
Chapter 3

A Model of

Event Notification Services

The sciences do not try to explain,

they hardly even try to interpret,

they mainly make models.

John von Neuman

In the previous chapter, we identified requirements for future event notification systems; these require-

ments are used in the next chapter as criteria to analyze existing event notification systems. In this

chapter, we set the ground for this analysis by defining a model for event notification services. The

model supports a consistent functional analysis of differently structured event notification systems by

(1) providing a general terminology for ENS, (2) identifying components of ENS, and (3) specifying

the event notification process independently of a specific implementation.

We start the chapter by examining the thesis’ central term ofevent notification service. We review

related terminologies, their definitions and usage, and discuss the distinction to our notion ofENS. Then,

our requirements regarding a model for event notification services are discussed briefly. We name the

limitations of existing models1 for ENSand, consequentially, propose a new model. Our model consists

of a reference model, an event model, and an event process model. The reference model identifies the

main parts of an event notification service and describes their possible cooperation. In the event model,

1In analyzing the limitations of models, we partly anticipate the evaluation ofENSin the next chapter. Here, we concentrate
on the aspect of how to conceptually model an ENS. In the next chapter, the systems architectures and implementations are
evaluated based on the theoretical foundation presented in the current chapter.

24 Chapter 3. A Model of Event Notification Services

we define the entities in which the service performs actions, e.g., event and profile. In the event process

model, the tasks of anENSare described in greater detail; the event-based interactions of theENSparts

are illustrated in an event notification sequence. Different communication strategies for observation and

notification are distinguished. Finally, we give a summary of the chapter.

3.1 Notion of Event Notification Services

The term ’event notification service’ is not clearly defined within the research literature. A sur-

vey [RK98a] of over two hundred related publications and systems failed to elicit a globally consistent

definition ofevent notification services. Therefore, we propose our own definition for this central term

of our work. We distinguish the notions of event notification service and event notification system:

Definition 3.1 (Event Notification Service)

An event notification service is a service that connects mutually anonymous parties. The service ac-

quires, filters, and delivers information about events.

Definition 3.2 (Event Notification System)

An event notification system is the implementation of a particular event notification service.

We refer to anevent notification service as the general concept and to anevent notification system when

focusing on the implementation of the designed service. Many publications do not give an explicit def-

inition but rather a descriptive introduction into their notion of an event notification service, calling it

’alerting service’, ’publish/subscribe service’, or ’push system’. Several of these terms are used synony-

mously to the term ’event notification service’, some are only closely related. In the following survey,

we briefly review the notion of these terms in the related work. We define each term, briefly clarify

what common ideas and intentions lie behind the term’s notion, and describe its usage and relation to

the topic of this work.

Personalized System: The termpersonalization is not restricted to event notification. It encloses

the expression of a client’s interest in a personal profile. The profile can be defined either ex-

plicitly by the client or implicitly by data mining or analysis of client actions [FD92, SKK97].

Personalized systems operate on the application level, as discussed in Chapter 1. Several event

notification services support personalized client profiles, these are personalized systems. Other

forms of personalization are adaptation of web-pages to certain customers (e.g., client identi-

fication in electronic commerce), personalized web-pages [ABFK99], personalized (relevance)

feedback in search-engines [Mou96], and automatic personalized filtering and classification of

documents [Coh96].

Alerting Service: The termalerting system or alerting service is used as synonym to event notification

system – it emphasizes the service’s application. The term ’alerting service’ is now widely used

in the context of digital libraries, such as Springer Link Alert [Spr01]. The term ’alerting’ also

often refers to newsletter services via email. The original applications for alerting services are

systems raising alarms in case of hazard, intrusion, or engine failure.

3.1. Notion of Event Notification Services 25

Publish/Subscribe Service: Thepublish/subsrcibe paradigm is an interaction model that consists both

of information providers (publishers, suppliers) that publish data to the system, and of clients

(subscribers, consumers) that subscribe to issues of interest within the system. The role of

publish/subscribe systems is to timely send the right information to the right customer. Pub-

lish/subscribe systems areENSthat support publishers that actively send data to the system. Of-

ten, events and event-reporting messages are not distinguished. Example services are LeSub-

scribe [PFJ01], Elvin [SA97], Gryphon [ASS+99], WebFilter [FJL+01], and Scribe [RKCD01].

Event Service: The termevent service is used by Carzaniga [Car98] as synonym toENS, but it is more

widely used to refer to theCORBA Event Servicet [OMG97b]. TheCORBA event service acts on

the middleware level and has lower complexity than event notification services.

Push System: The termpush system refers to an Internet-based system that delivers content to its

clients via subject-based channels [Hau99]. Examples of push-systems are Poincast [Inf02],

Marimba [Mar03], and Webcanal [Web98]. Push system implementations are often middleware

systems that support application-level systems.

Dissemination-based System: In the context of theDissemination-based Information System (DBIS)

framework by Franklin et al. [FZ97], anENS is aninformation broker that acquires information

from data sources, adds value, and distributes the information toclients (= net consumers of

information). The term focuses on the distribution of documents, not the observation and filtering

of events. Implementations are theDBIS system [FZ98] and the Broadcast Disk System [AFZ97].

System for Selective Dissemination of Information: ASystem for Selective Dissemination of Informa-

tion (SDI) is similar to an event notification system. The phrase was introduced in the 60′s [Sal68],

it is historically the ’original’ term.

Information Filtering System: Such a system is anENSthat especially deals with new or changed doc-

uments [Cal98]. These services are also referred to as document filter systems. A first approach

to the clear definition of information filtering has been proposed by Belkin and Croft [BC92], a

generally accepted definition of information filtering is still lacking.

Yan and Garćıa-Molina [YGM95] use ’information filtering’ as synonym forENS, which neglects

the aspect of the dissemination and notification. On the other extreme, they use the terminforma-

tion dissemination that ignores the aspect of the profile filtering.

Content-based Routing System: The term refers toInformation Retrieval Systems in which queries

are routed to the available servers based on the expected relevance of the server to the query

(see, e.g., [SDW+94]). Coft [Cro95] uses the term ’information routing’ for this concept. These

services are not covered by our work.

(Event) Monitoring System: This term refers to systems that monitor certain event sources, filter

events, and send notifications. In general, the event sources are passively-observing sources, such

as sensors and measuring heads. The applications range from introspection or supervision of

computer programs to communication in distributed systems and web-applications. In research

26 Chapter 3. A Model of Event Notification Services

literature, the term mostly refers to distributed program interaction, e.g., performance tuning by

automated monitoring [Yan94].

Event-based Infrastructure: Event-based infrastructures support asynchronous message exchange be-

tween objects in a distributed environment. They define a middleware for interoperability of

independent, heterogeneous systems and build an abstraction for program-to-program communi-

cation on the system level. Examples areJEDI [CDF98] and theCORBA Event and Notification

Service [OMG97a]. We consider event-based infrastructures asENS on middleware-level, they

are discussed in greater detail in Chapter 4.

Awareness Service: The termawareness describes the automatic adjusting of present information

of provider and client. The client is aware of all changes at the provider’s side, either new ob-

jects, deleted objects, or modified objects. The focus of awareness services is the adjustment

of (document-centered) repositories, not the notification about events [Swe03, DS97, CGM97].

Awareness services are, therefore, only related toENS.

Lately, the notion ofawareness widgets or awareness displays is used to describe tools (as the

Tickertape [PFK+98]) for communication between human beings (e.g., in institutions). The tools

attempt to simulate the advantages of face-to-face situations, thus being aware of other people and

their work. In this work, these systems are treated as notification systems.

Current Awareness Service: This term is not clearly defined – it is used to describe a variety of service

offers. Most of the implemented services match our definition ofENS. They primarily intend to

keep their clients informed about current journal literature of a specific area, such as the service

for British Official PublicationsBOPCAS[BOP03]. The term is used synonymously to the term

alerting service.

Event Handling Services: The termEvent Handling Service describes a service defined in the Java

Dynamic Management Kit (JDMK) [SUN03] for the development of software agents. Due to their

different abstraction level, these services are not in the focus of this work. However, Olken [OJM98a]

uses the term to refer toENS.

After having reviewed these terms, we conclude that our notion of event notification services includes

and extends the notions of alerting services, publish/subscribe services, andSDI services as discussed

above.

3.2 Limitations of Existing Models

Event notification systems are, similar to other software systems, often complex entities. To support a

reflection about and analysis of different approaches we shall use a model that identifies the main parts

and interactions withinENS. A few models for event notification systems exist – however, we argue that

a new model is required. For our purpose, a model for event notification services should include:

1. Definition of the central terms in the context ofENS.

2. Identification of the substantial parts of anENSand their interaction.

3. Specification of the event notification process.

3.2. Limitations of Existing Models 27

We analyzed both system-specific and general models for event notification services. The following

drawbacks of existing models have been identified:

Lacking Independence of Implementation: Several models for event notification services have

been introduced by the authors of particular system implementations, e.g., Siena [CRW01] and Yeast [KR95].

Unfortunately, these models reflect the specific implementation. For example, they neither cover active

event observation nor include a generic event concept. Few independent models for event notification

services have been introduced [KW95, FZ97, RW97, MF98a, SCT95]: The model by Kahn and Wilen-

sky [KW95] focuses on the object storage, event notification is not covered. Franklin and Zdonik [FZ97]

propose an infrastructure for notification services that gives a general classification of architectures of

dissemination-based systems. The model focuses on the role of an event notification system as broker

within an information network. The model lacks detailed definitions at the service level. The model

for event-based architectures by Rosenblum and Wolf [RW97] consists of seven parts: object, event,

naming, observation, time, notification, and resource model. Several features are addressed only at a

high level; the model lacks specifics, such as sophisticated event compositions.

The model by Martin-Flatin [MF98a, MF98b] focuses on network management, it discusses the im-

plementation of push- and pull- based communication with specific technologies, such as java applets

andJDBCservers. The model describes the phases of communication, it therefore addresses the afore-

mentioned third demand regardingENS-models in an implementation-oriented manner. The event-based

object model by Starovic et al. [SCT95] describes a distributed-systems programming model introducing

objects, events, and constraints. The model focuses on the communication aspect. The event notification

process is described in a simplified manner; specific system components are not identified. The model

gives the impression that it is developed for a specific implementation.

The design models of observer pattern [GHJV95] and event notification pattern [Rie96] are naturally

concerned with design issues of event observation but are independent of a concrete implementation.

Both patterns support an event-based communication and decoupling of objects without explicit filter

support; they may be seen as design models for simpleENSon the implementation level (for details see

Section 4.2.4).

Inconsistent Terminology: On the one hand there are several names for this kind of service (Alerting

Service , Notification Service, Profile Service, etc.), while on the other hand several different concepts

are called notification service. We addressed this problem in the previous Section 3.1.

Additionally, the different models for event notification services use identical terms to describe

different concepts. For example, consider the termchannel: In theCORBAmodel, an event channel is an

intervening object that allows multiple providers to communicate with multiple clients asynchronously

[OMG97a]. CDF [Ell97] or Netcaster channels [Net99a] are similar to television broadcast channels. In

contrast toCORBA, they comprise an active observation method on channel objects.2

Inadequate Event Model: In most system-specific event-based models, an event is identified by its

physical representation as message (see, e.g., [Car98, TIB03]). This approach is not sufficient because

2Our evaluation of the implementations of event notification services with channels can be found in [FHS98].

28 Chapter 3. A Model of Event Notification Services

it neglects unobserved events, and the problem of event observation and timestamping. Rosenblum

and Wolf [RW97] define an event as aninstantaneous effect of the termination of an invocation of an

operation on an object. This definition associates the event with the invoker of the operation. Other

models define an event asa state transition of an information object at a particular time, where the

state of an object is the current value of all its attributes (e.g., [OMG97a, KR95]). We follow the latter

approach, because it is more appropriate for an ENS where the invokers often remain anonymous.

However, two aspects of event definitions remain unsolved: the handling of new objects and passive

events. New objects: Consider the publishing of a scientific article at a specific time; the state of the

object is the content of the article. But what was the state of the object before it existed? The notion of

an event as a state transition of this particular object is not sufficient here. Passive events: Consider the

example profile ’Notify if a sensor did not send data for more than thirty minutes’ (see Example 2.1 on

Page 13). Existing models of event notification services do not support this kind of profile3, as neither is

an operation performed on the information object, nor does the information object change its state. We

are aware of the fact that this construct is contradictory to the intuitive notion of an event assomething

that happens.

The limitations of existing models for event notification services have been discussed in greater detail

in [HF99a].

3.3 Reference Model

In the previous section, we argued for a new model of event notification services (following Require-

ment R1 from the previous chapter). In the next three sections, we introduce our model forENS. Our

model abstracts from distribution aspects in event notification services: Each part or the complete ser-

vice may be distributed or replicated in a network. The model consists of three parts: a reference model,

an event model, and an event processing model. In this section, we introduce our general reference

model4 for event notification services that identifies the main parts of such services. The event model

and the event processing model are addressed in the subsequent two sections.

Within our reference model, we decompose the functionality of an event notification service, identify

the main parts5 and the data-flow between the parts. The reference model addresses the first and second

demand regardingENS models as identified in the previous section. Our reference model is presented

as a diagram that shows all logical parts involved and their interaction (see Figure 3.1). In the following

paragraph, we describe the parts shown in the diagram. In our reference model, we use a simplified

notion ofevents andprofiles; the terms are analyzed in greater detail in the next section.

Objects of interest areinformation objects that are located at the provider’s site, optionally in an

object repository. Information objects can be persistent (e. g., documents) or transient (e. g., measured

values). Changes of these objects (creation, update, deletion) are induced by aninvoker.

It is the responsibility of theobserver to detect changes of single objects or in theobject repositories.

3The concept of a passive event has been used asnegative event in the active database systemSAMOS[GD92].
4For a general introduction into model types see [BCK98].
5The termpart is used here to refer to the logical units within an event notification service, the termcomponent refers to

software units of an event notification system. The mapping between parts and components may be one to one or more: A
software component may implement a fraction of a functional part or several parts.

3.4. Event Model 29

Provider Event Notification Service Client

Information
Object

Object
Repository

Event
Repository

Notification

Profile
Repository

Notification
Buffer

Invoker Filter Notifier

Event
Message Query Parameter

Profile

notify

create
update
delete

detect
changes

create

create

create

get query
get schedule

store

send message send message notify

get schedule
get format

store

compare

Observer

Figure 3.1: Reference model of an event notification service

If the invoker does not inform the observer about changes, the change detection is an active task of

the observer (performed according to a schedule). Any change is an event. Events are reported as

materializedevent messages to thefilter. The filter has knowledge of the client’s profiles and compares

the event with the query part of the profiles. If a profile and an event match, the filter creates anevent

message and delivers it to thenotifier. For the detection ofcomposite events, events are stored in the

event repository.

The notifier in turn checks the schedule part of theprofile (see below). If immediate delivery is

demanded, the event message is converted according to the format specified by the client and delivered.

Otherwise, it is buffered until the notifications become due. The notifier keeps track of the due-dates.

In client profiles we distinguish two parts: Thequery profile (used by the filter) specifies the events

in which the client is interested. In theparameter profile, additional parameters are defined, such as

a schedule, a notification protocol, and a notification format. These parameters may be used by the

observer and the notifier.

The components of the event notification service can be (and usually are) deployed and replicated

for scalability and reliability. Invoker and object repository usually reside at the provider’s site. Not all

information providers implement an observer; an event notification service that covers these types of

providers could implement an observer as a wrapper for each provider. Alternatively, the observer can

be moved to the provider’s site (if allowed) and perform its tasks as an agent of the event notification

service there.

3.4 Event Model

In this section, we introduce our event model for event notification services. While the reference model

describes the interaction of the parts in an ENS, the event model focuses on the items on which the

components of the service perform their actions: information objects, events, profiles, and notifications.

The event model addresses all three demands regardingENSmodel as defined in Section 3.2.

30 Chapter 3. A Model of Event Notification Services

Information Object. In correspondence to other models (e.g., [CGMP99, CGM97, RW97]), we use

objects to encapsulate functionalities. In our model, anobject can be any logical entity residing within

a network, such as files and processes. Hardware and human users can also participate but are repre-

sented by their software-based proxies. Each object is uniquely identifiable, e.g., by an identifier or

handle [CGM97]. For example, a handle may be aURI [BFM98] or aDOI [DOI03]. Considerations of

a naming model for event notification services can be found in [RW97].

The objects that are offered byproviders of an ENS, such as journals, news-pages, or movies, we call

information objects. We assume that objects are described by attributes. Each attribute has a domain that

defines the possible attribute values. Objects have astate, which is given by the value of its attributes.

A set of information objects offered by a provider is referenced to asrepository. A provider can offer

one or more repositories, examples are databases and sensor networks. Because repositories can also be

seen as information objects, we consider a hierarchy of information objects. Additionally, information

objects can also be composed of other objects, e.g., a journal consisting of articles.

Event. The central concept of an event notification service is theevent. In contrast to states, events

have no duration. Events may be state changes in databases, signals in message systems, or real-world

events such as the departures and arrivals of vehicles. Formally, state transitions are caused by actions

such as insertion, deletion, or change of an information object.

Definition 3.3 (Event)

An evente is the occurrence of a state transition of an information object at a certain point in time. This

point in time is called (event) occurrence timet(e).

Events are denoted by a lower Latine with indices, i.e.,

2..2

Event
Composite

Event

passive

Primitive
Event

Event
Time

Event
Content

active

0..*

1..*

0..*

Figure 3.2: Categories of events

e1, e2. We considerprimitive events andcomposite events,

which are formed by combining events (see Figure 3.2). Sim-

ilar to a model used for Event Action Systems [KR95], we

further distinguish two categories of primitive events:time

events andcontent events. Time events represent the passage

of time – the events refer to certain points in time. They do

not consider a certain object (this particular system clock)

but rather a logical abstraction, e.g., of a global clock. Time

events may involve clock times, dates, and time intervals.

Content events involve changes of non-temporal objects,

such as sensors. We additionally distinguishactive andpas-

sive content events. Active content events are state transitions of an information object at a particular

time; they are observer independent. The state of a particular information object is described by the

attribute values of the object. A state transition occurs if at least one of the attributes’ values is changed.

Passive content events model the fact that for a given time interval (defined by two time events), an

object did not change. The profile ’Notify if the sensor did not send data for more than thirty minutes’

refers to passive events. Passive events are content events as well as composite events; they have to be

observed.

3.4. Event Model 31

Composite Events are temporal combinations of events. In some models, composite events are called

event patterns [CDF98, GD93, RW97]. The contributing events have to be observed, their combination

has to be identified by theENSaccording to the system’s event algebra. The temporal combinations of

events are defined by event operators, such as conjunction, sequence, and disjunction. Composite events

will be studied in greater detail in Chapter 5.

Events may be reported by means of event messages. In a message, an event may be described by

a collection of (attribute;value) pairs, such as the 3 pairs in the following example. The event message

reports the crossing of a temperature threshold at a sensor:

eroom : event(temperature = 35 ◦C,

room = 150,

timestamp = 10 : 00 : 00)

In the example, we omit the attribute domains, e.g.,real for the temperature attribute. The structure

of an event messages is referred to as message type6:

Definition 3.4 (Event Message Type)

The event message type describes the structure of an event message.

Examples for message types areXML [W3C03c] with a certain Document Type Definition [W3C03b]

or (attribute;value) pairs with given attributes and value domains, as used here. Providers of event

information may announce the event message types they offer to theENSby means of advertisements.

In the literature, often typed and untypedevents are distinguished. This confuses the event messages

reporting the event and the event itself7. Each event has a timestamp reflecting its occurrence time:

Definition 3.5 (Timestamp)

The timestamp of an event is the value of a special mandatory attribute of an event message. The time

system of reference for timestamps is discrete.

Timestamps are defined within a time system based on an internal clock, while theevent occurrence time

is a point in real time defined by the occurrence of the event.8 The timestamp is an approximation of the

event occurrence time, which might not be known to the ENS. The accuracy of timestamps depends on

the employed event detection and timestamping method, which are addressed in detail in Chapter 6.

Definition 3.6 (Event Space)

The set of all possible event instances known to a certain system is called the event spaceE. The set of

all time events is denotedEt. The event space is formed by the set of primitive eventsEP and the set of

composite eventsEC : E = EP ∪ EC .

The set of primitive eventsEP contains all events as reported to the system. The set of composite

eventsEC detectable by a certain system is defined by the systems event algebra, i.e, by the systems

filter and profile semantics. Note that we define a composite eventnot as set of primitive events, as

6In contrast to the concept of typed events as introduced, e.g., in the CORBA Notification Service [OMG99], we define the
event message type as general structure of a message and do not distinguish whether this structure is predefined.

7The event as the occurrence of a state transition is neither typed nor untyped.
8We do not deal with the problems of time and relativity; we assume a common notion of continuous real time.

32 Chapter 3. A Model of Event Notification Services

done, e.g., by Gehani et al. [GJ91, GJS92b]. This difference greatly influences the event composition,

which is addressed in Chapter 5. Composite events are created based on an event algebra; the algebra

defines temporal event composition operators. An event algebra that is suitable for an adaptive event

notification system is proposed in Chapter 5. Event composition defines new event instances. The new

event instances inherit the characteristics of all contributing events; the event occurrence time is defined

by the composition operator. We denote the fact that a set of event instances contributes to a composite

event by the� operator:

Definition 3.7 (Composition Contribution �)

Let e1, ..., en ∈ E be event instances that contribute to the composite evente ∈ EC . This relation is

expressed as{e1, ..., en} � e. Thee1, ..., en can be primitive or composite event instances.

We distinguishevent instances from event classes: An event class is a set of events specified by an

event query while an event instance relates to the actual occurrence of an event. For event instances,

we simply use the termevents whenever the distinction is clear from the context. First, we define the

concept of event queries and then, we introduce the notion of event classes.

Definition 3.8 (Event Query)

An event queryqexp is a functionqexp : 2E → 2E accompanied by an expressionexp : 2E → {0, 1}.

For simplicity, we omit the indexexp for event queries and simply refer to a queryq.

Definition 3.9 (Event Class)

An event classE ⊆ E is a set of event instances. An event class is defined by an event queryqexp: The

event class is the set of all event instances for which the expression of the defining event query is true

E = {e | e ∈ E ∧ exp({e})}.

Even though events of the same event class share some properties, they may differ in other event at-

tributes. An event class could contain, for instance, all events that describe a temperature change in

rooms of a selected building. Then, one event may be the actual change of temperature in room 150

while another event instance may refer to room 200.

Event classes are denoted by an upper LatinE with indices, i.e.,E1, E2. The fact that an eventei is

an instance of an event classEj is denotedelement-relationship, i.e.,ei ∈ Ej . Event classes do not have

to be distinct,ei ∈ Ej andei ∈ Ek is possible withEj �= Ek. Event classes can also have subclasses,

so thatei ∈ Ej ⊂ Ek. Note that the notion of event classes and event message types inENSdiffers from

the terminology used in object-oriented modelling. A trace, or history, of events is defined as follows:

Definition 3.10 (Trace)

A tracetr ⊂ 2E is a sequence of eventse ∈ E. A temporally restricted tracetrt1,t2 ⊂ tr is a sub-trace

with defined start- and end-pointst1, t2, respectively.

The history of events that a service processes istrtstart,∞ with tstart being the point in time the service

started observing events.9 A trace can be seen as a (semi-ordered) list of event instances; we can use

the operations commonly defined for lists. Note that the trace is the sequence of event instances that

9We do not explicitly distinguish the traces of different services by additional indices as would be formally necessary.

3.4. Event Model 33

actuallyare known to the service while the event space is formed by all event instancespossibly known

to the service.

Profile. In an ENS, the events of a trace are filtered according to client profiles. Clients describe the

events in which they are interested as profiles. In profiles, we distinguish two parts: The description of

the events the client is to be about (query profile) and additional information about the client and the

conditions for observation and notification (parameter profile). Here we focus on the query profile. If

clear from the context, we refer to the query profile simply as profile.

Definition 3.11 (Profile)

A profile is an event-query that is periodically evaluated by the event notification system against the

trace of events.

Within the system, the filter part evaluates the query against the event messages. Note that client profiles

specify event classes. We also refer to a profilep by the event classE that this profile defines. An

event class is a more general concept, whereas the client profile is specific forENS. For simplicity,

we use predicates on (attribute;value) pairs for examples of profiles. An example profile isptemp =
profile(temperature > 35 ◦C). This profile may be evaluated in an ENS:

Definition 3.12 (Profile Evaluation)

The application of the event query of a profilep to a given tracetr1 ⊂ E is called profile evaluation.

The result is a new trace:

p(tr1) := {e|(e ∈ EP ∧ e ∈ tr1 ∧ exp({e}))∨
(
e ∈ EC ∧ ∃n ∈ N

+ : (e ≺ {e1, ..., en} ∧ ei ∈ tr1, for all 1 ≤ i ≤ n)
)}

The evaluation of a profile on an empty trace results in an empty trace.

Before explaining the resulting trace of a profile evaluation, we introduce the concept of event–profile

matching. If a profile expression is true for a certain event, then the event matches the profile. Based

upon a notation used, e.g., in [Car98], we define the matching operator:

Definition 3.13 (Event–Profile Matching �)

Consider the evente and a given profilep. The evente matchesp, denotedp � e, if the expression of

the profile query is evaluated to true for the evente.

Our example eventeroom matches the profileptemp (ptemp � eroom); the profileptemp defines the

classEtemp = {e | e ∈ E, ptemp � e}. For profiles regarding primitive events,pprimitive(tr1)
results in a tracetr2 ⊂ tr1 containing all matching event instancese, p � e. For composite events,

pcomposite(tr1) results in a new tracetr2
10. All profile evaluations regarding a certain profilep start

after the profile has been defined at time t(p). Thus, for each positively evaluated evente1, it holds

implicitly that t(e1) > t(p).

10Note that our notion of profile matching differs from Gehani [GJS92a], wherealways p(tr1) ⊂ tr1.

34 Chapter 3. A Model of Event Notification Services

Notification. A notification is a message reporting about events. Clients are notified according to the

schedules given in their parameter profiles. Before notifications are sent, they may be edited, e.g., by

removing duplicates, merging, and formatting.

3.5 Event Processing Model

After having introduced the reference model and event model in the previous sections, we now con-

centrate on the event processing model. This third part of our model emphasizes the cycle of event

processing within anENS. This processing model addresses the third demand regardingENSmodels as

defined in Section 3.2. We describe the event processing cycle for an active content event in detail; the

cycles for other event categories are discussed briefly.

Notifier

Filter

Observer

Object
of Interest

time

Notifications forwarded
to the clients

t

t

t(e)

obs

not

Figure 3.3: Event notification sequence for an active content event

We introduce anevent notification sequence as the graphical representation of the temporal infor-

mation flow within an event notification service. A full event notification sequence shows the data-flow

from event occurrence until, eventually, a notification is sent to a client. An event notification sequence

for an active content event is shown in Figure 3.3. Active content events can happen at any time; they

are caused by invokers that perform actions on the information objects (objects of interest). Lett(e) be

the occurrence time of an evente, i.e., the time when a state transitione on an object has been caused by

an invoker. An observer may learn of events in two ways: Either an observer is notified by the invoker

at timetobs ≥ t(e), or the observer proceeds according to a time schedule

T obs = {ti|ti = t0 + i∆obs, i ∈ N,∆obs > 0}.
Here, the timet0 generally denotes a start point in time, it can be different for different profiles and

observers. At timetobs = ti the observer registers events that occurred in the interval(ti−1, ti] 11 with

ti−1, ti ∈ T obs, i > 0. The influence of communication delays and operational times for the actors

(observer, filter, notifier) are neglected here; their influence is analyzed in detail in Chapter 6. The

observer creates a message reporting the occurrence of the event and forwards it to the filter. The filter

evaluates the profiles at the reported events.
11We employ the common mathematical reference for open intervals using parenthesis(.), for closed intervals using square

brackets[.], and for half-open intervals using the mixed notation(.] and[.).

3.6. Communication Strategies and Modes 35

In time events, object and invoker can be seen as integrated: The system clock is an actively changing

object. Time events are detected by an internal observer, such as active content events. The clock

provides a discrete time signal that defines the minimal granularity∆obs for the observation. Composite

events are temporal combinations of events, the contributing events have to be observed as described

above. The possible combinations of events have to be evaluated by theENSaccording to the system’s

event algebra. A composite event is indicated in the event notification sequence by the horizontal bar at

the filter, which combines two events (see Figure 3.3). Passive events have no invoker, they can only be

recognized by the filter. The contributing time events have to observed. Additionally, the service has to

observe the referenced event class – if an event instance of this class occurs then the passive event did

not occur.

If an event matches a certain profile, the filter forwards the event message to the notifier. Notifica-

tions for the clients may be buffered, checked for duplicates, merged, and delivered according to the

client’s profile. For a scheduled notification, clients are notified according to a certain schedule

Tnot = {tk|tk = t0 + k∆not, k ∈ N,∆not > 0},

where∆not ≥ ∆obs. The events that happened in(ti, tj], ti, tj ∈ T obs with i < j are reported to the

clients at timetk ∈ Tnot, wheretk−2 ≤ ti < tk−1 andtk−1 < tj ≤ tk. Because this asynchronous

approach can lead to a maximal notification delay of∆not + ∆obs, it is recommended to synchronize

observation and notification, so that∆not = n∆obs, n ∈ N and∃ti ∈ T obs, tk ∈ Tnot so thatti = tk.

This synchronization ensures that only a minimal phase shift occurs. Immediate delivery is performed

atn = 1.

Depending on it’s schedule, the notifier sends the message to the interested clients at timetnot (see

Figure 3.3). An unscheduled notifier would cause the notification to be sent, e.g. immediately.

3.6 Communication Strategies and Modes

In the event process model introduced in the previous section, we also addressed communication be-

tweenENSparts: Events have to be observed at providers’ sites and notifications are sent to clients. Until

now, we abstracted from the used communication strategies. In this section, we discuss communication

modes, specifically different observation and notification strategies. For the external communication of

event notification services, two connections have to be considered: provider–service communication and

service–client communication. Here, we describe the provider–service communication in detail. The

principle can also be applied for the service–client communication and communication in a distributed

service.

We distinguish passive/active observations that use a communication mode synchronous/asynchronous

to the event occurrence. The four combinations are shown in Table 3.1.Passive synchronous observa-

tion can be initiated by the invoker or the information object. The invoker changes the information

object and synchronously announces the state change to the observer (see Figure 3.4(a)). Passive syn-

chronous observation can also be initiated by the information object, e.g., as in the event notification

pattern [Rie96] and the observer pattern [GHJV95]. The object itself announces its state change to an

observer (see Figure 3.4(b)). Both forms are facets of a single strategy, because both object and invoker

36 Chapter 3. A Model of Event Notification Services

Observation Mode Initiator
passive synchronous invoker or information object
passive asynchronous separate observer on provider’s site
active synchronous observer (triggered by event occurrence)
active asynchronous observer component of the ENS

Table 3.1: Communication strategies and modes

reside on the provider’s site. We shall illustrate later that in a certain implementation, the distinction

between the two modes depends on the considered abstraction level. Forpassive synchronous observa-

tion, the provider employs an observer of events on its site, which asynchronously reports the events to

theENS.

change()

announce()

notify()

synchonously

Invoker
Object of
Interest ClientObserver

(a) Initiated by invoker

change()

notify()
announce()

Invoker
Object of
Interest ClientObserver

(b) Initiated by information object

Figure 3.4: Passive synchronous observation

Active synchronous observation of events is conceivable but not often employed: The observer in the

ENSis triggered by the event occurrence. This triggering is already a synchronous (passive) observation

in itself. Then, the observer performs a more detailed observation than the triggering can provide.Active

asynchronous observation is performed as follows: After the invoker changes the information object,

the observer verifies the object’s state on a regular or irregular basis. The state change is detected by the

observer after a certain delay (see Figure 3.5). The influence of different observation strategies on the

accuracy of event detection is discussed in greater detail in Chapter 6.

change()

getState()

notify()

Invoker
Object of
Interest ClientObserver

Figure 3.5: Active asynchronous observation initiated by observer

The communication strategiespassive observation andactive observation are often referred to as

push andpull. In thepush model, the provider informs theENSabout events. In thepull model, theENS

observes events at providers’ sites. We argue that the identification of push and pull communication

of an ENS depends on the abstraction level of the communication and the distinction of the two com-

munication connections. To support our argumentation, we study the example of an Internet-channel

3.6. Communication Strategies and Modes 37

Invoker
change

reference

Source File
Client

ENS

with Observer
Client Software

 Objects

1

2

3

Client SiteProvider Site

Technical implementation of information exchange

Additional relationsInformation flowLegend:

4

Figure 3.6: Communication atCDF channels (see Example 3.1): Arrows represent observation
strategies on different abstraction levels

that uses theCDF-technique [Ell97]. This example shows how within one communication, different

communication strategies are used on different levels.

Example 3.1 (Communication in CDF Channels)

Providers of aCDF channel provide a source-file that contains links to Internet-sources, clients sub-

scribe to the channel by initially downloading the file. TheENSsoftware resides on the client’s site (see

Figure 3.6). The new content of the channel is pushed to the clients. By considering the underlying

techniques, one becomes aware of the fact that the client software regularly pulls the source-file and

reports changes in the file to the clients. The provider either updates the file on any change of the refer-

enced objects or the client software has to crawl for information about state changes of the referenced

objects. Figure 3.6 shows the information flow (gray arrows) and the underlying technical implementa-

tion (dashed arrows) for our example. Communication is performed on several levels, the enumerations

refer to the circled numbers in the figure.

1. Application level: The provider pushes new changes in the source file to the client. Middleware

level: The client-software inspects the source-file for changes (active asynchronous observation

by observer, pull).

2. Application level: The provider pushes information about new changes in the referenced objects

to the client. Middleware level: The client-software crawls for information about the referenced

objects (active asynchronous observation by observer, pull).

3. Application and middleware level: The client is actively informed by the channel if a channel

update occurs (passive synchronous observation, push).

In the example, push communication is only used for system–client interaction. The provider–system

interaction uses pull-style. This is even more important, since the provider–system interaction is per-

formed over the network, while the system–client interaction is performed on the same site.

On application level, the source file is provided as information object. On a lower level, we identify

the Internet-sources as information objects. The interaction of invoker and source file implement a

rudimentary event notification service with the higher-level service as client:

38 Chapter 3. A Model of Event Notification Services

4. Middleware level: The invoker changes the referenced objects and the source-file. The source

file collects the information about the changed object, it can be seen as passive observer (passive

synchronous observation by invoker, push).

The system–client interaction is asynchronous active observation (pull) as in (1).

Example 3.1 shows that push-communication can be implemented on a lower level using pull-com-

munication and vice versa. Consequently, the identification of communication styles depends on the

considered abstraction level. In this thesis, we concentrate on communication on application level for

general considerations. However, for the detailed analysis of observation methods in Chapter 6, we

focus on the middleware level.

3.7 Summary

In this chapter, we first identified terms and concepts that are related to the term ’event notification

service’. We provided a survey of these terms, their usage and relation to the topic of this work. Then,

a unified model for event notification services has been proposed. Our model consists of three parts: a

reference model, an event model, and an event processing model. The reference model ofENSprovides

a general terminology for the description of logical parts and their interactions within event notification

services. Within the event model, the items handled by theENS are defined in detail. The tasks of

an ENS and the event notification sequence have been described within our event process model. The

model evolution has been published in [Hin99, HF99b, HF99a]. The model presented in this chapter is

used as a basis for the analysis of related systems in the next chapter.

Already, several conclusions can be drawn from the model: The observers either have to be informed

by the invokers or they have to be aware of the state of the object repository and the information objects

contained in the repository. In the latter case, observers need to be initialized with the states of all

existing objects in the repository. They can only detect changes that occur with frequencies less or

equal to the observation frequency: If two events regarding the same object happen within the same

observation interval, they cannot be distinguished by the observer. The implications of these conclusions

are addressed in detail in Chapter 6.

