinal data in manifolds, and a method
to control for confounding variables. We secondly focus on data that is not only
manifold- but even Lie group-valued, which is frequently the case in applications.
We can only achieve this by endowing the group with an affine connection struc-
ture that is generally not Riemannian. Utilizing it, we derive generalizations of
several well-known dissimilarity measures between data distributions that can be
used for various tasks, including hypothesis testing. Invariance under data trans-
lations is proven, and a connection to continuous distributions is given for one
measure.

A further central contribution of this thesis is that it shows use cases for all
notions in real-world applications, particularly in problems from shape analysis
in medical imaging and archaeology. We can replicate or further quantify sev-
eral known findings for shape changes of the femur and the right hippocampus
under osteoarthritis and Alzheimer’s, respectively. Furthermore, in an archae-
ological application, we obtain new insights into the construction principles of
ancient sundials. Last but not least, we use the geometric structure underlying
human brain connectomes to predict cognitive scores. Utilizing a sample selection
procedure, we obtain state-of-the-art results.
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Introduction

Mathematical data analysis has become fundamental to many applications, impact-
ing our lives profoundly. Indeed, almost every scientific discipline nowadays uses its
tools. This development has come with a paradigm shift away from traditional mod-
eling of systems, which usually requires ample a priori knowledge, towards learning
the underlying laws directly from the data [9, 132, 263]; the ever-increasing popularity
of machine—especially deep—learning techniques exemplifies this trend very well [6,
151]. Distilling knowledge purely from (numerical) data works best if there are large
amounts available and sufficient realism and variability are included; in this case, it
might even be advisable to neglect some of the information to increase computing
speed. But when only a few samples are available, it is vital to utilize every bit of
information for good results. Indeed, this can be very relevant in practice: Small sets
of samples frequently arise, for example, in medical applications (for example, be-
cause the use of an intervention is restricted) and archaeology (for example, because
findings are scarce). Furthermore, they are also common when we deal with high-
dimensional data because the dimension of the underlying space strongly influences
how “large” a given sample size is (the ratio of the number of unknown parameters
and the number of samples being the deciding factor [42]). Today, data from spaces
with several hundred thousand dimensions is not uncommon [42, 73, 135, 189, 245]
making sophisticated analysis tools a necessity.

A pillar of the methodology underlying modern data analysis is (mathematical)
statistics. Although traditional multivariate statistics plays an undiminished role, the
scope has widened considerably over the last decades, with larger and more complex
data types being of interest. This development is fuelled by the ongoing increase in
computing power, which makes computationally more demanding analysis tools us-
able in practice. Just 20 years ago, geometric relations between samples differing from
the usual Euclidean vector space structure were often overlooked; therefore, most data
analysis methods are still formulated exclusively for Euclidean space [51]. Thus, we
often do not take all the available information into account, as there are many cases in
which data comes from other spaces: for example, different manifolds [54, 184, 191,
200], graph [7, 62, 257], and even stratified [85, 128, 142] spaces. One reason why
this was not exploited more in the last century is that methods for non-Euclidean
spaces can be computationally demanding; today, processing power has increased so
much that they can be employed sensibly—also for high dimensional data. Indeed,
over the last two decades, several data analysis techniques have been generalized to
manifold-valued data with success [108, 189]. Most of them are formulated for Rie-
mannian manifolds and exploit their rich structure. For example, the covariance (and
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higher moments) can be defined [184] using the Frechét mean [95] as the center of the
data distribution.1 Often (but not always) relying on the latter, much work has been
done to make principal component analysis—one of the most widely used dimension re-
duction techniques in multivariate statistics—available [93, 129, 185, 229]. Regression
analysis has also been investigated, leading, amongst others, to generalizations of lin-
ear [89], kernel [69], and Gaussian process regression [161]. Other examples are the
Riemannian median [92], dissimilarity measures of sample distributions [126, 172],
and several methods from non-parametric statistics [182]. There are also approaches
for stratified spaces [85, 129, 182, 185].

A relatively recent research direction investigates the benefits of non-Riemannian
structures for statistics in manifolds. For Lie groups, using a non-metric affine connec-
tion has fundamental advantages [186, 188]: It allows to define notions like the mean
in a way that is compatible with the group operations, resulting in highly desirable
invariance/equivariance under data translation.

Albeit the progress, much more is left to be done [128], and there is an ongoing
research effort to make the geometry of the data space usable for analysis. This thesis
should be understood as part of this process: It develops new methods for (statistical) ge-
ometric data analysis and identifies applications. It focuses on manifold-valued data, with
a particular emphasis on Lie groups in some chapters. While we take the Riemannian
viewpoint to derive methods for general manifolds, we adopt the more recent affine
viewpoint for Lie groups to benefit from its compatibility with the group structure.
Utilizing both, we make the following contributions to the theory of geometric data
analysis in this thesis:

• We generalize polynomial (spline) regression to manifolds with Riemannian
structure using Bézier curves. A benefit of our approach is that its components
can often be computed from explicit formulas, leading to efficient regression
algorithms.

• Building upon the new regression scheme, we derive a novel hierarchical statisti-
cal model for the analysis of longitudinal manifold-valued data that can capture
non-geodesic relations.

• We propose a procedure that allows controlling for continuous confounding
variables in manifold-valued data through normalization.

• Relying on the affine viewpoint, we generalize well-known dissimilarity mea-
sures for data distributions to Lie groups and prove invariance properties under
group operations for them. For one notion—the bi-invariant Bhattacharyya dis-
tance—we also investigate a natural relation to continuous distributions in the
group.

Shape analysis is an important application area for mathematical statistics, in
which manifold-valued data often arises. In this field, one wants to infer knowl-
edge about the geometric shape of (usually) two or three-dimensional objects [12, 75,
142]. Its methods are used very often in the field of medical imaging [189] to analyze

1The Fréchet mean was introduced by Maurice René Fréchet already in the 1940s.
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shapes of anatomical structures; apart from this, shape analysis has found applica-
tions, for example, in biology [75] and archaeology [142]. We apply our new methods
for shape analysis in medical image analysis and archaeology. Thereby, we achieve
the following:

• We can accurately capture the development of osteoarthritis (OA) in the knee
with the new regression technique; thereby, we observe an acceleration of dis-
ease progression which shows that higher-order regression is beneficial in this
application.

• Using the novel dissimilarity measures, we perform hypothesis tests for known
differences in the shape of the hippocampus under Alzheimer’s and for known
differences in knee configuration under (OA). We observe statistically significant
differences in both cases, verifying the sensitivity of the notions in real-world
scenarios.

• Utilizing information we obtain by applying our hierarchical statistical model,
we successfully classify distal femur bones according to the development of OA.

• Applying geodesic2 regression in an archaeological context, we show that an-
cient Roman craftsmen adapted the bending of the shadow-receiving surface to
the installation site when constructing sundials.

Furthermore, we build a deep (graph) neural network that predicts cognitive scores
from brain connectome data. By viewing graphs as elements of a manifold, we pre-
select a subset of samples such that training only on them improves the network’s
performance yielding better results than state-of-the-art methods.

The thesis consists of three parts: Part II and III contain the results of the author’s
research, while the necessary theory from differential geometry and an overview of
the relevant part of geometric statistics are given in Part I. Part II deals with theoretical
and algorithmic findings, whereas Part III showcases their transfer to applications. On
a finer level, the structure is as follows.

Part I consists of three chapters: In Chapter 1, we introduce the necessary notions
from differential geometry. In Chapter 2, we recall Bézier splines for Riemannian
manifolds and summarize the mathematical theory of shape. In Chapter 3, we review
existing methods for statistics on manifolds; in doing so, we contrast the Riemannian
and the affine viewpoint for Lie groups to highlight the differences between them.

Part II consists of two chapters: In Chapter 4, we focus on Lie group-valued data
and generalize dissimilarity measures for data in a bi-invariant way. Changing to the
Riemannian viewpoint for data in general manifolds, we introduce a novel general-
ization of higher-order polynomial regression in Chapter 5. Using it, we propose a
method to normalize parameter-dependent data and define a hierarchical model for
longitudinal data.

Part III consists of three chapters: In Chapter 6, several applications of the new
methods to shape analysis in medicine are shown, while in Chapter 7, we use them

2Geodesic regression was introduced by Fletcher in [89]. It is an important special case of the more
general spline regression we present.
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to analyze the shape of certain archaeological artifacts. Finally, in Chapter 8, we use
tools from geometric data analysis in manifolds to predict cognitive scores from brain
connectomes via graph neural networks.
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Background
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Chapter 1

Foundations of Differential
Geometry

In this section, we summarize the necessary background from differential geometry
needed for later chapters. Good references on this are, amongst many others, [45],
[155], and [197]. The latter, in particular, gives a detailed account of affine connection
structures; a standard reference on Lie groups and symmetric spaces is [121]. We also
shortly summarize shape analysis—a field with many interesting real-world applica-
tions in which data in both Lie groups and general manifolds naturally arises. We
will tackle some problems that belong to it in the last part of the thesis. Throughout
this work, we use “smooth” synonymously with “infinitely often differentiable

1.1 Manifolds, Lie Groups, and their Basic Properties

1.1.1 Smooth Manifolds

Informally, a manifold locally ”looks“ like Euclidean space. It took mathematicians
many years to formalize this intuition. Underlying the formal definition is the notion
of a chart, which allows obtaining “cartographies” of sets. Let M be a Hausdorff
topological space that has a countable basis of topology. (For the foundations of
topology, we refer, for example, to [16].) A chart on M is a pair (U, φ), where U ⊆ M
is open and φ : U → Rd a homeomorphism. We often also say that φ = (x1, . . . , xd)

is a chart of U when we are interested in the component functions of φ, which are
called local coordinates of U. Two charts (U1, φ1) and (U2, φ2) on M are compatible, if
either U1 ∩U2 = ∅ or φ2 ◦ φ−1

1 : φ1(U1 ∩U2)→ φ2(U1 ∩U2) is a C∞-diffeomorphism1;
see Figure 1.1 for a visualization. If there is a collection {(Ui, φi)}i∈I of compatible
charts such that ∪i∈IUi = M, then we call the collection atlas. A maximal atlas is then
an atlas that contains all possible compatible charts. Finally, if M is endowed with a
maximal atlas, then we call it smooth manifold of dimension d. There are many examples
of smooth manifolds, including (open subsets of) vector spaces, spheres, and sets of
matrices like the space of positive definite matrices.

1It is possible to allow for less restrictive transitions between charts (for example, Ck-
diffeomorphisms) but we will not need this in this work.

7



Chapter 1. Foundations of Differential Geometry

Given two smooth manifolds M and N, a smooth function f : M → N can be
defined unambiguously by requiring that Φ := ψ ◦ f ◦ φ−1 is smooth for every chart φ

of M and ψ of N such that Φ is well-defined. We will often deal with the case N = R;
therefore, the set of smooth functions from M into R is denoted by C∞(M) in the
following. Throughout this work, we always assume that manifolds and functions are
smooth. Therefore, we omit the word ”smooth“ and the C∞-prefix in the following
unless we want to emphasize it.Charts

Figure 1.1: Charts φ1 and φ2 on a smooth manifold M with domains U1 and U2,
respectively. They are compatible if φ2 ◦ φ−1

1 : φ1(U1 ∩U2)→ φ2(U1 ∩U2) is smooth.

Many notions of interest to us are instances of the following general structure:

Definition 1.1.1 (Vector bundle). A smooth vector bundle of rank k is a triple (E, π, M),
where E and M are smooth manifolds; π : E → M is the smooth, surjective projection
map; each fiber Ep := π−1({p}) has the structure of a k-dimensional vector space; and the
following “triviality condition” is satisfied: For each p ∈ M there is a neighborhood U ⊆ M
and a diffeomorphism

Φ : π−1(U)→ U ×Rk

such that for every q ∈ U
Φ
∣∣

Eq
: Eq → {q} ×Rk

is a vector space isomorphism, that is, a bijective linear map.

Throughout this thesis, it will always be clear which projection π is meant and
what the rank k is; therefore, we will only say that E is a vector bundle over M. Also
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1.1. Manifolds, Lie Groups, and their Basic Properties

important are structure-preserving maps between two bundles over the same base
manifold: An isomorphism of vector bundles (E, π1, M) and (F, π2, M) is a diffeo-
morphism f : E → F such that π1 = π2 ◦ f (that is, f maps fibers to fibers) and
f
∣∣

Ep
: Ep → Fp is a vector space isomorphism for all p ∈ M. Finally, a section of a

vector bundle (E, π, M) is a map ξ : M → E such that π(ξ(p)) = p for all p ∈ M. We
denote the set of all sections over E by Γ(E).

Many notions from calculus can now be generalized to manifolds. Importantly, we
can define a tangent space at every point. Let f ∈ C∞(M) and α1, α2 : (−ε, ε) → M,
ε > 0, be curves through M with α1(0) = α2(0) = p. We call both equivalent at p
if ( f ◦ α1)

′(0) = ( f ◦ α2)′(0) for all f ∈ C∞(M). It can be shown that this defines
an equivalence relation. A tangent vector at p is then a linear map v : C∞(M) → R

corresponding to an equivalence class [α] of curves through p such that v f := ( f ◦
α)′(0) for all f ∈ C∞(M). We can visualize tangent vectors by imagining that M sits
(that is, is embedded) in some higher dimensional RD. (Thanks to the celebrated
Nash embedding theorem, there always is D ≥ 1 such that this is possible.) A tangent
vector corresponds then naturally to a usual “arrow vector” in RD; see Figure 1.2 for
a visualization.

0DQLIROG

Figure 1.2: Tangent vector v at p ∈ M defined by a curve α.

As in standard calculus, the set of all tangent vectors at p forms a d-dimensional
vector space: the tangent space Tp M at p. Since tangent spaces at different points
consist of disparate objects, their disjoint union TM := tp∈MTp M is of interest; it
is called the tangent bundle of M. It can be shown that TM is not only a manifold.
Moreover, it is also a vector bundle over M (the projection mapping each tangent
vector to its foot point). A smooth vector field X on M can thus be defined as a smooth
section of the vector bundle TM; that is, X ∈ Γ(TM). We often use Xp instead of X(p).
Note that every X ∈ Γ(TM) defines a self-map f 7→ X f on C∞(M) by X f (p) := Xp f ;
again, we will write Xp f instead of X f (p). Another important notion is a vector field
along a curve α : [a, b] → M, which is a smooth map X : [a, b] → TM such that
X(t) ∈ Tα(t)M for all t ∈ [a, b].

9



Chapter 1. Foundations of Differential Geometry

Corresponding to a tangent space Tp M, there also is the cotangent space

T∗p M := {ω : Tp M→ R
∣∣ ω is linear}

of linear forms on Tp M; elements of T∗p M are also called cotangent vectors. Mirroring
the construction of TM, the cotangent bundle is the disjoint union

T∗M := tp∈MT∗p M.

It also constitutes a vector bundle over M whose sections are called 1-forms.
Each tangent space has a basis consisting of d vectors. A more interesting question

is whether there are d vector fields (X1, . . . , Xn) ∈ (Γ(TM))n such that ((X1)p, . . . , (Xd)p)

form a basis at every point p. The answer, in general, is “No”.2 If a d-tuple of vector
fields (X1, . . . , Xd) with this property exists, we call it (global) frame field on M. Lo-
cal frame fields (that is, fields defined only in some coordinate neighborhood U and
forming bases at each p ∈ U) exist around every point. Indeed, let φ := (x1, . . . , xd)

be coordinates of U, and define vector fields d/dx1, . . . , d/dxd ∈ Γ(TU) by

d
dxi

∣∣∣
p

f := ∂i( f ◦ φ−1)(φ(p))

for all p ∈ U and f ∈ C∞(U).3 (Here, ∂i denotes the partial derivative with respect to
the i-th canonical coordinate of Rd.) Then, (d/dx1, . . . , d/dxd) ∈ (Γ(TU))d constitutes
the so-called coordinate frame field of φ over U. Importantly, to every coordinate frame
(d/dx1, . . . , d/dxd), there also exists the coframe (dx1, . . . , dxd). It is the frame field of
T∗U dual to the coordinate frame, that is,

dxi
(

d
dxj

)
= δij

for all i, j = 1, . . . , d. (Here, for all p ∈ U, δij(p) := 1 if i = j and δij(p) := 0 otherwise.)
Also worth noting is that to every basis (v1, . . . , vd) of a tangent space Tp M, there are
coordinates φ = (x1, . . . , xd) such that (d/dx1|p, . . . , d/dxd|p) = (v1, . . . , vd), that is,
any basis of every tangent space is the restriction of some coordinate frame to the
given point.

We now turn to the transformation behavior of 1-forms under coordinate changes.
Let φ1 = (x1, . . . , xd) and φ2 = (x̃1, . . . , x̃d) be charts whose domains of definition
have non-empty intersection U. If X ∈ Γ(TU), then X = ∑d

i=1 vi
d

dxi with vi ∈ C∞(U)

for i = 1, . . . , d. The components of X transform with the Jacobi matrix (function)
J = [∂x̃l/∂xi] of the coordinate change, that is,

X =
d

∑
i=1

vi
d

dxi =
d

∑
l=1

d

∑
i=1

vi
∂x̃l

∂xi
d

dx̃l . (1.1)

2A basic counterexample is the two-dimensional sphere S2: As a consequence of the famous Hairy
Ball Theorem, every smooth vector field on S2 (indeed on every even-dimensional sphere) is zero at
some point.

3Note that we could also write ( d
dxi )p instead of d

dxi

∣∣∣
p
. But it is the convention to use the latter for

vector fields that come from partial derivatives in a chart.

10



1.1. Manifolds, Lie Groups, and their Basic Properties

For ω = ∑d
j=1 ωjdxj ∈ Γ(T∗U) we therefore find

ω =
d

∑
j=1

ωjdxj =
d

∑
k=1

d

∑
j=1

ωj
∂xj

∂x̃k dx̃k, (1.2)

since
d

∑
j=1

ωjdxj

(
d

∑
i=1

vi
d

dxi

)
=

d

∑
i=1

ωivi = ω(X)

and

d

∑
k=1

d

∑
j=1

ωj
∂xj

∂x̃k dx̃k

(
d

∑
l=1

d

∑
i=1

vi
∂x̃l

∂xi
d

dx̃l

)
=

d

∑
i=1

d

∑
j=1

ωjvi

d

∑
l=1

∂xj

∂x̃l
∂x̃l

∂xi

=
d

∑
i=1

ωivi = ω(X).

Thus, a 1-form transforms with the transposed inverse (J−1)T of the Jacobi matrix of
the coordinate change.

One of the most important notions we deal with is the derivative of a function.
Let M and N be manifolds of possibly different dimensions and f : M → N. Then,
the derivative d f : Γ(TM) → Γ(TN) of f is defined by d f (X)h := X(h ◦ f ) for all
h ∈ C∞(N). We denote the value of d f (X) at p ∈ M (which is in Tf (p)N) by dp f (X).
The definition of the derivative is visualized in Figure 1.3.

'LIIHUHQWLDO

Figure 1.3: Derivative of a smooth map f between two manifolds M and N. The
vector v ∈ Tp M is defined through the curve α in M. It is mapped to the vector
dp f (v) ∈ Tf (p)N that is induced by the image of α under f .

The usual rules from calculus hold for the derivative. In particular, the chain
rule applies; that is, if M, N, O are manifolds (of possibly different dimensions) and
f : M→ N, g : N → O, then

dp(g ◦ f ) = d f (p)g ◦ dp f (1.3)

for all p ∈ M. Furthermore, when we want to find a local extremum of a function
f ∈ C∞(M) in any open neighborhood, the usual necessary condition that d f vanishes
at the extremum holds. Hence, many optimization strategies known for Euclidean
space Rd can be transferred to manifolds (see, for example, [2]).

11



Chapter 1. Foundations of Differential Geometry

Coming back to vector fields, their integral curves are defined as in the Euclidean
case: Let p ∈ M and X ∈ Γ(TM). Then, there is ε > 0 and a curve α : (−ε, ε) → M,
called integral curve, with α(0) = p and α′(t) = Xα(t) for all t ∈ (−ε, ε). (Note that we
write the usual α′ instead of dα(d/dt) in the case of curves.) We can interpret α(t) as
the point a small ball starting at p would end up at after “flowing” along the vector
field X for time t.

The so-called Lie bracket [ · , · ] : Γ(TM)× Γ(TM) → Γ(TM) of two vector fields
X, Y ∈ Γ(TM) quantifies how far X and Y fail to commute. It is defined by [X, Y] f :=
XY f − YX f for all f ∈ C∞(M). Although it cannot directly be seen, [X, Y]p is a
tangent vector at every p ∈ M.

A final remark, which will become important later in this work, is that the Carte-
sian product of manifolds is again a manifold (a so-called product manifold); its di-
mension is the sum of the dimensions of the individual manifolds, and all the above
operations work component-wise for them.

1.1.2 Lie Groups

A Lie group G is a manifold that has a compatible group structure; that is, there is a
smooth (not necessarily commutative) group operation G×G 3 ( f , g) 7→ f g ∈ G with
corresponding identity element e ∈ G such that the inversion map g 7→ g−1 is also
smooth. Vector spaces (with addition) are instances of Lie groups. Another example is
the general linear group GL(d); that is, the set of all bijective linear mappings on an d-
dimensional vector space, where the group operation is the composition of mappings,
with e = Id being the identity map. It is well-known that (closed subgroups of) GL(d)
can be identified with (closed subgroups of) the group of invertible d-by-d matrices
with matrix multiplication. Throughout this thesis, we will regularly make use of
this identification without mentioning it every time. Whenever we speak of a matrix
group, an arbitrary, closed subgroup of GL(d) is meant.

Each f ∈ G defines two natural automorphisms on G: the left and right translation
L f : g 7→ f g and R f : g 7→ g f . Their derivatives dhL f and dhR f at h ∈ G map tangent
vectors v ∈ ThG bijectively to the tangent spaces Tf hG and Th f G, respectively. We
visualize translations and their derivatives in Figure 1.4. Importantly, it holds that

TgG = {deLg(v)
∣∣ v ∈ TeG} = {deRg(w)

∣∣ w ∈ TeG}.

Thus, each v ∈ TeG determines a smooth vector field X ∈ Γ(TG) by Xg = deLg(v)
for all g ∈ G. It is called left invariant because XL f (g) = dgL f (Xg) for all f , g ∈ G, that
is, the value at a left translated point is the left translated vector. Together with the
Lie bracket, left-invariant vector fields form the so-called Lie algebra g ⊂ Γ(TG) of
G. Furthermore, the converse also holds: Every left invariant vector field is uniquely
determined by its value at the identity (or at any other point). Consequently, TeG and
g are isomorphic4.

Since deLg is bijective for every g ∈ G (and Lg smooth in g), any basis of TeG deter-
mines a unique global frame consisting of left invariant vector fields. In particular, for
each g ∈ G, any basis of TeG can be smoothly transported to TgG without dependence

4To be exact, TeG with the bracket [Xe, Ye] := [X, Y]e is isomorphic to g with the usual Lie bracket.
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1.1. Manifolds, Lie Groups, and their Basic Properties

7UDQVODWLRQV

Figure 1.4: Left and right translation and their derivatives in a Lie group G. Here,
ṽ = dgR f (v) and v̂ = dgL f (v).

on the “path” (“take the basis from the corresponding global frame”). Because of this,
we can view TeG as the reference tangent space of G.

Right invariant vector fields are defined analogously to left invariant fields: If
v ∈ G, then X := deR(v) is right invariant, that is, XR f (g) = dgR f (Xg) for all f , g ∈ G.
Left invariant fields work analogously.

The integral curve αv : R → G through e of an invariant (left or right) vector
field X ∈ Γ(TG) with Xe = v is defined on the whole of R. It can be shown that
αv(s+ t) = αv(s)αv(t) = αv(t)αv(s) = αv(t+ s) = for all s, t ∈ R; that is, αv determines
a unique one-parameter subgroup of G. This motivates to define the group exponential
exp : TeG → G by

exp(v) := αv(1).

Note that we also have exp(tv) = αv(t) for all t ∈ R. The group exponential is
(also) a diffeomorphism in a neighborhood V of e and, hence, we can define the group
logarithm log as its inverse there. In the case of matrix groups, they coincide with the
matrix exponential and logarithm. Important for us will be the inverse consistency of
the group logarithm, that is, for all g ∈ V

log(g−1) = − log(g). (1.4)

Another fundamental automorphism of G is the conjugation C f : g 7→ f g f−1. We
need its differential at the identity, which we call group adjoint and denote by Ad( f ).
It acts bijectively on vectors v ∈ TeG by

Ad( f )v = d f−1 L f (deR f−1(v)) = d f R f−1(deL f (v)).

The group adjoint yields the following crucial relation [186, Thm. 6]: For f , g ∈ G such
that log( f g−1) exists, it links logarithms of left and right translated points according
to

log(g f−1) = Ad( f ) log( f−1g). (1.5)
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Chapter 1. Foundations of Differential Geometry

A product of Lie groups can be given the product structure, so its group and
manifold operations work component-wise.

An important role of Lie groups is that they represent symmetries of geometric
spaces. For a manifold M, they are formalized by the following notion: Let G be a
Lie group. A (smooth) map µ : G ×M → M, such that µ( f g, p) = µ( f , µ(g, p)) and
µ(e, p) = p for all f , g ∈ G, p ∈ M is called group action on the left. (Actions on the
right are defined analogously.) Then, for fixed g ∈ G, the map µ(g, · ) : M→ M is an
automorphism—a symmetry of M.

We finish the section with examples of important Lie groups.

Example 1.1. One of the most important Lie groups is the general linear group [252]

GL(d) :=
{

A ∈ Rd,d ∣∣ det(A) 6= 0
}

with matrix multiplication. It is a manifold of dimension d2 and, at each A ∈ G, the tangent
space TAGL(d) = Rd,d is the vector space of all d-by-d matrices. (As an open subset of Rd,d,
charts of GL(d) are given by the usual coordinate maps of the former.) It is not connected
since it consists of two disjoint parts: matrices with positive and negative determinants. The
Lie bracket of GL(d) is the usual matrix commutator. Left and right translations are given by

LA(B) = AB,

RA(B) = BA,

for all A, B ∈ GL(d), and

dBLA(C) = AC,

dBRA(C) = CA,

for all C ∈ TBGL(d). Hence, we arrive at

Ad(A)C = ACA−1.

The group acts on Rd on the left by the action µ : (A, x) 7→ Ax.
The group exponential and logarithm are given by the matrix exponential and (principal)

matrix logarithm, respectively. That is, denoting the d-by-d identity matrix by I, we have5

exp(C) =
∞

∑
k=0

Ck

k!

for all C ∈ TIGL(d), while log(A) is defined for all A ∈ GL(d) with no eigenvalues on the
(closed) half-line of negative real numbers as the unique solution C of exp(C) = A whose
eigenvalues have imaginary parts in (−π, π). Both can be computed quite efficiently; see, for
example, [124, Secs. 10–11].

Crucially, all closed6 algebraic subgroups of GL(d) are also Lie groups [121]. For them, left
and right translations and actions, the group exponential, and logarithm are the restrictions of

5There are several equivalent definitions of both the matrix exponential and logarithm; see [124] for
an excellent account.

6Here, closed in GL(d) is meant. A subgroup G is closed in GL(d) if for any sequence (An)n∈N in G
with limn→∞ = A, we have that A ∈ G or A is not invertible.
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1.1. Manifolds, Lie Groups, and their Basic Properties

those of GL(d) to the respective groups. An example of such a subgroup is the group GL+(d)
of matrices with positive determinants (all linear orientation preserving transformations of
Rd). Since it is an open subset of GL(d), its dimension is d2, and the tangent spaces coincide
with those of GL(d).

Another important subgroup of GL(d) is the orthogonal group

O(d) := {O ∈ GL(d)
∣∣ OTO = I}.

Its dimension is also (d(d− 1)/2); its tangent space at O is given by all translated d-by-d
skew-symmetric matrices

TOO(d) = {OS ∈ Rd,d ∣∣ ST = −S}.
Like GL(d), it has two components of elements with determinants ±1. The part that contains
I forms the special orthogonal group

SO(d) := {R ∈ GL(d)
∣∣ RTR = I, det(R) = 1}

consisting of all rotations of Rd. Its dimension is (d(d− 1)/2), too, and its tangent spaces
coincide with those of O(d).

Example 1.2. Another important Lie group is the Euclidean group [188], which is the
semi-direct7 product

E(d) := O(d)n Rd;

Its dimension is d(d + 1)/2. For any two elements (O, x), (P, y) ∈ E(d), the group operation
is given by

(O, x)(P, y) = (OP, x + Oy);

the neutral element of the group is (I, 0), and the inverse of each element (O, x) ∈ E(d) is
given by (OT,−OTx). At each (O, x) ∈ E(d), the tangent space is the product of the tangent
spaces

T(O,x)E(d) = {(OS, z) ∈ Rd,d ×Rd ∣∣ ST = −S}.
The group E(d) acts on Rd on the left by µ : ((O, x), y) 7→ x +Oy and constitutes the largest
class of isometries of Rd.

We can represent E(d) in homogeneous coordinates, that is, by using the (bijective) map-
ping

(O, x) 7→
[

O x
0 1

]
∈ Rd+1,d+1.

Analogously, tangent vectors (S, z) ∈ T(O,x) are mapped according to

(OS, z) 7→
[

OS z
0 0

]
∈ Rd+1,d+1.

In homogeneous coordinates, the group operation coincides with matrix multiplication and,
thus, E(d) becomes a (closed) subgroup of GL(d + 1) [208], from which it thus inherits the
exponential and logarithm maps.

7Let H, N be Lie groups and G = H×N. Further, let G be endowed with a group operation. Then, we
say that G, together with its group operation, is a semi-direct product (denoted in short by G = H n N),
if N is a normal subgroup (that is, invariant under conjugation) of G and for every g ∈ G there are
unique h ∈ H, n ∈ N such that g = hn.
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Chapter 1. Foundations of Differential Geometry

1.1.3 Tensors and Tensor Fields

Given a d-dimensional manifold M, there is the m times contravariant and n times
covariant tensor bundle

TM⊗ · · · ⊗ TM︸ ︷︷ ︸
m times

⊗ T∗M⊗ · · · ⊗ T∗M︸ ︷︷ ︸
n times

,

over M whose fiber at any p ∈ M is given by

{β : T∗p M× · · · × T∗p M
︸ ︷︷ ︸

m times

× Tp M× · · · × Tp M︸ ︷︷ ︸
n times

→ R
∣∣ β is multilinear}.

To shorten the notation, we often write Tm
n M for the tensor bundle. Being a vector

bundle of rank dmn, its sections are called m times contravariant and n times covariant
tensor fields over M; we usually say (m, n)-tensor field instead. In the literature, the
word “field” is often omitted; since we are primarily interested in elements of fibers of
a tensor bundle, we always call these “tensors” and stick to the phrase “tensor field”
when referring to sections of the tensor bundle. Examples of tensors that appear
regularly in this thesis are bilinear forms on tangent and cotangent spaces, which are
(0, 2)- and (2,0)-tensors, respectively.

Importantly, tensor fields are pointwise objects whose behavior at a point is de-
termined by their restrictions and the values of their inputs at this point [45, p. 101].
This allows us to investigate single tensors but still view them as restrictions of an
underlying tensor field to a particular tangent space if the need should arise.

Tensor fields can be added and multiplied pointwise with functions from C∞(M).
Furthermore, there is the tensor product: Let S ∈ Γ(Tm1

n1 M) and T ∈ Γ(Tm2
n2 M).

Their tensor product S⊗ T is an (m1 + m2, n1 + n2)-tensor field that is defined for all
X1, . . . , Xn1+n2 ∈ Γ(TM) and ω1, . . . , ωm1+m2 ∈ Γ(T∗M) by

(S⊗ T)(ω1, . . . , ωm1+m2 , X1, . . . , Xn1+n2) := S(ω1, . . . , ωm1 , X1, . . . , Xn1)

T(ωm1+1, . . . , ωm1+m2 , Xn1+1, . . . , Xn1+n2).

Importantly, any tensor field in Γ(Tm
n M) is a (finite) linear combination of tensor

products of m vector fields and n 1-forms.
The tensor product can be used to define chart-induced, local frame fields of the

tensor bundle: In a coordinate neighborhood U with chart φ = (x1, . . . , xd), tensor
fields can be written as tensor products of elements of coordinate frames and their
coframes; more precisely, an (m, n)-tensor field S with component functions8

Si1,...,im
j1,...,jn := S

(
dxi1 , . . . , dxim ,

d
dxj1

, . . . ,
d

dxjn

)
∈ C∞(U), (1.6)

can always be uniquely written as

S
∣∣
U = ∑

1≤i1,...,im,j1,...,jn≤d
Si1,...,im

j1,...,jn
d

dxi1
⊗ · · · ⊗ d

dxim
⊗ dxj1 ⊗ · · · ⊗ dxjn . (1.7)

8In physics, especially in General Relativity, tensor fields are usually identified with their component
functions. These are then manipulated according to the algebraic rules that arise from their dependence
on the chart. This view of tensors is the foundation of the so-called Ricci calculus.
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Using Equations (1.1) and (1.2), we can now describe the behavior of tensor fields
under coordinate changes: An m times contravariant and n times covariant tensor
field is transformed m times by the Jacobi matrix J of the coordinate change and n
times by the matrix (J−1)T.

Let now m1 + n1 = m2 + n2. It is often of interest to identify tensors of the same
rank. To this end, one needs to use a bundle isomorphism between Tm1

n1 (U) and
Tm2

n2 (U). Generally, many isomorphisms could be used, but none of them is distin-
guished. In contrast, when the manifold is additionally endowed with a Riemannian
metric, there is a clear choice of isomorphism. We will come back to this later.

Remark 1.1.2. An isomorphism between Tm1
n1 (U) and Tm2

n2 (U) that might seem natural at
first glance is obtained by fixing coordinates and simply replacing the required amount of
tangent/cotangent vector fields in the corresponding decomposition (1.7) of any tensor field in
Tm1

n1 (U) with their duals. In these coordinates, the component functions of the tensor and
those of its image then coincide. However, since coordinate frames and their coframes behave
differently under a change of basis, this is generally not true anymore when this isomorphism
is written in terms of another coordinate system. In other words, the mathematical form of
the component functions depends on the choice of coordinates, so the above isomorphism only
seems distinguished when viewed in one (arbitrarily chosen) coordinate system.

1.2 Geometric Structures on Manifolds and Lie Groups

1.2.1 Affine Connections and Geodesics

Let M be a manifold. An affine connection

∇ :Γ(TM)× Γ(TM)→ Γ(TM),

(X, Y) 7→ ∇XY,

on M is a bilinear map such that for all f ∈ C∞(M), X, Y ∈ Γ(TM),

(i) ∇ f XY = f∇XY,

(ii) ∇X f Y = X f Y + f∇XY;

that is, it is linear in the first variable and satisfies the product rule in the second.
Connections are the natural generalization of the directional derivative along vector
fields. (We say that ∇XY is the derivative of Y in direction X.) There are many dif-
ferent connections, and without an additional structure on M, there is no best choice
a priori. If, on the other hand, M is a Lie group or is endowed with a Riemannian
metric, then there are canonical choices, as we will see.

With the help of a connection ∇, we can also differentiate vector fields along
curves. Let α : [a, b] → M be a smooth curve and X be a vector field along α.
Furthermore, let α̃′, X̃ ∈ Γ(TM) such that they coincide with α′ and X on α([a, b]).
The covariant derivative of X along α is then defined by

∇α′X :=
(
∇α̃′ X̃

) ∣∣∣
α([a,b])

;

17



Chapter 1. Foundations of Differential Geometry

see Figure 1.5 for a visualization. It can be shown that this definition does not depend
on the choice of the global vector fields. With this notion, we can introduce parallelism
of vectors along curves. A vector field X along α is called parallel if

∇α′X = 0; (1.8)

we also say that Xα(b) is the parallel transport of Xα(a) to Tα(b)M. Given Xα(a) = v,
well-known results from the field of differential equations ensure that Equation (1.8)
always has a unique solution, that is, the parallel transport of a vector along a curve
is well-defined.

&RYDULDQW�'HULYDWLYH

Figure 1.5: Vector field X (grey) along a curve α through M. Its covariant derivative
∇α′X along α is shown in orange.

We can now define a geodesic γ : (−ε, ε) → M by ∇γ′γ
′ = 0 as a curve without

acceleration, generalizing the notion of a straight line. Results for differential equa-
tions imply that every vector is the tangent vector of a geodesic that is defined on
some interval of positive length 2ε. Note that affine reparametrizations of γ do not
change the fact that ∇γ′γ

′ = 0; therefore, the interval on which γ is defined is arbi-
trary. Furthermore, we can also define geodesics on closed intervals by taking limits.
Thus, through reparametrization, one can then show that for each p ∈ M, there is a
neighborhood V ⊆ Tp M such that for all v ∈ V, there is a geodesic γv : [0, 1] → M
with γv(0) = p and γ′v(0) = v. This motivates the definition of the exponential of the
connection ∇ at p:

Expp : V → M,

v 7→ γv(1);

the map is visualized in Figure 1.6. It turns out that, at every point, the exponential
is a local diffeomorphism. We call the local inverse logarithm of the connection ∇ and
denote it by Logp. The manifold M is called geodesically complete if for every p ∈ M
the exponential Expp is defined on all of Tp M. Equivalently, one can require that all
geodesic in M extend indefinitely.
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([SRQHQWLDO�0DS

Figure 1.6: Exponential mapping Expp applied to v ∈ V ⊆ Tp M. The broken line
indicates the geodesic γv from p to Expp(v).

A fundamental fact is that every point p ∈ M has a so-called normal convex neigh-
borhood9 U: Each pair q, r ∈ U can be joined by a unique geodesic γ( · ; q, r) : t 7→
γ(t; q, r) with t ∈ [0, 1], which never leaves U; see [197, Ch. 1 § 5]. (Throughout this
work, we use “ · ” as a placeholder for a varying parameter.) Furthermore, with
γ′(0; p, q) = v, we find

Expp(v) = γ(1; p, q)

and
Logp(q) = γ′(0; p, q)

in U.
The connection determines another central object of differential geometry: the

curvature tensor10

R : Γ(TM)× Γ(TM)× Γ(TM)→ Γ(TM),

(X, Y, Z) 7→ R(X, Y)Z := ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z.

Intuitively, R quantifies the deviation of M from (flat) Euclidean space. It does so
by measuring how far partial derivatives ∇X,∇Y fail to commute11. The last term
ensures that a possible non-commutativity of the underlying vector fields themselves
does not have an influence.

A core fact of differential geometry is that the parallel transport of vectors de-
pends on the underlying curve whenever R 6= 0 (that is, it is not the zero map). Thus,
whenever there is curvature, we cannot simply identify different tangent spaces by

9Other names are also used for such a neighborhood; (at least) “geodesically convex” and “strongly
convex” neighborhood can also be found.

10There are different sign conventions for the curvature tensor; we follow [197].
11They commute in Euclidean space, with the ordinary directional derivative as connection, due to

Schwarz’s theorem
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parallel translating each vector from one to the other (something we always do when
working in Euclidean space). Indeed, in general, there is no consistent way of iden-
tifying tangent spaces with each other. It only becomes possible when global frame
fields exist with which we can consistently relate vectors between tangent spaces (for
example, by keeping the coefficients w.r.t. basis constant).

The curvature also determines how fast initially close geodesics deviate from each
other (or meet). The notion of the Jacobi field formalizes this observation. Let γ be a
geodesic in M. A Jacobi field J along γ is a solution of the second-order linear ordinary
differential equation

∇γ′∇γ′ J + R(J, γ′)γ′ = 0; (1.9)

an example is shown in Figure 1.7. Most importantly, Jacobi fields describe the spread-
ing of geodesics (globally for geodesically complete manifolds and locally otherwise)
in the following sense: Let α : (−ε, ε)× [0, 1] → M be a geodesic variation, that is, α

is a smooth map such that γs := α(s, · ) is a geodesic for each s ∈ (−ε, ε). We denote

by ∂α
∂s

∣∣∣
(0,t)

the vector field along γ0 that is defined by

∂α

∂s

∣∣∣
(0,t)

f :=
∂

∂s
( f ◦ α)(0, t)

for all f ∈ C∞(M) and t ∈ [0, 1]. Then

Jγ(t) :=
∂α

∂s

∣∣∣
(0,t)

is a Jacobi field along γ0.
Now, it is no surprise that Jacobi fields play a central role when one wants to

differentiate geodesics with respect to their start and end points. Let γ( · ; p, q) :
[0, 1]→ U be defined as above with p, q coming from a normal convex neighborhood
and v ∈ Tp M. Considering (1.9) with the added constraints J(0) = v, J(1) = 0 (that
is, the boundary value problem with fixed endpoint), we denote its unique solution
by Jv. Then, the derivative of γ with respect to its starting point at p is given by

dpγ(t; · , q)(v) = Jv(t) (1.10)

for all t ∈ [0, 1] [29, Sec. 3.1]; see Figure 1.7 for a visualization. Another useful
observation is that γ(t; p, q) = γ(1− t; q, p) for all t ∈ [0, 1]. Therefore, with w ∈ Tq M,
we find

dqγ(t; p, · )(w) = dqγ(1− t; · , p)(w) = Jw(1− t) (1.11)

for all t ∈ [0, 1]. Note that the vector w in Jw encodes the orientation of the underlying
geodesic: It is always in the tangent space at the starting point of the geodesic.

In order to compute (1.10) and (1.11), the operator

R : Tp M→ Tp M,

v 7→ R
(

v,
γ′(0)
‖γ′(0)‖p

)
γ′(0)
‖γ′(0)‖p

, (1.12)

will be important. It is a symmetric linear operator that can thus be diagonalized with
real eigenvalues [45, Chs. 4.2 and 5 (Ex. 5)]. Note that R(γ′(0)) = 0, so one eigenvalue
is always zero with corresponding (normalized) eigenvector γ′(0)/‖γ′(0)‖.
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Figure 1.7: Jacobi field Jv along the geodesic γ(t; p, q) (green) with boundary values
Jv(0) = v ∈ Tp M and Jv(1) = 0 ∈ Tq M. The grey curves indicate the geodesic
variation that corresponds to Jv. The vector Jv(t) ∈ Tγ(t;p,q)M is also the value of
dpγ(t; · , q) at v, that is, the direction in which γ(t; p, q) moves when p is varied in
the direction of v.

1.2.2 Riemannian Metrics

Let M be a manifold. A Riemannian metric on M is a smooth map 〈 · , · 〉 : Γ(TM)×
Γ(TM)→ C∞(M) such that for each p ∈ M its restriction to Tp M is a Euclidean inner
product; that is, for each p ∈ M the map 〈 · , · 〉p := 〈 · , · 〉

∣∣
Tp M×Tp M : Tp M× Tp M→

R is a symmetric positive definite bilinear form, and 〈 · , · 〉p depends smoothly on
p. In the following, we will also call the restricted map 〈 · , · 〉p Riemannian metric
(or just metric) as it will be clear from the context what is meant. Importantly, every
manifold can be endowed with a Riemannian metric.

As in Euclidean space, the metric allows to measure angles between and lengths of
tangent vectors; for v, w ∈ Tp M, they are defined as usual by

‖v‖p :=
√
〈v, v〉p

and

](v, w) := arccos
( 〈v, w〉p
‖v‖p, ‖w‖p

)
,

respectively. Furthermore, if α : [a, b] → M, [a, b] ⊂ R, is a smooth curve, its length
can be defined (independently from the parametrization of α) by

length(α) :=
∫ b

a
‖α′(t)‖α(t) dt.

For p, q ∈ M this induces the distance (function)

dist(p, q) = inf{length(α)
∣∣ α : [0, 1]→ M smooth, α(0) = p, α(1) = q}.
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Using the metric we can define the gradient grad f ∈ Γ(TM) of a function f ∈
C∞(M) implicitly by requiring

d f (X) = 〈grad f , X〉

for all X ∈ Γ(TM), generalizing the ordinary Euclidean gradient. Importantly, just
like in the Euclidean case, dp f = 0 if and only if gradp f = 0. Furthermore, the
gradient still points in the direction of the steepest ascent, so optimization algorithms
relying on gradients can be transferred to Riemannian manifolds [2].

Once we have a metric, the adjoint A∗ of a linear operator A : Tp M → Tq M is
given, as usual, by the linear operator from Tq M to Tp M that conserves the scalar
product, that is, 〈Av, w〉q = 〈v, A∗w〉p for all v ∈ Tp M, w ∈ Tq M. Further, if B :
Tr M → Tp M is another linear operator, then (A ◦ B)∗ = B∗ ◦ A∗. An adjoint operator
appears, for example, when one wants to calculate the gradient of a composition of
functions. Let f : M→ M and g : M→ R. Then, the chain rule for gradients reads

gradp(g ◦ f ) = dp f ∗
(

grad f (p)g
)

, (1.13)

that is, the gradient of g at f (p) is “transported” to the tangent space at p by the
adjoint differential of f .

An important class of maps keeps the metric unchanged. Let M and N be man-
ifolds (necessarily of the same dimension) with metrics 〈 · , · 〉M and 〈 · , · 〉N ,
respectively. A diffeomorphism f : M→ N is called isometry if

〈v, w〉Mp = 〈dp f (v), dp f (w)〉Nf (p)

for all p ∈ M and v, w ∈ Tp M.
The metric also allows for a different view of the curvature of M. To this end, let

p ∈ M and v, w ∈ Tp M be orthonormal (w.r.t. 〈 · , · 〉p). The sectional curvature of the
plane that is spanned by v and w in Tp M is then defined by

K(v, w) := 〈R(v, w)w, v〉p.

Being a real-valued measure of how much a manifold deviates from flat Euclidean
space, the sectional curvature plays a vital role in many bounds on the maximal sizes
of regions with interesting geometric properties; one of those will become important
later on.

If M is endowed with a Riemannian metric 〈 · , · 〉, then there is a canonical choice
of affine connection: The Levi-Civita connection ∇ is the unique affine connection that
satisfies

(i) ∇XY = ∇YX + [X, Y], (torsion-free)

(ii) X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉, (metric)

for all X, Y, Z ∈ Γ(TM). The Levi-Civita connection conserves angles between paral-
lel transported vectors; its parallel transport operation is thus an isometry of vector
spaces. Furthermore, the geodesics of the Levi-Civita connection are locally shortest
paths of the Riemannian metric. Therefore, for it we find

dist(p, q) = ‖Logp(q)‖p = ‖Logq(p)‖q

22



1.2. Geometric Structures on Manifolds and Lie Groups

for all p, q ∈ M such that Logp(q) is defined. In particular, if U ⊆ M is a normal
convex neighbourhood and p, q ∈ U, then the geodesic γ( · ; p, q) is also the unique
shortest path between p and q.

As is standard in the literature, we call a manifold together with a Riemannian
metric and its Levi-Civita connection Riemannian manifold and the corresponding cur-
vature tensor Riemannian curvature tensor.

When M is endowed with a Riemannian metric, there is a canonical vector bundle
isomorphism between certain types of tensor fields. Let [ denote the metric-induced
vector bundle homomorphism between TM and T∗M (the “flat operator”) that maps
each vector field X ∈ Γ(TM) to the 1-form X[ ∈ Γ(T∗M) defined by

X[(Y) = 〈X, Y〉

for all Y ∈ Γ(TM). It has an inverse (the “sharp operator”) denoted by ] that maps
any ω ∈ Γ(T∗M) to the vector field ω] ∈ Γ(TM) that fulfills

ω(Y) = 〈ω], Y〉

for all Y ∈ Γ(TM). Both flat and sharp constitute the musical isomorphism. When
m, n ∈N, c ∈ Z such that m− c ≥ 0 and n + c ≥ 0, the musical isomorphism induces
a bundle isomorphism between Tm

n M and Tm−c
n+c M through entry-wise application of

[ or ]. The process of applying [ and ] is also known as lowering and raising of indices,
respectively. The reason for these names will become visible soon.

First, we state how the musical isomorphism works in a coordinate neighborhood
U. Let gij ∈ C∞(U) be the component functions of the Riemannian metric in a coor-
dinate neighborhood U, that is,

〈 · , · 〉
∣∣
U =

d

∑
i,j=1

gij dxi ⊗ dxj.

Because the metric is symmetric, we have gij = gji for all i, j = 1, . . . , d. Let further
gij ∈ C∞(U) be the component functions of the inverse of the matrix [gij]. Then

(
d

dxi

)[

=
d

∑
j=1

gij dxj, i = 1, . . . , d, (1.14)

and (
dxi
)]

=
d

∑
j=1

gij d
dxj , i = 1, . . . , d

see, for example, [190, pp. 48–49] for more details. A bundle isomorphism maps an
(m, n)-tensor field S to an (m− c, n+ c)-tensor field S̃, when the latter can be obtained
from S by replacing c vector fields in the decomposition (1.7) by their corresponding
1-forms under [, or vice versa (applying ]) if c is negative. Thereby, it is important to
which position the musical isomorphism is applied; different choices yield different
bundle isomorphisms when m− c > 0 and n + c > 0 (that is, for “mixed” tensors).
The phrases “lowering/raising of indices” now come from the fact that, in the notation
of Equation (1.7), certain superscripts of the component functions become subscripts,
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and the other way round, when a musical isomorphism is applied. (An example is
shown below.) Tensor fields on a Riemannian manifold that correspond to each other
under any such isomorphism are commonly seen as versions of the same tensor that
differ in the number of contra- and covariant components and their ordering.

Example 1.3. We now show how “indices are lowered” for (2,0)-tensors fields since this is
relevant at several places in this thesis. As above, let M be a Riemannian manifold and
φ = (x1, . . . , xd) coordinates of a neighborhood U. Let S ∈ T2

0 M; then

S
∣∣
U =

d

∑
i,j=1

Sij d
dxi ⊗

d
dxj .

Applying Equation (1.14) to both entries results in

Ŝ
∣∣
U =

d

∑
i,j=1

Sij
(

d
dxi

)[

⊗
(

d
dxj

)[

=
d

∑
i,j=1

Sij

(
d

∑
k=1

gik dxk

)
⊗
(

d

∑
l=1

gjl dxl

)

=
d

∑
k,l=1

d

∑
i,j=1

gikgjlSijdxk ⊗ dxl

=
d

∑
i,j=1

d

∑
k,l=1

gkigl jSkldxi ⊗ dxj.

In the last step we simply re-labeled indices: i ↔ k and j ↔ l. Using the fact that the metric
is symmetric and changing the order of summation yield (omitting the “hat” as is standard)

Sij =
d

∑
k,l=1

gikgl jSkl , i, j = 1, . . . , d. (1.15)

Note how the indices of Skl are “lowered” by multiplying with the metric.
Interpreting all functions as entries of matrices (more precisely, matrix-valued functions)

[Sij], [gij] = [gji], and [Sij], we can then see that Equation (1.15) is equivalent to

[Sij] = [gij] [Sij] [gij].

In local coordinates, one can thus describe lowering indices of (2,0)-tensors with matrix alge-
bra. “Raising” the indices of Ŝij works analogously with the inverse [gij].

Example 1.4. Let M be a Riemannian manifold and φ = (x1, . . . , xd) be coordinates of a
neighborhood U. If the coordinate frame field (d/dx1, . . . , d/dxd) is orthonormal, that is,

(
d

dx1

∣∣∣
p
, . . . ,

d
dxd

∣∣∣
p

)

is an orthonormal basis of Tp M for each p ∈ U, then gij = δij. Thus, raising and lowering
indices are null operations in this coordinate frame. Note, however, that such frames often do
not exist [155, p. 330 ff.].

An important example where such coordinates exist globally is Rd with the Euclidean
metric: The canonical coordinate system has the (partial derivatives in the directions of the)
standard basis vectors as coordinate vectors.
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Example 1.5. Let M be a Riemannian manifold and p ∈ M. There always exists a coordinate
system φ = (x1, . . . , xd) on a neighborhood U of p such that [gij(p)] = I is the identity
matrix. Indeed, let (v1, . . . , vd) be an orthonormal basis of Tp M and E : Tp M → Rd the
corresponding vector space isomorphism that maps the basis (v1, . . . , vd) to the canonical basis
of Rd. Let further U ⊆ M be the maximal domain of Logp. Geodesic normal coordinates
with center p are then given by

φ : U → Rd

q 7→ E(Logp(q)).

With φ = (x1, . . . , xd) we find [137, p. 27]

d
dxi

∣∣∣
p
= vi

for i = 1, . . . , d. Thus, when we are only interested in raising and lowering indices of a tensor
S at a fixed point p ∈ M, it suffices to represent S in geodesic normal coordinates (that is,
w.r.t. any orthonormal basis of Tp M). Since the representing matrix of the metric at p is then
the identity matrix, raising and lowering indices are null operations. We want to stress that
the above is only valid when (v1, . . . , vd) is orthonormal, as otherwise [gij(p)] 6= I.

1.2.3 Riemannian Metrics on Lie Groups

Turning to Riemannian metrics on Lie groups G, there are two classes of metrics that
“respect the group structure”: left and right invariant metrics. The former is defined
as follows: We call a metric 〈 · , · 〉 on G left invariant, if left translations are isometries,
that is,

〈v, w〉g = 〈dgL f (v), dgL f (w)〉L f (g) (1.16)

for all f , g ∈ G. Right invariant metrics are defined analogously by replacing L f with
R f in Equation (1.16). Equivalent conditions are that 〈X, Y〉 be constant functions
for left/right invariant vector fields X, Y that are determined by v and w, respectively.
Any Euclidean inner product on TeG can be extended to a left or right invariant metric
on G. For example, if 〈 · , · 〉e is a Euclidean inner product on TeG, then the metric on
G defined by

〈v, w〉g :=
〈

dgLg−1(v), dgLg−1(w)
〉

e

for all v, w ∈ TgG and all g ∈ G is left invariant.
An obvious question is whether there exists a bi-invariant metric that is both left

and right invariant. Unfortunately, there are many Lie groups where this is not the
case. Indeed, any Lie group that is not a direct product of compact and commuta-
tive groups does not have a bi-invariant metric [165], including GL(d), GL+(d), E(d),
SE(d), the special linear group SL(d) (that is, all linear, orientation and volume pre-
serving transformations of Rd), and the Heisenberg group [188] (all for d > 1). On
the other hand, compact Lie groups always possess a bi-invariant metric. Below are
two examples of groups with a bi-invariant metric. We will encounter both of them
in later chapters.
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Example 1.6. The special orthogonal group SO(d) is compact and, therefore, can be endowed
with a bi-invariant metric. Indeed, the restriction of the standard inner product on Rd,d to
SO(d) turns out to have this property. It is given by

〈RS, RT〉R := trace
(
(RS)TRT

)
= trace

(
STT

)

for all RS, RT ∈ TRSO(d) and all R ∈ SO(d). We then obtain

dist(R, U) = ‖ log(RTU)‖F,

where F denotes the Frobenius norm.

Example 1.7. The space of d-by-d symmetric positive definite matrices

SPD(d) = {P ∈ Rd,d : PT = P, all eigenvalues of P are positive}

is a ((d + 1)d/2)-dimensional manifold. Denoting the vector space of symmetric d-by-d ma-
trices by Sym(d), it can be shown that SPD(d) constitutes an open half cone of Sym(d) [18,
Prop. 2.7]. Furthermore, the tangent space TPSPD(d) at each P ∈ SPD(d) can be identified
with Sym(d). An important property now is that the matrix exponential exp : Sym(d) →
SPD(d) is a bijection. (We will see that the matrix exponential is also the group exponential,
so the notation is consistent.) In [18, 19], Arsigny et al. utilized this property to give SPD(d)
the structure of a vector space by defining addition and multiplication by

P ⊕ Q := exp(log(P) + log(Q)),

x ⊗ P := exp(x log(P)),

for all P, Q ∈ SPD(d) and x ∈ R. Consequently, with this structure, SPD(d) is a Lie
group with commutative group operation. Since its one-parameter subgroups are given by
R 3 t 7→ exp(tS), the group exponential and logarithm coincide with the matrix exponential
and logarithm.

Analogously to the vector space construction, Arisgny et al. also proposed to transfer the
usual Euclidean metric from Sym(d) to SPD(d) via the matrix exponential. This leads to the
Log-Euclidean metric 〈 · , · 〉 that is defined by

〈S, T〉P := trace
(

dP log(S)TdP log(T)
)

for all P ∈ SPD(d) and S, T ∈ TPSPD(d). Since SPD(d) with the Log-Euclidean metric is
isometric to Sym(d) with the standard Euclidean metric, it is flat (that is, has vanishing cur-
vature tensor everywhere) as a Riemannian manifold. Furthermore, since the group operation
is commutative, the Log-Euclidean metric is bi-invariant.

We obtain
dist(P, Q) = ‖ log(P)− log(Q)‖F.

The Riemannian exponential and logarithm can be expressed in terms of the matrix expo-
nential and logarithm; they are given by

ExpP(S) = exp
(

log(P) + dP log(S)
)
, P ∈ SPD(d), S ∈ TPSPD(d),

LogP(Q) = dlog(P) exp
(

log(Q)− log(P)
)
, P, Q ∈ SPD(d).
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Both can be computed efficiently as there are algorithms for the derivative of the matrix expo-
nential and logarithm [168, 169].

Last but not least, we have an explicit formula for parallel transport (which must be path-
independent since there is no curvature). Let P, Q ∈ SPD(d) and S ∈ TPSPD(d). Taking
advantage of the fact that the exponential is an isometry (and that parallel vector fields in
Sym(d) are constant), the parallel transport T of S from P to Q is given by

T =
(

dlog(Q) exp ◦dP log
)
(S).

1.2.4 A Canonical Affine Structure for Lie Groups

We now turn to the choice of affine connection ∇ on a Lie group G. If G is endowed
with a Riemannian metric, then its Levi-Civita connection is the clear candidate. Nev-
ertheless, a metric might not be needed, problematic to find, or its Levi-Civita connec-
tion lacks valuable properties. In this section, we will see that the latter is the case for
several relevant Lie groups, but they also offer another canonical connection, which
is better suited.

Since G has a group structure, it is natural to require that ∇ “respects” it. The
following two conditions make this precise. First, ∇ should be equivariant under
both left and right translations when applied to left or right invariant vector fields;
that is, for left invariant fields

∇dLg(X)dLg(Y) = dLg(∇XY)

for all X, Y ∈ g and g ∈ G, while the analog should hold for right invariant ones.
Second, geodesics through the identity e should coincide with one-parameter sub-
groups. Together with the equivariance property, this implies that any geodesic is a
left and right translated one-parameter subgroup, that is, for any geodesic γ in G with
γ(0) = g both g−1γ : t 7→ g−1γ(t) and γg−1 : t 7→ γ(t)g−1 are (generally different)
one-parameter subgroups of G; this is visualized in Figure 1.8. Because connections
with the above properties were first studied by Cartan and Shouten in [46], they are
called bi-invariant Cartan-Shouten connections;12 for more on them; see [197, Ch. 6].
Amongst them, we find the canonical Cartan-Shouten (CCS) connection ∇ of G. It is the
unique torsion-free Cartan-Shouten connection. On g, it is defined by

∇XY :=
1
2
[X, Y], X, Y ∈ g; (1.17)

see [197, Ch. 6]. Using Equation (1.17), one can show [197, p. 72] that the curvature
tensor of a Lie group with CCS connection is given by

R(X, Y)Z =
1
4
[Z, [X, Y]], X, Y, Z ∈ g. (1.18)

We can extend both (1.17) and (1.18) to general vector fields using the multilinearity
of ∇ and R and a (global) frame field (which is provided by g).

12In general, Cartan-Shouten connections need only be left invariant.
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Since geodesics are translated one-parameter subgroups, the local exponential and
logarithm of the CCS connection are given by

Expg(w) = g exp
(

dgLg−1(w)
)
= exp

(
dgRg−1(w)

)
g, w ∈ TgG, (1.19)

Logg(h) = deLg
(

log(g−1h)
)
= deRg

(
log(hg−1)

)
, h ∈ U, (1.20)

where U ⊆ G is the maximal neighborhood of g such that log(g−1h) is defined;
see [188, Cor. 5.1]. In particular, G is geodesically complete.
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Figure 1.8: Geodesics in a Lie group G with CCS connection. The geodesic γ through
g ∈ G with tangent vector w ∈ TgG coincides with the left and right translated one-
parameter subgroups gαv̂ and αṽg defined by the tangent vectors v̂ := dgLg−1(w) ∈
TeG and ṽ := dgRg−1(w) ∈ TeG, respectively. (Note that if the group operation is
commutative, then v̂ = ṽ.)

Crucially, the CCS connection is the Levi-Civita connection of a Riemannian metric
if and only if the latter is bi-invariant, that is, invariant under left and right transla-
tions. This is the only case in which Expe = exp and Loge = log on a Lie group with
Riemannian structure; only then, geodesics and translated one-parameter subgroups
coincide. Whenever the group structure is of interest, the CCS connection is thus the
first choice.

We finish with one example of a Lie group with a bi-invariant metric and two
where the CCS connection differs from all Levi-Civita connections.

Example 1.8. As shown in Example 1.6, the group SO(d) has a bi-invariant metric, and
its Levi-Civita connection thus corresponds to the CCS connection. Consequently, geodesics
are given by 1-parameter subgroups, and the exponential and logarithm of the connection are
given by translations of the matrix exponential and logarithm, respectively. There also is an
explicit formula to compute the parallel transport along a geodesic, which will be helpful later.
Let γ be a geodesic in SO(d), γ(0) = R, and γ′(0) = RA. Further, let RS ∈ TRSO(d) and
γ(1) = U. The parallel transport UT ∈ TUSO(d) of RS from R to U is then given by [78, p.
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311]

UT = U exp
(
−A

2

)
S exp

(
A
2

)
.

Example 1.9. In contrast to SO(d), there is no bi-invariant metric on GL(d) and, there-
fore, on its component GL+(d). Therefore, no Levi-Civita connection on either of them has
translated 1-parameter subgroups as geodesics. The latter only holds when the group’s CCS
connection is used.

Example 1.10. The Euclidean group E(d) and its component SE(d) also do not possess a
bi-invariant metric, implying that geodesics of a Levi-Civita connection and 1-parameter sub-
groups never coincide. In homogeneous coordinates, the exponential and logarithm of the
group’s CCS connection can also be computed with the corresponding matrix maps (c.f. Ex-
ample 1.2).

1.3 Riemannian Symmetric Spaces

A Riemannian symmetric space is a Riemannian manifold M with a certain regularity.
Let p ∈ M and Id the identity map. We say that an isometry sp : U → U of some
neighbourhood U of p is a geodesic symmetry about p, if sp(p) = p and dpsp =

−Id. The name originates from the fact that sp mirrors all geodesics through p in p
without changing distances. A connected manifold M is called Riemannian symmetric
space (symmetric space in short) if for every p there is a geodesic symmetry sp :
M → M (that is, every sp is a global isometry). Examples are Euclidean space, the
sphere (see below), and Lie groups with bi-invariant metric (where concatenations
of the inversion map with left or right translations are the symmetries). A direct
consequence of the existence of symmetries is that symmetric spaces are geodesically
complete; because if a geodesic γ is defined on [0, s), then we can always reflect it in
some t ∈ (s/2, s) to extend it beyond s.

Symmetric spaces are of interest to us because of three reasons: First, they appear
in many applications; second, they allow for explicit formulas for Jacobi fields, which
enables us to formulate specialized algorithms with less iterative subroutines; and
third, essential results concerning the relationship of maximum likelihood and least
squares estimation can be shown for them.

A fundamental property of symmetric spaces is that their Riemannian curvature
tensor R is parallel, that is, ∇R = 0. (Here, ∇ denotes the generalization of the connec-
tion to tensor fields on M; see [45, Ch. 4] for details.) This fact is crucial in proving the
following lemma from [29, Lem. 6] (see also [20, Sec. 3]), which opens up the possibil-
ity to compute Jacobi fields (and thus (1.10) and (1.11)) explicitly in symmetric spaces.
Note that a parallel translated orthonormal basis (ONB) is again an ONB since angles
are preserved.

Lemma 1.3.1. Let M be a d-dimensional symmetric space, p, q ∈ M and γ( · ; p, q) :
[0, 1] → M be a geodesic between p and q. Further, let (v1, . . . , vd) be an ONB of Tp M
that diagonalizes the operator R (1.12) at p with corresponding eigenvalues λ1, . . . , λd and
(X1, . . . , Xd) the parallel transported frame field of (v1, . . . , vd) along γ. Set lγ := length(γ).
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Then, for i = 1, . . . , d, the value of the Jacobi field Jvi along γ at t ∈ [0, 1] is given by

Jvi(t) =





sinh
(
(1−t)lγ

√−λi

)

sinh
(

lγ
√−λi

) Xi(t), λi < 0,

sin
(
(1−t)lγ

√
λi

)

sin
(

lγ
√

λi

) Xi(t), λi > 0,

(1− t)Xi(t), λi = 0.

Furthermore, for an arbitrary vector v = ∑d
i=1〈v, vi〉p vi ∈ Tp M and all t ∈ [0, 1] we

have

Jv(t) =
d

∑
i=1
〈v, vi〉p Jvi(t).

Note that lγ = dist(p, q) in a normal convex neighborhood U ⊆ M with p, q ∈ U
(see Section 1.2.2). Furthermore, we emphasize that the operator R is defined us-
ing the tangent vector of γ scaled to unit-length. This is equivalent to formulating
R without the normalization of γ′(0) (that is, v 7→ R(v, γ′(0))γ′(0)) but requir-
ing that γ is arc-length parametrized (that is, defined on [0, lγ], necessarily with unit
speed); because then γ′(0) already has norm one. The formulation of Lemma 1.3.1
in [29] can be misunderstood to mean that R is defined without the normalization
of γ′(0) but for γ being parametrized in [0, 1] (as, for example, in [206, Sec. 4.3],
where v 7→ R(v, γ′(0))γ′(0) is called “Jacobi operator”13). This interpretation would
lead to different results since linear reparametrizations of γ (which do not change
the fact that it is a geodesic) change the norm of γ′(0) and thus the eigenvalues of
v 7→ R(v, γ′(0))γ′(0). However, deriving the lemma from [20, Prop. 3.5] reveals that
the formulation (1.12) is correct.

We provide examples.

Example 1.11. The d-dimensional unit sphere Sd is one of the most important manifolds. It
can be defined as the set of unit vectors in Rd+1 (with Euclidean 2-norm ‖ · ‖), that is,

Sd :=
{

p ∈ Rd+1 ∣∣ ‖p‖ = 1
}

.

An atlas of Sd can, for example, be obtained by taking all orthogonal projections of open
hemispheres onto the corresponding planes that divide the sphere [45, p. 21]. At each p ∈ Sd

the tangent space is the orthogonal complement of p in Rd+1, that is,

TpSd =
{

v ∈ Rd+1 ∣∣ pTv = 0
}

.

We can restrict the standard Euclidean scalar product of the surrounding space to the tangent
spaces to obtain a Riemannian metric on Sd. Using the corresponding Levi-Civita connection,
the geodesics in Sd are (segments of) great circles and, thus, open hemispheres are (maximal)
normal convex neighborhoods. (Throughout this work, without mentioning it again, we will
always assume that Sd is endowed with the above structure.) Importantly, we have

K ≡ 1,
13We do not use this name because there might be confusion as other works call ∇2

γ′ +R “Jacobi
operator”.
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p q
γ

Jv

Figure 1.9: Jacobi field Jv along the geodesic γ between p = [1, 0, 0]T and q = [0, 1, 0]T

in the sphere S2 with v = [0, 0, 0.4]T.

that is, Sd has constant sectional curvature equal to one (see, for example, [197, Ex. 22.3]).
The Riemannian exponential at p ∈ Sd is given for all v ∈ TpS2 \ {0} by

Expp(v) = p cos(‖v‖) + v
‖v‖ sin(‖v‖),

while the Riemannian logarithm is defined for all q ∈ Sd \ {−q} by

Logp(q) =
q− (pTq)p
‖q− (pTq)p‖ arccos(pTq).

The distance in Sd is
dist(p, q) = arccos(pTq).

Parallel transport along geodesics in Sd can also be calculated explicitly. Let p, q ∈ Sd

be from the same hemisphere (which is the largest normal convex neighborhood that contains
them). The parallel transport w of v ∈ TpSd along γ( · ; p, q) to TqSd is (not only) then given
by [148, p. 116]

w = v−
Logp(q)

Tv

‖Logp(q)‖2

(
Logp(q) + Logq(p)

)
.

The sphere Sd is also a symmetric space. It is easily verified that the symmetry at each
p ∈ Sd is the reflection at the line in Rd+1 that goes through the origin and p; that is,
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sp(q) = −q + 2〈q, p〉p. Furthermore, if γ : [0, 1] → Sd is a geodesic, then it follows from
K ≡ 1 that

R
(

X,
γ′

‖γ′‖

)
γ′

‖γ′‖ = X

for vector fields X along γ with 〈X, γ′〉 = 0 (see [45, Ex. 2.3 in Chap. 5 ]). Consequently,
all eigenvalues but the trivial of the operator R (1.12) are equal to 1. A set of correspond-
ing orthonormal eigenvectors can be chosen as any ONB of the orthogonal complement of
span{γ′(0)} in Tγ(0)Sd. Using Theorem 1.3.1 we can then calculate Jacobi fields; an example
for d = 2 is shown in Figure 1.9.

Example 1.12. Being a connected Lie group, the special orthogonal group SO(d) with the
Riemannian structure from Example 1.6 is a symmetric space. Since the Riemannian metric
is bi-invariant, the Levi-Civita connection coincides with the CCS connection (1.17), and the
Riemannian curvature tensor is given by Equation (1.18). The operator R along a geodesic γ

between R, U ∈ SO(d) with γ′(0) = RS is thus

R(RT) =
1
4

R(−S2T + 2STS− TS2).

Herefrom, we can compute the eigenvalues and eigenvectors we need for Jacobi fields. For
convenience, we only give the formulas for d = 3 from [206, pp. 77–78], which we will
need in later chapters. We denote the i-th canonical basis vector of R3 by ei, i = 1, 2, 3.
Let T = V b(e3eT

2 − e2eT
3 )VT be the Schur decomposition of the skew-symmetric matrix

T ∈ TISO(3). The non-trivial eigenvalues of R are

λ2,3 =
b2

4
;

corresponding orthonormal eigenvectors are

S1 = V
(

e2eT
1 − e1eT

2

)
VT,

S2 = V
(

e3eT
1 − e1eT

3

)
VT.

Example 1.13. The space of symmetric positive definite matrices SPD(d) together with the
Log-Euclidean structure from Example 1.7 also constitutes a symmetric space (since it is
connected). It is a flat space. Hence, all orthonormal bases diagonalize R. Therefore, the Jacobi
fields in Theorem 1.3.1 are given by scaled parallel translations.
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Chapter 2

Bézier Splines in Riemannian
Manifolds and Shape Spaces

Here, we give the necessary background on Bézier splines and shape analysis. The
former form the basis for Chapter 5, while the latter is an important application area
of geometric data analysis of which we will investigate several problems in Chapter 6.

2.1 Bézier Splines in Riemannian Manifolds

Fundamental to the constructions in Chapter 5 will be splines built from generalized
Bézier curves [105, 195]. Therefore, we summarize the relevant facts about them here.
We restrict the domain of a (generalized) Bézier curve to [0, 1] for clarity. This does
not influence generality since reparametrizations are always possible.

Let M be a Riemannian manifold and U ⊆ M be a normal convex neighborhood.
A family1 of k + 1 ≥ 2 control points (p0, . . . , pk) ∈ Uk+1 defines a Bézier curve β :
[0, 1]→ U of degree k according to the generalized de Casteljau algorithm

β0
i (t) := pi,

βl
i(t) := γ(t; βl−1

i (t), βl−1
i+1(t)), l = 1, . . . , k, i = 0, . . . , k− l, (2.1)

by
β(t) := βk

0(t).

The algorithm is visualized in Figure 2.1 for the sphere. In Euclidean space Rd, it
reduces to the familiar de Casteljau algorithm (because there the geodesic γ( · ; x, y)
is the straight line between x, y ∈ Rd) and it is a well-known fact [84] that β is then a
curve with polynomials of order at most k as entries. Hence, β is a generalization of
a polynomial curve of degree k to Riemannian manifolds. Whenever of interest, we
will make the dependence of β on its control points explicit by writing β(t; p0, . . . , pk).
Note that if there are only two control points p0, p1, then β is just the geodesic from
p0 to p1.

An important property of a Bézier curve β is that

β(0) = p0 and β(1) = pk. (2.2)

1Copies of the same point are allowed.
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β1
0

β1
1

β1
2

β2
0

β2
1

β( 23 )

p0

p1 p2

p3

Figure 2.1: Cubic Bézier curve β on the sphere S2 and the construction of β(2/3) by
the de Casteljau algorithm.

Furthermore, the velocities at these points are

β′(0) = k Logp0
(p1) and β′(1) = −k Logpk

(pk−1); (2.3)

see [195, Thm. 1]. Popiel and Noakes also derived the accelerations at t = 0 and t = 1;
their result is given in the following theorem.

Theorem 2.1.1 ([195]). A Bézier curve t 7→ β(t; p0, . . . , pk) satisfies
(i) ∇β′β

′(0) = k(k− 1)ũ0, where

ũ0 :=

{
γ′(0; p1, p2), if p0 = p1,

(dExpp0
)−1

γ′(0;p0,p1)

(
γ′(0; p1, p2)− γ′(1; p0, p1)

)
, if p0 6= p1;

(ii) ∇β′β
′(1) = k(k− 1)ũk, where

ũk :=

{
−γ′(1; pk−2, pk−1), if pk−1 = pk,

(dExppk
)−1
−γ′(1;pk−1,pk)

(
γ′(0; pk−1, pk)− γ′(1; pk−2, pk−1)

)
, if pk−1 6= pk.

Using (2.2) and (2.3), we obtain the following corollary of Theorem 2.1.1.
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Corollary 2.1.2 ([195]). A Bézier curve t 7→ β(t; p0, . . . , pk) satisfies

p0 = β(0; p0, . . . , pk),

pk = β(1; p0, . . . , pk),

p1 = Expp0

(
1
k

v0

)
,

pk−1 = Exppk

(
−1

k
vk

)
,

p2 = Expp1

(
1

k(k− 1)
w0

)
,

pk−2 = Exppk−1

(
1

k(k− 1)
wk

)
,

where v0 := β′(0; p0, . . . , pk), vk := β′(1; p0, . . . , pk), u0 := ∇β′β
′(0), uk := ∇β′β

′(1), and

w0 :=

{
u0, if p0 = p1,

(dExpp0
)γ′(0;p0,p1)

(
u0 + k(k− 1)γ′(0; p0, p1)

)
, if p0 6= p1,

wk :=

{
uk, if pk−1 = pk,

(dExppk
)−γ′(1;pk−1,pk)

(
uk − k(k− 1)γ′(1; pk−1, pk)

)
, if pk−1 6= pk.

Property (2.3) allows us to fit Bézier curves of possibly different orders together to
a differentiable spline. For i = 0, . . . , L− 1 let

(
p(i)0 , . . . , p(i)ki

)
be the control points of

L ≥ 2 Bézier curves β(0), . . . , β(L−1) such that

p(i)ki
= p(i+1)

0 and γ

(
ki + ki+1

ki+1
; p(i)ki−1, p(i)ki

)
= p(i+1)

1 (2.4)

for all i = 0, . . . , L − 2. Then, we define the Bézier spline B with control points(
p(i)0 , . . . , p(i)ki

)
, by

B(t) :=





β(0)
(

t; p(0)0 , . . . , p(0)k0

)
, t ∈ [0, 1],

β(i)
(

t− i; p(i)0 , . . . , p(i)ki

)
, t ∈ (i, i + 1], i = 1, . . . , L− 1.

(2.5)

We also view Bézier curves as Bézier splines with L = 1 segments. From Equa-
tion (2.3), it follows that B is C1. Hence, we can make B differentiable by aligning
the four control points at the connections, thereby removing two degrees of freedom
(see [105, Sec. 2.3] for more details). Corollary 2.1.2 can further be used to ensure that
B is C2, but we restrict to C1 splines in this work.

The spline B is a closed C1 curve, if (2.4) extends cyclically, that is,

p(L−1)
kL−1

= p(0)0 and γ

(
kL−1 + k0

k0
; p(L−1)

kL−1−1, p(0)0

)
= p(0)1 (2.6)

also holds. Closed C1 splines can readily be extended to cyclic curves defined on the
whole of R when the input parameter is viewed modulo L.

Because of Equations (2.4) and (2.6), not all control points are free parameters of
a Bézier spline. Indeed, if p(i)ki

= p(i+1)
0 are connecting control points, joining the i-th
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p0

p1

p2

p3

p4

p5

p6

p7

Figure 2.2: Bézier spline with 3 cubic segments on S2. The unlabeled green points are
dependent control points.

to the (i + 1)-th segment2, we omit p(i+1)
0 as a variable. Furthermore, we choose that

p(i)ki
and its predecessor p(i)ki−1 are free variables, while the successor p(i+1)

1 shall also be
eliminated as a variable. With k := (ki−1 + ki)/ki we therefore have the additional
condition p(i+1)

1 = γ(k; p(i)ki−1, p(i)ki
) at the connection. Setting

K :=

{
k0 + k1 + · · ·+ kL−2 + kL−1 − L + 1, if B is not closed,

k0 + k1 + · · ·+ kL−2 + kL−1 − L− 1, if B is closed,
(2.7)

it then follows that the number of independent control points of a C1 Bézier spline B is
K + 1.

We denote the set of K + 1 independent control points of B by p0, . . . , pK. In the
non-closed case, this means

(p0, . . . , pK) :=
(

p(0)0 , . . . , p(0)k0
, p(1)2 , . . . , p(1)k1

, . . . , p(L−1)
2 , . . . , p(L−1)

kL−1

)
∈ UK+1,

while p(0)0 and p(0)1 are left out for closed B. An example of a non-closed C1 spline
with three cubic segments and nine independent control points is shown in Figure 2.2,
while a closed C1 spline with two cubic segments and four independent control points

2For closed splines the segment numbers are meant modulo L, so the connection between the first
and last segment is included.
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p0

p1

p2

p3

Figure 2.3: Closed spline with two cubic segments on S2. The unlabeled green points
are dependent control points.

is depicted in Figure 2.3. When it is important, we make the dependence of B on its
control points clear by writing B(t; p0, . . . , pK).

We introduce a notation for the set of Bézier splines

BL
k0,...,kL−1

(U) := {B :[0, L]→ U
∣∣ B is a C1 Bézier spline

with L segments of degrees k0, . . . , kL−1}
(2.8)

and its subset of closed splines

B̊L
k0,...,kL−1

(U) := {B :[0, L]→ U
∣∣ B is a closed C1 Bézier spline

with L segments of degrees k0, . . . , kL−1}.
(2.9)

Except for clearly marked cases, we assume in the following that L, k0, . . . , kL−1, and the type
of the curve are arbitrary but fixed. Therefore, we only write B(U) unless we want to
emphasize the parameters.

Later, we need to compute the adjoint of the derivative of a Bézier spline with
respect to its control points; in symmetric spaces, this can be done explicitly, as we
shall see in the now. (In the following, we summarize [29, Secs. 3–4], which we
recommend for a more detailed treatment.

Before we can investigate the adjoint, we must turn to the derivative itself. We
start with single curves. Fixing j ∈ {0, . . . , k} we denote the value

dpj β
l
i(t; pi, . . . , pj−1, · , pj+1, . . . , pi+l)(v) ∈ Tβl

i(t)
M
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of the derivative of βl
i with respect to the j-th control point at v ∈ Tpj M by w(l)

i .3 (We

set w(l)
i := 0 ∈ Tβl

i(t)
M, if j < i or j > i + l.) Then, using the chain rule (1.3) and

denoting the Kronecker delta by δij, we obtain from (2.1) that

w(0)
i = δijv,

w(l)
i = dβl−1

i (t)γ
(

t; · , βl−1
i+1(t)

) (
w(l−1)

i

)
+ dβl−1

i+1(t)
γ
(

t; βl−1
i (t), ·

) (
w(l−1)

i+1

)
, (2.10)

l = 1, . . . , k, i = 0, . . . , k− l;

in particular,

dpj β(t; p0, . . . , pj−1, · , pj+1, . . . , pk) = w(k)
0 .

Using Equations (1.10) and (1.11) and omitting the zero derivatives leads to the fol-
lowing theorem.

Theorem 2.1.3 (Derivative of a Bézier curve [29]). Let β be a Bézier curve of degree k and
i ≤ j ≤ i + l. Then,

w(l)
i =





J
w(l−1)

i
(t), if j = i,

J
w(l−1)

i
(t) + J

w(l−1)
i+1

(1− t), if i < j < i + l,

J
w(l−1)

i+1
(1− t), if j = i + k,

for l = 1, . . . , k and i = 0, . . . , k− l, where J
w(l−1)

i
is defined along s 7→ γ

(
s; βl−1

i (t), βl−1
i+1(t)

)

while J
w(l−1)

i+1
is defined along the reversed geodesic s 7→ γ

(
s; βl−1

i+1(t), βl−1
i (t)

)
.

The theorem shows that the derivative acts by transporting the vector v via Jacobi
fields along the (relevant part of the) “tree of geodesics” as spanned by the de Castelau
algorithm; this is visualized in Figure 2.4 for a cubic curve in S2. Note that whenever
separate paths meet, their contributions are added.

We now turn to C1 Bézier splines. In this case, Equations (2.4) and (2.6) must
be accounted for, so differentiating with respect to a control point at a connection is
different from the case of a single curve. To this end, note that if pj is a connecting
control point, joining the (i − 1)-th to the i-th segment (again, modulo L for closed
splines), then for v ∈ Tpj−1 M and w ∈ Tpj M

dpj−1 γ(k; · , pj)(v) = Jv(k) and dpj γ(k; pj−1, · )(w) = Jw(1− k)

are the (extrapolated) values at t = k of the Jacobi fields (1.10) and (1.11), respectively
[29, Sec. 4.2]. With this, the following theorem extends Theorem 2.1.3 to C1 Bézier
splines. Bergmann and Gousenbourger proved it for non-closed splines in [29, Lem.
10]. We formulate it so that closed splines are included; the proof trivially extends to
this case.

3Note that the function βl
i in the de Casteljau algorithm (2.1) depends only on the control points

pi, . . . , pi+l .
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β( 2
3
)

β

p1
v

w

Figure 2.4: Derivative of a cubic Bézier curve β in S2 w.r.t. the control point p1 with t =
2/3. We visualize how, for v ∈ Tp1S2, the vector w := dp1 β(2/3; p0, · , p2, p3))(v) ∈
Tβ(2/3)S2 is generated by transporting v through the tree of geodesics (along the part
with thick lines). A solid line indicates that the vector is transported via the derivative
of the geodesic w.r.t. its starting point (1.10), while a dashed line implies that it is
transported via an endpoint derivative (1.11). Jacobi fields are not shown to avoid
cluttering.

Theorem 2.1.4 (Derivative of a C1 Bézier spline). Let B ∈ B(U) be defined by (2.5), pj be
the j-th control point of B, and v ∈ Tpj M. We set

wj := dpj B(t; p0, . . . , pj−1, · , pj+1, . . . , pK)(v).

Further, let

i ∈
{
{1, . . . , L− 1}, if B is not closed,

{1, . . . , L}, if B is closed.

In the closed case, i, i− 1, and i + 1 are to be understood modulo L.
If pj connects the segments β(i−1) and β(i), then

wj =





dpj β
(

t− i + 1; p(i)0 , . . . , p(i)ki−1, ·
)
(v), t ∈ (i− 1, i],

dpj β
(

t− i; · , p(i+1)
1 , . . . , p(i+1)

ki+1

)
(v)

+dγ(k;pj−1,pj)
β
(

t− i; pj, · , p(i+1)
2 , . . . , p(i+1)

ki+1

) (
dpj γ

(
k; pj−1, ·

)
(v)
)

, t ∈ (i, i + 1].
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If the successor pj+1 connects the segments β(i−1) and β(i),

wj =





dpj β
(

t− i + 1; p(i)0 , . . . , · , p(i)ki

)
(v), t ∈ (i− 1, i],

dγ(k;pj,pj+1)
β
(

t− i; pj+1, · , p(i+1)
2 , . . . , p(i+1)

ki+1

) (
dpj γ

(
k; · , pj+1

)
(v)
)

, t ∈ (i, i + 1].

If i = 1, then i− 1 = 0 is included in the first interval in both cases.
In any other case, wj can be computed segment-wise using Theorem 2.1.3.

The theorem shows that as long as we can calculate Jacobi fields, we can also com-
pute the derivative of Bézier splines with respect to their control points. Crucially,
in combination with Theorem 1.3.1 and Equation (1.10) we get explicit formulas in
symmetric spaces that fundamentally only require parallel transport along geodesics:
Let M be a d-dimensional symmetric space and U ⊆ M be a normal convex neighbor-
hood. Further, let p, q ∈ U and v ∈ Tp M. Then, there are coefficients a1, . . . , ad ∈ R,
an ONB (v1, . . . , vd) of Tp M, and its parallel translated frame field (X1, . . . , Xd) along
γ( · ; p, q) such that

dpγ(t; · , q)(v) = Jv(t) =
d

∑
i=1
〈v, vi〉p aiXi(t). (2.11)

Repeated applications of this equation yield the explicit formula for the derivative of
a Bézier spline in a symmetric space.

We are now ready to investigate the adjoint derivative and start again with single
Bézier curves. Remember that taking the adjoint reverses the order of concatenated
operators; in our context, this means that to compute

dpj β(t; p0, . . . , pj−1, · , pj+1, . . . , pk)
∗(w)

for w ∈ Tβ(t)M, we must transport w backward along all valid paths in the tree of
geodesics (that is, along the geodesics whose start or endpoints depend on pj) via
adjoint differentials of geodesics and sum up the contributions at pj (cf. Figure 2.4).4

Example 2.1. For a quadratic Bézier curve β, it holds that

dp1 β(t; p0, · , p2)
∗(w) = dp1 γ

(
t; p0, ·

)∗ (
dγ(t;p0,p1)γ

(
t; · , γ(t; p1, p2)

)∗
(w)

)

+ dp1 γ
(

t; · , p2

)∗ (
dγ(t;p1,p2)γ

(
t; γ(t; p0, p1), ·

)∗
(w)

)
.

To compute the adjoint, one must evaluate the operator dpγ(t; · , q)∗ for p, q ∈ U,
which is generally difficult. However, if M is a symmetric space, then there is an
explicit formula, just like for the derivative itself. Indeed, for v ∈ Tp M, and w ∈

4When computing, it is better to add contributions that pass through the same point along the tree
as soon as possible.
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Tγ(t;p,q)M, Equation (2.11) then implies

〈
dpγ(t; · , q)(v), w

〉
γ(t;p,q)

=

〈
d

∑
i=1
〈v, vi〉p aiXi(t), w

〉

γ(t;p,q)

=
d

∑
i=1

ai

〈
Xi(t), w

〉
γ(t;p,q)

〈
v, vi

〉
p

=

〈
v,

d

∑
i=1
〈Xi(t), w〉γ(t;p,q) aivi

〉

p

.

Hence,

dpγ(t; · , q)∗(w) =
d

∑
i=1
〈Xi(t), w〉γ(t;p,q) aivi.

Since Bézier splines are concatenated geodesics, we can also compute

dpj B(t; p0, . . . , pj−1, · , pj+1, . . . , pK)
∗(w).

Indeed, as a consequence of Theorem 2.1.4 there is (depending on the value of t) only
one more possible concatenation if pj connects two segments, or if it is the predecessor
of such a control point.

2.2 Shape and Shape Spaces

In mathematics, a “shape” is the set of all the geometric properties of a (usually
two- or three-dimensional) object that are invariant under similarity transformations,
that is, under translations, rotations, and scalings. Depending on the application,
different strategies to encode this information are employed. Consequently, there are
several “shape spaces”, which can be used to model object shapes. A classic example
is Kendall shape space [142], which relies on landmark configurations; an excellent
textbook on shape spaces based on landmarks is also [75]. An overview of shape
spaces whose elements are diffeomorphisms can be found in [24]—with more in-
depth discussions, for example, in [231, 265]. Skeletal models are discussed in [194,
224]. Finally, physics-based spaces were investigated in [11, 118, 245].

Not all of these spaces implement full invariance under similarity transformations;
it is not done, for example, because of methodological reasons (for example, when
size information is deemed decisive), to keep computational costs manageable, or
because the representation does not allow for all three (but is useful in applications).
Nevertheless, some degree of invariance is always achieved. What almost all of the
above shape spaces have (at least locally) in common is an inherent manifold structure
that is non-Euclidean. Therefore, tools from geometric statistics are needed for data
analysis in them.

Quite often, shape spaces are also Lie groups. This connection dates back at least
100 years when D’arcy Thompson [239] had the idea to model shapes of homoge-
neous objects as deformations of a common reference; see Figure 2.5 for a visualization.
This concept is present in several modern approaches to shape analysis, where the
deformations are usually elements of Lie groups. Examples following this idea are [3,
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6KDSH

Figure 2.5: Shape via deformations visualized for distal femora. Given samples (here
four), the maps φi are the deformations that the reference has to undergo to coincide
with the samples. (Different types of deformation are used; for example, they can
be diffeomorphisms of the surrounding space or bijections between triangle meshes.)
The shape of each object is encoded in terms of the corresponding deformation φi (for
example, as the deformation itself or some derived quantity like its derivative).

36], where configurations of the human spine are represented in a product group con-
sisting of translations and rotations. We show two further examples of shape spaces
that rely on deformations; both will be used later in this work.

Example 2.2. GL+(3)-based shape space ([11]). Suppose that n homogeneous objects are
given as triangulated surfaces Ti ⊂ R3 that are in correspondence, scaled to the same size,
and Procrustes aligned5. Then, we can describe their shapes with the help of the Lie group
GL+(3). To obtain this representation, we view, for each i = 1, . . . , n, the mesh Ti as the
result of a deformation φi of a shared reference mesh T ⊂ R3; that is, each φi : T → Ti is an
orientation-preserving isomorphism that yields a semantic correspondence.

The idea now is that the derivatives of these deformations comprise the shape information
because they provide a local characterization of the deformation without being influenced by
the location in space. Thus, the Jacobian dφi constitutes the shape representation of the i-th
object. More formally, let m be the number of triangles of each mesh. (It must be the same
for all.) Since each derivative dφi is constant on each face Fj of T and orientation-preserving,

there are 3-by-3 matrices G(i)
j ∈ GL+(3) such that

dφi
∣∣

Fj
= G(i)

j (2.12)

for all i = 1, . . . , n and j = 1, . . . , m. The i-th shape is thus given by

(G(i)
1 , . . . , G(i)

m ) ∈ GL+(3)m,

so GL+(3)m constitutes the shape space. We visualize the encoding for two meshes of distal
femora in Figure 2.6. Note that this model stems from a continuous formulation [245, Sec. 2]
that admits consistent and convergent discretizations.

5Generalized (partial) Procrustes alignment [102] superimposes the meshes such that translational
and rotational differences are minimized.
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Figure 2.6: Construction of the GL+(3)-based shape space for femora. The mesh T
representing the reference femur is deformed into the mesh Ti of the i-th observation
by φi. The Jacobian dφi

∣∣
Fj

= G(i)
j thereby maps the j-th triangle Fj of T into the j-th

triangle F(i)
j of Ti.

The task of obtaining a triangle mesh whose Jacobian is closest to given differential coordi-
nates leads to a variational problem. Its minimizer is given by the solution of the well-known
Poisson equation for which fast numerical solvers exist. Furthermore, as a global variational
approach, the minimizer given by the Poisson equation tends to distribute errors uniformly
such that local gradient field inconsistencies are attenuated.

In this work, we always endow the shape space GL+(3)m with its product Lie group
structure obtained from Example 1.1. As part of this thesis, we develop new tools that will
make the choice of T unimportant: They will be invariant under translations, and selecting
another reference T̃ only amounts to right-translating all shapes (G(i)

1 , . . . , G(i)
m ) with the

same element from GL+(3)m (viz., the derivative of the simplicial deformation between T̃
and T ).

We do not specify a Riemannian structure on this shape space as we will not need
one (but see [11] for a well-founded choice). It should be emphasized that no bi-
invariant metric exists on GL+(3), and thus also on the above shape space. Therefore,
it does not have a Levi-Civita connection that coincides with its CCS connection.

Whenever we want to analyze shapes in a manifold with a Riemannian structure,
we rely on a slightly different space, which we introduce in the following example.

Example 2.3. Shape space of differential coordinates ([245]). Suppose again that n
homogeneous objects are given as triangle meshes Ti ⊂ R3 that are in correspondence, scaled
to the same size, and Procrustes aligned. To encode shapes as differential coordinates, one
initially proceeds as in Example 2.2 and computes the matrices given by Equation (2.12). By
using the polar decomposition, we can then find rotation matrices R(i)

j ∈ SO(3) and symmetric

positive definite matrices P(i)
j ∈ SPD(3) such that

G(i)
j = R(i)

j P(i)
j
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for all i = 1, . . . , n, and j = 1, . . . , m. Both have a physical meaning: R(i)
j and P(i)

j can be
viewed as the rotation and stretch, respectively, that Fj undergoes when T is deformed by φi.
We call ((

R(i)
1 , U(i)

1

)
, . . . ,

(
R(i)

m , U(i)
m
))
∈
(
SO(3)× SPD(3)

)m

the differential coordinates of Ti. The space of differential coordinates for homoge-
neous triangle meshes with m faces then is

∆ :=
(
SO(3)× SPD(3)

)m.

We endow ∆ with the Riemannian product structure it inherits from SO(3) and SPD(3) (as
given in Examples 1.6 and 1.7). 6 Hence, all operations work component-wise.

Given differential coordinates q ∈ ∆ and a reference T , the triangular mesh corresponding
to q can be found as in Example 2.2. (We obtain the matrices (2.12) by multiplying the
rotations from the left to the corresponding stretches.)

When Riemannian methods are used, it is essential to minimize the bias that comes with
a particular choice of reference. We, therefore, compute T in an iterative process as the mesh
representation of the data’s Fréchet mean as follows. To initialize, we choose one of the given
geometries as the reference, say T1, and encode the shapes of each Ti in ∆ for i = 1, . . . , n.
Then, we compute their Fréchet mean with Algorithm 1 and use its mesh representation as
the new reference. This procedure is repeated until it converges or the residual norm does not
decrease any further.

Later in this work, we often visualize the results of computations in one of the
above shape spaces. The depicted objects are the triangle meshes that correspond
to the computed shapes (which are the solutions to the Poisson problem described
above).

6Note that we have endowed ∆ with a bi-invariant metric (since it is a product of bi-invariant metrics).
Thus, the Levi-Civita connection coincides with the CCS connection given by the group structure of ∆.
Because, to us, the group structure of GL+(3)m feels more natural and there are promising results in
real-world application of the GL+(3)-based space, we rely on the latter when there exist bi-invariant
tools for the task at hand.
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Chapter 3

Statistics in Riemannian Manifolds
and Lie Groups

In this chapter, we repeat several concepts from statistics in manifolds that will be
important later. As our focus in this thesis lies mainly on the analysis of finite sets of
data points, we concentrate on sample statistics. Still, there are often analogous no-
tions for random variables with general probability distributions that motivate them,
and we often mention touch on the continuous case to give a broader picture.

When transferring statistical methods to manifolds, it has been very fruitful to uti-
lize the geometry of the underlying space [189]. Connections and metrics provide the
structure that makes it possible to define many notions in ways that are natural and
often consistent (the latter meaning that they coincide with their multivariate counter-
parts in Euclidean space). The Riemannian framework has proven particularly useful.
We will utilize it in Chapter 5 to extend regression theory for general manifolds.

In the case of Lie group–valued data, one further differentiates between notions
that presuppose a Riemannian structure and notions that only rely on the CCS con-
nection. These represent parallel approaches that concentrate on the compatibility of
the theory with different (geometric and group-algebraic) properties of the underly-
ing space. Because a good understanding of their differences will be necessary, both
approaches are contrasted in this chapter. First, we repeat the multivariate concepts
and then explain how these are transferred to the different settings.

As part of our exposition, we pay special attention to the differentiation and pos-
sible identification of contra- and covariant formulations of covariance tensor fields.
A fundamental understanding of this topic is highly relevant; nevertheless, it has not
received much space in works where the Riemannian framework is used.

3.1 Notions of Interest from Multivariate Statistics

We start by recalling central notions from multivariate statistics that will be of interest
later on. There is a plethora of literature on the subject; standard references are [157]
and [209]. We silently assume an underlying probability space whenever we speak of
a random variable. When we consider an i.i.d. data set, say (y1, . . . , yd), consisting of

independent realizations of a random variable Y , we write (y1, . . . , yd)
i.i.d.∼ Y .
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3.1.1 Mean

The mean, ubiquitous in multivariate statistics and probability theory, is probably
the most fundamental characteristic we can assign to a (data) distribution. Let Y be
a random variable on Rd with probability density function (pdf) ν. The mean (or
expectation) of Y is defined by

E(Y) :=
∫

Rd
xν(x)dx; (3.1)

here dx denotes the standard volume form on Rd. (As is well known, there is a
more general definition of the mean involving probability measures. Nevertheless,

the above one suffices for us.) The sample mean y of a data set (y1, . . . , yn)
i.i.d.∼ Y in Rd

is then defined by

y :=
1
n

n

∑
i=1

yi. (3.2)

It is a consistent and unbiased estimator of (3.1) if the given samples are independent
realizations of a random variable Y .

The above definitions cannot be directly generalized to a manifold M; the reasons
are that the latter lacks the necessary analogs to the vector space operations (addition
and scalar multiplication) and a notion of an integral of M-valued functions. But
Fréchet noticed in his seminal work [95] that, with dist(x, y) := ‖x− y‖ denoting the
Euclidean distance function on Rd, Equations (3.1) and (3.2) are equivalent to

E(Y) = arg min
y∈Rd

∫

Rd
dist(x, y)2 ν(x)dx (3.3)

and

y = arg min
y∈Rd

n

∑
i=1

dist(yi, y)2, (3.4)

respectively. One can further show [139] that
∫

Rd
(x− y) ν(x)dx = 0 if and only if y = E(Y), (3.5)

and
n

∑
i=1

(yi − y) = 0 if and only if y = y. (3.6)

We will see below that Equations (3.3) to (3.6) can be used to generalize the (sam-
ple) mean to different settings on manifolds.

3.1.2 Covariance

Let X and Z be two R-valued random variables with joint probability density func-
tion νX ,Z on R2. Existence assumed, their covariance is defined by

Cov(X ,Z) := E
((
X −E(X )

)(
Z −E(Z)

))

=
∫

R

∫

R

(
x−E(X )

)(
z−E(Z)

)
νX ,Z (x, z)dz dx.
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The variance of X is
Var(X ) := Cov(X ,X ).

Let Y be a random variable on Rd with pdf ν. Since Y =
[
Y1 · · · Yd

]T
is a vector

with scalar-valued random variables as components, one finds (assuming existence)

ΣY := Cov(Y ,Y) =




Var(Y1) · · · Cov(Y1,Yd)
...

. . .
...

Cov(Yd,Y1) · · · Var(Yd)


 ∈ Rd,d,

which is called covariance matrix of Y . It is symmetric and positive semi-definite
(positive-definite under very reasonable assumptions on Y). Furthermore, there is
the additional characterization

ΣY =
∫

Rd
(x−E(Y))(x−E(Y))Tν(x)dx.

Since Logx(y) = y− x for all x, y ∈ Rd, the equation can also be written as

ΣY =
∫

Rd
LogE(Y)(x)LogE(Y)(x)Tν(x)dx. (3.7)

Hence, letting an integral sign for tensors denote component-wise integration, ΣY is
the representing matrix of the (2,0)-tensor

ΣY =
∫

Rd
LogE(Y)(x)⊗ LogE(Y)(x)ν(x)dx ∈ TE(Y)R

d ⊗ TE(Y)R
d. (3.8)

Note that we use the same symbol for the tensor and its representing matrix. This is
justified by the fact that, for Rd, there is the canonical identification of bilinear maps
on a tangent space TxRd with its representing matrix. It is obtained by identifying the
i-th partial derivative with the canonical basis vector ei and computing components
of the matrix representation in this basis. (Indeed, we have used this identification of
tangent vectors with elements of Rd already in Equation 3.7.)

We want to emphasize that, first of all, ΣY is a bilinear map on the cotangent
space T∗

E(Y)R
d. But since the canonical basis (of partial derivatives) is orthonormal,

the identity matrix naturally represents the metric. Hence, as seen in Example 1.5,
lowering indices does not change the components of the tensor. Therefore, ΣY is also
the representing matrix of the (0,2)-tensor

ΣY =
∫

Rd
LogE(Y)(x)[ ⊗ LogE(Y)(x)[ν(x)dx ∈ T∗E(Y)R

d ⊗ T∗E(Y)R
d (3.9)

given by
(TE(Y)R

d)2 ∼= (Rd)2 3 (r, z) 7→ rTΣYz. (3.10)

Denoting the standard Euclidean metric by 〈 · , · 〉, the map (3.10) encodes the
covariance of arbitrary linear combinations rTY and zTY via

rTΣYz =
∫

Rd
〈r, LogE(Y)(x)〉〈LogE(Y)(x), z〉ν(x)dx. (3.11)
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In particular, we find that the entry at (i, j) of ΣY is given by

eT
i ΣY ej = E[〈ei, LogE[Y](Y)〉〈LogE[Y](Y), ej〉]. (3.12)

When ν has compact support, one can further define the (2,0)- and (0,2)-covariance
tensor fields MY ∈ Γ(T2

0 Rd) and MY ∈ Γ(T0
2 Rd) of Y . At each y ∈ Rd they are given

by

MY
∣∣
y :=

∫

Rd
Logy(x)⊗ Logy(x)ν(x)dx (3.13)

and
MY

∣∣
y :=

∫

Rd
Logy(x)[ ⊗ Logy(x)[ν(x)dx, (3.14)

respectively. The tensors (3.8) and (3.9) are the restrictions of (3.13) and (3.14) to
y = E(Y). As discussed in Example 1.4, the standard coordinate frame is orthonormal
so that MY and MY everywhere have the same representing matrix

MY
∣∣
y =

∫

Rd
Logy(x)Logy(x)Tν(x)dx

in this frame.

Analogously, the (2,0)- and (0,2)-sample covariance tensor fields Myi ∈ Γ(T2
0 Rd) and

Myi ∈ Γ(T0
2 Rd) of a data set (y1, . . . , yn)

i.i.d.∼ Y in Rd are point-wise defined by1

Myi

∣∣
y :=

1
n

n

∑
i=1

Logy(yi)⊗ Logy(yi)

and

Myi
∣∣
y :=

1
n

n

∑
i=1

Logy(yi)
[ ⊗ Logy(yi)

[,

respectively. They also share the representing matrix

Myi

∣∣
y :=

1
n

n

∑
i=1

Logy(yi)Logy(yi)
T =

1
n

n

∑
i=1

(yi − y)(yi − y)T

in canonical coordinates. The sample covariance (matrix) of the data is the special case

Σyi := Myi

∣∣
y =

1
n

n

∑
i=1

Logy(yi)Logy(yi)
T =

1
n

n

∑
i=1

(yi − y)(yi − y)T. (3.15)

The latter is always a symmetric, positive semi-definite matrix and usually positive
definite when enough samples are available. Analogously to the continuous case, we
obtain

rTΣz =
n

∑
i=1
〈r, Logy(yi)〉〈Logy(yi), z〉. (3.16)

For r = ei and z = ej, i, j = 1, . . . , n we obtain an estimator to the expectation (3.12) of
the underlying random variable.

We will soon see that the tensor view of the covariance turned is natural for gen-
eralizations to manifolds.

1Another possibility when defining the sample covariance is to use the factor 1
n−1 instead of 1

n . Both
can be found in the literature on statistics in manifolds. They are connected to different settings and
quality criteria for estimators [157]. In Euclidean space, the factor 1

n−1 turns the sample covariance into
an unbiased estimator (but only if one considers the sample covariance as an element of Rd,d [228]).
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3.1.3 Mahalanobis Distance

The Mahalanobis distance is widely used to determine how far a point is away from a
(sample) distribution. We only summarize the sample case; the random variable case
is analogous.

Let data (y1, . . . , yn)
i.i.d.∼ Y in Rd with mean y and invertible sample covariance Σyi

be given. The squared Mahalanobis distance of a point x ∈ Rd to the distribution of the
data is defined by

µ(y,Σyi )
(x) := Logy(x)TΣ−1

yi
Logy(x) (3.17)

= (x− y)TΣ−1
yi
(x− y).

It is a (0,2)-tensor on TyRd. Since Σ−1
yi

is positive definite, its root is well-defined. The
Mahalanobis distance measures how many standard deviations the observation is
away from the distribution’s mean. Directions in which high variability was observed
are weighted less than those with little. Note that for Σyi to be invertible, the family

(y1, . . . , yn)
i.i.d.∼ Y must contain a basis of Rd; in particular, n ≥ d must hold. We can

further see that
µ(y,Σyi )

(x) = µ(0,Σyi )
(x− y); (3.18)

this formulation will become helpful when we work with Mahalanobis distances in
Lie groups

3.1.4 Hotelling T2 Statistic

Let (x1, . . . , xm)
i.i.d.∼ X and (y1, . . . , yn)

i.i.d.∼ Y be two data sets in Rd, each with in-
dependent realizations of normally distributed random variables X , Y . We further
assume homoscedasticity, that is, X and Y share the same covariance matrix Σ. The
data’s pooled sample covariance is then given (after trivially lowering indices) by the
(0,2)-tensor

Σ̂xi ,yi :=
1

m + n− 2

(
m

∑
i=1

Logx(xi)Logx(xi)
T +

n

∑
j=1

Logy(yi)Logy(yi)
T

)
(3.19)

=
1

m + n− 2

(
m

∑
i=1

(xi − x)(xi − x)T +
n

∑
j=1

(yj − y)(yj − y)T

)
.

It is an (unbiased) estimator of Σ.
We can use the pooled sample covariance to define the Hotelling T2 statistic. The

latter is a fundamental tool from multivariate statistics that measures the difference
between the means of the two sets of samples. It is defined by

t2((xi), (yi)
)

:=
mn

m + n
µ2
(0,Σ̂xi ,yi )

(x− y) =
mn

m + n
(x− y)T Σ̂−1

xi ,yi
(x− y). (3.20)

Its most prominent use is in two-sample hypothesis testing; see, for example, [97,
116]. Other applications are in (statistical) fault detection [134, 163, 217, 260, 262].
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3.1.5 Bhattacharyya Distance

Another index to measure the dissimilarity of two multivariate probability distribu-
tions is the Bhattacharyya distance [138]. It has found numerous applications, for
example, in statistical hypothesis testing [50, 180, 236], feature selection and extrac-
tion [55, 110, 259], image processing [104], and uncertainty quantification [34, 35]. In
its most general form, it is defined for distributions with probability density function
(pdf). Let ρ, ν be pdfs on Rd. Then, their Bhattacharyya distance is given by

Dint
B (ρ, ν) := − ln

(∫

Rd

√
ρ(x)ν(x)dx

)
. (3.21)

Let now ρ and ν be two multivariate normal distributions with means x, y and
covariance matrices Σx, Σy, respectively. We define the averaged covariance by Σx,y :=
1/2 (Σx + Σy). Then, it can be shown [138, Eqn. (58)] that (3.21) becomes

Dint
B
(
ρ, ν
)
=

1
8

µ2
(0,Σx,y)

(x− y) +
1
2

ln


 det(Σx,y)√

det(Σx)det(Σy)


 . (3.22)

Note that the second summand vanishes if Σx = Σy; that is, the Bhattacharyya dis-
tance is the (scaled) square of the Mahalanobis distance for two normal distributions
with the same covariance matrix.

We can directly translate Equation (3.22) to distributions of samples (x1, . . . , xm)
i.i.d.∼

X , (y1, . . . , yn)
i.i.d.∼ Y in Rd when it can be assumed that each set consists of inde-

pendent samples drawn from two normal distributions, respectively.2 Then, we can
replace means with sample means and covariance matrices with sample covariance
matrices to arrive at

DB
(
(xi), (yi)

)
:=

1
8

µ2
(0,Σxi ,yi )

(x− y) +
1
2

ln


 det(Σxi ,yi)√

det(Σxi)det(Σyi)


 . (3.23)

Note that the first summand (without the constant factor) differs from Hotelling’s T2

statistic only because the averaged covariance matrix is used instead of the pooled
one. An advantage of the Bhattacharyya distance over Hotelling’s T2 statistic is that
it is also sensitive to differences in the covariance structure: The Hotelling T2 statistic
is zero if (and only if) the means coincide.

3.2 Statistics in Riemannian Manifolds

We now recall fundamental notions from statistics in Riemannian manifolds. Excellent
references are [90] and [184].

2Technically, Equation (3.23) is well-defined independent from the underlying distributions as long
as the involved covariance matrices are invertible. On the other hand, if the distributions differ from
normal distributions, then (3.23) is not directly linked to (3.21) anymore.
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3.2.1 Fréchet Mean

Fréchet derived Equations (3.3) and (3.4) as characterizations of the Euclidean mean.
He noticed that they can be directly transferred to metric spaces, including Rieman-
nian manifolds, by using the distance function. He obtained the following generaliza-
tion of the mean (see Appendix A.1 for a summary of integration on manifolds).

Definition 3.2.1 (Fréchet mean). Let M be a Riemannian manifold with distance function
dist and Q be a random variable on M with pdf ρ. A Fréchet mean E(Q) of Q is any global
minimizer of the Fréchet variance

F̃(q) :=
∫

M
dist(q, p)2 ρ(p)dp.

Accordingly, for data (q1, . . . , qn)
i.i.d.∼ Q in M, any global minimizer q of the data’s sample

Fréchet variance

F(q) :=
n

∑
i=1

dist(q, qi)
2 (3.24)

is called sample Fréchet mean of q1, . . . , qn.

We will often omit the word “sample”; it will be clear from the context which
mean is meant.

As we deal with data sets in this thesis, we focus on the sample Fréchet mean in
the following. Nevertheless, almost all of the following results can also be formulated
in the continuous case.

If M together with its distance function is a complete metric space, then the exis-
tence of a Fréchet mean is ensured [189, Thm. 2.1]. Let further U ⊆ M be a normal
convex neighborhood and p ∈ U. Define the map

τ : U → R≥0,

q 7→ dist(q, p)2.

It can be shown (see, for example, [190, Ch. 5]) that

gradqτ = −2 Logq(p) (3.25)

at all q ∈ U. Thus, we obtain the optimality condition

n

∑
i=1

Logq(qi) = 0 (3.26)

at q from the gradient of the Fréchet variance F (3.24); that is, in the tangent space
of q the sum of “difference vectors” to the data points must vanish. We, therefore,
say that p is an exponential barycenter. This condition is a direct generalization of (3.6);
we visualize it in Figure 3.1. In general manifolds, however, F can have local minima
(and maxima), so solving (3.26) for q is not equivalent to minimizing (3.24) anymore.
A solution of (3.26) that is a local minimum of F is therefore usually called Riemannian
center of mass [4, 139] (see [140] and the references therein for more on the history of
the naming). We will later see that a Riemannian center of mass always exists if the
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Figure 3.1: Fréchet mean/Riemannian center of mass of q1, . . . , q5 in a Riemannian
manifold M. After mapping the points into the tangent space Tq M at the Fréchet mean
q with Logq, the resulting tangent vectors vi := Logq(qi), i = 1, . . . , 5, sum to zero.
The broken lines depict the geodesics from the mean to the data points. Furthermore,
V ⊂ Tq M indicates a neighborhood that is small enough such that Expq(V) ⊆ Br(q)
with r as in (3.27) such that the mean is unique.

data is contained in a normal convex neighborhood. (Notice already that the metric
does not appear in Equation (3.26).) Fréchet means are also Riemannian centers of
mass.

Importantly, if the data is contained in a sufficiently small neighborhood, then
there is a unique Fréchet mean in its interior. Conditions on the size of this neighbor-
hood were found by Karcher [139] and Kendall [143]. The most recent result we know
is due to Afsari [4]. To state it, we need several notions. We define a geodesic ball with
center o ∈ M and radius r > 0 by Br(o) := {p ∈ M

∣∣ dist(p, o) < r}. Furthermore, let
inj(p) := sup{r > 0

∣∣ Expp is injective on Br(p)} and inj(M) := inf{inj(p)
∣∣ p ∈ M}.

Denoting the supremum of all sectional curvatures by κ, then Afsari showed that if
the data is contained in a geodesic ball of radius at most

r =





1
2 min

(
inj(M), π√

κ

)
, κ > 0,

1
2 inj(M), κ ≤ 0,

(3.27)

then there is a unique Fréchet mean inside the ball.
From now on, we assume that the data is concentrated enough to have a unique

Fréchet mean.
The asymptotic behavior of the Fréchet mean has been studied intensively over

the last 20 years [32, 33, 79, 123], with results on consistency as well as central limit
theorems.

Fréchet means can be computed using Riemannian gradient descent (see [2] for
a comprehensive account of optimization in Riemannian manifolds). From Equa-
tion (3.25), we thus obtain the following algorithm [184, Sec. 4.6].
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Algorithm 1 Fréchet mean
Input: data (q1, . . . , qn) within a normal convex neighbourhood of M, tolerance ε,

stepsize δ ≤ 1
Output: approximation q̂ of the Fréchet mean
q̂← q1

v← δ
n

∑
i=1

Logq̂(qi)

while ‖v‖q̂ ≥ ε do
q̂← Expq̂(v)

v← δ
n

∑
i=1

Logq̂(qi)

end while

The convergence properties of this algorithm, which were found to be excellent in
practice (for example, in [153, 184]), were studied in [5, 153, 154].

3.2.2 Riemannian Covariance

We now discuss how covariance is defined in Riemannian manifolds. Since, in gen-
eral, tangent spaces of manifolds do not have canonical bases, we make the depen-
dence of coordinate representations on the chosen basis clear by adjusting the nota-
tion. Namely, here and later, we denote the vector of coordinates of a tangent vector
as well as the representing matrix of a (2,0)- or (0,2)-tensor (field) with brackets [ · ].
It is always assumed that arbitrary but fixed (coordinate) bases are used to obtain the
representation.

The tensor view of the covariance from Section 3.1.2 is extremely helpful in mani-
folds. Indeed, Equations (3.13) and (3.15) generalize directly [184, 188].

Definition 3.2.2 (Riemannian (2,0)-covariance). Let M be a Riemannian manifold andQ a
random variable on M with pdf ν that has compact support in a normal convex neighborhood
U ⊆ M. The (2,0)-covariance tensor field MQ ∈ Γ(T2

0 U) of Q is defined at each q ∈ U by

MQ
∣∣
q :=

∫

U
Logq(p)⊗ Logq(p)ν(p)dp,

with representing matrix

[MQ
∣∣
q] =

∫

U
[Logq(p)][Logq(p)]Tν(p)dp.

Its restriction to E(Q) is called (2,0)-covariance tensor of Q.

Let further (q1, . . . , qn)
i.i.d.∼ Q be a data set in U with Fréchet mean q. The data’s (2,0)-

sample covariance tensor field Mqi ∈ Γ(T2
0 U) is at each q ∈ U defined by

Mqi

∣∣
q :=

1
n

n

∑
i=1

Logq(qi)⊗ Logq(qi)

with representing matrix

[Mqi

∣∣
q] =

1
n

n

∑
i=1

[Logq(qi)][Logq(qi)]
T. (3.28)
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Its restriction
Σqi := Mqi

∣∣
q

to the sample mean q is the data’s (2,0)-sample covariance tensor.

Let [gij(q)] denote the representing matrix of the metric at q in the chosen basis of
Tq M. We obtain the (0,2)-sample covariance by lowering indices (see Example 1.3).

Definition 3.2.3 (Riemannian (0,2)-covariance). Let M be a Riemannian manifold andQ a
random variable on M with pdf ν that has compact support in a normal convex neighborhood
U ⊆ M. The (0,2)-covariance tensor field MQ ∈ Γ(T0

2 U) of Q is defined at each q ∈ U by

MQ
∣∣
q :=

∫

U
Logq(p)[ ⊗ Logq(p)[ν(p)dp ∈ Γ(T0

2 U),

with representing matrix

[MQ
∣∣
q] =

∫

U
[gij(q)][Logq(p)][Logq(p)]T[gij(q)]ν(p)dp.

Its restriction to E(Q) is called (0,2)-covariance tensor of Q.

Let further (q1, . . . , qn)
i.i.d.∼ Q be a data in U with Fréchet mean q. The data’s (0,2)-

sample covariance tensor field Mqi ∈ Γ(T0
2 U) is at each q ∈ U defined by

Mqi
∣∣
q :=

1
n

n

∑
i=1

Logq(qi)
[ ⊗ Logq(qi)

[

with representing matrix

[Mqi
∣∣
q] =

1
n

n

∑
i=1

[gij(q)][Logq(qi)][Logq(qi)]
T[gij(q)] = [gij(q)] [Σqi ] [gij(q)]. (3.29)

Its restriction
Σqi := Mqi

∣∣
q

to the sample mean q is the data’s (0,2)-sample covariance tensor.

When the (0,2)-version of the covariance is of interest, one can thus either de-
termine an orthonormal basis and compute the corresponding (2,0)-covariance—as
discussed in Example 1.5, lowering indices then is a null operation—or calculate the
components explicitly from Equation (3.29) in an arbitrary basis.

The above distinction of tensor fields is crucial since Equations (3.11), (3.12) and (3.16)

generalize to the (0,2)- but not the (2,0)-covariance tensor. For example, if (q1, . . . , qn)
i.i.d.∼

Q are independent realizations of an M-valued random variable Q and v1, . . . , vd the
basis of Tq M for which we obtain coordinate representations, we can interpret the
(i, j)-entry of [Σqi ]—but not [Σqi ]—as an estimator of

E[〈LogE[Q](Q), vi〉E[Q]〈LogE[Q](Q), vj〉E[Q]].

(See also [186, p. 39] for a discussion of this.)
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3.2.3 Riemannian Mahalanobis Distance

The tools we gathered so far are can be used to generalize the Mahalanobis distance
(3.17) to Riemannian manifolds. One uses the fact that, in Euclidean space, its square
is the (0,2)-tensor on the tangent space at the mean whose representing matrix is the
inverse covariance matrix.

Definition 3.2.4 (Riemannian Mahalanobis distance [184]). Let M be a Riemannian man-
ifold. Further, let (q1, . . . , qn)

i.i.d.∼ Q be data with unique Fréchet mean q and invertible
(0,2)-sample covariance Σqi . Assume that p ∈ M such that Logq(p) exists. The squared
Riemannian Mahalanobis distance from p to the distribution of the data is then given by

µ2
(q,Σqi )

(p) :=
[
Logq(p)

]T [Σqi

]−1 [Logq(p)
]
. (3.30)

It can be verified that this definition does not depend on the chosen basis of Tq M
as, indeed, any change of basis cancels out in (3.30). Note that since (2,0)-covariance
tensor is used, the Riemannian metric does not appear in the definition. (Indeed,
the (0,2)-covariance tensor cannot be used in the above definition since then changes
of bases do not cancel out.) Still, the Riemannian Mahalanobis distance indirectly
depends on the metric through the Levi-Civita connection, as the latter determines
the logarithm.

3.2.4 Hotelling T2 Statistic for Riemannian Manifolds

In [172, Sec. 3.3], Muralidharan and Fletcher introduce a generalization of the Hotelling

T2 statistic (3.20) to Riemannian manifolds M. Let (p1, . . . , pm)
i.i.d.∼ P , (q1, . . . , qn)

i.i.d.∼
Q be data sets in M with unique Fréchet means p, q and sample covariance matrices
Σpi , Σqi , respectively. To generalize the statistic, the difference between the means in
(3.20) can be replaced by either Logp(q) ∈ Tp M or Logq(p) ∈ Tq M. Depending on the
choice, the resulting statistic will be different. Furthermore, since vectors from differ-
ent tangent spaces cannot be canonically identified, there is no clear way to generalize
the pooled covariance. Muralidharan and Fletcher, therefore, propose to calculate a
generalized T2 statistic at both means and average the results. This leads to the fol-
lowing definition. (Here and in the following, we use the abbreviation (ai) for a data
set (a1, . . . , an), when the set is the input of some function.)

Definition 3.2.5 (Riemannian Hotelling T2 statistic [172]). Let M be a Riemannian man-

ifold. Further, let (p1, . . . , pm)
i.i.d.∼ P , (q1, . . . , qn)

i.i.d.∼ Q be data sets in M with unique
Fréchet means p, q ∈ M and sample covariances Σpi , Σqi , respectively. The Riemannian
Hotelling T2 statistic is then defined by

t2
(
(pi), (qi)

)
:= 1

2

(
µ2
(q,Σqi )

(p) + µ2
(p,Σpi )

(q)
)

. (3.31)

Remark 3.2.6. Note that Definition 3.2.5 does not reduce to (3.20) in the Euclidean case, that

is, for data sets (x1, . . . , xm)
i.i.d.∼ X , (y1, . . . , yn)

i.i.d.∼ Y in Rd. To see this, observe first that,
in this case, Logx(y) = −Logy(x) = y− x. Hence, we get from Equation (3.31) that

t2((xi), (yi)
)
= (x− y)T 1

2

(
Σ−1

xi
+ Σ−1

yi

)
(x− y).
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Thus, it is enough to show that Σ̂−1
xi ,yi
6= 1/2

(
Σ−1

pi
+ Σ−1

qi

)
in general. But this is true—not

only because of scaling—since for symmetric positive definite matrices P1, P2 (of the same size),
we have P−1

1 + P−1
2 6= (P1 + P2)−1 in general (and any such matrix can be a pooled sample

covariance as can be seen with the help of the singular value decomposition).

3.2.5 Riemannian Bhattacharyya Distance

A generalization of the Bhattacharyya distance (3.23) to Riemannian manifolds is due
to Hong et al.; see [126, Sec. 3]. As with the pooled covariance, we cannot simply
average the two covariance matrices since they are defined on different tangent spaces.
Therefore, Hong et al. propose to average scalar terms, which leads to the following
definition.3

Definition 3.2.7 (Riemannian Bhattacharyya distance [126]). Let M be a Riemannian

manifold. Further, let (p1, . . . , pm)
i.i.d.∼ P , (q1, . . . , qn)

i.i.d.∼ Q be data sets in M with unique
Fréchet means p, q ∈ M and sample covariances Σpi , Σqi , respectively. Then, the Riemannian
Bhattacharyya distance is defined by

DB
(
(pi), (qi)

)
:=

1
16

(
µ2
(p,Σpi )

(q) + µ2
(q,Σqi )

(p)
)
+

1
2

ln


 det

(
[Σpi ]

)
+ det

(
[Σqi ]

)

2
√

det
(
[Σpi ]

)
det

(
[Σqi ]

)


 .

This definition is independent of the chosen bases of Tp M and Tq M as this is true
for both the squared Mahalanobis distance and the determinant.

Remark 3.2.8. Definition 3.2.7 also is not consistent with its multivariate analog (3.23)
because det(P) + det(Q) 6= det(P + Q) for general symmetric positive definite matrices
P, Q of the same size.

3.3 Non-metric Statistics in Lie Groups

We now turn to the case of Lie group-valued data. Of course, being manifolds, Lie
groups can be endowed with a Riemannian metric, and then, the tools from the pre-
vious section can be used for data analysis. In many cases, this has the drawback
that central group properties are ignored. Most importantly, the fact that bi-invariant
metrics generally do not exist on Lie groups makes the construction of (statistical)
notions that are invariant/equivariant under translations from both left and right very
difficult in the Riemannian setting. On the other hand, Lie groups that are endowed
with their CCS connections possess the natural prerequisites that allow us to construct
bi-invariant statistical notions. This was first noted by Pennec and Arsigny in [186]
and advanced to general affine connection spaces by Pennec and Lorenzi in [188]. In
this section, we summarize many of their findings. The definitions in the following all
look very similar to the Riemannian setting in Section 3.2. However, they always use
the group’s CCS connection, which, as mentioned before, is not the Levi-Civita con-
nection of a Riemannian metric for general Lie groups. We will see that this alteration
is decisive in obtaining notions consistent with the group structure.

3The formulation in [126] is more involved because the authors suppose that the sample covariance
matrices are singular.
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3.3.1 Group Mean

Let G be a Lie group. We do not fix any Riemannian metric on G. Consequently,
we do not have a notion of distance, so that Equation (3.4) cannot be generalized
(that is, one cannot define a mean as the minimizer of a sum of distances in this
setting). However, the local optimality conditions (3.5) and (3.6) only rely on the
affine structure. Combined with the CCS connection, they can thus be used to define
group means in Lie groups—without a metric—as exponential barycenters. A detail
that changes is that we work with an (arbitrary but fixed) left or right Haar measure
dg instead of a Riemannian volume form when integrating; for a summary of the
corresponding theory see Appendix A.1. With this, we make the following definition.

Definition 3.3.1 (Group mean [186]). Let G be a Lie group with CCS connection and G a
random variable on G with pdf ρ that has compact support in a normal convex neighborhood
U ⊆ G. A group mean E(G) of G is implicitly defined by

∫

U
LogE(G)(g)ρ(g) dg = 0.

Analogously, for data (g1, . . . , gn)
i.i.d.∼ G in U we call g ∈ U sample group mean of

(g1, . . . , gn), if
n

∑
i=1

Logg(gi) = 0. (3.32)

We focus on the sample group mean. Because of (1.20), Equation (3.32) is equiva-
lent to both

n

∑
i=1

log(g−1gi) = 0 and
n

∑
i=1

log(gig−1) = 0.

Hence, g is the group mean of (g1, . . . , gn) if and only if e is the group mean of the
left and right translated data sets (g−1g1, . . . , g−1gn) and (g1g−1, . . . , gng−1). We can
also see that the elements g1, . . . , gn must be “sufficiently localized” to obtain a mean
value: if they are too far apart, the logarithm may not be defined. The most general
result known so far on existence and uniqueness is the following: If U ⊆ G is a CSLCG
(convex with semilocal convex geometry) neighborhood and g1, . . . , gn ∈ U, then their
group mean exists and is unique. The details can be found in Appendix A.2.

Central properties of the sample group mean are summarized in the following
theorem [188, Thm. 5.13].

Theorem 3.3.2 (Equivariance of the sample group mean). Let G be a Lie group endowed
with its CCS connection and g be a sample group mean of a data set (g1, . . . , gn) as in Defi-
nition 3.3.1. Then, for any f ∈ G, the group means of the left translated data ( f g1, . . . , f gn),
right translated data (g1 f , . . . , gn f ) and inverted data (g−1

1 , . . . , g−1
n ) are f g, g f and g−1,

respectively.

According to the theorem, group means are equivariant under the group opera-
tions. These properties make (statistical) data analysis with the mean more robust;
we visualize them for translations in Figure 3.3.

Finally, group means can be computed efficiently with a fixed point iteration when
the data is sufficiently localized (for example, in a CSLCG neighborhood). Then, the
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Figure 3.2: Group mean of a data set (g1, . . . , g5) in a Lie group G. The element g is
the group mean if and only if e is the mean of the translated data (g−1g1, . . . , g−1gn).
The set V indicates the image of a CSLCG neighborhood under the group logarithm
log. After mapping the points into the tangent space TeG, the resulting tangent vec-
tors log(g−1gi), i = 1, . . . , 5, sum to zero. The broken lines are the geodesics (one-
parameter subgroups) from the mean to the data points.

following algorithm converges at least with a linear rate to the (unique) solution [186,
Cor. 5].

Algorithm 2 Group mean
Input: data (g1, . . . , gn) within a sufficiently small CSLCG neighbourhood of G,

tolerance ε, auxiliary norm ‖ · ‖ on TeG
Output: approximation ĝ of the group mean
ĝ← g1

v← 1
n

n

∑
i=1

log(ĝ−1gi)

while ‖v‖ ≥ ε do
ĝ← ĝ exp(v)

v← 1
n

n

∑
i=1

log(ĝ−1gi)

end while

This algorithm is very similar to Algorithm 1 but only coincides with it when G is
endowed with a bi-invariant metric. Note also that we do all vector computations in
TeG instead of TgG because it avoids unnecessary translations.

3.3.2 Sample Covariance for Lie Groups

As for Riemannian manifolds, the multivariate (0,2)-sample covariance can be gener-
alized directly to Lie groups with affine connection when the group mean is used.
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Figure 3.3: Visualization of the equivariance of the group mean under translations for
a data set (g1, . . . , gn) in a CSLCG neighborhood U of a Lie group G.

Definition 3.3.3 (Group (2,0)-covariance [188]). Let G be a Lie group with CCS connection
and G a random variable on G with pdf ν that has compact support in a CSLCG neighborhood
U ⊆ G. The (group) (2,0)-covariance tensor field MG ∈ Γ(T2

0 U) of G is defined at each
f ∈ U by

MG
∣∣

f =
∫

U
Log f (g)⊗ Log f (g)ν(g)dg,

with representing matrix

[MG
∣∣

f ] =
∫

U
[Log f (g)][Log f (g)]Tν(g)dg.

Its restriction to E(G) is called (2,0)-covariance (tensor) of G.

Let further (g1, . . . , gn)
i.i.d.∼ G be a data set in a CSLCG neighborhood U ⊆ G with group

mean g. The data’s (2,0)-sample covariance tensor field Mgi ∈ Γ(T2
0 U) is at each f ∈ U

defined by

Mgi

∣∣
f :=

1
n

n

∑
i=1

Log f (gi)⊗ Log f (gi)

with representing matrix

[Mgi

∣∣
f ] =

1
n

n

∑
i=1

[Log f (gi)][Log f (gi)]
T.

Its restriction
Σgi := Mgi

∣∣
g

to the sample mean g is the data’s (2,0)-sample covariance (tensor).

As discussed in Section 3.2.2, Equations (3.11), (3.12) and (3.16) do not generalize
to this notion of covariance. However, its matrix inverse transforms like a (0,2)-tensor
and thus yields a bilinear map on the tangent space.
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3.3.3 Bi-invariant Mahalanobis Distance
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Figure 3.4: Bi-invariant Mahalanobis distance for a data set (g1, . . . , gn) with group
mean g (dark grey) in a Lie group G. Here, vi := Logg(gi) are the corresponding
vectors in the tangent space (light grey). The point f ∈ G (orange) has a greater
Mahalanobis distance to the distribution of the gi than the point h (green) since the
data has more variability in the direction of h than in the direction of f (as indicated
by the ellipse in the tangent space whose boundary is an isoline of the bi-invariant
Mahalanobis distance).

Pennec, Arsigny, and Lorenzi noticed that the Mahalanobis distance can be trans-
ferred to Lie groups with CCS connection just as for Riemannian manifolds as it only
requires the (2,0)-covariance.

Definition 3.3.4 (Bi-invariant Mahalanobis distance [186]). Let G be a Lie group with

CCS connection, and (g1, . . . , gn)
i.i.d.∼ G data within a CSLCG neighborhood in G with group

mean g and invertible sample covariance Σgi . Let further f ∈ G such that Logg( f ) exists.
Then, the squared bi-invariant Mahalanobis distance of f to the distribution of the gi is defined
by

µ2
(g,Σgi )

( f ) :=
[
Logg( f )

]T[Σgi
]−1[Logg( f )

]
. (3.33)

One again verifies that this definition does not depend on the chosen basis. Just
like its Euclidean counterpart, the bi-invariant Mahalanobis distance measures how
far the point f is away from the sample mean in terms of the observed variability in the
given direction; this is visualized in Figure 3.4.

The following proposition shows that the bi-invariant Mahalanobis distance is
indeed invariant under left and right translations—a property that, in general, does
not hold when the Riemannian framework is used.
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Proposition 3.3.5. Let G be a Lie group with CCS connection, and (g1, . . . , gn)
i.i.d.∼ G data

within a CSLCG neighborhood in G with group mean g. Let further f ∈ G such that Logg( f )
exists, and h ∈ G be arbitrary. Then,

µ2
(hg,Σhgi

)(h f ) = µ2
(g,Σgi )

( f ) = µ2
(gh,Σgih)

( f h).

We refer to [188, p. 181] for the proof.

This finishes the overview of the literature. In the following chapters, we use
presented notions to develop new statistical tools for manifolds.
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Part II

Extension of the Theory, Novel
Algorithms
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Chapter 4

Bi-invariant Dissimilarity Measures
for Non-metric Statistics in Lie
Groups

Manifold-valued data occurs in many applications [54, 184, 191, 200], and it can often
be conceived as elements of a Lie group. Examples include representations of skele-
tal systems (for example, in robotics [181]), inferences of anatomical structures by
evaluating diffusion tensor fields in medicine [18, 19, 20, 189], position- and motion-
independent recognition of objects in computer vision [127, 247, 248, 249], or analysis
of covariance matrices (for example, in feature-based image analysis [244]). The algo-
rithmic tasks involved in Lie group-based computations are correspondingly diverse:
They range from the calculation of geometric means [166, 167], to function approxima-
tion and regression [115, 211, 251], numerical solution of differential equations [131],
numerical minimization [238], signal processing [21, 22, 47, 88], image analysis [25,
77], as well as computer vision [43, 176, 178, 196, 241, 242].

Shape analysis is another area where Lie group–valued measurements are regu-
larly performed. The idea is to represent shapes of objects as deformations of a shared
reference, as introduced by D’Arcy Thompson over 100 years ago [239]; the deforma-
tions are usually elements of a Lie group. For example, in [3, 36] configurations of the
human spine are encoded in a product group consisting of translations and rotations.
Classical matrix groups are also used in physically motivated shape spaces [13, 245]
as well as in the characterization of volume [255] and surface [11] deformations. Im-
portant algorithmic tasks are matching, analysis, and statistics of shapes [91, 129, 231,
234, 243].

For data analysis in Lie groups, it is necessary to generalize statistical methods
to the Lie group setting. Keeping in mind that Lie groups possess symmetries, as
they act on themselves via translations, it is desirable to look for generalizations that
respect them. The task, then, is to derive methods that are invariant/equivariant
under in-group translations (from both left and right). This property is not only an
established theoretical criterion for the selection of statistical methods [113] but also
has practical advantages: In shape analysis, for example, it avoids a bias due to the
choice of reference and differing data configurations [3, 11, 255]. In machine learning
applications, equivariant convolutional networks have been shown to perform very
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well on Lie groups [58, 87].
We build upon the work of Pennec, Arsigny, and Lorenzi on statistics in Lie groups

with CCS connection to derive bi-invariant (that is, invariant under translation from
both left and right) generalizations of the Hotelling T2 statistic and Bhattacharyya dis-
tance. In contrast to the generalizations based on Riemannian structures, the proposed
quantities are not only bi-invariant (see Figure 4.1) but also reduce to the multivariate
formulations in the case of Euclidean spaces.

Applications of the new notions are shown in Sections 6.1 and 6.2.

Figure 4.1: Visualization of invariance of dissimilarity measures for sample dis-
tributions under translations. The dissimilarity of two data sets (g1, . . . , gn) and
(h1, . . . , hm) in a Lie group G (the darker points indicating the group means) should
be invariant under translations with any element f ∈ G from left and right.

4.1 Extending Dissimilarity Measures

In this section, we derive extensions of the Hotelling T2 statistic and Bhattacharyya
distance for Lie group–valued data that are invariant under left and right transla-
tions. In the multivariate case, these fundamental properties seem almost trivial as,
obviously,

t2((xi + v), (yi + v)
)
= t2((v + xi), (v + yi)

)
= t2((xi), (yi)

)

and

DB
(
(xi + v), (yi + v)

)
= DB

(
(v + xi), (v + yi)

)
= DB

(
(xi), (yi)

)

for data sets (x1, . . . , xm), (y1, . . . , yn) and vectors v in Rd. Generalizing these proper-
ties is our goal.
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4.1.1 Bi-invariant Hotelling T2 Statistic

We start with defining a slightly modified sample covariance: We translate the data
to a neighborhood of the identity and compute the covariance there. This allows for
comparing the within-sample variability of data sets, even when their support lies in
different parts of the group. The definition only covers the sample case but can easily
be transferred to random variables.

Definition 4.1.1 (Centralized sample covariance). Let G be a Lie group and (g1, . . . , gn)
i.i.d.∼

G a data set in a CSLCG neighborhood U ⊆ G with group mean g. The data’s left-centralized
sample covariance tensor field Mc

gi
∈ Γ(T2

0 Lg−1(U)) is at each f ∈ Lg−1(U) defined by

Mc
gi

∣∣
f :=

1
n

n

∑
i=1

deL f
(

log(g−1gi)
)
⊗ deL f

(
log(g−1gi)

)

with representing matrix

[Mc
gi

∣∣
f ] =

1
n

n

∑
i=1

[
deL f

(
log(g−1gi)

)][
deL f

(
log(g−1gi)

)]T
.

Its restriction
Σc

gi
:= Mc

gi

∣∣
e

to the identity1 is the data’s (group) left-centralized sample covariance (tensor).

In the following, we use the left-centralized covariance tensor to compare second-
order moments of data sets. This is motivated by the fact that TeG can be seen as
the reference tangent space for the whole group. Since we never explicitly use the
right-centralized covariance (that can be defined in an obvious way), we will drop
the word “left” in the following; we will proceed similarly for notions derived from
the centralized covariance. The centralized covariance will be fundamental for our
constructions because it allows comparing the variability of data sets with different
means in a single tangent space. This, in turn, makes it possible to transfer notions
from multivariate statistics that involve covariance information from two or more
data sets—even if their group means are different. In particular, we can now define
the pooled covariance at the identity for two data sets with the same centralized
covariance.2

Definition 4.1.2 (Pooled sample covariance). Let (g1, . . . , gn)
i.i.d.∼ G and (h1, . . . , hm)

i.i.d.∼
H be data sets in CSLCG neighborhoods U1, U2 ⊆ G, respectively, and let g and h be their
group means. Then, their left-pooled sample covariance is defined by

Σ̂gi ,hi :=
1

n + m− 2

(
nΣc

gi
+ mΣc

hi

)
.

Because there is no danger of confusion, we only write Σ̂ from now on. The
principle behind the pooled covariance is visualized in Figure 4.2.

1Note that deLe is simply the identity on TeG.
2More precisely, we assume that the samples are drawn independently from two distributions such

that the limits of their centralized covariance matrices are equal for n, m→ ∞.
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Figure 4.2: Pooling of data. To compute the pooled sample covariance of two data
sets (g1, . . . , gn) and (h1, . . . , hm) both are translated via the inverses g−1 and h

−1
of

their means, respectively; the data then lies in a neighborhood of e, which is also the
new mean.

We need to understand how they transform under joint data translations to obtain
bi-invariant indices from the newly-defined notions. For this, we denote the central-
ized covariance of data that was jointly left or right translated with f ∈ G by f • Σc

gi

and Σc
gi
• f , respectively, (that is, f • Σc

gi
= Σc

f gi
and Σc

gi
• f = Σc

gi f ); furthermore,
inv • Σc

gi
= Σc

g−1
i

denotes the centralized covariance of the inverted data points. We

also extend these definitions linearly to weighted sums of covariances. Then, we have
the following lemma.

Lemma 4.1.3. Given data (g1, . . . , gn)
i.i.d.∼ G in a CSLCG neighborhood U ⊆ G, its cen-

tralized covariance is invariant under left translations, while under right translations with
f ∈ G, it transforms according to

[
Σc

gi
• f
]
=
[
Ad( f−1)

][
Σc

gi

][
Ad( f−1)

]T
.

Furthermore, if the data points are inverted, then

[
inv • Σc

gi

]
=
[
Ad(g)

][
Σc

gi

][
Ad(g)

]T
.

Proof. Using the equivariance of the mean gives

[
f • Σc

gi

]
=

1
n

n

∑
i=1

[
log
(

g−1 f−1 f gi

) ][
log
(

g−1 f−1 f gi

)
]T =

[
Σc

gi

]
,
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and applying Equation (1.5) yields

[
Σc

gi
• f
]
=

1
n

n

∑
i=1

[
log
(

f−1g−1gi f
) ][

log
(

f−1g−1gi f
) ]T

=
1
n

n

∑
i=1

[
Ad
(

f−1
) ][

log
(

g−1gi

) ][
log
(

g−1gi

) ]T[
Ad
(

f−1
) ]T

=
[
Ad
(

f−1
) ][

Σc
gi

][
Ad
(

f−1
) ]T

.

After inverting the data points we find, using Theorem 3.3.2, Equation (1.4), and
Equation (1.5), that

[
inv • Σc

gi

]
=

1
n

n

∑
i=1

[
log
(

gg−1
i

) ][
log
(

gg−1
i

) ]T

=
1
n

n

∑
i=1

(−1)2
[

log
(

gig−1
) ][

log
(

gig−1
) ]T

=
[
Ad(g)

][
Σc

gi

][
Ad(g)

]T
.

We can translate this result directly to the pooled covariance:

Corollary 4.1.4. Let (g1, . . . , gn)
i.i.d.∼ G and (h1, . . . , hm)

i.i.d.∼ H be data sets in CSLCG
neighborhoods U1, U2 ⊆ G, respectively, and let g and h be their group means. The pooled
covariance is invariant under left translations of the data and transforms under right transla-
tions with f ∈ G according to

[
Σ̂ • f

]
=
[
Ad
(

f−1
) ][

Σ̂
][

Ad
(

f−1
) ]T

.

If the data is inverted, then we have

[
inv • Σ̂

]
=

1
n + m− 2

(
n
[
Ad(g)

][
Σgi

][
Ad(g)

]T
+ m

[
Ad
(

h
) ][

Σhi

][
Ad
(

h
) ]T

)
.

In particular, if g = h, then

[
inv • Σ̂

]
=
[
Ad(g)

][
Σ̂
][

Ad(g)
]T

.

Taking advantage of Proposition 3.3.5 we also have

µ2
(g,Σgi )

( f ) = µ2
(e,Σc

gi
)(g−1 f );

that is, we can always evaluate Mahalanobis distances at the identity, analogously to
the Euclidean case (3.18); see Figure 4.3 for a visualization.

With this, we propose the following generalization of the Hotelling T2 statistic for
Lie groups, using the abbreviated notation

(
(gi), (hi)

)
for
(
(g1, . . . , gn), (h1, . . . , hm)

)
:
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Figure 4.3: Bi-invariant Mahalanobis distance for a data set (g1, . . . , gn) in a Lie group
G (dark grey) after left translation with g−1. The operation leaves the distance in-
variant. Note that right translated points g1g−1, . . . , gng−1, f g−1, hg−1 would be at
different locations in general, but the Mahalanobis distance would be the same by
Proposition 3.3.5.

Definition 4.1.5 (Bi-invariant Hotelling T2 statistic). Let two data sets (g1, . . . , gn)
i.i.d.∼ G

and (h1, . . . , hm)
i.i.d.∼ H in CSLCG neighborhoods U1, U2 ⊆ G be given. Let further g and h

be their group means, Σ̂ their pooled covariance and assume that log(g−1h) exists. The left
bi-invariant Hotelling T2 statistic of both data sets is then defined by

t2((gi), (hi)
)

:=
nm

n + m
µ2
(e,Σ̂)

(
g−1h

)
.

A visualization of the bi-invariant Hotelling T2 statistic is shown in Figure 4.4.
The definition is independent of the chosen basis of TeG (because this is true for
the Mahalanobis distance). Furthermore, it reduces to (3.20) when G = Rn. This
is a consequence of the common reference tangent space; as the latter is missing in
Riemannian manifolds, reduction to the multivariate case is problematic using the
Riemannian approach. Indeed, as was shown in Section 3.2.4, the only generalization
of Hotelling’s T2 statistic to Riemannian manifolds known to the authors does not
have this property.

While we can apply the bi-invariant Hotelling T2 statistic to any two data sets that
fulfill the requirements in its definition, it should be used when we expect that both
have the same covariance structure. (Again, that is, when we suppose that the limits of
the centralized covariance matrices are equal for n, m→ ∞.) The reasons are that only
differences between the means are detected (the statistic is zero if and only if both are
equal), and there is little reason to pool the covariances otherwise. If we cannot expect
homoscedasticity, the bi-invariant Bhattacharyya distance (see Section 4.1.2) should be
used instead.
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Figure 4.4: Top: Two data sets (g1, . . . , gn) and (h1, . . . , hm) with the same covariance
structure (indicated by the broken ellipses). Bottom: After left translating the sets to
a neighborhood of e with the inverses of their means, the bi-invariant Hotelling T2

statistic is the (scaled) squared Mahalanobis distance of log(g−1h) under the pooled
covariance.

The following theorem shows that the newly defined notion has the invariance
properties we aimed for and does not depend on the order of the data sets.

Theorem 4.1.6 (Properties of the bi-invariant Hotelling T2 statistic). Let (g1, . . . , gn)
i.i.d.∼

G and (h1, . . . , hm)
i.i.d.∼ H be data sets in CSLCG neighborhoods U1, U2 ⊆ G, respectively.

Let further g and h be their group means and assume that log(g−1h) exists. The bi-invariant
Hotelling T2 statistic has the following properties:
(i) it is symmetric,
(ii) it is invariant under left and right translations,
(iii) if g = h, then it is invariant under inversion.

Proof. Note first that the pooled covariance is independent of the order of the data
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groups. Thus, using Equation (1.4), property (i) follows from

t2((gi), (hi)
)
=

nm
n + m

(−1)2
[

log
(

h
−1

g
) ]T[

Σ̂
]−1[

log
(

h
−1

g
) ]

= t2((hi), (gi)
)
.

Next, we show (ii). Invariance under left translations follows directly since f and
f−1 cancel out as in the proof of Lemma 4.1.3. Let f ∈ G. Then, using Theorem 3.3.2,
Equation (1.5), and Corollary 4.1.4, we find

t2((gi f ), (hi f )
)
=

nm
n + m

[
log
(

f−1g−1h f
) ]T[

Σ̂ • f
]−1[

log
(

f−1g−1h f
) ]

=
nm

n + m

[
log
(

g−1h
) ]T[

Ad( f−1)
]T[

Ad( f−1)
]−T[

Σ̂
]−1

[
Ad
(

f−1
) ]−1[

Ad
(

f−1
) ][

log
(

g−1h
) ]

= t2((gi), (hi)
)
.

Finally, (iii) follows immediately from log(e) = 0.

Note that although the statistic is not invariant under inversion in general, the fact
that equality of means is invariantly detected makes it also interesting (for example,
to perform hypothesis tests for equality of means) when invariance under inversion
is of interest. (Nevertheless, the authors are not aware of any such application.)

Remark 4.1.7. Observe that if we replace all left translations with right translations in all
definitions of this section, the resulting right bi-invariant Hotelling T2 statistic will be
different from the left one in general but will have the same invariance properties as the statistic
from Definition 4.1.5. We can use the average of the left- and right- variant (which is also bi-
invariant) as a central bi-invariant T2 statistic.

The procedure to compute the bi-invariant Hotelling T2 statistic is given in Al-
gorithm 3. Therein, we assume that a way to compute the group exponential and
logarithm is known, which is the case for many Lie groups (for example, for those
from Examples 1.1 and 1.2).
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Algorithm 3 (Left) bi-invariant Hotelling T2 statistic
Input: data sets (g1, . . . , gn) and (h1, . . . , hm) in a d-dimensional Lie group G as in

Definition 4.1.5 with group means g and h, vector space isomorphism E : TeG → Rd

(“coordinate map”)
Output: (left) bi-invariant Hotelling T2 statistic t
for i = 1, . . . , n do

xi ← E
(
log(g−1gi)

)

end for
for i = 1, . . . , m do

yi ← E
(

log(h
−1

hi)
)

end for
z← E

(
log(g−1h)

)

S← 1
n + m− 2

(
n

∑
i=1

xixT
i +

m

∑
i=1

yiyT
i

)

t← nm
(n + m)

zTSz

4.1.2 Bi-invariant Bhattacharyya Distance

Since the first summand of the multivariate Bhattacharyya distance (3.23) coincides
with a Hotelling T2 statistic, there is hope that we can generalize the former to Lie
groups in a bi-invariant way using the bi-invariant Hotelling T2 statistic; and indeed,
it is possible. We begin by generalizing the averaged sample covariance:

Definition 4.1.8 (Averaged sample covariance). Let (g1, . . . , gn)
i.i.d.∼ G and (h1, . . . , hm)

i.i.d.∼
H be data sets in CSLCG neighborhoods U1, U2 ⊆ G, respectively, and let g and h be their
group means. Then, their left-averaged sample covariance is defined by

Σgi ,hi =
1
2
(Σc

gi
+ Σc

hi
).

Again, in the following, we drop the subscripts. Since it only differs in weighting,
the averaged covariance has the same properties as the pooled covariance.

Corollary 4.1.9. The averaged covariance is invariant under left translations of the data and
transforms under right translations with f ∈ G according to

[
Σ • f

]
=
[
Ad
(

f−1
) ][

Σ
][

Ad
(

f−1
) ]T

.

If the data is inverted, then we have

[
inv • Σ

]
=

1
2

([
Ad(g)

][
Σc

gi

][
Ad(g)

]
+
[
Ad
(

h
) ][

Σc
hi

][
Ad
(

h
) ])

.

In particular, if g = h, then

[
inv • Σ

]
=
[
Ad(g)

][
Σ
][

Ad(g)
]T

.
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Figure 4.5: Two data sets (g1, . . . , gn) and (h1, . . . , hm) with different covariance struc-
tures. The bi-invariant Bhattacharyya also captures the latter dissimilarity in addition
to the difference between the means g and h.

With this, we can generalize the Bhattacharyya distance to Lie groups:

Definition 4.1.10 (Bi-invariant Bhattacharyya distance). Let (g1, . . . , gn)
i.i.d.∼ G and

(h1, . . . , hm)
i.i.d.∼ H be data sets in CSLCG neighborhoods U1, U2 ⊆ G, respectively. Let

further g and h be their group means, Σ their averaged covariance and assume that log(g−1h)
exists. The left bi-invariant Bhattacharyya distance between both data sets is then defined
by

DB
(
(gi), (hi)

)
:=

1
8

µ2
(e,Σ)

(
g−1h

)
+

1
2

ln




det
([

Σ
])

√
det

([
Σc

gi

])
det

([
Σc

hi

])


 .

In the Euclidean case, Definition 4.1.10 reduces to (3.23). The bi-invariant Bhat-
tacharyya can also detect differences in the covariance structure of the sample sets;
this scenario is visualized in Figure 4.5. Furthermore, the following theorem shows
that the attribute “bi-invariant” is justified.

Theorem 4.1.11 (Properties of the bi-invariant Bhattacharyya distance). Let (g1, . . . , gn)
i.i.d.∼

G and (h1, . . . , hm)
i.i.d.∼ H be data sets in CSLCG neighborhoods U1, U2 ⊆ G, respectively.

Let further g and h be their group means and assume that log(g−1h) exists. The bi-invariant
Bhattacharyya distance has the following properties:
(i) it is symmetric,
(ii) it does not depend on the chosen basis,
(iii) it is invariant under left and right translations,
(iv) if g = h, then it is invariant under inversion.

Proof. Note that we can focus on the second summand since for the first all results
can be shown as in the proof of Theorem 4.1.6 (replacing the pooled by the averaged
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covariance). Thus, (i) follows immediately, since Σ is invariant under an exchange of
the data sets.

Next, we show (iii). Let f ∈ G and a f = det(Ad( f−1)); note that a f 6= 0. Invari-
ance of the second summand under left translations follows from Lemma 4.1.3 and
Corollary 4.1.9. They further imply that

det
([

Σ • f
])

√
det

([
Σc

gi
• f
])

det
([

Σc
hi
• f
]) =

a2
f det

([
Σ
])

a2
f

√
det

([
Σc

gi

])
det

([
Σc

hi

]) ,

which yields invariance under right translations. The proofs of (ii) and (iv) work
analogously (using Corollary 4.1.9 for (iv) and replacing group adjoints with basis
transformations for (ii)).

Note that in Definition 4.1.10 we take determinants of matrix representations of
(2,0)-tensors instead of (0,2)-tensors like in the Euclidean case (for background infor-
mation see, for example, [45, Ch. 4]). This does not make a difference since lowering
indices with any (auxiliary) metric does not influence the ratio of the determinants in
Definition 4.1.10; the additional terms (that is, the matrix representation of the metric)
cancel out analogously to those introduced by translations (that is, matrix representa-
tions of group adjoints) in the proofs of Theorems 4.1.6 and 4.1.11.

Remark 4.1.12. Again, if we replace all left translations with right translations in all defini-
tions (also in those of the bi-invariant Hotelling T2 statistic), we obtain the right bi-invariant
Bhattacharyya distance with the same invariance properties. We can also average the left-
and right- variants to obtain the central bi-invariant Bhattacharyya distance.

Remark 4.1.13. A notion from multivariate statistics that is intimately related to the Bhat-
tacharyya distance is the Hellinger distance [122] (see also [180, p. 51])

H
(
(xi), (yi)

)
=
√

1− 1/ exp
(
DB
(
(xi), (yi)

))
(4.1)

for data sets (x1, . . . , xm) and (y1, . . . , yn) in Rd. It has found various applications, for
example, in decision trees [57], internet telephony [218], and data visualization [202].

By using the bi-invariant Bhattacharyya distance in Equation (4.1), we directly obtain a
bi-invariant Hellinger distance on Lie Groups with the same invariance properties.

Algorithm 4 summarizes how the bi-invariant Bhattacharyya distance is com-
puted. (We again assume that the group exponential and logarithm can be calculated.)
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Algorithm 4 (Left) bi-invariant Bhattacharyya distance
Input: data sets (g1, . . . , gn) and (h1, . . . , hm) in a d-dimensional Lie group G as in

Definition 4.1.10 with group means g and h, vector space isomorphism E : TeG → Rd

(“coordinate map”)
Output: (left) bi-invariant Bhattacharyya distance d
for i = 1, . . . , n do

xi ← E
(
log(g−1gi)

)

end for
for i = 1, . . . , m do

yi ← E
(

log(h
−1

hi)
)

end for
z← E

(
log(g−1h)

)

R← 1
n

n

∑
i=1

xixT
i

T ← 1
m

m

∑
i=1

yiyT
i

S← 1
2
(R + T)

d← 1
8

zTSz +
1
2

ln

(
det(S)√

det(R)det(T)

)

4.2 Bi-invariant Bhattacharyya Distance and Densities

In the multivariate setting, the Bhattacharyya distance has the more general integral
definition (3.21) for distributions with probability density function (pdf). We show in
this section that the bi-invariant Bhattacharyya distance is compatible with this view.
Like in Euclidean space, we obtain compatibility for Gaussian-like distributions from
the generalized integral definition. On the other hand, in contrast to our definition,
the integral version has the drawback that it is not bi-invariant in general.

Let d be the dimension of the Lie group G. Integrals of functions are defined using
a left Haar measure, as summarized in Appendix A.1. For pdfs θ, ν on G we define
the integral version of the Bhattacharyya distance on Lie groups

Dint
B (θ, ν) := − ln

(∫

G

√
θ(g)ν(g)dg

)
(4.2)

Clearly, (4.2) reduces to (3.21) for G = Rd when we use the usual volume form. Since

Dint
B (θ ◦ L f , ν ◦ L f ) = Dint

B (θ, ν)

for each f ∈ G, the integral version of the Bhattacharyya distance is left invariant.
However, because dg is usually not right invariant this does not hold for right transla-
tions. Thus, in contrast to Definition 4.1.10, the integral version (4.2) cannot generally
be bi-invariant. (A similar problem arises when we start with a right invariant Haar
measure.) For this to hold, we need a unimodular Lie group, that is, a Lie group with
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bi-invariant volume form. (A well-known example of a non-unimodular Lie group is
the group of invertible affine transformations of Rn.) Therefore, we will only be in-
terested in the unimodular case. Since, then, distributions can be “moved around via
translations” without changing integrals, we can consider w.l.o.g. only those centered
at e.

In the following, let E : Rd → TeG be any orientation-preserving vector space
isomorphism (which we obtain from choosing a basis of TeG). Further, let e ⊆ TeG
be a neighborhood of 0 ∈ TeG such that, first, exp |e is an diffeomorphism onto the
neighborhood W = exp(e) of e and, second, there is an orientation-preserving diffeo-
morphism F : TeG → e between the whole of TeG and e. Lemma A.2.5 shows that we
can always choose e := log(W) with W being any CSLCG neighborhood of e. Now,
we can define ẽxp = exp ◦F ◦ E and l̃og = E−1 ◦ F−1 ◦ log. Note that the latter is a
chart of W with image Rd. To identify densities on G that connect both versions of
the Bhattacharyya distance we first need the following lemma.

Lemma 4.2.1. Let G be a d-dimensional Lie group and g ∈ G. Further, let ρ, σ be pdfs on Rd

and ẽxp∗(dg
∣∣
W) = ϕ dx with 0 < ϕ ∈ C∞(Rd). Define

θ(g) =

{
(ρ/ϕ ◦ l̃og)(g), g ∈W,

0, g ∈ G \W,
(4.3)

and

ν(g) =

{
(σ/ϕ ◦ l̃og)(g), g ∈W,

0, g ∈ G \W.
(4.4)

Then, θ and ν are pdfs on G with
∫

G

√
θ(g)ν(g)dg =

∫

Rd

√
ρ(x)σ(x)dx.

Proof. Clearly, θ, ν ≥ 0. Furthermore, since θ and ν are only supported in W and
l̃og ◦ ẽxp = IdRd , we find

∫
G θ(g)dg =

∫
G ν(g)dg = 1 and

∫

G

√
θ(g)ν(g)dg =

∫

W

√
θ(g)ν(g)dg

=
∫

Rd
ẽxp∗

(√
θ(g)ν(g)dg

)

=
∫

Rd
(
√

θν ◦ ẽxp)(x)ϕ(x)dx

=
∫

Rd

(√
ρσ

ϕ
◦ IdRd

)
(x)ϕ(x)dx

=
∫

Rd

√
ρ(x)σ(x)dx.

We can write the function ϕ also more explicitly. In the domain of a chart, any
form of maximal degree d is given as the wedge product of d coordinate 1-forms
multiplied by a smooth function (see Appendix A.1). Taking the canonical coordinates
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(x1, . . . , xd) on Rd, there these 1-forms are dx1, . . . , dxd. (We also have dx = dx1 ∧
· · · ∧ dxd.) Setting dyi := l̃og

∗
(dxi), i = 1, . . . , d, there is 0 < ψ ∈ C∞(W) such

that dg
∣∣
W = ψ dy1 ∧ · · · ∧ dyd. Hence, the transformation rule for forms of maximal

degree [8, Ch. XII Thm. 2.3] implies

ẽxp∗(dg
∣∣
W) = det(d ẽxp)(ψ ◦ ẽxp)dx1 ∧ · · · ∧ dxd (4.5)

and, thus, ϕ = det(d ẽxp)(ψ ◦ ẽxp).
In the following, N (x, [Σ]) denotes the multivariate normal distribution on Rd

with mean x and covariance matrix [Σ]. The following proposition establishes a con-
nection between the bi-invariant Bhattacharyya distance and the integral version.

Proposition 4.2.2. Let G be a d-dimensional unimodular Lie group with CCS connection,
and let ρ be the pdf of N (0, [Σc

gi
]) and σ the pdf of N ([log(g−1h)], [Σc

hi
]) on Rd. From ρ

and σ, define pdfs θ and ν on G by (4.3) and (4.4), respectively. Further, let (g1, . . . , gn) and
(h1, . . . , hm) be data sets in a CSLCG neighborhood in U ⊆ W with group means g and h,
respectively. Then,

Dint
B (θ, ν) = DB

(
(gi), (hi)

)
.

Proof. The assertion follows from Lemma 4.2.1 and the fact that the Bhattacharyya
distance between two multivariate normal distributions is of the form (3.23).

According to the proposition, “scaled push-forwards” of the multivariate normal
distribution provide a connection between both versions of the Bhattacharyya dis-
tance. Densities connected to these were investigated for SE(n) in [52]—also with an
emphasis on bi-invariance—and for affine locally symmetric spaces in [53]. Note that
the requirement U ⊆W is not needed in the proof but is introduced to ensure that the
data samples have non-vanishing probabilities under ρ and σ. If one wants to choose
ρ and σ (e.g, to simulate an underlying model) setting e := log(U) seems sensible
because thereby the locality condition that we impose on the data for DB is met. On
the other hand, larger domains could be used if “outliers” should be possible.

Interesting special cases are Lie groups whose exponentials are global diffeomor-
phisms. Examples are simply connected, nilpotent Lie groups (like the Heisenberg
group, which allows for a unique mean in the entire group [189, pp. 198–199]); they
are unimodular and the pullback of the Lebesgue measure under the logarithm is a
bi-invariant Haar measure [56]. Thus, in a simply-connected, nilpotent Lie group, dg
can be chosen such that ψ ≡ 1 in Equation (4.5).
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Chapter 5

Regression with Bézier Splines in
Riemannian Manifolds

Regression methods are central to modern statistics. They are used when the de-
pendence of a measured variable on one or more explanatory variables is of interest.
Usual multivariate regression methods are not applicable when the observed vari-
able takes values in general manifolds; therefore, there is widespread research for
regression in nonlinear spaces—a process fuelled in particular by the need to ana-
lyze nonlinear data (for example, images and shapes) from an ever-growing number
of large-scale longitudinal studies in medical applications [99]. Consequently, non-
parametric [69, 161, 266], semi-parametric [223, 270], and parametric [64, 125, 146]
regression models have been studied using Riemannian tools; some of these are ap-
plicable to data from general manifolds [69, 125, 146, 161, 223] while others are for-
mulated for specific ones [64, 266, 270].

Parametric models have the advantages that they are usually faster to compute
and that their results are easier to interpret than those of their non-parametric coun-
terparts. They should therefore be considered whenever we are confident that the
relationship between the measured and explanatory variables is of a known type.
The simplest parametric regression model in Euclidean space is linear regression,
and geodesic regression [89, 174] was introduced as its generalization to Riemannian
manifolds. Geodesic regression allows approximating given instances in a Rieman-
nian manifold by a generalized straight line. However, some processes cannot be
accurately described by a geodesic, for example, periodic motion or processes with
saturation that slow down after some time.

Riemannian polynomials [125] have been considered for higher-order parametric
regression. In these works, they are defined (by employing variational principles)
as solutions to differential equations involving curvature terms. Since closed-form
solutions of the equations are usually not available, evaluation and optimization are
complicated and numerically expensive.

We propose to use manifold-valued Bézier splines as an alternative. They allow
for explicit formulas, which can be utilized to improve computational speed without
sacrificing accuracy. The fact that they can easily be concatenated additionally stands
out in comparison to Riemannian polynomials: While variational spline models allow
for piecewise composition, there is no clear way to define them for even degrees [125].
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Therefore, introducing flexible, intrinsic splines for regression is a core contribution
of this work. Our ansatz leads to closed-form, numerically stable, and efficient ex-
pressions for the gradient of the regression objective in symmetric spaces.

In the second part of the chapter, it is shown how the new regression scheme
can be extended into a hierarchical model that allows for an adequate, highly flexible
analysis of longitudinal manifold-valued data; and how we can use it to control for
confounding variables in given data sets that introduce unwanted variance.

5.1 Regression with Bézier Splines

Next comes the novel regression model. While we introduce the theory in this sec-
tion, two applications to shape analysis in medical imaging are shown in Sections 6.3
and 6.4.

5.1.1 The Model

For k-th order polynomial regression in Euclidean space Rd one assumes that the
relationship between an Rd-valued random variable Y and a scalar variable t is given
by the model

Y(t) = P(t) + ε(t), (5.1)

with P being a (deterministic) polynomial of degree at most k and ε a vector-valued,
random variable representing the error. In the following, we generalize this model to
Riemannian manifolds using Bézier splines; furthermore, we extend it conceptually
by including closed curves.

Let M be a Riemannian manifold and U ⊆ M be a normal convex neighborhood.
Further, let n data points (t1, q1), . . . , (tn, qn) ∈ [0, 1] × U with corresponding scalar
parameters (for example, points in time) be given. We suppose that there is a Bézier
spline B ∈ B(U) such that the data points q1, . . . , qn are independent realizations of
an M-valued random variable Q that is connected to a deterministic variable t ∈ R

according to the model
Q(t) = expB(t;p0,...,pK)

(
ε(t)

)
. (5.2)

Here, for each t ∈ [0, 1] the random error variable ε takes values in TB(t)M whose
realizations are (generally non-continuous) random vector fields along B.1 The control
points p0, . . . , pK are the unknown parameters. A visualization of the model for cyclic
data on the sphere is shown in Figure 2.3.

As intended, in Euclidean space (5.2) reduces to (5.1) when restricting to Bézier
curves. Furthermore, our model is a generalization of geodesic regression [89, Eqn.
3], which it reduces to when B consists of a single segment with two control points.

In the following, we assume that the type of B is known. In practice, this must
often be determined first. As for polynomial regression, knowledge-driven (first)
guesses of the degrees should be tested, for example, by holding back a testing set
from the data to validate the model.

1The assumption that the explanatory variable t is in [0, 1] is purely for reasons of consistency. For
a finite set of samples, the realizations of t must be in an interval of finite length, which can always be
linearly re-scaled to [0, 1]. We do this in all later applications of our method.
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B

Figure 5.1: Sketch of regression with closed Bézier splines in S2. The orange dots are
data points, while B indicates the regressed spline.

5.1.2 Least Squares Estimation

We now discuss how the Bézier spline B in (5.2) should be estimated. Since (noise)
distributions on manifolds that allow for tractable computations are rare, using max-
imum likelihood estimation or empirical Bayes is often impossible. Therefore, geo-
metric least squares estimation is commonly employed. Nevertheless, we will show
in the next section that the former coincides with maximum likelihood estimation for
symmetric spaces.

To motivate our method, we again look at the multivariate case first. A standard
way to estimate the polynomial P in (5.1) is ordinary least squares. Let N measurements
(t1, y1), . . . , (tn, yn) ∈ [0, 1]×Rd be given. Denoting the set of polynomial curves over
[0, 1] of degree at most k by Pk, we can approximate P by the least squares estimator

P̂ := arg min
P∈Pk

1
2

n

∑
i=1
‖P(ti)− yi‖2.

We can directly transfer this idea to Riemannian manifolds. Let C ⊂ UK+1 be
the largest (that is, containing all others with the same property) compact, simply-
connected subset such that each point in C defines an element of B(U). Then, we can
define the least squares estimator of (5.2) as follows.

Definition 5.1.1. Let n realizations (t1, q1), . . . , (tn, qn) ∈ [0, 1]×U of (5.2) be given. Then,
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the sum-of-squared error of a Bézier spline B ∈ B(U) is defined by

E(p0, . . . , pK) :=
1
2

n

∑
i=1

dist
(

B(ti; p0, . . . , pK), qi

)2
. (5.3)

Furthermore, the least squares estimator B̂ ∈ B(U) of the spline B in (5.2) is determined
by its control points

( p̂0, . . . , p̂K) ∈ C
according to

( p̂0, . . . , p̂K) := arg min
(p0,...,pK)∈C

E(p0, . . . , pK). (5.4)

Note that, for two control points, this definition also boils down to Fletcher’s
definition [89, Eqn. 5] so that in the geodesic case, the least squares estimates from
geodesic regression and our method coincide. We also remark that, generally, none of
the control points coincides with a data point, as with spline interpolation [29, 105].

Before going on, a comment on our use of C seems in order. Like Fletcher in [89,
Thms. 2 and 3], we introduce it to ensure the existence of a least squares estimator. The
existence question in an open set is very involved and, as far as we can see, depends
strongly on the “layout” of the data, the geometry of the space, and the degree of
the underlying curve. For example, if we want to use a polynomial of high degree
for sparse data with similar values of t but highly varying realizations of Q, this
will often lead to strongly oscillating least squares estimators (a well-known effect for
polynomials of a higher degree in Euclidean space), the “extrema” eventually “trying”
to leave U. We leave this question for future work and use a compact set instead.

In general, the minimizer (5.4) is not known analytically, which makes iterative
schemes necessary. Therefore, we apply Riemannian gradient descent. (For optimiza-
tion on manifolds see [2].) The gradient of E can be computed for each control point
individually.2 We write Bt(pj) for the map pj 7→ Bt(pj) := B(t; p0, . . . , pj, . . . , pK)

and define the functions p 7→ τi(p) := dist(p, qi)
2. Equation (3.25) yields gradpτi =

−2 Logp(qi) for each p ∈ U. When we consider the j-th summand on the right-hand
side of (5.3), the chain rule (1.13) implies that its gradient with respect to the i-th
control point is given by

gradpj
(τi ◦ Bti) = dpj B

∗
ti

(
gradBti (pj)

τi

)
= −2 dpj B

∗
ti

(
LogBti (pj)

(qi)
)

. (5.5)

Using Equation (5.3) we thus obtain

gradpj
E = −

n

∑
i=1

dpj B
∗
ti

(
LogBti (pj)

(qi)
)

(5.6)

for each j = 0, . . . , K.
In symmetric spaces, we can thus compute gradpj

E explicitly as discussed in Sec-

tion 2.1. A visualization of the gradient of a cubic Bézier curve in S2 is shown in Fig-
ure 5.2.

2In fact, here we assume that the product manifold MK+1 is endowed with the so-called product
structure (see, for example, [45])—a very natural choice since we have no reason to assume that there
are dependencies between the control points.
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β( 2
3
)

−2Logβ( 2
3
)(q)

gradp3
E

β

p3

q

Figure 5.2: Gradient w.r.t. p3 of a cubic Bézier curve β on the sphere S2. In this
example, there is only a single data point p. Since the gradient is taken w.r.t. the last
control point, there is only one path through the tree of geodesics along which dp3 B∗2/3
transports gradβ(2/3)dist( · , q)2 = −2 Logβ(2/3)(q) backward.

The gradient descent algorithm to compute ( p̂0, . . . , p̂K) (not only) in symmetric
spaces is given in Algorithm 5. Therein, the exponential and gradient of the product
manifold MK+1 are used. They are computed component-wise (because we work with
the product structure). That is,

Exp(p0,...,pK)

(
s grad(p0,...,pK)

E
)
=

(
Expp0

(
s gradp0

)
, . . . , ExppK

(
s gradpK

))

for p0, . . . , pk ∈ U and s > 0.
As an initial guess for the gradient descent, choosing (p0, . . . , pK) along the geodesic

polygon whose corners interpolate the data points closest to knot points (in terms of
t) has worked well. Note that gradient descent methods converge to local minima.
Thus, we implicitly assume that there is no “badly behaved” local minimum “far
away” from the least squares estimator.

5.1.3 Maximum Likelihood Estimation

In Euclidean space, the least-squares estimation coincides with maximum likelihood
estimation under the assumption that the distribution of the errors is Gaussian. In [89,
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Algorithm 5 Gradient descent algorithm for the least-squares estimator
Input: Riemannian manifold M with normal convex neighborhood U, a compact

set C ⊂ UK+1, data (t1, q1), . . . , (tn, qn) ∈ [0, 1]×U, initial guess (p0, . . . , pK) ∈ C of
the control points, step size function s : TC → R>0 (for example, Armijo step sizes [2,
Def. 4.2.2]), tolerances ε, δ > 0

Output: approximation ( p̃0, . . . , p̃K) ∈ C of the least-squares estimator
(5.4)

while ‖grad(p0,...,pK)
E‖ > ε and s(grad(p0,...,pK)

E) > δ do

(p0, . . . , pK)← Exp(p0,...,pK)

(
−s(grad(p0,...,pK)

E) grad(p0,...,pK)
E
)

end while
( p̃0, . . . , p̃K)← (p0, . . . , pK)

Sec. 4.4], Fletcher showed that this is also true for geodesic regression in symmetric
spaces under a generalized isotropic normal distribution. In the following, we extend
his result to regression with Bézier splines. To this end, we deal with integrals of func-
tions on manifolds; a summary of the underlying theory is given in Appendix A.1.

The maximum likelihood method is another probabilistically motivated method
to obtain an estimator for the parameters of a statistical model from given data. The
idea is to view the parameters (the control points of B in our case) as variables of
the underlying probability density function (pdf). The maximium likelihood estimator is
the set of parameters that maximizes the so-called likelihood function under the given
data. In practice, because it has the same extrema but is often easier to analyze,
one usually applies the logarithm to the likelihood function and works with the log-
likelihood function instead.

An assumption on the pdf underlying the model is needed to apply the maximum
likelihood method. Let M be a connected symmetric space, q ∈ M, and define

C(σ) :=
∫

M
exp

(
−dist(p, q)2

2σ2

)
dp.

It is important to note that C does not depend on q: The distance function and thus
C are invariant under isometries, and for any two points in a symmetric space, there
always is an isometry of the space mapping one into the other [121]. Given q and
σ > 0, Fletcher’s generalized normal distribution is now defined via the pdf

ρ : M→ R≥0

p 7→ ρ(p; q, σ) :=
1

C(σ)
exp

(
−dist(p, q)2

2σ2

)
. (5.7)

The distance function in the exponential leads to an isotropic assignment of probabil-
ity mass. Two advantageous properties of ρ are (apart from being an isotropic normal
distribution in Euclidean space) that it is smooth and nonzero everywhere; both need
not hold for other generalizations of the normal distribution. (They are not given, for
example, for the maximum entropy distribution introduced in [184], which, on the
other hand, has the advantage that anisotropy can be modeled.)
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We say that the model (5.2) has Gaussian errors, if the random variable Q is condi-
tionally distributed according to (5.7), that is, with pdf

ν(q|t = t0) = ρ
(
q; B(t0; p0, . . . , pK), σ

)
(5.8)

for some σ > 0. Under this assumption, the log-likelihood function of our model is
given by

l (p0, . . . , pK; σ) := N log
(
C(σ)

)
− 1

2σ2

n

∑
i=1

dist
(

B(ti; p0, . . . , pK), qi
)2

for given data (t1, q1), . . . , (tn, qn) ∈ [0, 1]×U; the maximum likelihood estimator of the
model then is the spline whose control points maximize l (with control points in
C ⊆ UK+1).

The following theorem shows that, in symmetric spaces, maximum likelihood and
least squares estimators coincide under the above assumption.

Theorem 5.1.2. Let M be a symmetric space, U ⊆ M a normal convex neighborhood, and
(t1, q1), . . . , (tn, qn) ∈ [0, 1]×U realizations of the model (5.2). Then, least squares optimiza-
tion and maximum likelihood approximation are equivalent for (5.2) with Gaussian errors.

Proof. Using Equations (5.5) and (5.6) we find for each j = 1, . . . , K and p ∈ U

gradpl = − 1
2σ2

n

∑
i=1

gradpdist
(

B(ti; p0, . . . , pj−1, · , pj+1, . . . , pK), qi
)2

=
1
σ2

n

∑
i=1

dpB∗ti

(
LogB(ti ;p0,...,pj−1,p,pj+1,...,pK)

(qi)
)

= − 1
σ2 gradpE .

Hence, in the interior of C, local minimizers of the sum-of-squared error E are local
maximizers of the log-likelihood function l, and vice versa. We now show that this
also holds for global extrema in C. Let ( p̂0, . . . , p̂K) be the global minimizer of E ,
(p0, . . . , pK) ∈ C arbitrary, and α a smooth curve in C that connects them, while ending
in the minimizer. Using the definition of the gradient and the relationship above, we
see that dl = −1/σ2 dE . Hence, applying Stoke’s Theorem (Theorem A.1.2) yields

l( p̂0, . . . , p̂K)− l(p0, . . . , pK) =
∫

α
dl

= − 1
σ2

∫

α
dE

=
1
σ2

(
E(p0, . . . , pK)− E( p̂0, . . . , p̂K)

)

≥ 0.

Since (p0, . . . , pK) is arbitrary, this shows that ( p̂0, . . . , p̂K) is a global maximum of l.
Analogously, one can show that global maxima of l are global minima of E .
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5.2 A Nonlinear Hierarchical Model

Longitudinal studies are crucial for medical sciences. They provide much-needed in-
formation on developing phenomena, which can be vital for improving prognosis. To
faithfully extract this information, the analysis method must handle the characteris-
tics inherent to longitudinal data. Most prominently, it must be able to deal with the
problem of having strongly correlated measurements (from the same individual at
differing times) and independent measurements (from different individuals) as part
of the data set. Standard statistical tools like regression only allow the study of ef-
fects across individuals or within a single one; they cannot be applied to mixed data
since their fundamental independence assumptions are not fulfilled. Another frequent
problem in longitudinal studies is missing data (for example, patients dropping out of
a study) or irregular intervals between measurements. To deal with these problems,
multivariate mixed-effects models (in particular, hierarchical models) were developed
for data from Euclidean spaces [156]. To each individual, they assign an independent
functional relation between the dependent variable and the time-dependent explana-
tory variable. The coefficients that determine these trends are assumed to be random
within the population and are called “random effects”. The primary object of inter-
est is usually a “fixed effect” that depends on random effects. It is usually a “fixed”
(non-random) coefficient that determines the average spatiotemporal behavior of the
whole group.

Recently, the considerable potential of longitudinal studies for shape analysis has
come into focus [99]. To obtain as much information as possible from the resulting
data, it is necessary to leave the realm of Euclidean vector spaces and turn to methods
from Riemannian geometry, as curved manifolds are their natural domains. There-
fore, standard methods from multivariate statistics to analyze longitudinal data must
be transferred to these more general spaces. Until now, this has only partly been
done with hierarchical models. Current parametric hierarchical models for manifold-
valued data are either based on geodesics [37, 172, 225, 226] or general trajectories [48,
231], while an approach based on non-parametric curves is presented in [44]. As an al-
ternative geodesic model, the authors of [173] proposed to use a different Riemannian
structure that allows for faster algorithms in case of high dimensional data. However,
to the best of our knowledge, there is no in-between hierarchical model for parametric
trends of a higher order that (a) allows modeling more complicated trends and (b) is
efficient enough to handle (high-dimensional) data sets with a large number of obser-
vations. Since many phenomena are only poorly characterized by geodesic models
(for example, the cyclic motion of the cardiac structure), there are numerous possible
applications.

Thus, we propose a novel higher order hierarchical model for analyzing longitudinal
manifold-valued data. By modeling, in the first step, subject-wise trends as splines
consisting of generalized Bézier curves, we can correctly capture a vast range of
phenomena—not least periodic ones. We use the developed regression method to
estimate these trends. In the second step, the obtained trajectories are considered
perturbations of a common mean (curve). To this end, we adapt the functional-based
metric from [173] to compare the obtained subject trajectories within the correspond-
ing space of Bézier splines. Thereby, we can analyze the inter-subject variability cor-
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rectly without interference from correlating measurements. For efficient calculations,
we rely on the geodesic calculus introduced in [120, 210] and also utilized in [173].

We apply the novel model to longitudinal shape data of the human distal femur
in Section 6.5.

5.2.1 Spaces of Bézier Splines

The hierarchical model relies on the fact that at least lower dimensional sets of Bézier
splines are smooth manifolds. To the best of our knowledge, this has not been shown
before; therefore, we prove it here. We can then endow these spaces with a known
metric for manifolds of curves and use it as the basis for our model.

Theorem 5.2.1. Let M be a d-dimensional Riemannian manifold and U ⊆ M a normal con-
vex neighborhood. Furthermore, let B1

k(U) and B̊1
k(U) be defined by (2.8) and (2.9), respec-

tively. Then, B1
k(U) can be given the structure of a (k + 1)d-dimensional smooth manifold

for k ∈ {0, 1, 2, 3, 4, 5}. Furthermore, with this structure, B̊1
k(U) is a smooth (k − 1)d-

dimensional embedded submanifold of B1
k(U) for k ∈ {2, 3, 4, 5}.

Proof. Let 1 ≤ k ≤ 5. We define the map

F : Uk+1 → B1
k(U),

(p0, . . . , pk) 7→ β( · ; p0, . . . , pk).

Corollary 2.1.2 implies that F is injective and, thus, bijective. We can then push the
product-manifold structure of Uk+1 forward along F to B1

k(U) to turn it into a smooth
manifold, thereby securing that F is a smooth diffeomorphism [197, Ch. 30 § 9].3

Analogously, we can push the structure of Uk−1 to B̊1
k(U) turning it into an embedded

submanifold.

This structure allows us to identify Bézier splines of low degrees and their control
points. Application-wise, the spaces covered in Theorem 5.2.1 are the most important
ones as, traditionally, the degree of the underlying polynomial curve in regression
is kept as low as possible to avoid overfitting, and this should not be different for
regression in manifolds. Also, when curves of low degrees are not adequate, it can be
advisable to use splines (built from them) instead of curves of higher degrees [162].

From a theoretical perspective, it is nevertheless interesting to advance the result
to higher degrees. Indeed, it seems very likely that B1

k(U) and B̊1
k(U) can always

be given a manifold structure in the above way. We, therefore, state the following
conjecture.

Conjecture. Theorem 5.2.1 also holds for all k ≥ 6.

We are unaware of explicit formulas for further control points, which would be
necessary to extend our proof. What is known is that the `-th covariant derivative of a
Bézier curve at t = 0 and t = 1 is determined by the first and last `+ 1 control points,
respectively [195, p. 112]; but not that a subset of them never suffices.

3More precisely, we obtain a topology on B1
k (U) by requiring that a subset is open if and only if its

preimage under F is open. A maximal atlas is then given analogously: If (V, φ) is a chart of Uk+1, then
(F(U), φ ◦ F−1) is a chart of B1

k (U) (and all charts are constructed this way).
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Of course, one could also try to use the inverse function theorem to show that F
is locally invertible. Then, by restricting to a subset Ũ ⊆ U, we would obtain that
B1

k(Ũ) is a manifold. To this end, delicate investigations of sums of Jacobi fields along
different curves are necessary. We leave this for future work.

Turning to Bézier splines, we can extend Theorem 5.2.1.

Corollary 5.2.2. Let M be a d-dimensional Riemannian manifold and U ⊆ M a normal
convex neighborhood. Furthermore, let BL

k0,...,kL−1
(U) and B̊L

k0,...,kL−1
(U) be defined by (2.8)

and (2.9), respectively. Then, BL
k0,...,kL−1

(U) can be given the structure of a smooth manifold of
dimension

dim
(
BL

k0,...,kL−1
(U)

)
= d

(
L−1

∑
i=0

ki − L + 2

)

if ki ∈ {1, 2, 3, 4, 5} for all i = 0, . . . , L − 1. Furthermore, if ki ∈ {1, 2, 3, 4, 5} for all
i = 1, . . . , L− 2 such that ∑L−1

i=0 ki > L, then B̊L
k0,...,kL−1

(U) is a smooth embedded submanifold
in this structure. The dimension of B̊L

k0,...,kL−1
(U) is

dim
(
B̊L

k0,...,kL−1
(U)

)
= d

(
L−1

∑
i=0

ki − L

)
.

Proof. We extend F so that

F : UK+1 → BL
k0,...,kL−1

(U),

(p0, . . . , pK) 7→ B( · ; p0, . . . , pK),
(5.9)

where K is given by Equation (2.7). The assertion now follows using the arguments
from the proof of Theorem 5.2.1 for every segment. (Thereby, F is also turned into
diffeomorphism.) The construction for B̊L

k0,...,kL−1
(U) works analogously.

Our last results motivate the following definition.

Definition 5.2.3. Let M be a d-dimensional Riemannian manifold and U ⊆ M a normal
convex neighborhood. Furthermore, let BL

k0,...,kL−1
(U) and B̊L

k0,...,kL−1
(U) as in (2.8) and (2.9)

be endowed with the smooth manifold structure introduced above. We call BL
k0,...,kL−1

(U)

Bezierfold over U of degrees (k0, . . . , kL−1) Bézier splines. We further call B̊L
k0,...,kL−1

(U)

Bezierfold over U of closed degrees (k0, . . . , kL−1) Bézier splines.

Since derivatives of diffeomorphisms map tangent spaces bijectively into each
other, we can characterize the tangent spaces of a Bézierfold B(U) with the help
of the map (5.9): For each B ∈ B(U), we find

TBB(U) = {X : [0, L]→ TM
∣∣ ∃ v0 ∈ Tp0 M, . . . , vK ∈ TpK M ∀ t ∈ [0, L] :

X(t) =
K

∑
j=0

dpj B(t; p0, . . . , pj−1, · , pj+1, . . . , pK)(vj)}.

As a manifold, B(U) can be endowed with a Riemannian metric. Let 〈 · , · 〉 be the
metric of M. We propose to endow B(U) with the metric of Srivastava and Klassen
from [231, Sec. 3.3]. At each B ∈ TBB(U), it is given by

〈〈X, Y〉〉B :=
∫ L

0

〈
X(t), Y(t)

〉
B(t)dt
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for all X, Y ∈ TBB(U). Note that it is smooth (w.r.t. the used structure) because
Bézier splines depend smoothly on their control points. The metric induces a natural
distance between two Bézier splines. Although we do not have explicit formulas
for geodesics or the Riemannian exponential ExpBB at B ∈ B(U) at hand, we can
approximate them efficiently using variational time-discretization [210] as described
in Section 5.2.4.

Remark 5.2.4. Several Bézierfolds coincide with sets of constant maps into U. Whereas for
spaces that contain non-closed curves, this is (only) true for B1

0(U), there are infinitely many
spaces of closed curves, including B̊1

2(U), B̊2
1,2(U), B̊3

1,1,2(U), etc. It is then clear that these
spaces are all diffeomorphic to U. Furthermore, since tangent vectors are constant maps to TU
in these cases, they are also isometric to U.

5.2.2 The Model

We now introduce the nonlinear hierarchical model. Since its main application is data
analysis from medical studies, we speak of measurements taken from “subjects” in
the following. Nevertheless, the model is not restricted to data from this field.

Let M be a Riemannian manifold and U ⊆ M a normal convex neighborhood.
Further, let B(U) be a Bézierfold over U. Consider that S subjects are given and that,
for each, there is (a possibly different number of) ns, s = 1, . . . , S measurements of
the pair of an independent, deterministic scalar variable t (the same for every subject)
and a manifold-valued dependent variable Q(s). The data thus reads

(
t(s)i , q(s)i

)
∈ R×U, i = 1, . . . , ns, s = 1, . . . , S. (5.10)

Such data arises, for example, in longitudinal studies that observe shape develop-
ments [99], brain networks [219], or human gait [248]. Importantly, in these applica-
tions, the intra-subject measurements (that is, samples q(s)i with the same s) are usually

correlated, whereas cross-sectional measurements (that is, points q(s)i with mutually
different s) are independent of each other. Therefore, intra-subject trends must be
treated ahead of the group-wise analysis, as fundamental independence assumptions
are violated otherwise [172].

To accurately describe longitudinal data, we propose a hierarchical two-stage
model. Thereby, we extend the works of Muralidharan and Fletcher [172], as well
as Nava-Yazdani, Hege, and von Tycowicz [173], which both rely on geodesic trends.
The model consists of the following two consecutive levels.
Individual level: On the lower, individual level, we assume that (5.2) underlies each
subject’s data independently from the others; the type and the degrees of all Bézier
splines are supposed to be the same. That is, it is assumed that the data (5.10) is
drawn from random variables

Q(s)(t) := Exp
B(s)(t;p(s)0 ,...,p(s)K )

(
ε(s)(t)

)
, s = 1, . . . , S.

Group level: On the upper group level, we view each trajectory as a perturbation
of a common mean trajectory B := B( · ; p0, . . . , pK) ∈ B(U) in the Bézierfold B(U)

according to
B(s) = ExpBB

(
X(s)

)
, s = 1, . . . , S,
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Figure 5.3: Conceptual comparison of a hierarchical model and regression analysis
on a longitudinal data set. The measurements are shown as grey dots (without time).
Each subject’s (correlated) measurements follow its trend (broken lines). Spline re-
gression on the full data set yields the red curve; its direction deviates strongly from
all individual trends. The mean of the individual trends (green curve) is a better
estimator of the average longitudinal trend in the cohort.

with random tangent vector fields X(s) ∈ TBB. This model first deals with the cor-
related samples, so, on the group level, independence can be assumed again. Its
advantage for longitudinal data is conceptually visualized in Figure 5.3.

5.2.3 Parameter Estimation

We propose a two-step least squares estimation for the control points of the individual
developments and those of the mean trend. For the control points of the individual
trends, we can use the estimator (5.4). To approximate the control points of B, we sug-
gest using the control points of the Fréchet mean in B(U) of the estimated individual
trends.

5.2.4 Computation

We can compute the estimated control points of each subject as discussed in Sec-
tion 5.1.2. The following discussion is, therefore, only concerned with approximating
the control points of the mean spline. We rely on methods from discrete geodesic
calculus by Rumpf and Wirth [210]; see Appendix A.3 for details.

Let B1, B2 ∈ B(U). A path between B1 and B2 through B(U) (and defined in
[0, 1]) may be represented as a parametrized surface in U, because it induces a map
H : [0, 1] × [0, L] → U, (r, t) 7→ H(r, t) with H(0, · ) = B1 and H(1, · ) = B2. A
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geodesic between B1 and B2 is a minimizer of the path energy4

E(H) :=
∫ 1

0

∫ L

0

〈
dH
dr

(r, t),
dH
dr

(r, t)
〉

dt dr.

Discretizing in B(U) and identifying splines with their control points, we obtain a
discrete `-geodesic (pj

0, . . . , pj
K)j=0,...,` ∈ (UK+1)`+1 between B1 and B2 as the minimizer

of the discrete path energy

E`

((
pj

0, . . . , pj
K

)
j=0,...,`

)
:= `

`−1

∑
j=1

∫ L

0
dist

(
B
(

t; pj
0, . . . , pj

K

)
, B
(

t; pj+1
0 , . . . , pj+1

K

))2

dt.

When distances on M can be computed, the integral can be evaluated using a suitable
quadrature rule.

To approximate minimizers of E`, we extend the iterative procedure from [173]
to our setting. The algorithm is motivated by the general characteristic of shortest
paths that are induced by Srivastava’s metric and the corresponding connection in
the space of curves: If α1, α2 : [0, L] → U are two smooth curves, then the map
H( · , t) : [0, 1] → U that is induced by the shortest curve between α1 and α2 is a
geodesic in M for all t ∈ [0, L]; see [231]. Approximating the integrals in E` with a
quadrature and applying an alternating optimization scheme (that is, block coordinate
descent) lets us compute the discrete `-geodesics between two curves by iteratively
performing spline regression. First, we initialize the control points of the inner curves
equidistantly along the geodesics that connect the corresponding control points of B1

and B2. The inner trajectories are then updated so that they lie “in the middle” of
their neighbors; to this end, we replace them with the result of a spline regression
on the K + 1 data points given by (equidistant) evaluations of the neighboring curves.
The procedure is summarized in Algorithm 6.

Next, we discuss the computation of the discrete `-mean of S curves B1, . . . , BS ∈
B(U), with which we approximate the common mean (curve). It is the spline B ∈
B(U) minimizing

G`(p0, . . . , pK) :=
S

∑
s=1

E`

((
pj

0, . . . , pj
K

)(s)
j=0,...,`

)
,

s.t. (p`0, . . . , p`K)
(s) = (p0, . . . , pK)

(s), s = 1, . . . , S,

where (pj
0, . . . , pj

K)
(s)
j=0,...,` denotes the control points of the discrete `-geodesic between

Bs and B( · ; p0, . . . , pK). It can be computed with an alternating optimization scheme.
We initialize the control points of B with the means of the corresponding control
points of the data curves. Then, we compute discrete geodesics toward the mean and
update the latter by a spline regression. This process is repeated in an alternating
fashion. The whole procedure is summarized in Algorithm 7.

4Indeed, a curve minimizes the path energy if and only if it is a geodesic; see, for example, [45, p. 196].
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Algorithm 6 Discrete `-geodesic in B(U). Solving spline regression by computing
(5.4) with Algorithm 5 is denoted by reg.

Input: B1, B2 ∈ B(U) with control points
(

p0
0, . . . , p0

K
)

,
(

p`0, . . . , p`K
)
, respectively

Output: approximations ( p̂j
0, . . . , p̂j

K)j=0,...,` of the control points of the discrete `-
geodesic from B1 to B2

for j = 1, . . . , `− 1 do

( p̂j
0, . . . , p̂j

K)←
(

γ
(

j
` ; p0

0, p`0
)

, . . . , γ
(

j
` ; p0

K, p`K
))

end for
( p̂0

0, . . . , p̂0
K)←

(
p0

0, . . . , p0
K
)

( p̂`0, . . . , p̂`K)←
(

p`0, . . . , p`K
)

repeat
for j = 1, . . . , `− 1 do

for i = 0, . . . , K do(
tj−1
i , qj−1

i

)
←
(

iL
K , B

( iL
K ; pj−1

0 , . . . , pj−1
K
))

(
tj+1
i , qj+1

i

)
←
(

iL
K , B

( iL
K ; pj+1

0 , . . . , pj+1
K
))

end for

( p̂j
0, . . . , p̂j

K)← reg
((

tj−1
i , qj−1

i

)
i=1,...,K

∪
(

tj+1
i , qj+1

i

)
i=1...,K

)

end for
until convergence

Algorithm 7 Mean trajectory. Computing the Fréchet mean (with Algorithm 1) and
`-geodesic (with Algorithm 6) are denoted mean and `-geo, respectively.

Input: B1, . . . BS ∈ B(U) with control points (p(s)0 , . . . , p(s)K )s=1,...,S, discretization
parameter ` ∈N

Output: approximation ( p̂0, . . . , p̂K) of the control points of the discrete `-mean
curve

( p̂0, . . . , p̂K)←
(
mean

(
p(1)0 , . . . , p(S)0

)
, . . . , mean

(
p(1)K , . . . , p(S)K

))

repeat
for s = 1, . . . , S do(

pj
0, . . . , pj

K

)(s)
j=0,...,`

← `-geo
(

B ( · ; p̂0, . . . , p̂K) , Bs
)

end for
for s = 1, . . . , S do

for i = 0, . . . , K do(
t(s)i , q(s)i

)
←
(

iL
K , B

(
iL
K ; p(s)0 , . . . , p(s)K

))

end for
end for

( p̂0, . . . , p̂K)← reg
((

t(s)i , q(s)i

)s=1,...,S

i=1,...,K

)

until convergence
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5.3 Normalization via Regression

In statistics, one almost always needs to control confounding and other extraneous
variables that are not of interest to a study but might influence the outcome. If the
pool of samples is large enough, the controlling can be done through sample selection,
enforcing, for example, that the variable is constant or follows a particular distribu-
tion. Another possibility, which is also applicable in the case of a small data pool,
is normalization, that is, shifting/scaling the data’s statistics such that the influence of
the confounding variables is minimized. Such procedures can also be necessary when
analyzing manifold-valued data. In this section, we develop a normalization method
that helps to reduce the interference of continuous influence parameters. While moti-
vated by the specific application shown in Chapter 7, it can be applied when several
sets of manifold-valued data shall be compared that are influenced by a continuous
confounding variable. Conceptually similar procedures are used in Euclidean space,
for example, when analyzing molecules [111, 221, 250].

5.3.1 The Model

Let M be a Riemannian manifold, U ⊆ M a normal convex neighborhood, and Is ⊂ R,
s = 1, . . . , S, closed intervals with non-empty intersection, that is, ∩S

s=1 Is 6= ∅. (The
latter assumption guarantees a shared parameter value that can serve as a reference
point for the normalization.) Let further s groups of U-valued data points be given,
each element coming with a parameter:

(
t(s)j , q(s)j

)
∈ Is ×U, s = 1, . . . , S, j = 1, . . . , ns.

We assume that the data from s-th group behaves according to the model (5.2), that
is,

Q(s)(t) := ExpB(s)(t;p0,...,pK)

(
R(s)(t)

)
s = 1, . . . , S. (5.11)

In contrast to the previous sections, here it is supposed that we are interested in the
TM-valued variables R(s) (thus the change of notation). We further assume that the
“drifts“ in the data given by the Bézier splines B(s), i = 1, . . . , S, are caused by the single
confounding but deterministic variable t.

5.3.2 Normalization

In this section, we discuss how the data can be normalized at some t0 ∈ ∩S
i=1 Ii so

that further analysis is not influenced by the variability caused by t. The procedure
is as follows. First calculating the least squares estimators (5.4) for each group yields
best fitting splines B̂(s) : Ii → M, i = 1, . . . , S. It is possible that the regressed curves
already provide valuable information about the data, as we will see in Chapter 7.
Approximations R̂(s)(ti) ∈ TM of the realizations of R(s)(ti) ∈ TM of (5.11) are then
given by the logarithms

R̂(s)(ti) := Log
B̂(s)(t(s)j )

(
q(s)j

)
∈ T

B̂(s)(t(s)j )
M, i = 1, . . . , S, j = 1, . . . , ni.
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To minimize the influence caused by the variable t, we want to normalize the data
at some chosen point t0. Since, for each group, B̂(s) approximates the trend that t
enforces, we propose to parallel translate the vectors R̂(s)

j along B̂(s) to B̂(s)(t0). This
results in vectors

w(s)
j ∈ TB̂(s)(t0)

M, i = 1, . . . , S, j = 1, . . . , ni. (5.12)

They represent the differences of the data points to the Bézier splines normalized at t0.
Mapping them back to the manifold gives the normalized data points:

q̃(s)j := ExpB̂(s)(t0)

(
w(s)

j

)
, i = 1, . . . , S, j = 1, . . . , ni. (5.13)

Algorithm 8 Data normalization w.r.t. a continuous parameter. Parallel translation of
a vector v from p to q along a Bézier spline B is denoted by transpB(v; p, q). Solving
spline regression by computing (5.4) with Algorithm 5 is denoted by reg.

Input: Realizations (t(s)j , q(s)j ) ∈ Is ×U of (5.11) with s = 1, . . . , S, and j = 1, . . . , ns;
a common parameter t0 ∈ ∩S

i=1 Ii

Output: Normalized data q̃(s)j ∈ M
for s = 1, . . . , S do

B← reg
((

t(s)i , q(s)i

)
i=1,...,K

)

for j = 1, . . . , ns do

w(s)
j ← transpB

(
Log

B
(

t(s)j

)
(

q(s)j

)
; B
(

t(s)j

)
, B (t0)

)

q̃(s)j ← ExpB(t0)

(
w(s)

j

)

end for
end for

Now, we can perform inter-group comparison with the normalized data (5.13). For
example, we can compute the Fréchet means and perform group tests for equality
as in [172, Section 3.3]. If the curvature near the points B̂(s)(t0) is small (that is, all
sectional curvatures are close to 0), then we can also use the linearized data (5.12)
and apply methods from multivariate statistics; the higher the curvature, though, the
stronger will be the introduced distortion. The normalization process and its result for
data from two groups are visualized in Figures 5.4 and 5.5. It is important to note that
the choice of t0 will influence the results, just like in multivariate statistics. (Imagine,
for example, that we measure the height of a group of people. Only considering
children at age ten will give results different from 20-years-old adults.)

Computation-wise, for geodesics as underlying trends, explicit formulas for paral-
lel transport are known for many manifolds appearing in applications (see, for exam-
ple, those discussed in Chapter 1). Otherwise, several numerical schemes can provide
approximations of parallel transport along curves [109, 158, 145]. The normalization
algorithm is given in Algorithm 8. (We again assume that Riemannian exponentials
and logarithms can be computed in the manifold at hand.)
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1RUPDOL]DWLRQ�,

Figure 5.4: Normalization w.r.t. some parameter t for a single data group (qj, tj), j =
1, 2, 3, 4, in a Riemannian manifold M. The curve B is the result of spline regression
w.r.t. t. The points B(tj) are depicted in light grey, while the tangent vectors vj are
the black arrows attached to them. Finally, the parallel translation wj of each vj is a
tangent vector at B(t0) (also black); it yields the normalized data q̃j shown in orange.

1RUPDOL]DWLRQ�,

Figure 5.5: Normalization results for two groups. Both splines B1 and B2 are defined
for the value t = t0, so the two data sets can be normalized at B(1)(t0) and B(2)(t0),
respectively. The groups (orange and red) can now be compared without bias caused
by the influence of t.

95



Chapter 5. Regression with Bézier Splines in Riemannian Manifolds

96



Part III

Transfer to Applications
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Chapter 6

Shape Analysis in Medicine

In this chapter, we show several applications of the newly-developed methods to
shape analysis in medicine; the importance of the underlying geometry for data analy-
sis is well-established in this field [189]. We start with a short overview of the diseases
that motivate research in the applications we investigate. While we do not answer any
of the questions that researchers in these areas ask right now, we demonstrate that our
tools can be helpful when experts in the field apply them to their problems. We hope
the following are good “guiding examples” to show what is possible. As is standard
in these applications, we do not check for the existence of means, etc. beforehand (but
we would if results called for it).

Osteoarthritis

Osteoarthritis (OA) is a degenerative disease of the joints that affects millions of peo-
ple worldwide [15]. It develops when the protective cartilage that cushions the ends
of the meeting bones degenerates. While the joint pathology is diverse, the most
prominent features are the loss of articular cartilage and remodeling of the adjacent
bones; the former also leads to the so-called joint space narrowing as less cartilage
is there to keep the bones apart. Although any joint can be affected, the population
impact is highest for OA of the hip and knee [15]. While OA treatment traditionally
consists of pain management and joint replacements for patients with severe symp-
toms, an improved understanding of the pathogenesis is shifting the focus to disease
prevention [100].

Alzheimer’s

Alzheimer’s disease (AD) is a neurodegenerative disorder that is diagnosed more
and more often worldwide. The most important risk factor for developing AD is
age [170]. People affected by AD often show an increasing lack of episodic memory,
word-finding problems, loss of orientation in familiar neighborhoods, and other be-
havioral changes. The earliest signs of AD are so fine that there is also the category
of “mild cognitive impairment” (MCI) for people with only slight memory impair-
ments. However, most people with MCI also progress to AD [170]. Several studies
showed that AD is characterized by an atrophy pattern of the brain, particularly of
the hippocampi [171, 201, 220]. Their location in the brain is shown in Figure 6.1.
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Figure 6.1: Position of the left and right hippocampus in the brain as seen from the
underside ventral view. The picture was taken from Wikipedia.

Mitral Valve Disease

Diseases of the mitral valve are the second-most common form of valve disease
in adults needing surgery [159]. Mitral valve regurgitation is an important example
thereof. It can have different causes and is characterized by a (backward) blood flow
from the left ventricle into the left atrium during systole. This is possible, for exam-
ple, when the valve’s leaflets do not close fully or prolapse into the left atrium during
systole [80]. Mitral valve stenosis is typically caused by scarring after rheumatic fever
and is more common in developing countries [49]. It is characterized, amongst others,
by a thickening of the leaflets, which results in a narrowing of the valve opening. As
a result, there is reduced blood flow from the left ventricle into the left atrium. Both
mitral valve regurgitation and stenosis are visualized in Figure 6.2. Mitral valve dis-
eases are often characterized by specific movement patterns. The corresponding shape
anomalies can be observed (at least) at some point in the cardiac cycle. Early detection
and assessment of mitral valve regurgitation are necessary for the best short-term and
long-term results of treatment [80].

6.1 Bi-invariant Two-Sample Tests for Shape Analysis of Knee
Configurations

We start by investigating configurations of the human knee joint under OA. The rel-
ative position of the femur and tibia (the constituting bones) can be described by a
rigid-body transformation in the Lie group SE(3) (which we endow with the group
structure from Example 1.2). Using two-sample tests, we infer a significant difference
between knee configurations of people with severe OA and healthy controls, applying
the bi-invariant Hotelling T2 statistic and Bhattacharyya distance; we thus detect the
well-known joint space narrowing that is indicative of OA.
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Figure 6.2: Mitral valve regurgitation and stenosis in the human heart. The image
was taken from [232].

Data Description

The data set, which was also used in [245], is derived from the Osteoarthritis Ini-
tiative1 (OAI). The OAI is a longitudinal study of knee osteoarthritis that provides
(among others) publicly accessible clinical evaluation data and radiological images
from 4,796 men and women between the ages of 45 and 79. Through a special sup-
port plate, it was made sure that the patients’ legs were constrained to the same pos-
ture. From the baseline data set (that is, the images from the initial visits), we chose
58 severely diseased subjects and 58 healthy subjects according to their Kellgren-
Lawrence score [141]—an ordinal scale from 0 to 4 based on radiographic features—
for which segmentations of the respective magnetic resonance images are publicly
available [14].2 (We used samples with scores 0 and 1 for the control group and score
4 for the OA group.) The sets were balanced to maximize the statistical power of our
hypothesis test. For the 116 subjects, surfaces of the distal femora and proximal tibiae
were extracted from the respective 3D weDESS MR images (0.37×0.37 mm matrix, 0.7
mm slice thickness). A supervised post-processing procedure was used to ensure the
quality of the segmentations and the correspondence of the resulting meshes (8,988
vertices for each femur and 8,320 for each tibia). During the process, the relative po-
sitions of the femur and tibia, which are present in the raw data through the global
coordinate system of the scanner, are maintained.
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Figure 6.3: Visualization of the knee bones and the computed orthonormal frames.
On the left, the distal femur (top) and the proximal tibia (bottom) are shown; the
meshes (and their relative position) were reconstructed from MRI data. The space
between both (the joint space) is filled with cartilage, ligaments, and menisci (all not
shown). On the right, we depict the orthonormal frames of both meshes.

Encoding Relative Positions in SE(3)

For each femur-tibia pair, we can capture the position of the tibia relative to the femur
by calculating the rigid body transformation that moves the latter onto the former.
(If we chose the femur as the reference, we would get the inverse transformation.)
More precisely, let (O f , x f ), (Ot, xt) ∈ E(3) be local orthonormal reference frames for
the femur and tibia, respectively. (The vector part yields the origin, while the matrix
columns represent the coordinate axes.) By applying (0,−x f ) ∈ SE(3) to both frames,
we translate the meshes so that the femoral frame is always centered at the origin. The
rotation-translation pair P := (R, v) ∈ SE(3) that maps the reference frame (O f , 0) of
the femur to the reference frame (Ot, xt − x f ) of the tibia encodes the relative position
of the bones; it follows from

(OtOT
f , xt − x f )(O f , 0) = (Ot, xt − x f )

that
P = (R, v) = (OtOT

f , xt − x f ).

To compute these translations, we must pick the initial frames for the femora and
tibiae. We determine them from the principal component analysis of the vertices of
the corresponding triangle meshes: While we pick the center of gravity as the origin,
the axes are chosen as unit vectors pointing along the principal directions; the latter
is done consistently throughout the population for both bone types. Note that left
and right translations of P by elements from SE(3) correspond to other choices of
reference frames for the femora and tibiae, respectively (that is, all that are achieved
by applying the same transformations to each set of frames). Our bi-invariant notions
are thus invariant under such changes of reference.

1https://nda.nih.gov/oai/
2https://doi.org/10.12752/4.ATEZ.1.0
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6.1. Bi-invariant Two-Sample Tests for Shape Analysis of Knee Configurations

Finally, we want to point out that this approach of representing relative positions
by elements of the special Euclidean group is also used in many other applications, for
example, medical image analysis [36], robotics [181], human action recognition [248],
radar detection [22, 47], and state description of molecules [28]. Thus, the permutation
test outlined below can be directly applied to data from these domains.

Bi-invariant Permutation Test

We use a non-parametric permutation setup to test whether there is a difference be-
tween the knee configurations of people with OA and healthy controls. We prefer
this setup over a parametric test because we do not want to make assumptions about
the distributions of both groups but rather learn this from the data. After the 116
femur-tibia pairs have been processed as described in Section 6.1, we obtain a set
(P(H)

1 , . . . , P(H)
58 ) in SE(3) of transformations derived from healthy controls and a set

(P(OA)
1 , . . . , P(OA)

58 ) coming from patients with OA. We consider the null hypothesis H0

of equal distributions, that is, P(H) H0∼ P(OA). As test statistics, both the bi-invariant
Hotelling T2 statistic t2 and bi-invariant Bhattacharyya distance DB are used (and
thus compared).

We initialize the test by computing the baseline

T0 := T
((

P(H)
i

)
,
(

P(OA)
i

))
.

Then, we perform 10,000 random permutations of the joint set

(Z1, . . . , Z116) :=
(

P(H)
1 , . . . , P(H)

58 , P(OA)
1 , . . . , P(OA)

58

)
;

that is, denoting the l-th permutation by σl , we compute the values

Tl := T
(
(Zσl(1), . . . , Zσl(58)), (Zσl(59), . . . , Zσl(116))

)
, l = 1, . . . , 10000.

With 1a≥b being 1 if a ≥ b and 0 else, the p-value for the statistic T is then given by

pT =
1

10000

10000

∑
l=1

1Tl≥T0 ;

it is the proportion of test statistics greater than that computed for the original (unper-
muted) groups. A standard level to reject the null hypothesis is pT < 0.05; in this case,
we call the difference between the distributions significant and reject H0. Performing
the test with each statistic, we obtain

pt2 ≈ 0.00019 and pDB < 10−5.

Hence, the differences are significant with very small p-values for both statistics. We
thus clearly detect the well-known observation of joint space narrowing under OA.
Note that we can deduce a posteriori that the sample size was sufficient to detect
significant differences with an error probability (much) smaller than 0.05.
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Figure 6.4: Group mean shapes of right hippocampi of the cognitive normal (orange,
transparent) and impaired (grey) subjects overlaid.

6.2 Bi-invariant Two-Sample Tests for Shape Analysis of the
Right Hippocampus

In our second experiment, we analyze hippocampal atrophy patterns due to mild cog-
nitive impairment (MCI) by applying (and again comparing) the bi-invariant Hotelling
T2 statistic and Bhattacharyya distance. As is consistently reported in neuroimaging
studies, atrophy of the hippocampal formation is a characteristic early sign of MCI.
Using a local and global two-sample test, we infer significant differences in the dis-
tribution of shapes of right hippocampi between a cognitive normal and the MCI
group, in agreement with the literature. This is the case for both of our dissimilarity
measures. Moreover, the local test suggests that the shrinkage is more pronounced in
some subregions of the hippocampus.

Data Description

For our experiment, we prepared a data set consisting of 26 subjects showing MCI and
26 cognitive normal (CN) controls from the open access Alzheimer’s Disease Neu-
roimaging Initiative3 (ADNI) database. Among others, ADNI provides 1632 magnetic
resonance images of brains collected at four different time points with segmented hip-
pocampi. We established surface correspondence (2280 vertices, 4556 triangles) in a
fully automatic manner by applying the “deblurring and denoising” approach of func-
tional maps [83] to isosurfaces that were extracted from the available segmentations.
The data set was then randomly assembled from all resulting meshes whose segmen-
tations were simply connected and whose surfaces approximated the corresponding
isosurfaces well (≤ 10−5 mm root mean square surface distance to the isosurface).

Hippocampal Atrophy Patterns in CN vs. MCI

To test for a difference in distribution between the CN and MCI groups, we extend
the permutation test setup from Section 6.1 and perform both a local (that is, triangle-
wise) and a global two-sample test. To this end, we use the space from Example 2.2
to model the shapes of the hippocampi. Since it is a Lie group, bi-invariant tools can
be applied in the tests. After encoding the shapes, the group means of the CN and

3http://adni.loni.usc.edu/
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6.2. Bi-invariant Two-Sample Tests for Shape Analysis of the Right Hippocampus

MCI sets are computed with Algorithm 2. The loss of total hippocampal volume can
be observed in the qualitative comparison of both mean shapes shown in Figure 6.4.

Local Test

In the following, when we speak of the j-th differential coordinate, we mean the j-th
element of the differential coordinates vector. For j = 1, . . . , 4556 let G(CN)

j and G(MCI)
j

denote the j-th differential coordinate of the mean hippocampi of the CN and MCI
group, respectively. Since the choice of reference is unimportant when using our
bi-invariant dissimilarity measures, we select the first mesh of the CN group. To
identify subregions that contribute to differences in mean shape between the groups,
we perform triangle-wise, partial tests. For every triangle independently, we consider
the null hypothesis H0 that the distribution of its differential coordinate is the same

for both groups, that is, G(CN)
j

H0∼ G(MCI)
j .

To test this hypothesis, we perform a permutation and compare the bi-invariant
Hotelling T2 statistic and Bhattacharyya distance as test statistics. First, we perform
independent tests for all differential coordinates j = 1, . . . , 4556 using the testing
procedure from Section 6.1. Therefore, denoting the test statistic by T again, we start
by computing

T(j)
0 := T

((
G(CN)

j

)
,
(

G(MCI)
j

))
.

We then perform 10,000 (random) permutations of the full set

(Zj,1, . . . , Zj,52) :=
(

G(CN)
j,1 , . . . , G(CN)

j,26 , G(MCI)
j,1 , . . . , G(MCI)

j,26

)
;

here the second subscript enumerates the subjects of the groups. Then, we compute
the statistics

T(j)
l := T

(
(Zj,σl(1), . . . , Zj,σl(26)), (Zj,σl(27), . . . , Zj,σl(52))

)
, l = 1, . . . , 10000.

The p-value of the j-th triangle for test statistic T is then given by

p(j)
T =

1
10000

10000

∑
l=1

1
T(j)

l ≥T(j)
0

.

Because of the large number of tests, we apply Benjamini-Hochberg false discovery
correction at the level α = 0.05 to identify triangles with significant differences (see
Appendix A.4 for a summary of the procedure); only for these we reject the null
hypotheses. Using the bi-invariant Hotelling T2 statistic and Bhattacharyya distance
as test statistics, the described test is bi-invariant (in this case in GL+(3)). In particular,
because of right invariance, the results are independent of the reference that was
chosen to compute the differential coordinates. (Left-invariance would allow to jointly
transform the differential coordinates of the subjects by elements from GL+(3), which
might, for example, be of interest for a better numerical performance of an algorithm
when manipulating differential coordinates.)

In Figure 6.5, we visualize the triangles with significant differences, showing the
respective p-values for both statistics.
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Figure 6.5: Group tests for differences in the distribution of right hippocampi for
cognitive normal and impaired subjects. Results for the bi-invariant Hotelling T2

statistic are shown at the top and for the Bhattacharyya distance at the bottom. Each
triangle of the CN mean is color-coded according to its (corrected) p-value using the
colormap 0.0 0.05.

In line with literature on MCI [171, 220], the results hint at more differenti-
ated morphometric changes beyond the homogeneous volumetric decline of the hip-
pocampi. The Bhattacharyya distance detects more significant differences, which is
expected because it also detects differences in covariance. Interestingly, there are also
some areas where the Hotelling T2 statistic is more sensitive. Understanding the
differing behavior seems interesting for future work.

Global Test

Complementing the local is a global test that is sensitive to large-scale patterns of the
covariance structures. It is thus sensitive to spatial dependencies across the shape.
The construction of the test follows the approach from [215].

For each triangle, we first map the T(j)
l to an approximate uniform distribution in

[0, 1] by applying the corresponding empirical cumulative distribution function (cdf)
Cj. More precisely, we compute

Cj(T
(j)
l ) :=

1
10000

10000

∑
r=1

1
T(j)

r ≤T(j)
l

, j = 1, . . . , 4556, l = 0, . . . , 10000.

Then, setting C̃j(T
(j)
l ) := 0.9998 Cj(T

(j)
l )− 0.00001 and denoting the cdf of the standard

normal distribution by φ, the data is mapped to U(j)
l := φ−1(C̃j(T

(j)
l )). The latter

follows an approximate standard normal distribution for each triangle.
Using the sample covariance matrix Σ = 1/9999 UUT (where U = [U1, . . . , U10000] =

[U(j)
l ]), a suitable test statistic is now given by the squared Mahalanobis distance; this

yields
µ0 := UT

0 Σ−1U0, µl := UT
l Σ−1Ul , l = 1, . . . , 10000. (6.1)
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Figure 6.6: Reconstructed meshes from regression of longitudinal mitral valve data
covering a full cardiac cycle. The spline consists of two cubic segments.

We then call the difference in global shape significant, when

p =
1

10000

10000

∑
l=1

1µl≥µ0 < 0.05.

Note that to account for the irregularity in surface triangulations, the sample covari-
ance operator and thus Mahalanobis distance in Equation (6.1) could be extended in
terms of an adapted inner product that weights each component by the corresponding
triangle’s area. In this experiment, we adhere to the formulation (6.1), as the meshes
of the studied hippocampi surfaces are uniform.

Applying this test to the values obtained from the local test yielded p-values
smaller than 1/105 for the bi-invariant Hotelling T2 statistic and Bhattacharyya dis-
tance revealing that both are sensitive to the underlying morphological changes.

6.3 Reconstruction of Shape Trajectories of the Mitral Valve

We now apply regression with Bézier splines to longitudinal shape data of a mitral
valve from a patient with mitral valve regurgitation. We choose to model the mitral
valves in the Riemannian space of differential coordinates ∆ from Example 2.3. To
this end—sampling the first half of the cycle (closed to fully open) at equidistant time
steps—five meshes (1,331 vertices / 2,510 faces) were extracted from a 3D+t trans-
esophageal echocardiography (TEE) sequence as described in [237]. Let q1, . . . , q5 ∈ ∆
be the corresponding shapes in the space of differential coordinates. To approximate
the full motion cycle we use the same five shapes in reversed order as data for the
second half of the curve. Because of the periodic behavior, we choose a closed spline
with two cubic segments as the model and assume an equidistant distribution of the
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data points along the spline, that is, we employ
(
(0, q1) , (1/4, q2) , (1/2, q3) , (3/4, q4) , (1, q5) , (5/4, q4) , (3/2, q3) , (7/4, q2)

)

as the full data set.
The regressed cardiac trajectory is shown in Figure 6.6. Our method successfully

estimates the valve’s cyclic motion capturing the prolapsing posterior leaflet. It shows
the potential for improved reconstruction of mitral valve motion in presence of im-
age artifacts like TEE shadowing and signal dropout. This, in turn, facilitates the
quantification of geometric indices of valve function such as orifice area or tenting
height.

6.4 Development of the Shape of the Distal Femur under Pro-
gressing Osteoarthritis

We now use regression with Bézier splines to investigate the development of the
shape of the distal femur under OA. Therefore, we regress the 3D shape against OA
severity as determined by the KL grade [141]. Our data set comprises 100 shapes (20
per grade) of randomly selected subjects from the OAI; triangle meshes of each bone
were created as described in Section 6.1. We again encode the femora’s shapes in the
space of differential coordinates from Example 2.3.

Order of Bézier curve R2 R2
rel

1 0.05 0.57
2 0.07 0.78
3 0.08 0.90

Table 6.1: The computed R2
rel and R2 statistics of the regressed (w.r.t. KL grade)

geodesic, quadratic, and cubic Bézier curve for data of distal femora

For i = 0, . . . , 4, the shapes with grade i are associated with the value ti =

i/4. We use our method to compute the best-fitting geodesic, quadratic, and cubic
Bézier curves. To compare their explanatory power, we calculate for each the cor-
responding manifold-valued R2 statistic that, for r1, . . . , rN ∈ M and total variance
var(r1, . . . , rN) := 1/N minq∈M ∑N

j=1 dist(q, rj)
2, is defined by [90, p. 56]

R2 = 1− unexplained variance
total variance

:= 1− 2/N E(β)

var(r1, . . . , rN)
∈ [0, 1].

The statistic measures how much of the data’s total variance is explained by β.
For j = 1, . . . , 20 and l = 0, . . . , 4, let q(l)j be the j-th femur shape with KL grade l.

Note that, for the described setup, the unexplained variance is bounded from below
by the sum of the per-grade variances, that is, ∑4

l=0 var{q(l)1 , . . . , q(l)20 }. In particular,
this yields an upper bound for the R2 statistic of R2

opt ≈ 0.0962 for our femur data.
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Figure 6.7: Cubic regression of distal femora. Healthy regressed shape (KL = 0)
together with subsequent grades overlaid wherever the distance is higher than 0.5mm,
colored accordingly (0.5 3.0).

Hence, we also provide relative values R2
rel := R2/R2

opt for comparison. The results are
shown in Table 6.1.

The computed cubic Bézier curve is displayed in Figure 6.7. The obtained shape
changes consistently describe OA-related malformations of the femur, namely, the
widening of the condyles and osteophytic growth. Furthermore, we observe only
minute bone remodeling for the first half of the trajectory, while accelerated progres-
sion is visible for the second half. The substantial increase in R2

rel suggests that there
are nontrivial higher-order phenomena involved, which are captured poorly by the
geodesic model. Moreover, as time-warped geodesics are contained in the search
space, we can inspect whether only a speed-up is behind the advantage of higher-
order curves. This is not the case, as the control points of the cubic femoral curve
do lie on a single geodesic. This confirms that there are higher-order effects beyond
reparametrization.

6.5 Hierarchical Modeling and Analysis of Longitudinal Shape
Data of the Distal Femur

In the last medical application, we investigate the shape development of the femur
under OA by using data from different subjects. We now complement this with a
group-wise analysis of femoral shape trajectories that we obtain by including intra-
subject, longitudinal data from the OAI. We analyze this data with the hierarchical
model from Section 5.2. To demonstrate that this model is not limited to the estima-
tion of average, group-level trends, we also derive a statistical descriptor for shape
trajectories in terms of the principal component scores (that is, the coefficients encod-
ing the trajectories within the basis of principal geodesic modes [93]) and use it for
trajectory classification.

We determined three groups of shapes trajectories: HH (healthy, that is, no OA),
HD (healthy to diseased, that is, healthy onset followed by a progression to severe
OA), and DD (diseased, that is, OA at baseline) according to the Kellgren-Lawrence
score of grade 0 for all visits, an increase of at least three grades throughout the study,
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-
8 years0 2 4 6

Figure 6.8: Mean of cubic femoral trends of 22 subjects evaluated at five equidistant
points. The surface distance to the baseline (value of the computed mean at t = 0) is
color-coded wherever the distance is larger than 0.25 mm. © 2022 IEEE

actual\prediction HH DD HD
HH 19 1 2
DD 2 11 9
HD 4 6 12

Figure 6.9: Confusion matrix of the trained support vector machine for the classifica-
tion of the trajectory type.

and grade 3 or 4 for all visits, respectively. Triangle meshes (8,988 vertices / 17,829
faces) of the femora were created as in Section 6.1. For each group, we assembled 22
trajectories (all available data for group DD except one subject that exhibited incon-
sistencies, and the same number for groups HD and HH, randomly selected), each
of which comprises shapes of all acquired MR images, that is, at baseline, the 1-, 2-,
3-, 4-, 6-, and 8-year visits. As shape space, we again use the space of differential
coordinates.

As a first application, we estimate a hierarchical model for the HD group. We
choose cubic Bézier curves to model the individual trends because of the results from
the last section. Time discrete computations are performed based on 2-geodesics—
employing finer discretizations did not lead to further improvements for the dataset
under study. The estimated group-level trend is visualized in Figure 6.8. The de-
termined shape changes consistently expose OA-related malformations of the femur,
most prominently changes along the ridge of the cartilage plate. The latter is a region
known for osteophytic growth. Naturally, the changes are weaker than those of the
trajectory in Figure 6.7 because the patients that are considered here only “reached”
KL grade 4 at the end of the study, whereas severe malformations due to several years
of grade-4-OA are included in the data that was used in the last section. Nevertheless,
like in the previous experiment, only minute bone remodeling can be observed for the
first half of the captured interval, whereas bone malformations develop more rapidly
after four years. Therefore, also this experiment suggests that there are nontrivial
higher-order phenomena involved for which geodesic models are inadequate. For the
classification, we first compute the (discrete) mean trajectory of all 66 subjects and
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use it to calculate an approximation G̃ of the data’s Gram matrix; see Appendix A.3
for details on the latter. For each subject trajectory, we then deduce a 65-dimensional
descriptor in form of the coefficients with respect to the eigenvectors (that is, PGA
modes [93]) of G̃. We then train a simple support vector machine (linear kernel) on
the descriptors in a leave-one-out cross-validation setup.

The percentage of correctly classified trajectories is 64%. The corresponding confu-
sion matrix is shown in Figure 6.9. Performing the same experiment with a Euclidean
model [63] results in 59% correct classifications demonstrating the advantage of our
Riemannian model over shape spaces that come with the assumption that the data
lies in a vector space.

111



Chapter 6. Shape Analysis in Medicine

112



Chapter 7

Shape Analysis in Archaeology

Artifacts, such as the physical remains of tools, weapons, clothing, adornments, and
other human-made objects, represent the largest and most diverse source of evidence
for archaeology. In this chapter, we show through a case study the possibilities mod-
ern shape analysis offers for information extraction from archaeological artifacts.

7.1 Analysis of the Shape of Ancient Sundials

7.1.1 Shape and Archaeology

Indeed, shape has always been fundamental to the analysis of archaeological artifacts.
While this can also be said about the objects of interest of related disciplines, such as
paleontology, geology, and biology, the “human dimension” of artifact creation adds
complex layers of technological, economic, artistic, and other social components to
the physical manifestations of shapes. As a consequence, archaeology traditionally
uses the method of typology to impose an order, called typological sequence [205, Ch.
4], on a series of artifacts. It is thought to isolate the dominant morphological trends
and provide a basis for further (mostly informal) analysis of the unexplained residual
trends. There is a large body of published research on the process of typological or-
dering (often called seriation in archaeology and ordination in ecology [175]), including
computational methods of varying complexity (see, for example, [152, 160, 216]). The
combinatorial complexity of seriation implies that optimal results are computationally
infeasible even for a relatively small collection of artifacts, whereas archaeological ex-
cavations often yield tens of thousands of them. Consequently, no single procedure
is undisputed, and manual grouping and ordering based on subjective mixtures of
features (for example, artistic/stylistic, technological, functional) are still common.

We use the example of ancient sundial surfaces from Italy and Greece to probe
the transition from this discrete and rather subjective procedure to continuous, data-
driven analysis. These are well suited to our approach because their physical shape
must reflect at least one controllable trend: the (intended) geographic installation site,
where the sundial functions properly.
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Figure 7.1: Front (left) and side (right) view of a conical sundial with gnomon (1) and
shadow surface (2). To craft the shadow surface, part of a cone was cut from the stone,
as indicated by the gray cone in the picture.

7.1.2 Problem, Analysis Task

In antiquity, sundials were mainly used to measure time [213]. By applying astronom-
ical knowledge, sundials could be constructed to show the correct time for all seasons.
While the sun is above the horizon, sundials indicate the time by the position of the
shadow of a so-called gnomon on a shadow-receiving surface; see Figure 7.1. We adopt
the term shadow surface for the latter. Shape-wise, at least four types of sundials can be
distinguished [207]: conical, spherical, cylindrical, and planar sundials—determined
solely by the shape of the shadow surface. In Figures 7.1 and 7.2, we display a conical
and a spherical sundial, respectively. Independently from the type, the geographical
latitude had to be considered during construction to ensure proper functioning. In
particular, it is well known that the hour lines (that were inscribed into the shadow sur-
face to read off time) were adapted to the latitude of the location of installation [136,
130]. An obvious question then is whether other parts were also changed: We show
that, at least for the spherical type, it is very likely that the shape of the shadow sur-
faces was also adapted by the craftsman by identifying a latitude-dependent trend in
the data. We demonstrate how useful this trend can be by inferring the latitude of the
installation location of a sundial with an uncertain site from it. Furthermore, if one
wants to compare shapes of shadow surfaces from different geographical locations,
for example, for differences in construction principles, the shapes should be normal-
ized to latitude; otherwise, one might misinterpret differences that are “imposed” on
the craftsman by the latitude of the location. We, therefore, use the normalization
method that we developed in Section 5.3 for an illustrative analysis, comparing the
mean shapes of shadow surfaces from ancient Greek and Roman sundials. With more
(reliable) data, such an analysis could—unbiased from latitudinal effects—reveal dif-
ferences in construction principles between the groups.

To sum up: In this section, we demonstrate the use of statistical tools for shape
data in archaeology by (1) identifying a latitude-driven shape trend for the shadow
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Figure 7.2: Front (left) and side (right) view of a spherical sundial with missing
gnomon. When making the shadow surface, a part of a round ball was cut from
the stone, as indicated by the gray sphere.

surface of ancient Roman sundials, and (2) using this trend to approximate the lat-
itude of the place of installation of a sundial for which the latter is uncertain. Fur-
thermore, we show a use case of our normalization method. The analysis pipeline is
visualized in Figure 7.3.

7.1.3 Data and Data Preprocessing

Today, there are about 500 known ancient Greek or Roman sundials, and 3D models
of many of them can be found in the repository of the Excellence Cluster Topoi [106].
They were reconstructed in a Structure from Motion/Multiview Stereo (SfM/MVS)
procedure detailed in [96]. For this case study, we used spherical sundials from Greece
and the Italian peninsula and considered all available models with well-preserved
shadow surfaces (10 from the Italian peninsula and three from Greece); their IDs and
sites—including longitude and latitude—are given in Appendix A.5; the sites are also
depicted in Figure 7.7.

As for data preparation, we extracted the shadow surfaces with the software
Amira [233]. We manually selected the shadow surfaces and corrected triangles with
extreme angles near the new boundary. Furthermore, the resolution of the surface
meshes was reduced to about 20 k faces using the quadric edge collapse decimation scheme
implemented in the free software MeshLab. An example of a segmented shadow sur-
face can be seen in Figure 7.4; the same is shown after extraction and simplification
in Figure 7.5.

To perform statistics on shapes, we rely on group-wise correspondence, that is,
consistent point-to-point relationships of the meshes. There are many approaches to
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Figure 7.3: Graphic of the analysis pipeline: After digitizing n sundials as triangle
meshes, shadow surfaces are extracted, and a group-wise correspondence is estab-
lished (1). The shapes q1, . . . , qn are then encoded in the shape space ∆ of differential
coordinates (2). The statistical analysis of the shapes of the shadow surfaces can then
be performed in the manifold ∆; we apply geodesic regression w.r.t. latitude, which
yields the fitted geodesic γ (as depicted). Being a function that depends on lati-
tude, we can evaluate γ at various latitudes. The resulting shape is a representative
shadow surface at the given latitude. It can be transformed into a triangular mesh
for visualization (the green shadow surface). In step (3), the novel normalization
method is applied to normalize all shapes to a common latitude t0, resulting in points
q̃1, . . . , q̃n ∈ ∆. The shapes of the shadow surfaces can now be further analyzed with-
out the additional variability introduced by the influence of latitude on the shapes;
for example, we can compute the normalized mean shape q. A visualization of this
mean (the red shadow surface) can again be obtained when we transform q back into
a triangular mesh.

establish such correspondences, for example, non-rigid registration [40, 235] and func-
tional map–based [177] procedures. We obtained one by choosing a shadow surface
as a reference and registering it with a harmonic map to all other surfaces through
the following two steps: First, we established a correspondence of the boundaries us-
ing three landmarks. While the two geodesically farthest points were automatically
approximated as the global minimizer and maximizer of the surface’s Fiedler vector1

(the eigenfunction that corresponds to the second smallest eigenvalue of the surface’s
Laplace-Beltrami operator [192]), the third landmark was manually selected as the
lowest point of the gnomon hole. (The gnomon is missing at all but one of the sundi-
als under study.) Then, we established the correspondence of the interior part using
the discrete harmonic map for disc-like topology as described in [39]. Finally, the effects of
rotation and scale were removed by a group-wise Procrustes alignment of the meshes.
The processed meshes are available online [114].

Note that on many sundials, the upper left and right corners are only poorly
preserved, showing a varying degree of decay. Thus, the correspondences of the
worn edges (which are relatively small compared to the rest of the sundial) are only

1There are examples of graphs for which the Fiedler vector does not emphasize the vertices that are
farthest apart [82], but we confirmed visually that it does so for the sundials.
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Figure 7.4: Manually segmented shadow surface

Figure 7.5: Extracted shadow surface

approximate. In the later analysis, we concentrated on the other areas (which are
conserved very well).

7.1.4 Study

For our case study, we choose the shape space of differential coordinates from Exam-
ple 2.3.

Given the shapes, we perform geodesic regression (that is, spline regression with
geodesics) with the latitude of the site as the explanatory variable for both groups;
the corresponding intervals are determined by the latitudes of the most southern
and northern sites, that is, IR = [40.7030, 43.3155] and IG = [36.0917, 37.3900] for the
Roman and Greek sundials, respectively. It seems reasonable to assume that a change
in latitude causes a geodetic drift in the data: In the range of latitudes we study,
shapes of shadow surfaces can be expected to change at a constant rate in a fixed
direction in shape space to compensate for the latitude-dependent shift in sunlight
angle.2 Equidistant evaluations of the resulting geodesics are shown in Figure 7.6.
Because of the larger number of samples, the results for the Roman group are of
higher interest: They show a clear “bending” of the shadow surface that increases

2To corroborate this, we also tested regression with higher-order Bézier curves; this overfitted the
data, that is, nearly interpolated the given shadow surfaces at their corresponding latitudes, while showing
unreasonable behavior in between.
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Figure 7.6: Results of geodesic regression for shadow surfaces of spherical sundi-
als w.r.t. latitude. The results for Roman and Greek sundials are shown in the top
and bottom rows, respectively. After calculating the trajectories in the space of dif-
ferential coordinates, we sampled each curve at 4 points and computed the corre-
sponding triangular meshes. The Roman geodesic models the trend for latitudes in
IR = [40.7030, 43.3155] while the Greek one is defined on IG = [36.0917, 37.3900].

with latitude; it is highlighted in Figure 7.8.
The “bending” is an interesting effect: It suggests that the form of the whole

shadow surface (and not only that of the hour lines) was adapted to the location
of installation.3 This fact can be used to place sundials of unknown or uncertain in-
stallation sites: After orthogonally projecting [12, Sec. 3.3] the shape of the sundials’
shadow surface onto the regressed geodesic (which here mostly amounts to finding
the most similarly bent shadow surface on the curve), we can “read off” the latitude
at which the sundial probably was installed.

To demonstrate this, we selected a sundial from Italy (Dialface ID 39 in the Topoi
database; see Table A.1), which at the time of writing is in a museum in Vatican City,
but whose installation site is uncertain. (The inset shows a visualization of this sun-
dial.)
Projecting the shape of its shadow surface onto the
Roman geodesic gave an approximate latitude of
t∗ ≈ 42.1029°, which is slightly north of Rome’s
latitude. Thus, our model suggests that the sun-
dial was once located near the solid line shown
in Figure 7.7. To investigate the accuracy of this
prediction, we performed a leave-one-out cross-
validation test for the Roman sundials with known
location: Each sundial was taken out, regression
was computed using all other samples, and the
latitude of the left-out sundial was predicted. The
mean absolute error (MAE) we thereby found was approximately 0.71° latitude (with a
standard deviation of 0.36), which is about 80 kilometers in the north-south direction.

3It would be interesting to know how this was technically realized in production. However, we are
unaware of any ancient source that provides information about this.
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7.1. Analysis of the Shape of Ancient Sundials

Figure 7.7: Map of the relevant area. The red circles mark the sites of the sundials. The
solid line indicates the latitude where the sundial with Dialface ID 39 was probably
installed. The dashed lines bound the region of uncertainty for this prediction as
determined by the computed MAEs from all sundials with known installation sites.

We use the computed MAE as an uncertainty measure for the prediction and depict
the latitudes t∗ ± 0.71° as dashed lines in Figure 7.7; the location of installation was
likely inside the resulting band. To compare our method against a traditional ap-
proach, we additionally applied partial least squares regression [253] on the Procrustes
aligned coordinates of the shadow surface meshes to predict the corresponding lati-
tude. For this, we used the “PLSRegression” module from scikit-learn 1.1.1. Setting
the number of components to 1 yielded the best results. The obtained MAE was ap-
proximately 0.87° latitude (with a standard deviation of 0.73). This was about 0.16°
(about 17.76 km) higher than the MAE of our proposed method. Furthermore, the
standard deviation was substantially higher when using PLS regression. Sundial-wise
errors and MAEs for both approaches are shown in Figure 7.9.

We now use our normalization method from Section 5.3 to compare the mean
shape of shadow surfaces from the Italian peninsula with that of the samples from
Greece. Controlling for latitude correctly accounts for the fact that Greece is signifi-
cantly south of the Italian peninsula. Because the experiment can only be performed
with three Greek samples, it should be seen as an illustrative example. Nevertheless,
we mention possible research questions that could be answered with more data in the
discussion section.

We have already done the first step for the normalization by performing geodesic
regression with respect to latitude for both data sets. For completion, we show over-
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Figure 7.8: Geodesic regression w.r.t. latitude over the interval IR = [40.7030, 43.3155]
for shadow surfaces of Roman sundials. We evaluated the optimal geodesic at four
equidistant points and show the top view of the resulting shadow surfaces, with
colors beige, orange, red, and violet ranging (in this order) from the most northern
to the most southern site. On the left, the shadow surfaces are overlaid to show the
bending. On the right, only the shadow surfaces corresponding to the most northern
and southern latitudes are depicted. We highlight the bending with arrows there.
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Figure 7.9: Sundial-wise and mean absolute errors obtained during latitude predic-
tion. “Differential coordinates” refers to the proposed method; “PLS regression”
stands for the partial least squares regression. MEAs are depicted with standard
deviations.

laid evaluations of the Greek geodesic in Figure 7.10. Note that the shadow surface
hardly bends with changing latitude contrasting our earlier result for Roman sundials.
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Figure 7.10: Geodesic regression w.r.t. latitude for shadow surfaces of sundials from
Greece IG = [36.0917, 37.3900]; the top view is on the left while the front view is on
the right. We evaluated the optimal geodesic at four equidistant points, with colors
beige, orange, red, and violet ranging (in this order) from the most northern to the
most southern site.

Since IR ∩ IG = ∅, we extrapolate4 both the Roman and the Greek geodesic such
that they are defined on the intervals ĨR := [38.5, 43.3155] and ĨG := [36.0917, 39],
respectively. This allows us to normalize both data sets at different latitudes as de-
scribed in Section 5.3 and, in each case, to compute the mean shape of the normalized
shadow surfaces using Algorithm 1; the results are shown in Figure 7.11. Note that
the means “bend” like the geodesics, which is the effect of the normalization.

Figure 7.11: Roman (left) and Greek (right) means of shadow surfaces of spherical
sundials after normalizing the Roman data at 40° (red), 41° (orange) and 42° (beige)
latitude and the Greek data at 37° (red), 38° (orange) and 39° (beige) latitude, respec-
tively.

Widening the window for comparison by further extrapolation is of no avail due
to increased artifact formation in the normalized data. The appearance of artifacts
can be attributed to initial noise (occurring mainly at the corners, as explained in
Section 7.1.3) that is amplified too much. The first signs of such artifacts can be seen
in Figure 7.11, where they begin to form at the corners of the Greek mean at 39°
latitude.

In Figure 7.12, we show both means after normalizing at 38.5° latitude. When
overlaid they look very different, particularly in their curvatures. To quantify this,
we compute the spheres that fit the shadow surfaces best5; the results can be seen in

4In almost all practical scenarios, geodesics can be extrapolated; see [45, Ch. 7] for details.
5More precisely, we computed the center c∗ ∈ R3 and radius r∗ > 0 of the sphere with the smallest
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Figure 7.12: Comparison of the Roman (red) and Greek (beige) mean shapes after
normalizing at 38.5°. They are shown individually (top row) and overlaid (bottom
row).

Figure 7.13. Both are different in size, the Greek sphere’s radius measuring 66% of
the Roman. (Since the size is normalized in our study only relative notions are of
interest.)

Figure 7.13: Spheres fitted to the Roman (left) and Greek (right) mean of the data that
was normalized at 38.5° latitude. The center and radius of the spheres were chosen
such that the average squared distances to the vertices of the triangle meshes were
minimal.

The fact that the “bending” is different influences the comparison of the means.

sum of squared distances to the vertices of the shadow surface. Denoting the usual Euclidean norm by
‖ · ‖, it can be seen that the distance of a point p ∈ R3 to a sphere with center c and radius r is equal
to τ(c, r; p) := |‖p− c‖ − r|. We thus computed (c∗, r∗) := min(c,r)∈R3×R>0 ∑i τ(c, r, vi)

2, where the vi
are the vertices of the mesh of the shadow surface. The “L-BFGS-B” method was used for minimization.
The problem is discussed in depth in [30].
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As shown, at 38.5° latitude, they are differently curved; because of the stronger bend-
ing in the Roman group, the forms would converge, though, if we used this trend
to compare them further north. This raises an interesting question: whether crafts-
men from Greece and the Italian peninsula, when building sundials, made different
adaptions to account for changes in the solar elevation angle. If backed up by more
data, the results of our experiment could suggest not only that the mean shape of a
shadow surface depends on the latitude of the installation site in both regions but
also that this dependence differs in strength between the groups. For example, it could be
that while craftsmen in Greece mainly adapted the hour lines, their Roman counter-
parts additionally adjusted the shape of the shadow surface. Examining this question
further seems very interesting but requires more data, particularly from Greece.

To compare the nonlinear differential coordinates shape space with a Euclidean
alternative (which is difficult, as statistically significant quantitative results cannot be
expected because of the small sample size), we investigate how the Riemannian Ma-
halanobis distance (3.30) between the mean shapes of the Roman and Greek groups
adapts to the normalization. After mapping the Roman samples and the Greek mean
to the tangent space at the Roman mean, we compute the Mahalanobis distance6 of
the Greek mean to the distribution of the Roman samples. (We choose this direction
because of the higher number of Roman samples.) This is done for both the original
data and the one normalized at 38.5°. Afterward, the same computations were per-
formed using the standard Euclidean shape space from [63]. For both shape spaces,
the distance increased when the samples were normalized. This makes sense because
the in-group variability (here within the Roman group) reduces through the normal-
ization (cf. Figs. 5.4 and 5.5). Since the Mahalanobis distance weights the difference
between the means (that is, the logarithm) against the inverse of the observed covari-
ance (matrix) in the Roman group, a decrease of the latter leads to a higher value.
While the distance for the nonlinear space increases by a factor of 1.73, it is multi-
plied by 5.1× 105 for the Euclidean model.7 (Both numbers are rounded.) That is, the
latter loses a high amount of variability while normalizing. We think the differential
coordinates conserve the finer details, whereas the Euclidean model focuses more on
global features. But we believe that, for the sundials, smaller details are of high inter-
est, particularly when additional characteristics like the hour lines are investigated as
part of further analysis.

We also examine to which extent the results depend on the resolution of the
meshes by simplifying them. More precisely, we reduce the number of faces of each
shadow surface (further) to 10k, 2k, and 1k triangles with Meshlab’s “quadric edge
collapse” and compute normalized means for the Roman and Greek groups. As is
visible in Figures 7.14 to 7.16, the mean shapes are effectively unchanged even with
a poor resolution of only 1,000 faces. This shows that our methods are affected very
little by noise from scanning devices and can also be used when only relatively poor

6As the dimension of the differential coordinate space is (much) higher than the number of samples,
the covariance matrix is not invertible. Therefore, as is often done, we substituted the inverse of the
covariance matrix of the Roman samples by its pseudoinverse to compute the distance.

7We also investigated how the geometric distance between the means behaves under the normaliza-
tion. It increases by a factor of approximately 1.86 and 1.64 for the differential coordinate space and
the Euclidean shape space, respectively. Therefore, the extreme increase in Mahalanobis distance for the
latter cannot be explained by diverging means.
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digital representations are at hand.

Figure 7.14: Mean shapes of the normalized (at 41°) sundials from the Italian penin-
sula for different mesh resolutions. Results are shown for resolutions of 20k (upper
left), 10k (upper right), 2k (lower left), and 1k (lower right) faces.

Figure 7.15: Mean shapes of the normalized (at 37°) sundials from Greece for different
mesh resolutions. Results are shown for resolutions of 20k (upper left), 10k (upper
right), 2k (lower left), and 1k (lower right) faces.

7.1.5 Discussion

The fact that the shape of the Roman shadow surfaces “bends” with latitude is a
significant finding of this study. To the best of our knowledge, it has never been ob-
served before. It seems likely that the form of the whole shadow surface was adapted
to the location of installation— a conclusion that is supported by the accuracy of the
derivative method for latitude prediction. Our results thus add a piece to the puzzle
of how ancient Roman craftsmen created working sundials. An interesting question
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Figure 7.16: Surface distance for different mesh resolutions when computing nor-
malized means. The respective meshes of the highest resolution are depicted with
coloring (0.001 mm 5 mm) that encodes the distance to the correspond-
ing mesh with the lowest resolution. Areas, where the distance is smaller than 0.001
mm, are white. As a reference, the distances between the upper left and upper right
corners were about 29 and 21 cm for the Italian and Greek mean, respectively.

for future research is whether similar bending can also be observed for sundials from
locations outside of Italy.

Our results also indicate that the new method to identify the latitude of the in-
stallation site is accurate; furthermore, they suggest that utilizing the non-Euclidean
shape space structure for prediction is superior to the commonly employed PLS re-
gression. The only other method for predicting a sundial’s working latitude we know
is the one from Pistellato, Traviglia, and Bergamasco [193]. It forecasts the working
latitude by utilizing the positions of the shadow surface’s inscribed hour lines. Knowl-
edge of celestial mechanics, which they assume the craftsmen possessed, allows them
to compute the latitude from these positions. While their method has the advantage
that it does not need more than one sundial for prediction, it requires high mesh res-
olutions for accurate computations. In contrast, the above results show that the newly
presented method works well even at coarse resolutions. Moreover, being purely
data-driven, it requires no assumptions on the interplay between celestial mechanics
and sundial shape. On the other hand, since both approaches make use of different,
non-overlapping features of the shadow surface’s makeup, they can complement each
other and even be applied together to utilize more of the available information.

A limiting factor of this study is the small number of samples. Convincing statis-
tical significance can only be achieved with more data. This is a common situation
in archaeology. While more (digitized) ancient sundials are available, they are too
damaged to be used with current methods. New approaches for statistical analysis
of partial forms are needed to alleviate this problem; these could allow more existing
ancient sundials to be used.

More data would also help to decide an interesting question raised by the pro-
posed normalization method: whether craftsmen from Greece and the Italian penin-
sula, when building sundials, made different adaptions to account for changes in the
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solar elevation angle. If backed up, the results of our experiment could indicate not
only that the mean shape of a shadow surface depends on the latitude of the instal-
lation site in both regions, but also that the strength of dependence varies among the
groups.

It could be, for example, that the Greek craftsmen mainly adjusted the hour lines,
while their Roman counterparts also adjusted the shape of the shadow area. It seems
very interesting to investigate this question further; however, it would require more
data, especially from Greece.

Last but not least, we clearly showed that the proposed methods can be used even
when only relatively poor digital representations are at hand.

7.1.6 Conclusion

Recent advances in image-based reconstruction (Structure from Motion and Multi-
view Stereo) have made the acquisition of highly detailed 3D artifact models simple,
fast, and economical. The sundial models explored in the present study represent
a rapidly growing volume of 3D research data. This data should be explored with
mathematical approaches that take full advantage of the rich information they contain
and avoid information losses such as those caused by a priori typological grouping.
We developed such a procedure by combining shape space methods and statistics on
manifolds and demonstrated the potential to extract more information from groups of
artifact shapes without prior assumptions. Conversely, procedures such as those dis-
cussed here can generate new, less biased, and less convoluted baselines for typolog-
ical seriation, in which the ordering of data represents a better-defined (for example,
geographical or temporal) trend. An obvious next step is thus to apply the proposed
methods to other artifact collections and explore their full potential in archaeology.

In this study, the proposed methods revealed a latitudinal dependency on the
shape of shadow surfaces in sundials of the Italian peninsula. This sheds new light on
the construction principles of sundials in ancient times. We could also show how this
dependence can be used to accurately determine the latitude of a sundial’s installation
site.

Shape spaces are a current research topic, including how best to deal with chal-
lenges particularly common in archaeological investigations, such as incompleteness
and weathering of artifacts. The majority of the considered shape spaces exhibit a
Riemannian structure and, hence, can be combined with the presented approach. Be-
cause of this flexibility, we expect the proposed methods will be of great importance
in a wide range of application scenarios.

Finally, we demonstrated in a first practical example how to control for confound-
ing effects with our novel method.
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Chapter 8

Geometric Deep Learning in
Neuroscience

Deep learning approaches have been successfully applied to various tasks, which has
led to an explosive increase in research for more refined architectures and new ap-
plications. To this end, most of the focus has been on data from Euclidean spaces [6,
151], but more and more applications to data from non-Euclidean spaces are success-
fully explored [41] (see also [268] and the references therein). In this chapter, we show
an application of deep learning to cognitive score prediction from SPD-valued human
connectome data. With the help of a sample selection approach in SPD space, we
improve over state-of-the-art methods. We thereby find further evidence that deep
learning approaches benefit when they take the underlying geometry into account.

8.1 IQ Prediction from Brain Connectomes

8.1.1 Introduction

Understanding how the anatomy and dynamics of the brain influence cognitive scores
such as IQ plays a vital role in understanding the working principles of the human
brain. Cognitive scores are indicators of intellectual capacity. They were found to
be strongly connected to social factors: While a high correlation between intelligence
scores measured in childhood and educational success was observed in [61, 71], they
were also linked to health and mortality [23, 103]. Motivated by this fact, many studies
have investigated how far intelligence quotients can be predicted from the structure
of the brain. It was found, for example, that cerebral volume positively correlates with
cognitive ability [164, 204]. On a finer scale, activity and global connectivity of brain
parts, especially of the lateral prefrontal cortex, are linked to IQ [59, 60, 107, 256].

Against this background, recent works have explored the possibility to predict
cognitive ability scores from functional brain connectomes [68, 74, 76, 117, 133, 179].
Conventionally, connectomes are obtained from resting-state MRI and characterize
the brain’s network structure; they are graphs whose nodes represent regions of in-
terest (ROIs) in the brain and whose edges correspond to correlations in activity be-
tween them [230]. To achieve better generalizability across contexts and populations,
Shen et al. proposed a data-driven protocol in [222] for connectome-based predictive
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modeling of brain-behavior relationships, which uses cross-validation to train a linear
regression model. Building upon it, the authors of [74] improved on the results by
evaluating negative and positive correlations of brain regions separately. Addition-
ally, they performed their analysis on both neurotypical subjects and subjects with
Autism Spectrum Disorder (ASD) to investigate how neural correlates of intelligence
scores are altered by atypical neurodevelopmental disorders.

Although these works achieved significant success, they mainly relied on classical
machine learning approaches, which do not incorporate the graph structure of the con-
nectomes; therefore, the local and global topological properties of the connectomes
are not leveraged. In [117], graph neural networks (GNNs) [257] were probed for the
first time for IQ prediction. GNNs are deep neural networks that operate layer-wise
on graphs via (graph) convolutions; their study constitutes a subfield of geometric deep
learning, where learning is customized to non-Euclidean spaces. GNNs have already
led to significant increases in performance over existing methods in many fields. For
example, they have been successfully applied to classification tasks on networks [150,
199], image segmentation [198], feature matching [212], few-shot learning [98, 147],
and various graph mining tasks [214, 267, 269]. A recent review [31] on GNNs exam-
ined a variety of graph-based architecture tailored for brain connectivity classification,
integration, superresolution, and synthesis across time and modalities. However, no
reviewed method was designed for brain graph regression for cognitive score predic-
tion.

Here, we propose the first GNN architecture, namely RegGNN, that is specialized
in regressing brain connectomes to a target cognitive score. Our GNN utilizes graph
convolutional layers to map input connectomes onto their corresponding cognitive
scores, thereby allowing the extraction of the learned weights to identify the brain
connectivities between anatomical regions that fingerprint the target score.

To improve the performance of the GNN, we also propose a novel learning-based
sample selection method. It is independent of RegGNN and can be used with any
architecture or regression learner. The method identifies training samples with the
highest predictive power (those most likely to predict unseen test subjects with the
lowest error); only these are then used for training. Through this, we eliminate the
samples that do not increase—or even decrease—the prediction success of the model
and reduce the computational resources needed for training the GNN.

Within our sample selection method, we make use of the fact that the (weighted)
adjacency matrix of a functional brain connectome, when modeled as a correlation
matrix, is symmetric positive semi-definite; and becomes symmetric positive definite
after a simple regularization step [72, 254, 264]. Using the Log-Euclidean metric, we
obtain a natural notion of distance between two connectomes and tangent matrices
that encode the paths realizing this distance.

We summarize the main contributions of our work as follows:

1. We introduce a novel, learning-based sample selection method for graph neural
networks that helps to increase accuracy when predicting cognitive scores from
connectomes.

2. We propose novel similarity measures between brain connectomes by combining
notions from Riemannian geometry and topology of graphs. These measures
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can be used in other applications whenever we deal with objects that can be
interpreted as elements of Riemannian manifolds.

3. We design a pipeline, consisting of RegGNN with sample selection, which out-
performs state-of-the-art models in predicting full-scale intelligence and verbal
intelligence quotients from functional brain connectomes in an autism spectrum
disorder cohort and achieves a competitive performance in a neurotypical co-
hort.

8.1.2 Methods

In this section, we detail the architecture of RegGNN. Furthermore, we introduce our
proposed sample selection method and show how we incorporate it into the training
process of the GNN.

Preliminaries

Apart from the Log-Euclidean structure from Example 1.7, SPD(d) can (amongst oth-
ers) also be endowed with the affine-invariant metric [167, 187]. Both structures have
been applied successfully to connectomes for classification [72, 261], regression [254],
fingerprint extraction [1], and statistical analysis [264]. We choose the Log-Euclidean
metric because it leads to comparatively efficient algorithms.

Remember that tangent vectors of SPD(d) are symmetric matrices. To avoid later
confusion, we call them “tangent matrices” instead of “tangent vectors” in this section.
We will represent the “difference” between two elements P, Q ∈ SPD(d) by LogP(Q).
This is motivated by the fact that the latter points in the direction of Q, that is, it
is parallel to the geodesic from P to Q at P, and its norm is equal to the distance
between P and Q. To compare the vectors, we must parallel translate them to the
same tangent space. As discussed in Example 1.7, parallel transport with the Log-
Euclidean structure does not depend on the path so that we can bring all vectors
to TISPD(d). We illustrate the SPD cone and parallel translation of vectors to I in
Figure 8.1.

We will also use three basic topological centrality measures for an undirected1

graph G: degree centrality, eigenvector centrality, and closeness centrality; their defi-
nitions are given in Appendix A.6. They all measure, in different ways, how important
a node is to a graph.

RegGNN

In the following, we denote the number of ROIs by d. Since adjacency matrices of
connectomes are d-by-d correlation matrices C, they can have zero (but no negative)
eigenvalues. Therefore, we can easily regularize them to being symmetric positive
definite by adding a small multiple of the identity matrix I, that is,

P := C + εI (8.1)
1Of course, the centrality measures can also be defined for directed graphs, but we do not need this

here.
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Figure 8.1: Illustration of geodesics and parallel transport of tangent matrices on
the SPD cone. The dashed lines are the geodesics between the matrices P1, P2, P3 ∈
SPD(d). The tangent matrices S̃1,2 := LogP1

(P2) and S̃2,3 := LogP2
(P3) are the yellow

and red arrow, respectively; their parallel translations to the tangent space TISPD(d)
at the identity matrix I are S1,2 and S2,3.

for some small ε > 0; see [72] or [254].
Our GNN for cognitive score prediction from connectomes, RegGNN, consists of

two graph convolution layers, with dropout after the first layer and a downstream
fully connected layer. It receives a connectome’s regularized adjacency matrix P and
predicts the corresponding IQ score by applying graph convolutions. We use the
graph convolution layers to reduce the node features from a d-dimensional embed-
ding to one dimension. The obtained embedding then passes through the fully con-
nected (linear) layer that produces the continuous scalar output. A visualization of
the architecture is on the bottom left of Figure 8.2.

In the literature, various implementations of graph convolutions can be found.
They mainly differ in the propagation rule. Let H(i) ∈ Rd,di denote the activation
matrix at the i-th layer for i = 0, 1, 2, where d0 := d and d2 := 1. (The integer d1

can be chosen appropriately; we use a suitable number near d/2.) It is propagated
to the next layer according to the general rule H(i+1) = gi(H(i), P) with functions
gi : Rd,di × SPD(d)→ Rd,di+1 for i = 0, 1. As initialization we choose H(0) := I. We use
the graph convolutions proposed by Kipf and Welling in [150]: Set P̃ := P + I, let D̃
be the diagonal degree matrix of P̃, and define Rn,m 3 A 7→ ReLU(A) := [max(0, Aij)]

element-wise. Then,

H(i+1) = gi(H(i), P) := ReLU(D̃−
1
2 P̃D̃−

1
2 H(i)W(i)), i = 0, 1

where each W(i) ∈ Rdi ,di+1 is the to-be-learned weight matrix of the layer.
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Figure 8.2: Illustration of the proposed sample selection strategy to train our regression graph
neural network RegGNN. A) We split the data into training (green) and testing (violet)
sets. B-i) After the training set is divided into a train-in (yellow) and a holdout (red)
set, we extract tangent matrices for geodesics connecting elements from the train-in
set (yellow) and tangent matrices encoding geodesics from elements of the train-in to
elements of the holdout group (red). B-ii) The information from the tangent matrices
is compressed into vectors through topological feature extraction. B-iii) With linear
regression, we train a mapping f on the train-in-to-train-in feature vectors (yellow) to
learn differences in target score and record for each element j of the train-in group
the k elements from the holdout group for whom the predicted difference in target
score to j was smallest. B-iv) For each sample in the holdout set we count how
often it was among the top k predictors for a sample from the train-in group. C)
After repeating B) in an N-fold cross validation manner, the k samples (blue) with the
highest accumulated top-k frequency are selected. After negative correlations have
been set to zero, the graph neural network is trained (only) on them. Finally, the
testing set is used to evaluate the overall performance.

When training RegGNN—but not the sample selection in the next section—we set
all negative eigenvalues to zero, as positive correlations have been shown to be more
important in brain network analysis [94]. Indeed, in our experiments, the results
improved when negative correlations were ignored.

Learning-based Sample Selection

We now introduce our learning-based sample selection strategy. The underlying idea is
the following. Imagine the (rather extreme) case that in the SPD space, the adjacency
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matrices of the connectomes are clustered in k tight groups (possibly with outliers)
according to their cognitive scores. Then, training a GNN on k representatives (one
from each cluster) should yield good results; it should even perform better than a
GNN trained on the whole data set because it was not “distracted” by outliers during
training. Ideally, as representatives, we would choose the k most central samples,
that is, those with the smallest average difference in cognitive score to the other samples
in each group. But since we want to predict cognitive scores from connectomes,
we do not know the differences in cognitive scores beforehand. On the other hand,
existing studies validated the relationship between brain connectivity patterns and
brain behavior and cognition so that we can use the former as a replacement for the
latter. We elaborate on this a little more. Recent papers [68, 74, 76, 117, 133, 179, 222]
have shown that the cognitive ability of a person can be predicted quite accurately
from the human connectome, indicating that it is encoded in its connectivity to a
measurable degree. Such predictive power was elusive if similar data inputs (here
brain connectomes) could not be mapped to similar outputs (here cognitive scores).
Consequently, we assume that connectomes that are close in SPD space are correlated
in cognition, whereas brain connectomes that are further apart might elicit different
cognitive scores. Such a hypothesis might seem somewhat simple as many other
factors contribute to molding and predicting brain cognition, for example, genetics
and epigenetics [70, 101, 203]. However, such factors remain out of the scope of this
study. Therefore, our idea is to use the differences between the connectomes to learn the
differences between the target scores. This way, we can identify the “representatives” of
clusters with similar cognitive scores. Our experiments below show that this idea—to
represent predicted local aggregations of data by (few) representatives and training
only with them—generalizes well to real data, even when there is no discrete set of
well-defined clusters. We believe that outliers tend to be filtered out, which improves
the results.

Implementing the idea, we represent differences between connectomes by tangent
matrices and assume that the difference in IQ between two subjects depends linearly
on (notions deduced from) the tangent matrix LogP(Q) that encodes the “difference”
between the corresponding connectomes P, Q ∈ SPD(d). This model is flexible, but at
the same time allows for fast computations. Our sample selection method learns this
linear map, which we call f in the following, via regression and uses it to identify
the k samples with the lowest predicted average difference in target score to all other
samples. As motivated above, we assume that they are representative of the whole set
but do not contain (most of) the outliers that hinder successful training of the GNN.
The structure and terminology of our method are inspired by the work [81].

The sample selection method consists of four steps and is visualized in part B of
Figure 8.2. Given a connectome data set, they are repeated in a nested N-fold cross-
validation manner to make our selection of samples more robust. In cross-validation,
we repeatedly split the data set into two groups: a training subset which we call
train-in group, and a validation subset which we call holdout group. The splits are
done such that each sample from the training set is exactly N− 1 times in the train-in
group. We denote the (constant) sizes of the train-in and the holdout sets by ns and
nh, respectively. The steps are the following.

i) Riemannian tangent matrix derivation. For each pair of regularized connectomes
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Ps
i , Ps

j ∈ SPD(d) in the train-in group, we compute the tangent matrix

S̃s,s
i,j := LogPs

i
(Ps

j ) ∈ TPs
i
SPD(d)

that encodes the geodesic between them and parallel translate it to TISPD(d); the
resulting symmetric d-by-d matrix is denoted by Ss,s

i,j . As a result, we obtain a set
of ns (ns − 1)/2 tangent matrices in TISPD(d) that represent the pairwise differences
between the connectomes from the train-in group. (Since Ss,s

i,j = −Ss,s
j,i , we compute

only one matrix for each pair of connectomes.) Analogously, we get a tangent matrix
Ss,h

j,l ∈ TISPD(d) for each pair with one sample Ps
i from the train-in and another sample

Ph
l from the holdout group; this results in another set consisting of ns nh tangent

matrices. The latter are the outgoing tangent matrices from the train-in into the holdout
set.

ii) Topological feature extraction from tangent matrices. The tangent matrices are still
rather high-dimensional, which leads to long computation times. Therefore, we sug-
gest extracting topological features to encode the information in a more compact form.
We select degree, closeness, eigenvector centrality, and combinations of them as our
candidates for feature extraction. Remember that a tangent matrix represents the “dif-
ference” between two connectomes. The above features thus encode information on
linearized changes in node connectivity. To the best of our knowledge, this is the first
time that these notions were used in conjunction. As a result, from all in-group tan-
gent matrices Ss,s

i,j as well as outgoing tangent matrices Ss,h
j,l we obtain feature vectors

vs,s
i,j and vs,h

i,j , respectively.
iii) Learning a linear regression mapping for predictive sample selection. We learn the

linear map f via regression by training to map the vectors vs,s
i,j corresponding to sam-

ples i and j from the train-in group to the absolute difference in target score |IQs
j − IQs

i |
between them.

We then apply the learned linear regression mapping f to the vectors vs,h
j,l to predict

the differences in target score between all samples j = 1, . . . , ns from the train-in and
samples l = 1, . . . , nh from the holdout group.

iv) Frequency map. We record for each holdout sample Ph
l the k subjects from the

train-in group with the smallest predicted difference under f and increment a fre-
quency map (a counter) that is initialized at the start of the sample selection process.
The frequency value of a subject is then the number of times it was one of the top
k predictive samples. These frequencies give an approximated ranking, whereby the
top samples’ features predict the difference in target score to other samples best.

After the cross-validation, we extract the top k samples2 with the highest cumula-
tive frequencies. We expect these samples to have the highest representative power as
they consistently predicted differences in various holdout groups with low error.

Training Process

In the following, we explain how we integrate the sample selection method into the
training process of RegGNN. The whole pipeline is shown in Figure 8.2.

2Note that we could pick a different number here. We leave exploring possible other choices for
future work.
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Given the data set of connectomes, our proposed training pipeline consists of the
following.

A- Training-test split: First, we split the data set into a training and a test set. The
test set is used only for the final evaluation of RegGNN.

B- Learning-based sample selection: We select the top k samples with the highest
representative power from the training set by applying the sample selection method
from Section 8.1.2.

C- RegGNN architecture for regression: Finally, we train RegGNN on the top
k samples using cross-validation to evaluate model generalizability against perturba-
tions of training and testing data distributions. The final testing is done on the unseen
test set.

8.1.3 Data and Methodology

We use the pipeline from Section 8.1.2 to predict the full-scale intelligence quotient
(FIQ) and the verbal intelligence quotient (VIQ) from brain connectomes for both
neurotypical (NT) subjects as well as subjects with autism spectrum disorder (ASD).
In the following, we summarize these experiments.

Dataset

We use samples from the Autism Brain Imaging Data Exchange (ABIDE) Preprocessed
dataset [66] for our experiments. It contains data from 16 imaging sites, preprocessed
by five different teams using four pipelines: the Connectome Computation System
(CCS), the Configurable Pipeline for the Analysis of Connectomes (CPAC), the Data
Processing Assistant for rs-fMRI (DPARSF), and the NeuroImaging Analysis Kit. The
preprocessed data sets are available online3. To account for possible biases due to
differences in sites, we use randomly sampled subsets of the available data for both
cohorts; the same sets were also used in [74]. The NT cohort consists of 226 subjects
(with mean age = (15 ± 3.6)), while the ASD cohort is made up of 202 individuals
(with mean age = (15.4 ± 3.8)). FIQ and VIQ scores in the NT cohort have means
111.573 ± 12.056 and 112.787 ± 12.018, whereas FIQ and VIQ scores in the ASD
cohort have means 106.102 ± 15.045 and 103.005 ± 16.874, respectively. The brain
connectomes were obtained from resting-state functional magnetic resonance imaging
using the parcellation from [246] with 116 ROIs. The functional connectomes are
represented by 116-by-116 matrices, whose entry in row i and column j is the Pearson
correlation between the average rs-fMRI signal measured in ROI i and ROI j.

Software

All experiments are done in Python 3.7.10. We use Scikit-learn 0.24.2 [183] for machine
learning models and PyTorch Geometric 1.6.3 [86] for graph neural network imple-
mentations. We rely on the Morphomatics package [10] for computations in SPD(d)
with the Log-Euclidean metric and extract the graph topological features from the
tangent matrices with the functions provided by NetworkX [112].

3http://preprocessed-connectomes-project.org/abide/
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Method Mean MAE ± std (min, max) Mean RMSE ± std (min, max)
NT (FIQ)

CPM 9.672 12.440
CPM (a) 11.383 ± 4.806 (9.589, 28.675) 13.972 ± 4.986 (12.075, 31.911)
CPM (g) 10.546 ± 1.407 (9.729, 14.989) 13.358 ± 1.831 (12.393, 19.358)

CPM (tm) 10.245 ± 2.086 (9.523, 17.745) 12.959 ± 2.515 (12.096, 22.009)
CPM (dc) 10.577 ± 2.487 (9.561, 19.394) 13.525 ± 2.751 (12.131, 23.210)
CPM (ec) 10.537 ± 2.131 (9.595, 18.159) 13.456 ± 2.393 (12.366, 21.976)
CPM (cc) 10.074 ± 1.307 (9.370, 14.741) 12.931 ± 1.669 (12.065, 18.895)

CPM (cnu) 10.895 ± 4.402 (9.463, 26.749) 13.775 ± 4.633 (12.194, 30.465)
CPM (cns) 11.262 ± 4.585 (9.623, 27.771) 14.156 ± 4.822 (12.406, 31.521)

PNA-S 17.217 21.008
PNA-S (a) 12.267 ± 0.948 (11.002, 14.480) 15.338 ± 1.079 (13.914, 18.110)
PNA-S (g) 12.305 ± 1.246 (10.814, 15.267) 15.474 ± 1.357 (13.897, 18.777)

PNA-S (tm) 11.537 ± 0.727 (10.639, 12.890) 14.466 ± 0.814 (13.322, 15.853)
PNA-S (dc) 12.211 ± 1.119 (10.751, 14.012) 15.389 ± 1.289 (13.619, 17.191)
PNA-S (ec) 12.124 ± 1.307 (10.956, 16.118) 15.270 ± 1.466 (13.865, 19.509)
PNA-S (cc) 12.166 ± 0.898 (10.727, 13.895) 15.413 ± 1.098 (13.615, 17.309)

PNA-S (cnu) 12.608 ± 1.204 (10.935, 15.944) 15.799 ± 1.378 (13.827, 19.684)
PNA-S (cns) 12.509 ± 0.963 (11.152, 14.747) 15.737 ± 1.172 (13.960, 18.528)

PNA-V 20.109 25.113
PNA-V (a) 15.979 ± 3.730 (11.607, 26.483) 19.617 ± 4.111 (14.575, 30.983)
PNA-V (g) 14.570 ± 4.115 (11.014, 26.962) 18.020 ± 4.329 (13.984, 30.811)

PNA-V (tm) 15.450 ± 4.313 (11.259, 26.906) 19.030 ± 4.804 (14.273, 32.059)
PNA-V (dc) 14.300 ± 2.111 (11.475, 17.750) 17.900 ± 2.588 (14.313, 22.516)
PNA-V (ec) 15.385 ± 3.141 (11.504, 21.710) 19.294 ± 3.905 (14.779, 27.041)
PNA-V (cc) 15.288 ± 3.023 (11.709, 20.592) 18.845 ± 3.378 (14.770, 24.803)

PNA-V (cnu) 16.800 ± 5.053 (12.352, 28.022) 20.470 ± 5.736 (15.180, 32.794)
PNA-V (cns) 15.910 ± 5.976 (12.507, 36.704) 19.671 ± 6.875 (15.478, 43.397)

RegGNN 9.768 12.270
RegGNN (a) 10.360 ± 1.090 (9.624, 14.027) 12.997 ± 1.278 (12.158, 17.335)
RegGNN (g) 10.032 ± 0.330 (9.576, 10.790) 12.563 ± 0.310 (12.148, 13.311)

RegGNN (tm) 9.820 ± 0.512 (9.525, 11.613) 12.378 ± 0.528 (12.116, 14.259)
RegGNN (dc) 9.714 ± 0.332 (9.485, 10.634) 12.531 ± 0.458 (12.064, 13.716)
RegGNN (ec) 9.815 ± 0.245 (9.469, 10.334) 12.609 ± 0.334 (12.171, 13.286)
RegGNN (cc) 9.777 ± 0.391 (9.461, 10.757) 12.516 ± 0.425 (12.121, 13.523)

RegGNN (cnu) 9.745 ± 0.451 (9.438, 11.018) 12.482 ± 0.473 (12.085, 13.758)
RegGNN (cns) 9.716 ± 0.292 (9.452, 10.474) 12.466 ± 0.217 (12.207, 12.982)

Table 8.1: Comparison of methods for NT cohort.

Parameter settings

We train our network using Adam optimizer [149] for 100 epochs with a learning rate
of 0.001 and weight decay at 0.0005 based on our empirical observations. The dropout
rate after the first graph convolutional layer is set to 0.1. Furthermore, we set d1 := 64
in RegGNN. We regularize the adjacency matrices with ε = 10−10 in (8.1). Finally, to
explore the parameter space for the number of selected training samples, we vary k
between 2 and 15.
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Method Mean MAE ± std (min, max) Mean RMSE ± std (min, max)
NT (VIQ)

CPM 9.517 12.049
CPM (a) 11.035 ± 4.970 (9.481, 28.895) 13.728 ± 5.243 (12.031, 32.518)
CPM (g) 10.363 ± 1.682 (9.549, 16.146) 13.253 ± 2.126 (12.236, 20.633)

CPM (tm) 10.194 ± 2.316 (9.503, 18.543) 12.922 ± 2.928 (12.035, 23.477)
CPM (dc) 10.065 ± 1.760 (9.391, 16.386) 12.767 ± 2.386 (11.877, 21.332)
CPM (ec) 9.942 ± 1.768 (9.323, 16.275) 12.614 ± 2.209 (11.828, 20.532)
CPM (cc) 10.233 ± 1.264 (9.514, 14.667) 12.911 ± 1.595 (12.035, 18.505)

CPM (cnu) 10.544 ± 3.585 (9.480, 23.469) 13.256 ± 4.058 (12.022, 27.885)
CPM (cns) 10.583 ± 3.560 (9.526, 23.416) 13.326 ± 3.891 (12.108, 27.343)

PNA-S 12.838 16.130
PNA-S (a) 11.846 ± 0.942 (10.795, 13.764) 15.057 ± 1.099 (13.824, 17.279)
PNA-S (g) 12.439 ± 1.183 (10.913, 14.774) 15.648 ± 1.322 (13.895, 18.469)

PNA-S (tm) 12.489 ± 3.099 (10.759, 23.367) 15.884 ± 4.323 (13.983, 31.268)
PNA-S (dc) 11.694 ± 0.814 (10.302, 12.901) 14.707 ± 0.904 (13.126, 16.115)
PNA-S (ec) 12.091 ± 1.006 (10.543, 14.032) 15.122 ± 1.061 (13.436, 17.200)
PNA-S (cc) 13.074 ± 1.693 (11.258, 17.486) 16.326 ± 1.795 (14.474, 20.701)

PNA-S (cnu) 12.682 ± 1.308 (10.857, 15.196) 15.950 ± 1.536 (13.795, 18.775)
PNA-S (cns) 12.014 ± 0.859 (10.545, 14.031) 15.141 ± 0.944 (13.503, 17.302)

PNA-V 14.695 18.903
PNA-V (a) 14.107 ± 2.081 (11.923, 19.482) 17.696 ± 2.693 (14.832, 25.550)
PNA-V (g) 14.983 ± 5.211 (11.639, 32.479) 18.681 ± 6.224 (14.715, 39.771)

PNA-V (tm) 15.489 ± 4.211 (11.717, 27.980) 19.157 ± 4.775 (14.624, 33.183)
PNA-V (dc) 14.332 ± 2.931 (11.188, 20.545) 18.170 ± 3.917 (14.284, 26.511)
PNA-V (ec) 14.924 ± 3.424 (11.360, 21.703) 18.539 ± 4.185 (14.392, 27.289)
PNA-V (cc) 16.049 ± 4.185 (11.237, 24.616) 20.035 ± 4.966 (14.408, 29.373)

PNA-V (cnu) 14.805 ± 2.587 (11.890, 21.107) 18.344 ± 2.883 (15.171, 25.473)
PNA-V (cns) 14.915 ± 2.845 (11.898, 22.045) 18.674 ± 3.612 (14.895, 28.544)

RegGNN 10.195 13.044
RegGNN (a) 9.587 ± 0.206 (9.477, 10.311) 12.223 ± 0.299 (12.054, 13.261)
RegGNN (g) 9.779 ± 0.126 (9.551, 9.964) 12.530 ± 0.199 (12.190, 12.803)

RegGNN (tm) 9.514 ± 0.036 (9.471, 9.594) 12.041 ± 0.035 (12.004, 12.140)
RegGNN (dc) 9.639 ± 0.161 (9.468, 10.000) 12.213 ± 0.235 (12.008, 12.707)
RegGNN (ec) 9.599 ± 0.243 (9.453, 10.189) 12.199 ± 0.274 (12.020, 12.846)
RegGNN (cc) 9.711 ± 0.193 (9.499, 10.161) 12.313 ± 0.284 (12.023, 13.062)

RegGNN (cnu) 9.521 ± 0.042 (9.473, 9.651) 12.134 ± 0.050 (12.050, 12.266)
RegGNN (cns) 9.581 ± 0.153 (9.497, 10.109) 12.236 ± 0.199 (12.102, 12.907)

Table 8.1: Comparison of methods for NT cohort (continued). The best-performing
method for each architecture is bold while the second-best is underlined. The mean
± standard deviation as well as minima and maxima over k = 2, . . . , 15 (in brackets)
are given. The overall best-performing method according to mean error and the best
sample selection performance are indicated in blue. Abbreviations are: (a) absolute
Euclidean distance, (g) geometric Log-Euclidean distance, (tm) full tangent matrix,
(dc) degree centrality, (ec) eigenvector centrality, (cc) closeness centrality, (cnu) con-
catenation unscaled, (cns) concatenation scaled.

Evaluation and comparison methods

To test the generalizability and robustness of our method, we apply 3-fold cross-
validation on the NT and ASD cohorts separately for both FIQ and VIQ prediction.
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Method Mean MAE ± std (min, max) Mean RMSE ± std (min, max)
ASD (FIQ)

CPM 12.533 15.965
CPM (a) 13.673 ± 3.748 (12.082, 26.912) 16.783 ± 4.048 (15.043, 31.074)
CPM (g) 13.267 ± 1.367 (12.166, 17.792) 16.728 ± 1.672 (15.433, 22.297)

CPM (tm) 12.464 ± 1.090 (12.093, 16.386) 15.522 ± 1.336 (15.084, 20.333)
CPM (dc) 12.644 ± 1.498 (12.082, 18.027) 15.685 ± 1.723 (15.116, 21.887)
CPM (ec) 12.825 ± 1.400 (12.074, 17.527) 15.922 ± 1.654 (15.017, 21.252)
CPM (cc) 13.310 ± 1.331 (12.430, 17.821) 16.703 ± 1.654 (15.618, 22.335)

CPM (cnu) 12.934 ± 2.460 (12.094, 21.790) 16.039 ± 2.817 (15.086, 26.182)
CPM (cns) 12.742 ± 1.527 (12.166, 18.129) 15.796 ± 1.838 (15.077, 22.298)

PNA-S 17.162 22.023
PNA-S (a) 15.260 ± 0.865 (13.947, 17.049) 18.768 ± 0.940 (17.527, 20.665)
PNA-S (g) 15.025 ± 1.321 (13.207, 17.762) 18.844 ± 1.641 (16.642, 22.009)

PNA-S (tm) 14.781 ± 1.182 (13.168, 18.488) 18.630 ± 1.496 (16.522, 23.426)
PNA-S (dc) 14.248 ± 0.533 (13.595, 15.651) 17.715 ± 0.723 (16.654, 19.644)
PNA-S (ec) 14.758 ± 1.277 (13.207, 18.534) 18.263 ± 1.608 (16.440, 23.134)
PNA-S (cc) 14.558 ± 0.666 (13.824, 16.586) 18.126 ± 0.894 (17.296, 20.806)

PNA-S (cnu) 14.038 ± 0.434 (13.353, 14.915) 17.438 ± 0.580 (16.469, 18.642)
PNA-S (cns) 14.023 ± 0.401 (13.465, 14.782) 17.620 ± 0.550 (16.853, 18.605)

PNA-V 15.671 20.085
PNA-V (a) 17.386 ± 2.428 (14.453, 23.263) 21.234 ± 2.922 (18.006, 28.505)
PNA-V (g) 17.611 ± 2.228 (14.770, 23.572) 22.035 ± 3.023 (18.422, 30.646)

PNA-V (tm) 18.458 ± 5.559 (13.770, 32.776) 23.112 ± 6.498 (17.326, 38.914)
PNA-V (dc) 16.358 ± 2.793 (14.045, 24.543) 20.325 ± 3.344 (17.355, 29.689)
PNA-V (ec) 17.085 ± 4.124 (13.778, 28.115) 21.095 ± 4.885 (17.101, 33.584)
PNA-V (cc) 16.172 ± 1.181 (14.541, 18.242) 19.942 ± 1.346 (17.970, 22.102)

PNA-V (cnu) 19.552 ± 6.530 (13.840, 33.875) 24.470 ± 8.514 (17.399, 44.199)
PNA-V (cns) 15.601 ± 2.041 (13.820, 20.748) 19.406 ± 2.359 (17.484, 25.427)

RegGNN 12.564 15.624
RegGNN (a) 12.588 ± 0.541 (12.170, 13.825) 15.628 ± 0.598 (15.102, 17.006)
RegGNN (g) 12.977 ± 1.073 (12.137, 16.292) 16.194 ± 1.358 (15.146, 20.300)

RegGNN (tm) 12.148 ± 0.072 (12.078, 12.379) 15.130 ± 0.067 (15.074, 15.355)
RegGNN (dc) 12.247 ± 0.167 (12.073, 12.667) 15.214 ± 0.178 (15.058, 15.693)
RegGNN (ec) 12.361 ± 0.246 (12.106, 12.905) 15.320 ± 0.265 (15.040, 15.895)
RegGNN (cc) 12.720 ± 0.466 (12.134, 14.008) 15.756 ± 0.560 (15.074, 17.321)

RegGNN (cnu) 12.301 ± 0.226 (12.064, 12.804) 15.331 ± 0.250 (15.120, 15.881)
RegGNN (cns) 12.300 ± 0.159 (12.132, 12.763) 15.306 ± 0.201 (15.114, 15.894)

Table 8.2: Comparison of methods for ASD cohort.

We report the mean absolute error (MAE) and the root mean squared error (RMSE)
for all methods. We additionally give the mean, standard deviation, minima, and
maxima over all values of k for the sample selection methods.

As benchmarks, we chose state-of-the-art deep learning and machine learning
methods. The first baseline is connectome-based predictive modeling (CPM) by Shen et
al. [222], which was specifically designed for behavioral score prediction on brain
connectomes; the second being principal neighborhood aggregation (PNA) by Corso et
al. [65], which outperformed common GNNs on both artificial and real-world bench-
mark regression tasks (but has not been applied to brain connectomes yet). PNA
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Method Mean MAE ± std (min, max) Mean RMSE ± std (min, max)
ASD (VIQ)

CPM 14.171 18.834
CPM (a) 15.006 ± 5.390 (12.920, 34.315) 19.034 ± 5.458 (16.887, 38.586)
CPM (g) 14.336 ± 3.490 (12.669, 26.704) 18.646 ± 3.660 (16.845, 31.560)

CPM (tm) 15.496 ± 2.494 (13.694, 21.575) 20.191 ± 3.140 (17.994, 28.150)
CPM (dc) 14.449 ± 1.882 (13.289, 19.795) 18.767 ± 2.166 (17.421, 24.648)
CPM (ec) 13.697 ± 1.389 (12.824, 18.258) 17.985 ± 1.737 (16.838, 23.693)
CPM (cc) 14.954 ± 3.088 (13.432, 25.694) 19.613 ± 3.506 (17.508, 31.570)

CPM (cnu) 14.698 ± 1.565 (13.046, 19.980) 18.917 ± 1.715 (17.412, 24.674)
CPM (cns) 15.417 ± 2.761 (13.593, 22.869) 20.041 ± 4.128 (17.648, 32.850)

PNA-S 19.955 25.848
PNA-S (a) 15.993 ± 1.096 (14.125, 18.861) 20.500 ± 1.284 (18.349, 23.726)
PNA-S (g) 15.540 ± 1.176 (14.139, 18.017) 20.037 ± 1.548 (18.256, 23.559)

PNA-S (tm) 16.766 ± 1.330 (15.020, 20.365) 21.548 ± 1.583 (19.513, 25.735)
PNA-S (dc) 16.820 ± 2.161 (14.332, 21.360) 21.386 ± 2.303 (18.685, 25.724)
PNA-S (ec) 16.445 ± 1.598 (14.518, 21.308) 21.150 ± 1.900 (18.760, 26.560)
PNA-S (cc) 16.113 ± 1.458 (14.600, 19.985) 21.012 ± 1.715 (19.057, 25.231)

PNA-S (cnu) 16.359 ± 1.450 (14.661, 20.737) 20.880 ± 1.714 (18.905, 26.173)
PNA-S (cns) 15.887 ± 0.773 (14.621, 17.091) 20.282 ± 0.843 (18.785, 21.847)

PNA-V 22.518 28.804
PNA-V (a) 18.145 ± 3.017 (14.837, 26.420) 22.937 ± 3.373 (19.233, 31.651)
PNA-V (g) 16.906 ± 1.566 (14.975, 21.123) 21.791 ± 2.210 (19.658, 28.209)

PNA-V (tm) 19.040 ± 3.597 (15.631, 30.284) 24.162 ± 4.053 (19.972, 36.701)
PNA-V (dc) 19.734 ± 4.936 (15.055, 33.387) 25.088 ± 6.380 (19.898, 43.769)
PNA-V (ec) 17.837 ± 2.000 (14.973, 21.401) 22.721 ± 2.341 (19.373, 27.477)
PNA-V (cc) 18.663 ± 4.268 (14.969, 32.436) 24.016 ± 5.063 (19.679, 40.173)

PNA-V (cnu) 17.314 ± 2.329 (14.660, 22.610) 22.128 ± 2.772 (19.026, 28.786)
PNA-V (cns) 17.714 ± 2.833 (14.697, 24.781) 22.630 ± 3.748 (18.958, 32.707)

RegGNN 13.090 17.250
RegGNN (a) 13.356 ± 0.443 (12.834, 14.402) 17.272 ± 0.480 (16.782, 18.502)
RegGNN (g) 13.316 ± 0.545 (12.687, 14.700) 17.474 ± 0.663 (16.877, 19.186)

RegGNN (tm) 14.110 ± 1.237 (13.194, 17.014) 18.288 ± 1.656 (17.130, 22.128)
RegGNN (dc) 14.516 ± 2.043 (13.369, 19.931) 18.381 ± 2.261 (17.140, 24.445)
RegGNN (ec) 13.419 ± 0.705 (12.766, 15.061) 17.526 ± 0.945 (16.815, 19.958)
RegGNN (cc) 14.021 ± 1.001 (13.149, 16.812) 18.731 ± 1.242 (17.563, 21.916)

RegGNN (cnu) 14.001 ± 0.605 (12.762, 14.885) 18.084 ± 0.569 (17.022, 18.924)
RegGNN (cns) 14.020 ± 0.440 (12.950, 14.650) 18.007 ± 0.434 (17.008, 18.571)

Table 8.2: Comparison of methods for ASD cohort (continued). The best-performing
method for each architecture is bold; the second-best is underlined. The mean ± stan-
dard deviation and minima and maxima over k = 2, . . . , 15 (in brackets) are given. The
overall best-performing method according to mean error and the best sample selection
performance are indicated in blue. Abbreviations are: (a) absolute Euclidean distance,
(g) geometric Log-Euclidean distance, (tm) full tangent matrix, (dc) degree centrality,
(ec) eigenvector centrality, (cc) closeness centrality, (cnu) concatenation unscaled, (cns)
concatenation scaled.

comes with principal neighborhood aggregation layers that are defined similarly to
graph convolution operations. They are designed to increase the amount of infor-
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mation used from local neighborhoods. In our experiments, we inserted PNA layers
in our RegGNN architecture. We implemented both a simpler setup with sum ag-
gregation and identity scaling only (denoted by PNA-S), as well as various aggrega-
tion (sum, mean, var, and max) and scaling (identity, amplification, and attenuation)
methods (denoted by PNA-V) as detailed in [65]. The code of both CPM4 and PNA5

is available online.
To assess the effect of the sample selection, we also train each architecture on all

samples as a baseline.

Evaluation of the sample selection

For each architecture, we compare several methods that can be used as difference
measures between connectomes in the sample selection to learn the linear mapping f
(viz., Section 8.1.2 part (ii)).

The first class of methods is the proposed one: tangent matrices of SPD(d). Thereby,
we compare several methods to compress the information that is contained in the tan-
gent matrices. As one option, we train f on the vectorized upper triangular part
(including the diagonal) of the tangent matrix; this method is denoted by (tm). Since
the matrices are symmetric, ignoring the lower part speeds up computations without
reducing the amount of information. Further, we use degree centrality, eigenvector
centrality, and closeness centrality (see App. A.6), and apply them to the tangent ma-
trices; the resulting methods are denoted by (dc), (ec), and (cc), respectively. (Note that
the connectivity of each connectome is not altered.) The mapping f is then trained on
the resulting centrality vectors. Additionally, we test whether concatenating the above
centrality measures into a single vector is even more informative. To this end, we use
both an unscaled and a scaled version, denoted by (cnu) and (cns), respectively. The
unscaled version is generated by simple concatenation of the three feature vectors.
However, as the three centrality measures have different ranges, we additionally test
to scale each feature vector first. For this, we use min-max scaling. Remember that
min-max scaling of a vector v is defined element-wise by

ṽi :=
vi −max(v)

max(v)−min(v)
.

Each centrality vector is scaled before concatenation, which then gives a vector with
elements in [0, 1] as data for the regression.

We complement these methods with two baselines. To check whether the addi-
tional directional information that the tangent matrices contain helps, we also test
whether it suffices to train f on the Riemannian geometric distances dist(Ps

i , Ps
j ) be-

tween the connectomes from the train-in group alone; this method is denoted by (g).
To assess whether our results are improved by using the manifold structure of the
SPD space at all, we train f on the Euclidean distance between the upper triangular
parts P̂s

i , P̂s
j of each pair of connectomes Ps

i , Ps
j , that is, on the scalars ‖P̂s

i − P̂s
j ‖F (F

standing for the Frobenius norm); we denote this method by (a).
We report the p-value between the best-performing sample selection method MAE

and the baseline MAE according to a standard t-test for all architectures.
4https://github.com/esfinn/cpm_tutorial
5https://github.com/lukecavabarrett/pna/
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8.1.4 Results and Discussion

Figure 8.3: The top three most relevant brain regions for each task according to the
learned weights extracted from the last layer of the trained RegGNN. The colors in-
dicate the task. NT: neurotypical subjects. ASD: autism spectrum disorder subjects.
FIQ: fluid intelligence quotient. VIQ: verbal intelligence quotient.

The results for the NT and ASD cohorts are shown in Tables 8.1 and 8.2, respec-
tively. While the state-of-the-art machine learning model CPM surpasses naive appli-
cations of GNNs in the form of PNA, RegGNN, paired with sample selection, outper-
forms CPM in all tasks according to both MAE and RMSE except for the NT (FIQ)
task. Improvements through our method are especially visible in the ASD cohort.
Interestingly, we see that the results of all approaches are worse in the ASD cohort
compared to the NT cohort. The same was also observed in [74]. We hypothesize
that the difficulty of predicting IQ scores in the ASD cohort might be caused by the
inter-subject heterogeneity characteristic of ASD [240]. Another factor may be that
ASD samples from ABIDE are biased towards high-functioning individuals [66].

We observe further that sample selection improves the results for RegGNN in all
tasks except ASD-VIQ, and for CPM in the ASD cohort. For PNA-based architectures,
there are drastic improvements in NT-FIQ and ASD-VIQ and incremental improve-
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ments in the other tasks. An exception to this is the PNA-V setup for ASD-FIQ,
where most models with sample selection perform worse than the one trained on all
samples. This might be partly explained by the more complicated structure of PNA
with various aggregation models, which might demand more samples for successful
training.

For all models, the minimum MAE over k is lower than the MAE version trained
on the whole data set, even when the mean MAE across k is higher in all tasks. This
indicates that improvements are highly likely with fine-tuning of parameter k. Our
experiments did not reveal a clear trend for the value of k for which the minimum was
attained. Nevertheless, our observations show that the proposed RegGNN network is
more stable to changes in the parameter k. Calculating, for each architecture, the aver-
age of the standard deviations (std) of the mean absolute error6 (see the results table)
over all feature extraction methods, we first note that the averages for RegGNN are
0.455, 0.145, 0.877, 0.369 for NT-FIQ, NT-VIQ, ASD-FIQ, and ASD-VIQ, respectively.
While RegGNN, therefore, shows little sensitivity to k, CPM is highly sensitive to the
changes of this parameter with averages of 2.901, 2.613, 1.803, and 2.754, respectively.
This is approximately a 2- to 10-fold increase in variability.

Improvements to the performance of CPM are not statistically significant (p = 0.87
for ASD-FIQ, p = 0.15 for ASD-VIQ). Similarly, we observe that improvements in the
performance of RegGNN are only statistically significant in the NT-VIQ task (p < 0.05
for NT-VIQ, p = 0.98 for NT-FIQ, p = 0.64 for ASD-FIQ). Increases in performance
for PNA models are more consistent, as PNA-S improves significantly in three out of
four tasks (p < 0.01 for NT-FIQ, p = 0.11 for NT-VIQ, p < 0.05 for ASD-FIQ, p < 0.01
for ASD-VIQ), and PNA-V improved significantly in two out of four tasks (p < 0.05
for NT-FIQ, p = 0.21 for NT-VIQ, p = 0.11 for ASD-FIQ, p < 0.01 for ASD-VIQ).

Looking at the sample selection pipelines, the best-performing method always
utilizes the Riemannian geometric structure of the SPD space for MAE, apart from
PNA-V results for the NT-VIQ task. In most cases, the approaches that rely on tan-
gent matrices perform best, with the vectorized version of the whole tangent matrix
being the best method for NT-VIQ and ASD-FIQ. We also see that the three centrality
measures and concatenated versions perform well consistently.

Our results do not reveal any finer pattern among the sample selection measures.
Nevertheless, we can conclude the following: Using the Riemannian nature of connec-
tomes for sample selection outperforms methods that do not leverage these geometric properties
on average.

Because our results do not show a clear winner among the variants of the sam-
ple selection method concerning prediction error, it is informative to look at further
aspects. While the tangent matrix method performs very well, it is also the most
time-consuming since no dimension reduction is exerted. On the contrary, computing
centrality measures reduces the size of the matrices speeding up the process signifi-
cantly. In our experiment, we observed that training linear regression models using
tangent matrices took up to 16 times more time than models relying on centrality
measures. A possible drawback of the centrality measures is that they have not been
studied on tangent matrices; their behavior, in this case, is thus not well-understood.

6The standard deviations include variations over different k.
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The fact that, in our application, they compress the information effectively might hint
at a broader use. It is thus an interesting venue for future work.

An advantage of sample selection that crystallized is the decrease in computation
time. While the exact time that is required for sample selection is heavily dependent
on the hardware and varies according to the model architecture, number of epochs
in training, number of training samples, and the number k of samples to select, our
observations during the experiments show that sample selection reduces the training
time by 20% on average. Therefore, usage of our sample selection pipeline can enable
the use of even deeper neural network architectures.

Finally, it should be noted that we have evaluated our method on a relatively
young population only; however, RegGNN demonstrates a high degree of generaliz-
ability through cross-validation and because it yields good results for both the NC
and ASD datasets. To proliferate replication studies on other cohorts, we publicly
share the source code of RegGNN.7

Explainability and biomarker discovery

To identify the brain regions that influence the prediction most, we extract for each
of the four tasks the learned weights of the final fully connected of RegGNN with the
best-performing sample selection method. The learned weights of the last fully connected
layer quantify the importance of its nodes in the target prediction task, thanks to the
end-to-end network training, the backpropagation process, and our network design
(which gives as input of the last layer an embedding of the original graph). Hence,
a node with a higher weight in the fully connected layer is more influential in the
prediction of the output score.

In Figure 8.3, we show the ROIs with the three highest weights averaged over
k = 2, . . . , 15; underlying is the AAL parcellation atlas [246].8 For the FIQ prediction
task in the NT cohort, we see that the left superior dorsal frontal gyrus (SFGdor.L), the
right superior frontal medial gyrus (SFGmed.R), and the right cerebellum 6 (CRBL6.R)
have the highest weights. For the VIQ prediction task in the same cohort, the left hip-
pocampus (HIP.L), the left heschl gyrus (HES.L), and the left cuneus (CUN.L) possess
the highest weights. In the ASD cohort, the left insula (INS.L), the left calcarine cortex
(CAL.L), and the right pallidum (PAL.R) have the highest weights for FIQ predic-
tion, while the highest weights for VIQ prediction are obtained by the left superior
frontal medial gyrus (SFGmed.L), the left middle occipital gyrus (MOG.L), and the
left cuneus (CUN.L).

According to our results, the important ROIs for IQ prediction lie in the brain’s left
hemisphere. Our findings are in line with other studies, which found that the insula
shows higher activity in various cognitive tasks [67] and that differences in surface
area in the left cuneus correlate strongly with full IQ, especially in perceptual tasks
in young adults with very low birth weight [227]. Furthermore, we observe that the
left cuneus was influential in predicting VIQ in both cohorts. Finally, our experiments
indicate that the middle frontal gyrus is a significant region in IQ prediction, agreeing
with the results from [74].

7https://github.com/basiralab/RegGNN
8The brain networks were visualized with the BrainNet Viewer [258].
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A highly interesting venue for future work is to investigate why the sample se-
lection method improves the prediction. It seems likely that there are aggregations
within the data that can be represented by central samples. This is a challenging
question that most likely requires the development of new analytical tools. Neverthe-
less, we think that it will be worth the effort as common structures and connections
between these central samples could give us a lot more insights into the interplay
between the connectivity structure of the brain and cognitive ability.

8.1.5 Conclusion

In this chapter, we applied RegGNN, a new graph neural network, to connectome
data of neurotypical subjects and subjects with autism spectrum disorder to predict
full-scale and verbal intelligence quotients. We trained it using a novel sample selec-
tion method, which tries to identify samples within the training set that are expected
to better predict the cognitive scores of new subjects. This enabled us to train the
network with only 15 samples or less, while the testing performance was on par or
even better than state-of-the-art methods for cognitive score prediction from connec-
tomes. Both the sample selection and RegGNN are easy to implement in open-access
software and can be used in clinical practice. An open avenue for future research
is the creation and adaption of methods that make the pipeline more explainable.
This could help to answer why the prediction works so well with not more than 15
samples.
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Conclusion

Throughout this thesis, we investigated new methods for data analysis that can take
the geometric structure of the underlying space into account. We focused on manifold-
valued data and differentiated between the Riemannian perspective for general man-
ifolds and the purely affine viewpoint with CCS connection in Lie groups. Taking the
former, we derived a flexible higher-order regression scheme that can capture a much
broader class of phenomena than the geodesics-only model. In contrast to other ap-
proaches, it allows for explicit computations in many relevant spaces and thus often
helps to avoid expensive iterative algorithms. Building upon it, we derived a hier-
archical model for the analysis of longitudinal data and a normalization technique
that can be used to control for confounding variables. For bi-invariant statistics in
Lie groups, we focused on dissimilarity measures of sample distributions. We de-
rived generalizations of the Hotelling T2 statistic, the Bhattacharyya, and Hellinger
distance, proving the essential bi-invariance. For the Bhattacharyya distance, we also
established a connection to the distributional setting, which is well-known in Eu-
clidean space.

The analytical power of the novel notions was demonstrated for several appli-
cations in medical image analysis and archaeology. While replicating well-known
findings for the shape differences of the knee and hippocampus under osteoarthri-
tis (OA) and Alzheimer’s with bi-invariant group tests, we could establish the non-
geodesic nature of the shape development of the femur under progressing OA and
construct shape trajectories of the mitral valve from sparse measurements with our
novel regression scheme. Furthermore, when studying the shape of shadow surfaces
of ancient Roman sundials, we identified a dependency of their shape on the location
of installation that, to the best of our knowledge, was not known before. Apart from
these successes, we hope it has become clear that the applications we investigated in
this work only represent a tiny fraction of interesting real-world problems that can be
tackled with our novel methods.

Thankfully (for the researcher), geometric statistics is a young field in which much
is left to be discovered. This is particularly true for bi-invariant statistics in Lie groups,
where we have only begun to build a theory and to find new and exciting appli-
cations. The fact that notions like the Mahalanobis distance, Hotelling T2 statistic,
Bhattacharyya distance, and Hellinger distance can be generalized lets us believe that
similar things can be done with many other notions of interest; to us, a rich set of
statistical tools for bi-invariant data analysis in Lie groups seems possible. Although,
naturally, it will be hard to find generalizations of notions that explicitly involve an-
gles (e.g., principal component analysis with its orthogonality assumptions), it should
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be possible to capture the essence of a variety of tools using affine terms (similar to
defining the mean as the exponential barycenter of the data). This, then, would quite
possibly allow for bi-invariant extensions.

Returning to the Riemannian viewpoint, the newly defined Bézierfolds are of in-
terest both from a theoretical and practical perspective. While understanding the
structure of the spaces of higher-order Bézier curves would extend our knowledge of
manifolds of curves in general, to the practitioner they offer the possibility to repre-
sent non-geodesic relationships with parametric curves that still have only a few de-
grees of freedom. The geometry we imposed on the (lower-dimensional) Bézierfolds
can be used for further meaningful manipulations of the (splines of) Bézier curves.

Last but not least, we demonstrated that geometric information from the under-
lying manifold of SPD matrices, fed into a sample selection approach, helps deep
learning algorithms to predict cognitive scores from brain connectomes. This result
is in line with research on deep learning with non-Euclidean data and promises fur-
ther success in this active research area. To further improve our understanding of the
human connectome, it seems very interesting to decipher why the sample selection
method improves the results.
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Appendix

A.1 Integration on Manifolds and Lie Groups

Smooth functions can be integrated on orientable manifolds with the help of differ-
ential forms. We will discuss below what orientable means. Before we can come to
this, though, we give a brief introduction to the theory of differential forms and how
they can be integrated. We thereby only summarize what is necessary. For more on
the theory of differential forms, we refer the reader to one of the textbooks [137, 197,
252]. Apart from these, we recommend [8] as a reference on the theory of integration
on manifolds.

A.1.1 Differential Forms

Let M be a d-dimensional manifold and 0 ≤ k ≤ d. A differential k-form (a k-form in
short) is a section of the exterior k bundle

Λk(M)

whose fiber at p ∈ M is given by

{β : (Tp M)k → R
∣∣ β is multilinear and alternating}.

(Here, 0-forms are simply smooth functions.) The addition of k-forms and multiplica-
tion with smooth functions are defined pointwise. (Note that k-forms are alternating
(k, 0)-tensor fields, and 1-forms are sections of T∗M as in the previous section.) Dif-
ferential forms allow for the following construction. Let N be another d-dimensional
manifold, F : M → N a diffeomorphism, and ω a k-form on N. The pullback F∗(ω) of
ω along F is a k-form on M defined by

F∗(ω)(X1, . . . , Xk) = ω(dF(X1), . . . , dF(Xk))

for all X1, . . . , Xk ∈ Γ(TM). Note that F∗(ψ ω) = (ψ ◦ F) F∗(ω) for all ψ ∈ C∞(N).
We can also “multiply” a k- and an `-form to obtain a (k + `)-form (where k + ` ≤

d) as follows. Let ω ∈ Γ(Λk(M)) and η ∈ Γ(Λ`(M)). Their wedge product ω ∧ η ∈
Γ(Λk+`(M)) is defined, with Sk+` denoting the set of permutations of {1, . . . , k + `},
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by

ω ∧ η(X1, . . . , Xk+`) :=
1

k!`! ∑
σ∈Sk+`

sgn σ ω(Xσ(1), . . . , Xσ(k)) η(Xσ(k+1), . . . , Xσ(k+`)).

(A.1)

It can be shown that the pullback distributes over the wedge product, that is, for a
diffeomorphism F : M → N, ω ∈ Γ(Λk(N)), and η ∈ Γ(Λ`(N)) we find F∗(ω ∧ η) =

F∗ω ∧ F∗η.
Let U ⊆ M be a coordinate neighborhood with coordinate functions (x1, . . . , xd),

corresponding frame (d/dx1, . . . , d/dxd) and coframe (dx1, . . . , dxd). From the defi-
nition of the wedge product (A.1) we get

dxi ∧ dxj = −dxj ∧ dxi

for all i, j = 1, . . . , d with i 6= j. Let ω ∈ Γ(Λk(M)). Defining

ϕi1,...,ik := ω

(
d

dxi1
, . . . ,

d
dxik

)
∈ C∞(U)

it can now be shown that every k-form ω can be uniquely written as the sum

ω = ∑
1≤i1<···<ik≤d

ϕi1,...,ik dxi1 ∧ · · · ∧ dxik .

In particular, if ω ∈ Γ(Λd(M)) is a d-form, then

ω = ϕ dxi ∧ · · · ∧ dxd (A.2)

in U.
Another operation on differential forms is the exterior derivative d : Γ(Λk) →

Γ(Λk+1). It is uniquely defined by the following properties:

1. d f is the usual derivative for every 0-form f ∈ C∞(M);

2. (d ◦ d) f = 0 for every 0-form f ;

3. d(ω ∧ η) = dω ∧ η + (−1)m(ω ∧ dη) for an m-form ω and an `-form η with
k = m + `.

A.1.2 Integration of Differential Forms

A manifold M is called orientable if there exists a nowhere-vanishing d-form. Impor-
tantly, Lie groups fulfill this requirement: When ω1, . . . , ωd is a coframe of 1-forms on
a Lie group G (which we can obtain by left translating a basis of T∗e G), then there is
no tangent space on which the restriction of ω1 ∧ · · · ∧ωd is the zero map.

An orientation on an orientable manifold is a choice of an equivalence class [ω]

of nowhere-vanishing d-forms with the same sign (the class of d-forms with the op-
posite sign represents the opposite orientation). Any d-form from the chosen class
determines the orientation of an ordered basis of a tangent space through the sign of
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the value that it assigns to it. Additionally, given an orientation [ω], we say that a
chart φ : U → Rd, φ = (x1, . . . , xd), is positively oriented if

ω
∣∣
U = ϕ dx1 ∧ · · · ∧ dxd

with ϕ(p) > 0 for all p ∈ U. Furthermore, a diffeomorphism between two oriented
manifolds is said to be orientation-preserving if its differential takes positively oriented
bases of tangent spaces to positively oriented bases. (Negative orientation is defined
analogously.)

We now define integrals of differential d-forms on oriented manifolds. (Whenever
we say that a manifold is oriented, we mean that an orientation has already been
chosen.) One starts by defining integrals of differential d-forms in (oriented) Rd. Let
V ⊂ Rd be a “nice” subset of Rd and (x1, . . . , xd) the standard coordinates. (The
canonical orientation is given by the d-form dx1 ∧ · · · ∧ dxd.) Further, let f ∈ C∞(V).
The integral of the d-form ϕ dx1 ∧ · · · ∧dxd is is then defined as the Lebesgue integral

∫

V
ϕ dx1 ∧ · · · ∧ dxd :=

∫

V
ϕ dx1 . . . dxd,

if it exists1.
Let now M be an oriented manifold and U ⊆ M a coordinate neighborhood with

positively oriented chart φ = (x1, . . . , xd). The integral of a d-form ω over U is defined
via the pullback by ∫

U
ω :=

∫

φ(U)
(φ−1)∗ω

whenever the right-hand side exists. It can be shown that this definition does not
depend on the choice of coordinates.

To go on we need partitions of unity [137, Lem. 1.1.1]. Remember that the support
of a function ρ ∈ C∞(M) is defined by supp ρ := {p ∈ M

∣∣ ρ(p) 6= 0}.
Theorem A.1.1. Let M be a manifold and (Ui)i∈I be an open cover of M. Then, there exists
a (countable) partition of unity subordinate to (Ui)i∈I . This means that there exist a locally
finite refinement (Vj)j∈J and functions ρj ∈ C∞(M), with supp ρ having compact closure,
such that
(i) supp ρj ⊂ VJ for all j ∈ J;
(ii) ρj(p) ≥ 0 for all p ∈ M and j ∈ J;
(iii) for each p ∈ M, ρj(p) 6= 0 only for finitely many j ∈ J and ∑j∈J ρj(p) = 1.

We can now define the integral of a d-form on the whole of M using a cover
(Uj, φj)j∈J of positively oriented charts2 and a partition of unity (ρj)j∈J subordinate to
the cover (Uj) to define the integral of ω ∈ Γ(Λd(M)) by

∫

M
ω := ∑

j∈J

∫

M
ρjω

whenever the right-hand side exists. In other words, we “stitch integrals over coor-
dinate neighborhoods together” to integrate over the whole domain. Note that the

1Here, we assume that the reader has some knowledge of integration theory in Rd.
2Such a cover always exists on an oriented manifold.
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differential forms under the integral sign are only supported in the domain of a single
chart. Furthermore, it can be shown that this definition is independent of the chosen
partition of unity.

Being a vast generalization of the Fundamental Theorem of Calculus, Stokes’ The-
orem [137, Thm. 2.1.6] relates integrals over a manifold to integrals over its boundary.

Theorem A.1.2 (Stokes’ Theorem). Let M be an orientable d-dimensional smooth submani-
fold of a smooth manifold N with a smooth boundary. That is, the boundary ∂M is assumed to
be an (d− 1)-dimensional smooth submanifold of N. Let further ω be a smooth (d− 1)-form
on N. Then, provided that these integrals exist, for instance, if M is compact, we have

∫

M
dω =

∫

∂M
ω.

A.1.3 Integration of Functions

Integrals of functions can be defined using the integral of differential forms. To this
end, one chooses a reference measure (a non-vanishing d-form) and integrates “mea-
sure times function”. Naturally, the value of this integral then depends on the selected
measure. However, if the manifold at hand is a Lie group or is endowed with a Rie-
mannian metric, then canonical reference measures exist, as we will see below.

For a Riemannian manifold, the canonical reference measure is given as follows.
Let M be an oriented Riemannian manifold. Then, there is a unique d-form dp ∈
Γ(Λd(M)) such that for every p ∈ M and for every positively oriented orthonormal
basis (v1, . . . , vd) of Tp M we have

dp
∣∣
Tp M(v1, . . . , vd) = 1.

The d-form dp is called the volume form of M. Finally, we can now define integrals
of functions over Riemannian manifolds. Let f ∈ C∞(M). Its integral over M is now
defined by ∫

M
f (p)dp :=

∫

M
f dp

(again, if the right-hand side exists).

If M = G is a d-dimensional Lie group without Riemannian metric, then there
is no canonical volume form on G. Hence, one must choose a reference measure in
a different way. A natural choice on G is a nowhere-vanishing left/right invariant
d-form dg, a left/right Haar measure consistent with the orientation of G. There is a
1-dimensional vector space of such d-forms [252, Sec. 4.11], and, hence, the resulting
integrals only differ in a constant factor. Therefore, the actual choice of dg depends
(up to considerations of machine precision when working on a computer) only on
one’s taste. The integral of a function ψ ∈ C∞(G) is then defined by

∫

G
ψ(g)dg,

if the right-hand side exists. If dg is left-invariant,
∫

G
ψ(g)dg =

∫

G
(ψ ◦ L f )(g)dg
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holds for all f ∈ G, that is, the integral is also left invariant. However, in general,
it is not right invariant. Lie groups with bi-invariant Haar measures (which lead to
bi-invariant integrals) are called unimodular.

A.2 Existence and Uniqueness of the Group Mean

Let G be a Lie Group with an affine connection. If U ⊆ G is a normal convex neigh-
borhood and g1, . . . , gm ∈ U, then there always exists a group mean g ∈ U [188, Thm.
5.3]. For uniqueness to be ensured, we need the following notion of convexity that
was proposed by Arnaudon and Li in [17]. In the following, we summarize their
ideas; for more details, including examples, we refer to their article or [188] and the
references therein.

First, we need the following definitions. (Remember that a real-valued function
on a smooth manifold is called convex if its restriction to any geodesic is convex.)

Definition A.2.1. A function ρ : U ×U → R≥0 that is convex with respect to the product
structure is called separating function if it vanishes on the diagonal of U×U and only there.

Definition A.2.2 (p-convexity). Let ρ and dist be a smooth separating function and an
auxiliary Riemannian distance function on U, respectively. We say that U has a p-convex
geometry if there are constants c, C ∈ R with 0 < c < C and an even integer p ≥ 2 such
that

c dist( f , g)p ≤ ρ( f , g) ≤ C dist( f , g)p

for all f , g ∈ U.

For general smooth manifolds, it is known that not all normal convex neighbor-
hoods have a p-convex geometry. On the other hand, Whitehead’s theorem ensures
that each point in G has a 2-convex neighborhood. Importantly, if the normal convex
neighborhood U has a p-convex geometry for any p ∈ 2N, then this is enough to
ensure the uniqueness of the group mean. Nevertheless, there is a weaker condition
that still yields uniqueness.

Definition A.2.3. (CSLCG neighborhood [17]) We say that U is convex with semilocal
convex geometry (CSLCG) if every compact subset K ⊂ U has a relatively compact neigh-
borhood UK with pK-convex geometry for some pK ∈ 2N depending on K.

Observe that if U has a p-convex geometry for some p ∈ 2N, then it is CSLCG.
Further examples of CSLCG neighborhoods are open hemispheres of Sn endowed
with the Levi-Civita connection of the embedding metric. Remarkably, these do not
posses a p-convex geometry for any p ∈ 2N; see [144]. We have the following result,
which is a special case of [17, Prop. 2.4].

Proposition A.2.4. Let G be a Lie group with affine connection. Further, let U ⊆ G be a

CSLCG neighborhood and (g1, . . . , gm)
i.i.d.∼ G data in U. Then, there exists a unique group

mean g ∈ U of g1, . . . , gm.

The following lemma provides a property of CSLCG neighborhoods that is needed
in this work.
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Lemma A.2.5. Let G be a d-dimensional Lie group with affine connection and U ⊆ G be a
CSLCG neighborhood. Then, U is diffeomorphic to Rd.

Proof. Let g ∈ U. Since U is a normal convex neighborhood, Logg(U) ⊆ TgG is well-
defined and star-shaped about 0 ∈ TgG. The claim now follows, since any star-shaped
domain in a d-dimensional vector space is diffeomorphic to Rd [38, Thm. 5.1].

A.3 Discrete geodesic calculus

In the following, we summarize important aspects of discrete geodesic calculus [210]
as given in [119]. Let M be a Riemannian manifold. Then, the energy of a curve
α : [0, 1]→ M is defined by

energy(α) :=
∫ 1

0
〈α′(t), α′(t)〉α(t)dt.

Given p, q ∈ M, a curve γ that minimizes E over all curves α : [0, 1] → M with
α(0) = p and α(1) = q is a geodesic and we have

dist(p, q)2 = energy(γ).

Furthermore, for α : [0, 1] → M and ` ∈ N>0, we find for the interpolated points
ak := α(k/`), k = 0, . . . , `,

energy(α) ≥ `
`

∑
k=1

dist(ak−1, ak)
2

with equality if and only if α = γ is a geodesic. This motivates the definition of the
discrete path energy

E(a) := `
`

∑
k=1

dist(ak−1, ak)
2, (A.3)

where a is a polygonal curve with vertices ak := a(k/`). Minimizers of Equation (A.3)
with fixed end points a0 and an are called discrete `-geodesics. In [210], it is shown
that discrete `-geodesics converge to smooth geodesics for ` → ∞ under suitable
assumptions.

Let now q1, . . . , qn ∈ M be given. The authors of [119] define the discrete `-mean of
q1, . . . , qn by

q := arg min
q∈M

n

∑
i=1

min
a(i)(0)=q
a(i)(1)=qi

E(ai).

Here, for each i = 1, . . . , n the inner minimization is done over all polygonal curves
ai with ` vertices, ai(0) = q, and ai(1) = qi. The minimizing curves are the discrete
`-geodesics between q and qi.

We also summarize how Gram’s matrix G corresponding to data q1, . . . , qn ∈ M
can be approximated using discrete geodesic calculus [120]. In the smooth setting,
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assuming a unique Fréchet mean q, we have

G :=




〈
Logq(q1), Logq(q1)

〉
q
· · ·

〈
Logq(q1), Logq(qn)

〉
q

...
. . .

...〈
Logq(qn), Logq(q1)

〉
q
· · ·

〈
Logq(qn), Logq(qn)

〉
q



∈ Rn,n.

Let q be the discrete geodesic average, ai the discrete `-geodesics between q and qi.
Define ai := ai(1/`) and di := dist(q, ai)2 for all i = 1, . . . , n. Then, we can substitute
G by the approximation

G̃ :=
n
2




2d1 · · · d1 + dn − dist(a1, an)2

...
. . .

...
dn + d1 − dist(an, a1)2 · · · 2dn


 .

Note that G̃ is symmetric just like G.

A.4 Benjamini-Hochberg Procedure

When testing multiple independent or positively correlated hypotheses, the method
of Benjamini and Hochberg [26, 27] allows controlling the false discovery rate, that
is, the expected proportion of falsely rejected null hypotheses. Let V and S be the
(random) numbers of false rejections of the null and true discoveries, respectively.
The ratio of false discoveries among all discoveries is then given by Q := V/(S + V)

(defined to be zero if V + S = 0). The false discovery rate (FDR) is the expected value
E[Q].

Suppose n hypotheses were tested. The following procedure controls the FDR
among the tests at level α (that is, with n0 being the (unknown) number of true null
hypotheses, we have E[Q] < n0

n α < α):

1. Order the p-values that were obtained from the hypothesis tests in ascending
order; this gives a sequence p1, . . . , pn of p-values with corresponding null hy-
potheses H1, . . . , Hn.

2. Let k ∈N be the largest integer such that

pi <
i
n

α

for all i = 1, . . . , k. Reject H1, . . . , Hk and do not reject Hk+1, . . . , Hn.

A.5 List of Sundials

The sundials used in the study are listed in Table A.1 along with the latitude and
longitude of their sites. They are part of the Topoi database. The triangle meshes
of the sundials can be downloaded from http://repository.edition-topoi.org/
collection/BSDP. The metadata can also be found there.
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Table A.1: Spherical sundials used in the study

Object ID Dialface ID Latitude Longitude Site Dating
Type

(Edition Topoi)
Italy

574 623 43.3155 13.4082 Helvia Recina N/A sphere, spherical

17 17 42.0913 12.5231 Riano N/A
sphere, spherical-cut

dials—central gnomon
point

36 35 41.8034 12.6890
Villa Tuscolana/Villa

Rufinella5

(near Rome)
N/A

sphere, spherical-cut
dials—central gnomon

point

65 62 41.7561 12.2927
Ostia Antica
(near Rome)

N/A
sphere, spherical-cut/

quarter dis-shaped

18 18 41.6700 12.6900 Lanuvio N/A
sphere, spherical-cut

dials—central gnomon
point

21 21 40.7503 14.4871 Pompei before
79 CE

sphere, spherical-cut
dials—central gnomon

point

23 23 40.7503 14.4871 Pompei before
79 CE

sphere, spherical-cut
dials—central gnomon

point

174 173 40.7503 14.4871 Pompei N/A
sphere,

spherical-hemispherical—central
gnomon point

29 29 40.7503 14.4871 Pompei before
79 CE

sphere, spherical-cut
dials—central gnomon

point
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Object ID Dialface ID Latitude Longitude Site Dating
Type

(Edition Topoi)
519 559 40.7030 14.4988 Stabiae N/A sphere, spherical

40 39 N/A N/A N/A6 N/A
sphere, spherical-cut

dials—central gnomon
point

Greece

76 73 37.3900 25.2600 Delos N/A
sphere, spherical-

hemispherical—central
gnomon point

77 74 37.3900 25.2600 Delos N/A
sphere,

spherical-transposed
hemispherical

546 583 36.0917 28.0881 Lindos on
Rhodes7 Hellenistic sphere, spherical

5This site is not 100% certain as the only reference is a dissertation from 1764.
6Although in the database the site is stated to be Vatican City, we did not find evidence for this. Therefore, we consider the site to be uncertain.
7The longitude and latitude of this sundial are wrong in the database. The references stated there confirm that the sundial is from Lindos. We used the correct

values that are given in this table.
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A.6 Topological Centrality Measures for Graphs

We now recall three important centrality measures for undirected graphs that are
widely used. A good reference on the topic is [94].

Let A be the (weighted) adjacency matrix of a graph G, V the set of vertices of G,
and v ∈ V.3 The degree centrality D(v) of v is defined by

D(v) := ∑
w∈V
w 6=v

Avw,

that is, it assigns to each node its weighted sum of neighbors.
Let x be the unit norm eigenvector of A that corresponds to the largest eigenvalue

λ1 and has only non-negative entries. The eigenvector centrality E(v) of v is the v-th
entry of x; that is,

E(v) :=
1

λ1
∑

w∈V
Avwxw,

s.t. ‖x‖2 = 1 and xw ≥ 0 for all w ∈ V.

It measures, in a relative sense, how influential a node is in the network. Intuitively,
a high score means that a node has many neighbors that themselves have high eigen-
vector centrality scores.

Let lvw be the length of the shortest path between two nodes v and w, and n = |V|.
The closeness centrality C(v) of v is defined by

C(v) :=
n− 1

∑w∈V
w 6=v

lvw
,

that is, as the inverse of the average distance of v to all other nodes.
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A.9 Zusammenfassung

Datenanalyse ist aus unserer Zeit nicht mehr wegzudenken. Die dabei eingesetzten
Methoden sind vielfältig, haben jedoch fast immer eines gemein: die Annahme, dass
die Daten aus einem Vektorraum mit Euklidischer Struktur stammen. Ausgehend von
Forschungsfeldern wie Bildverarbeitung, (medizinische) Formenanalyse und Netzw-
erkanalyse sind in letzter Zeit jedoch Daten aus nichteuklidischen Räumen - insbeson-
dere gekrümmten Mannigfaltigkeiten - immer mehr in den Fokus geraten. Die Meth-
oden des so entstandenen Forschundsfelds der geometrischen Datenanalyse zeichnen
sich dadurch aus, dass sie die Geometrie des zugrundeliegenden Raumes berück-
sichtigen. Sie führen einerseits zu besseren Ergebnissen in vielen Anwendungen, in
denen Daten näherungsweise Euklidisch sind und altbekannte Methoden der Date-
nanalyse angewandt werden können; andererseits eröffnen sie auch komplett neue
Anwendungsgebiete. Diese Arbeit trägt zur weiteren Entwicklung der geometrischen
Datenanalyse bei, indem sie sowohl theoretische Beiträge liefert als auch neue An-
wendungen ergründet. Die Methodologie wird erweitert, indem mehrere wohlbekan-
nte Methoden der multivariaten Datenanalyse auf Mannigfaltigkeiten verallgemein-
ert werden. Dabei konzentrieren wir uns auf zwei verschiedene Blickwinkel. Zuerst
nutzen wir den der Riemannschen Mannigfaltigkeit, um basierend auf Splines aus
generalisierten Bézierkurven Regressionsanalyse höherer Ordnung auf allgemeine
Mannigfaltigkeiten zu heben. Dadurch ist es möglich nichtgeodätische Zusammen-
hänge (z.B. zeitliche Zusammenhänge mit Sättigungseffekten oder zyklische Zusam-
menhänge) zu modellieren. Außerdem erlaubt uns die neue Regressionsmethodik ein
hierarchisches statistisches Modell zur Analyse von longitudinalen Daten und eine
Methode zur Normalisierung von Daten bezüglich unerwünschter Einflussgrößen zu
entwickeln. Neben dem Riemannschen Blickwinkel liegt der Fokus in dieser Arbeit
auf Daten aus Lie Gruppen. Dies ist in Anwendungen regelmäßig der Fall und es ist
wünschenswert über Analysemethoden zu verfügen, die auch die Gruppenstruktur
nicht außer Acht lassen. Letzteres bedeutet, dass die Methoden invariant/äquiv-
ariant unter Translationen der Daten sein müssen. Dies kann nur erreicht werden,
wenn eine bestimmte affine Struktur verwendet wird, die im Allgemeinen nicht Rie-
mannsch ist. Indem wir diese Struktur verwenden, leiten wir Verallgemeinerung von
bekannten Ähnlichkeitsmaßen von Datenverteilungen her, die für eine Vielzahl von
Aufgaben (z.B. Hypothesentests) verwendet werden können. Wir beweisen die Invar-
ianz dieser neuen Größen und leiten Verbindungen zu kontinuierlichen Verteilungen
her. Wir zeigen Anwendungen von all unseren methodologischen Beiträgen an Hand
von realen Daten aus der medizinischen Formenanalyse und der Archäologie. Wir
können dabei sowohl wohlbekannte Effekte in einigen medizinischen Anwendungen
replizieren, als auch neue Einsichten in einer archäologischen Anwendung gewinnen.
Zuletzt wird auch der Nutzen unserer Methoden im Rahmen des tiefen Lernens an
einem Beispiel verdeutlicht.
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