
Chapter 5

Adaptable Event Composition

It is not the strongest of the species that survives,

nor the most intelligent;

it is the one that is most adaptable to change

Charles Robert Darwin

In this chapter, we start addressing the first aspect of our central topic of adaptability in event notifi-

cation services:qualitative adaptation. Integration of events provided by different sources and event

handling within integrating event-based applications requires an event notification system to support

several adaptation tasks. For example, the clients should not be forced to redefine their profiles in or-

der to adapt to a new or changing source. Consequently, the profile evaluation should be adaptable1 to

changing application requirements.

Events entering anENS are filtered according to client profiles; the event matching is based on the

filter semantics defined for the service. Profiles defined by the service’s clients are restricted by the

filter’s capabilities. Therefore, the semantics of the event filtering and the one of the profile definition

language are closely related. The theoretic basis for this chapter was introduced in Chapter 3.

Our analysis of event-based approaches in Chapter 4 has shown that only few sophisticated profile

languages have been proposed, e.g, in CQ, Siena, and some active database systems. The existing

languages are too rigid and do not allow for semantical adaptation as demanded by Requirement R4 (cf.

Chapter 2, Page 19). In addition, the evaluation of languages that seem to follow similar semantics does

not always lead to similar results. One example is the handling of duplicate events: Depending on the

implementation, in the filtering process, duplicates are either skipped or kept.

1We use the termadaptable to emphasize the fact that the algebra may be used to adapt theENSfilter. The termsadaptive
andauto-adaptive focus on the mechanism of (automatically) adapting a system or component.

58 Chapter 5. Adaptable Event Composition

In this chapter, we extend the semantics of well-knownECA rules of active database systems by

introducing the notion ofrelative time. BecauseENS systems are used in the context of a distributed

environment and do not rely on a transactional context as in active database systems, the simultaneous

occurrences of events cannot be determined accurately. Therefore, all composite event operators should

be handled as temporal operators and extended by a relative time frame (similar to time handling in

distributed systems).

In addition, in different application areas different semantics for the same operators are introduced.

For example, the semantics of the temporal operators introduced by Allen [All91] are not defined uni-

formly in the numerous application areas. Consequently, our approach supports various semantical

perceptions of the same operator. Thus, different systems or applications may use a different semantics

for the same operator. This is achieved through the introduction of an event algebra that is controlled by

a set of parameters. The parameterized algebra defines the semantics of event operators for composite

events; different parameter settings result in different composite event semantics.

Instead of supporting only one semantical variation, we propose a flexible approach that allows for

adaptation of profile and filter semantics. Our parameterized event algebra for event notification services

permits simple changes of the filter semantics to support changing applications, to adapt to new event

sources, and to support integrating applications that combine events from different sources. Because the

usability and power of a service heavily depends on the expressiveness of the profile and filter semantics,

our algebra fundamentally influences our design of an integrative event notification service.

The algebra is presented in two steps. First, we describe the temporal event operators informally,

in a second step the event algebra is defined formally. As summary, we analyze the event semantics of

different event-based systems and compare them to the features of our algebra.

5.1 Composite Event Operators

This section describes the operators of our event algebra in an informal manner. The set of operators

included in the algebra is derived from the profile language considerations of [HF99a]. In the next

section, the operators are introduced formally.

An event algebra is an abstract description of the event concept of a service independent of the actual

profile definition language. It enables the evaluation of the complexity of different services, supports

the detection of inconsistent profile definition, and can serve as a basis for an implementation of an

event filter algorithm. In order to model composite events, we employ event constructors (also called

operators). We extend an event algebra for active database systems [GD93] to consider also the temporal

demands on event compositions. For illustration, we use an example from facility management that is

extended throughout the chapter:

Example 5.1 (Facility Management Profiles)

Let us consider the situation introduced in Scenario 1 (see Page 12) with focus on applications for

monitoring of heating and security. In Table 5.1, we rephrase the set of example profiles introduced

before. Note that the profiles are simplified versions of real-live profiles. For example, the proximity

requirement for the two events (e.g., same room) is omitted.

5.1. Composite Event Operators 59

Profile Description

P1: Notify if the temperature rises above35◦C within 7 days after a failure in the air condi-
tioning system.

P2: Notify if the air conditioning system fails for the fourth time.
P3: Notify if during the night a window is broken and within5min after this a presence

detector sends a signal.
P4: Notify if a sensor did not send data for more than half an hour.

Table 5.1: Refined profiles for a facility management scenario (Example 5.1)

Recall from Chapter 3 that an event instance relates to the actual occurrence of an event while an

event class is a set of events specified by a query. Event composition defines new event instances that

inherit the characteristics of all contributing events. The occurrence time of the composite event is

defined by the composition operator. The eventse1 ande2 used in the definitions below can be any

primitive or composite event;E1 andE2 refer to event classes withE1 �= E2. t(.) refers to occurrence

times defined based on a reference time system,T denotes time spans in reference time units. We

use the contribution operator� (cf. Definition 3.7 on Page 32) to identify the events that contribute to a

composite event. Note that temporal operators are defined on event instances as well as on event classes,

resulting in event instances and event classes, respectively.

Temporal Disjunction: Thedisjunction (E1|E2) of events occurs if eithere1 ∈ E1 or e2 ∈ E2 occurs.

The occurrence time of the compositee3 ∈ (E1|E2) is defined as the time of the occurrence of

eithere1 or e2 respectively:t(e3) := t(e1) with {e1} � e3 or t(e3) := t(e2) with {e2} � e3.

Temporal Conjunction: The conjunction (E1, E2)T occurs if bothe1 ∈ E1 and e2 ∈ E2 occur,

regardless of the order. The conjunction constructor has a temporal parameter that describes

the maximal length of the interval betweene1 ande2.2 The time of the composite evente3 ∈
(E1, E2)T with {e1, e2} � e3 is the time of the last event:t(e3) := max{t(e1), t(e2)}.

Temporal Sequence: The sequence (E1;E2)T occurs when firste1 ∈ E1 and afterwardse2 ∈ E2

occurs.T defines the temporal distance of the events. The time of the evente3 ∈ (E1;E2)T with

{e1, e2} � e3 is equal to the time ofe2: t(e3) := t(e2).

Temporal Negation: Thenegation ET defines a passive event; it means that noe ∈ E occurs for an

interval [tstart, tend], tend = tstart + T of time. The occurrence time ofeT ∈ ET is the point

of time at the end of the period,t(eT) := tend When clear from the context, we writeeT when

referring to a passive event.

Temporal Selection: Theselection E[i] defines the occurrence of theith evente ∈ E of a sequence of

events of classE, i ∈ N.

If several operators are to be applied on an event class, we have to distinguish whether identical event

instances or distinct event instances that belong to the same event class are addressed. For that purpose,

we additionally permit the Boolean operators of logical conjunction (∧) and logical disjunction (∨) to

be used in event composition. These operators address identical event instances, i.e., references to the

2(E1, E2)∞ refers to an event composition without temporal restrictions. It is equivalent to the original conjunction construc-
tor as defined, e.g., in [GD93].

60 Chapter 5. Adaptable Event Composition

same event class combined by logical operators reference to identical instances in that class. Logical

operators are defined on event classes only. A logical combination of two classes describes the usual

logical combination of the defining queries (and their expressions).

Logical Conjunction The logical conjunction E1 ∧ E2 of event classesE1 andE2 requires that the

expressions of both event class queries are true for the instancese ∈ (E1 ∧ E2).

Logical Disjunction The logical disjunction E1 ∨ E2 requires that at least one of the expressions of

the event class queries is true for the instancese ∈ (E1 ∨ E2).

Note thatlogical combinations of event classes form a name-space for the involved event instances, i.e.,

equal class names such asE1 refer to identical event instances in that class. Equal names combined by

temporal event operators only define identical event descriptions and therefore a class of events. This

characteristic is illustrated in the following example:

Example 5.2 (Temporal vs. Logical Conjunction)

Let E1, E2, andE3 be event classes. Then, the event instances of the temporal conjunction

ET = ((E1;E2)T1, (E1;E3)T2) are defined as

ET = {e | ∃e11, e12 ∈ E1 ∃e2 ∈ E2 ∃e3 ∈ E3 : {e11, e12, e2, e3} � e∧
t(e11) ≤ t(e2) ≤

(
t(e11) + T1

) ∧ t(e12) ≤ t(e3) ≤
(
t(e12) + T2

)}.

It is not required but allowed thate11 == e12. The event instances of the logical conjunction

EL = ((E1;E2)T1 ∧ (E1;E3)T2) are defined as

EL = {e | ∃e1 ∈ E1 ∃e2 ∈ E2 ∃e3 ∈ E3 : {e1, e2, e3} � e∧
t(e1) ≤ t(e2) ≤

(
t(e1) + T1

) ∧ t(e1) ≤ t(e3) ≤
(
t(e1) + T2

)}.

We now show the application the newly introduced composition operators to our example profiles:

Example 5.3 (Facility Management Profiles using Temporal Operators)

The profile examples from our logistic application (see Table 5.1, Page 59) can be modelled using the

event operators as follows:

P1: LetE1 be the class of events regarding air conditioning failures. LetE2 be the class of events

regarding a threshold crossing (above35◦C). The composite events are then defined ase ∈
(E1;E2)7days.

P2: We reuse the event classE1 for air conditioning failures. A simplified definition for the composite

events may be expressed ase ∈ E
[4]
1 .

P3: LetE5PM be the class of time events occurring at5P.M. that refer to the start of the night-shift.

Let E3 be the class of breaking-window events. LetE4 be the class of events regarding presence

detector signals. The composite events are thene ∈ (E5PM ; (E3;E4)5min)14hours.

P4: LetE5 be the class of all sensor events of a certain sensor. Then, the composite events are defined

aseT ∈ (E5)30min.

5.2. Parameterized Event Algebra 61

5.2 Parameterized Event Algebra

The event algebra presented informally in the previous section does not sufficiently define the semantics

of a profile definition language. For instance, the semantics of the sequence operation needs further

refinement as illustrated below.

This section sets the basis for our profile definition language for alerting. We believe that for the

temporal event operators various (application-dependent) semantics have to be provided. We therefore

introduce aparameterized event algebra. This section first motivates the parameters for event instance

selection and consumption, two concepts that have been proposed in the active database area. It then

illustrates examples of various parameter settings. Finally, the formal definition of the event algebra is

presented.

5.2.1 Parameters to Consider

The following examples illustrate the limitations of the simple approach in Section 5.1.

Example 5.4 (Sequence)

Let us assume we are interested in the sequence of two events(E1;E2)T as defined, for instance, in

profiles P1 and P3. We consider the following history (trace) of events:tr = 〈e1, e2, e3, e4〉, with

e1, e2 ∈ E1, e3, e4 ∈ E2 as shown in Figure 5.1. It is not clear from the event definition, which pair3

of events fulfills our profile. Candidate pairs are, e.g., the inner two events, or the first and the third.

It is also not clear whether the profile can be matched twice, e.g., by pairs(e2, e3) and(e1, e4), or by

(e1, e3) and(e2, e4).

1 3 42

Trace tr:

Figure 5.1: Possible composite events in Example 5.5,◦=̂e1 ∈ E1 and×=̂e2 ∈ E2

Various event combinations may be possible. Besides, for different applications, different event-history

evaluation strategies could be applied. The problem similarly occurs for unary operators:

Example 5.5 (Selection)

Let us assume, we are interested in every fourth occurrence of an evente ∈ E1, as defined, for

instance, in Profile P2. We could define the profile:E
[4]
1 . Let us consider the (synthetical) trace

tr = 〈e1, e2, e3, e4, e5, e6, e7, e8〉 with ei ∈ E1, 1 ≤ i ≤ 8. The profile could be matched by evente4,

or bye4 ande8, or by the eventse4, e5, . . . , e8 because all of them are preceded by three instances.

Using the terminology of active databases systems [ZU99], we need to identify the followingmodes for

an event algebra forENS:

3Composite events may be formed by more than two event instances when nesting the compositions. Because the minimal
contribution of events consists of two instances for a composition using binary operators, we often refer to the contributing events
as pairs.

62 Chapter 5. Adaptable Event Composition

1. Event selection principle: how to identify primitive events based on their properties.

2. Event instance pattern: which event operators form composite events.

3. Event instance selection: which events qualify for the complex events and how are duplicated

events handled.

4. Event instance consumption: which events are consumed by complex events.

To discuss these modes in detail, we need a formal definition of the term ’duplicate’.

Definition 5.1 (Duplicate)

Event duplicates are all event instances that belong to the same event class.

Duplicate events do not need to have the same occurrence time. Duplicates could be, for example, all

temperature events regarding a certain room. Note that duplicates do not necessarily have the same

event message type (see Chapter 3 for the distinction between event classes and message types).

Definition 5.2 (Duplicate List)

LetE1, E2 be two event classes withE1 �= E2. We then define a duplicate listDE1\E2 as the ordered set

of event instances of classE1 that occur consecutively without intermediate event instances of classE2.

Note that duplicate lists are subject to changes as long as theclosing event did not occur. The closing

event is the first event instance of classE2 that follows ane ∈ E1 with e ∈ DE1\E2 .4 It is important to

note that in contrast to [ZU99], the term ’duplicate’ is used here with respect to a profile (i.e., an event

class) and not for the event instance itself. Two events can be different, nevertheless, they may match

the same profile. With regards to that particular profile they are seen as duplicates.

Different event selection principles have been discussed in Chapter 3.Event instance patterns have

been introduced in Section 5.1. Here, we introduce modes forevent instance selection andevent instance

consumption. Due to the temporal event operators, event selection and consumption inENS cannot be

handled independently (as proposed for active database systems [ZU99]).

Event Instance Selection (EIS). Duplicate instances of an event class have to be handled differently

depending on the application context. For the event instance selection, we distinguish the three variants

as depicted in Figure 5.2. First, only thefirst event of a list of duplicate events is considered, i.e., the

duplicates are ignored. Second, the duplicates are not ignored, but each new event instance overwrites

the older one and thelast duplicate is considered. In the third variant, the duplicates are neither ignored

and nor overwritten:All event instances are taken into account. It is also conceivable to select theith

duplicate. Extending the terminology introduced in Section 5.1, we refer to the event instance selection

parameter within a composite event using the following operators on a event classE: first dup(E),
last dup(E), all dup(E), andi dup(E) (see Figure 5.4).

4Note that our concept of duplicate lists is an extension of the star operator typically used in active database systems that
support composite events [MZ97]. For an ENS, the notion of the start operator as a consecutive events with no interleaving
(other) events is too restrictive. The typical restrictions applying in active databases, such as transactional context or specified
client, table, or tuple, do not apply here.

5.2. Parameterized Event Algebra 63

each duplicate list

into account
take all events

ignore
duplicates

overwrite
duplicates

yes no

yes no

take the last event
within each duplicate list

take the first event of

Figure 5.2: Event instance selection: first, last,
or all events

consume

only matched once
of duplicate lists, each

composite event

events take part in
only one instance of a

find all permutations
of event combinations

repeat filter

yes no

noyes

matched events

test sequentially all events

Figure 5.3: Event instance consumption: all,
unique, or repeated composites

Event Instance Consumption (EIC). We distinguish three variations in the identification of compos-

ite events, as shown in Figure 5.3. Matched events can be consumed or they can contribute several times

to composite events of the same class. If matched events are consumed, onlyunique composite events

are supported. An ’unique composite event’ means that an event instance cannot be used twice as a

result for a certain profile query, i.e., in a certain event class. But the event instance may be additionally

matched by one or more different profiles. If the filter is applied more than once, a primitive event

participates inall composite events regarding a single profile. If events are consumed by composite

events, the filtering process could berepeated after unique composite events have been identified. This

approach can be seen as a combination of the two parameters event instance selection and consumption.

We refer to the event instance consumption parameter for each composite event by an additional index:

all pairs, unique pairs, andrepeated pairs (see Figure 5.4).

For brevity reasons, we cannot display all six temporal operators with their possible parameter set-

tings (for the sequence operator, this would result in 48 variations). Instead, Figure 5.4 gives theEBNF

for the algebra’s operators. Our implementation of the algebra as profile definition language in the

A-MEDIAS system is introduced in Chapter 9. The following Example 5.6 shows profile definitions for

our facility management scenario when using the parameterized operators.

E ::= priEvent | CoEvent

CoEvent ::= BinOp | UnOp

BinOp ::= ’(’ Dupl ’(’ E ’)’ ’|’ Dupl ’(’ E ’))’Pairs |

’(’ Dupl ’(’ E ’)’ ’,’ Dupl ’(’ E ’))’TimeSpan’)’Pairs |

’(’ Dupl ’(’ E ’)’ ’;’ Dupl ’(’ E ’))’TimeSpan’)’Pairs

UnOp ::= ’(’ E[Integer] ’)Pairs’ | ’((’ E ’)’TimeSpan’)Pairs’

Dupl ::= ’first dup’ | ’last dup’ | ’all dup’ | Integer’ dup’

Pairs ::= ’all pairs’ | ’unique pairs’ | ’repeated pairs’

Figure 5.4: Constructs of our event algebra: The symbolpriEvent refers to a primitive event class.
The structure of aInteger follows the common rules for integers,TimeSpan refers to a
timespan.

.

64 Chapter 5. Adaptable Event Composition

Example 5.6 (Facility Management Profiles with Parameterized Operators)

The profiles P1 and P2 from our the example application (see Table 5.1, Page 59) can be modelled using

the event algebra as follows

P1: The air conditioning system signals each failure only once, therefore, all events are taken into

account. For the temperature events, we assume that a threshold crossing is detected by several

sensors. Then, only the first event in each list of duplicates has to be considered. All occurrences of

the composite event (all pairs) are considered.e ∈ ((all dup(E1); first dup(E2))7days)all pairs.

P2: After the first four air conditioning failures the notification is sent:e ∈ (E[4]
1)unique pairs. Alterna-

tively, for energy management, all composite events may be of interest:e ∈ (E[4]
1)repeated pairs

We discuss the usage of the algebra’s parameters by examples for the sequence operator with different

combinations of the two parameters. Figure 5.5 shows a matrix of selected profile-event situations. For

clarity reasons we only show situations with identical parameter values for both contributing events.

Note that the names for the rows and columns are simplified descriptions of the different approaches.

The examples shown in the matrix refer to the composite events of a sequence(E1;E2) in a given

example trace of events. The events are referred to in the figure as◦=̂e1 ∈ E1 and×=̂e2 ∈ E2, each

composite event instance is marked with an arc. The position of arcs above or below the trace follows

only readability reasons. The dashed arcs denote special cases that we discuss on Page 70. Here, we

use fixed time frames as evaluation intervals that are denoted with brackets [.], such that the different

implications are easier to compare.

The horizontal dimension of the matrix shows examples for the event instance selection. The selec-

tion either takes only the first or the last duplicate in a trace into account, or all events are considered.

From the matrix, we can already derive example applications for the different approaches:

Column I Taking the first event of a sequence of duplicates is used in applications where duplicates

do not deliver new information, e.g., whether the value of a sensor reading goes beyond a certain

threshold. In such cases, only the first event delivering the information about a change needs to

be evaluated.

Column II Taking the last event of a sequence of duplicates is useful in applications that handle, for

instance, status information about different sources. The temperature control of a building works

on the basis of scheduled sensor readings. In this case the last reading shows the current value.

Column III Taking all events is only useful in an application in which no duplicates should be omitted,

e.g., in security systems where any event has to be recorded and analyzed. This is also interesting

in applications where information about changes is crucial (e.g., temperature raised by5◦C), or

in a document-oriented application that delivers new documents.

The examples above clearly illustrate that the appropriate semantics and the various possible profiles are

heavily application dependent. The vertical dimension of the matrix shows different versions of profile

filter evaluation: apply the filter to all events (i.e., keep matched events), apply to only the unmatched

events (i.e., consume matched events), and repeat filtering after a first profile match (i.e., consume

matched events and repeat filter). The last approach can lead to a successive matching of possibly all

5.2. Parameterized Event Algebra 65

A I A II A III

B I B II B III

C I C II C III

event instance

selection take first event of

each duplicate list

take last event of

each duplicate list
take all events

event

instance

consumption

keep matched

events

consume matched

events

consume matched

events

repeat filter

: time interval : event instance e1 : event instance e2

Figure 5.5: Profile evaluation under different conditions,◦=̂e1 ∈ E1 and×=̂e2 ∈ E2

events in a list of duplicates (see first/last event of duplicate list). Here, sequences of matching pairs can

be found.

Row A Considering all possible event combinations in a given series (also keeping matched ones) re-

sults in sets of composite events that have single events in common. This applies for instance in

scenarios where each event itself represents a set of events. Examples include trucks delivering

goods to customers, where a set of goods is loaded in the morning but the unloading is realized

by several events (cf. Scenario 2 on Page 15). In this case, the starting event is a combination of

several primitive eventsload product on truck, which can be seen as factorized.

Row B Discarding matched events ensures that each event only takes part in one composite event of

a certain class. This approach is sufficient for applications where single event pairs have to be

found and where no implicit event combinations occur, such as personal ID systems for security

purposes, with personalized cards that have to be checked in and out if entering or leaving the

building.

Row C The repetition of the filtering process after discarding matched events is used, e.g., for parsers

and compilers. A sensible application is an event-basedXML -validator, as proposed in [AF00].

With this method, interleaving event pairs can be identified.

For unary operators, we briefly discuss the profile-event situations for a selection as shown in Fig-

ure 5.6. For unary operators, only the event consumption parameter applies. The examples refer to the

composite event of a selectionE[4]
1 in a given example trace of events. The events are referenced as

◦=̂e ∈ E1, each composite event instance is marked with an arrow, the arcs denote the event instances

contributing to the composition. While the sequential variations support the selection of theith event

within each duplicate list, theselection operates on the full matching list.

In event notification systems, the Siena implements an evaluation style as in situation C I, Rebecca

implements B I and B II, OpenCQ implements C I. In active database systems,SAMOS implements

C III and U B depending on the event operators, Sentinel uses B III, Ode distinguishes evaluation styles

similar to C I, C II, and A III depending on parameters. Even though the systems seem to implement the

same operators, their evaluation leads to different results due to different (implicit) operator semantics.

66 Chapter 5. Adaptable Event Composition

:event instance e1

UA

UB

UC

Event instance consumption for unary operators

keep matched

events

consume matched

events

consume matched

events

repeat filter

Figure 5.6: Unary event operators, profile evaluation under different evaluation conditions

5.2.2 Definition of the Event Algebra

An algebra is a set together with a collection of operations on this set; our event algebra defines a

set of operators (as described informally in Section 5.1) on the event spaceE. Our algebra consists

of three binary operators (disjunction, conjunction, and sequence) and two unary operators (selection

and negation) enhanced by temporal restrictions. In this section, we define our parameterized event

algebra by describing the effect of profiles containing the event operators on a given trace. Note that the

parameters and the operator’s temporal restrictions are not independent.5

We introduce a new terminology6 to refer to each event instance in a trace. First, we concentrate on

the binary operators and their semantical variations. Then, unary operators are considered briefly. We

now define the projection of a trace on events of a certain event class as atrace view.7

Definition 5.3 (Trace View)

Let E1 be an event class. The subsettr(E1) of a given tracetr is defined as ordered list of events that

contains all eventse ∈ E1. We call this subset a trace view.

The trace viewtr(E1, E2) contains alle1 ∈ E1, e2 ∈ E2 with {e1} ∈ tr and{e2} ∈ tr. Note that the

events in a trace view keep all their attributes including occurrence time, but obtain a new index-number.

Trace views define a partition of a trace into duplicate lists. We define a re-numbering on the listtr:

Definition 5.4 (Trace Renumbering)

The listtr is subdivided into disjunct subliststr[1], . . . , tr[n] each containing successive events that are

elements of the same event class. Every element of such a sublist is denoted withtr[x, y], wherex ∈ N

is the number of the sublist andy ∈ [
1, length(tr[x])

]
is the index-number of the element within the

sublist.

5For illustration, consider a sequence of two events((first dup(E1); last dup(E2))T)all pairs: The event instance of
last dup(E2), which is to be taken into account is identified based on the time span T. That means that the last event instance
within the time span T is considered. Thus, the parameter EIS is not independent of the time-restriction of the operator.

6Notations for composite events have already been introduced. Most of the notations are not sufficient – they are only as
expressive as our informal event algebra, e.g., [Car98]. The others are already too restrictive [GD93, GJS92a], they define
separate event operators for (some) semantical variations. These languages operate on the implementation level while our algebra
describes the conceptional level..

7The notion of a view is inspired by database views that hide unnecessary information from the client, giving access only to a
certain portion of the data.

5.2. Parameterized Event Algebra 67

The length of the sublists is defined as the number of list elements. Note that the disjunct subliststr[i]
are duplicate lists as introduced in Definition 5.2.

Example 5.7 (Trace Renumbering)

Let us consider the following trace of events:tr = 〈e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12〉 with

e1, e3, e4, e8, e9 ∈ E1, e6, e7, e10, e11, e12 ∈ E2, ande2, e5 ∈ E3 as shown top left in Figure 5.7. The

(E1, E2)-trace view is then defined astr(E1, E2) = 〈e1, e3, e4, e6, e7, e8, e9, e10, e11, e12〉.
The renumbered trace view is thentr(E1, E2) = 〈tr[1, 1], tr[1, 2], tr[1, 3], tr[2, 1], tr[2, 2], tr[3, 1],

tr[3, 2], tr[4, 1], tr[4, 2], tr[4, 3]〉 with tr[1] = 〈e1, e3, e4〉, tr[2] = 〈e6, e7〉, tr[3] = 〈e8, e9〉, and

tr[4] = 〈e10, e11, e12〉. Obviously, the list length of the first sublist follows withlength(tr[1]) = 3.

Renumbering:Trace tr

View tr(E1,E2)

tr[1] tr[2] tr[3] tr[4]

tr[1,1] tr[1,2]

tr[1,3]

tr[2,1]

tr[2,2]

tr[3,1]

tr[3,2]

tr[4,1]

tr[4,2]

tr[4,3]

Figure 5.7: Trace and renumbering in Example 5.7,◦=̂e1 ∈ E1, ×=̂e2 ∈ E2, �=̂e3 ∈ E3

Note that we denote (unordered) sets of events withE or E while tr[.] denotes lists (ordered sets with

possible duplicates) of events.

As discussed before, for each of the basic operators (e.g., sequence), several semantical variations

exist. Defining each of the variations separately would require a number of definitions for each basic

operator8. Instead, we use a set of parameters to control the variations: The values of the parameters

vmin, vmax, wmin, wmax, andPEIC influence the operator semantics. The values ofvmin, vmax,

wmin, wmax ∈ N control the event instance selection parameter; they refer to the lower and upper

index-number of the selected events within each duplicate list. The definition of the setPEIC controls

the event instance consumption parameter; elements of this set determine the number of the duplicate

lists to form the composition pairs. We discuss the different parameter values subsequently to the basic

definitions. To easily distinguish the profiles for composite events, we denote the profiles with the

operators that have been introduced for the event classes. For instance,p = (p1|p2) denotes a profile

containing a query regarding the disjunction of events, i.e., the defining query for(E1|E2).

Binary Operators. The disjunction implements a selection based on occurrence time (or), no exclu-

sion (xor), i.e., the matching set of the disjunction includes all event instances that match either profile.

We use the matching operator� (introduced in Definition 3.13 on Page 33) to refer to the set of events

that match a certain composite profile.

Definition 5.5 (Disjunction of Events)

Let us consider two Profilesp1 andp2, then holds

(p1|p2) � e ⇔ ∃e ∈ E
(
p1 � e ∨ p2 � e

)
.

8As pointed out, 48 variations for the sequence operator can be constructed from the described variations for EIS and EIC

68 Chapter 5. Adaptable Event Composition

Let us consider the event classesE1, E2 with E1 = {e | e ∈ E, p1 � e} andE2 = {e |e ∈ E, p2 � e}.

The set of matching events of a given tracetr is then defined as

(p1|p2)(tr) =
{
e | e ∈ E ∧ (p1|p2) � e∧

∃v ∈ [vmin, vmax] ⊆ N
+ ∃x ∈ N

+ ∃tr[x, v] ∈ tr(E1, E2)

such that{tr[x, v]} � e
}
.

Different values for the open parametersvmin, andvmax are discussed subsequently (see Page 69 and

Tables 5.2 and 5.3).

We define the semantics of a conjunction of events as follows:

Definition 5.6 (Conjunction of Events)

Let us consider two Profilesp1 andp2, e ∈ E and a given time spanT . Then holds

(p1, p2)T � e ⇔ ∃e1, e2 ∈ E
(
p1 � e1 ∧ p2 � e2 ∧ |t(e2) − t(e1)| ≤ T ∧ {e1, e2} � e

)
.

Let us consider the event classesE1, E2 with E1 = {e | e ∈ E, p1 � e} andE2 = {e |e ∈ E, p2 � e}.

The set of matching events of a given tracetr is then defined as

(p1, p2)T (tr) =
{
e | e ∈ E ∧ (p1, p2)T � e∧

∃(x, y) ∈ PEIC ∃v ∈ [vmin, vmax] ⊆ N
+ ∃w ∈ [wmin, wmax] ⊆ N

+

∃{tr[2x − 1, v], tr[2y, w]} ∈ tr(E1, E2)

such that{tr[2x − 1, v], tr[2y, w]} � e
}
.

Again, different values for the open parametersPEIC , vmin, vmax, wmin, andwmax are discussed

subsequently.

Definition 5.7 (Sequence of Events)

Let us consider two Profilesp1 andp2, e ∈ E and a given time spanT . Then holds

(p1; p2)T � e ⇔ ∃e1, e2 ∈ E
(
p1 � e1 ∧ p2 � e2 ∧ t(e2) ∈

(
t(e1), t(e1) + T

] ∧ {e1, e2} � e
)
.

Let us consider the event classesE1, E2 with E1 = {e | e ∈ E, p1 � e} andE2 = {e |e ∈ E, p2 � e}.

The set of matching events of a given tracetr is then defined as

(p1; p2)T (tr) =
{
e | e ∈ E ∧ (p1; p2)T � e∧

∃(x, y) ∈ PEIC ∃v ∈ [vmin, vmax] ∃w ∈ [wmin, wmax]

∃{tr[x, v], tr[y + 1, w]} ∈ tr(E1, E2)

such that{tr[x, v], tr[y + 1, w]} � e
}
.

As stated for Definition 5.5 and 5.6, different values for the open parametersPEIC , vmin, vmax, wmin,

andwmax are discussed in the next paragraph.

5.2. Parameterized Event Algebra 69

EIS anterior posterior

First event vmin = vmax = 1, wmin = wmax = 1
ith event vmin = vmax = i, wmin = wmax = i
Last event vmin = vmax = length(trant) , wmin = wmax = m
All events vmin = 1, vmax = length(trant) wmin = 1, wmax = m

Table 5.2: Event instance selection: parameters for first,ith, and last event within each duplicate list
(columns I–III in Figure 5.5) wherem ∈ N with ∀j > m : t(trpost[., j]) > t(trpost[., .])+T ,
where the dots are placeholders for the respective values,T as defined for the operator.

EIC anterior & posterior

Unique pairs PEIC = {(x, y) |x ∈ N
+ ∧ y ∈ N

+ ∧ x = y}
All pairs PEIC = {(x, y) |x ∈ N

+ ∧ y ∈ N
+}

Table 5.3: Event instance consumption: parameter for unique and all pairs (rows A and B in Figure 5.5)

Semantical Variations of Binary Operators. We now evaluate different approaches for the parameter

values, which implement different semantics of the operators. We distinguish two dimensions: the

selection of events from duplicate lists (EIS) and the composition of matching pairs (EIC). We use the

notationanterior andposterior to refer to the two operands of the binary operators;trant andtrpost

denote the respective duplicate lists. For the event instance selection, we distinguish several variations to

select events from duplicate lists (as defined in Table 5.2). Each operand has to be evaluated differently,

depending on the position of the operand relative to the binary operator. The selection of theith event

is a (somewhat artificial) generalization of the preceding modes.

For the composition modes for pair matching (event instance consumption), we distinguish two

variations as shown in Table 5.3: the selection of unique pairs (each event in the matching set participates

in one pair only, as in Row B in Figure 5.5) and the selection of all pairs (as in Row A in Figure 5.5).

The third approach as depicted in Row C in Figure 5.5, is a combination of the two dimensions that are

already introduced. Here, we discuss this approach briefly: Only unique pairs are considered (x = y),

matching pairs are removed and the filtering is repeated until all matches are found. The first matches

are, e.g., first/last events of duplicate lists, the second match are second/next-to-last events, and so forth.

Other combinations are plausible. The parameter option of all duplicates for both contributing events

has the same result as without repeated filtering; the combination of different parameter values opens

new result variations.

Unary operators. The definition of unary operators (selection and negation) is shown briefly.

Definition 5.8 (Selection of Events)

Considere ∈ E andi ∈ N, then

p[i] � e ⇔ ∃ei ∈ E ∀j ∈ N with 1 ≤ j ≤ i
(

p � ej ∧ t(ej) ≤ t(e) ∧ {ei} � e
)
.

Let us consider the event classE[i] = {e | e ∈ E, p[i] � e}. The set of matching events of a given trace

70 Chapter 5. Adaptable Event Composition

is then defined as

p[i](tr) =
{
e | e ∈ E[i] ∧ p[i] � e∧

x = 1, ∃v ∈ [vmin, vmax] ⊆ N
+ ∃tr[x, v] ∈ tr(E[i])

such that{tr[x, v]} � e
}
.

Definition 5.9 (Negation of Events)

Consider a time eventet ∈ Et and a given time spant1, then

(p)T1 � et ⇔� ∃e1 ∈ E ∃e2 ∈ Et

(
p � e1 ∧ t(e1) ∈ [t(e2) − T1, t(e2)] ∧ {e2} � et

)
.

Let us consider the event classET1 with ET1 = {e | e ∈ E, (p1)T1 � et}. Then the set of passive events

for a given trace is defined as

(p)T1(tr) =
{
e | e ∈ ET1 ∧ (p)T1 � e∧

x = 1, ∃v ∈ [vmin, vmax] ⊆ N
+ ∃tr[x, v] ∈ tr(ET1)

such that{tr[x, v]} � e
}
.

For selection and negation holds: Unique event instances are detected withvmin = vmax = 1, all event

instances are detected withvmin = 1, vmax = length(tr[x]). Similarly to binary operators, repeated

filtering after event match is more complex.

Evaluation Time. The issue of order and time in a distributed environment is crucial and has to

be considered for an implementation of composite operators. We described sets of matching events

without especially considering the evaluation time. Obviously, the result of a profile evaluation over

a trace heavily depends on the time of evaluation: The very last event within a duplicate list might

only be known at the end of the observation interval. We assumed that event matches including last

duplicates are evaluated after the evaluation interval is finished (final evaluation). But the evaluation

could already start during the evaluation interval (continuous evaluation). In this case, the continuous

evaluation of all incoming events offers the advantage of early notification. Here, a fast but possibly

incorrect information is delivered in opposition to the correct but later information after the ending of

the time frame. An example is shown in situation A II in Figure 5.5 (dashed lines). This approach is

appropriate in several applications, e.g., catastrophe warning systems for environmental surroundings

or other systems for urgent information delivery. We call this additional parameter theevent evaluation

time: final vs. continuous. Final evaluation waits for the end of the composite profile’s maximal temporal

distanceT . Continuous evaluation is carried out continuously untilT is reached.

Adapting Event Composition. As argued in the motivation, a flexible implementation of the differ-

ent operator styles allows for simple adaptation of a profile’s semantics to changing requirements. For

example, our facility management scenario describes amulti-purpose application that processes infor-

mation coming from differently structured sources. Therefore, different parameter settings may have to

be applied for the same initial profile: Our parameterized algebra allows for such as simple adaptation

of client profiles to changing event sources and applications (see Example 5.8). The implementation of

this adaptivity is discussed in Chapter 8.

5.3. Related Work 71

Example 5.8 (Adaptable Profile)

Let us consider profiles P1 from our logistic application (see Table 5.1, page 59). We assume that

the air conditioning system signals a failure only once, therefore, all events are taken into account.

For the temperature events, the handling of events may depend on the current usage of the building.

One option is that each temperature event is detected by several sensors because large rooms contain

several sensors. Then, the sensor readings are duplicated events for that particular room (consider

first dup(E2) in Profile P1). Another option is that each (smaller) room contains only one sensor;

the sensor readings are not duplicates (considerall dup(E2) in Profile P1). For the different options,

different profile parameters have to be applied. The options may change dynamically based on the usage

of the building, but clients do not want to redefine their profiles.

5.3 Related Work

In this section, we briefly review related approaches for event algebras. Event specification semantics

have been developed in various research areas, such as active databases, temporal or deductive databases,

temporal data mining, time series analysis, and distributed systems.

In the area of active database systems, the problem of event rule specification has been addressed

for several years, e.g., [CM94, HW93, Wid96], also with special focus on composite events [GD94,

GJS92a, GJS92b, JS92, YC99, ZU99] and temporal conditions, e.g., [DBB88, DG93, GD94]. Active

database systems can rely on the transactional context for the composition of events. Trigger condi-

tions can be defined based on the old and new state of the database, thus using the concept of state

rather than describing the event itself. For the ordering of database states, the temporal interval opera-

tors as defined by Allen [All91] can be used [MZ97]. Ordering based on events (as opposed to states)

has been implemented inSAMOS [GD94]. SAMOS’s rule language supports a few parameters. How-

ever, these parameters mainly concern database-typical concepts such as sessions and transactions. The

times-parameter is equivalent to our selection operator. The work of Zhang and Unger [ZU96] is closely

related, but parameters and time frames are missing. Active database systems do not support a flexible

adaptation of event evaluation as required in the context of open and distributed ENS. Most aDBS are

centralized systems that deal only with database internal events. Furthermore, the approaches concen-

trate on the implementation level, whereas our work focuses on the application level and provides a

higher abstraction level.

In the context of active databases, temporal logic has been used to describe the semantics of triggers,

e.g., in [MZ97, PW95]. Using temporal logic [AF94] is an alternative approach to describe composition

operators. The most promising approach is the Enhanced Past Temporal Logic (PTL) introduced by

Sistla and Wolfson [PW95], because it supports relative temporal conditions and composite actions.

However, the desired flexibility would be lost9 and not all operators and parameters can be expressed10.

The problem of temporal combination of events is also addressed in temporal and deductive databases.

In these areas, various approaches have been introduced, such as temporal extensions ofSQL [Tan93,

Tom97] and a temporal relational model [NA89]. In contrast toENS, however, temporal and deductive

databases focus on ad-hoc querying. That is, there is no periodical evaluation of a query as needed in

9Small parameter changes for our algebra may require completely new expressions in PTL.
10For example, the PTL expressionB last A describes the same composition as our(last(A); first(B))unique pairs.

But for the very similar(last(A); last(B))unique pairs, no representation exists in PTL.

72 Chapter 5. Adaptable Event Composition

Primitive Composite Operators Supported Explicite
Systems Events Events Parameter Parameters

time conjunction disjunction sequence selection negation Settings
SIFT X - - - - - - - - -
Elvin X - - - - - - - - -
Siena X X - O O X O O CI No
OpenCQ X X X X X X - X CI No

CORBA NS X - - - - - - - - -
OmniNotify X X - X X X - X BI-III No
COBEA X X X X X X - X AIII No
Keryx X - - - - - - - - -
LeSubscribe X - - - - - - - - -
Gryphon X - - - - - - - - -
REBECA X X X X X - X BI-II 1) (Yes) 1)

NiagaraCQ X - - - - - - - - -
SAMOS X X X X X X X X CIII, UB Yes
Sentinel X X X X X X - - CI-II, UB Yes
1) via event-evaluation-time parameter

Figure 5.8: Overview of event operators supported in the profile languages of different systems. The
supported parameters are not implemented as such but are illustrative translations of the op-
erators’ definitions using our terminology. Further details of our analysis of these languages
may may be found in [Jun03].

the context of ENS. The areas of temporal data mining and time series analysis rely on temporal associ-

ation rules [AIS93, AR00, CPH98]. From a set of data, rules verified by the data themselves have to be

discovered. While similar event operations are evaluated, the approaches differ greatly from event filter

semantics discussed here. In event notification services, composite event descriptions are given and the

matching set of data is to be found, while in temporal analysis the data is given and the rules have to be

derived.

Our event algebra may be implemented as profile definition language (as done in ourA-MEDIAS

system). Several event notification services have been implemented, but none of these supports a flex-

ible filter evaluation similar to our approach. Figure 5.8 shows the results of our evaluation of profile

definition languages in various systems using the parameter set introduced here. We distinguish whether

the operators are supported (×), modelled but not implemented (◦) or not supported (−). The column

referring tosupported parameter settings describes the semantical forms supported in the systems ex-

pressed in our notation. The overview shows that none of these systems support all parameter variations

and that the semantics for the same parameters varies.Explicit Parameters refer to the fact that the client

is aware of the parameter setting and may, eventually, change it.

Only a few systems support advanced composite events. Additionally, in most systems a single

mode is implemented for event instance selection and consumption, respectively. Often, these can only

be derived from each system’s behavior: No operators or parameters refer to semantical variations.

5.4 Summary

In this chapter, we proposed a parameterized event algebra for event notification services. The event

algebra was introduced in order to describe the event operators that form composite events. In an ad-

ditional step, we introduced parameters for event instance selection and event instance consumption.

5.4. Summary 73

Event instance selection describes which qualifying events from the trace are taken into account for

composite events, and how duplicate events are handled. Event instance consumption defines whether

unique composite events or all combinations of events are taken into account. The combination of both

parameters also offers the definition of filter pattern similar to the ones applied in parsing. The algebra

and parameters are defined based on binary operators, by the nesting of composite events. The intro-

duced semantics can easily be extended to sets of events. Note that the formalism used in this chapter

is similar to the one of the relational algebra. The relational algebra lacks the concept of ordering,

therefore, we introduced an ordering relation on event traces.

The chapter was completed by a detailed analysis of the profile languages of related event-based

approaches. The results of the analysis reinforce the uniqueness of our adaptable approach. In contrast

to other systems, the approach presented here supports event-based applications that cover changing or

new event sources without forcing the clients to redefine their profiles for each new source. It is also

suitable for integrating applications that combine events from sources with different event semantics.

The use of our event algebra for the adaptation of client profiles to changing sources and applications

is discussed in Chapter 8. The implementation of our parameterized algebra as a profile definition

language in ourA-MEDIAS system is introduced in Chapter 9.

74 Chapter 5. Adaptable Event Composition

