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Abstract: Weprove the positivity of Lyapunov exponents for the normal form of aHopf
bifurcation, perturbed by additive white noise, under sufficiently strong shear strength.
This completes a series of related results for simplified situations which we can exploit
by studying suitable limits of the shear and noise parameters. The crucial technical
ingredient for making this approach rigorous is a result on the continuity of Lyapunov
exponents via Furstenberg–Khasminskii formulas.

1. Introduction

The understanding and detection of chaotic properties has been a central theme of dy-
namical systems theory over the past decades. Particular interest has been devoted to
proving positive Lyapunov exponents in nonuniformly hyperbolic regimes [38], as an in-
dicator of chaotic structures. Since such endeavours have turned out to be tremendously
difficult for purely deterministic systems, as, for instance, the standard map [21], more
and more attention has been given to random systems where noise can help to render
chaotic features visible [13,14,37].

A particular mechanism for creating chaotic attractors under, potentially random,
perturbations has been suggested and studied by Wang, Young and co-workers and has
become known as shear-induced chaos [26,27,34]. The main idea is to perturb limit
cycles in the radial direction, where the amplitude of the perturbation depends on the
angular coordinates along the limit cycle, such that a shear force in the form of radius-
dependent angular velocity can lead to a stretch-and-foldmechanism in combinationwith
overall volume contraction. In the situation of random perturbations, this has contributed
to a particular view on stochastic Hopf bifurcation, complementary to previous studies
[2,5].

In more detail, the following model of a Hopf normal form with additive white
noise has been studied in [16,17], also drawing attention from applications to e.g. laser
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Fig. 1. The function � plotted on the interval ζ ∈ (0, 10]. The data were obtained by numerical integration

dynamics [35]:

d

(
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Z2(t)

)
=

[(
α −β

β α

)
− ‖Z(t)‖2
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b a

)](
Z1(t)
Z2(t)

)
dt + σd

(
W1(t)
W2(t)

)
, (1.1)

where σ ≥ 0 is the strength of the noise, α ∈ R is a parameter equal to the real part
of eigenvalues of the linearization of the vector field at (0, 0), b ∈ R represents shear
strength, a > 0, β ∈ R, and (W (t))t∈R≥0 is a 2-dimensional Brownian motion. We will
focus on the case α > 0, such that the system without noise (σ = 0) possesses a limit
cycle with radius

√
αa−1.

Deville et al. [16] showed that, in the limits of small noise and small shear, the
largest Lyapunov exponent λ(α, β, a, b, σ ) for system (1.1) is negative. Doan et al. [17]
extended these stability results to parts of the global parameter space and proved that the
random attractor for the associated random dynamical system is a singleton, establishing
exponentially fast synchronization of almost all trajectories.

Based on numerical investigations, it was conjectured in several works [16,17,26,35]
that large enough shear in combination with noise may cause Lyapunov exponents to
turn positive, leading to chaotic random dynamical behaviour without synchronization.
Wang and Young [34] obtained a proof of shear-induced chaos with deterministic instan-
taneous periodic driving. Lin and Young [26] introduced a simpler, affine linear SDE
model that still retains the important features of (1.1) and exhibits favorable scaling
properties of the parameter-dependent (numerically computed) Lyapunov exponents.
Using a slight modifcation of the noise, Engel et al. [19] obtained an analytical proof
of positive Lyapunov exponents for this kind of simplified model in cylindrical coordi-
nates. For that they used a Furstenberg–Khasminskii formula in terms of a function �

(cf. Fig. 1 and Theorem 2.3 below), based on results in [24].

1.1. Main result. The key insight of our work presented here is that the simplified cy-
clinder model in [19] can be found as a large shear, small noise limit for system (1.1).
This allows us to finally prove the existence of positive Lyapunov exponents by using
the corresponding results in [19] and an argument concerning the continuity of Lya-
punov exponents. Hence, the main result can be expressed by associating the limit for
λ(α, β, a, ε−1b, εσ ) with the explicit Furstenberg–Khasminskii formula in terms of the
function� (see Fig. 1), yielding positive Lyapunov exponents for sufficiently large shear
and small noise.
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Fig. 2. Chaotic random attractor for (1.1) with parameters α = 1, β = 1, a = 1, b = −10 and σ = 1.

The deterministic limit cycle
{
z ∈ R

2 : ‖z‖ = √
αa−1

}
is shown in blue for reference. The plot was obtained

by taking 50,000 samples from the stationary distribution of (1.1) and evolving them numerically using an
Euler–Maruyama scheme for a fixed time T ≈ 500 with a fixed realization of the noise

Theorem A. For all α, a, σ ∈ R>0 and β, b ∈ R, the largest Lyapunov exponent of
system (1.1) satisfies

lim
ε→0

λ(α, β, a, ε−1b, εσ ) = 2α �

(
b2σ 2

2α2a

)
. (1.2)

In particular, there is a constant C0 ≈ 3.45 such that

λ(α, β, a, ε−1b, εσ ) > 0,

whenever b2σ 2 > 2C0α
2a and ε > 0 is sufficiently small, depending on α, β, a, b and

σ .

We remark that the situation of positive Lyapunov exponents allows for several con-
clusions concerning the nature of the random attractor {A(ω)}ω∈
 (
 denotes the canon-
ical Wiener space here), as established in [17]. In this reference, the authors identified
A(ω) = supp(μω), where μω denote the disintegrations of the invariant measure μ

for the random dynamical system, corresponding with the stationary measure ρ for the
SDE (1.1). Now, when λ > 0, we may deduce that μω is atomless almost surely by an
extension of results by Baxendale [4, Remark 4.12] to the non-compact setting [18, The-
orem 5.1.1]. Furthermore, by applying results on Pesin’s formula for random dynamical
systems in R

d [11], one obtains positive metric entropy with respect to the invariant
measure μ whenever λ > 0 (see also [18, Corollary 5.2.10]). The fact that the disinte-
grations μω are SRB measures should follow by a similar extension of Ledrappier’s and
Young’s work [25] to the non-compact state space case (Fig. 2).

1.2. Interpretation of the result. Lin and Young [26] raised also quantitative questions
about the roles of the shear strength, the contraction rate and the noise strength in creating
shear-induced chaos. For the simplified cylinder model these questions were answered
in [19]: the sign of the top Lyapunov exponent is positive if and only if the quantity

shear2 · noise2
contraction3

is larger than the constant C0 ≈ 3.45 (cf. Theorem 2.4 below).
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In the setting of (1.1), contraction occurs only in radial direction, while the shearing
effect occurs in angular direction. Thus we refer to the radial derivative of the angular
part of the vector field as shear strength and to the negative radial derivative of the
radial part of the vector field as contraction rate. As opposed to the simplified cylinder
model, shear strength and contraction rate are not constant and depend on the distance
to the origin. However, since our main result Theorem A is concerned with a small
noise limit, the relevant shear strength and contraction rates are the ones near the limit
cycle of the corresponding deterministic system (σ = 0). Note that the contraction
rate at the limit cycle is precisely its non-trivial Floquet-multiplier. The radius of this
deterministic limit cycle has another important role. Since the noise is purely additive, it
cannot induce chaotic behavior directly. Instead the presence of additive noise creates a
phase-amplitude coupling, which in tandem with the amplitude-phase coupling created
by the shear leads to chaos (see [26] for a detailed explanation of the mechanism of
shear-induced chaos). Thus, the effective noise strength, which describes the strength
of the phase-amplitude coupling, is proportional to the curvature of the deterministic
limit cycle, which is inversely proportional to its radius. In the parameters of (1.1), shear
strength, contraction rate and effective noise strength can be expressed as follows:

radius =
√

α

a
, shear = 2b · radius2 = 2bα

a
,

contraction = −α + 3a · radius = 2α, eff.-noise = noise

radius
= σ

√
a

α
.

Analogously to the results of [19], Theorem A asserts that in the large shear, small noise
limit the sign of the top Lyapunov exponent is positive if the quantity

shear2 · eff.-noise2
contraction3

= shear2 · noise2
contraction3 · radius2 = b2σ 2

2α2a
(1.3)

is larger than C0 ≈ 3.45. In order to obtain such a result, it is crucial for the exponents
of ε in (1.2) to be chosen in such a way that the quantity (1.3) remains constant.

1.3. Structure of the paper. The proof of Theorem A is presented in Sect. 3, based
on a formal first derivation in Sect. 2. In more detail, Sect. 2.1 recalls the bifurcation
from synchronization to chaos, indicated by a change of sign of the largest Lyapunov
exponent, in the simplified model in cylindrical coordinates studied in [19]. In Sect. 2.2,
we provide a rigorous framework to study model (1.1) as a random dynamical system,
also introdcuing the corresponding Lyapunov exponents. Based on a specific geometric
insight, we introduce the crucial, new coordinates for the variational process along
trajectories of (1.1) and the change of variables b = ε−1b′ and σ = εσ ′, yielding a
description of the system that allows for obtaining the simplified model in a formal
ε → 0 limit.

As a first step towards a rigorous proof, Sect. 3.1 derives SDEs and coefficient es-
timates for auxiliary processes, parametrizing the projective bundle process, in order
to provide Furstenberg–Khasminskii formulas that make the RDS and its linearization
associated to (1.1), indexed by ε, comparable to the simplified SDE model. In Sect. 3.2,
we establish the unique stationary measures for the respective bundle processes along
with concentration bounds and a weak convergence result as ε → 0. After showing
in Sect. 3.3 the Furstenberg–Khasminkii formula for the limiting process, obtained in
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the simplified model, we collect the previous description of the bundle processes and
their invariant measures to prove, in Sect. 3.4, the limit of the largest Lyapunov expo-
nent as stated in Theorem A. Thereby, we have to use two different coordinate systems
for the variational process, one allowing for an arbitrarily close approximation of the
deterministic limit cycle and one controlling the polar coordinate singularity at radius
r = 0.

1.4. Additional relations to other work and outlook. Lately, Breden and Engel [15]
proved the existence of positive conditioned Lyapunov exponents, as introduced in [20],
for model (1.1) restricted to a bounded domain around the deterministic limit cycle.
The setting considers limits of trajectories, conditioned on not having hit the bound-
ary of the domain. The proof involves computer-assistance, using interval arithmetic,
for obtaining an approximation of the relevant quasi-ergodic measure in a modified
Furstenberg–Khasminskii formula, together with a rigorous error estimate. Naturally,
the proof procedure is always based on choosing particular values for the parameters,
i.e. in the end one can show the result only for a finite number of parameter combinations.

In recent years, Bedrossian, Blumenthal and Punshon-Smith have embarked on a
program tomake randomdynamical systems theory fruitful for relating chaotic stochastic
dynamics with positive Lyapunov exponents to turbulent fluid flow, in particular in the
form of Lagrangian chaos and passive scalar turbulence [8,9]. On a related note, the
same authors have developed a new method for obtaining lower bounds for positive
Lyapunov exponents, using an identity resemblingFisher information and and an adapted
hypoellitpic regularity theory [10]. They have applied this method to Euler-like systems,
including a stochastically forced version of Lorenz 96, where an energy and volume
conserving system is weakly perturbed, in the sense of small scaling, by linear damping
and noise. Note that our situation also considers small noise perturbations but, being a
dissipative system, strong damping; hence, the mechanism leading to chaos and positive
Lyapunov exponents is fundamentally different, requiring a strong shear force interacting
with noise and dissipation.

This leads to the general question of whether the reduction of the perturbed normal
form (1.1) to the simplified cylinder models in [19,26], yielding the positivity of Lya-
punov exponents, can be extended to a broad, maybe even universal, class of oscillators
(van der Pol, FitzHugh-Nagumo etc.). We leave it as an open question for the future to
find a such rigorous generalization for the phenomenon of shear-noise induced chaos.

The key method used in the present work is a coordinate change for the variational
process which depends on the scaling parameter ε. Such rescalings have been used
before in the literature, see e.g. [3,6,7,29]. However, opposed to the mentioned works,
the coordinate change used in the present work is linear only in polar coordinates, leading
to a non-linear transformation in Cartesian coordinates. The geometric implications of
this will be discussed in Remark 2.8 below. Finally, we would like to mention that,
in contrast to noise-induced chaos, there have also been remarkable results on noise-
induced order in recent years [28], in particular concerning contracting Lorenz maps
[12].

2. Large Shear, Small Noise Limit and Relation to Simplified Model

In this section, we will first give an overview over the simplified model studied by Engel
et al. [19], inspired by Lin and Young [26]. We will then provide a formal, non-rigorous
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derivation of our main result, which shall serve as a guide for the rigorous proof given
in the final section.

2.1. A bifurcation in the simplified model. As a slightly modified version of a model
studied in [26], Engel et al. [19] have investigated the SDE

⎧⎨
⎩

dŜ(t) = −α̂ Ŝ(t)dt + σ̂
[
sin

(
�̂(t)

)
dŴ1(t) + cos

(
�̂(t)

)
dŴ2(t)

]
,

d�̂(t) =
[
1 − b̂Ŝ(t)

]
dt,

(2.1)

where (Ŝ(t)) is a real-valued process and (�̂(t)) is an S1 := R/(2πZ)- valued process.
Furthermore, α̂, σ̂ ∈ R>0 are positive real parameters, b̂ ∈ R is a real parameter and
(Ŵ1(t), Ŵ2(t)) are independent Brownian motions. Note that the parameters α̂, b̂ and σ̂

have roles that are similar to their respective counterparts α, b and σ in Eq. (1.1). Based
on previous work by Imkeller and Lederer [24], it was shown in [19] that, depending on
the values of the parameters α̂, b̂ and σ̂ , the top Lyapunov exponent for (2.1) can attain
both positive and negative values.

We will start by giving a brief overview of the formal setup for studying solutions
of (2.1) from a random dynamical systems viewpoint. Due to the Lipschitz-continuity
of all terms on the right-hand side of (2.1), this equation generates a differentiable
random dynamical system [1, Definition 1.1.3], which can be constructed as follows.
Set
 = C0(R≥0,R

2), where C0(R≥0,R
2) denotes the space of all continuous functions

ω : R≥0 → R
2 satisfying ω(0) = 0. We equip 
 with the compact-open topology and

let P be theWiener measure defined on the Borel-measurable subsets of
. Furthermore
we denote by ς : R≥0 × 
 → 
 the shift action given by

ς(t, ω)(s) = ω(t + s) − ω(t).

The Brownian motions Ŵi , i = 1, 2, in (2.1) will be interpreted as random variables
defined by

Ŵ1(t) := ω1(t) and Ŵ2(t) := ω2(t).

There exists a stochastic flow map ϕ̂ : 
×R≥0 × (R× S1) → R× S1 induced by (2.1)
which has the following properties.

(i) For each (Ŝ0, �̂0) ∈ R × S1, the stochastic process (Ŝ(t), �̂(t)) defined by

(Ŝ(t), �̂(t)) := ϕ̂(t, ·, Ŝ0, �̂0)

is a strong solution to (2.1) with initial condition (Ŝ(0), �̂(0)) = (Ŝ0, �̂0).
(ii) After possibly restricting to a ς -invariant subset 
̃ ⊆ 
 of full P-measure, the

skew-product (ς, ϕ̂) forms a continuously differentiable random dynamical system
(RDS) in the sense of [1, Definition 1.1.3]. In particular the cocycle property

ϕ̂(s + t, ω, Ŝ0, �̂0) = ϕ̂(t, ς(s, ω), ϕ̂(s, ω, Ŝ0, �̂0)) (2.2)

holds for every s, t ∈ R≥0, ω ∈ 
̃ and (Ŝ0, �̂0) ∈ R × S1.
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Fig. 3. Typical trajectories (red) for (ŝ(t), θ̂ (t)), t ∈ [0, 10], starting in (ŝ0, θ̂0) = (0, 1), with parameters
α̂ = b̂ = σ̂ = 1 (a) and α̂ = b̂ = 1, σ̂ = 2 (b). The blue arrows indicate the drift field and the green arrows
the noise field. Note that for a we have ζ := b̂2σ̂ 2α̂−3 = 1 < C0, while for b we have ζ = 4 > C0

For simplicity of notation, we will identify 
̃ and
 and will use ϕ̂ to mean its restriction
to 
̃. This allows us to define a linear map �̂ : R≥0 × 
 × (R × S1) → R

2×2 by

�̂(t, ω, Ŝ0, �̂0) = D
(Ŝ0,�̂0)

ϕ̂(t, ω, Ŝ0, �̂0).

The cocycle property of �̂ over the RDS (ς, ϕ̂), i.e.

�̂(s + t, ω, Ŝ0, �̂0) = �̂(t, ς(s, ω), ϕ̂(s, ω, Ŝ0, �̂0))�̂(s, ω, Ŝ0, �̂0),

comes as a direct consequence of applying the chain rule to (2.2). By the Furstenberg–
Kesten Theorem, the integrability condition of which can be easily verified for our
situation, the top Lyapunov exponent λ̂(α̂, b̂, σ̂ ) can now be defined as

λ̂(α̂, b̂, σ̂ ) := lim
t→∞

1

t
log ‖�̂(t, ω, Ŝ0, �̂0)‖.

A useful tool for studying Lyapunov exponents is the variational process given by(
ŝ(t)
θ̂(t)

)
:= �̂(t, ω, Ŝ0, �̂0)

(
ŝ0
θ̂0

)
,

for some initial condition (ŝ0, θ̂0) �= (0, 0). This process satisfies the so-called variational
equation (see e.g. [1, Theorem 2.3.32]), which in our case takes the form{

dŝ(t) = −α̂ŝ(t)dt + σ̂ θ̂ (t)dŴ3(t),

dθ̂ (t) = −b̂ŝ(t)dt,
(2.3)

obtained by differentiating the coefficients of the original SDE (2.1) (Fig. 3).
Here, the process (Ŵ3(t)) is given by

dŴ3(t) := cos
(
�̂(t)

)
dŴ1(t) − sin

(
�̂(t)

)
dŴ2(t).

By Levy’s criterion, see e.g. [30, Theorem IV.3.6], the process (Ŵ3(t)) is again a Brow-
nian motion.
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Remark 2.1. Note that (Ŵ3(t)) does not only depend onω but also on the initial condition
(Ŝ0, �̂0) for the original equation (2.1). Thus, the process (ŝ(t), θ̂ (t)) also depends not
only on its own initial condition (ŝ0, θ̂0), but also on (Ŝ0, �̂0). However, the law of
(Ŵ3(t)) is always that of a Brownian motion, independently of (Ŝ0, �̂0); hence, the law
of (ŝ(t), θ̂ (t)) also does not depend on (Ŝ0, �̂0) (but of course still on (ŝ0, θ̂0)).

It follows from results in [24] that, for any initial condition (ŝ0, θ̂0) �= (0, 0), we
almost surely have

λ̂(α̂, b̂, σ̂ ) = lim
t→∞

1

t
log

√
ŝ(t)2 + θ̂ (t)2. (2.4)

Thus the Lyapunov exponent λ̂(α̂, b̂, σ̂ ) is fully determined by the law of the SDE (2.3).

Remark 2.2. For each (Ŝ0, �̂0) ∈ R × S1 and almost every ω ∈ 
 there will still exist
a one-dimensional subspace V (ω, Ŝ0, �̂0) ⊂ R

2 such that

(ŝ0, θ̂0) ∈ V (ω, Ŝ0, �̂0) ⇒ lim
t→∞

1

t
log

√
ŝ(t)2 + θ̂ (t)2 = λ̂2(α̂, b̂, σ̂ ) < λ̂(α̂, b̂, σ̂ ),

where λ̂2(α̂, b̂, σ̂ ) is the second Lyapunov exponent. However, due to a result from [23]
based on Hörmander’s condition, one can show that the distribution of V (·, Ŝ0, �̂0) in
the projective space RP1 is atomless. Thus, for each fixed (Ŝ0, �̂0, ŝ0, θ̂0) we have for
almost every ω ∈ 


(ŝ0, θ̂0) /∈ V (ω, Ŝ0, �̂0),

such that the equality (2.4) holds.

It turns out that one can make use of homogenities of system (2.3) to simplify the
analysis of the sign of the top Lyapunov exponent. Substituting θ̂ (t) �→ γ θ̂(t) for some
γ > 0 gives the identity

λ̂(α̂, γ b̂, γ −1σ̂ ) = λ̂(α̂, b̂, σ̂ ).

It is worthmentioning, that this coordinate change is of the type discussed in [29, Section
7]. Similarly, substituting t �→ δt gives (cf. [19, Proposition 3.2])

λ̂(δα̂, δb̂,
√

δσ̂ ) = δλ̂(α̂, b̂, σ̂ ).

Together, these two identities show that the sign of λ̂(α̂, b̂, σ̂ ) will only depend on the
value of ζ := b̂2σ̂ 2α̂−3. In [24], Imkeller and Lederer derived a semi-explicit formula
for λ̂(α̂, b̂, σ̂ ). To give this formula, we first define for each ζ > 0 a function mζ :
R>0 → R≥0 by

mζ (u) := K−1
ζ

1√
u
exp

(
−1

ζ

(
1

6
u3 − 1

2
u

))
.

Here Kζ > 0 is a normalization constant given by

Kζ :=
∫ ∞

0

1√
u
exp

(
−1

ζ

(
1

6
u3 − 1

2
u

))
du,
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such that mζ becomes the density of a probability distribution on R>0. Next, we define
a function � : R>0 → R by

�(ζ) := 1

2

(∫ ∞

0
u mζ (u)du − 1

)
. (2.5)

Now one can give the following formula for the top Lyapunov exponent of the RDS
induced by Eq. (2.1).

Theorem 2.3 ([24, Theorem 3], see also [19, Theorem 2.1]). For any initial condition
(ŝ(0), θ̂ (0)) �= (0, 0) the solution to (2.3) satisfies

lim
t→∞

1

t
log

(√
ŝ(t)2 + θ̂ (t)2

)
= λ̂(α̂, b̂, σ̂ ) = α̂ �

(
b̂2σ̂ 2

α̂3

)
.

In particular, this means that the sign of λ̂(α̂, b̂, σ̂ ) is determined by the sign of�(ζ),
where ζ := b̂2σ̂ 2α̂−3. Engel et. al. used this fact to show the following bifurcation result.

Theorem 2.4 [19, Theorem 1.1]. The function � : R>0 → R has a unique zero at
C0 ≈ 3.45. Furthermore, we have �(ζ) < 0 for ζ < C0 and �(ζ) > 0 for ζ > C0. In
particular, the top Lyapunov exponent satisfies

λ̂(α̂, b̂, σ̂ )

⎧⎪⎨
⎪⎩

> 0, if b̂2σ̂ 2α̂−3 > C0

= 0, if b̂2σ̂ 2α̂−3 = C0

< 0, if b̂2σ̂ 2α̂−3 < C0.

Remark 2.5. Our constant C0 ≈ 3.45 is different from the constant c0 ≈ 0.2823 from
[19], but related by C0 := c−1

0 . This is due to a slight reformulation of the statement.

2.2. A formal derivation of the large shear, small noise limit. Nowwe turn our attention
again to the Hopf normal form with additive noise, which we will write as

dZ(t) = F(Z(t))dt + σdW (t), (2.6)

where F : R2 → R
2 is given by

F(Z) :=
(

α −β

β α

)
Z − ‖Z‖2

(
a −b
b a

)
Z .

Recall that α, a and σ are positive real parameters, β and b are real parameters and
(W (t))t∈R≥0 is a 2-dimensional Brownian motion. We will consider the parameters
α, β, a, b and σ as fixed for the time being. The formal setup for studying this equation
is very similar to the one described in the previous subsection. System (2.6) has already
been investigated from a random dynamical systems viewpoint in [16,17] and we will
build on their results. As before, the probability space is given by 
 = C0(R≥0,R

2),
with Wiener measure P and P-invariant time shift denoted by ς : R≥0 × 
 → 
, again
identifying the process (W (t)) with random variables W (t) := ω(t). It has been shown
in [17, Theorem A], that (2.6) induces a random dynamical system in the same sense
as in the previous subsection, i.e. that there exists a map ϕ : R≥0 × 
 × R

2 → R
2

satisfying the following properties:
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(i) For each Z0 ∈ R
2, the stochastic process (Z(t)) defined by

Z(t) := ϕ(t, ·, Z0)

is a strong solution to (2.6) with initial condition Z(0) = Z0.
(ii) After possibly restricting to a ς -invariant subset 
̃ ⊆ 
 of full P-measure, the skew-

product (ς, ϕ) forms a continuously differentiable random dynamical system in the
sense of [1, Definition 1.1.3]. In particular, the cocycle property

ϕ(s + t, ω, Z0) = ϕ(t, ς(s, ω), ϕ(s, ω, Z0))

holds for every s, t ∈ R≥0, ω ∈ 
̃ and Z0 ∈ R
2.

As before, we define the linearization � : R≥0 × 
 × R
2 → R

2×2 by

�(t, ω, Z0) := DZ0ϕ(t, ω, Z0),

which satisfies the identity

�(s + t, ω, Z0) = �(t, ς(s, ω), ϕ(s, ω, Z0))�(s, ω, Z0).

Since the integrability condition of the Furstenberg–Kesten Theorem is verified [17,
Proposition 4.1], we can define the top Lyapunov λ(α, β, a, b, σ ) by

λ(α, β, a, b, σ ) := lim
t→∞

1

t
log ‖�(t, ω, Z0)‖.

Analogously to the previous subsection, we introduce the variational process (Y (t))
defined by

Y (t) := �(t, ·, Z(t))Y0

for some initial condition Y0 �= (0, 0). The corresponding variational equation is given
by the linear random ordinary differential equation

dY (t) = [DF(Z(t))]Y (t)dt

=
[(

α −β

β α

)
− ‖Z(t)‖2

(
a −b
b a

)
− 2

(
a −b
b a

)
Z(t)Z(t)T

]
Y (t)dt. (2.7)

It was shown in [16] that the top Lyapunov exponent can be expressed by the almost-sure
identity

λ(α, β, a, b, σ ) = lim
t→∞

1

t
log ‖Y (t)‖, (2.8)

which holds independently of the chosen initial conditions Z0 ∈ R
2 and Y0 ∈ R

2\{0}.
One of the defining features of Eq. (2.6) is the rotational symmetry of the drift term.

Thus, it is reasonable to express the system in polar coordinates. Given the solution Z(t)
to (2.6), we consider the R≥0-valued process (r(t)) and the R/(2πZ)-valued process
(φ(t)) uniquely defined by

(
Z1(t)
Z2(t)

)
= r(t)

(
cos(φ(t))
sin(φ(t))

)
, ∀t ≥ 0. (2.9)
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Proposition 2.6. The processes (r(t)) and (φ(t)) satisfy the Itô-SDEs
⎧⎪⎪⎨
⎪⎪⎩

dr(t) =
(

αr(t) − ar(t)3 +
σ 2

2r(t)

)
dt + σ [cos(φ(t))dW1(t) + sin(φ(t))dW2(t)] ,

dφ(t) =
(
β − br(t)2

)
dt +

σ

r(t)
[− sin(φ(t))dW1(t) + cos(φ(t))dW2(t)] .

(2.10)

Proof. See “Appendix A”. The same derivation can also be found in [16]. ��
We now introduce two real-valued processes (Wr (t)) and (Wφ(t)) uniquely defined

by Wr (0) = Wφ(0) = 0 and the Itô-SDEs

{
dWr (t) = cos(φ(t))dW1(t) + sin(φ(t))dW2(t),

dWφ(t) = − sin(φ(t))dW1(t) + cos(φ(t))dW2(t).

Again, using Levy’s criterion (see e.g. [30, Theorem IV.3.6]), it can be easily checked
that (Wr (t)) and (Wφ(t)) are independent Brownian motions.We can now rewrite (2.10)
as ⎧⎪⎪⎨

⎪⎪⎩
dr(t) =

(
αr(t) − ar(t)3 +

σ 2

2r(t)

)
dt + σdWr (t)

dφ(t) =
(
β − br(t)2

)
dt +

σ

r(t)
dWφ(t).

(2.11)

We will also conduct a change of coordinates for the variational process (Y (t)). In order
to simplify the equation, we express (Y (t)) in an orthonormal basis that is adjusted to
the polar representation of Z(t) (see Fig. 4).

For that purpose, we introduce two real-valued processes (s(t)) and (ϑ(t)) given by

s(t) :=
(
cos(φ(t))
sin(φ(t))

)T

Y (t)

and

ϑ(t) :=
(− sin(φ(t))

cos(φ(t))

)T

Y (t).

Clearly the norm is unchanged, i.e. we have

‖Y (t)‖ =
√
Y1(t)2 + Y2(t)2 =

√
s(t)2 + ϑ(t)2,

for all t ≥ 0. Due to the rotational symmetry of our original system (2.6), this basis
change also simplifies the stochastic differential equations for the variational process.

Proposition 2.7. The processes (s(t)) and (ϑ(t)) satisfy the Stratonovich SDEs
⎧⎪⎨
⎪⎩

ds(t) =
(
α − 3ar(t)2

)
s(t)dt +

σ

r(t)
ϑ(t) ◦ dWφ(t)

dϑ(t) =
(
α − ar(t)2

)
ϑ(t)dt − 2br(t)2s(t)dt − σ

r(t)
s(t) ◦ dWφ(t).

(2.12)

Proof. See “Appendix A”. ��
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Fig. 4. Geometric construction of the different coordinates used. The processes (r(t)) and (φ(t)) are the usual
polar coordinates for (Z(t)). Formally, the variational process (Y (t)) has values Y (t) ∈ TZ(t)R

2 � R
2, where

TR2 denotes the (trivial) tangent bundle ofR2. Now the pair (s(t), ϑ(t)) expresses the same point in TZ(t)R
2

in a time-dependent orthonormal basis. In particular the process (s(t)) describes radial perturbations of Z(t),
while (ϑ(t)) describes angular perturbations of Z(t)

Note that the SDE is given in Stratonovich form, which will be used throughout the
rest of the paper whenever it fits the given situation best, as is the case here. Recall that
we are interested in studying the large shear, small noise limit. To that end, we consider
from now on fixed real parameters α, β, a, b′ and σ ′, with α, a and σ ′ positive, and set
b := ε−1b′ and σ = εσ ′ such that we can study the limit ε → 0. The main object
of interest for our analysis is the (joint) law of the processes (s(t)) and (ϑ(t)) since
this will be crucial to compute the Lyapunov exponent via (2.8). Note that the process
(φ(t)) only enters the right-hand side of (2.12) indirectly, through (Wφ(t)). However,
by a similar argument to the one made in Remark 2.1, the law of (s(t), ϑ(t)) does only
depend on their initial values (s(0), ϑ(0)) and the law of (r(t)). Since the equation for
(r(t)) in (2.11) also does not depend on φ(t), the law of (s(t), ϑ(t)) can be studied via
the following “self-contained” system of SDEs.⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dr(t) =
(

αr(t) − ar(t)3 +
ε2σ ′2

2r(t)

)
dt + εσ ′ ◦ dWr (t)

ds(t) =
(
α − 3ar(t)2

)
s(t)dt +

εσ ′

r(t)
ϑ(t) ◦ dWφ(t)

dϑ(t) =
(
α − ar(t)2

)
ϑ(t)dt − 2ε−1b′r(t)2s(t)dt − εσ ′

r(t)
s(t) ◦ dWφ(t).

(2.13)

At themoment taking a limit ε → 0 is, even formally, not possible due to the presence
of a term ε−1 in the last equation. To circumvent this problem, we rescale the process
(ϑ(t)) by introducing the real-valued process (θ(t)) as

θ(t) := εϑ(t), for all t ≥ 0.
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This allows us to rewrite (2.13) as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dr(t) =
(

αr(t) − ar(t)3 +
ε2σ ′2

2r(t)

)
dt + εσ ′ ◦ dWr (t)

ds(t) =
(
α − 3ar(t)2

)
s(t)dt +

σ ′

r(t)
θ(t) ◦ dWφ(t)

dθ(t) =
(
α − ar(t)2

)
θ(t)dt − 2b′r(t)2s(t)dt − ε2σ ′

r(t)
s(t) ◦ dWφ(t).

(2.14)

Note that, due to the estimate

ε
√
s(t)2 + ϑ(t)2 ≤

√
s(t)2 + θ(t)2 ≤

√
s(t)2 + ϑ(t)2, (2.15)

which holds for sufficiently small ε, we still have

λ(α, β, a, b, σ ) := lim
t→∞

1

t
log (‖Y (t)‖)

= lim
t→∞

1

t
log

(√
s(t)2 + ϑ(t)2

)

= lim
t→∞

1

t
log

(√
s(t)2 + θ(t)2

)
. (2.16)

In Eq. (2.14), we can now set ε = 0, at least formally. This leaves us with

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dr(t) =
(
αr(t) − ar(t)3

)
dt

ds(t) =
(
α − 3ar(t)2

)
s(t)dt +

σ ′

r(t)
θ(t) ◦ dWφ(t)

dθ(t) =
(
α − ar(t)2

)
θ(t)dt − 2b′r(t)2s(t)dt.

In this singular limit, the equation for r(t) is a purely deterministic ODE, which has a
globally exponentially stable equilibrium at r̂ := √

αa−1. Sincewe are only interested in
the asymptotic behavior as t tends to infinity, we may furthermore formally set r(t) = r̂ ,
yielding ⎧⎪⎪⎨

⎪⎪⎩
ds(t) = −2αs(t)dt + σ ′

√
a

α
θ(t) ◦ dWφ(t),

dθ(t) = −2
αb′

a
s(t)dt.

(2.17)

Note that after setting

α̂ := 2α, σ̂ := σ ′
√
a

α
and b̂ := 2

αb′

a
,

Equation (2.17) has the same form as the variational equation (2.3) studied in section 2.1
(note that Itô and Stratonovich integrals coincide here). This means that the law of the
processes (s(t), θ(t)) evolving under (2.17) and the processes (ŝ(t), θ̂ (t)) evolving under
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(2.3) are identical. Therefore, by Theorem 2.3, the solutions to (2.17) almost surely
satisfy

lim
t→∞

1

t
log

(√
s(t)2 + θ(t)2

)
= α̂ �

(
b̂2σ̂ 2

α̂3

)
= 2α �

(
b′2σ ′2

2α2a

)
(2.18)

for all initial conditions (s(0), θ(0)) �= (0, 0). It is thus reasonable to believe that

lim
ε→0

λ(α, β, a, ε−1b′, εσ ′) = 2α �

(
b′2σ ′2

2α2a

)

should hold which we will, in fact, prove in the following section.

Remark 2.8. The crucial step in this formal derivation is the coordinate change from
(s, ϑ) to (s, θ). Since this is a non-orthonormal change of coordinates of the tangent-
bundle TR2, it may also be interpreted as a change in the metric tensor, and thereby the
geometry of the manifold R

2. In particular the change ϑ �→ θ := εϑ has the effect of
shortening (assuming ε < 1) distances in angular direction, i.e. along circles centered at
the origin, while preserving distances in radial direction, i.e. along straight lines through
the origin. This precisely corresponds to the geometry of a cone. Now, taking the limit
ε → 0 has the effect of reducing the angle at the apex of the cone to 0 or equivalently
sending the apex to infinity. Geometrically this results in a cylinder, which is precisely
the state space for the simplified model (2.1). The singularity at the origin, which arises
through the coordinate change for ε < 1, foreshadows an obstacle (cf. Sect. 3.4) that is
dealt with in the rigorous proof presented in the remainder of this paper.

3. Proof of Theorem A

The goal of this final section is to rigorously prove the large shear, small noise limit
behaviour, derived formally in the previous section. Thereby we will establish the main
result, Theorem A. A crucial challenge is that, in general, Lyapunov exponents do not
depend continuously on the underlying system (see [33] for a survey). In the case of
random systems, however, continuity of Lyapunov exponents can be shown under fairly
general conditions, going back to ideas by Young [36]. The main technique is to express
the topLyapunovexponent as an integral against the stationarydistributionof an auxiliary
process on the projective bundle, by the so-called Furstenberg–Khasminskii formula.

In order to make the dependence on ε more explicit, we denote the processes (r(t),
s(t), θ(t)) by (rε(t), sε(t), θε(t)). With this notation, we rewrite equation (2.14) as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

drε(t) =
(

αrε(t) − arε(t)
3 +

ε2σ ′2

2rε(t)

)
dt + εσ ′ ◦ dWr (t)

d

(
sε(t)
θε(t)

)
= A(1)(rε(t), ε)

(
sε(t)
θε(t)

)
dt + A(2)(rε(t), ε)

(
sε(t)
θε(t)

)
◦ dWφ(t)

(3.1)

where the matrix-valued functions A(i) : R>0 × R≥0 → R
2×2, i = 1, 2, are given by

A(1)(r, ε) :=
(

α − 3ar2 0
−2b′r2 α − ar2

)
, A(2)(r, ε) :=

(
0 σ ′r−1

−ε2σ ′r−1 0

)
. (3.2)
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We also rewrite the variational equation (2.3) of model (2.1) as

d

(
ŝ(t)
θ̂(t)

)
= A(1)(r̂ , 0)

(
ŝ(t)
θ̂(t)

)
dt + A(2)(r̂ , 0)

(
ŝ(t)
θ̂(t)

)
◦ dŴ3(t). (3.3)

Remark 3.1. Due to the singularity at r = 0, this process resists treatment by standard
results in a lot of cases. The first instance of this appears in Lemma 3.9, where the lack
of Lipschitz-continuity prohibits the use of classical results. For the final proof, even
more explicit estimates for the neighborhood of r = 0 are required. These are obtained
in Lemma 3.11.

3.1. Auxiliary processes for Furstenberg–Khasminskii formula. The Furstenberg–
Khasminskii formula is a way to express the top Lyapunov exponent via an integral
against the stationary distribution of an induced process on the projective bundle. We
will use the processes ψ and �, introduced generally in the following lemma, to work
with such a formula in convenient coordinates.

Lemma 3.2. Let (w(t)) be a semimartingale with values in some open set D ⊂ R,
B(i) : D → R

2×2, i = 1, 2, some smooth matrix-valued functions and (v(t)) be an
(R2\{0})-valued stochastic process satisfying the SDE

dv(t) = B(1)(w(t))v(t)dt + B(2)(w(t))v(t) ◦ dW (t).

Consider the processes

ψ(t) := 2 tan−1
(

v2(t)

v1(t)

)
, �(t) := log

(√
v1(t)2 + v2(t)2

)
.

Then (ψ(t)) and (�(t)) satisfy the SDEs

dψ(t) = p1(w(t), ψ(t))dt + p2(w(t), ψ(t)) ◦ dW (t),

d�(t) = q1(w(t), ψ(t))dt + q2(w(t), ψ(t)) ◦ dW (t),

where the functions pi , qi : D × S1 → R, i = 1, 2, are given by

pi (w,ψ) = B(i)
2,1(w)(1 + cos(ψ)) − B(i)

1,2(w)(1 − cos(ψ)) +
(
B(i)
2,2(w) − B(i)

1,1(w)
)
sin(ψ)

qi (w,ψ) = B(i)
1,1(w)(1 + cos(ψ)) + B(i)

2,2(w)(1 − cos(ψ)) +
(
B(i)
1,2(w) + B(i)

2,1(w)
)
sin(ψ).

Proof. See “Appendix A”. ��
Remark 3.3. A similar statement is given in [24, Equations (5) and (6)], with a slightly
different parametrization of the projective space RP1 � S1, leading to different expres-
sions.

In the spirit of Lemma 3.2 we define for each ε ≥ 0 an (R/2πZ)-valued process
(ψε(t)) and an R>0-valued process (�ε(t)) by

ψε(t) := 2 tan−1
(

θε(t)

sε(t)

)
, �ε(t) := log

(√
θε(t)2 + sε(t)2

)
,
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as well as an (R/2πZ)-valued process (ψ̂(t)) and an R>0-valued process (�̂(t)) by

ψ̂(t) := 2 tan−1

(
θ̂ (t)

ŝ(t)

)
, �̂(t) := log

(√
θ̂ (t)2 + ŝ(t)2

)
.

Here, the values of ψε and ψ̂ should be seen as a parametrization of the projective space
RP

1 � S1 by [−π, π). Indeed, our definition implies

(
sε(t)
θε(t)

)
∈ Span

{(
cos( 12ψε(t))

sin( 12ψε(t))

)}
,

(
ŝ(t)
θ̂(t)

)
∈ Span

{(
cos( 12 ψ̂(t))

sin( 12 ψ̂(t))

)}
.

The values of (t−1�ε(t)) and (t−1�̂(t)) are commonly called finite time Lyapunov
exponents in the literature. Note that, by (2.16), we have

lim
t→∞

1

t
�ε(t) = λ(α, β, a, ε−1b′, εσ ′), (3.4)

for each ε > 0 and, by (2.18), we have

lim
t→∞

1

t
�̂(t) = λ̂(α̂, b̂, σ̂ ) = 2α �

(
b′2σ ′2

2α2a

)
.

Recalling (3.1) and (3.2), we introduce the functions gi , hi : R>0 × S1 × R≥0 → R,
i = 1, 2, by

gi (r, ψ, ε) := A(i)
2,1(r, ε)(1 + cos(ψ)) − A(i)

1,2(r, ε)(1 − cos(ψ)) + (A(i)
2,2(r, ε) − A(i)

1,1(r, ε)) sin(ψ),

hi (r, ψ, ε) := A(i)
1,1(r, ε)(1 + cos(ψ)) + A(i)

2,2(r, ε)(1 − cos(ψ)) + (A(i)
1,2(r, ε) + A(i)

2,1(r, ε)) sin(ψ),

(3.5)

and the functions g3, h3 : R>0 × S1 × R≥0 → R by

g3(r, ψ, ε) := g1(r, ψ, ε) +
1

2
g2(r, ψ, ε)∂ψg2(r, ψ, ε),

h3(r, ψ, ε) := h1(r, ψ, ε) +
1

2
g2(r, ψ, ε)∂ψh2(r, ψ, ε).

Proposition 3.4. The processes (ψε(t)) and (�ε(t)) satisfy the SDEs⎧⎨
⎩ drε(t) =

(
αrε(t) − arε(t)

3 +
ε2σ ′2

2rε(t)

)
dt + εσ ′dWr (t)

dψε(t) = g3(rε(t), ψε(t), ε)dt + g2(rε(t), ψε(t), ε)dWφ(t),

d�ε(t) = h3(rε(t), ψε(t), ε)dt + h2(rε(t), ψε(t), ε)dWφ(t). (3.6)

The processes (ψ̂(t)) and (�̂(t)) satisfy the SDEs

dψ̂(t) = g3(r̂ , ψ̂(t), 0)dt + g2(r̂ , ψ̂(t), 0)dŴ3(t),

d�̂(t) = h3(r̂ , ψ̂(t), 0)dt + h2(r̂ , ψ̂(t), 0)dŴ3(t). (3.7)
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Proof. The equations follow directly by applying Lemma 3.2 and the Itô–Stratonovich
correction formula. Here, we make use of the fact that the quadratic covariation between
the semimartingales (rε(t)) and (Wφ(t)) vanishes since (rε(t)) is only driven by the
Brownian motion (Wr (t)), which is independent of (Wφ(t)). ��

For technical reasons, we will also have to consider the logarithm of the norm of the
variational process in the original coordinates (s(t), ϑ(t)). For that purpose, we rewrite
the SDE for (s(t)) and (ϑ(t)) given in (2.13) as

d

(
sε(t)
ϑε(t)

)
= Ã(1)(rε(t), ε)

(
sε(t)
ϑε(t)

)
dt + Ã(2)(rε(t), ε)

(
sε(t)
ϑε(t)

)
◦ dWφ(t), (3.8)

where the matrix-valued functions Ã(i) : R>0 × R>0 → R
2×2, i = 1, 2, are given by

Ã(1)(r, ε) :=
(

α − 3ar2 0
−2ε−1b′r2 α − ar2

)
, Ã(2)(r, ε) :=

(
0 εσ ′r−1

−εσ ′r−1 0

)
. (3.9)

Remark 3.5. Note that while the SDE (3.1) is well-defined for ε ≥ 0, the SDE (3.8) is
only well-defined for ε > 0. This is precisly the motivation for mainly considering the
coordinates (sε, θε), rather than (sε, ϑε).

Similarly to our previous definitions, we set

ψ̃ε(t) := 2 tan−1
(

ϑε(t)

sε(t)

)
, �̃ε(t) := log

(√
ϑε(t)2 + sε(t)2

)
.

Note that (2.15) implies
|�̃ε(t) − �ε(t)| ≤ − log(ε), (3.10)

for sufficiently small ε > 0. In addition, we define the functions g̃i , h̃i : S1 × R>0 ×
R>0 → R, i = 1, 2, by

g̃i (ψ, r, ε) := Ã(i)
2,1(r, ε)(1 + cos(ψ)) − Ã(i)

1,2(r, ε)(1 − cos(ψ)) + ( Ã(i)
2,2(r, ε) − Ã(i)

1,1(r, ε)) sin(ψ),

h̃i (ψ, r, ε) := Ã(i)
1,1(r, ε)(1 + cos(ψ)) + Ã(i)

2,2(r, ε)(1 − cos(ψ)) + ( Ã(i)
1,2(r, ε) + Ã(i)

2,1(r, ε)) sin(ψ),

(3.11)

and a function g̃3 : S1 × R>0 × R>0 → R by

g̃3(r, ψ, ε) := g̃1(r, ψ, ε) +
1

2
g̃2(r, ψ, ε)∂ψ g̃2(r, ψ, ε).

Remark 3.6. Note that we have h̃2(r, ψ, ε) = 0, for all r ,ψ and ε. This is precisely
the case if and only if Ã(2)(r, ε) ∈ so(2), where so(2) denotes the Lie-algebra of the
Lie-group SO(2) and is explicitly given by

so(2) =
{(

0 t
−t 0

)
: t ∈ R

}
.

Since h̃2 = 0, it is not necessary to define a function h̃3.
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Now, completely analogous to Proposition 3.4, we can obtain the following SDEs
for (ψ̃ε) and (�̃ε(t)).

Proposition 3.7. The processes (ψ̃ε(t)) and (�̃ε(t)) satisfy the SDEs⎧⎨
⎩

drε(t) =
(

αrε(t) − arε(t)
3 +

ε2σ ′2

2rε(t)

)
dt + εσ ′dWr (t)

dψ̃ε(t) = g̃3(rε(t), ψ̃ε(t), ε)dt + g̃2(rε(t), ψ̃ε(t), ε)dWφ(t),

d�̃ε(t) = h̃1(rε(t), ψε(t), ε)dt.

The precise shape of the functions h̃1 and hi , gi , , g̃i , i = 1, 2, 3,will not be important
for the remainder of this section. Instead, wewill only deploy their continuity and certain
bounds they satisfy. We will use the notation ”• � ◦“, meaning ”There exists a constant
C, possibly depending on α, β, a, b′ and σ ′, but not on r, ψ or ε, such that • ≤ C◦
holds“. The relevant bounds can be formulated in the following way.

Lemma 3.8. The following estimates hold.

(i) |h2(r, ψ, ε)| � 1 + ε−2r−1.

(ii) |h3(r, ψ, ε)| � 1 + r2 + ε−4r−2.
(iii) |h̃1(r, ψ, ε)| � 1 + ε−1r2.

Proof. From the definitions (3.2) and (3.9) we get the estimates

‖A(1)(r, ε)‖ � 1 + r2, ‖A(2)(r, ε)‖ � 1 + ε−2r−1, ‖ Ã(1)(r, ε)‖ � 1 + ε−1r2.

Here, it is most convenient to think of ‖·‖ as the maximums-norm onR2×2; however, all
statements hold independently of the norm chosen. Plugging this into (3.5) and (3.11)
respectively yields

|h1(r, ψ, ε)| � 1 + r2, |g2(r, ψ, ε)| � 1 + ε−2r−1, |h2(r, ψ, ε)| � 1 + ε−2r−1,

|∂ψh2(r, ψ, ε)| � 1 + ε−2r−1, |h̃1(r, ψ, ε)| � 1 + ε−1r2.

Finally, we obtain

|h3(r, ψ, ε)| ≤ |h1(r, ψ, ε)| + |g2(r, ψ, ε)||∂ψh2(r, ψ, ε)|
� 1 + r2 +

(
1 + ε−2r−1

)2
� 1 + r2 + ε−4r−2.

This finishes the proof. ��

3.2. Stationary measures. We briefly introduce some notation for the following: Let X
be a topological space.Wewill denote byB0(X) theBanach spaceof boundedmeasurable
functions on X and by C0(X) the Banach space of bounded continuous functions on X,
both equipped with the usual supremum norm. Furthermore, we will consider the set
of probability measures M1(X) on X, and the push-forward m∗ : M1(X) → M1(Y)

associated to some map m : X → Y. We say that a sequence of measures (νn)n∈N in
M1(X) converges weakly to some measure ν ∈ M1(X), if for each η ∈ C0(X)we have

lim
n→∞

∫
X

η(x)νn(dx) =
∫
X

η(x)ν(dx).
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The SDE for (rε(t), ψε(t)) (cf. Eq. (3.6)) induces a Markov process on R>0 × S1, for
each ε ≥ 0. We will denote the time-1 transition operator of this Markov-process by
Pε : B0(R>0 × S1) → B0(R>0 × S1), i.e.

Pεη(r, ψ) := Erε (0)=r, ψε(0)=ψ [η(rε(1), ψε(1))] .

We denote its dual operator by P∗
ε : M1(R>0 × S1) → M1(R>0 × S1). Analogously,

we introduce the time-1 transition operator P̂ : B0(S1) → B0(S1) of theMarkov process
induced by the SDE for ψ̂ (cf. Eq. (3.7)), and its dual P̂∗ : M1(S1) → M1(S1). An
operatorP : B0(X) → B0(X) has the Feller property, if it can be restricted to an operator
P : C0(X) → C0(X).

Lemma 3.9. The following hold.

(i) Let η ∈ C0(R>0×S1). Then themapP•η : (r, ψ, ε) �→ (Pεη) (r, ψ) is inC0(R>0×
S1 × R≥0).

(ii) For each ε ≥ 0, the operator Pε : B0(R>0 × S1) → B0(R>0 × S1) has the Feller
property.

(iii) The operator P̂ : B0(S1) → B0(S1) has the Feller property.

Proof. (i) The boundedness of P•η follows directly from the boundedness of η. Thus,
we only have to show continuity. Without loss of generality, we fix some ε∗ > 0 and
henceforth only consider ε ∈ [0, ε∗]. Next we amend the SDE (3.6) by dε(t) = 0, i.e.
we consider the SDE⎧⎪⎨

⎪⎩
dr ′(t) =

(
αr ′(t) − ar ′(t)3 + ε′(t)2σ ′2

2r ′(t)

)
dt + ε′(t)σ ′dW ′

1(t)

dψ ′(t) = g3(r ′(t), ψ ′(t), ε′(t))dt + g2(r ′(t), ψ ′(t), ε′(t))dW ′
2(t)

dε′(t) = 0

(3.12)

on the state space (r ′, ψ ′, ε′) ∈ R>0 × S1 × [0, ε∗], where (W ′
1(t),W

′
2(t)) is a two-

dimensional Brownianmotion. Since (r ′(t)) has the same law as (rε0(t))with ε0 = ε′(0),
there is almost surely no blow-up in finite time and global (in time) solutions of (3.12)
exist. Let

(r ′
r0,ψ0,ε0

(t), ψ ′
r0,ψ0,ε0

(t), ε′
r0,ψ0,ε0

(t))(r0,ψ0,ε0)∈R>0×S1×[0,ε∗], t∈[0,1], (3.13)

be a solution to the SDE (3.12) with

(r ′
r0,ψ0,ε0

(0), ψ ′
r0,ψ0,ε0

(0), ε′
r0,ψ0,ε0

(0)) = (r0, ψ0, ε0).

We want to show that the process (3.13) has a modification which is continuous in r0,
ψ0 and ε0. For each n ∈ N we define the waiting time τn(r0, ψ0, ε0) by

τn(r0, ψ0, ε0) := inf
{
t ∈ [0, 1] : r ′

r0,ψ0,ε0
(t) /∈

[
n−1, n

]}

and consider the stopped process

(r (n)
r0,ψ0,ε0

(t), ψ(n)
r0,ψ0,ε0

(t), ε(n)
r0,ψ0,ε0

(t)) := (r ′
r0,ψ0,ε0

, ψ ′
r0,ψ0,ε0

, ε′
r0,ψ0,ε0

)(t ∧ τn(r0, ψ0, ε0)).

(3.14)
Note that we have, for any n,m ∈ N,

(r (n)
r0,ψ0,ε0

(t), ψ(n)
r0,ψ0,ε0

(t), ε(n)
r0,ψ0,ε0

(t)) = (r (m)
r0,ψ0,ε0

(t), ψ(m)
r0,ψ0,ε0

(t), ε(m)
r0,ψ0,ε0

(t)) (3.15)
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for all t ≤ 1 ∧ τn(r0, ψ0, ε0) ∧ τm(r0, ψ0, ε0). The drift and diffusion coefficients of
(3.12) are smooth and thus bounded and Lipschitz continuous on the restricted state
space �n := [n−1, n]× S1 ×[0, ε∗]. Therefore we can use [30, Theorem IX.2.4] to find
a modification of (3.14) which is continuous in r0, ψ0 and ε0. Since any two continuous
modifications are necessarily indistinguishable, the equality (3.15) does still hold almost
surely. Now we can define a modification of (3.13) by

(r ′
r0,ψ0,ε0

(t), ψ ′
r0,ψ0,ε0

(t), ε′
r0,ψ0,ε0

(t)) := lim
n→∞(r (n)

r0,ψ0,ε0
(t), ψ(n)

r0,ψ0,ε0
(t), ε(n)

r0,ψ0,ε0
(t)).

Since the sequence on the right-hand side restricted to (r0, ψ0, ε0) ∈ �m is almost surely
eventually constant for each m ∈ N, this does indeed define a modification of (3.13)
which is continuous in r0, ψ0 and ε0.

Note that (r ′
r0,ψ0,ε0

(t), ψ ′
r0,ψ0,ε0

(t)) has the same law as the solution (rε0(t), ψε0(t))
of (3.6) with initial conditions rε0(0) = r0 and ψε0(0) = ψ0. Thus, we get

(Pεη) (r, ψ) = Erε (0)=r, ψε(0)=ψ [η(rε(1), ψε(1))] = E

[
η
(
r ′
r,ψ,ε(1), r

′
r,ψ,ε(1)

)]

and continuity of P•η follows from the dominated convergence theorem.
(ii) Let again η ∈ C0(R>0 × S1). Since by i) the map P•η : (r, ψ, ε) �→ (Pεη) (r, ψ)

is in C0(R>0 × S1 × R≥0), we have, in particular, that Pεη : (r, ψ) �→ (Pεη) (r, ψ) is
in C0(R>0 × S1) for each ε, implying the Feller property.

(iii) Note that the functions g3(r̂ , ·, 0), g2(r̂ , ·, 0) : S1 → R appearing in Eq. (3.7)
are smooth functions defined on a compact domain and thus, in particular, bounded and
Lipschitz-continuous. Thus the Feller property of P̂ follows directly from [30, Theorem
IX.2.5]. ��

In the following let pR>0 : R>0 × S1 → R>0 and pS
1 : R>0 × S1 → S1 denote the

projections onto the first and second component respectively. Firstly, we establish the
existence and uniqueness of stationary measures for the respective processes.

Proposition 3.10. The following hold.

(i) For each ε > 0, there exists a uniquemeasureρε ∈ M1(R>0×S1)withP∗
ε ρε = ρε .

Its marginal on the r-coordinate pR>0∗ ρε ∈ M1(R>0) has a density ξε : R>0 →
R≥0 with respect to Lebesgue measure given by

ξε(r) := Lεr exp

(
− a

2ε2σ ′2
(
r2 − r̂2

)2)
, (3.16)

where Lε ≥ 0 is a normalization constant given by

Lε :=
∫ ∞

0
r exp

(
− a

2ε2σ ′2
(
r2 − r̂2

)2)
dr = 2

√
2a

√
πεσ ′ erfc

(
− α

εσ ′√2a

) ,

with erfc denoting the complementary error function.
(ii) The exists a unique measure ρ̂ ∈ M1(S1) with P̂∗ρ̂ = ρ̂.

(iii) The measure ρ0 = δr̂ × ρ̂ ∈ M1(R>0 × S1) is the unique measure satisfying
P∗
0ρ0 = ρ0.
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Proof. For (i), we will start by establishing existence of a stationary measure. One can
easily check that, for each ε > 0, the function ξε satisfies the stationary Fokker-Planck
equation

0 = −∂r

[(
αr − ar3 +

ε2σ ′2

2r

)
ξε(r)

]
+

ε2σ ′2

2
∂2r ξε(r)

and ξε(r)dr ∈ M1(R>0) is thus a stationary distribution for the process (rε(t)). Next
we can consider the family of probability measures Aε ⊂ M1(R>0 × S1), defined by

Aε =
{
ρ ∈ M1(R>0 × S1) : pR>0∗ ρ(dr) = ξε(r)dr

}
.

Since ξε(r)dr is stationary, Aε is P∗
ε invariant, i.e. we have P∗

ε Aε ⊆ Aε . Furthermore,
with respect to the topology of weak convergence,Aε is convex and closed by definition
and tight since ξε(r)dr is tight and S1 is compact. Starting from an arbitrary ρ

(0)
ε ∈ Aε ,

we can construct a sequence
(
ρ

(n)
ε

)
n∈N0

by

ρ(n)
ε = 1

n + 1

n∑
k=0

(P∗
ε

)k
ρ(0)

ε .

By invariance and convexity of Aε , we have ρ
(n)
ε ∈ Aε for all n ∈ N0. By Prokhorov’s

theorem, the sequence has an accumulation point ρε with respect to the topology of
weak convergence, which must lie in Aε due to closedness. Analagously to the proof
of the Krylov-Bogolyubov theorem (see e.g. [22, Theorem 1.10]), we can conclude that
P∗

ε ρε = ρε . Uniqueness follows directly from the uniform ellipticity of the associated
generator (see e.g. [31, section 3] for details).

For (ii), both existence and uniqueness were already established in [24], by using the
Krylov–Bogolyubov theorem for existence and Hörmander’s theorem for uniqueness.

For (iii), it is easy to check that ρ0 = δr̂ × ρ̂ satisfies P∗
0ρ0 = ρ0. Thus it only

remains to show that ρ0 is the unique stationary measure. Suppose we are given a
measure ρ′

0 ∈ M1(R>0 × S1) with P∗
0ρ′

0 = ρ′
0. Since the process (r0(t)) is governed

by the ODE

dr0(t) =
(
αr0(t) − ar0(t)

3
)
dt,

we must have pR>0∗ ρ′
0 = δr̂ . Furthermore, if we set r0(t) = r̂ for all t ≥ 0, the process

(ψ0(t)) is governed by the same equation as (ψ̂(t)). Therefore, it follows from ii) that
pS

1

∗ ρ′
0 = ρ̂ and, thus, ρ′

0 = δr̂ × ρ̂ = ρ0. ��
We will now prove two lemmas, using properties of the stationary measures estab-

lished in Proposition 3.10, that will be essential for our proof of Theorem A. The first
lemma concerns a concentration bound for the measure ξε(r)dr for sufficiently small ε.

Lemma 3.11. Let f : R>0 → R be a function that satisfies | f (r)| � 1 + r−1 + rk

for some k ∈ N. Then f ∈ L1
ξε
, for all ε > 0. Furthermore, if there exists an open

neighborhood U ⊂ R>0 of r̂ with f (r) = 0 for all r ∈ U, then the bound∣∣∣∣
∫ ∞

0
f (r)ξε(r)dr

∣∣∣∣ ≤ exp

(
−1

ε

)

holds for sufficiently small ε > 0.
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Proof. To show these statements we will make use of the substitution p := r2 and will
write f̃ (p) := f (r) = f (

√
p). Firstly, we observe that

∫ ∞

0
| f (r)|ξε(r)dr =

∫ ∞

0
| f (r)|Lεr exp

(
− a

2ε2σ ′2
(
r2 − r̂2

)2)
dr

= Lε

2

∫ ∞

0
| f̃ (p)| exp

(
− a

2ε2σ ′2
(
p − r̂2

)2)
dp

=
√

πεσ ′
√
2a

LεEp∼N (r̂2,ε2σ ′2a−1)

[
| f̃ (p)|

]

= 2

erfc
(
− α

εσ ′√2a

)Ep∼N (r̂2,ε2σ ′2a−1)

[
| f̃ (p)|

]
,

whereN (r̂2, ε2σ ′2a−1)denotes a normal distributionwithmean r̂2 andvariance ε2σ ′2a−1

and we interpret f̃ as a function defined on the entire real line by setting f̃ (p) := 0 for
p ≤ 0. Since the complementary error function always takes values larger than 1 for
negative arguments, we get the bound

∫ ∞

0
| f (r)|ξε(r)dr ≤ 2Ep∼N (r̂2,ε2σ ′2a−1)

[
| f̃ (p)|

]
.

Therefore, in order to show f ∈ L1
ξε
, it is sufficient to show f̃ ∈ L1

N (r̂2,ε2σ ′2a−1)
.

Suppose f satisfies f (r) � 1 + r−1 + rk and thus equivalently f̃ (p) � 1 + p− 1
2 + p

k
2 .

Then, we have

1(0,1](p) f̃ (p) � 1 + p− 1
2 ,

which implies 1(0,1] f̃ ∈ L1
Leb and in particular 1(0,1] f̃ ∈ L1

N (r̂2,ε2σ ′2a−1)
. Similarly, we

have

1(1,∞)(p) f̃ (p) � 1 + p
k
2 ,

which immediately implies 1(1,∞) f̃ ∈ L1
N (r̂2,ε2σ ′2a−1)

. Since we have f̃ = 1(0,1] f̃ +
1(1,∞) f̃ , we also have f̃ ∈ L1

N (r̂2,ε2σ ′2a−1)
, which shows the first part of the lemma.

For the secondpart, suppose f (r) = 0 for all r ∈ U ,whereU is an openneighborhood
of r̂ . Then f̃ will vanish in a neighborhood around r̂2. Let 0 < δ < r̂2 be such that
f̃ (p) = 0 for all p ∈ (r̂2 − δ, r̂2 + δ). For p ∈ R>0\(r̂2 − δ, r̂2 + δ), we have

√
a

εσ ′√2π
exp

(
− a(p−r̂2)2

2ε2σ ′2
)

√
a

σ ′√2π
exp

(
− a(p−r̂2)2

2σ ′2
) = 1

ε
exp

(
−a(p − r̂2)2

2σ ′2

(
1

ε2
− 1

))

≤ 1

ε
exp

(
− aδ2

2σ ′2

(
1

ε2
− 1

))
.
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Now, we can estimate

∣∣∣∣
∫ ∞

0
f (r)ξε(r)dr

∣∣∣∣ ≤
∫ ∞

0
| f (r)|ξε(r)dr

≤ 2

√
a

εσ ′√2π

∫ ∞

0
| f̃ (r)| exp

(
−a(p − r̂2)2

2ε2σ ′2

)
dp

≤ 2
1

ε
exp

(
− aδ2

2σ ′2

(
1

ε2
− 1

)) √
a

σ ′√2π

∫ ∞

0
| f̃ (r)| exp

(
−a(p − r̂2)2

2σ ′2

)
dp

= 2
1

ε
exp

(
− aδ2

2σ ′2

(
1

ε2
− 1

))
Ep∼N (r̂2,σ ′2a−1)

[
| f̃ (p)|

]
.

By the first part of the lemma, we have f̃ ∈ L1
N (r̂2,σ ′2a−1)

such that the expectation in
the last line is finite. Thus, for sufficiently small ε > 0, we get the desired bound

∣∣∣∣
∫ ∞

0
f (r)ξε(r)dr

∣∣∣∣ ≤ 2
1

ε
exp

(
− aδ2

2σ ′2

(
1

ε2
− 1

))
Ep∼N (r̂2,σ ′2a−1)

[
| f̃ (p)|

]

≤ exp

(
−1

ε

)
.

This finishes the proof. ��
The second lemma concerns the weak convergence of ρε to ρ0 which will be crucial

for obtaining continuity of the top Lyapunov exponents for ε → 0.

Lemma 3.12. The measures ρε converge weakly in M1(R>0 × S1) to ρ0 = δr̂ × ρ̂ as
ε tends to zero.

The proof of this statement is inspired by [32, Proposition 5.9].

Proof of Lemma 3.12. By using formula (3.16), we obtain directly that (p
R≥0∗ ρε) =

(ξε(r)dr) converges weakly inM1(R>0) to δr̂ as ε tends to zero, i.e. weak convergence
in the r -direction. Thus, it is sufficient to show that (pS

1

∗ ρε) converges weakly inM1(S1)
to ρ̂. The space M1(S1) is compact, by the Banach-Alaoglu theorem, and metrizable.
Therefore, (pS

1

∗ ρε) converges weakly to ρ̂ if and only if every accumulation point of

(pS
1

∗ ρε), as ε tends to zero, is equal to ρ̂.
Suppose now that ν ∈ M1(S1) is such an accumulation point and (εn)n∈N is chosen

such that εn → 0 and pS
1

∗ ρεn → ν weakly. The latter property is equivalent to (ρεn )

converging weakly to δr̂ ×ν, which in turn also implies that (ρεn ×δεn ) converges weakly
inM1(R>0 × S1 ×R≥0) to δr̂ × ν × δ0. Let η ∈ C0(R>0 × S1) be an arbitrary bounded
continuous function. We have∫

R>0×S1
η(r, ψ)ν(dψ)δr̂ (dr) = lim

n→∞

∫
R>0×S1

η(r, ψ)ρεn (dr, dψ)

= lim
n→∞

∫
R>0×S1

Pεnη(r, ψ)ρεn (dr, dψ)

= lim
n→∞

∫
R>0×S1×R≥0

Pεη(r, ψ)ρεn (dr, dψ)δεn (dε).
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Now we can use Lemma 3.9 i) and the weak convergence ρεn × δεn → δr̂ × ν × δ0 to
get

∫
R>0×S1×R≥0

η(r, ψ)δr̂ (dr)ν(dψ) = lim
n→∞

∫
R>0×S1

Pεη(r, ψ)ρεn (dr, dψ)δεn (dε)

=
∫
R>0×S1×R≥0

Pεη(r, ψ)δr̂ (dr)ν(dψ)δ0(dε)

=
∫
R>0×S1

P0η(r, ψ)δr̂ (dr)ν(dψ)

=
∫
R>0×S1

η(r, ψ)P∗
0 (δr̂ × ν)(dr, dψ).

Since η ∈ C0(R>0 × S1) was arbitrary, this implies δr̂×ν = P∗
0 (δr̂ × ν). However, by

Proposition 3.10, the measure δr̂ × ρ̂ is the unique fixed point of P∗
0 , so we must have

ν = ρ̂, completing the proof. ��

3.3. Furstenberg–Khasminskii formula for limiting process. Recall from Sect. 2.1 the
Lyapunov exponent λ̂ (see (2.4)) of (2.1), the function � given by (2.5) and the change
of parameters

α̂ = 2α, b̂ = 2
αb′

a
and σ̂ = σ ′

√
a

α
.

For the limiting process on S1, as given in Proposition 3.4, we can prove the following
Furstenberg–Khasminskii formula. A similar formula for a more general situation is
already given in [24]. For completeness of our arguments, we provide a self-sustained
derivation here.

Proposition 3.13. We have

2α �

(
b′2σ ′2

2α2a

)
= λ̂

(
2α, 2

αb′

a
, σ ′

√
a

α

)
=

∫
S1
h3(r̂ , ψ, 0)ρ̂(dψ). (3.17)

In order to proof this proposition, we require the following lemma.

Lemma 3.14. Suppose (w(t)) is a real-valued semi-martingale satisfying

lim sup
t→∞

1

t

∫ t

0
w(t ′)2dt ′ < ∞.

Then, for (W (t)) denoting some Brownian motion, we have

lim
t→∞

1

t

∫ t

0
w(t ′)dW (t ′) = 0.

Proof. Let (w(t)) satisfy the assumption. Define a process (X (t)) by

X (t) :=
∫ t

0
w(t ′)dW (t ′).
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Clearly (X (t)) is a local martingale with quadratic variation 〈X (t)〉 given by

〈X (t)〉 =
∫ t

0
w(t ′)2dt ′.

By the theorem of Dambis, Dubins-Schwarz (see e.g. [30, Theorem V.1.7]) there exists
a Brownian motion (WX (t)) (which is not adapted to the original filtration and possibly
even defined on an extension of the probability space), such that

WX (〈X (t)〉) = X (t).

By well-known growth bounds on the Brownian motion, this implies

lim
t→∞

1

t
X (t) = lim

t→∞
1

t
WX (〈X (t)〉)

≤ lim sup
t→∞

〈X (t)〉
t

lim
t→∞

1

〈X (t)〉WX (〈X (t)〉)

= lim sup
t→∞

1

t

∫ t

0
w(t ′)2dt ′ lim

t→∞
1

t
WX (t)

= 0.

��
Proof of Proposition 3.13. From Theorem 2.3 we get

2α �

(
b′2σ ′2

2α2a

)
= λ̂(α̂, b̂, σ̂ ) = lim

t→∞
1

t
log

(√
ŝ(t)2 + θ̂ (t)2

)
= lim

t→∞
1

t
�̂(t).

Using the SDE representation from Proposition 3.4 yields

lim
t→∞

1

t
�̂(t) = lim

t→∞
1

t

[∫ t

0
h3(r̂ , ψ̂(t ′), 0)dt ′ +

∫ t

0
h2(r̂ , ψ̂(t ′), 0)dŴ3(t

′)
]

.

Since the function h2(r̂ , ·, 0) is bounded, the process (h2(r̂ , ψ̂(t ′), 0)) satisfies the as-
sumption of Lemma 3.14 and we obtain

lim
t→∞

1

t

∫ t

0
h2(r̂ , ψ̂(t ′), 0)dŴ3(t

′) = 0.

Ergodicity now gives us

λ̂(α̂, b̂, σ̂ ) = lim
t→∞

1

t
�̂(t) = lim

t→∞
1

t

∫ t

0
h3(r̂ , ψ̂(t ′), 0)dt ′ =

∫
S1
h3(r̂ , ψ, 0)ρ̂(dψ),

since ρ̂ is the unique stationary distribution of the Markov process (ψ̂(t)) by Proposi-
tion 3.10 (ii). ��
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3.4. Continuity of Lyapunov exponents. Our goal is to show the limit

lim
ε→0

λ(α, β, a, ε−1b′, εσ ′) = 2α �

(
b′2σ ′2

2α2a

)
. (3.18)

For that purpose, we want to find a Furstenberg–Khasminskii formula for the Lyapunov
exponent on the left hand side, similar to the expression for the right-hand side given
in Eq. (3.17). While such a formula has been already given in [16, Equation (19)],
we encounter a subtle issue here. In order to show (3.18) along the formal outline in
Sect. 2.2, we express the variational process in (sε, θε)-coordinates (cf. (3.1)), which are
transformed into the projective coordinate ψε (see Proposition 3.4). Analogously to the
proof of Proposition 3.13, we can write

λ(α, β, a, ε−1b′, εσ ′) = lim
t→∞

1

t
�ε(t)

= lim
t→∞

1

t

[∫ t

0
h3(rε(t

′), ψε(t
′), ε)dt ′

+
∫ t

0
h2(rε(t

′), ψε(t
′), ε)dWφ(t ′)

]
.

Now we would like to use Lemma 3.14 in order to show that the second integral is
negligible in the limit. By ergodicity, the assumption of Lemma 3.14 is equivalent to
h2(·, ·, ε) ∈ L2

ρε
, where h2 is given by (3.5). Since it seems out of reach to make explicit

statements about the distributionρε beyond the fact that itsmarginal in the r -direction has
density ξε , one is forced to rely on the estimate h2(r, ψ, ε) ≤ supψ ′ h2(r, ψ ′, ε), which
leads to the bound |h2(r, ψ, ε)| � 1 + ε−2r−1 given in Lemma 3.8. This, however,
is not sufficient for obtaining the assumption of Lemma 3.14 since we clearly have
(r �→ 1 + ε−2r−1) /∈ L2

ξε
(even though it is in L1

ξε
, c.f. Lemma 3.11). Analogously,

for the first integral above, we would hope to have h3(·, ·, ε) ∈ L1
ρε

in order to use
ergodicity; however, we encounter a very similar problem.

We want to point out two aspects of this issue. Firstly, in both cases the problem
arises due to the singularity at r = 0. Secondly, neither of these problems has been
present in previous works like [16], as they only arise in the rescaled coordinates
(sε, θε) = (sε, εϑε) (and their polar representation (ψε,�ε)) and are not present in
the original coordinates (sε, ϑε) (and their polar representation (ψ̃ε, �̃ε), see Propo-
sition 3.7). However, the coordinate rescaling is crucial to obtain the aspired limit, as
outlined in Sect. 2.2. In order to fix this issue we will introduce coordinates for the
variational process (2.7) which behave like (sε, ϑε) whenever rε is close to 0 and be-
have like (sε, θε) whenever rε is close to r̂ . Thereby we avoid the integrabitlity problem
around the singularity at the origin, while having the “correct” coordinate system for
the ε → 0-limit for a significant portion of time. We are now ready to finally prove
Theorem A.

Proof of Theorem A. Note that Theorem 2.4 already covers the second part of the state-
ment. Thus it only remains to show (1.2).

We start by partitioning the positive real axis into four intervals I1∪ I2∪ I3∪ I4 = R>0
defined by

I1 =
(
0,

1

3
r̂

]
, I2 =

(
1

3
r̂ ,

2

3
r̂

]
, I3 =

(
2

3
r̂ , 2r̂

]
, I4 = (

2r̂ ,∞)
.
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Fig. 5. The function χ plotted against the density ξε

Next, we define a function χ : R>0 → [0, 1] (see Fig. 5) by

χ(r) :=

⎧⎪⎨
⎪⎩
0 if r ∈ I1,
3
r̂ r − 1 if r ∈ I2,
1 if r ∈ I3 ∪ I4,

and a process (�∗
ε (t)) by

�∗
ε (t) := [1 − χ(rε(t))]�̃ε(t) + χ(rε(t))�ε(t).

By (3.4) we have

λ(α, β, a, ε−1b′, εσ ′) = lim
t→∞

1

t
�ε(t) = lim

t→∞
1

t
�̃ε(t),

and thus also

λ(α, β, a, ε−1b′, εσ ′) = lim
t→∞

1

t
�∗

ε (t).

Our goal now is to show

lim
ε→0

1

t
�∗

ε (t) = 2α �

(
b′2σ ′2

2α2a

)
, (3.19)

which will complete the proof. By the definition of (�∗
ε (t)), Propositions 3.4, 3.7 and

Eq. (2.11), we have

�∗
ε (t) =

∫ t

0
[1 − χ(rε(t

′))]d�̃ε(t
′) +

∫ t

0
χ(rε(t

′))d�ε(t
′)

+
∫ t

0
χ ′(rε(t ′))

(
�ε(t

′) − �̃ε(t
′)
)
drε(t

′)

=
∫ t

0
[1 − χ(rε(t

′))]h̃1(rε(t ′), ψ̃ε(t
′), ε)dt ′

︸ ︷︷ ︸
=:IIε (t)

+
∫ t

0
χ(rε(t

′))h3(rε(t ′), ψε(t
′), ε)dt ′

︸ ︷︷ ︸
=:Iε (t)

+
∫ t

0
χ(rε(t

′))h2(rε(t ′), ψε(t
′), ε)dWφ(t ′)

︸ ︷︷ ︸
=:IVε (t)
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+
∫ t

0

3

r̂
1I2(rε(t

′))
(
�ε(t

′) − �̃ε(t
′)
)(

αrε(t) − arε(t)
3 +

ε2σ ′2

2rε(t)

)
dt ′

︸ ︷︷ ︸
=:IIIε (t)

+
∫ t

0

3

r̂
1I2(rε(t

′))
(
�ε(t

′) − �̃ε(t
′)
)

εσ ′dWr (t
′)

︸ ︷︷ ︸
=:Vε (t)

.

Here, we have made use of the fact that the quadratic covariations 〈rε,�ε〉 = 〈rε, �̃ε〉 =
0 vanish. In the following, we will determine the corresponding limits for the time
averages of Iε(t), . . . ,Vε(t) separately. In particular we will show

lim
ε→0

lim
t→∞

1

t
Iε(t) = 2α �

(
b′2σ ′2

2α2a

)
,

as well as

lim
ε→0

lim sup
t→∞

1

t
|IIε(t)| = lim

ε→0
lim sup
t→∞

1

t
|IIIε(t)| = lim

ε→0
lim sup
t→∞

1

t
|IVε(t)|

= lim
ε→0

lim sup
t→∞

1

t
|Vε(t)| = 0.

Note that together these equations imply (3.19), thereby finishing the proof.
(i) Iε(t): we split the integral into

Iε(t) =
∫ t

0
χ(rε(t

′))1I2∪I3(rε(t
′))h3(rε(t ′), ψε(t

′), ε)dt ′

+
∫ t

0
χ(rε(t

′))1I4(rε(t
′))h3(rε(t ′), ψε(t

′), ε)dt ′.

First we will bound the second summand. Using Lemma 3.8(ii) we get
∣∣∣∣
∫ t

0
χ(rε(t

′))1I4(rε(t
′))h3(rε(t ′), ψε(t

′), ε)dt ′
∣∣∣∣

≤
∫ t

0
1I4(rε(t

′))
∣∣h3(rε(t ′), ψε(t

′), ε)
∣∣ dt ′

�
∫ t

0
1I4(rε(t

′))
(
1 + rε(t

′)2 + ε−4rε(t
′)−2

)
dt ′

�
∫ t

0
1I4(rε(t

′))ε−4rε(t
′)2dt ′

The function f (r) := 1I4(r)r
2 satisfies all assumptions of Lemma 3.11. Thus we can

use ergodicity get the following estimate.

lim
ε→0

lim sup
t→∞

1

t

∣∣∣∣
∫ t

0
χ(rε(t

′))1I4(rε(t
′))h3(rε(t ′), ψε(t

′), ε)dt ′
∣∣∣∣

� lim
ε→0

ε−4 lim
t→∞

1

t

∫ t

0
1I4(rε(t

′))rε(t ′)2dt ′
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= lim
ε→0

ε−4
∫ ∞

0
1I4(r)r

2ξε(r)dr

≤ lim
ε→0

ε−4 exp

(
−1

ε

)

= 0.

Concerning the first summand, we obtain by ergodicity

lim
ε→0

lim
t→∞

1

t
Iε(t) = lim

ε→0
lim
t→∞

1

t

∫ t

0
χ(rε(t

′))1I2∪I3(rε(t
′))h3(rε(t ′), ψε(t

′), ε)dt ′

= lim
ε→0

∫
(I2∪I3)×S1

χ(r)h3(r, ψ, ε)ρε(dr, dψ).

Since (I2 ∪ I3) × S1 is a compact domain, the function h3(·, ·, ε) converges uniformly
to h3(·, ·, 0) as ε → 0. Using this fact together with the weak convergence established
in Lemma 3.12 and the expression (3.17), we get

lim
ε→0

lim
t→∞

1

t
Iε(t) = lim

ε→0

∫
(I2∪I3)×S1

χ(r)h3(r, ψ, ε)ρε(dr, dψ)

=
∫

(I2∪I3)×S1
χ(r)h3(r, ψ, 0)δr̂ (dr)ρ̂(dψ)

=
∫
S1
h3(r̂ , ψ, 0)ρ̂(dψ)

= 2α �

(
b′2σ ′2

2α2a

)
.

(ii) IIε(t): similarly to the argument for the second summand in (i),wefirst useLemma3.8
(iii) and then ergodicity to get

lim
ε→0

lim sup
t→∞

1

t
|IIε(t)| = lim

ε→0
lim sup
t→∞

1

t

∣∣∣∣
∫ t

0
[1 − χ(rε(t

′))]h̃1(rε(t ′), ψ̃ε(t
′), ε)dt ′

∣∣∣∣
≤ lim

ε→0
lim sup
t→∞

1

t

∫ t

0
[1 − χ(rε(t

′))]
∣∣∣h̃1(rε(t ′), ψ̃ε(t

′), ε)
∣∣∣ dt ′

� lim
ε→0

lim
t→∞

1

t

∫ t

0
[1 − χ(rε(t

′))]1
ε
rε(t)

2dt ′

= lim
ε→0

1

ε

∫ ∞

0
[1 − χ(r)]r2ξε(r)dr.

Again, the function f (r) := [1 − χ(r)]r2 satisfies all the assumptions in Lemma 3.11
and we obtain

lim
ε→0

lim sup
t→∞

1

t
|IIε(t)| ≤ lim

ε→0

1

ε

∫ ∞

0
[1 − χ(r)]r2ξε(r)dr ≤ lim

ε→0

1

ε
exp

(
−1

ε

)
= 0.

(iii) IIIε(t): note that the term

1I2(rε(t))

(
αrε(t) − arε(t)

3 +
ε2σ ′2

2rε(t)

)
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is bounded uniformly in ε for ε ∈ (0, 1]. Together with the bound (3.10), this allows for
the estimate

lim
ε→0

lim sup
t→∞

1

t
|IIIε(t)|

= lim
ε→0

lim sup
t→∞

1

t

∣∣∣∣∣
∫ t

0

3

r̂
1I2 (rε(t

′))
(
�ε(t

′) − �̃ε(t
′)
)(

αrε(t) − arε(t)
3 +

ε2σ ′2
2rε(t)

)
dt ′

∣∣∣∣∣
� lim

ε→0
lim sup
t→∞

1

t

∫ t

0
1I2 (rε(t

′))
∣∣∣�ε(t

′) − �̃ε(t
′)
∣∣∣ dt ′

≤ lim
ε→0

− log(ε)
∫ ∞
0

1I2 (r)ξε(r)dr.

Now we can again use Lemma 3.11 to obtain

lim
ε→0

lim sup
t→∞

1

t
|IIIε(t)| ≤ lim

ε→0
− log(ε)

∫ ∞

0
1I2(r)ξε(r)dr

≤ lim
ε→0

− log(ε) exp

(
−1

ε

)

= 0.

iv) IVε(t): as a consequence of Lemma 3.8 (i), we have

χ(r)h2(r, ψ, ε) ≤ 1I2∪I3∪I4(r)h2(r, ψ, ε) � 1I2∪I3∪I4(r)(1 + ε−2r−1) � 1 + ε−2.

Thus, in particular, the process (χ(rε(t))h2(rε(t), ψε(t), ε)) is bounded for every ε > 0.
Therefore Lemma 3.14 gives

lim
t→∞

1

t
IVε(t) = lim

t→∞
1

t

∫ t

0
χ(rε(t

′))h2(rε(t ′), ψε(t
′), ε)dWφ(t ′) = 0,

for each ε > 0.
(v) Vε(t): using the estimate (3.10), the process (1I2(rε(t

′))(�ε(t ′) − �̃ε(t ′))) is
bounded. Hence, similarly to iv), Lemma 3.14 yields

lim
t→∞

1

t
Vε(t) = 3εσ ′

r̂
lim
t→∞

1

t

∫ t

0
1I2(rε(t

′))
(
�ε(t

′) − �̃ε(t
′)
)
dWr (t

′) = 0,

for each ε > 0. ��
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A Polar Coordinates

This appendix contains the proofs for Propositions 2.6 and 2.7 and for Lemma 3.2.

Proof of Proposition 2.6. First we will derive Stratonovich SDEs for (r(t)) and (φ(t)).
Note that, by definition,

r(t) = ‖Z(t)‖ =
√
Z1(t)2 + Z2(t)2.

By the chain-rule for Stratonovich SDEs, we have

dr(t) = Z1(t)

r(t)
◦ dZ1(t) +

Z2(t)

r(t)
◦ dZ2(t)

= Z1(t)

r(t)

[
αZ1(t) − βZ2(t) − ar(t)2Z1(t) + br(t)2Z2(t)

]
dt + σ

Z1(t)

r(t)
◦ dW1(t)

+
Z2(t)

r(t)

[
βZ1(t) + αZ2(t) − br(t)2Z1(t) − ar(t)2Z2(t)

]
dt + σ

Z2(t)

r(t)
◦ dW2(t)

= 1

r(t)

[
α
(
Z1(t)

2 + Z2(t)
2
)

− ar(t)2
(
Z2
1 + Z2

2

)]
dt

+ σ [cos(φ(t)) ◦ dW1(t) + sin(φ(t)) ◦ dW2(t)]
=

(
αr(t) − ar(t)3

)
dt + σ [cos(φ(t)) ◦ dW1(t) + sin(φ(t)) ◦ dW2(t)].

For (φ(t)) we first show

−Z2(t)

r(t)2
◦ dZ1(t) +

Z1(t)

r(t)2
◦ dZ2(t) = − sin(φ(t))

r(t)
[−r(t) sin(φ(t)) ◦ dφ(t) + cos(φ(t))dr(t)]

+
cos(φ(t))

r(t)
[r(t) cos(φ(t)) ◦ dφ(t) + sin(φ(t))dr(t)]

= sin2(φ(t)) ◦ dφ(t) + cos2(φ(t)) ◦ dφ(t)

= dφ(t). (A.1)

Now, using the chain-rule again, we can compute

dφ(t) = −Z2(t)

r(t)2
◦ dZ1(t) +

Z1(t)

r(t)2
◦ dZ2(t)

= −Z2(t)

r(t)2
[
αZ1(t) − βZ2(t) − ar(t)2Z1(t) + br(t)2Z2(t)

]
dt − σ

Z2(t)

r(t)
◦ dW1(t)

+
Z1(t)

r(t)2
[
βZ1(t) + αZ2(t) − br(t)2Z1(t) − ar(t)2Z2(t)

]
dt + σ

Z1(t)

r(t)
◦ dW2(t)

= 1

r(t)2
[
β
(
Z1(t)

2 + Z2(t)
2) − br(t)2

(
Z1(t)

2 + Z2(t)
2)] dt

http://creativecommons.org/licenses/by/4.0/
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+ σ [− sin(φ(t)) ◦ dW1(t) + cos(φ(t)) ◦ dW2(t)]

= (
β − br(t)2

)
dt + σ [− sin(φ(t)) ◦ dW1(t) + cos(φ(t)) ◦ dW2(t)] .

It remains to compute the relevant quadratic co-variations for the Itô-Stratonovich
correction terms. Using the notation 〈·, ·〉 for the quadratic co-variation of two semi-
martingales, we get

d 〈cos(φ(t)),W1(t)〉 = − sin(φ(t))d〈φ(t),W1(t)〉
= σ

r(t)
sin2(φ(t))dt,

d 〈sin(φ(t)),W2(t)〉 = cos(φ(t))d〈φ(t),W2(t)〉
= σ

r(t)
cos2(φ(t))dt,

d

〈
sin(φ(t))

r(t)
,W1(t)

〉
= cos(φ(t))

r(t)
d 〈φ(t),W1(t)〉 − sin(φ(t))

r(t)2
d 〈r(t),W1(t)〉

= − σ

r(t)2
cos(φ(t)) sin(φ(t))dt − σ

r(t)2
cos(φ(t)) sin(φ(t))dt

= − 2σ

r(t)2
cos(φ(t)) sin(φ(t))dt,

d

〈
cos(φ(t))

r(t)
,W2(t)

〉
= − sin(φ(t))

r(t)
d 〈φ(t),W2(t)〉 − cos(φ(t))

r(t)2
d〈r(t),W2(t)〉

= − σ

r(t)2
cos(φ(t)) sin(φ(t))dt − σ

r(t)2
cos(φ(t)) sin(φ(t))dt,

= − 2σ

r(t)2
cos(φ(t)) sin(φ(t))dt.

Finally, we can use these to obtain Itô-SDEs for (r(t)) and (φ(t)). We have

dr(t) =
(
αr(t) − ar(t)3

)
dt + σ [cos(φ(t)) ◦ dW1(t) + sin(φ(t)) ◦ dW2(t)]

=
(
αr(t) − ar(t)3

)
dt +

σ

2r(t)
[d〈cos(φ(t)),W1(t)〉 + d〈sin(φ(t)),W2(t)〉]

+ σ [cos(φ(t))dW1(t) + sin(φ(t))dW2(t)]
=

(
αr(t) − ar(t)3

)
dt +

σ

2

[
σ

r(t)
sin2(φ(t))dt +

σ

r(t)
cos2(φ(t))dt

]

+ σ [cos(φ(t))dW1(t) + sin(φ(t))dW2(t)]
=

(
αr(t) − ar(t)3 +

σ 2

2r(t)

)
dt + σ [cos(φ(t))dW1(t) + sin(φ(t))dW2(t)],

as well as,

dφ(t) = (
β − br(t)2

)
dt + σ [− sin(φ(t)) ◦ dW1(t) + cos(φ(t)) ◦ dW2(t)]

= (
β − br(t)2

)
dt +

σ

2

[
−d

〈
sin(φ(t))

r(t)
,W1(t)

〉
+ d

〈
cos(φ(t))

r(t)
,W2(t)

〉]

+ σ [− sin(φ(t))dW1(t) + cos(φ(t))dW2(t)]
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= (
β − br(t)2

)
dt +

σ

2

[
− 2σ

r(t)2
cos(φ(t)) sin(φ(t))dt +

2σ

r(t)2
cos(φ(t)) sin(φ(t))dt

]

+ σ [− sin(φ(t))dW1(t) + cos(φ(t))dW2(t)]

= (
β − br(t)2

)
dt + σ [− sin(φ(t))dW1(t) + cos(φ(t))dW2(t)] .

This finishes the proof. ��
Proof of Proposition 2.7. Recall that (s(t)) and (ϑ(t)) were defined by

s(t) :=
(
cos(φ(t))
sin(φ(t))

)T

Y (t)

and

ϑ(t) :=
(− sin(φ(t))

cos(φ(t))

)T

Y (t).

By the integration by parts formula for Stratonovich integrals, we get

ds(t) =
(
cos(φ(t))
sin(φ(t))

)T

◦ dY (t) + Y (t)T ◦ d

(
cos(φ(t))
sin(φ(t))

)
.

For the sake of readability, we will compute the summands separately. Firstly, we have

(
cos(φ(t))
sin(φ(t))

)T

◦ dY (t) =
(
cos(φ(t))
sin(φ(t))

)T (
α −β

β α

)
Y (t)dt

− ‖Z(t)‖2
(
cos(φ(t))
sin(φ(t))

)T (
a −b
b a

)
Y (t)dt

− 2

(
cos(φ(t))
sin(φ(t))

)T (
a −b
b a

)
Z(t)Z(t)T Y (t)dt

= α

(
cos(φ(t))
sin(φ(t))

)T

Y (t)dt − β

(− sin(φ(t))
cos(φ(t))

)T

Y (t)dt

− r(t)2a

(
cos(φ(t))
sin(φ(t))

)T

Y (t)dt + r(t)2b

(− sin(φ(t))
cos(φ(t))

)T

Y (t)dt

− 2r(t)2
(
cos(φ(t))
sin(φ(t))

)T (
a −b
b a

)(
cos(φ(t))
sin(φ(t))

)(
cos(φ(t))
sin(φ(t))

)T

Y (t)dt

= (
αs(t) − βϑ(t) − ar(t)2s(t) + br(t)2ϑ(t) − 2ar(t)2s(t)

)
dt

= (
αs(t) − βϑ(t) − 3ar(t)2s(t) + br(t)2ϑ(t)

)
dt.

Secondly, we obtain

Y (t)T ◦ d

(
cos(φ(t))
sin(φ(t))

)
=

(− sin(φ(t))
cos(φ(t))

)T

Y (t) ◦ dφ(t)

=
(
β − br(t)2

)
ϑ(t)dt +

σ

r(t)
ϑ(t) ◦ dWφ(t).

Together this gives

ds(t) =
(
α − 3ar(t)2

)
s(t)dt +

σ

r(t)
ϑ(t) ◦ dWφ(t).
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We proceed analogously for (ϑ(t)). Integration by parts gives

dϑ(t) =
(− sin(φ(t))

cos(φ(t))

)T

◦ dY (t) + Y (t)T ◦ d

(− sin(φ(t))
cos(φ(t))

)
.

Computing the summands separately again we get(− sin(φ(t))
cos(φ(t))

)T

◦ dY (t) =
(− sin(φ(t))

cos(φ(t))

)T (
α −β

β α

)
Y (t)dt

− ‖Z(t)‖2
(− sin(φ(t))

cos(φ(t))

)T (
a −b
b a

)
Y (t)dt

− 2

(− sin(φ(t))
cos(φ(t))

)T (
a −b
b a

)
Z(t)Z(t)T Y (t)dt

= α

(− sin(φ(t))
cos(φ(t))

)T

Y (t)dt + β

(
cos(φ(t))
sin(φ(t))

)T

Y (t)dt

− r(t)2a

(− sin(φ(t))
cos(φ(t))

)T

Y (t)dt − r(t)2b

(
cos(φ(t))
sin(φ(t))

)T

Y (t)dt

− 2r(t)2
(− sin(φ(t))

cos(φ(t))

)T (
a −b
b a

)(
cos(φ(t))
sin(φ(t))

)(
cos(φ(t))
sin(φ(t))

)T

Y (t)dt

= (
αϑ(t) + βs(t) − ar(t)2ϑ(t) − br(t)2s(t) − 2br(t)2s(t)

)
dt

= (
αϑ(t) + βs(t) − ar(t)2ϑ(t) − 3br(t)2s(t)

)
dt,

as well as,

Y (t)T ◦ d

(− sin(φ(t))
cos(φ(t))

)
= −

(
cos(φ(t))
sin(φ(t))

)T

Y (t) ◦ dφ(t)

= −
(
β − br(t)2

)
s(t)dt − σ

r(t)
s(t) ◦ dWφ(t).

Together this gives

dϑ(t) =
(
α − ar(t)2

)
ϑ(t)dt − 2br(t)2s(t)dt − σ

r(t)
s(t) ◦ dWφ(t),

which finishes the proof. ��
Proof of Lemma 3.2. Recall that (ψ(t)) and (�(t)) are defined by

ψ(t) := 2 tan−1
(

v2(t)

v1(t)

)
, �(t) := log

(√
v1(t)2 + v2(t)2

)
. (A.2)

For ease of notation, we will simply writeψ,�, v1, . . . instead ofψ(t),�(t), v1(t), . . .
in the following. Note that we have

cos

(
1

2
ψ

)
= cos

(
tan−1

(
v2

v1

))

=
(

v22

v21
+ 1

)− 1
2

= |v1|√
v21 + v22
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and

sin

(
1

2
ψ

)
= sin

(
tan−1

(
v2

v1

))

= v2

v1

(
v22

v21
+ 1

)− 1
2

= |v1|v2
v1

√
v21 + v22

.

This allows us to derive the identities

1 + cos(ψ) = 2 cos2
(
1

2
ψ

)

= v21√
v21 + v22

,

1 − cos(ψ) = 2 sin2
(
1

2
ψ

)

= v22√
v21 + v22

and

sin(ψ) = 2 cos

(
1

2
ψ

)
sin

(
1

2
ψ

)

= v1v2√
v21 + v22

.

Applying the chain rule to (A.2) yields

dψ = − 2v2
v21 + v22

◦ dv1 +
2v1

v21 + v22
◦ dv2

= − 2v2
v21 + v22

(
B(1)
1,1(w)v1 + B(1)

1,2(w)v2

)
dt − 2v2

v21 + v22

(
B(2)
1,1(w)v1 + B(2)

1,2(w)v2

)
◦ dW

+
2v1

v21 + v22

(
B(1)
2,1(w)v1 + B(1)

2,2(w)v2

)
dt +

2v1
v21 + v22

(
B(2)
2,1(w)v1 + B(2)

2,2(w)v2

)
◦ dW

= 2

v21 + v22

(
−B(1)

1,1(w)v1v2 − B(1)
1,2(w)v22 + B(1)

2,1(w)v21 + B(1)
2,2(w)v1v2

)
dt

+
2

v21 + v22

(
−B(2)

1,1(w)v1v2 − B(2)
1,2(w)v22 + B(2)

2,1(w)v21 + B(2)
2,2(w)v1v2

)
◦ dW

=
[
B(1)
2,1(w)(1 + cos(ψ) − B(1)

1,2(w)(1 − cos(ψ) +
(
B(1)
2,2(w) − B(1)

1,1(w)
)
sin(ψ(t))

]
dt

+
[
B(2)
2,1(w)(1 + cos(ψ) − B(2)

1,2(w)(1 − cos(ψ) +
(
B(2)
2,2(w) − B(2)

1,1(w)
)
sin(ψ(t))

]
◦ dW
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and

d� = v1

v21 + v22
◦ dv1 +

v2

v21 + v22
◦ dv2

= v1

v21 + v22

(
B(1)
1,1(w)v1 + B(1)

1,2(w)v2

)
dt +

v1

v21 + v22

(
B(2)
1,1(w)v1 + B(2)

1,2(w)v2

)
◦ dW

+
v2

v21 + v22

(
B(1)
2,1(w)v1 + B(1)

2,2(w)v2

)
dt +

v2

v21 + v22

(
B(2)
2,1(w)v1 + B(2)

2,2(w)v2

)
◦ dW

= 1

v21 + v22

(
B(1)
1,1(w)v21 + B(1)

1,2(w)v1v2 + B(1)
2,1(w)v1v2 + B(1)

2,2(w)v22

)
dt

+
1

v21 + v22

(
B(2)
1,1(w)v21 + B(2)

1,2(w)v1v2 + B(2)
2,1(w)v1v2 + B(2)

2,2(w)v22

)
◦ dW

=
[
B(1)
1,1(w)(1 + cos(ψ) + B(1)

2,2(w)(1 − cos(ψ) +
(
B(1)
1,2(w) + B(1)

2,1(w)
)
sin(ψ(t))

]
dt

+
[
B(2)
1,1(w)(1 + cos(ψ) + B(2)

2,2(w)(1 − cos(ψ) +
(
B(2)
1,2(w) + B(2)

2,1(w)
)
sin(ψ(t))

]
◦ dW.

This finishes the proof. ��
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