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Spatiotemporal patterns and determinants of
renewable energy innovation: Evidence from a
province-level analysis in China
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China’s renewable energy innovation is essential for realizing its carbon neutrality targets and

the low-carbon transition, but few studies have spatially examined its characteristics and

spillover effects. To fill the research gap, this study investigates its distribution and trends

from a spatiotemporal dimension and focuses on the spatial effects of the influencing factors

to identify those that have a significant impact on renewable energy innovation by using

China’s provincial panel data from 2006 to 2019. The results show the following findings.

(1) Renewable energy innovation shows distinct spatial differences across China’s provinces

such that it is high in the east and south and low in the west and north, which exhibits spatial

locking and path-dependence. (2) There is a positive spatial correlation with renewable

energy innovation. (3) R&D investment and GDP per capita significantly promote renewable

energy innovation, but the former effect is mainly observed in the local area, whereas the

latter shows spatial effects. More market-oriented policies should be taken for the

improvement of renewable energy innovation and the establishment of regional coordination

mechanisms are proposed.
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Introduction

As an effective tool to reduce greenhouse gas (GHG)
emissions and combat climate change, renewable energy
has witnessed rapid development over the past two dec-

ades (IEA, 2022a). China had become the world’s largest pro-
ducer of wind and solar energy as of 2017, as well as the largest
domestic and outbound investor in renewable energy (Chiu,
2017). By 2021, China accounted for 46% of global renewable
energy growth and renewable energy generation accounted for
29.9% of its electricity consumption according to recent statistics
reported by the International Energy Agency (IEA, 2022b). When
we observe the spatial pattern changes of economic growth and
carbon emissions from a global perspective for the period
1960–2016, it was found that the centers of gravity of GDP and
CO2 emissions are shifting towards the east (Balsa-Barreiro et al.,
2019). This shift was especially prominent in the case of CO2

emissions, highlighting that the economic growth model of some
countries located in the world’s east demanded high levels of
resource consumption. This was also particularly evident in
China. However, China now demonstrates signs of economic
maturity, exhibiting greater efficiency in the consumption of
resources and energy. The story that lies behind these figures is
the positive association between technological innovation and
renewable energy generation capacity (Geng and Ji, 2016; Lin and
Zhu, 2019a; Zheng et al., 2021). For example, China became the
world’s manufacturing powerhouse in several key energy tech-
nology sectors, including solar photovoltaics (PVs), wind tur-
bines, and batteries for electric vehicles (EVs) (IEA, 2022a).
China’s leadership in renewable energy innovation may ulti-
mately lower its production costs and establish its commercial
presence globally (Liu and Liang, 2013). According to the Con-
sumer News and Business Channel (CNBC, 2022), BYD company
—which has become one of the top three automakers due to its
high sales volume of EVs—is such a case in point. Going forward,
renewable energy innovation will play a crucial role in achieving
China’s objectives of carbon peaking by 2030 and neutrality by
2060 and ranks among its core priorities for the 14th Five-Year
Plan period (2021–2025).

The primary aim of renewable energy innovation is environ-
mental alleviation and climate mitigation. Research has con-
firmed its beneficial effects in alleviating nitrogen oxide (NOx)
and respirable suspended particle (PM10) concentrations, but it
does not affect sulfur dioxide (SO2) (Zhu et al., 2020). Carbon
dioxide (CO2) emissions have been shown to be stimulative to
innovation (Lin and Zhu, 2019b; Wang et al., 2018). Renewable
energy innovation in China is stimulated by multiple factors.
Except for the commonly recognized influencing factors of gov-
ernment- and enterprise-supported research and development
(R&D) investment (Huang et al., 2012; Lin and Zhu, 2019a), CO2

emissions have also been found to be an essential driving force in
innovation processes, thus implying that they actively respond to
climatic changes (Lin and Zhu, 2019a). At present, there is no
consensus on whether energy prices play an active role in
improving technological progress in renewables, as Liu et al.
(2020) argue that energy prices stimulate China’s renewable
energy innovation while Lin and Zhu (2019a) find a non-
significant association between them. The underlying reasons for
such contradictory results may lie in the different indicators and
methods employed in individual studies.

Regardless of the fact that innovation positively affects
renewable power generation (Zheng et al., 2021), the positive
association between China’s renewable energy innovation and
green productivity growth is confined to the wealthier regions,
and this effect is amplified as income increases (Yan et al., 2020).
It is worth noting that China is also the main exporter of
renewable technologies, and developed countries with high

renewable energy demand are increasingly importing Chinese
solar PV components (Groba and Cao, 2015). In addition,
renewable energy innovation in provincial China is characterized
by heterogeneity in terms of developmental level and growth rate:
the provinces with higher levels of industrialization, R&D
investment, and environmental regulation are usually associated
with greater innovation and higher growth rates (Bai et al., 2020;
Zhao et al., 2022).

Based on the preceding discussion, we identify the following
gaps in the literature. First, the existing studies fail to investigate
the spatiotemporal characteristics of China’s renewable energy
innovation in depth. Second, the research on the driving forces of
renewable energy innovation focus on the direct effects of those
factors, which are mostly analyzed using the negative binomial
(e.g., Schleich et al., 2017; Li and Shao, 2021) and panel error
correction models (e.g., Lin and Chen, 2019; Galeotti et al., 2020;
Ren et al., 2021) without considering their spatial effects. How-
ever, there is a spatial effect in the influencing factors that are
likely to have an important impact on local renewable energy
innovation. The importance of spatial effects for innovative
research lies in the fact that, first, according to the economic
geography literature (e.g., Levin and Reiss, 1989; Syverson, 2011),
geographical concentration stimulates firms’ innovative activity,
which allows new knowledge to create positive externalities
through spatial spreading. Therefore, local innovation will
inevitably be influenced by neighboring regions. Studies that only
focus on the impact of the temporal dimension and assume that
two adjacent regions are independent of each other are incon-
sistent with reality. Third, for China, when examining the per-
formance of local government officials, the central government
compares the economic performance of other regions and draws
final conclusions by comparing differences between regions,
which is highly correlated with the promotion of provincial lea-
ders (Li and Zhou, 2005; Nie and Li, 2013; Deng et al., 2019). As a
result, there is imitation and competition between provinces in
terms of their economic behavior, which includes innovation—
especially in geographically adjacent provinces or provinces with
similar levels of economic development. To fill these research
gaps, our study focuses on the spatial characteristics of renewable
energy innovation at the province level in China and explores
their determinants. We use the standard deviational ellipse
method to analyze the spatiotemporal characteristics as well as
the pattern changes in China’s renewable energy innovation in
detail. In addition, the spatial Durbin model is adopted to analyze
the effects of the drivers of renewable energy innovation,
including the direct, indirect, and total effects.

Three novel contributions are made. First, despite the existence
of time-series analyses on the impact of renewable energy inno-
vation on power generation, environmental pollution, and climate
mitigation, few studies examine its developmental path and
determinants from a spatiotemporal dimension. This study seeks
to fill this gap using spatial statistical methods and econometric
models based on data from China’s national patent system
obtained by manual search. Second, we have come to a new
discovery that contradicts public perception, because the spatial
distribution of renewable energy innovation and the distribution
of resources in China show opposite characteristics and a gradual
southward shift in an opposite direction to the distribution of
resources. This helps us understand that the nature of renewable
energy innovation is not such that provinces with abundant basic
resources have stronger innovation capabilities, and there may be
other important spatial influencing factors that affect innovation.
Third, previous discussions on the influencing factors of renew-
able energy innovation have mainly focused on direct effects and
overlooked spatial effects. Our study, therefore, focuses on the
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spatial effects of the influencing factors to identify those that have
a significant impact on renewable energy innovation.

The remainder of this paper is organized as follows. Section
“Hypothesis and theoretical framework” reviews the relevant
studies. Section “Data and methods” introduces the study vari-
ables, data sources, and empirical modeling methods. Section
“Empirical results” presents the empirical results and Section
“Discussion” discusses their significance. Section “Conclusions
and policy implications” concludes and presents several targeted
policy suggestions.

Hypothesis and theoretical framework
Spatiotemporal pattern of renewable energy innovation. Chi-
na’s renewable energy resources, such as solar and hydro energies,
are scarce in the East and abundant in the West, but the spatial
distribution of renewable energy innovation follows the opposite
pattern. Bai et al. (2020) investigated the spatial distribution of
the average annual growth rate of the renewable energy innova-
tion index across China’s provinces during 1997–2015 and found
that it is generally consistent with the “Hu Huanyong” Line—that
is, renewable technology development is better in southeastern
China than in northwest region, and the gap between the regions
widened during that period. This disparity is also reflected in the
variations in the number of renewable energy patent grants in
China, which is significantly higher—and growing more rapidly—
in Southeast than in Northwest China. For example, the number
of patent grants for renewable energy technologies in Jiangsu
increased from 263 in 2006 to 9808 in 2019, a more than 37-fold
increase; those in Guangdong increased by about 27-fold from
287 to 7640 (CNIPA, 2022). By contrast, Beijing only experienced
about an 11-fold increase from 620 to 6689, and Sichuan, the
largest economy in western China, only granted 2087 grants in
2019, a figure which is much lower than those in the southeastern
provinces.

Based on the above analysis, the first hypothesis of this study is
thus proposed.

Hypothesis 1: China’s renewable energy innovation is stronger
in the eastern and southern regions, and this trend has gradually
strengthened over time.

Spatial effect of renewable energy innovation. The development
of new knowledge and technologies creates positive externalities,
so the spatial agglomeration they form is conducive to the spe-
cialization and innovativeness of enterprises. This is called the
knowledge spillover effect (Schleich et al., 2017). The spillover
effect is likely to come from the imitation effect, meaning that less
efficient enterprises try to emulate the behaviors of leading
companies in closely related industries (Syverson, 2011). Several
studies have found that knowledge spillovers play a crucial role in
firms’ innovation behavior (e.g., Griffith et al., 2006; Adam and
Mensah, 2013). Bernini and Galli (2023) found that the innova-
tive activities of neighboring hotels spread across space and
generate both agglomeration and competition effects using
georeferenced data of the consolidated accounts of Italian hotels.

In the recent energy literature, spillover effects have begun to
be considered as an important influencing factor (e.g., Lan et al.,
2021; Zhao and Sun, 2022; Liu et al., 2022; Mulder et al., 2023).
Zhao and Sun (2022) hypothesized that new energy vehicle
industry policies can reduce carbon emissions in the transporta-
tion sector in neighboring or economically similar regions, which
is verified using the panel data of 30 provinces in China from
2009 to 2018. Mulder et al. (2023) found that severe energy
poverty is much more spatially concentrated than income
poverty, which they argued is a symptom of the slow diffusion
of energy-saving technologies due to a combination of investment

barriers. However, few recent studies have analyzed the spatial
effects of renewable energy and its innovation.

Zhang et al. (2019) found that China’s renewable energy
industry exhibits path dependence and spatial stability and that
there is an industrial agglomeration effect in its spatial
development. Based on data from 24 countries in the European
Union, Noseleit (2018) documented that while there are barriers
to the spatial impact of renewable energy innovation in the short
term, foreign technologies have a stronger impact after a number
of years. Spatial dependence plays a relevant role in exploring the
impact of certain factors on renewable energy innovation, and the
extent of that impact will be underestimated if spatial decay and
the diffusion of technology are not considered (Rohe, 2020;
Shields et al., 2021). Therefore, the development of renewable
energy technology in a region not only depends on the
distribution of local resources, market structure, industrial
environment, and other factors but is also affected by the
spillover of technological innovation from surrounding regions.
For geographically adjacent innovation centers such as enter-
prises and scientific research institutions, it is easier to organize
innovation resources through collaboration. In addition, the
dynamic flow of innovative elements within the region also
produces spatial correlation effects.

Based on the above analysis, the second hypothesis of this
study is proposed.

Hypothesis 2: Renewable energy innovation has a positive
spillover effect in China such that surrounding provinces with
strong renewable energy innovation capabilities will have a
positive secondary effect on those in the local province.

Influencing factors of renewable energy innovation. Supple-
mentary Table S1 presents an overview of the prior studies on the
determinants of renewable energy innovation. Public R&D is a
major technology-push policy supported by government funding.
Numerous studies confirm the importance of R&D policies and
argue that they can compensate for underinvestment related to
technological uncertainty, market imperfections, or knowledge
failure (Pizer and Popp, 2008). Increasing public R&D funding
can effectively promote renewable energy innovation (Johnstone
et al., 2010; Lin and Chen, 2019; Ren et al., 2021; Zhao et al.,
2022), especially in wind and solar energy technologies (Kim and
Kim, 2015). In Denmark, Germany, Spain, and Sweden, public
R&D support is the essential driving force in renewable energy
innovation (Lindman and Söderholm, 2016). However, some
studies such as Böhringer et al. (2017) and Grafström and
Lindman (2017) also illustrated that investment in R&D activities
does not have a significant impact on renewable energy innova-
tion in mature industries, although it does in the early develop-
ment stages and in large-scale projects. Although public R&D is
cost-intensive, it is considered a domestic innovation activity and
thus has a timelier and more pronounced initial impact compared
to those that originate from abroad (Noseleit, 2018).

Studies on the characteristics of national innovation show that
they are closely related to national income levels. Fagerberg and
Srholec (2008) analyzed the experiences of 115 countries from
1992 to 2004 and found that national innovation is highly
positively correlated with per capita income. In the early stages of
renewable energy development, its application and innovation
will incur high costs—much higher than those incurred by fossil
energy. Countries with higher economic bases more readily form
a preliminary or niche market for alternative energy, and both
governments and enterprises have the ability and motivation to
carry out alternative energy innovation activities (Fouquet, 2010).
Economic growth also increases electricity consumption, and
higher electricity demand impacts the market size and thus
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necessitates innovation over time (He et al., 2018). Moreover,
province-level data in China indicate that economic growth has a
significant spillover effect on neighboring provinces (Liu et al.,
2022). This spatial effect will lead to this growth being fed back to
local innovation systems and enhancing local innovation
capabilities.

Based on the above analysis, the third hypothesis of this study
is proposed.

Hypothesis 3a: Increasing government R&D investment
effectively promotes renewable energy innovation in China and
has a pronounced impact on the local province.

Hypothesis 3b: The higher the level of economic development,
the higher the level of renewable energy innovation in China’s
provinces is, and this impact has significant spatial effects.

Theoretical framework. It has been documented that govern-
ment support is the most important factor in driving renewable
energy innovation (e.g., Johnstone et al., 2010; Pitelis et al., 2020;
Zhao et al., 2022). We must now determine which types of
governments are more willing to adopt policies that support
renewable energy. Combined with Hypothesis 3b, regions with
higher levels of economic development exhibit greater govern-
ment support for renewable energy. Government support for
renewable energy can be further reflected in three aspects. First,
the research and development of renewable energy technologies
should be directly supported, which corresponds to Hypothesis
3a. Second, renewable energy development plans, such as 5-, 10-,
or even 20-year renewable energy development targets, should be
formulated. Third, the requirements for environmental quality
should be determined according to the level of economic devel-
opment. The government is inclined to formulate strict envir-
onmental regulations, which force enterprises to increase their
use of clean energy and renewable technology research and
development, which corresponds to Hypothesis 3b. In terms of
direct effects, these measures can increase the use of renewable
energy, compensate for possible market failures in the early stages
of research and development, stimulate enterprise innovation,
and ultimately promote renewable energy innovation.

From the perspective of spatial effects, local governments’ low-
carbon policies have an emulation effect, which further promotes
renewable energy innovation cooperation in neighboring regions
and makes the cross-regional flow of innovation factors (e.g.,
R&D personnel, capital) more efficient. Thus, spatial effects
further promote renewable energy innovation, which corresponds
to Hypothesis 2. The reason for the emulation effect of low-
carbon policies is that China’s central government is paying more
attention to environmental quality. An important measure taken
by the central government is that the environmental quality of the
region is considered in the process of evaluating the promotion of
local government officials, which emphasizes the role of political
incentives in promoting local environmental quality (Li and
Zhou, 2005; Karplus et al., 2021). As a result, local government
officials have a strong incentive to imitate low-carbon policies—
especially renewable energy policies—in geographically or
economically similar provinces to improve environmental quality
in the region while positioning themselves for future promotions.
The theoretical framework is shown in Fig. 1.

Data and methods
Dependent variable. Patents can reflect the innovative perfor-
mance of an economy in a manner that is attractive to researchers
from an output perspective. Despite their shortcomings, patent
counts are still the best available source of data on innovation that
is readily available and comparable across countries and China’s
provinces (Johnstone et al., 2010; Geng and Ji, 2016; Cheng and

Yao, 2021). Referring to the technology classification of Cheng
and Yao (2021), we define renewable energy innovation (REI) as
the number of patent grants for six renewable energy technolo-
gies, namely, hydro, wind, solar, biomass, geothermal, and ocean.

Explanatory variables. Below we illustrate the explanatory vari-
ables used in this study.

Public R&D funding (RD). Increasing government funding in
R&D activities can effectively promote renewable energy inno-
vation. Böhringer et al. (2017) reported that public R&D spending
plays a positive role in renewable energy innovation in its early
developmental stages and in large-scale projects. This study uses
public R&D funding to measure government R&D investment.

GDP per capita (GDP). Economic growth corresponds to a higher
willingness and ability to engage in renewable energy innovation
(Fouquet, 2010; Li and Lin, 2016). Economic growth increases
electricity demand and thus necessitates innovation (He et al.,
2018). We use per capita GDP to measure economic growth.

Renewable energy installed capacity (REIC). Renewable energy
capacity reflects the potential of the renewable energy market
(Huber, 2008). According to the learning-by-doing effect,
renewable energy can lead to innovation in the development
process (Schleich et al., 2017). We choose installed renewable
energy capacity as a possible key determinant of renewable energy
innovation.

Renewable energy share (RES). Policy goals in China and other
Kyoto Protocol countries are focused on achieving a certain
proportion of renewable energy sources in the power generation
stack (Papież et al., 2018). It is generally believed that the higher
the proportion of renewable energy power generation, the more
effective the renewable energy innovation will be (Cheon and
Urpelainen, 2012). In this study, we test the effect of the pro-
portion of renewable energy power generation on renewable
energy innovation.

CO2 emissions per capita (CO2). Large-scale CO2 emissions pro-
mote renewable energy innovation (Lin and Zhu, 2019a). CO2

emissions per capita, therefore, are used to represent the carbon
constraints faced by the government and enterprises.

Industrial pollution control investment intensity (IPCII).
Researchers believe that environmental regulation motivates
enterprises to engage in green innovation and form new com-
petitive advantages (e.g., Galeotti et al., 2020). Referring to Guo
and Yuan (2020), this study uses the proportion of industrial
pollution control investment in industrial added value to measure
environmental regulation.

Data collection. This study uses a balanced panel of 31 regions in
China from 2006 to 2019. The patent classification codes of
renewable energy technologies are obtained according to the
guidelines outlined in the “IPC Green Inventory” on the website
of the World Intellectual Property Organization (WIPO). The
patent classification codes of different renewable energy tech-
nologies are presented in Supplementary Table S2. Chinese
renewable energy patent counts are collected on the Patent Search
and Analysis System website of the China National Intellectual
Property Administration (CNIPA, 2022). Due to the high diffi-
culty in crawling the website, it is difficult to obtain data in
batches, so the renewable energy patent data are finally obtained
by manually entering the international patent classification
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number, the applicant’s address, and the publication date for
retrieval. There are three types of Chinese patents: invention,
utility model, and design.

The IPC classification is only applicable to invention and utility
model patents, so we use the number of granted invention and
utility model patents as the number of renewable energy patent
grants in 31 provinces, municipalities1, and autonomous regions2

in mainland China from 2006 to 2019 in our analysis. The RD
data are from the China Statistical Yearbook on Science and
Technology (2007–2020). The GDP data are from the China
Statistical Yearbook (2007–2020). The REIC and RES data are
from the China Electric Power Yearbook (2007–2020). The CO2
data are from the China Emission Accounts and Datasets
(CEADs, 2022). The IPCII data are from the China Environment
Statistical Yearbook (2007–2020).

This study uses a balanced panel of 31 regions in China from
2006 to 2019. The descriptions, measurements, and data sources
of all variables are presented in Table 1. A statistical description
of the variables is given in Table 2. All explanatory variables,

except renewable energy share and industrial pollution control
investment intensity, are logarithmized.

Methods
Standard deviational ellipse. The standard deviational ellipse
(SDE) is a classic method for analyzing the directional char-
acteristics of spatial distributions. There are two advantages of
using SDE to reveal the spatiotemporal evolution of renewable
energy innovation. First, SDE takes the absolute value of geo-
graphical elements, which enables quantifying the spatial pattern
of different years to the same dimension in comparable studies.
Second, this method can accurately capture the relative trend of
renewable energy innovation in each province by visualizing that
in each year as an ellipse. Accordingly, it is widely used in spatial
assessments such as energy consumption (Wang et al., 2022),
energy intensity (Shi et al., 2021), carbon emissions (Yang et al.,
2020a), and waste management (Richter et al., 2021).

From a global and spatial perspective, this study uses the SDE
model to quantitatively explain the overall characteristics of the
spatial distribution of renewable energy innovation. The para-
meters of SDE include the ellipse center, long axis, short axis, and
azimuth. The ellipse center represents the center of the research
object in the geographical distribution, and the route of motion of
the ellipse center in different years represents the spatiotemporal
evolution trajectory of renewable energy innovation. The full
formula is given in Eq. (1.1); the formulas of the long and short
axes are given in Eq. (1.3). The long-axis direction indicates the
main directional trend of renewable energy innovation distribu-
tion, and the short axis represents its range. The shorter the short
axis, the more unbalanced the renewable energy innovation space
will be. The azimuth is the angle formed by a clockwise rotation
from the north to the long axis, as expressed in Eq. (1.4). The

Fig. 1 Theoretical framework. It shows the relationship between government support policy and renewable energy innovation both from the perspectives
of direct effects and spatial effects.

Table 1 Variable descriptions.

Variable Definition and unit Source

REI The number of renewable energy patent grants (file) China National Intellectual Property Administration (2022)
RD Public R&D funding (RMB 100 million) China Statistical Yearbook on Science and Technology

(2007–2020)
GDP GDP per capita (RMB) China Statistical Yearbook (2007–2020)
REIC Renewable energy installed capacity (million kilowatts) China Electric Power Yearbook (2007–2020)
RES The proportion of renewable energy power generation (%) China Electric Power Yearbook (2007–2020)
CO2 CO2 emissions per capita (ton) China Emission Accounts and Datasets (2022)
IPCII The proportion of industrial pollution control investment in industrial

added value (%)
China Environment Statistical Yearbook (2007–2020)

Missing values were filled using the random forest method.

Table 2 Descriptive statistics.

Variable Obs. Mean Std. dev. Min. Max.

REI 434 812.5 1316.0 0.0 9983.0
RD 434 81.6 131.4 0.8 1069.2
GDP 434 44,209.7 27,178.3 6103.0 164,220.0
REIC 434 12.7 14.7 0.0 83.6
RES 434 24.0 26.0 0.0 98.5
CO2 434 7.3 4.8 0.7 32.9
IPCII 434 0.4 0.4 0.0 3.1
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changes in the azimuth denote the differences in the renewable
energy innovation growth rates of the four subspaces, which are
divided by the long axis and the short axis of the ellipse as follows:

xi ¼ ∑n
i¼1 wixi
∑n

i¼1 wi
; yi ¼ ∑n

i¼1 wiyi
∑n

i¼1 wi
ð1:1Þ

exi ¼ xi � xi; eyi ¼ yi � yi ð1:2Þ

σx ¼
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where (xi, yi) (i= 1, 2, …, n) represents the longitude and latitude
coordinates of region i, wi represents the REI in region i (xi, yi), is
the longitude and latitude coordinates of the REI-weighted mean
center, σx and σy are the distances of the long and short axes in
the SDE, and θ is the azimuth.

Spatial autocorrelation. With the deepening of China’s regional
integration, the spatial organization of coordinated development
in formations such as urban agglomerations, economic belts, and
watershed belts has been continuously enhanced. This in-depth
integration will inevitably promote the spatial coordination of
regional industries and trigger the flow and diffusion of pro-
duction factors across regions, thereby building a collaborative
environment that enables the spillover of renewable energy
innovation. Therefore, it is necessary to thoroughly investigate the
spatial distribution pattern and evolutionary trends of China’s
provincial renewable energy innovation from a spatial correlation
perspective. Our exploratory spatial data analysis includes global
spatial autocorrelation (GSA) and local spatial autocorrelation
(LSA) (Anselin, 2003). GSA is used to describe the spatial dis-
tribution characteristics of the entire study area, usually using the
global Moran’s I test. The global Moran’s I can be calculated by
Eq. (1.5):

I ¼
n∑n

i¼1 ∑
n
j¼1 wij xi � �x

� �

xj � �x
� �

∑n
i¼1 ∑

n
j¼1 wij ∑

n
i¼1 xi � �x

� �2
ð1:5Þ

where I is the global Moran’s I, n is the number of regions stu-
died, wij is the spatial weight, xi is REI in region i, and �x is the
mean REI of all regions. I ranges from [−1, 1]. If the value is >0,
there is a positive spatial autocorrelation of renewable energy
innovation among regions. The greater the value, the more
obvious the spatial agglomeration phenomenon is.

The Moran scatterplot in the LSA tools can directly reflect the
local spatial agglomeration characteristics of renewable energy
innovation (Shi et al., 2019). The local Moran’s I can be calculated
by Eq. (1.6):

Ii ¼
xi � �x
� �

∑n
j¼1 wij xj � �x

� �

1
n∑

n
i¼1 xi � �x

� �2
ð1:6Þ

Four agglomeration patterns can be obtained using the local
Moran’s I test, namely, the high–high cluster (H–H; high-
efficiency zone), the low–low cluster (L–L; low-efficiency zone),
the low–high cluster (L–H; hollow zone), and the high–low
cluster (H–L; polarization zone). Specifically, H–H indicates that
regions with a high REI are surrounded by other regions with a
high REI.

The spatial weight matrixW plays a crucial role in determining
the model specification. This study considers four spatial weight

matrices: the adjacent weight matrix (W0−1), geospatial weight
matrix (Wg), economic-distance weight matrix (We), and
geospatial & economic-distance weight matrix (Wge). The specific
setting formulas are as follows:

w0�1
ij ¼ 1; if region i and j are adjacent

0; otherwise

�

ð1:7Þ

wg
ij ¼

1=d2ij; i≠ j

0; i ¼ j

�

ð1:8Þ

we
ij ¼

1= Xi � Xi

�

�

�

�; i≠ j

0; i ¼ j

(

ð1:9Þ

wge
ij ¼ 1= d2ij* Xi � Xj

�

�

�

�

�

�

� �

; i≠ j

0; i ¼ j

(

ð1:10Þ

where dij is the geospatial distance between region i and region j,
and Xi represents the average per capita GDP of region i from
2006 to 2019. The spatial weight matrix is row-standardized.

Spatial panel model. According to the theoretical construct of
“economic geography,” everything is essentially connected in
space, and the shorter the distance, the closer the connection is.
With respect to the spatial correlation of renewable energy
innovation between regions in China (Zhu et al., 2020), this study
adopts a spatial panel model to explore the spillover effects and
drivers of renewable energy innovation (Belotti et al., 2017). The
general form of the spatial Durbin model is shown in Eq. (1.11):

ln REIit ¼ ρ ∑
n

j≠i;j¼1
wij ln REIjt þ β1 ln RDit þ β2 lnGDPit þ β3 ln REICit

þ β4RESit þ β5 ln CO2it þ β6IPCIIit þ γ1 ∑
n

j≠i;j¼1
wij ln RDjt

þ γ2 ∑
n

j≠i;j¼1
wij ln GDPjt þ γ3 ∑

n

j≠i;j¼1
wij ln REICjtþγ4 ∑

n

j≠i;j¼1
wijRESjt

þ γ5 ∑
n

j≠i;j¼1
wij ln CO2 jt þ γ6 ∑

n

j≠i;j¼1
wijIPCIIjt þ μi þ vt þ εit

ð1:11Þ
where ρ represents the spillover effect, which reflects the impact
of renewable energy innovation in spatially related areas on that
in local areas. wij is the spatial weight, μi indicates individual fixed
effects, vt indicates time fixed effects, and εit is the random dis-
turbance term that obeys independent and identical distributions
and satisfy εit∼ iid (0, σ2).

The estimated coefficient is not strict enough to directly reflect
the marginal effect of the explanatory variable on the dependent
variable and is only valid in the direction of action and at the
significance level. Therefore, this study conducts partial differ-
ential decomposition following Lesage and Pace (2009) and
examines the direct and indirect effects of each explanatory
variable. The former measures the impact of a change in a local
explanatory variable on renewable energy innovation in the
region, while the latter measures the impact of a change in a local
explanatory variable on that in adjacent areas—that is, the
spillover effect of an explanatory variable.

Empirical results
China’s renewable energy innovation profile. This section
introduces the current status of China’s renewable energy inno-
vation. Figure 2 shows the number of six types of renewable
energy patents granted in China from 2000 to 2019. Under the
guidance of the national strategy and policy for developing
renewable energy, and in particular, the Renewable Energy Law of
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the People’s Republic of China promulgated in 2005 (NEA, 2017),
renewable energy innovation has achieved rapid development. In
terms of both the total number and types of patents, China’s
renewable energy innovation is showing a positive trend.

Figures 3 and 4 show the spatial distribution of REI in China
from 2006 to 2019, which generally increased in all regions. The
maximum value for REI in 2006 was 620, but in 2019, that in
most regions was higher than 620—Jiangsu ranked first, while
Guangdong, Beijing, and Zhejiang performed well, and among
the western regions Sichuan showed outstanding performance.
The spatial distribution of REI in China is significantly
unbalanced, and the overall performance shows a gradient

distribution trend that decreases from east to west and from
the coastal to the inland regions.

Geographical distribution of China’s renewable energy inno-
vation. This study applies the SDE method and comprehensively
analyzes the evolutionary path of the ellipse center as well as the
differences in the directional distribution of China’s REI from
2006 to 2019. The spatial evolution of China’s REI from 2006 to
2019 is shown in Fig. 5. The evolution of the SDE parameters
of REI over the 14-year period is presented in Supplementary
Table S3.

Fig. 2 Granted renewable energy patent numbers in types from 2000 to 2019. A description of REI in China from 2000 to 2019 using data from the
China National Intellectual Property Administration.

Fig. 3 Spatial distribution of REI in China in 2006. A spatial distribution description of REI in China in 2006.
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Fig. 4 Spatial distribution of REI in China in 2019. A spatial distribution description of REI in China in 2019.

Fig. 5 The ellipses of REI in China from 2006 to 2019. A spatial evolution description of REI in China from 2006 to 2019.
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The changes in the ellipse center in Fig. 5 reveal the trajectory
of the renewable energy innovation space. The ellipse center is
located at the junction of Henan and Anhui Provinces, which
indicates that the REI in the east is generally higher than that in
the west. The weighted mean centers moved in a southward
direction from Shangqiu in 2006 to Xinyang in 2019, thus
indicating that the REI in the southern regions is greater. The
overall movement trajectory of the ellipse center from 2006 to
2019 was from north to south, which, coupled with the finding
from Figs. 3 and 4 (i.e., that regions with a high REI in China are
mainly concentrated in the eastern coastal areas), support
Hypothesis 1.

Supplementary Table S3 shows the details of ellipses changes.
From 2006 to 2019, the long-axis standard deviation decreased
from 1000.64 to 921.11 km, which indicates a strengthening of the
directional trend. Furthermore, the value of the short-axis
standard deviation decreased from 695.27 to 684.58 km, which
indicates a weakening of the degree of dispersion. The azimuth
value of the SDE represents the main directional trend of the
spatial distribution of renewable energy innovation. Its decrease
from 40.28° in 2006 to 38.82° in 2019 indicates that renewable
energy innovation developed following a clockwise rotation
relatively rapidly in the southwest and northeast regions of the
ellipse. In addition to the above changes, the center of the ellipse
also shifts to the south.

Spatial autocorrelation test. Based on W0−1, Wg, We, and Wge,
the global Moran’s I of REI in 31 regions from 2006 to 2019 is
shown in Table 3. Most of the global Moran’s I value of REI is
significantly positive, thus indicating that the spatial distribution
of REI in Chinese regions is not random and shows a positive
spatial correlation, which means that regions with high (low)
levels tend to be adjacent to each other, thus verifying
Hypothesis 2. The global Moran’s I value of REI under We is the
most significant, followed by Wge, W0−1 and Wg. This spatial
correlation is more closely related to regional economic
development.

The Local Moran’s I is used to determine the agglomeration
patterns of each region. It can be seen from Figs. 6 and 7 that
renewable energy innovation has a significant local spatial
agglomeration effect under We. Specifically, in 2019, Beijing,
Shanghai, Jiangsu, Zhejiang, and Guangdong were in H–H,
thus indicating that these regions with a high REI were
surrounded by other regions with a high REI. Anhui,
Shandong, Henan, Hubei, Sichuan, and Shaanxi were in
H–L, thus indicating that these regions with a high REI were
surrounded by regions with a low REI. In addition to regions
such as Anhui, Sichuan, and Shaanxi changing from low to
high REI levels, the spatial pattern of relationships between
neighboring regions did not show significant changes from
2006 to 2019.

Table 3 Global Moran’s I of REI in 31 regions of China from 2006 to 2019.

Year W0−1 Wg We Wge

2019 0.159*(1.750) 0.126*(1.900) 0.318***(4.170) 0.364***(3.410)
2018 0.184**(1.989) 0.170**(2.431) 0.301***(3.983) 0.366***(3.446)
2017 0.206**(2.183) 0.162**(2.324) 0.270***(3.609) 0.328***(3.102)
2016 0.278***(2.824) 0.208***(2.856) 0.252***(3.373) 0.345***(3.234)
2015 0.225**(2.330) 0.168**(2.376) 0.271***(3.585) 0.328***(3.077)
2014 0.188**(2.039) 0.111*(1.734) 0.238***(3.258) 0.261**(2.557)
2013 0.191**(2.065) 0.100(1.603) 0.259***(3.514) 0.287***(2.782)
2012 0.212**(2.239) 0.115*(1.765) 0.298***(3.949) 0.308***(2.942)
2011 0.150*(1.663) 0.077(1.301) 0.311***(4.067) 0.262**(2.524)
2010 0.156*(1.672) 0.086(1.375) 0.338***(4.266) 0.298***(2.749)
2009 0.119(1.377) 0.067(1.183) 0.338***(4.369) 0.257**(2.472)
2008 0.113(1.311) 0.083(1.363) 0.360***(4.592) 0.281***(2.658)
2007 0.110(1.328) 0.079(1.361) 0.320***(4.250) 0.250**(2.470)
2006 0.069(1.053) 0.038(0.957) 0.253***(3.824) 0.152*(1.792)

The t statistics are in parentheses.
*p < 0.1, **p < 0.05, ***p < 0.01.

Fig. 6 Moran scatter plot of China’s REI in 2006. It shows the spatial
relationships among the 31 regions’ REI of China in 2006.

Fig. 7 Moran scatter plot of China’s REI in 2019. It shows the spatial
relationships among the 31 regions’ REI of China in 2019.
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Spatial effect decomposition. Choosing an appropriate spatial
panel model is a prerequisite for accurately measuring the spil-
lover effect and driving factors of renewable energy innovation.
Following Elhorst (2012), we conduct spatial diagnostic tests for
model specifications and present the results in Supplementary
Table S4. The results reported in Supplementary Table S4 show
that the null hypothesis of both the Wald and the LR tests were
rejected for all spatial matrices. Therefore, the SDM model, which
incorporates the dual fixed effects of time and space, is more
suitable for this study, and the results are shown in Supplemen-
tary Table S5. The coefficient of ρ under We in Supplementary
Table S5 is positive at the 5% significance level, while that under
the other spatial weight matrices is positive at the 1% significance
level, thus indicating that renewable energy innovation has a
positive spillover effect, which further supports Hypothesis 2.

The decomposition results of the drivers of renewable energy
innovation are shown in Table 4. We confirm the existence of a
feedback effect in these variables, which influences local renew-
able energy innovation by affecting that in adjacent regions and
returning to the region itself. For example, the direct effect of
lnRD is 0.383 (see Table 4) and its coefficient is 0.360 (see
Supplementary Table S5); its feedback effect is 0.023, or 6% of the
direct effect (see Fig. 8). There is a feedback effect of lnRD, which
increases local renewable energy innovation by affecting neigh-
boring regions and returning the results of their progress to the
originating region.

Increasing government R&D investment is an effective way to
promote China’s renewable energy innovation. However, this
beneficial effect seems to be confined mainly to the local region.

Under four spatial weight matrices, the direct and total effects of
lnRD are significantly positive. First, the direct effect of lnRD is
0.383 and is significant at the 1% level under Wge, meaning that a
1% increase in lnRD will, on average, cause the relative growth
rate of lnREI to increase by 0.383%. Second, only under Wg does
the coefficient of the indirect effect pass the 5% significance test.
The spillover effect of lnRD is more likely to occur between
regions that are geographically closer because it is easier for them
to coordinate their R&D strategies and policies to accelerate the
flow and agglomeration of innovation resources and thus the
spillover of innovation achievements. However, the influence of
political networks, the free-riding behavior of firms, and
politicized R&D activities due to corruption and rent-seeking
may hinder renewable energy innovation in surrounding areas
(Gao and Yuan, 2022; Gersbach et al., 2019). Therefore, the
spillover effect of lnRD is not obvious. Finally, the total effect of
lnRD passes the 1% significance level test, thus indicating that
public R&D investment is an important driver of renewable
energy innovation. The above analysis shows that Hypothesis 3a
is verified.

Under four spatial weight matrices, the direct, indirect, and
total effects of the economic base (lnGDP) are significantly
positive, thus indicating that economic development is an
important driver of renewable energy innovation. This is
consistent with Gao and Yuan (2022). First, the direct effect of
lnGDP is 0.403 under Wge and significant at the 5% level, which
implies that a 1% increase in lnGDP will, on average, cause the
relative growth rate of lnREI to increase by 0.403%. Second, the
indirect effect of lnGDP is significantly positive under Wge. With

Table 4 Decomposition results of the drivers of renewable energy innovation.

Effect Variable W0−1 Wg We Wge

Direct effect lnRD 0.333**(2.34) 0.251*(1.75) 0.382***(2.78) 0.383***(2.86)
lnGDP 0.595***(3.49) 0.260(1.43) 0.669***(3.75) 0.403**(2.20)
lnREIC 0.026(0.60) 0.017(0.42) 0.054(1.37) 0.044(1.10)
RES 0.002(0.47) 0.003(0.67) 0.001(0.35) 0.002(0.44)
lnCO2 0.829***(4.19) 0.722***(3.99) 0.680***(3.83) 0.711***(3.84)
IPCII 0.142**(−1.98) −0.153**(−2.21) −0.158**(−2.19) −0.165**(−2.36)

Indirect effect lnRD 0.273(1.49) 0.475**(2.16) 0.174(0.81) 0.324(1.63)
lnGDP 0.596**(2.37) 0.926***(2.78) 0.187(0.59) 0.732***(2.72)
lnREIC 0.183**(2.33) 0.131(1.56) 0.361***(2.63) 0.109(1.48)
RES −0.002(−0.20) −0.010(−0.66) −0.005(−0.31) −0.006(−0.55)
lnCO2 −0.775*(−1.86) −0.622(−1.03) −0.267(−0.49) −0.349(−0.78)
IPCII −0.430***(−2.87) −0.530***(−2.81) −0.242(−1.39) −0.383**(−2.29)

Total effect lnRD 0.606***(3.79) 0.726***(3.68) 0.556***(2.65) 0.707***(3.63)
lnGDP 1.190***(4.98) 1.187***(3.67) 0.857**(2.48) 1.135***(4.20)
lnREIC 0.209***(2.84) 0.148(1.61) 0.415***(2.84) 0.152*(1.79)
RES 0.000(0.03) −0.007(−0.47) −0.004(−0.21) −0.004(−0.37)
lnCO2 0.054(0.13) 0.100(0.17) 0.413(0.75) 0.362(0.81)
IPCII −0.571***(−3.62) −0.683***(−3.46) −0.400**(−2.21) −0.548***(−3.00)

The t statistics are in parentheses.
*p < 0.1, **p < 0.05, ***p < 0.01.

Fig. 8 The direct and indirect effects of lnRD on lnREI. It shows the decomposition effects of lnRD on lnREI.
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the deepening of regional economic integration, the in-depth
integration of markets, policies, and other factors between regions
will inevitably lead to the coordinated development of provincial
renewable energy innovation. In addition, the indirect effect of
lnGDP is about 1.8 times the direct effect, which suggests that the
strong spillover effect cannot be ignored. Finally, under the
significantly positive direct and indirect effects, the total effect of
lnGDP is positive. The above analysis shows that Hypothesis 3b
is verified.

Notably, under four spatial weight matrices, none of the direct
effects of lnREIC are significant, and the direct, indirect, and total
effects of RES are not significant. However, the direct effects of
lnCO2 are all significantly positive, and the indirect effect of
lnCO2 is negative and statistically nonsignificant. Most direct,
indirect, and total effects of IPCII are significantly negative, which
may indicate that more targeted environmental regulations can
promote renewable energy innovation.

Robustness test. Schleich et al. (2017) demonstrated that patent
stock could more accurately capture the sector-specific effects,
such as technology suppliers’ learning-by-inventing. Hence, we
conducted a robustness test using the stock of renewable energy
patents as the dependent variable, in which the depreciation rate
is 15% (Lin and Chen, 2019). Furthermore, the effects usually take
a time lag considering the patent authorization requires some
time. Therefore, we conducted a regression with lagging first-
order explanatory variables. Both of them prove that the con-
clusions are robust. The estimated results are shown in Supple-
mentary Table S6.

The presence of the spatially lagging dependent variable in Eq.
(1.11) implies that ordinary least squares estimates will be biased
and inconsistent since the spatial lag is mechanically correlated
with the disturbance term. There will also be omitted variables
that could potentially bias our results. To address these issues, we
change the estimation method to use the generalized spatial two-
stage least squares (GS2SLS) by Kelejian and Prucha (1998) in the
spatial model Eq. (1.11) without spatially lagging the independent
variables. The instrumental variable (IV) we use is a bundling of
WX and W2X, where W is the weight matrix, W2 is the second
spatial lag, and X is the independent variable matrix.

In addition, since innovation is a continuous process, and the
accumulation of innovation in the previous period can attract
more R&D funding or create more favorable R&D conditions for
the current innovation activity, we introduce the first-order lag
term of REI to establish a dynamic SDM model based on Eq.
(1.11), which also can also alleviate the problem of omitted
variables. To further address endogenous problems, the general-
ized moment method (GMM) by Han and Phillips (2010) is used
to estimate the dynamic SDM model. Both results of GS2SLS and
GMM remain robust. The estimated results are shown in
Supplementary Table S7.

Discussion
Spatiotemporal pattern of renewable energy innovation. Most
regions in H–H of Figs. 6 and 7 are located in the eastern coastal
area, where the economy is highly developed with comparatively
advanced industrial structures. By comparison, most regions in
L–L are located in western and northeastern China, where
renewable energies are abundant but the economic activity is
energy intensive. Therefore, China exhibits a spatiotemporal
character such that the high-REI regions are mainly located in the
eastern coastal area and the low-REI regions are mainly located in
western and northeastern China. The main reasons for this
finding are as follows. (i) The reform and opening-up policies
have provided an inexhaustible motivating force for economic

development in the southeastern coastal provinces. Jiangsu,
Zhejiang, and Guangdong are among the most economically
productive provinces in China and provide ample support in
terms of scientific research and capital investment in local
renewable energy innovation (Li et al., 2022). (ii) The power grid
in the northern region is underdeveloped, and its power trans-
mission is limited (Yang et al., 2020b), which is not conducive to
the consumption of renewable electricity and thus detracts from
the application of innovative technologies. (iii) There is an
agglomeration effect of innovation. China’s industrial agglom-
eration areas are mainly distributed in the eastern regions, such as
the Yangtze and Pearl River Deltas. The flow of innovation ele-
ments in agglomeration areas can produce a knowledge spillover
effect, which in turn improves the region’s overall innovativeness.

Spillover effects and influencing factors. According to
Hypothesis 2, renewable energy innovation can yield a stronger
spillover effect between regions that are geographically closer to
each other and have similar levels of economic development. The
reason for this phenomenon is that since 2012, the Chinese
government has continued to increase funding for sustainable
development and environmental quality (Karplus et al., 2021). In
2014, what has been described as the most stringent environ-
mental protection law in China’s history was promulgated by the
Ministry of Ecology and Environment (MEE, 2014), which placed
a greater emphasis on the environmental governance responsi-
bilities of local governments. Local government officials have a
strong intrinsic motivation to mimic the low-carbon behaviors of
geographically and economically adjacent provinces and promote
renewable energy innovation to improve environmental quality.
Nonetheless, it remains unclear how can renewable energy
innovation can be effectively promoted in China.

Although increasing government R&D investment is an
effective way to promote China’s renewable energy innovation,
this beneficial effect seems to be limited to the local region. That
is, there is only a direct effect. Public R&D funding can mitigate
the inefficiencies caused by market failures and provide a useful
supplement to the technological innovation investments of
private enterprises. However, government support is unsustain-
able, and policies can only play an important role in the early
stages of renewable energy development (Johnstone et al., 2010;
Pitelis et al., 2020). As the renewable energy industry continues to
grow, its drivers will shift, and market-oriented policy support
will become crucial. The Chinese government is currently
vigorously promoting the development of green finance, such as
green bonds and ESG investment, to actively expand the
financing channels for the renewable energy industry.

The more developed the economy, the stronger its willingness
to commit to renewable energy innovation will be. With the
deepening of regional economic integration, the in-depth
integration of markets, production factors, policies, and develop-
ment strategies between regions continues to advance and will
inevitably lead to the coordinated development of renewable
energy innovation among provinces, which will enhance the
spillover effect. That is, economic development has not only a
direct effect but also an indirect effect. Therefore, deepening
cooperation and coordinated development in key regions such as
the Beijing–Tianjin–Hebei region and the Yangtze River Delta are
effective ways to enhance renewable energy innovation. In
particular, for the western region, which is characterized by
relatively backward economic development, forming economic
agglomeration areas can also promote renewable energy
innovation.

There are other factors that do not currently have a significant
impact on renewable energy innovation at the provincial level in
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China, such as installed renewable energy capacity and the
proportion of renewable electricity in the total electricity supply.
The insignificance of these two factors implies that renewable
energy innovation is not necessarily positively correlated with
renewable energy consumption and abundant resource endow-
ments, which further explains why the spatial distribution of
renewable energy innovation shows a trend that is opposite to
that of resource distribution in China but is highly correlated with
its economic distribution.

It should be noted that our analysis only focuses on the
development of renewable energy in China at the current stage,
and as it enters large-scale adoption, the factors influencing
innovation may undergo a major shift such that the role of
government diminishes and the role of the market becomes
stronger. However, the spatial agglomeration effect will still play
an important role for the foreseeable future.

Conclusions and policy implications
Conclusions. Based on province-level panel data from 2006 to
2019, which includes 31 regions in mainland China, this study
explores the spatiotemporal pattern and drivers of renewable
energy innovation. We obtain the following findings.

First, renewable energy innovation shows distinct spatial
differences and aggregation characteristics among China’s
provinces. The Beijing–Tianjin–Hebei region, the middle and
lower reaches of the Yellow River, and the middle and lower
reaches of the Yangtze River are the main agglomeration areas of
renewable energy innovation. In terms of the weighted mean
centers of SDE, renewable energy innovation shows a trend of
being strong in the east and south and weak in the west and
north, and the latter trend is becoming more significant owing to
the fact that the southeastern region has experienced rapid
economic development. Second, the Global Moran’s I increase
from 0.152 in 2006 to 0.364 in 2019, which shows a positive
spatial correlation of renewable energy innovation. It can be seen
from the results of the local Moran’s I test that China formed high
innovation level clusters mainly in the eastern coastal area and
low innovation level clusters mainly in the western and north-
eastern areas. Furthermore, the pattern of the spatial distribution
exhibits spatial locking and path dependence. Third, the favorable
impact of government funding on innovation is mainly observed
in the local area, while GDP per capita helps boost innovation for
the local as well as the neighboring regions. Renewable energy
capacity has an obvious spillover effect, while the proportion of
renewable energy power generation did not play a role in
innovation during the research period. The total effect of CO2

emissions is limited because the effects show diametrically
opposite directions within and outside the region, while
investments in industrial pollution control inhibit innovation in
all regions.

Policy implications. Based on the above analysis, the following
policy implications are proposed.

First, attention should be paid to the less developed areas in the
western regions and renewable energy innovation should be
promoted more aggressively in northern China. As the results
show, although western China has abundant renewable resources
in the form of hydro and solar energy, it lagged behind in terms of
technological development and the innovation center gradually
shifted from the north to the south. To balance the geographic
distribution of renewable energy innovation, eastern China, which
has strong research platforms and renewables-related enterprises,
can focus on research and development to be the primary source
of renewable energy innovation and thus the spillover of
knowledge and talent. For the regions in western and northern

China with weak innovation capabilities, we consider the fact that
renewable energy innovation in neighboring provinces has been
shown in our analysis to have a positive spillover effect on local
provinces and recommend that governments build on their
resource and cost advantages by introducing new technologies and
equipment to create a more mature renewable energy market,
which will in turn further attract new technologies and equipment,
thus forming a virtuous circle. For example, according to the
recently released Implementation Plan for Promoting the High-
quality Development of New Energy in the New Era promulgated
by the National Development and Reform Commission and
National Energy Administration (NDRC, NEA, 2022), the central
government will promote the construction of large wind power
and photovoltaic bases in the Gobi desert and other desert areas,
which are mainly concentrated in western China.

Second, increased government funding of R&D investment
should result in sustained economic growth and expansion of the
installed renewable energy capacity. The results show that R&D
investment can effectively stimulate renewable energy innovation,
although this effect is limited to the local area, while economic
development and installed renewable energy capacity have
spillover effects. In light of these implications, economic
development should be further promoted and the renewables
industry should be further expanded. Furthermore, collaborative
innovation activities between enterprises and research institutions
in different regions should be encouraged to create spillover
effects in neighboring regions.

Third, market-oriented R&D investment should also be
promoted. The government can increase its support for new
energy projects through green bonds and green credit and by
including new energy projects in pilot real estate investment
trusts. Furthermore, the certified GHG emissions reduction of
qualified new energy projects can be included in the national
emissions trading market to offset quotas. It is worth noting that
the government’s innovation policy should avoid allocating
funding to specific enterprises but rather create an environment
that encourages fair competition through targeted and inclusive
policies to allow market mechanisms to guide the allocation of
innovation factors.

Data availability
The datasets generated during and/or analyzed during the current
study are available from the corresponding author on reasonable
request.
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