
Chapter 4

Review and Analysis of Event

Notification Services

It is not once nor twice but times without number

that the same ideas make their appearance in the world.

Aristotle, On the Heavens

In this chapter, we present a comprehensive review and analysis of the state of the art in the area of event

notification services. This evaluation of related work is based on our model forENSas introduced in the

previous chapter. The analysis follows the requirements for event notification identified in Chapter 2.

The chapter is divided in two parts: In the first part, related event notification systems are analyzed.

For each of the selected systems, we give a brief overview of the main focus and achievements. Our

reference model and the event notification sequence are used to structure and to visualize the analysis.

Special attention is given to the system’s support of the requirements for event notification systems as

discussed in Chapter 2. We discuss the limitations of the introduced approaches.

In the second part of the chapter, we provide a brief survey of related research areas and base

technologies that are either related to our approach or could be used as base technology for imple-

mentation, such as message queuing systems. For each area, we describe the main focus and name

relevant approaches. We illustrate the influence of the approaches on our work and discuss, which of

the technologies can be used as a basis for an implementation of an integratingENS.

We conclude the chapter with a summary of the limitations of existing event notification services.

40 Chapter 4. Review and Analysis of Event Notification Services

4.1 Analysis of Event Notification Systems

Several implementations ofENS exist, some of these are application-independent, e.g., Elvin [SA97],

CORBA Notification Service [OMG99], Siena [CRW01], Keryx [BK97a], and LeSubscribe [PFJ01].

Other services have been designed for certain applications, such as Hermes [FFS+01] for Digital Li-

braries,DAOS[LCB99] for air traffic control, Gryphon [SBC98] and REBECA [MFB02] for E-Commerce,

and Genesis [SF96] for traveller information.

In this section, selected systems are introduced in detail. We identify four types of event notification

services. For each type, one example event notification system is analyzed in detail. For each system,

we identify the architecture and describe its main parts. The project context and focus of the imple-

mentation is given briefly. The systems have been selected for their influence onENS research – each

system example represents a particular approach. Some of these systems will serve as examples for

the evaluation of various aspects of event notification systems. In addition to the detailed analysis, we

briefly describe a number ofENSand compare the systems to the four types.

Note that theCORBA Notification Service (CORBA NS) and active database systems (aDBS) may be

seen as event notification systems or as implementation technology for ENS, e.g., as done in [LYO98].

In this chapter, theCORBA NS and selected aDBS are analyzed as event notification systems. How-

ever, ENS can be implemented on top of each other. For example, the OmniNotify [Omn02] and

COBEA [MB98] are based on aCORBA NSimplementation.

4.1.1 SIFT: Centralized, Document-centered System

One of the earliest notification systems developed wasSIFT [YGM95, YGM99], a tool for wide-area

information dissemination. It is now commercially operated as news service InReference [InR03]. The

Stanford Information Filtering Tool (SIFT) focuses on the distribution of full-text documents. Clients

subscribe to selected documents by submitting their profile. The profiles inSIFT includeIR-style queries

with keywords and additional parameters to control the frequency and the content of notifications.

Clients can select between boolean profiles and profiles based on the vector space model.

Filtering

Engine

AlerterDatabase

Subscription

Request Handler

Email/WWW

Index

SIFT

Email Update

User Documents

Document/Profil

Figure 4.1:SIFT architecture [YGM95]

4.1. Analysis of Event Notification Systems 41

SIFT has a centralized architecture as shown in Figure 4.1. The events are sets of new documents.

Publishers have to actively forward their full-text documents to the system. The documents are then

stored in a centralSIFT repository, which is not shown in the architecture. The filter engine matches

the new documents against the client profiles, unmatched documents are discarded (see Figure 4.2).

Then, the alerter forwards the matched documents to the interested clients, immediately or according to

a predefined schedule (indicated by the deferred notification arrow in Figure 4.2).

Dokuments entering
the SIFT system

time

Filter

= Filter Engine

Notifier

= Alerter

Dokuments forwarded
to the clients

Figure 4.2: Event notification sequence inSIFT: Documents are filtered inSIFT and then directed to the
clients

Figure 4.3 shows our reference model ofENS systems as introduced in Chapter 3 with the logical

parts that are included in theSIFT system standing out in gray. Because the providers have to send the

documents (information objects) directly to the service, theSIFTsystem does not implement an observer.

The central document repository acts as event message repository, the subscription database as profile

repository. The filter and notifier parts are implemented via filter engine and alerter. TheSIFT project

has evaluated efficient filtering techniques to match profiles and documents. The inverted index of

profiles [YGM94b] used inSIFT has influenced several other implementations, e.g., Hermes [FFS+01].

Provider Event Notification Service: Sift Client

Information
Object

Object
Repository

Event
Repository

Notification

Profile
Repository

Notification
Buffer

Invoker Observer Filter Notifier

Event
Message
=Document

Query Options

Profile

notify

create
update
delete

detect
changes

create

create

create

get query
get schedule

store

send message
=document

send message
=document

notify

get schedule
get format

store

compare

Figure 4.3: Logical parts implemented inSIFT (in gray)

Analysis: The system’s functionality is more closely related to Information Retrieval systems than

to current event notification systems. Event messages are passively received by theSIFT system. The

system has no event model, only filtering of full-texts of newly published documents is supported.

The system is not explicitly aware of differing document sources; the filtering follows static rules.

No composite events are supported in theSIFT profile language, therefore, only simple cooperation

42 Chapter 4. Review and Analysis of Event Notification Services

of different providers is possible. Temporal awareness is not needed because time-dependent profiles

are not covered by the profile language.SIFT provides good performance for text-centered filtering

as needed inIR systems. Scalability has been addressed by usage of sophisticated document filtering

algorithms. A distributed architecture has not been implemented forSIFT.

4.1.2 Elvin: Simple Distributed System

Elvin [SA97, ASB+99] is a notification service for controlling and monitoring applications within a

distributed system. Conceptually, it is closely related to theCORBA Notification Service1 It has been

developed at theDSTC, Queensland, Australia, as a testbed for distributed federated algorithms. Appli-

cations based on Elvin are, e.g., Tickertape and Orbit. Tickertape [FPSK98] is a news ticker that can be

used for group communication (see Scenario 4 on Page 17). Orbit [MT97] is a distributed workspace

system that provides, e.g., facilities for distributed authoring on a shared document repository (see Sce-

nario 4 on Page 17). In Orbit, the Elvin service is used as medium for awareness notifications.

The current implementation Elvin4 uses a distributed client-server architecture (see Figure 4.4).

Clients subscribe at the service by sending profiles to the read thread of the server. The profiles are

stored within the subscription database. Profiles are defined by means of (attribute;value) pairs. Only

primitive content profiles are supported.

Read
Thread

Notification
Thread

Notification Queue

Management Queue

Subscription Queue

Client

Quench
Thread

Subscription
Database

subscription
comparison
engine

Subscription
Thread

Management
Thread

Figure 4.4: Elvin architecture [SA97]

The providers send event messages to the service via the read thread, only active providers are

supported. In Elvin, event messages are called notifications. The messages are routed to the clients

(see Figure 4.5). The messages are matched to the profiles via the subscription comparison engine. The

server filters only those events for which profiles have been defined, this technique is calledquenching.

Due to quenching, all incoming messages have interested clients: Figure 4.5 shows that no messages are

rejected and all messages are delivered immediately. Elvin is, therefore, called a ’content-based routing

service’. Quench expressions prevent providers from sending event messages to which no client has

subscribed. They can additionally be used to establish profile-driven observers. These observers are

implemented as independent applications and are not part of the Elvin system.

1The DSTC was a contributor to the OMG Notification Service RFP and ultimately, one of the submitters of the CORBA
Notification Service standard.

4.1. Analysis of Event Notification Systems 43

Messages entering
the Elvin system

Filter

= subscription
comparison
engine

time

Messages forwarded
to the clients

Figure 4.5: Event notification sequence in Elvin: Incoming messages are routed to clients

Figure 4.6 depicts the parts of the reference model that are implemented as components in Elvin.

The observation of the events is done at the providers’ sites. The subscription database acts as a profile

repository. Event message persistency is not supported. The filter is implemented via the subscription

comparison engine. Because messages are only routed to the clients, no notifier (as defined in our refer-

ence model) is implemented. The current focus of the Elvin project is on security and filter performance.

Provider Event Notification Service: Elvin Client

Information
Object

Object
Repository

Event
Repository

Notification

Profile
Repository

Notification
Buffer

Invoker Observer Filter Notifier

Event
Message Query Options

Profile

notify

create
update
delete

detect
changes

create

create

create

get query
get schedule

store

send message send message notify

get schedule
get format

store

compare

Figure 4.6: Logical parts implemented in Elvin (in gray).

Analysis: The service supports filtering and routing of event messages. It is not based on an event

concept but on the handling of structured documents containing (attribute;value) pairs. The observation

of events is not part of the service. Only profiles regarding primitive events are supported. It could

be argued that the Elvin service is merely an event-based infrastructure on middleware level and not a

full event notification service. The service may support coordinating sources, but, due to the lack of

composite event support, integration of event information is not possible in Elvin. The service does not

adapt to changing sources. The filter engine is based on the Gough-algorithm [GS95], which is one of

the fastest filtering algorithms for (attribute;value) pairs [FLPS00]. Scalability of the Elvin system is

achieved by distributing the system’s components.

4.1.3 Siena: Distributed Network of Servers

The Siena research project [CDRW98, CRW01] at the University of Colorado focuses on the design of a

generic scalable event service that routes messages through a wide-area network. The Siena architecture

is implemented as a distributed system that consists of a network of event servers (see Figure 4.7). The

parts of each event server are implemented as distributed components.

44 Chapter 4. Review and Analysis of Event Notification Services

Clients Event Servers

Event Service

Figure 4.7: Structure of a Siena service consisting of a network of event servers [CRW01]

The system acts as a dispatcher of event messages. Clients of Siena can be providers or clients or

both. The dispatching of event messages is regulated by advertisements announcing events, subscrip-

tions (profiles), and the publication of events. The event messages are (attribute;value) pairs. Adver-

tisements announce the publication of certain event message types. Profiles are simple predicates on

attribute values with limited composite operators.

Siena’s cooperating event servers can be organized in hierarchical or in peer-to-peer manner, the

components can be dynamically reconfigured. In Siena, delivering a notification to all interested clients

means forwarding the event message through the network of servers (see Figure 4.8). The profile infor-

mation are used for the network routers. Figure 4.8 shows primitive and composite events (indicated by

the bar resulting in a single arrow).

Server

Event
Server

Event
Filter

= dispatcher

Filter

= dispatcher

Messages entering
one Siena Event Server

Messages entering
another Siena event server

time

Messages forwarded
to the clients

Messages forwarded
to the clients

Figure 4.8: Event notification sequence in Siena: Incoming messages are forwarded through the network
of servers (routing).

The Siena filter implementation is based on principles fromIP multicast routing protocols: down-

stream duplication and upstream monitoring. In downstream duplication, each message is routed as

far as possible and then duplicated downstream. Upstream monitoring is the placement of filters and

composite event pattern recognizers as close to the sources as possible.

Figure 4.9 identifies the logical parts derived from the system’s functionality. Only limited informa-

tion about the event server implementation is available. Because only active providers are supported,

observation has to be implemented by the providers. Due to the routing of event messages, no notifier

component is necessary. The routing tables in each server act as profile repository.

4.1. Analysis of Event Notification Systems 45

Provider Event Notification Service: Siena Client

Information
Object

Object
Repository

Event
Repository

Notification

Profile
Repository

Notification
Buffer

Invoker Observer Filter Notifier

Event
Message Query Options

Profile

notify

create
update
delete

detect
changes

create

create

create

get query
get schedule

store

send message send message notify

get schedule
get format

store

compare

Figure 4.9: Logical parts implemented in Siena (in gray)

Analysis: The Siena service implements filtering and dispatching of event messages that enter the

system’s network of event servers. Hierarchical, acyclic/generic peer-to-peer, and hybrid architectures

of the network of event servers have been simulated. Filters and notifications are dispatched upward and

downward the network to achieve scalability within a wide area network.

In the Siena service, event observation is not supported; a rudimentary event model is used in adver-

tisements to announce event messages. Theoretically, Siena supports composite events, but practically

only the detection of event sequences has been implemented. Profiles regarding composite events are

subdivided, then the matching sub-patterns are monitored and reported to the network. The event fil-

tering does not consider temporal influences and restrictions. The filtering does not flexibly react to

changing sources.

4.1.4 OpenCQ: Distributed System with Sophisticated Language

Within the Continual Queries Project [LPBZ96, LPT99a] at the Oregon Graduate Institute of Science

and Technology, a number of tools for update monitoring and event driven information delivery have

been developed. The main contribution of the project is the newly developedcontinual query language

for profile definition. In Continual Queries (CQ), a client’s interest is defined in aSQL-like manner.

Profiles consist of a query, a start-trigger, and a stop condition. The language allows for sophisticated

definition of profiles. It has been implemented in several prototypes, e.g., OpenCQ [LPT99a], CON-

QUER [LPTH99], and JCQ [LPT99b], mainly for logistics applications (see Scenario 2 on Page 15).

For the analysis, we concentrate on the OpenCQ system. OpenCQ has a three-tier architecture:

client, server, and wrapper (see Figure 4.10). The client tier is primarily responsible for receiving

client profiles. The system supports time-based, active content-based events, and composite events.

Passive events are not supported. The profiles are stored in the system repository. TheCQ server at

the second tier evaluates the profiles: For each continual query, an update monitoring program creates

distributed programs that keep track of information sources, their availability and changes. After an

initial submission of object states, the profile query is evaluated after the start trigger fires. Until the

termination condition is met, OpenCQ sends notifications about matched events to the interested clients.

At the third tier, wrappers keep track of time events or update-specific data. Only events whose attribute

values cross a given threshold are presented to the server. The OpenCQ system supports passive and

active observation: Passive observers are triggered by the providers. For each source, a push-client agent

46 Chapter 4. Review and Analysis of Event Notification Services

Client

Database
Source

OUT

CQ Installation

Client registration

Respository

System Continual Query
Manager

Notificatin

Manager

Change

Query
Evaluator

Distributed Query Router and Scheduler

Time-based
Event Detector

Distributed Trigger Evaluator

Content-based
Event Detector

Server/
Mediator
Tier

Tier

Tier
Wrapper

Wrapper 1 Wrapper 2 Wrapper 3

File System Source Web HTML Source

Figure 4.10: OpenCQ architecture [LPT99a]

has to be implemented that listens to the broadcast sources and presents the collected information to the

service. The other components of the server interact on a pull basis with the wrappers. Active observers

are triggered by the trigger evaluator. The event detector and the trigger evaluator implement the passive

observer functionality and execute the task of a filter, the query evaluator provides the content of the

notification, and the change notification manager acts as notifier. In Figure 4.11, we show primitive

and composite events (indicated by the bar resulting in a single arrow, as well as scheduled delivery

(indicated by the deferred notification arrow). The logical parts of OpenCQ are shown in Figure 4.12.

The active and passive wrappers are shown as observers on both the system’s and the provider’s site.

Event Messages
entering the CQ system
via passive Observer

Filter

= Trigger Evaluator
+ Query Evaluator

Notifier

= Change Notification Manager

of Interest
Object

Observer

Event Messages
entering the CQ system
via active Observer

= Query Router+Scheduler
+ Wrapper

time

Notifications forwarded
to the clients

Figure 4.11: Event notification sequence in OpenCQ: Events are actively and passively observed by the
service; the event messages are filtered and notifications are sent to clients.

4.1. Analysis of Event Notification Systems 47

The system repository acts as both the profile and event repository. The filter part is implemented via the

trigger and query evaluator, and is controlled by the distributed query router and scheduler. The notifier

part is implemented via the change notification manager.

Observer

Observer

Provider Event Notification Service: Continual Query System Client

Invoker Filter Notifier

Notification

Notification
Buffer

Profile
Repository

Event
Repository

Event
Message

Information
Object

Object
Repository

create
update
delete

detect
changes

notify

create

get query
get schedule

store

send message send message notify

compare

get schedule
get format

create

create store

Query Options

Profile

Figure 4.12: Logical parts implemented in OpenCQ (in gray)

Analysis: OpenCQ enables sophisticated profiles in SQL-like style based on an event model. The

CQ language supports primitive and composite events. Passive events are not supported. The evaluation

style of continual queries is fixed. Passive and active observers are implemented, the influence of dif-

ferent observation styles (temporal awareness) is not considered in the profile evaluation. The system’s

performance is achieved by the use of trigger indices, database-techniques for multiple-query optimiza-

tion, and incremental condition evaluation. The system’s scalability is based on the distributed trigger

facility and distributed event detection. However, OpenCQ does not provide adaptation to changing

sources and application as proposed in this thesis.

4.1.5 Overview of Further Event Notification Services

In this subsection, we briefly analyze additional event notification systems. The systems’ capabilities

are compared to the four extensively evaluated event notification systems.

CORBA Notifications Service. TheCORBA Notification Service [OMG99] is part of the widely used

CORBA Object Request Broker (ORB). It is a standardized model for a decoupled, event-based com-

munication via channels. The service enhances theCORBA Event Service [OMG97b] by structured

events, event filtering, transactions, and reliability considerations. Providers supply events to notifica-

tion channels while clients register simple filters with channels. A notification channel forwards all

supplied events that pass its filters to each registered consumer. Filter constraints can only be defined

for structured event messages.

The notification service filters only actively submitted event messages, it provides neither an event

model nor active observation of events. Similar to Elvin (Section 4.1.2), the notification service sup-

ports profiles regarding primitive events in a distributed environment and implements only the fil-

ter part of ourENS model. The notification service is covered only by someCORBA implementa-

tions [ION01, Dco02, Ope03]. TheCORBA notification service is the basis for severalENS; examples

are theREADY/OmniNotify system [GKP01] and theCOBEA system [MB98].

48 Chapter 4. Review and Analysis of Event Notification Services

YEAST/READY/OmniNotify. TheYEAST event action system [KR95] and its successor, theREADY

notification service [GKP99], have been developed at AT&T.READY is a distributed system similar to

Siena:READY implements a number of event servers that can form differently structured hierarchies.

READY focuses on high-level constructs, such as primitive and composite events, and ordering proper-

ties for event delivery. The profile handling inREADY is focused on grouping of client interactions and

zones for administrative interactions. The main feature ofREADY is the support for composite events

and its grouping functionality: Profiles can be grouped such that clients may share their profiles, session

grouping allows for uniform control over the profiles’ QoS and delivery properties. Here, the service

uses the principle of structured events as introduced in theCORBA Notification Service. Recently, the

system has been re-implemented to supportCORBA and theCORBA notification standard; it is now

called OmniNotify [Omn02]. Similar to Siena, the system supports efficient filtering of composite

events in a distributed environment.

COBEA. COBEA [MB98] is a general event architecture for building distributed active systems; it has

been developed by the Opera group at the University of Cambridge. It is implemented as a distributed

service and supports profiles regarding composite events.COBEA’s implementation is based on the

CORBA notification service; the project focuses on scalable event delivery in networks. The system

architecture does not support active event observation. COBEA uses an event model for the handling

of event messages. The processing of composite events is based on the Cambridge Event Architec-

ture (CEA) [BBHM96]. The COBEA system is employed in an alarm correlation system for network

management in telecommunications [Ma97].COBEA is conceptually similar to OmniNotify and Siena.

Keryx. Keryx [BK97b, LRW97, Low97], the former Nexus Event Service, was a project at Hewlett

Packard Laboratories, Bristol, for distributing event messages on the Internet. Similar to Siena, the

Keryx system implements a hierarchy of event distributors in order to achieve scalability. Event mes-

sages are routed through the system. Clients subscribe to notifications, the service does not implement

every filter completely or at all: When an event distributor is unable to implement a requested filter, this

is indicated to the client and the distributor delivers the events unfiltered. The event dispatcher imple-

ments only the filter and the notification part, observer and invoker reside on the event publishers’ sites.

Keryx is not based on an event concept, but provides a profile definition language that covers sophisti-

cated primitive events supporting extensive combinations of attribute predicates. The Keryx system is

the basis of a distributed virtual environment [WH98], which can be used, e.g, to display an active office

plan indicating the location of all employees in the building.

LeSubscribe. LeSubscribe [PFLS00, PFJ01] is a content-based publish-subscribe system developed

at INRIA, Paris, in the context of the Caraval project. LeSubscribe is a centralized system that supports

passive and active observation of events, namely Internet auctions. Similar to the Elvin system, only

primitive events are supported. The system is based on an event model that is rather document centered

but considers semi-structured event messages and various event message types. The system’s filter

algorithm aims at balancing the tradeoff between performance and maintenance. A prototype called

WebFilter [FJL+01] extends the LeSubscribe system to enableXML processing.

4.1. Analysis of Event Notification Systems 49

Gryphon. Gryphon [SBC98, BCM+99] is a distributed content-based message-brokering system de-

veloped atIBM. While Gryphon’s structure is similar to Siena’s, its filtering techniques are comple-

mentary to those of Siena. Gryphon uses distributed filtering to match a notification to a large set of

profiles [ASS+99]. The main difference to Siena is that Gryphon propagates every profile everywhere in

the network, whereas Siena propagates only the most generic profiles. Gryphon is not based on an event

concept; only event message routing is supported. The system neither implements active observation

nor filtering of composite events.

REBECA. TheREBECAEvent-Based Electronic Commerce Architecture [MFB02, FMG02] is a project

at the Technical University Darmstadt. The project focuses on event filtering in a distributed environ-

ment. Profiles are distributed within the service network using several optimization strategies, e.g., the

prevention of repeated profile distribution. Event messages are distributed to event filters according to

their content [MFB02]. Based on the proposed techniques, theREBECAarchitecture can be seen as an

extension of the Siena approach. Awareness of temporal delays in event composition has been addressed

in [LCB99]. The current prototypes support stock exchanges applications and meta-auctions. The ser-

vices’ design follow a modular approach (scopes in [FMG02]) to hide internal configurations and to

support for heterogeneous environments. Scopes inREBECAan extension of the concept of groups and

zones inREADY.

NiagaraCQ. NiagaraCQ [CDTW00] is part of the Niagara project at the University of Wisconsin,

which aims at developing a distributed database system for querying distributedXML data sets. The

system filters streamingXML data using a simple form of continuous queries as proposed for OpenCQ

(regarding primitive and time events). A large number of clients may register continuous queries using

the query languageXML-QL [DFF+99]. The filtering in NiagaraCQ uses filter grouping techniques as

proposed for query optimization in active databases [HCH99]: NiagaraCQ builds static plans for the

different profiles in the systems, and allows two profiles to share a filter module if they have the same

input. The grouped profiles share computation and save memory and I/O costs. Niagara employs an

event model and uses active and passive observation. No profiles regarding composite events are sup-

ported. Similarly toSIFT, NiagaraCQ focuses on (XML) documents. It is implemented as a distributed

service without taking advantage of the distribution for efficient filtering.

SAMOS. The active database systemSAMOS[GD92, GD94] has been developed at the University of

Zurich. The system supports Event-Condition-Action (ECA) rules that can be seen as client profiles.

Only database events are supported, external events cannot be specified.SAMOS supports composite

events; the event detection is implemented based on colored Petri-Nets. The system supports param-

eters for event specification that allow for the selection of event instances based on database-related

characteristics, such as the same transaction or the same client. Samos does not support distribution.

The focus of theSAMOSprototype is on the client-friendlyECA rule specification language and on the

Petri-Net implementation of rules. The rule specification inSAMOSis similar to the profile language in

OpenCQ restricted to database-internal events.

50 Chapter 4. Review and Analysis of Event Notification Services

Sentinel. Sentinel [Cha97] is an integrated active database system developed at the University of

Florida; it supports the evaluation and management ofECA rules. Sentinel uses the OpenOODB Toolkit

as underlying platform. The rule specification has been integrated in the C++ language. The rule specifi-

cation implements Snoop [CM93], an expressive event specification language for aDBS. Snoop supports

composite events with temporal restrictions and additional consumption policies (recent, chronicle, con-

tinuous and cumulative). Sentinel supports database-internal events and external events. Internal events

are observed by the system, external events are externally submitted to the system. Sentinel does not

support the active observation of events outside the database. Sentinel is implemented as a central-

ized system. However, Snoop supports event detection in a distributed environment. The Global Event

Manager [CL01] is an extension to Sentinel that detects events in a distributed environment. The ex-

tended Sentinel is comparable to OpenCQ. Active database systems with support for external events

can be used as base technology to implement event notification systems, as done, e.g., in the Ariel sys-

tem [HICD+98].

In this section, we analyzed in detail four event notification systems that represent basic system types

for ENS. Additional systems have been described in relation to these basic types. However, a large num-

ber of event notification systems are referenced in research literature.2 We could not name all systems

related to the topic of this thesis – our analysis is illustrative rather than comprehensive. We focussed

on approaches that are closely related to ours. Further systems could be named in this context, e.g.,

CEA [BBHM96], Deeds [DMDP99],EVE [TGD97],GEM [Man95], Herald [CJT01], Scribe [RKCD01],

andA-TOPSS[LJ02].

4.2 Related Event-based Technology

Having analyzed the directly related approaches in the previous section, we now present an overview

of areas closely related to the topic of this thesis: event-based infrastructures, Internet notification pro-

tocols, low-level event-based communication, and design patterns for event-based communication. We

describe the main focus of these areas and name relevant approaches. For each topic, the connections

and differences to the area of event notification systems are discussed briefly. These approaches are

introduced to further illustrate the focus of this thesis and to consider adjoining areas that influenced our

work. We discuss, how these technologies may be used as a basis for an implementation of anENS.

4.2.1 Event-based Infrastructures

Event-based infrastructures (EBI) support asynchronous message exchange between objects in a dis-

tributed environment. These infrastructures are also called message-oriented middleware (MOM) or

Message Queuing System (MQS). EBI define a middleware for interoperability of independent, heteroge-

neous systems; they build an abstraction for program-to-program communication. The communication

is performed in a peer-to-peer manner, where the communication objects (messages) remain anony-

mous. Programs send messages to a passive communication abstract, often called queue or channel.
2A selection can be found in a link collection on event-based computing [Buc03] that is maintained by the University

Darmstadt.

4.2. Related Event-based Technology 51

Consumer programs have to actively request the messages.

Primary applications forEBI are independent, heterogeneous application systems, e.g., business-to-

business transactions. Examples forEBI areJEDI [CDF98], Talarian SmartSockets [Tal98], and Java

Distributed Event and Message Service [HBS99]. Several systems are closely based on a database

system, e.g., Advanced Queuing [Ora99] by Oracle. Others are self-contained systems, such as Mes-

sageQ [BEA00] and MQSeries [IBM95]. We briefly introduce MQSeries in the following paragraph.

The services provide very different functionalities, ranging from simple put/get-messages for single

clients to publish/subscribe and multicast functions to serve multiple clients.

WebSphere MQ (formerly MQSeries). The WebSphereMQ system [IBM95] byIBM implements a

sophisticated communication system with a wide range of options. It supports a variety of commu-

nication styles, such as multicast (’distribution list’), point-to-point, and group communication. The

system consists of providers of messages, several message queues, and clients receiving messages. The

providers post their messages to selected queues, clients receive all messages of the queues to which

they are subscribed. This method is similar to channel-based and subject-based filtering.

By using trigger messages, an event-based processing of the messages can be realized. For example,

the triggers can specify whether the client is notified on the first message posted to an empty queue

or on all messages in the queue. The message queue is a passive object, the queue manager actively

processes messages and evaluates triggers. It is possible for the clients to read, retrieve, or browse in the

message queue. Blocking, or non-blocking get-methods are available to the clients. The messages can

be sent within a transactional context; logging of messages is also supported. The system is well suited

for high-reliability applications, such as ECommerce systems.

Event notification services can be built on top of event-based infrastructures, e.g., as done in an early

version of the Hermes system [FFS+01]. The profile definition languages provided in event-based

infrastructures are too limited for an integratingENS. The trigger messages in MQSeries have inspired

our work on adaptive event handling.

4.2.2 Internet Notification Protocols

Several protocols have been proposed for detecting changes in Internet sources. Most of these ap-

proaches have not been implemented but remained as W3C working drafts or standard proposals. The

proposals for new protocols are usually characterized in their relation to HTTP [RK98b]: (a) HTTP

extensions (e.g., GENA Base [CA98],DRP [Hof97], ENP [Red98],SWAP [Swe98]), (b) loosely based

on HTTP (e.g.,RVP [CD97]), and (c) not based onHTTP (e.g.,BLIP [Jen98],SGAP[Day98]).

Other approaches are protocols for widely used services such asNNTP for Newsgroups,SMTP for

List addresses, andHTTP for Callbacks. A third group of Internet protocols supports the informa-

tion exchange in personalized Internet applications, for example,P3P[Rea98],PICS [W3C03a], and

OPS[NET99b]. These so-called social protocols support simple personalization and filtering of ser-

vices. Emphasis is on the definition of profiles that describe general personalization parameters. Here,

we briefly introduce an example for each of the three groups: theHTTP-extensionGENA Base, the

newsgroup protocolNTTP, and theP3Pstandard approach.

52 Chapter 4. Review and Analysis of Event Notification Services

General Event Notification Architecture Base (GENA Base). The General Event Notification Ar-

chitecture Base [CA98] defines aHTTP notification architecture that supports the transmission of no-

tifications betweenHTTP resources using call-back. Different toENS, the resources are not mutually

anonymous. The protocol defines the components subscription and notification. Resources transmit

notifications about events (resource change) asHTTP request using the notify method, client pull is also

supported. Event messages reference state attributes and their current value. Subscriptions establish

a relationship where automatic notifications are triggered by certain events, i.e., attribute changes; the

communication partners are not anonymous. The subscribers of a resource receive all event messages

for attributes that have changed. TheGENA Base format is used for event notification in the UPnPTM

architecture that offers peer-to-peer network connectivity, e.g., in Windows XPTM .

Network News Transfer Protocol (NNTP). The Network News Transfer Protocol [KL86] is the main

protocol used for the Usenet news system. It implements a many-to-many communication. The mes-

sages provide additional header-information that can be evaluated byNNTP-commands to direct their

distribution. NNTP servers store messages, forward them to clients, and exchange messages with other

servers. Usenet messages are posted in newsgroups that are organized in a hierarchical manner based

on subjects. NNTP provides simple filter capabilities for selecting messages according to group names

and message date. The filter mechanism is not very sophisticated, thus limiting the application of the

NNTP for event notification services.

Platform for Privacy Preferences (P3P). The Platform for Privacy Preferences Project [Rea98] de-

fines a standard format to describe privacy information for web-sites, e.g., the data category describes

the site’s content, the data collection purposes, and the advised practice of usage. The profiles can be

used for content regulation, web-markets, and privacy. These protocols are also called social protocols.

The focus is on the privacy information definition, which is similar to a profile definition.

TheP3Pformat can be automatically read byP3Pclient agents in order to inform clients about the

site’s practices and to allow for automatic decision-making based on these practices. TheP3Pinforma-

tion will be exchanged inRDF/XML format. P3Pis a recommendation from theW3C, currently only a

small number of client agents and policy generators has been implemented.

The first two groups of Internet notification protocols define communication means to establish event-

based service on the system level. The protocol implementations can be seen as simplified and system-

related implementations of event notification systems. The third group of social protocols is related to

profile definition languages.

4.2.3 Low-level Event-based Communication

A number of techniques for network communication implement transport mechanisms for notifications.

These technologies implement wide-area notification, even though none of these technologies is de-

signed to realize an Internet-scale event notification service as addressed in this thesis.

4.2. Related Event-based Technology 53

IP Multicast. IP Multicast is a network-level infrastructure that extends the Internet Protocol (IP) to

realize one-to-many communication. The network implementing the extension is called MBone. Here,

a multicast address is a virtual IP address that corresponds to a group of hosts. Data addressed to a

host group are routed to every host that belongs to the group. The cooperation of web-based network

management andIP Multicast has been analyzed by Martin-Flatin [MF98b, MF98a].

Domain Name Service. A Domain Name Service (DNS) maps symbolic domain or host names onto

IP addresses. DNS has a distributed architecture, whereDNS servers form a hierarchical structure. This

hierarchical structure is also present in the data that are managed (host names are partitioned in domains

and subdomains). In contrast, event notifications are not hierarchically structured.

Although the communication techniques introduced here cannot be employed directly to implement

an ENS, several architectural ideas can be adopted. Examples are the routing and filtering techniques

applied in the Siena system.

4.2.4 Design Patterns for Event Notification

Several design patterns for event observation and notification have been proposed, e.g., the observer

pattern [GHJV95] and the event notification pattern [Rie96]. Both patterns are approaches to instantiate

the observation process. The structure of the observer pattern [GHJV95] is consistent with our reference

model (see Figure 4.13(a)). It consists ofobservers andsubjects. Theobserver (Invoker)3 changes the

subject’s (Information object) state and, subsequently, variousobservers (Observer) are notified about

the state change. The pattern defines a one-to-many dependency between asubject object and any

number ofobserver objects so that, when the subject object changes its state, all its observer objects are

notified and updated automatically.

Observer

Subject

Observer

change notify

(a) Observation Pattern

EventStub

Observer Subject

StateChange

indirect
invocation

1..1

1..*

1..1

1..*
1..* 1..1

implicit
invocation

(b) Event Notification Pattern

Figure 4.13: Object and observer interactions in design patterns

The event notification pattern [Rie96], in contrast, additionally models aStateChange as an object,

as well as anEventStub (see Figure 4.13(b)). TheSubject defines its abstract state in terms ofState-

Change objects. TheStateChange object offers operations to register and unregister observers via

EventStub objects. Observers provide theEventStubs with an operation reference to be called in case of

invocation. TheStateChange can be compared to event messages in our model, theEventStub models

simple routing filters and observer interfaces.

3In parentheses, we show the respective terms used in our model.

54 Chapter 4. Review and Analysis of Event Notification Services

R1 R2 R3 R4 R5 R6
System Elaborated Active/Passive Integration of Composite Events Flexible Temporal Performance Scalability

Event Model Observation Profile Support Integration Filtering Awareness
SIFT - - - - - - - - - - - - - - -
Elvin + - 2) - 1), 2) - - - - - - - - + + -
Siena + - 3) - - + - + - - - - - + ++
OpenCQ ++ ++ ++ ++ - - + - +

CORBA NS - - - - - - - - - - - - + - ++
OmniNotify + - - - + + - - + - + - +
COBEA + - - - + + - - + - + - +
Keryx - - - - 8) - - - - - - + ++
LeSubscribe - - - - - - - - - - - + +
Gryphon - - - - - - - 7) + - + ++
REBECA + - - - + + + - + 9) ++ ++
NiagaraCQ + - ++ - - - - - - - - ++ ++
SAMOS + - 4) + - + + - + - 5) - + - -
Sentinel + + - ++ + + - 6) - + - +

1) External extension possible
2) Quenching comprises event basis 6) Parameters not sufficient and operator-based
3) Advertisments 7) Few simple parameters (first)
4) Event model with restricted notion of (external) events 8) no composites but sophisticated profiles on promitive events
5) Fixed parameters 9) with restrictions

Figure 4.14: Comparison of related work with regard to the requirements for event notification services
as identified in Chapter 2 at Page 19.

4.3 Summary of the Analysis

In this chapter, we compared selected event notification services to our model of ENS. Additionally, we

analyzed related technologies from which basic concepts can be adopted for implementation in event

notification services.

Figure 4.14 summarizes the results of our analysis according to the requirements R1 to R6 defined

in Chapter 2. Along the requirements, different systems and technologies were evaluated whether they

provide strong support (++), weak support (+), partial support (+ -), weak exclusion (-) or complete

exclusion (- -) of the requirements. Our analysis of selected services led to the following observations:

• R1: Elaborated Event Model. Most of the evaluated systems are not based on an event model

as described in Chapter 3, but support only the filtering of documents (event messages). Systems

based on event models are OpenCQ and the active database systemSAMOSand Sentinel. Samos

only supports database-internal events; Sentinel supports database interval and external events that

are actively provided to the service. The systems with partial support (+ -) of an event concept

support only selected event types.

• R2: Active and Passive Observation. Most of the evaluated event notification systems use

passive observation, i.e., event messages are sent by the providers. Hence, the systems do not

implement the full event notification sequence from event observation to notification as described

in Chapter 3, but only the filtering of notification messages that enter the system. So far, only

OpenCQ and NiagaraCQ implement the complete structure as described in our reference model.

4.3. Summary of the Analysis 55

• R3: Integration of Composite Events. In general, composite events are rarely supported in

ENS; we specifically selected those systems for our evaluation, which consider composite events.

If composite events are covered by a system, passive events are rarely implemented (only in

OpenCQ, Sentinel, andSAMOS). Therefore, most of the systems only providecooperation of

information from different sources but nointegration of information. Additionally, most active

database systems support database-internal primitive events (as inSAMOS), only few systems

consider events that occurred outside the database.

• R4: Flexibility in Event Filtering. TheREBECAsystem and the active database systemsSAMOS

and Sentinel enable control of the filter semantics via parameters for event identification and con-

sumption. InSAMOS, these parameters are fixed and cannot be changed during the matching

phase.REBECA supports only a few parameters that cannot be changed at runtime; in Sentinel

the parameters are operator-based and cannot be flexibly changed. In general, flexible (adapt-

able) filtering that adapts to changing sources and applications is neither supported by current

implementations of event notification services nor by event-based technologies.

• R5: Temporal Awareness. The only system with awareness for temporal delays affecting the

event composition isREBECA. The approach ofREBECA is not sufficient, because no active

observation is supported, which would influence the event ordering. Additionally, the assumed

FIFO characteristic of message queues (First In First Out – no message overtaking occurs) does

not hold in open distributed systems as the Internet. The influence of temporal delays due to

observation and message exchanged in combination with the used time systems has not been

addressed so far.

• R6: Performance and Scalability. Performance and scalability are achieved in the analyzed

ENS by efficient (local) filtering techniques and/or event routing in the network. Efficient filter-

ing based on profile trees has been used for Elvin, LeSubscribe and Gryphon. NiagaraCQ and

OpenCQ use database-inspired trigger grouping and query optimization.

Most of the systems employ distributed software components, e.g., CQ, LeSubscribe, and Elvin.

However, a distributed system architecture is not necessarily implied. The architectural styles

vary between centralized systems and a network of event servers that are organized hierarchically

or in peer-to-peer manner. A number of services is based on a centralized architecture, e.g.,

SIFT, Elvin, LeSubscribe. A network of notification systems is used in Siena, Keryx, Gryphon,

REBECA. The events and profiles are routed through the network, different routing strategies

have been proposed. REBECA is the first system that takes advantage of profile locality, i.e., the

characteristic that profiles are not uniformly distributed.

We believe that this profile property of non-uniform distribution also applies for events and that

this characteristic can be used to further enhance a system performance.

Summarizing, we can state that none of the examined systems or technologies provide support for all

of the requirements arising from scenarios for the different applications. Consequently, we propose an

adaptive integrating event notification service that gives sufficient support for the requirements iden-

tified. While designing this service, we considered the lessons learned from the analysis, adopting

56 Chapter 4. Review and Analysis of Event Notification Services

promising strategies from the analyzed approaches. In the next four chapters 5 to 8, the specific aspects

of our design are discussed. In chapters 9 and 10, we describe our prototypical implementation of the

proposed service and present selected test results. In Chapter 11, we resume the present discussion of

the state of the art in event notification services and compare the design proposed in this thesis with the

related work.

