
Optimizing Global Network Alignment in
Protein-Protein Interaction Networks

Dissertation zur Erlangung des Grades

eines Doktors der Naturwissenschaften (Dr. rer. nat.)

am Fachbereich Mathematik und Informatik

der Freien Universität Berlin

von
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Abstract

Global Network Alignment in Protein-Protein Interaction Networks is an NP-complete
problem due to the contradicting nature of its biological and topological alignment objectives.
There have been several aligners developed focusing on various priorities and objectives of
the problem. However, none of these alignment heuristics provide exact solutions, despite
the fact that they achieve problem objectives up to a certain extent. For this reason, the
research question of uniting stronger aspects of dissimilar Network Alignment heuristics
is quite promising. In this thesis, it is aimed to improve the methods to scan the search
space of this problem by managing the simultaneous use of several heuristics and two novel
population-based meta-heuristic methods are proposed for this purpose.
The first one of these methods (SUMONA) is a supervised genetic algorithm approach
that is an extension to the computationally demanding multi-objective memetic algorithm
called OptNetAlign. This method intends to accelerate and guide the alignment process by
modifying the crossing-over mechanism of the genetic algorithm with inputs from other
aligners/heuristics while preventing premature convergence by randomizing the usage of
these inputs. The algorithm is based on a generic procedure that generates several alignments
with changing heuristics and input parameters, classifies the generated alignments, establishes
a randomized alignment selection mechanism from the classified alignments for cross-over
and finally adjusts global and local search parameters. It is possible to achieve better running
time performance, prioritize certain objectives upon others and also optimize the secondary
objectives with this method.
The second method (PERSONA) is a particle swarm inspired collaborative approach that
orchestrates several aligners to share their partial solutions continuously while they progress.
These aligners jointly constitute a particle swarm that searches for multi-objective solutions
of the alignment problem in a reactive actor environment. Within the swarm, the leading or
prominent actors send the stronger portion of their solution as a subgraph to other actors and
receive the stronger subgraphs of the counter party back upon evaluation of those partial
solutions. The individual alignment heuristics were also developed within the scope of the
same research and they were implemented based on alternatives such as seed-and-extend
approaches with various centrality and sequence seeds, cluster mapping approach and node
similarity prioritization. Both the population-based meta-heuristic tasks and the individual
heuristic tasks were implemented in a non-deterministic fashion in order to improve flexibility
and preventing to be trapped in locally optimal solutions. The results achieved with this
method are remarkably optimized and balanced for both topological and node similarity
objectives.
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particular), Kumamoto, FU and MPM since we embraced each other as part of a memorable

community. Plus, I express my gratitude to my father Suavi, mother Gülhan and sister Güliz

Seray for their trust in me at all times. Finally, I would like to thank my wife Tuna for always

being there with her support and patience during the hard work and my daughter Roza Umay

for teaching me how to love and smile!

iii



iv



Contents

1 Introduction 1

1.1 PPI Networks for Function Prediction . . . . . . . . . . . . . . . . . . . . 1

1.2 PPI Network Comparison Methods . . . . . . . . . . . . . . . . . . . . . 4

1.3 Population Based Meta-heuristics . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 SUMONA: A Supervised Method for Optimizing Network Alignment 15

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Alignment Objectives . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Network Aligners Employed in Supervised Optimization . . . . . . 19

2.2.3 The Structure of the Genetic Algorithm . . . . . . . . . . . . . . . 21

2.2.4 Supervised Optimization Method . . . . . . . . . . . . . . . . . . 22

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Tests Based on Real Data . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Tests Based on Synthetic Data . . . . . . . . . . . . . . . . . . . 34

2.3.3 Optimization Trends in Real Datasets . . . . . . . . . . . . . . . . 35

2.3.4 Running Time Analysis of Real Datasets . . . . . . . . . . . . . . 39

2.4 Discussion of Results and Future Work . . . . . . . . . . . . . . . . . . . 41

3 Parallel Exchange of Randomized SubGraphs for Optimization of Net-
work Alignment: PERSONA 45

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Performance Objectives . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 Collaborative Method . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.3 Aligner Heuristics Suite . . . . . . . . . . . . . . . . . . . . . . 51

v



3.2.4 Alignment Process . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.5 Architectural Design . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Implementation Characteristics of PERSONA Population . . . . . . 58

3.3.2 Competitors & Simulation Environment . . . . . . . . . . . . . . . 59

3.3.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Discussion of Results and Future Work . . . . . . . . . . . . . . . . . . . 69

4 Summary and Outlook 77

4.1 Evaluation of SUMONA . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Evaluation of PERSONA . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Comparison of Methods and Concluding Remarks . . . . . . . . . . . . . . 80

Appendices 83

Appendix A Implementation Details of SUMONA 83

A.1 Experiment Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Appendix B Implementation Details of PERSONA 85

B.1 Explanation for Individual Comparison and Exchange . . . . . . . . . . . . 85

B.2 Explanation for Broadcast and Following Leading Aligners . . . . . . . . . . 86

B.3 Objective Specific SubGraphs . . . . . . . . . . . . . . . . . . . . . . . . 86

B.4 Possible Heuristics of an Aligner . . . . . . . . . . . . . . . . . . . . . . 87

B.5 Architecture of Critical Modules . . . . . . . . . . . . . . . . . . . . . . . 93

B.6 Experiment Parameters & Remarks . . . . . . . . . . . . . . . . . . . . . 95

Bibliography 99

vi



List of Figures

1.1 PPI Network of Caenorhabditis Elegans in the 2016 Version of Intact

Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Summarized Illustration of SUMONA . . . . . . . . . . . . . . . . . . 20

2.2 Trend of EC Score vs. Cycles . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Trend of S3 Score vs. Cycles . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Trend of BitScoreSum Score vs. Cycles . . . . . . . . . . . . . . . . . 38

2.5 Trend of GOC Score vs. Cycles . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Running Time Comparison of SUMONA1 and OptNetAlign . . . . . . 40

2.7 Running Time Comparison of SUMONA2 and OptNetAlign . . . . . . 41

3.1 Workflow of a Particle from the Swarm . . . . . . . . . . . . . . . . . . 55

3.2 Cooperative Architecture of the Swarm . . . . . . . . . . . . . . . . . 57

3.3 Objective Scores on DM-CE Intact 2016 Data Set . . . . . . . . . . . . 65

3.4 Objective Scores on DM-SC BioGRID 2017 Data Set . . . . . . . . . . 66

3.5 Objective Scores on HS-DM Isobase Data Set . . . . . . . . . . . . . . 67

3.6 Objective Scores on DM-MM Mentha 2021 Data Set . . . . . . . . . . 68

3.7 Removed Mapping Effecting Topological Similarity . . . . . . . . . . . 74

vii



List of Tables

2.1 Cyclic SPINAL vs. Totally Random . . . . . . . . . . . . . . . . . . . 28

2.2 T-Test for Cyclic SPINAL vs. Totally Random . . . . . . . . . . . . . 28

2.3 Cyclic HubAlign with Different Cycles . . . . . . . . . . . . . . . . . 29

2.4 T-Test for Cyclic HubAlign with Different Cycles . . . . . . . . . . . . 30

2.5 Cyclic NETAL Following Cyclic SPINAL . . . . . . . . . . . . . . . . 31

2.6 T-Test for SPINAL→ NETAL vs. NETAL→ SPINAL . . . . . . . . . 31

2.7 All inputs with 1500 vs. 0 Hill Climb Iterations . . . . . . . . . . . . . 33

2.8 T-Test for 1500 vs. 0 Hill Climb Iterations . . . . . . . . . . . . . . . . 33

2.9 Inputs of HubAlign, NETAL and SPINAL . . . . . . . . . . . . . . . . 34

2.10 SUMONA2 vs. 0ptNetAlign with Synthetic Data . . . . . . . . . . . . 36

2.11 T-Test for SUMONA2 vs. 0ptNetAlign with Synthetic Data . . . . . . . 36

3.1 Network Sizes of Data Sets . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Aggregate Scores on DM-CE Trimmed Intact 2016 . . . . . . . . . . . 64

3.3 Aggregate Scores on DM-SC BioGRID 2017 . . . . . . . . . . . . . . 69

3.4 Aggregate Scores on HS-DM Isobase . . . . . . . . . . . . . . . . . . 69

3.5 Aggregate Scores on DM-MM Mentha 2021 . . . . . . . . . . . . . . . 70

3.6 Elapsed Time of Competitor Algorithms on DM-CE Trimmed Intact 2016 70

B.1 Possible Input Types and Strengths of Each Aligner . . . . . . . . . . . 98

viii



List of Algorithms

2.1 SUMONA1 Variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 SUMONA2 Variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Send and Receive Policy for Individual Comparison and Exchange . . . 52

3.2 Send and Receive Policy for BroadCast and Following Leading Aligners 52

ix



Terminology and Abbreviations

Terminology

Heuristics vs Meta-heuristics

The term heuristic is used for a singular problem-dependent deterministic solution procedure

whereas the term meta-heuristic is used for representing a problem-independent heuristic

orchestration framework throughout the thesis.

Node Mapping vs Network Alignment

The term mapping is used as the building block of an alignment throughout the thesis. A

network alignment is the product of a network comparison between two or more organisms

and it is composed of several node mappings associated with predicted functions.

BitScoreSum vs Biological Sequence Similariy

A BitScoreSum is a particular implementation of Biological Sequence Similarity.

Abbreviations

FU Berlin Freie Universität Berlin

EC Edge Consistency

ICS Induced Conserved Structure

S3 Symmetric Substructure Score

LCCS Largest Common Connected SubGraph

GO Gene Ontology

GOC Gene Ontology Consistency

GOE Gene Ontology Enrichment

BS Biological Sequence Similarity

AFS Average of Functional Similarity

FC Functional Consistency

BLAST Basic Local Alignment Search Tool

PPI Protein-Protein Interaction

GNA Global Network Alignment

LNA Local Network Alignment

UPMX Uniform Partially Matched Crossover

GA Genetic Algorithm

REST Representational State Transfer

JSON JavaScript Object Notation

WSM Weighted Sum Model

WPM Weighted Product Model

CPU Central Processing Unit

OWL Web Ontology Language
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1 Introduction

1.1 PPI Networks for Function Prediction

One major goal of bioinformatics is to identify the preserved functions across different

species or organisms. Theoretically, such shared functions can be investigated based on

evolutionary information through the homology and specifically orthology concepts that

constitute ‘inheritance through homology’ methods as the most common approach in protein

function prediction compared to the alternative "de novo sequencing" methods [1]. Fitch [2]

defines homology broadly as the relationship of any two characters that have descended and

probably diverged from a common ancestral character. The review emphasizes that there

are structural and functional characters that need to be distinguished within this definition.

In this scope, Lee, Redfern and Orengo [1] describe orthology as a type of homology that

takes place due to a speciation event and paralogy as another type of homology that is the

product of a gene duplication event. According to the same study, these descriptions are

essential in function prediction since orthologues tend to indicate the preserved function in

different species while paralogues tend to evolve new functions despite their considerably

high sequence similarities in several cases. Traditional orthologue discovery methods involve

tasks such as homology search with Basic Local Alignment Search Tool (BLAST), discarding

non-homologue protein sequences and exhaustive search against reference proteomes or

Expressed Sequence Tag (EST) databases [3] if the network interactions of proteins are not

taken into account.

It has been revealed in some studies that sequence and network information complement each

other in orthology detection [4]. Consequently, orthology of a pair of proteins from different

organisms can be identified thoroughly considering their interactions with other proteins in

their own environments. Kuchaiev and Przulj [5, 6] emphasize that proteins cooperate among

each other by forming physical bonds to be able to perform their particular function and for

this reason huge interaction networks emerge to carry out all the essential cellular activities.

The interactome within a cell require detailed and multi dimensional representations as a

complex problem domain. Pavlopolulos [7] states that biological processes within a cell can

be represented using Protein-Protein Interaction (PPI) Networks as a high level and static

description composed of binary interactions [8]. The study reports that the interaction data

can be detected via large-scale and high-throuhput techniques such as the pull down assays

1



1. Introduction

[9], tandem affinity purification (TAP) [10], yeast two-hybrid (Y2H) [11], mass spectrometry

[12], microarrays [13] and phage display [14].

There are several databases that store single species interaction data such as the Yeast Pro-

teome Database (YPD) [15], Human Protein Reference Database (HPRD) [16], Human

Protein Intaraction Database HPID [17], Human Annotated and Predicted Protein Interac-

tions (HAPPI) [18], Drosophila Interactions Database (DroID) [19] along with databases

storing multiple species interaction data such as the the Munich Information Center for

Protein Sequences (MIPS) [20], the Molecular Interactions (MINT) database [21], the IntAct

database [22], the Database of Interacting Proteins (DIP) [23], the Biomolecular Interaction

Network Database (BIND) [24], the BioGRID database [25], SNAPPI-DB [26] and 3did

[27]. Besides, some meta-databases or integrated data sources such as Stitch [28], String

[29], Mintact [30] and APID [31] intend to facilitate consistent extraction of aggregate data.

Fig. 1.1 represents the PPI Network of Caenorhabditis Elegans with binary interactions in

the 2016 Version of Intact Database visualized using Cytoscape [32].

The records in all the above-mentioned databases are verified based on their particular

choices of verification such as curation from literature, user submission of experimental

results, extraction from structural databases of proteins or prediction. It should be noted

that prediction based verification methods require more attention among others in terms of

the confidence they provide. Gonzalez and Kann [34] summarizes several computational

interaction prediction methods that evaluate empirical information based on experimental data

by using the relative frequency of interacting domains [35], maximum likelihood estimation

of domain interaction probability [36, 37], co-expression [38], domain architecture [39]

or parsimony [40] along with theoretical approaches that evaluate the fact that interacting

proteins co-evolve to preserve their function [41, 42], conserve gene order [43] or are fused

in some organisms [44, 45].

According to Mosca, Pons, Céol, Valencia and Etol [46], PPIs annotated with molecular

functions will play a key role in fields such as clinics, pharmacology, descriptive biology and

synthetic biology on condition that the data is curated and interaction types are distinguished

according to certain conventions such as the BioPAX standard [47] defined by the Protein

Standard Initiative-Molecular Interaction (PSI-MI) consortium [48, 49]. Bandyopadhyay,

Sharan and Ideker [50] emphasize that many research studies [51, 52] focus on annotating

functions to subject proteins based on their sequence similarity to better characterized

proteins in molecular biology domain. The same study argues that functional annotation

becomes harder in the presence of several similar paralogous proteins since there is not

2



1. Introduction
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1. Introduction

enough evidence to identify the true ortholog among them [53]. On the other hand, several

experimental and computational methods have been proposed to predict functions of proteins

based on their interactions with other biomolecules [7].

There are several sources that can be annotated to PPIs for protein function prediction. The

Gene Ontology (GO) project is the most prominent one of these sources and it is a product

of an effort to describe the attributes of genes, gene products and sequences consistently

through controlled vocabularies and ontologies for collaborative community use [54]. The

project was founded in 1998 and its vocabularies and functional annotations are expanding

ever since within the directions explored by novel biological research [54, 55]. Lee et al.

[1] mentions the GO project 4 as the most prominent functional annotation source among

other sources such as ENZYME [56], Swiss-Prot [57], FunCat [58], KEGG [59], MetaCyc

[60] and Reactome [61] especially due to its structured vocabularies that describe gene

products in terms of their associated biological processes, cellular components and molecular

functions in a machine readable way. The project is releasing monthly updates with a DOI

unique identifier and has recently updated its representation model of gene functions with a

framework called GO-Causal Activity Modeling (GO-CAM) to be based on Web Ontology

Language (OWL) for combining GO annotation data with larger vocabularies. Despite this

radical change, backward compatibility for the standard GO annotations (GAF format) is

still ensured by the project [55].

1.2 PPI Network Comparison Methods

Bandyopadhyay et al. [50] mentions network comparison as an alternative to gene and protein

sequence similarity approaches for functional orthology detection due to the significance of

conserved or common interactions possessed by a protein pair in comparison [62]. Network

comparison is a challenging task since the similarity or difference of the compared networks

has several dimensions. Tantardini, Ieva, Tajoli and Piccardi [63] state that it is necessary

to define a well-balanced distance measure for being able to compare networks. The study

further claims that such a task requires a compromise among factors such as effectiveness

of results, computational efficiency and interpretability depending on the problem domain.

The most well-known techniques for network comparison are graph kernel based methods

and network alignment that handle these factors in a completely different way as discussed

below.

Computational efficiency can be an important factor that effects convenience of use for

4



1. Introduction

preferring a network comparison method. Shen and Guda [64] discuss that the alignment-

free graph kernels produce more summarized network comparison results with a single value

of an inner product and relatively shorter processing time despite lacking a detailed view of

results unlike Network Alignment methods. The study lists various graph kernel types based

on random walks, paths, subtrees, graphlets or edges that were used for network comparison

in the literature. The annotations of protein functions can be transferred across species

through graph kernels of PPI data [65] as well as other biologically representative data such

as co-expression, genetic interaction, metabolic pathways, domain structure, and sequence

[66–68]. Fan et al. [65] also propose creating unified multi-species protein representations

through homologous landmark nodes for achieving a multi-network kernel comparing several

PPI networks.

On the other hand, Network Alignment methods produce more detailed results that enable

comparing proteins with respect to multiple biological and topological similarity measures.

According to Pan, Wang and Li [69], Network Alignment addresses the problem of identify-

ing similar and dissimilar regions in the PPI Networks of two or more species. The book

reports that Network Alignment is widely used in detecting conserved subnetworks that may

have common protein functional modules [6, 70, 71]. As a remarkable example of another

application field, Ma and Liao [72] discusses that Network Alignment across biological

networks can directly be used to transfer the biological knowledge of well-studied species

to others. The same study states that network alignment enables discovering system-wide

relationships between different species. PathBLAST [73] is the first proposed method that

aims to compare a pair of organisms by aligning their Protein-Protein Interaction Networks

locally based on BLAST [74] e-values of protein pairs in order to identify protein pathways

and complexes conserved by evolution and to detect the reliability of protein interactions.

This tool was followed by other local network alignment algorithms such as NetworkBLAST

[75] that scores mappings according to the density of their respective protein complexes,

MaWish [76] that evaluates evolutionary similarity between graph structures based on match,

mismatch, and duplication concepts and Graemlin [77] that extends alignment seeds based

on the phylogenetic trees.

According to Seah, Bhowmick and Dewey [78], the motivation behind Local Network

Alignment (LNA) is the impossibility of achieving high-confidence mappings in all regions

of a network and the flexibility to identify unrelated conserved regions between the input

networks so that known functional components can be found in a new species. The study

explains that it is this motivation that drives LNA approaches to discard low-confidence

5



1. Introduction

mappings totally in contrast to global network alignment that aims to map all proteins in the

compared organisms. On the contrary, the idea behind Global Network Alignment (GNA) is

that the fundamental set of biological functions taking place within the cells of any compared

organisms should map to each other regardless of the complexity of the process. Besides,

it is likely that there can be inconsistencies while merging multiple LNA results with each

other for yielding a complete picture [79]. Consequently, it is assumed that the PPI Network

of a less complex organism can be subsumed by the other compared network in terms of

functionality. For this reason, the most prominent low-confidence mappings are also aligned

in Global Network Alignment methods in order to have a complete alignment picture. Guzzi

and Milenkovic [80] discusses that GNA results could be refined to achieve higher functional

quality without compromising topological quality by removing functionally insignificant

mappings. The study complements this discussion by proposing that LNA mapping regions

could drastically be increased to improve topological quality without much compromise in

functional quality. In this regard, DualAligner [78] can be seen as an exemplary attempt

to fill the gap between local and global alignment with a two-step approach that initially

aligns high confidence protein pairs and subsequently performs functional region-to-region

alignment for protein pairs that do not achieve high confidence by employing soft subgraph

pair mapping constraints and using GO annotated PPI networks as inputs.

Global Network Alignment in PPI Networks can be defined as an NP-Complete Network

Comparison problem based on the node similarity of protein pairs along with the topological

similarity of their neighborhoods. Proteins are represented as the nodes of a network,

while the interactions between them are represented as edges that form the PPI network for

modeling the compared organisms in the GNA problem. The goal of the problem is to align

each node in the smaller network to a particular node in the larger networks [81] assuming

that a pairwise comparison is performed. Node similarity is usually measured by biological

sequence similarity and by the common experimentally verified functional annotations. On

the other hand, topological similarity is measured by various metrics that evaluate the mapped

edges of the compared networks in different ways. Every alignment approach tries to map

the most similar nodes of the compared organisms to each other with its particular alignment

scoring function based on a combination of these similarity measurements.

IsoRank [82] is the first Global Network Alignment algorithm that intends to map all

the input nodes of the compared networks based on both pairwise node similarity and

neighborhood topology similarity of the mapped node pairs. This algorithm formulates the

trade-off between network overlap and node similarity as an eigenvalue problem and extracts

6



1. Introduction

high-scoring and mutually consistent mappings. IsoRank uses BLAST scores as the node

similarity measure but it also encourages usage of additional measures such as synteny-based

scoring and functional similarity for the same purpose. The algorithm was later extended

to solve the global multiple-network alignment with a computationally efficient and error

tolerant method called IsoRankN [70].

There are various Network Aligners that evaluate the similarity of motifs in the compared

networks. GRAAL [83] is the first purely topological network aligner that evaluated a

graphlet vector of several possible network motif combinations for describing the local

neighborhood topology of each node to be aligned. This algorithm was extended by several

sequels such as H-GRAAL [84] that apply a Hungarian algorithm based approach instead of

the traditional seed-and-extend approach, Mi-GRAAL [6] that integrates multiple types of

node and topological similarity metrics, C-GRAAL [85] employing neighborhood density

in addition to graphlet degree signatures, and L-GRAAL [86] that combines the seed-and-

extend approach with graphlet degree signatures by Lagrangian relaxation technique. It is

also important to be able to identify clusters as well as network motifs for a better topological

comparison across networks. Apart from the GRAAL series, another significant motif

focused aligner is GHOST [87] that uses spectral signatures for comparing topological

similarity followed by a local search. Sarich, Conrad, Bruckner, Conrad and Schütte [88],

discuss the sparse nature of information in networks and the necessity of identifying modules

or clusters from them to achieve more compact information. The study further evaluates the

choices of allowing overlapping clusters by assigning nodes to multiple modules as well as

allowing some nodes not to be assigned to any module at all. Such choices effect the format

of the compact meta-data to be stored as network properties for further analyses.

Another remarkable category of Global Network Aligners is seed-and-extend aligners that

propagate their most significant seed mappings to a complete alignment around them.

SPINAL [89] and HubAlign [90] are prominent examples of this category both of which will

be discussed in detail in the following chapter while GRAAL [83] and GHOST [87] can be

categorized as both motif focused and seed-and-extend aligners. A final category in terms of

method can be search based aligners. GNA algorithms in this category particularly employ

heuristics, meta-heuristics or swap based operations for refining alignments. These aligners

evaluate alignment objectives simultaneously while they progress to be able to perform

optimization among them. Some prominent examples of this class are PISWAP [91] that

iteratively refines the initial alignments of custom heuristics with topological information

while compromising sequence information and OptNetAlign [92] that will be discussed in
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1. Introduction

detail in the following chapter. Many algorithms utilize these generalized approaches in a

hybrid fashion and can be categorized as members of more than one category.

Mapping approach is a distinguishing feature among Network Aligners depending on the

analyses they will be involved with. Ma and Liao [72] explain that the node mapping approach

of network alignment algorithms can be categorized as one-to-one, one-to-many and many-to-

many based on their mapping constraint. The study argues that one-to-one and one-to-many

network alignments may correlate better with topological metrics such as edge correctness

or the number of conserved edges due to their more simplistic assumptions about protein

interactions whereas many-to-many alignments are able to represent protein complexes due

to their more realistic and flexible assumptions about the evolutionary processes. GNA and

LNA definitions do not explicitly include a mapping approach but it is more common in GNA

to use one-to-one mapping since it aims to complete an alignment by leaving no unmapped

nodes in the smaller networks and allowing low-confidence mappings. LNA usually focuses

on regions with high-confidence mappings and several studies has adopted the many-to-many

approach to capture such regions. Accordingly, Elmsallati, Clark and Kalita [81] argue that

LNA results are more difficult to interprete by researchers despite being more consistent

with biological theory due to the assumption that a protein may have multiple orthologs

through duplication or other means. This statement holds true only for the comparison of

commmonly used many-to-many LNA and one-to-one GNA. However, there are various

LNA and GNA algorithms that do not adopt their respective mainstream mapping approach

and violate this statement.

Another distinguishing feature among Network Aligners is their capability of performing

Multiple Network Alignment as opposed to being restricted to a pairwise comparison.

Multiple Network Alignment can be considered as a combination of several pairwise network

alignment tasks aligned with each other. As the number of aligned networks increase, the

number of consistent mappings may decrease whereas their validity may increase since they

are proven iteratively with the new aligned networks. Some prominent examples of multiple

network aligners are Graemlin 2.0 [93] that automatically learns high scoring matches from

a training set of known network alignments and phylogenetic information, SMETANA [94]

that employs a semi-Markov random walk for computing node correspondence scores used

to construct the maximum expected alignment, NetCoffee [95] based on a set of weighted

bipartite graphs used in maximizing a target global alignment function, and BEAMS [96]

that performs the alignment upon backbones of possible cliques from a k-partite sequence

similarity graph. These aligners all allow many-to-many mappings and have a global network
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scope except for Graemlin 2.0 that focuses on local mappings.

1.3 Population Based Meta-heuristics

Blum and Roli [97] summarize meta-heuristics algorithms as abstract approximation strate-

gies that guide the search process by exploring the search space efficiently for optimal

solutions. The study also highlights that these algorithms may include elements that aim

to avoid getting trapped in locally optimal solutions and store previous search experience.

It is a good idea to develop problem independent meta-heuristic approaches when it is

not possible to combine different problem-specific heuristics directly into a single robust

method. Meta-heuristic algorithms do not ensure a globally optimal solution and they usually

employ random variables for traversing a search space with flexibility. The search scope of a

meta-heuristic algorithm can vary from local to global in the solution space and there are

several methods that perform both local and global search.

Evolutionary computation techniques are a special subset of meta-heuristic algorithms that

exhibit a remarkable adaptation for optimizing results based on nature-inspired methods.

Gandibleux and Ehrgott [98] define Evolutionary Algorithms as methods to produce a

population of solutions that progress both individually and in cooperation among themselves

by exchanging information or other means to achieve a maturated approximation. The

study further explains the usual components of these algorithms as an exchange mechanism,

a solution randomizing approach, an elite solutions archive, a fitness measure, a penalty

strategy for infeasible solutions as well as ranking, guiding and clustering methods. The study

also claims that population-based methods are very attractive tools for solving multi-objective

problems due to the contribution of the whole population to the evolutionary process and

the parallelism of the generation mechanism along the members of the population. It is also

worth noting that evolutionary algorithms consist of an implicit or explicit component that

tries to learn the correlations between decision variables in order to identify high quality

regions of a search space in an optimization problem as discussed by Blum and Roli [97].

The study further emphasizes that this class of meta-heuristics focus on high quality regions

of the search space by biased sampling and recombination of results.

There are various search based Network Aligners developed based on meta-heuristics such

as SANA [99] or particularly based on evolutionary algorithms such as OptNetAlign [92]

and MAGNA [100]. Search based aligners can either produce a population of alignment

results or a single result. The search tasks should efficiently be distributed among multi-
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ple computational entities to benefit from a population behavior in Network Alignment.

Consequently, it becomes essential to utilize a concurrent or a parallel infrastructure to

implement a population that performs a meta-heuristic search of optimum alignments against

multiple contradicting topological and biological metrics. Population based behavior can

be useful in establishing a hybrid meta-heuristics approach that orchestrates a variety of

heuristics [101]. The memetic algorithm of OptNetAlign [92] can be regarded as an example

of such a hybrid meta-heuristics approach in which population members perform local search

heuristics in addition to the global Genetic Algorithm (GA) behavior. A population may

perform collaborative tasks given that its members are minimally capable of exhibiting a

reactive behavior upon receiving messages from other members. The extensive search task

of the Network Alignment problem can efficiently be distributed by using such a population.

It is essential to utilize a convenient parallelization architecture for establishing a collab-

orative or synchronized behavior in meta-heuristic algorithms. According to Cung [102],

meta-heuristic algorithms can either be parallelized by performing parallel best neighbor

search at each iteration of a single walk or by investigating multiple trajectories in paral-

lel with different processors. In addition, Talbi [103] lists the major parallel models of

population-based algorithms mentioned originally in [104] as the master/slave model in

which crucial operations are split between master and slave processes, the distributed island

model that employs multiple meta-heuristics simultaneously to orchestrate their respective

sub-populations and the cellular model that focuses on interactions of individuals in their

small neighborhoods. The choice among these models mostly depends on the delegation of

tasks among entities and the search scope of the meta-heuristic algorithm in question.

Another aspect of a collaborative meta-heuristic algorithm is the concept of proactivity

that characterizes the extent of self-initiated behavior for its individual entities to solve the

problem in hand. Such proactive entities can play a key role in designing a flexible and

efficient optimization strategy. The need for reactive or autonomous proactive behavior

depends on the interactivity of entities required by an optimization method. However, there

is a trade-off between autonomous behavior of the entities in a swarm and the computa-

tional overhead caused by autonomy. For this reason, an individual entity should be given

autonomous behavior only when it is going to have a significant contribution to the whole

population-based meta-heuristic model. The level of autonomy can be characterized by

the additional behavior brought to the entities of a population with the respective design

paradigms of actors or agents.

An entity can proactively contribute to a whole population by directly undertaking a certain
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part of the computation or by serving another informative or communicative role that notifies

other entities. Similarly, Idzik, Byrski, Turek and Kisiel-Dorohinicki [105] emphasize

that agents or actors may carry out computational tasks and communicative driver tasks

that request execution according to the environment coupled together in a population of

a particular evolutionary meta-heuristic algorithm. Consequently, these concepts can be

used as building blocks for designing behaviors of population members in a swarm. Most

swarm intelligence approaches are built upon agent based concepts since the agent model is

very convenient for describing the parallel relations of entities in meta-heuristics approaches

such as Particle Swarm Optimization [106, 107]. Furthermore, Krzywicki, Turek, Byrski

and Kisiel-Dorohinicki [108] discuss the significance of asynchronous modeling for agent-

oriented and concurrent actor systems performing evolutionary computation by referring

to the complex structure of biological system as their main source of inspiration. In this

sense, it should be noted that a concurrent meta-heuristics or evolutionary design introduces

another degree of freedom beyond parallelism by allowing partially overlapping time periods

for executing tasks of individual entities in a population.

According to Burgin [109], a computational actor model intends modeling, analyzing and

organizing concurrent digital computations of several entities by formalizing an arbitrary

receipt event with the concepts of a message and messenger. The study further emphasizes

that an actor can formally be defined according to the set of its properties and relations

in a certain environment, the sets of possible actions it performs and it is exposed to as

well its reaction and proaction functions that characterize its behavior. Practically, actors in

Computational Actor Models can create new actors, send messages and receive messages

upon receiving a message whereas the actors in the more general system actor model can

perform any action defined in its environment [106, 109]. Burgin [109] additionally describes

an agent as an actor that acts to fulfill the goals of another system or actor regardless of

the scientific domain that it is used in. Agents inherit the message passing concurrency

model feature based on parallel computation from actors [106] in order to perform the goals

of another computational entity in a proactive fashion. However, such decentralized goal

definitions are computationally more demanding compared to central goal definitions that

orchestrate a population of lightweight members in a meta-heuristic problem. For this reason,

the actor paradigm can be the choice of minimal proactivity with efficient concurrency

functionality and less computational overhead compared to the agent paradigm that offer

more autonomous intelligence with more overhead. Thus, it may be concluded that the

actor paradigm becomes an ideal candidate for establishing a population-based collaborative
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meta-heuristic for the Global Network Alignment problem provided that the collaboration

procedures are neatly defined.

1.4 Thesis Outline

In this thesis, I present two new algorithmic approaches for the multi-objective optimization

of Global Network Alignment problem that is NP-complete due to the contradicting nature

of its biological, annotational and topological alignment objectives. The main goal of the

thesis is to improve the methods to scan the search space of the problem by managing

the simultaneous use of several heuristics. This task is crucial due to the limitations of

the existing network alignment algorithms such as their inability to effectively search for

mappings due to excessively strong assumptions, rigid procedures or being restricted to basic

objectives as well as the computationally demanding nature of the alternative meta-heuristics

based alignment algorithms that perform a thorough search with weak assumptions. For this

purpose, I propose two population-based meta-heuristic solutions to tackle the limitations of

this problem, the first one being a supervised genetic algorithm approach while the second

one being a particle swarm inspired collaborative method. Throughout the projects, I was

initially co-supervised by Tolga CAN and Rıza Cenk ERDUR and later on I was supervised

by Tim CONRAD as my main supervisor.

In Chapter 2, I introduce SUMONA that is an extension to the computationally demand-

ing multi-objective memetic algorithm called OptNetAlign. SUMONA accelerates and

guides the alignment process by modifying the crossing-over mechanism of the genetic

algorithm with inputs from other aligners/heuristics while preventing premature conver-

gence by randomizing the usage of these inputs. In this scope, I present a generic pro-

cedure that generates several alignments with changing heuristics and input parameters,

classifies the generated alignments, establishes a randomized alignment selection mech-

anism from the classified alignments for cross-over and finally adjusts global and local

search parameters. SUMONA was implemented with TBB and Boost libraries for par-

allelization. SUMONA was tested with both real and synthetic datasets to evaluate its

performance in various topological, biological and functional objectives. I wrote the re-

sulting manuscripts below with valuable contributions from my co-author Tolga CAN.
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Tuncay EG, Can T. SUMONA: A Supervised Method for Optimizing

Network Alignment. Computational Biology and Chemistry, 2016, doi:

10.1016/j.compbiolchem.2016.03.003

Tuncay EG, Can T. SUMONA: A Supervised Method for Opti-

mizing Network Alignment, Proceedings of the Fourteenth Asia Pa-

cific Bioinformatics Conference (APBC 2016), January 11-13, 2016.

http://www.sfasa.org/apbc2016/content/APBC2016_ProgramBook.pdf
In Chapter 3, I introduce PERSONA that orchestrates several aligners to share their partial

solutions continuously while they progress. These aligners jointly constitute a particle swarm

that searches for multi-objective solutions of the alignment problem in a reactive actor

environment. Within the swarm, the leading or prominent actors send the stronger portion of

their solution as a subgraph to other actors and receive the stronger subgraphs of the counter

party back upon evaluation of those partial solutions. The individual alignment heuristics

were also developed within the scope of the same research and they were implemented based

on alternatives such as seed-and-extend approaches with various centrality and sequence

seeds, cluster mapping approaches and node similarity prioritization approaches. Both the

population-based meta-heuristic tasks and the individual heuristic tasks were implemented

in a non-deterministic fashion in order to improve flexibility and preventing to be trapped in

locally optimal solutions. PERSONA was tested with datasets from prominent PPI databases

and compared with several multi-objective Global Network Aligners in order to be eval-

uated from different perspectives. The application implemented with Akka concurrency

architecture and Neo4J Graph Database that particularly enables to employ several align-

ment improving heuristics by matching complicated network patterns. I wrote the resulting

manuscript below with helpful input of from my co-authors Tim CONRAD and Rıza Cenk

ERDUR as well as inspiring consultation from Tolga CAN. The most recent experiment

results can be seen from the journal.
Tuncay EG, Erdur RC, Conrad T. Parallel Exchange of Randomized Sub-

Graphs for Optimization of Network Alignment: PERSONA. IEEE/ACM

Transactions on Computational Biology and Bioinformatics, 2022, doi:

10.1109/TCBB.2022.3231489

Chapter 4 gives a summary of the thesis and provides an outlook for potential future devel-

opments in the field of Multi-Objective Optimization of Global Network Alignment in PPI

Networks.
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2 SUMONA: A Supervised Method for Optimizing
Network Alignment

This chapter focuses on improving the multi-objective memetic algorithm for protein-protein

interaction (PPI) network alignment, Optimizing Network Aligner - OptNetAlign, via in-

tegration with other existing network alignment methods such as SPINAL, NETAL and

HubAlign. The output of this algorithm is an elite set of aligned networks all of which

are optimal with respect to multiple user-defined criteria. However, OptNetAlign is an

unsupervised genetic algorithm that initiates its search with completely random solutions

and it requires substantial running times to generate an elite set of solutions that have high

scores with respect to the given criteria. In order to improve running time, the search space

of the algorithm can be narrowed down by focusing on the most desired criteria and trying to

optimize other relevant criteria on a more limited set of solutions. The method presented in

this chapter improves OptNetAlign in a supervised fashion by utilizing the alignment results

of different network alignment algorithms with varying parameters that depend upon user

preferences. Therefore, the user can prioritize certain objectives upon others and achieve

better running time performance while optimizing the secondary objectives.

2.1 Background

Network Alignment is the most prominent method for comparing two or more protein inter-

action networks to identify their regional similarities and differences. Network alignment can

be used to infer several biological facts about protein interactions such as predicting functions

and functional annotations of proteins or protein complexes, predicting and validating protein

interactions, detecting orthologies and reconstructing phylogenetic trees [69]. The recent

demand about comparing protein interaction networks of different organisms has resulted in a

number of network alignment algorithms to be developed. The heuristics employed by these

algorithms greatly vary due to the NP-Completeness of the GNA problem. Some studies

[81, 110] state that the NP-Completeness of the Network Alignment problem is due to its

equivalence to a graph-matching problem and particularly a subgraph isomporphism problem

that does not have an exact solution and needs to be optimized in terms of a similarity scoring,

cost or distance function [111–113].

All network alignment algorithms allow inexact matching since they aim to discover the
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similarities and differences between the aligned organisms. Allowing inexact matching

introduces the concepts of gap, mismatch, node deletion and insertion as approximation

approaches by penalizing the performance of these algorithms [69, 110]. Network alignment

algorithms utilize different techniques and each of them has characteristic advantages and

disadvantages which makes them more applicable to some datasets while being inapplicable

for others. However, the performance of these network aligners are still far from the desired

level and they generate significantly different alignments with common aligned pairs as low

as 5% of the total number of matches. Therefore it becomes necessary for the user to run

many different aligners in order to choose the most applicable alignment among all possible

alternatives [92, 114].

Performance of Network Alignment algorithms can be evaluated with various quality objec-

tives. These objectives evaluate alignment quality with respect to measures such as sequence

similarity, topological fit, matching ratio, neighborhood similarity, density matching and the

GO annotations between aligned proteins. While some algorithms favor only one parameter

over the others, some algorithms allow a user-defined prioritization among them. However,

these alignment goals usually contradict each other and most of these algorithms can produce

significant results with just a few of these objectives by ignoring the others. The obvious

reason for this fact is that most aligners rely on alignment approaches that improve particular

objectives at the expense of others. Nevertheless, it is possible to perform multi-objective

optimization with methods such as OptNetAlign that minimize the compromise of objective

criteria [92]. This particular method produces a pareto front of diverse and elite set of good

quality alignments regarding all the conflicting objectives by employing a Uniform Partially

Matched Crossover (UPMX) genetic algorithm during this optimization process. However,

OptNetAlign is computationally very expensive although it has the potential to find the

optimal equilibrium among the desired parameters. This is due to the genetic algorithm of

OptNetAlign starting with an initial population of completely random alignment solutions.

Besides, one of the most significant drawbacks of OptNetAlign is that it cannot prioritize the

given alignment objectives among themselves.

Limitations in computationally demanding meta-heuristic search operations can be tackled

by reinforcing such tasks with more direct heuristics. Thus, it becomes a beneficial strategy

to utilize existing heuristics coupled with the flexible search power of optimization to yield

better results in a computationally efficient time. There are some aligners that utilize existing

heuristics such as BoNA [115] that is only capable of refining an existing alignment by

capturing its interactive information until convergence and PISwap [91] and MAGNA [100]
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that are both capable of creating new alignments and refining the ones created by existing

aligners. To this end, this study proposes a number of different starting procedures for

OptNetAlign that facilitate the aligner reach significant levels among some of the desired

parameters before proceeding with the regular optimization process. These procedures

mainly include employing the outputs of different aligners such as NETAL [116], HubAlign

[90], and SPINAL [89] instead of one of the random parents in each cross-over cycle of

OptNetAlign. The outputs of the other aligners are generated with different parameters,

frequencies, and intervals for diverse results. The results, hence the performance, change

dramatically in relevant objectives due to the characteristic advantages and adaptability of

each aligner on different datasets.

On the other hand, the effects of supervising the cross-over operation is also investigated in

this study. For this reason, output alignments of various network aligners are utilized as one

of the parent inputs of each cross-over iteration with a randomized pattern. Randomization is

achieved by introducing the inputs with a cyclic method or random selection from predefined

classes. Thus, the input alignment changes dynamically in a randomized way by using the

output of a different aligner with different parameters in every iteration. The main motivation

behind continuously changing one of the input alignments during the cross-over process is to

prevent local optimal solutions. Different input alignments are expected to have alternative

results stronger with respect to different objectives that provide diverse solutions. Moreover,

a final optional step of supervised single objective hill climbing is applied in each cycle for

every objective that scores below a given threshold to figure out its effect on the optimization

process.

2.2 Methods

The method proposed as Supervised Method for Optimizing Network Alignment (SUMONA)

is based on the Multi Objective Memetic OptNetAlign algorithm. OptNetAlign creates a

population of elite alignments using UPMX, mutation and local search operations based on an

efficient swap method. The algorithm, archives elite alignments into a Pareto dominated set

with respect to various topological and biological objectives, exploring the trade-off among

them during execution. The Pareto dominated set has a constant size and is dynamically

updated whenever a new elite alignment is found by replacing it with the weakest member.

The user can determine the cross-over and mutation rate as well as the probability of

swap, single objective hill climbing, and multi-objective hill climbing at runtime. As a
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result, a diverse set of high-quality candidate alignments are generated in a single run. The

resulting set of elite alignments are composed of diverse solutions that indicate an optimized

compromise between topological and biological match quality [92].

SUMONA is an improvement over the OptNetAlign methodology and its main contribution

is increasing the performance of achieving multiple alignment objectives by supervising the

optimization process and prioritizing some objectives above others. Most existing network

aligners follow an approach of levelization between the similarity measures that they employ.

Therefore various input alignments can be generated by using them. SUMONA approach

uses yet another generated alignment as input of OptNetAlign at each iteration. So, the input

of every iteration becomes random up to a limit and provides the potential to optimize the

solution with respect to the desired objectives. Consequently, when a significant improvement

is observed in some objectives, the dynamical optimization environment can be fed with

other generated input alignments that are stronger in the unimproved objectives in order to

gain performance for more optimized results. The performance of SUMONA depends on

many factors such as alignment objectives, network characteristics of the aligned species and

quality of input data that is generated by other prominent aligners.

2.2.1 Alignment Objectives

Alignment objectives may be conflicting in practice and usually, achieving all alignment

objectives simultaneously is not possible in most network aligners. Some quality measures

for the GNA problem can briefly be summarized as follows [90, 114]:

• Edge Consistency (EC) is the fraction of the conserved edges in the two aligned

networks to the total number of edges in the first network.

• Induced Conserved Structure (ICS) and Symmetric Substructure Score (S3) are based

on penalizing an aligned pair if it aligns a node from a sparse region of its network to

another one that is located in denser regions. ICS and S3 are EC refinements designed

to take inter-connectivity into account and all these measures focus on topological

similarity of an alignment rather than node similarity.

• Largest Common Connected SubGraph (LCCS) is the size of the largest connected

component of the aligned part of the networks that is a factor of topological significance.

The size is specified as number of edges.
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• Functional Consistency (FC) is the ratio of aligned proteins that have more than k
common Gene Ontology annotations to the size of the smaller network. It is also

known as Gene Ontology Consistency (GOC) score.

• Average of Functional Similarity (AFS) is related with FC and it takes the distance of

the terms in the GO term hierarchy into account as their semantic similarity.

• Biological Sequence Similarity (BS) is usually calculated by the BLAST bit score

sum. For this reason, it can also be called BitScoreSum.

BS is inherently a major quality measure among others in this set since it is a direct indicator

of homology. However, one point to consider for homology is that it is not always a sign

of orthology showing similar functions since a it may also be a sign of paralogy showing

new evolved functions. Another point to mention is that high FC and AFS scores can be no

coincidence as long as they are evaluated based on experimentally verified or high precision

in-silico annotations. Thus they may be considered more reliable than the topological

measures EC, LCCS and S3 that rely on the assumption of associating similar interactions

with similar functions. However, the degree of impact for quality measure relevance is a

matter of debate since it requires extensive correlation analyses with known true mappings

in alignments beyond a rough reliability estimate. Therefore quality measure prioritization

cannot be done universally.

On the other hand, some of these fundamental measures used as GNA objectives also

have other improved derivatives for measuring performance in more detail. Most of these

objectives and their derivatives are used as optimization objectives except for LCCS, which is

computed post-execution, in the OptNetAlign algorithm. However, one apparent drawback of

OptNetAlign is that it cannot prioritize its optimization objectives and it does the optimization

in parallel for all the defined objectives concurrently. Besides, the objectives are in conflict

among themselves for most alternatively generated solutions. Eventually, the computation

time increases drastically while searching the non-conflicting and fully optimized alignments

throughout the search space.

2.2.2 Network Aligners Employed in Supervised Optimization

The method proposed in this study aims to improve the performance of OptNetAlign by

supervising the optimization process and prioritizing some optimization objectives above

others so that it becomes easier to optimize the remaining objectives. In order to accomplish
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PPI Network 1 PPI Network 2 

Alignments using SPINAL, NETAL, HubAlign 

…………………….. 

1. Genetic Algorithm search to improve existing alignments by combining them with 
random solutions over generations and towards multiple objectives.  
2. Local search with randomly chosen objectives among the prioritized ones. 

Result 1 Result n Result 2 …………………………………………………………..…. 

Figure 2.1: Summarized Illustration of SUMONA. First, the supervision input set is diversified by
executing other alignment algorithms multiple times with varying parameters. Then, GA and local
search tasks are supervised by using results of those alignment algorithms as supervision inputs.

this task, the outputs of certain network alignment algorithms are used as inputs of the GA

and local search tasks as presented in Figure 2.1. These input alignments are provided by

the outputs of the network aligners HubAlign [90], NETAL [116], and SPINAL [89], with

distinctive characteristics. These algorithms are chosen mainly because of their different

optimization approaches successful in different objectives and they are explained below in

detail:

HubAlign [90] is a GNA algorithm especially useful in detecting functionally similar proteins.

Its main idea is starting an alignment from the hub or bottleneck proteins that are topologically

more relevant. The algorithm initially predicts the topological importance of a protein from

global network topology information with a minimum-degree heuristic approach. In the
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next step, it starts the alignment from topologically important proteins and then extends

it gradually to the whole network. The objectives that are used to assess HubAlign’s

performance consider both topological and sequence homology information.

SPINAL (Scalable Protein Interaction Network Alignment) algorithm [89] is composed of

two main steps. In the first step, initial similarity scores for all possible aligned pairs are

calculated based on pairwise local neighborhood matchings. The second step generates a

final one-to-one mapping with a seed and extend approach by improving a solution subset

locally via iterative swaps. Both steps utilize the neighborhood bipartite graphs and a set of

contributors for computing maximum weight matching of edges as a common primitive.

NETAL [116] is a fast GNA algorithm that employs a greedy approach to produce significant

results with respect to EC, LCCS and the number of common Gene Ontology terms between

the aligned proteins. The algorithm generates an Alignment Score Matrix using two other

matrices of similarity scores and interaction scores in the first step. In this context, similarity

scores are calculated as the weighted sum of topological and biological scores and interaction

scores are dynamically calculated based on the number of conserved interactions of each

node. In the second step, the global alignment is searched with a greedy approach by using

the Alignment Score Matrix.

2.2.3 The Structure of the Genetic Algorithm

The structure of the genetic algorithm used in SUMONA is based on OptNetAlign [92].

SUMONA briefly intends to supervise the optimization strategy of OptNetAlign by focusing

on the search space around many input alignments provided by other aligners. On the other

hand, OptNetAlign performs a complete optimization process covering the whole search

space with its basic GA search which is comparably a time consuming task. The structure

of the GA employed by OptNetAlign is based on a multi-objective memetic approach that

tries to discover a representative set of non-dominated alignments with respect to all desired

objectives using swap-based operations of cross-over, mutation and hill climbing. Each cycle

of the algorithm is initiated by searching random members of the population and performing

cross-over and mutation on these alignments, followed by a local search performed with hill

climbing. The hill climbing operation is randomly chosen either to make moves that do not

worsen any objective or to improve one objective while ignoring the others. The achieved

alignment is stored in a special fixed size archive data structure if it is not Pareto dominated by

any other alignment and it is among the top ranking solutions. All non-dominated alignments
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in this archive are presented as the outputs of the application after a certain number of cycles

specified by the user [92].

OptNetAlign [92] employs the permutation encoding scheme by labeling the nodes of

networks with representative integers. These integers start from 0 and end with n-1 for

both networks in which n denotes the number of nodes. Accordingly, a single alignment is

represented with an array using the index numbers for the first network and index values for

the other so that permutation based search operators can be used. The cross-over operator

adopted in OptNetAlign is UPMX that is based on swapping the ith elements in two alignment

arrays of the same size and same node number. The first swap operation causes there to

be duplicate values in both arrays if the swapped values are not equal, therefore another

swap operation is performed between the resulting duplicate values in both arrays . For local

search, the algorithm involves two different swap based hill climbing approaches. The first

one, hillClimbNonDominated, performs random swaps repetitively and rolls back a swap

if any of the given objectives worsen. The second one, hillClimbOneObj, totally ignores

the unspecified objectives by focusing on only one objective and performing a swap unless

the given objective is worsened. The first hill climbing approach is used as a basic step to

improve the archived alignments, and the second one is used to ensure a level of variance

for the population in objective search space, so that it will be more possible to find stronger

representatives to be archived. As a final remark, it is worth mentioning that fitness values

are efficiently evaluated based on the difference after each swap in all cross-over, mutation

and hill climbing operations since there is no other means to modify the permutations [92].

2.2.4 Supervised Optimization Method

The generic workflow of SUMONA: A Supervised Method for Optimizing Network Alignment

can be described in detail as follows:

1. Input Alignment Generation: Alignments for two specific organisms are generated

with aligners HubAlign, NETAL, and SPINAL. These network alignment algorithms

generate a diverse set of outputs that are used as the initial population of the GA search

of OptNetAlign. Each aligner is executed numerous times with different parameter

values within an interval in order to generate a diverse and extensive set.

2. Classifying Input Alignments: Every alignment in the set of generated alignments

has typical advantages with respect to different objectives. It is required to identify
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the strong aspects of each and every alignment and classify them with respect to

their common strengths in this step. For this reason, they are tested against all

desired objectives and classified as strong alignments with respect to the objectives in

which their alignment scores are above a predefined threshold. The blend of the final

population can be controlled by using classified alignments in given proportions.

3. Establishing a Supervision Strategy: This step first focuses on a selection method for

choosing an input alignment in a randomized way to be used as one of the parents

of OptNetAlign cross-over process in every generation. The input alignments are

used instead of one of the random parents either for a given period leaving the rest

of the inputs as totally random or throughout all execution period. The reason of

randomization is the necessity to preserve diversity for covering more search space.

Diversity is provided by choosing a different member of the input alignments set with

a characteristic rule in each generation. An applicable supervision strategy involves

using the classified input alignments in given proportions and frequencies with a

certain order so as to supervise the optimization process and allow prioritization.

The desired prioritization may include a levelization between objectives which can

simply be ensured by allowing more cycles for achieving more desired objectives.

Another essential part of an supervision strategy is the final step of local search that

is applicable for desired objectives such as the ones that score below a predefined

threshold in each cycle. It’s better to perform the local search with a proper single

objective hill climbing method since its alternatives have a relatively high performance

cost.

4. Reviewing the Execution Parameters: The effects of certain parameters such as the

number of generations (cycles), number of hill climbing iterations and output popula-

tion size are investigated in this step while the optimization process is executed. The

execution can be repeated with different parameter values in case the optimization

results are not successful enough.

The workflow of SUMONA can be performed with a few modifications in its main procedure.

We designed and implemented two SUMONA variants with custom modifications in the

course of this study. SUMONA1 procedure starts with inserting all the alignments that score

above a given threshold in any of the predefined objectives to a common list. SUMONA1

does not classify the input alignments, but instead it uses the alignments from the input list

one by one in each cycle of the Genetic Algorithm. Then it restarts again from the first
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list element in a cyclic fashion, when all the alignments of the input list has already been

used. SUMONA1 does not perform a special single objective hill climbing operation but it

rather performs the regular single objective hill climbing operation which randomly picks

one of the objectives to improve likewise the original OptNetAlign algorithm. On the other

hand, SUMONA2 first classifies the input alignments with respect to the given objectives

by inserting the ones that score above a certain threshold value to the respective classes. A

single alignment is included in more than one alignment class if its strength is not limited to

one objective during this step. In the next step, the algorithm picks a random member of a

randomly chosen class as one of the parents in each cycle of the Genetic Algorithm. This

step ensures a balance among the user-defined objectives. Finally, SUMONA2 performs

single objective hill climbing for all objectives that score below a predefined threshold

in the hill climbing step of the algorithm. If all objectives score above their respective

predefined thresholds, then single objective hill climbing is performed once for a random

objective among the user-defined ones. This modification aims to focus on the easiest local

improvements for the optimization process. SUMONA1 and SUMONA2 are described in

detail with the following pseudo-codes in Algorithm 2.1 and 2.2. It may easily be seen

from the pseudo-codes that the backbone of the algorithm stays the same in both variants

apart from certain modifications.

The key variables in the algorithms and their explanations are the number of hill climb

iterations (niters), cross-over rate (cxrate), swap probability at each index for cross-over

(cxswappb), mutation rate (mutrate), swap probability at each index for mutation (mutswappb),

probability of single objective hill climbing (oneobjrate), list of threshold values for ob-

jectives (trObjs). The most convenient values of these variables for efficient optimization

results differ for each data set. For this reason, they need to be configured for each case.

Besides, the success of network alignment algorithms depends on the quality of data as well

as the evolutionary distance between species. Most network aligners have better results with

synthetic data since most experimentally derived protein interaction networks are incomplete

and noisy. Furthermore, the evolutionary distance between the aligned species should be

small, if significant results are sought [114]. Finally, data format conversion between various

data sources and network aligners is a practical problem to be solved when dealing with

different data sets and network alignment methods. Some components of this problem

are entity mapping (node, annotation, function, etc.), document structure, similarity ratio

and scores and parsing data fields. In this study, we developed simple conversion tools for

compatibility between all the aligners used in SUMONA.
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Algorithm 2.1 SUMONA1 Variant

1: procedure SUMONA1(Inputs, Objectives, PopSize)
2: for all input ∈ Inputs do
3: if InputStrongForAtLeastOneObjective then
4: insert(input, InputList)
5: end if
6: end for
7: it← 0
8: while time limit not reached do
9: if ArchiveSize ≤ PopSize/2 then

10: parent1← RandomAlignment(random)
11: parent2← InputList(it mod Noo f Inputs)
12: it← it + 1
13: else
14: parent1← ArchivedAlignment(random1)
15: parent2← ArchivedAlignment(random2)
16: end if
17: child← initializeAlignment(parent1, parent2)
18: if probability ≥ cxrate then
19: child← crossover(cxswappb, parent1, parent2)
20: end if
21: if probability ≥ mutrate then
22: child← mutate(mutswappb, child)
23: end if
24: if probability ≥ oneobjrate then
25: randObj← RandomlyChosenObjective
26: child← hillClimb(randObj, niters, child)
27: else
28: child← hillClimbNonDominated(niters, child)
29: end if
30: child← hillClimbNonDominated(niters, child)
31: insert(child, Archive)
32: end while ▷ Per Thread
33: return ParetoAlignments
34: end procedure
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Algorithm 2.2 SUMONA2 Variant

1: procedure SUMONA2(Inputs, Objectives, trObjs, PopSize)
2: for all Obj ∈ Objectives do
3: for all input ∈ Inputs do
4: if trObj ≥ ObjScore then
5: insert(input, ObjectiveClass)
6: end if
7: end for
8: end for
9: while time limit not reached do

10: if ArchiveSize ≤ PopSize/2 then
11: parent1← RandomAlignment(random)
12: rand1← RandomlyChosenClass
13: rand2← RandomlyChosenItem
14: parent2← ObjectiveClass(rand1, rand2)
15: else
16: parent1← ArchivedAlignment(random1)
17: parent2← ArchivedAlignment(random2)
18: end if
19: child← initializeAlignment(parent1, parent2)
20: if probability ≥ cxrate then
21: child← crossover(cxswappb, parent1, parent2)
22: end if
23: if probability ≥ mutrate then
24: child← mutate(mutswappb, child)
25: end if
26: if probability ≥ oneobjrate then
27: for all Obj ∈ Objectives do
28: if trObj ≥ ObjScore && ¬hillClimbed then
29: child← hillClimb(Obj, niters, child)
30: hillClimbed← true
31: end if
32: end for
33: if ¬hillClimbed then
34: randObj← RandomlyChosenObjective
35: child← hillClimb(randObj, niters, child)
36: end if
37: else
38: child← hillClimbNonDominated(niters, child)
39: end if
40: child← hillClimbNonDominated(niters, child)
41: insert(child, Archive)
42: end while ▷ Per Thread
43: return ParetoAlignments
44: end procedure
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2.3 Results

In this section, we discuss the performance and scores of SUMONA1 and SUMONA2

variants with respect to real and synthetic datasets. Besides, we test and analyze the running

time of our experiments in order to compare SUMONA variants with OptNetAlign.

2.3.1 Tests Based on Real Data

Tests of real data are performed by aligning Saccharomyces Cerevisiae and Drosophila

Melanogaster datasets included in Isobase [117] to optimize the prominent objectives of

OptNetAlign including EC, GOC, S3 and BitScoreSum. The population size parameter

for the pareto front is 100 for all tests. Four possible supervision strategies are tested in

this section. The first three supervision strategies are all based on SUMONA1 while the

fourth one is based on SUMONA2. The optimization objectives used for the first three

strategies are GOC, S3 and BitScoreSum in the same order and these strategies use the

default niters parameter of the OptNetAlign application as 0. Besides, all strategies use

the default parameters cxrate=0.7, cxswappb=0.1, mutrate=0.1, mutswappb=0.005 and

oneobjrate=0.1 respectively. Statistical significance of the comparison in each supervision

strategy is evaluated with an unpaired t-test score by rejecting the null hypothesis that two

experiments produce equal results if p-value<0.05. Furthermore, Bonferonni Correction is

applied as a multiple testing methodology for comparing several objective scores of each

experiment. This method is preferred since it does not require the tests to be independent.

Bonferonni Correction is simply carried out by dividing p-value by the number of hypotheses

to yield the statistical significance threshold for discovering familywise error rate. Therefore,

the statistical significance threshold is calculated as 0.05/8 = 0.00625.

Supervision Strategy 1: This supervision strategy employs SUMONA1 and it assigns a

different SPINAL result with a particular Normalized Sequence Similarity Score ratio as one

of the parent inputs of the cross-over process in each cycle. This parent input changes by

assigning the next SPINAL result from a previously prepared set in a cyclic fashion. This is

performed by incrementing the Normalized Sequence Similarity Score ratio by 0.1 from 0

to 1 and restarting from 0 after all possible values are tried. This cyclic behaviour goes on

throughout the execution of the optimization process.

The test results shown in Table 2.1 compare one-parent cyclic SPINAL inputs with totally

random cross-over parents. The tests were performed with 100, 200, 400, 600, 800, and
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Table 2.1: Cyclic SPINAL vs. Totally Random

SPINAL Average Maximum Minimum

EC 0,114 0,118 0,111
ICS 0,178 0,183 0,174
S3 0,0746 0,0769 0,0725

GOC 115,55 123,04 103,47
BitScoreSum 70810,76 76996,5 60212,5

Size 5378,52 5389 5369
ICS×EC 0,02033 0,0214 0,0192
S3Variant 0,128 0,133 0,124

Totally Random Average Maximum Minimum

EC 0,0116 0,0117 0,01161
ICS 0,0309 0,0311 0,0307
S3 0,00853 0,00859 0,00847

GOC 137,99 138,22 137,66
BitScoreSum 16000,22 16186,5 15758

Size 5499 5499 5499
ICS×EC 0,00036 0,000365 0,000355
S3Variant 0,0118 0,0119 0,0117

Table 2.2: T-Test for Cyclic SPINAL vs. Totally Random

Objective Test Score

EC 3, 22× 10−164

ICS 1, 36× 10−174

S3 5, 87× 10−166

GOC 3, 50× 10−49

BitScoreSum 2, 10× 10−92

Size 2× 10−132

ICS×EC 5× 10−145

S3Variant 2× 10−159

1000 cycles (generations) for observing the improvement in the results. Finally, the results

for 1000 cycles are compared to realize the contribution of the generated inputs. The t-test
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Table 2.3: Cyclic HubAlign with Different Cycles

1000 cycles Average Maximum Minimum

EC 0,0187 0,0208 0,0142
ICS 0,0326 0,0358 0,0255
S3 0,01203 0,0134 0,00919

GOC 365,21 367,58 362,28
BitScoreSum 373538,08 377282 370990

Size 5499 5499 5499
ICS×EC 0,000618 0,000747 0,000361
S3Variant 0,0191 0,0213 0,0144

2000 cycles Average Maximum Minimum

EC 0,0196 0,0226 0,0140
ICS 0,0368 0,0419 0,0266
S3 0,013 0,0149 0,00925

GOC 369,48 374,97 361,59
BitScoreSum 362453,21 370640 354411

Size 5499 5499 5499
ICS×EC 0,000736 0,00095 0,000372
S3Variant 0,0200 0,0231 0,0142

results in Table 2.2 show that cyclic SPINAL has significantly better results with respect to

all objectives. Besides, the maximum and minimum results achieved by Cyclic SPINAL are

significantly higher as well except for Size objective.

Supervision Strategy 2: This strategy is similar to Supervision Strategy 1 in a sense that it

uses inputs with a cyclic order while its only difference is using cyclic HubAlign results as

inputs instead of SPINAL results. The parameter α, which determines the effect of sequence

information against topological similarity, is incremented by 0.1 from 0 to 1 throughout each

cycle. The parameter λ, which determines the effect of the edge weight against node weight,

stays constant in the whole process with a value of 0.1.

The test results shown in Table 2.3 compare the progress of one-parent cyclic HubAlign

inputs of 2000 cycles with the same inputs of 1000 cycles. The success of cyclic HubAlign

inputs is much lower than cyclic SPINAL inputs in most topological objectives while still

being better than the original OptNetAlign algorithm. Nevertheless, cyclic HubAlign inputs
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Table 2.4: T-Test for Cyclic HubAlign with Different Cycles

Objective Test Score

EC 0,00425
ICS 3, 58× 10−11

S3 2, 87× 10−5

GOC 5, 39× 10−20

BitScoreSum 8, 72× 10−48

Size Undefined
ICS×EC 3, 07× 10−7

S3Variant 0,00409

are far more better than cyclic SPINAL inputs in terms of functional objectives such as

GOC and BitScoreSum. Additionally, HubAlign inputs show improvement in all topological

parameters from 1000 cycles to 2000 cycles as shown by the similarity results of t-test in

Table 2.4. Therefore, we may conclude that the progress in certain objectives do not take

place in the expense of others for this strategy.

Supervision Strategy 3: The third supervision strategy we evaluated is a combination of

cyclic one-parent SPINAL and NETAL inputs. The parameter α, which controls the weight

of similarity and interaction scores in NETAL, varies from 0 to 1 and other parameters

are fixed with default values. The SPINAL cyclic behavior is the same with Optimization

Strategy 1. There are two versions of this strategy. In the first one, cyclic NETAL inputs are

crossed over after three cycles of cyclic SPINAL inputs. In the second one, cyclic SPINAL

inputs follow three cycles of NETAL inputs.

The test results of Table 2.5 and Table 2.6 show that the strategy of starting with cyclic

SPINAL inputs has slightly better performance in topological objectives and oppositely the

other one has slightly better performance in functional objectives when both strategies are

run for 1000 cycles. Both strategies have better topological results compared to the previous

tests. This fact confirms the evident performance of NETAL in topological objectives.

Supervision Strategy 4: The last supervision strategy is based on SUMONA2 unlike the

others above. In this sense, this strategy is the most generic one compared to the others that

take the order of inputs into account. The input data is the collection of SPINAL, NETAL

and HubAlign data of the previous supervision strategies. There is no need to specify the

order of inputs to be used in this strategy since SUMONA2 picks a random item from a
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Table 2.5: Cyclic NETAL Following Cyclic SPINAL

SPINAL→ NETAL Average Maximum Minimum

EC 0,151 0,174 0,11
ICS 0,235 0,269 0,174
S3 0,102 0,118 0,0722

GOC 93,62 113,33 77,1
BitScoreSum 48090,13 73304 27631,5

Size 5461,26 5499 5371
ICS×EC 0,0364 0,0469 0,0191
S3Variant 0,179 0,211 0,123

NETAL→ SPINAL Average Maximum Minimum

EC 0,138 0,172 0,101
ICS 0,213 0,265 0,161
S3 0,0916 0,116 0,0662

GOC 96,93 122,33 62,41
BitScoreSum 54243,67 83343 12418

Size 5418,28 5499 5330
ICS×EC 0,0303 0,0455 0,0163
S3Variant 0,161 0,208 0,112

Table 2.6: T-Test for SPINAL→ NETAL vs. NETAL→ SPINAL

Objective Test Score

EC 0,000111
ICS 3, 4× 10−5

S3 6, 77× 10−5

GOC 0,102
BitScoreSum 0,0319

Size 1, 93× 10−7

ICS×EC 5, 17× 10−5

S3Variant 0,000103

randomly chosen class in each cycle. On the other hand, an additional optimization objective

is used in the respective experiments of this strategy in order to achieve balance between
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the number of topological and functional objectives. The user-specified objectives are EC,

S3, BitScoreSum and GOC in the same order. One other used parameter is niters which

has been tried with values 0, 500, 1000, 1500 and 2000 in order to observe the trend in

its effect. It is concluded that this parameter has limited effect if it is increased beyond a

certain value and its most effective values are 1000 and 1500 among all the trials in terms

of execution time and achieved results. As a result, the test results of 1500 and 0 hill climb

iterations are compared with each other to observe the effect of hill climbing. Additionally,

the treObjs parameters of SUMONA2 are determined as the average score of the inputs for

each objective. Finally, the effects of establishing an Unclassified Class for inputs that are

not inserted into any of the objective classes is observed by giving it the same probability to

be chosen with all the Objective Classes in each cycle of this supervision strategy. However,

it is realized that the Unclasified Class has no significant positive effect on the optimization

results due to its limited number of items. This modification does not yield a significant

diversity for optimization, since there are few alignments in the Unclassified class. For this

reason, the Unclassified Class is not used in the experiment.

Test results of Table 2.7 and Table 2.8 show that the performance of this supervision strategy

significantly improves in all objectives except Size. However, there is a significant decline

in Size objective due to the SPINAL inputs used during cross-over. Apart from that, the

overall performance of this strategy is much better compared to the other ones when it is

run for 1000 cycles likewise the other tests. This fact can simply be observed by comparing

the average and maximum values of all the objectives that each strategy achieves. Finally,

Supervision Strategy 4 with hill climbing surprisingly achieves the best scores of GOC and

ICS among all strategies, although it is expected to achieve the optimum values considering

its input data.

Table 2.9 shows the individual performance of HubAlign, NETAL and SPINAL algorithms for

comparison. The performance is evaluated with respect to the specific 11 sample alignments

for each algorithm that are mentioned in the previous scenarios.

If the output alignment sets are examined, it will be seen that 1000 cycles of SUMONA2

(Supervision Strategy 4) with 1500 “hill climb iterations” generate alignments that surpass

the maximum values of other aligners in GOC and ICS objectives in which those aligners are

most successful. The individual alignments generated by SUMONA2 are also significantly

better in other objectives compared to the performance of the respective aligners. Therefore,

we may conclude that our algorithm SUMONA generates alignments that pareto dominate

other well known aligners with 1000 cycles which is so short in the scale of optimization
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Table 2.7: All inputs with 1500 vs. 0 Hill Climb Iterations

1500 iterations Average Maximum Minimum

EC 0,0975 0,169 0,0594
ICS 0,22 0,337 0,138
S3 0,073 0,127 0,0435

GOC 366,15 510,97 141,96
BitScoreSum 170974,74 310214 10785

Size 4206 4561 4042
ICS×EC 0,0237 0,0570 0,00829
S3Variant 0,11 0,204 0,0632

no iterations Average Maximum Minimum

EC 0,076 0,158 0,00903
ICS 0,123 0,247 0,0142
S3 0,0502 0,107 0,00556

GOC 145,27 330,22 45,73
BitScoreSum 121881,96 344004 613

Size 5407,46 5499 5351
ICS×EC 0,0127 0,039 0,000129
S3Variant 0,085 0,188 0,00911

Table 2.8: T-Test for 1500 vs. 0 Hill Climb Iterations

Objective Test Score

EC 0,000161
ICS 1, 32× 10−18

S3 6, 85× 10−8

GOC 7, 02× 10−31

BitScoreSum 0,000649
Size 7, 45× 10−124

ICS×EC 4, 53× 10−8

S3Variant 0,000329

processes.
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Table 2.9: Inputs of HubAlign, NETAL and SPINAL

HubAlign Average Maximum Minimum

EC 0,0205 0,0252 0,012
ICS 0,0305 0,0352 0,0174
S3 0,0124 0,0149 0,00716

GOC 307,75 393,05 49,55
BitScoreSum 327699,55 419155 313

Size 5499 5499 5499
ICS×EC 0,00064 0,000886 0,000209
S3Variant 0,0209 0,0259 0,0122

NETAL Average Maximum Minimum

EC 0,216 0,237 0,0171
ICS 0,303 0,333 0,0242
S3 0,146 0,161 0,0101

GOC 46,92 47,06 46,66
BitScoreSum 737,09 798 403

Size 5499 5499 5499
ICS×EC 0,0711 0,0792 0,000415
S3Variant 0,282 0,311 0,0174

SPINAL Average Maximum Minimum

EC 0,163 0,169 0,134
ICS 0,233 0,246 0,211
S3 0,106 0,11 0,0893

GOC 105,39 119,56 43,56
BitScoreSum 63875,05 76669,5 267,5

Size 5241,82 5389 4481
ICS×EC 0,0379 0,0406 0,0283
S3Variant 0,194 0,204 0,155

2.3.2 Tests Based on Synthetic Data

A sample dataset from NAPAbench based on the crystal growth (CG) [118] model is also

tested as an example with synthetic data [119]. The reason that CG is chosen among other
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well known alternatives is that it tries to emulate network topology and characteristic age

distribution features of real protein interaction networks so that a meaningful alignment can

be achieved with respect to network evolution.

The chosen dataset from NAPAbench CG datasets is the Pairwise Family 2 dataset which

contains 3000 nodes for the synthetic organism A and 4000 nodes for the synthetic organism

B. The Functional Orthology definitions of NAPAbench were used in place of the Functional

Annotations in the experiments. The input alignments of SUMONA2 were generated with

SPINAL, HubAlign and NETAL in the same fashion with Supervision Strategy 4 except for

NETAL that uses a biological similarity coefficient (b) of 0.5 and a neighbor contribution

coefficient (c) of 0.5 for 11 different values of α from 0 to 1. The user-specified objectives

are EC, S3, BitScoreSum and GOC in the same order.

As a result, 33 inputs were generated 13 of which could surpass none of the user-specified

threshold values that are the average score of inputs for each optimization objective respec-

tively. Conversely, the remaining 20 input alignments were successful with respect to all the

user-specified objectives. Therefore, the classification step became simply a filtering process

for eliminating weaker inputs.

Both OptNetAlign and SUMONA2 were performed for 1000 cycles with niters=1500 hill

climb iterations in each cycle. The threshold conditions of the post hill climbing step were

determined by multiplying the original threshold values of EC and S3 by 1.4 and multiplying

the original threshold values of GOC and BitScoreSum by 1.6 for better performance. As a

result, SUMONA2 outperformed OptNetAlign in every user-specified objective as shown in

Table 2.10 with the respective t-test in Table 2.11. Besides, SUMONA2 reached the most

significant scores in ICS and S3 objectives. It may also be observed that there is not enough

diversity in the results of most objectives of SUMONA2. This fact is due to the lack of proper

classification and very similar performance of various input alignments in the previous phase.

2.3.3 Optimization Trends in Real Datasets

Fig. 2.2, 2.3, 2.4 and 2.5 show the improvement of several user-specified objectives as the

GA cycles proceed. A total of 1300 cycles with 1500 hill climb iterations are run using

SUMONA2 in order to analyze the trends in the user-specified EC, S3, BitScoreSum and

GOC objectives respectively. The dataset used is all the alignments generated by SPINAL,

HubAlign and NETAL exactly in the same way with Supervision Strategy 4. The trends in

all user-specified objectives are observed for intervals of 100 cycles periodically. All the data
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Table 2.10: SUMONA2 vs. 0ptNetAlign with Synthetic Data

SUMONA2 Average Maximum Minimum

EC 0,736 0,737 0,735
ICS 0,879 0,881 0,878
S3 0,668 0,67 0,667

GOC 2195,61 2197 2195
BitScoreSum 518833,93 521091 516494

Size 2640,69 2643 2639
ICS×EC 0,647 0,649 0,645
S3Variant 2,79 2,8 2,77

OptNetAlign Average Maximum Minimum

EC 0,298 0,317 0,279
ICS 0,446 0,475 0,423
S3 0,217 0,234 0,202

GOC 391,23 454 275
BitScoreSum 122594,59 137102 92132,9

Size 3000 3000 3000
ICS×EC 0,133 0,15 0,118
S3Variant 0,424 0,464 0,386

Table 2.11: T-Test for SUMONA2 vs. 0ptNetAlign with Synthetic Data

Objective Test Score
EC 8, 1× 10−168

ICS 6, 25× 10−147

S3 2, 25× 10−178

GOC 1, 06× 10−161

BitScoreSum 2, 72× 10−152

Size 8× 10−171

ICS×EC 3, 59× 10−186

S3Variant 2, 4× 10−304

is collected from one single experiment for performing consistent observations.

The optimization objectives EC and S3 are contradictory to BitScoreSum and GOC since
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Figure 2.2: Trend of EC Score vs. Cycles. A cycle is the execution of the cross-over, mutation and
local search steps of the GA for once in a population.
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Figure 2.3: Trend of S3 Score vs. Cycles. A cycle is the execution of the cross-over, mutation and
local search steps of the GA for once in a population.

37



2. SUMONA: A Supervised Method for Optimizing Network Alignment

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

1.3

1.4

1.5

1.6

1.7

1.8

·105

cycles

B
itS

co
re

Su
m

Figure 2.4: Trend of BitScoreSum Score vs. Cycles. A cycle is the execution of the cross-over,
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Figure 2.5: Trend of GOC Score vs. Cycles. A cycle is the execution of the cross-over, mutation
and local search steps of the GA for once in a population.
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the first two are topological and the latter are functional objectives. That’s why optimizing

these objectives becomes a relatively slow process compared to optimizing a consistent set

of objectives. Nevertheless, it is obviously seen that all objectives are improved in the long

run, apart from fluctuations in the objective score of each objective. Fig. 2.2 and Fig. 2.3

show that EC and S3 trends have similar curves with each other while it is seen from Fig. 2.4

and Fig. 2.5 that BitScoreSum and GOC have relatively less similar trends.

As a final remark, none of the trends of the user-specified optimization objectives indicate a

sign of pre-mature convergence in our observations. The approach that prevents the algorithm

to be trapped into a certain local optimum is initiating the algorithm with a diverse and

randomized set of data in order to cover the search space as much as possible. Besides,

our method encourages using the result sets of aligners other than SPINAL, HubAlign and

NETAL with various parameters for improving the diversification upon user preference.

2.3.4 Running Time Analysis of Real Datasets

SUMONA achieves better optimization results compared to OptNetAlign in 1000 cycles

as a standard which approximately means the same running period for both methods. In

other words, OptNetAlign would achieve similar optimization results in a longer running

period. Time and Space Complexity of SUMONA are almost similar to OptNetAlign, since

our modifications in the backbone of OptNetAlign do not include complicated inner loops

and/or extra memory consuming data structures and our additional computational terms has

negligible effect in terms of time and space complexity. Besides, best and average case

scenarios of SUMONA have an advantage in terms of time and memory due to supervised

data. Running time of our algorithm is analyzed with the time command used in most Linux

and Unix systems. Running time analysis include usage of user and system time resources

assuming that the Central Processing Unit (CPU) usage is 100%. The user time mainly

corresponds to the internal operations of an application while the system time is the time that

the application spends for system calls to the operating system.

Fig. 2.6 shows the time comparison of SUMONA1 and OptNetAlign with 0 and 3×500=1500

iterations of hill climbing where 500 is the coefficient used for conversion of iterations among

various local search algorithms in the original algorithm. The Cyclic SPINAL inputs of

Supervision Strategy 1 are used for the respective SUMONA1 tests. The optimized objectives

are GOC, S3 and BitScoreSum respectively.

The test results indicate that SUMONA1 is 36.09 CPU seconds behind OptNetAlign when
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Figure 2.6: Running Time Comparison of SUMONA1 and OptNetAlign (ONA). The objectives
of the experiments are GOC, S3 and BitScoreSum. The comparison was carried out twice with
different number of Hill Climbing Iterations (hc). The number of Hill Climbing Iterations (hc) are
multiplied by an embedded coefficient of 500.

there is no post hill climbing step at all. This small gap may be due to the insertion of

source alignments from SPINAL outputs before initiating the optimization. On the other

hand, SUMONA1 surpasses OptNetAlign by 971.2 CPU seconds when the test is performed

with 3×500=1500 iterations of post hill climbing step at each cycle. Since the cross-over

operations of SUMONA1 produce more successful results, it becomes easier to perform

successful optimization results in the following local search phase. Therefore, the successful

optimizations during the computationally expensive hill climbing step yield a significantly

better result in terms of time.

Fig. 2.7 shows the time comparison of SUMONA2 and OptNetAlign with 0 and 3×500=1500

iterations of hill climbing. The source alignments are all of the SPINAL, HubAlign and

NETAL alignments used in Supervision Strategy 4. The optimized objectives are EC, S3,

BitScoreSum and GOC respectively.

The test results indicate that OptNetAlign performs 2.26 CPU seconds better than SUMONA2

when there is no post hill climbing step at all. The reason for this fact is the balance between

functional and topological objectives in the source data of SUMONA2 and optimization

objectives of the test. On the other hand, SUMONA2 performs 639.68 CPU seconds better

than OptNetAlign with 3×500=1500 iterations of post hill climbing search. The difference is

very significant but it is slightly less than the difference of SUMONA1-hc=3 and ONA-hc=3

shown in Fig. 2.2. The decline in the difference is due to the fact that SUMONA2 focuses on
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Figure 2.7: Running Time Comparison of SUMONA2 and OptNetAlign (ONA). The objectives
of the experiments are EC, S3, BitScoreSum and GOC. The comparison was carried out twice with
different number of Hill Climbing Iterations (hc). The number of Hill Climbing Iterations (hc) are
multiplied by an embedded coefficient of 500.

less successful objectives in the hill climbing step.

2.4 Discussion of Results and Future Work

SUMONA has been supervised by a set of alignment inputs generated by HubAlign, SPINAL

and NETAL and then subsequently compared to its main competitor OptNetAlign with

respect to multiple objectives throughout this study. In this scope, we carried out various

multi-objective alignment tasks with both of the competitors and then evaluated the signif-

icance of the difference achieved by the superior aligner with a t-test for each objective.

Besides, we performed SUMONA experiments with a variety of supervision strategies that

were explained in Section 2.3 as well as a variety of alignment objectives, execution cycles

and input alignments. The implementation details and experiment parameters are further

explained in Appendix A.1. As a result, it was observed that SUMONA achieved superior re-

sults than totally random OptNetAlign especially in objectives that the respective supervision

inputs are strong. It was additionally observed that supervision with SUMONA positively

effected the time frame that significant results are achieved. Besides, one key finding was

that it is possible to achieve more significant results with a more diverse set of input align-
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ments. In addition, temporal trends of alignment results showed that the diversity of input

alignments has a positive effect on premature convergence since contradictory objectives

display continuous progress with diverse input alignments. Another key finding was the

positive effect of supervised hill climbing in terms of the rate and significance achieved

in the designated objectives. This finding majorly proves the necessity of employing local

search or individual heuristics along with a global meta-heuristics approach for this problem.

Finally, the experiments showed that the cyclic order of the supervising input alignments

had a statistically significant effect on the results of each objective which might hint the

importance of initialization, or in other words, the core set of mappings in alignment tasks.

One possible improvement of SUMONA method can be dynamically choosing one of the

random cross-over inputs of the next cycle according to the progress direction of each

member of the population. The next input can be some other generated alignment which is

more successful with respect to the objectives that the particular population member is not

good at. However, the drawback of this improvement might be that the input selection may

be in a continuous shift between two uniform sets of alignments that have opposite strengths.

Premature convergence due to focusing on a constant objective set should also be tackled in

such an improvement.

Other possible extensions to SUMONA are:

• Employing different supervision strategies in dedicated threads can provide alterna-

tive solutions for different data sets during parallelization. Unsuccessful dedicated

threads can be killed and successful ones can be prioritized in the meantime for better

performance.

• Development of a multi-agent approach can lead to more proactive and dynamic

decisions in a changing optimization environment. Possible productive alignments can

be exchanged between agents in such an environment.

• Semi-global alignment inputs can be generated for OptNetAlign so that the search

space is narrowed for randomizing and optimizing the remaining nodes.

• Setting LCCS as an optimization objective might be another improvement for OptNe-

tAlign. A dynamic calculation strategy can be proposed for this purpose.

• Cluster similarity and cluster alignment of functionally orthologous proteins can be

used as a new objective,
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• The biological relevance of the produced alignments can be interpreted by examining

how well the aligners align orthologous proteins [114].
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3 Parallel Exchange of Randomized SubGraphs for
Optimization of Network Alignment: PERSONA

The aim of Network Alignment in Protein-Protein Interaction Networks is discovering

functionally similar regions between compared organisms. One major compromise for

solving a network alignment problem is the trade-off among multiple similarity objectives

while applying an alignment strategy. An alignment may lose its biological relevance while

favoring certain objectives upon others due to the actual relevance of unfavored objectives.

One possible solution for solving this issue may be blending the stronger aspects of various

alignment strategies until achieving mature solutions. This chapter proposes a parallel

approach called PERSONA that allows aligners to share their partial solutions continuously

while they progress. All these aligners pursue their particular heuristics as part of a particle

swarm that searches for multi-objective solutions of the same alignment problem in a reactive

actor environment. The actors use the stronger portion of a solution as a subgraph that

they receive from leading or other actors and send their own stronger subgraphs back upon

evaluation of those partial solutions. Moreover, the individual heuristics of each actor takes

randomized parameter values at each cycle of parallel execution so that the problem search

space can thoroughly be investigated. The results achieved with PERSONA are remarkably

optimized and balanced for both topological and node similarity objectives.

3.1 Background

Network Alignment generates node mappings between networks of organisms in question

in order to compare them functionally. Alignment results can be used in various areas such

as predicting functions of unannotated proteins, revealing mechanisms of certain diseases

and reproducing a rooted phylogenetic tree based on the discovered evolutionarily conserved

pathways or protein complexes and detected functional orthologs across species [120].

Most Global Network Alignment algorithms rely upon the assumption that the functions of

smaller networks map one-to-one to the functions of bigger networks homologously unlike

most Local Network Alignment algorithms that focus on overlapping highly conserved

subnetworks by allowing many-to-many node mappings [121–123].

One of the most significant drawbacks of the existing one-to-one Global Network Alignment

algorithms is the lack of homogeneity across the mappings of an alignment in terms of
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quality. This problem arises since the main heuristic of an alignment algorithm is applicable

only for a certain proportion of mappings. This means it may be beneficial to alter the

alignment heuristic during the progression of an alignment process according to its current

performance and it is worth evaluating the contributions of every new set of mappings to an

alignment individually. Such an interactive approach can be achieved by means of a querying

mechanism capable of classifying the contributions of a particular set of mappings in terms

of various topological similarity and node similarity metrics as well as various alignment

heuristics that prioritize different metrics. The interactivity can further be extended with a

collaborative infrastructure that orchestrates a population of aligners and enables exchanging

significant mappings among population members that are strong in different metrics.

This chapter proposes a hybrid approach that combines several fundamental alignment

heuristics and meta-heuristic search tools to design a custom multi-objective optimization

work-flow and a population of custom designed aligners that interact with each other col-

laboratively for solving the Global Network Alignment problem against multiple objectives.

The most significant traits of PERSONA are adaptation to new data sets, adjustment among

objectives with high precision and providing mature alignments that are balanced with

respect to all objectives. This chapter is structured as follows: Firstly, globally recognized

performance objectives of the Global Network Alignment problem are introduced. Later on,

the multi-objective optimization approach of PERSONA is introduced by explaining the role

of employing various heuristics in the process, the execution steps of the algorithm and the

architecture of the framework. Following the methodology, performances of state-of-the-art

multi-objective aligners are compared with respect to various data sets. Finally, the results

are discussed and the achieved highlights were summarized as a conclusion.

3.2 Methods

The PERSONA methodology is designed to succeed in multiple objectives that make most

sense for a global Protein-Protein Interaction Network comparison. However, it is not

currently possible to make a prioritization among these objectives or identify robust aggre-

gate objectives out of the existing ones. For this reason, we represent the Global Network

Alignment problem as a multi-objective optimization problem in order to achieve optimal

performance in each of these objectives. In this context, we propose the collaborative

methodology that depends on exchanging essential subgraph information throughout this

chapter. Besides, we also introduce a heuristics suite enabling to design a custom singular
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alignment to generate multiple aligners with different characteristics. Subsequently, we

explain the graph specific persistency infrastructure that stores the essential network charac-

teristics and alignments in progression as well as the concurrent computation architecture

that handles the collaboration tasks among the entities of the whole system for implementing

the methodology.

3.2.1 Performance Objectives

One major compromise for solving a network alignment problem is the trade-off among mul-

tiple alignment objectives that evaluate alignment performance. Alignment performance can

be computed with respect to topological similarity and node similarity metrics. Topological

similarity objectives aim to address the functional similarities of the organisms in terms of

their network structure and interaction patterns and evaluates node pairs that contribute to

similar interaction patterns from both of the organisms to be aligned. On the other hand,

node similarity objectives aim to address the functional similarity of node pairs from both

of the compared organisms individually without considering their network structures. In

this study, alignment quality is evaluated with several well known topological and node

similarity objectives used in other Global Network Alignment studies [90, 92, 99, 116, 124]

as summarized below:

EC is an early topological similarity objective computed as the ratio of the edges in the

smaller network mapped to the edges in the bigger network to all the edges in the smaller

network. Mathematically G1 = (V1, E1) and G2 = (V2, E2) represents two graphs or

networks while g : V1 → V2 represents the alignment between two networks. Therefore, the

mathematical representation of EC becomes [83]

|{(u, v) ∈ E1 : (g(u), g(v)) ∈ E2}|
|E1|

× 100 (3.1)

S3 is another topological similarity objective derived from EC that penalizes unaligned

edges in both the larger and the smaller network. In S3, G[V] is represented as an induced

subnetwork of G with the node set V, while E(G) is represented as the edge set of G. If we

denote f (E1) = {(g(u), g(v)) ∈ E2 : (u, v) ∈ E1} and f (V1) = {g(v) ∈ V2 : v ∈ V1},
then S3 becomes [100]

| f (E1)|
|E1|+ |E(G2[ f (V1)])| − | f (E1)|

(3.2)
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LCCS is the number of aligned node pairs in the largest connected subgraphs of an alignment

that exist in both networks with an exact copy. The necessity for this measure is due

to the significance of aligning large and contiguous subgraphs rather than a number of

small disconnected network regions that would not give an equivalent insight into common

topology of two networks [6]. For computing the aligned LCCS, first LCCS is calculated

for the aligned nodes of both networks seperately and then their intersection is computed by

considering the member node pairs. The ratio of these node pairs to the size of the whole

alignment gives the corresponding normalized score for this objective.

GOC is a node similarity objective in which every aligned protein pair contributes to the

overall GOC score by adding it the ratio of the size of the intersection of their common GO

terms to the size of the union of their GO terms. The overall GOC score is computed by

summing up these ratios coming from all aligned protein pairs. The Jaccard-Index based

formula below represents the contribution of a single aligned node pair to the overall GOC

score [89]:

GOC(u, v) =
GO(u) ∩ GO(v)
GO(u) ∪ GO(v)

(3.3)

Gene Ontology Enrichment (GOE) is the percentage or number of aligned protein pairs

that share at least one GO term annotation. This metric is a node similarity objective that is

more adapted to the Global Network Alignment problem [125].

Resnik Similarity is one of the most popular semantic similarity measures [126]. The

method computes the similarity between two terms as the Information Content of the Most

Informative Common Ancestor in a particular Annotation Corpus [127]. The Information

Content of a concept can be considered as its likelihood particularly in the Gene Ontology

Annotation Database based on the annotation frequency [127, 128]. Resnik method is a

pairwise term semantic similarity measure that is not directly applicable to genes and proteins

and it can be adapted to proteins with a mixing strategy based on the average or maximum

of all term pairwise similarities as well as the average of similarity between best matching

terms [126].

BS is a node similarity measure calculated by summing up the BLAST bitscores of the

aligned protein pairs [92, 114]. The biological sequence similarity for all the possible

node pairs from both of the aligned organisms can be measured with BLASTP [129, 130]

application using the corresponding FASTA texts of the proteins with user defined values for

parameters such as word-size and e-value.
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The exact biological relevance of all these objectives are yet to be discovered. For this reason,

they can not precisely be prioritized among each other and it becomes mandatory to review

all objective scores as a whole to get a better meaning. Nevertheless, it is possible to establish

a particular aggregate objective function that evaluates multiple objectives intuitively in order

to yield decisive results. We used such intuitive objective functions in Section 3.3.4 for

efficient evaluation of our experiments.

3.2.2 Collaborative Method

Global Network Alignment is inherently a multi-objective optimization problem since the

prioritization of the objectives among each other is a grey area despite certain definitions

that highlight the prior significance of node similarity objectives over topological ones due

to the verifiable evolutionary conservation information [110]. Since there is no obvious

prioritization among objectives, it makes sense to preserve a set or population of alignments

that are stronger in different objectives and able to learn from each other. PERSONA is

inspired by the concept of Particle Swarm Optimization [131] as a meta-heuristics approach

that intends collaboration among a population of aligners to optimize multiple objectives.

The original definition of Particle Swarm Optimization problem needs to be revised by

concepts of multi-objective optimization as well as domain-specific properties for defining

Global Network Alignment as a multi-objective problem. The most essential multi-objective

optimization definition required for this revision is that a sample solution of a problem is

considered pareto optimal [132] or non-dominated if improving the score of one of the

objectives would require worsening other objective scores in the current solution space.

Additionally, the concept of pareto dominance is also important for comparing two solutions.

According to this definition, solution x pareto dominates another solution y, if it is strictly

better than y with respect to at least one objective and is at least equivalent to y with respect to

the remaining objectives [92]. Based on these definitions, a possible domain-specific revision

is defining multiple swarm leaders out of the non-dominated solutions to map the fair number

of problem objectives. Yet, it is possible that excessive number of non-dominated solutions

exist and some of them are repetitive since they reside within the same neighborhood or in

close distance. As a result, a leader selection methodology becomes an essential part of the

process [133]. The selected leaders among the non-dominated solutions heavily effect the

convergence rate and diversity of solutions. On the other hand, some algorithms restrict the

number of stored non-dominated solutions by filtering a relatively useless set of them in
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order to improve performance. This is not an easy task since an exact quantification is not

possible among multiple objectives and it may lead to a compromise in the diversity of the

population [134].

There is a need to establish a robust trade-off mechanism in Particle Swarm Optimization in

order to achieve a balanced pareto optimality among objectives while preserving the diversity

in the population for preventing premature convergence. PERSONA uses a straightforward

strategy of assigning each objective a dynamic leader with maximum objective performance

to limit the number of global leaders in the swarm. Furthermore, PERSONA stores all the

historical leader solutions in an archive in order to be capable of recalling their distinct

characteristics for diversity. Additionally, PERSONA performs a parallel execution where

each aligner of its population is scheduled to periodically execute its individual heuristics

within its particular alignment strategy while the collaboration tasks are also scheduled to

interactively perform amongst all aligners. The aligner population is diversified by focusing

each member to primarily different objectives so that distinct regions of the search space

can be scanned by the population. The meta-heuristic search tools described below are the

flexible building blocks of the collaborative methodology:

Broadcasting and Following Leading Aligners of Each Objective: The global best aligner

of each objective broadcasts its corresponding partial solution as a subgraph to the remaining

follower aligners periodically (see Appendix B.2).

Exchanging Partial SubGraphs with respect to Objective Score comparison: Every

aligner sends their scores in each objective to all other aligners for pairwise multi-objective

comparison and check whether the receiver or the sender pareto dominates the other by

being superior in all the objective scores. If this is the case, then the pareto dominated party

receives the whole alignment of the other one as a subgraph. Otherwise, the original sender

sends one of its significant subgraphs by random objective selection (see Appendix B.1).

Removing Low Scoring Mappings for Unprogressive Objective Scores: Low scoring

mappings are removed by random objective selection when their respective alignment does

not improve for a long period. This operation is useful for avoiding local maximizations.

Random Search: A number of random mappings are occasionally added to each alignment

so that divergent solutions can be searched in the search space.

Recalling Historically Significant Partial Solutions: A random instance from The Global

Best Scores History is broadcasted periodically to serve as the social memory or in other

words experience of the aligner population.
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Periodically Calling Various Heuristics with Random Parameters and Certain Prob-
abilities: Every aligner of the population periodically performs its particular alignment

approach based on certain heuristics with random parameter values in certain boundaries

and probabilities of occurrence as part of its individual behavior. Further explanation can be

found in Section 3.2.3 about possible heuristics that each aligner may perform individually.

The crucial collaboration tasks that these tools perform are based on extracting and exchang-

ing the most significant subgraphs as a solution subset for each of the above mentioned

objectives. The exchanged subgraph entities are extracted via special queries for each ob-

jective. These queries are explained in Appendix B.3 in detail. Apart from that, actors that

may be defined as objects that encapsulate a state or behavior [135] are used as individual

aligners in PERSONA due to their capability of exchanging messages with others and storing

individual state information. In this context, a Tail-Chopping algorithm based scheduling

approach [135] is used for choosing the next available aligner while performing interactive

tasks such as exchanging results between aligners or broadcasting leading alignments that

are shown in Algorithm 3.1 and 3.2 :

3.2.3 Aligner Heuristics Suite

PERSONA proposes various heuristics that can compose the characteristic behaviors of an

individual aligner. Each aligner may have multiple heuristics as part of their behavior and

each heuristic may have a user defined probability of occurrence at each execution cycle.

These heuristics have been implemented with the Cypher Query Language [136] of the

Neo4J Graph Database [137] infrastructure in order to make the search operations based

on explicit reasoning. The Alignment Heuristics Suite developed as part of the study is

described in three main groups below and it is further explained in Appendix B.4:

Seed and Extend Approaches: In this group of heuristics, the significant seeds are identified

with respect to topological centrality scores of seeding pairs in addition to their node similarity

thresholds. The alignment is intended to propagate to neighboring edges after identifying

the central node pairs with a chosen centrality approach from this group. The topological

centrality approaches present in this group are described by several studies [138–141] as

follows:

• Page Rank: is the iteratively accumulated transitive influence or connectivity of

each node distributed over its neighbors. The influence is computed by counting the

frequency of hitting each node during a random traversal.
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Algorithm 3.1 Send and Receive Policy for Individual Comparison and Exchange.
**SG=SubGraph, LOBO= List of Better Objectives, RSO = Randomly Selected Objective

(a) Send Policy
1: procedure SEND(router)
2: for all a ∈ aligners do
3: receiver ← scheduleNextReceiver(router))
4: sendObjectiveScores(a, receiver, SG(message))
5: end for
6: end procedure

(b) Receive Policy
7: procedure ONRECEIVE(message)
8: senderScores← receiveScores(message)
9: if ParetoDominate(senderScores, receiverScores) then

10: addAllPossibleMappings(sender, receiver)
11: else if ParetoDominate(receiverScores, senderScores) then
12: sendAllPossibleMappings(SG(receiver), sender)
13: else
14: LOBO← listBetterObjectives(sender, receiver)
15: RSO← randomlySelectOneObjective(LOBO)
16: sendBackSubGraph(SG(RSO), sender)
17: end if
18:end procedure

Algorithm 3.2 Send and Receive Policy for BroadCast and Following Leading Aligners

(a) Send Policy for Broadcast
1: procedure BROADCAST

2: for all o ∈ objectives do
3: alignerID ← f indAlignerWithBestScores(o)
4: key← markSubGraph(o, alignerID)
5: broadcastBestAlignersSubGraph(key, noSender)
6: end for
7: end procedure

(b) Receive Policy for Following Leading Aligners
8: procedure ONRECEIVE(message)
9: key← receiveSubGraphMark(message)

10: addSubGraphToAlignment(key)
11: end procedure
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• Betweenness Centrality: is the frequency that a node acts as an intermediary node

between other nodes on a shortest path. This metric indicates the global importance of

a node in terms of providing access and connectivity to other nodes.

• Closeness Centrality: is the average distance of a node to all other nodes in a network

based on the shortest path.

• Harmonic Centrality: is a variant of closeness centrality that is based on the inverse of

the distances of all other nodes rather than their distances.

• Connectivity Degrees: is the number of local duples, triples or quadruples that a node

is a part of.

Cluster Mapping Approach: The assumption behind this approach is that the reciprocal

clusters of the compared organisms have similar interaction patterns that might indicate

common functionalities as proposed by previous studies [79]. Therefore aligning interaction

clusters having significant node similarity would also yield topologically strong mappings.

The interaction clusters are identified either by Louvain Modularity or Label Propagation

algorithms [138] as part of each heuristic. Focusing on mappings within clusters also

contribute to improve the LCCS objective performances of the alignments.

Prioritization of node pairs with significant node similarity: The heuristics designed by

this approach are simply based on focusing on node pairs with high BS, GOC and GOE but

starting with edges or favoring edges wherever possible.

It is technically possible for a domain expert to generate a complete and ideal alignment

of an organism pair by using a combination of the above mentioned heuristics with proper

parameter values intuitively. Besides, a domain expert may easily improve an existing aligner

by simply removing the ineffective mappings and adding effective mappings with these

heuristics. Alternatively, the interactivity required for collaboration has been achieved with

actors that exchange partial solutions in order to make the process more generic and expertise

independent.

3.2.4 Alignment Process

The multi-objective optimization process of PERSONA is constructed upon a scheduling

mechanism that calls the above mentioned meta-heuristic tools in a particular workflow. The

user is provided some flexibility to build a custom workflow with a different order of steps
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and different execution periods of the meta-heuristic tools. The exact workflow designed and

tested as part of this study is presented in Fig. 3.1:

Additionally, the workflow of the whole alignment process can be summarized as four main

steps that are explained below in further detail:

1. Definition: Off-line jobs such as the cluster, connectivity and centrality computations

are performed initially due to their computationally demanding nature. Subsequently,

certain network characteristics are discovered and stored for the alignment strategy

to be network independent. These characteristics include summary statistics and

percentile based meta-data of centrality scores, biological sequence similarities and

shared gene ontology terms between node pairs. Next, the number of aligners and the

periodical schedule of the specific alignment jobs of aligners and exchange jobs are set

for execution. In this scope, certain heuristics are scheduled as part of each alignment

behavior while global and pairwise exchange policies are also defined and scheduled.

2. Initialization: Later on, some characteristic heuristics are used to initialize each aligner

with proper similarity thresholds in order to propagate the alignment up to a mature

state. Any available heuristic can be used for this purpose but the seed-and-extend

heuristics are the most powerful candidates for the maturation intended in this step

since they can identify topologically central mappings that also have the highest

possible node similarity values initially. These heuristics can further be repeated

by gradually lowering their node similarity thresholds. Alternatively, incomplete

external alignments may be used to initialize each aligner. As a result, aligners achieve

their initial partial solutions before starting the consecutive interactive phase of the

application.

3. Collaboration: This step is the collaborative step where all aligners in the system act

with a constant frequency of self improvement and a constant frequency of exchange

that is defined and scheduled in the Definition step. Each aligner uses its own set of

heuristics with randomized occurrence probabilities and parameter values as part of its

behavior at every cycle. The parameter values are randomly assigned to each heuristic

regarding their value interval during this process. Moreover, most significant mappings

of leading aligners of each objective are periodically sent to other aligners and are

also marked for future use during an alignment process. Finally, mappings with no

contribution are removed as well as the ones that violate the one-to-one mapping

restriction in each cycle. Meanwhile, a counter counts the number of cycles that an
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Figure 3.1: Workflow of a Particle from the Swarm. The main steps are Definition, Initialization,
Collaboration and Post-Processing. The schedule of Collaboration and Post-Processing steps in the
workflow depend on their initially designated execution period. In this sense, these steps are executed
until a stopping criterion is satisfied. The stopping criterion may either be a repetitive failure of
alignment progress or a specific number of scheduled cycles depending on the design of the respective
experiment.
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aligner has been unprogressive for and when the counter of an aligner reaches the

threshold value, then the system randomly removes a limited number of minimally

contributing mappings.

4. Post-Processing: This step is used for fine-tuning the alignments achieved through

the PERSONA step. The standard procedure of this step is completing the alignment

with random search for finding random mappings with positive effect. The standard

procedure is applied by adding a limited number of random mappings and removing

the ones with no positive effect in a loop until the alignment is complete. The pareto

dominated alignments are filtered as a final task.

Generally, all optimization techniques require adaptations for preventing premature conver-

gence and improving access to different regions of the search space. In PERSONA, every

aligner specializes in particular set of heuristics and improves its alignment mostly with

them. On the other hand, aligners can not reach certain regions of the search space if they

are restricted with their own heuristics and that’s why they need to collaborate to optimize

their solutions. The collaboration prevents their convergence to a premature solution.

3.2.5 Architectural Design

PERSONA is implemented with the Typed Actor paradigm of Akka Concurrency Framework

[135] utilizing tools such as Future Messages for concurrent completion of tasks, Typed

Actors for message receiving patterns, Routers and Schedulers for determining the subsequent

message recipients as well as a Neo4J graph database infrastructure for persistence of aligner

states and exchanged subgraphs. Fig. 3.2 shows the flow of information among all essential

entities of PERSONA methodology (see Appendix B.5 for more information about the whole

design).

3.3 Results

Since PERSONA aims to achieve a balanced blend of results, we chose its competitors among

aligners that possess a potential to achieve balance in multiple objectives. We performed

the experiments with four distinctly extracted real world data sets for detailed interpretation.

This chapter explains the process of these tasks in detail.
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Figure 3.2: Cooperative Architecture of the Swarm. This architecture demonstrates the information
exchange infrastructure as a basis of cooperation among the particles in the swarm. Each particle in
the swarm is implemented as a Typed Actor with standard send and receive policies for group and
individual behavior formalized in Algorithm 3.1 and 3.2. The architecture mainly relies on a Graph
Based Persistence Model that stores individual aligner states and exchanged subgraphs along with a
Concurrent Computation Framework that schedules execution order of sender and receiver aligners
by means of a Scheduler and Router. The scheduler and router identifies and assigns upcoming
senders and receivers based on their identity that is used in retrieving their latest state and significant
subgraphs. Best Scores in each objective is updated after each mapping task and notified to the whole
swarm.
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3.3.1 Implementation Characteristics of PERSONA Population

We have implemented PERSONA with a special experimental setup that consists of a popula-

tion of maximum ten customly designed aligners with various different and complementary

characteristics. We designed each member of the population by using a combination of

items from the previously mentioned Aligner Heuristics Suite as part of its behavior. Thus,

each member may be regarded as an individual alignment algorithm implemented for this

study. The distinguishing feature for each aligner was its primary heuristic. Some aligners

relied mainly on a unique selection of a centrality detection algorithm while the remaining

ones either had a main behavior of node pair prioritization based on node similarity or a

cluster mapping approach based on a unique clustering technique from our Aligner Heuristics

Suite. We intended to create diversity in the population by dedicating a single clustering or

centrality detection heuristic to a particular aligner of the population. The respective aligner

names in the population based on their primary heuristic is listed below:

• Page Rank Seeding Aligner,

• Betweenness Centrality Seeding Aligner,

• Closeness Centrality Seeding Aligner,

• Harmonic Centrality Seeding Aligner,

• Connectivity Degrees Seeding Aligner,

• Cluster Mapping Aligner with Label Propagation,

• Cluster Mapping Aligner with Louvain Modularity,

• Sequence Similarity Prioritizing Aligner,

• Sequence Similarity Seeding Aligner,

• Hybrid Aligner of Centrality and Sequence Similarity

All the above mentioned aligners in our experiments performed their primary heuristics

with high probabilities as part of their main behavior in each interaction cycle. Besides,

all aligners performed secondary or complementary heuristics from the heuristics suite in

lower probabilities than their primary heuristics. The main reason for executing heuristics

with non-standard probabilities was to increase randomness and flexibility to search for
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optimized solutions. Additionally, we also randomized the output of each heuristic by

random value assignment for the parameters that it requires. The secondary heuristic that we

used most frequently was "Heuristic for Forming Edge Pair Mappings from Existing Node

Pair Mappings" since it enables to propagate with edges of particular node similarity from

seed mappings. Besides, we also used "Heuristic for Removing Inductive Mappings" and

"Heuristic for Removing Low Scoring Mappings" frequently for especially opening up search

space productively for every aligner. Since each aligner was composed of a combination of

heuristics, its probability of achieving a balance among the favored objectives is improved

remarkably. Finally, we employed the Post-Processing step of PERSONA with an individual

alignment approach that starts with Biological Similarity Seeding. The propagation after

seeding was maintained by forming edge pairs with an incremental constraint relaxation

strategy in each cycle.

3.3.2 Competitors & Simulation Environment

NETAL [116], SPINAL [89], PISwap [91] and HubAlign [90] may be defined as a particular

class of competitors for PERSONA since they are all deterministic aligners that evaluate

topological and biological inputs. NETAL [116] uses a greedy method by evaluating an

alignment scoring matrix. HubAlign [90] is based on preliminarily evaluating and scoring

the topological and biological importance of proteins to identify hub nodes to align and

then assigning alignment scores to protein pairs by considering sequence similarity and the

importance score. PISwap [91] is a method that iteratively refines the initial alignments of

custom heuristics with topological information while compromising sequence information

achieved by the well-known Hungarian algorithm [142]. On the other hand, SPINAL [89]

performs a fine-grained conflict resolution and following a coarse-grained construction of

estimate scores. We executed these aligners iteratively in their most powerful range of each

application parameter for producing significant sets of results.

SANA [99], PROPER [143], MAGNA++ [144] and PINALOG [145] form another class of

competitors for PERSONA since they employ non-deterministic optimization by evaluating

topological and biological inputs in order to generate a single alignment. SANA [99] follows

a simulated annealing based optimization approach. PROPER [143] generates a seed of high

sequence similarity protein pairs based on percolation matching and then progresses only

with structural mapping. MAGNA++ [144] is an improvement version over the original

MAGNA [100] method that combines existing ‘parent’ alignments into superior ‘children’
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alignments and then evolves this process over multiple generations. It enables maximization

of a node conservation measure simultaneously with the chosen edge conservation measure

and provides automatical utilization of all available resources by means of parallelization.

Finally, PINALOG [145] method combines information from protein sequence, function and

network topology information and it consists of 3 fundamental steps starting with preliminary

detection of communities with CFinder [146], followed by community mapping with respect

to similarities and finalized with extension mapping of proteins in the neighbourhood of the

core protein pairs.

We finally evaluated other unique alignment algorithms such as GEDEVO [147] and Opt-

NetAlign [92] for the purpose of comparing a diverse set of approaches. GEDEVO [147]

is a graph comparison tool that generate a single alignment based on the so-called Graph

Edit Distance (GED) model where one graph is to be transferred into another one with a

minimal number of edge insertions and deletions. The optimization methodology of this

tool relies mainly on topological information but it can also be extended to utilize biological

similarity. Conversely, OptNetAlign [92] performs multi-objective optimization with respect

to functional, biological and topological inputs based on a genetic algorithm that employs

Uniform Partially Matched Crossover and hill climbing on a population of pareto optimal

alignment results. PERSONA generates a population of alignments similar to OptNetAlign

[92] but it rather performs the pareto optimality check as a final step. Nevertheless, it

manages to generate alignments that are stronger in various objectives due to the different

nature of aligner behaviors in its population.

We principally chose most of these competitors due to their two-sided nature that com-

promise between node similarity and topological similarity measures. Another reason for

choosing them was their applicability due to their existing documentation and source codes.

We intended to compare our method with aligners such as IBNAL [148] and SSAlign

[149] that assume annotational, biological and topological inputs simultaneously along

with OptNetAlign [92] and PINALOG [145] due to their capability of mapping experi-

mentally verified annotations but their source code was unavailable. We executed all the

competitors of PERSONA with the recommended modes and parameter values as well

as other performance related instructions of their authors. More information is provided

in Appendix B.6 about the usage parameters of the competitors. The source code, appli-

cation and execution instructions of PERSONA is also available on the github repository

https://github.com/giraygi/ppi-alignment.
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3.3.3 Datasets

We evaluated competitor algorithms along with PERSONA by comparing C. Elegans (CE),

S. Cerevisiae (SC), M. Musculus (MM), H. Sapiens (HS) with D. Melanogaster (DM) based

on their protein, network, pairwise biological sequence similarity and annotation data. We

initially used the earliest benchmark data set Isobase [117] since it was tested by several

algorithms in the literature. Additionally, some distinctive data sets extracted by recent

aligners such as PROPER [143] and SANA [99] were also used in evaluation. The network

data of PROPER [143] was retrieved from Intact 2016 [30] and integrated with sequence

similarities from UniProt [150] as well as experimentally verified terms denoted by “EXP”,

“IDA”, “IMP”, “IGI”, “IEP” and “IPI” codes in Gene Ontology Annotation (UniProt-GOA)

[151]. The data set of SANA was retrieved from BioGRID 2017 [25] database with a

complete list of protein-protein interactions, experimentally verified GO terms and sequence

similarities. Finally, we evaluated the competing alignment algorithms with the 12.07.2021

dated release of Mentha [152] data set that integrates experimentally curated PPI data of

several molecular interaction databases by providing automated access with the Proteomics

Standard Initiative Common Query Interface (PSICQUIC) [153, 154] in compliance with

International Molecular Exchange (IMEx) [155] policies. We further integrated the sequence

similarities computed by BLASTP from FASTA texts in UniProt and annotations from

UniProt-GOA into Mentha networks in a similar fashion with the Intact data set.

As a notable remark, PROPER [143] has used Intact 2016 data set with a considerably

high threshold for BS that ignores lower similarity values and complicating its competi-

tors in achieving high BS scores. For this reason, the respective data set will be referred

as "Trimmed Intact 2016" in the following text. On the other hand, we generated the

respective Annotation Corpus of each data set and used the FastSemSim python library

(https://pypi.python.org/pypi/fastsemsim) for computing Resnik Similarity of GO terms of

protein pairs with the same maximum best match mixing strategy chosen by SANA [99].

Additionally, we removed the repeating gene ontology terms in BioGRID 2017 data set to

extract another gene ontology instance for using the data set conveniently with the more

general objective GOC. We tested PERSONA with the exact form of these data sets used by

the aforementioned aligners for keeping the comparison conditions uninfluenced. Table 3.1

represents the number of nodes, edges and sequence similarity links along with the average

number of common annotations among possible node pairs for each organism pair evaluated

in Section 3.3.4
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Table 3.1: Network Sizes of Data Sets. The first compared organism in the first column is denoted
as "Left", whereas the second compared organism is denoted as "Right" in the other columns. The
"Similarity Links" column denotes the number of available BS links throughout all possible node
pairs between the first and second compared organisms. "Average Common Annotations" column
denotes the average number of common annotations throughout all possible node pairs between the
first and second compared organisms.

Nodes
Left

Nodes
Right

Edges
Left

Edges
Right

Similarity
Links

Average
Common

Annotations

DM-CE Intact 8532 4950 26289 11550 5669 9.07
DM-SC BioGRID 7937 5831 34753 77149 132007 1.64
HS-DM Isobase 9633 7518 36386 25830 97172 1.26

DM-MM Mentha 10827 9674 45706 31577 178415 5.93

Most of the data sets used by the competitors were not compatible due to the different

input varieties they required. For this reason, we carried out complex transformation pro-

cedures for being able to test all aligners with data sets mentioned in this study along with

additional ones for future experiments. We stored resulting data sets in a github repository

https://github.com/giraygi/ppi-alignment-data with some of the transformation procedures

in https://github.com/giraygi/ppi-alignment-converters/. We tested the consequent data sets

with all previously listed aligners.

3.3.4 Results

The alignments generated with the prominent multi-objective aligners are mostly not able

to pareto dominate each other since they are not completely superior than one another in

all desired objectives. Therefore, it becomes necessary to compare aligners based on an

aggregate score that is a projection of all the desired objectives. For this reason, it makes

sense to group resembling objectives and to make an assumption about the significance

of each objective and each group of objectives. As part of a meaningful classification of

objectives, the edge similarity based topological measures can be grouped with each other

while the functional measures based on shared annotations can be proposed as another group.

We can then include the undoubtedly meaningful primitive measure of edge similarity as

well as the more developed S3 that is able to penalize the dense-to-sparse mappings into the

edge similarity based topological measures group. On the other hand, it is also meaningful to

62

https://github.com/giraygi/ppi-alignment-data
https://github.com/giraygi/ppi-alignment-converters/


3. Parallel Exchange of Randomized SubGraphs for Optimization of Network Alignment: PERSONA

include GOC and GOE into the functional measures based on shared annotations group since

they interpret the functional coverage by directly using the same annotational data. Thus, it

becomes easier to assign weights of importance to groups rather than individual objectives.

Consequently, we can consider five groups of objectives being Edge Similarity (EC and S3),

Global Topological Coverage (LCCS), Annotational Coverage (GOC and GOE), BS and Se-

mantic Similarity (Resnik). By assigning a coefficient of 1 to each group and simply dividing

the coefficients within the groups to group sizes, EC, S3, GOC and GOE get coefficients of

0.5 whereas LCCS, Resnik and BS get coefficients of 1. Therefore, it is possible to conclude

a simplistic multi-criteria decision making model for either a Weighted Sum Model (WSM)

or a Weighted Product Model (WPM) [156] as an abstract aggregated objective function in

order to be able to choose between different pareto optimal solutions without giving priority

to any objective group or individual objective other than their designated coefficient. The

WSM approach would also require the results to be comparable so that they can be used as

part of the same equation. We normalized all objectives defined in Section 3.2.1 with Total

Sum Scaling and Z-Score Normalization techniques in order to obtain comparable results

for this purpose. We employed the formulas (3.4) and (3.5) for interpreting the alignment

results of all competitor algorithms.

WSM =
EC
2

+
S3

2
+ LCCS +

GOC
2

+
GOE

2
+ BS + Resnik (3.4)

WPM =
√

EC× S3 × GOC× GOE× LCCS× BS× Resnik (3.5)

Subsequently, the formula (3.6) represents the relative performance of Algorithm K to

Algorithm L since all the objectives are benefit criteria and the higher values of them

represent better performance accordingly. The normalized performance of the Algorithm K

on the jth objective is represented as aKj in the formula. Besides, W is the vector of the same

objective coefficients used in the formulas (3.4) and (3.5).

P(AK/AL) =
n

∏
j=1

(aKj /aLj)
Wj , f orK, L,= 1, 2, 3, ..m (3.6)

Average performances of algorithms in the full set of objectives are represented in Fig. 3.3,

3.4, 3.5 and 3.6. Z-Score Normalized Results of each column sum up to 0 and Total

Sum Scaled Results of each column sum up to 1 for each objective in these figures. For

aggregating average objective performances into a single alignment score, both WSM and
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Table 3.2: Aggregate Scores on DM-CE Trimmed Intact 2016. The score columns are sorted in a
decreasing order for WSM and in an increasing order for WPM from left to right.

Competitor WSMTotalSum WSMZ−Score WPMTotalSum

PERSONA 0.57 3.66 1.00
PROPER 0.55 3.00 1.26

OptNetAlign 0.53 1.64 2.30
PINALOG 0.52 2.67 1.90
HubAlign 0.44 0.97 4.35
SPINAL1 0.44 0.67 4.98
PISwap 0.42 -0.58 70.18
SANA 0.38 -0.97 17.88

SPINAL2 0.37 -0.40 10.19
GEDEVO 0.28 -2.61 11,122.49

MAGNA++ 0.26 -4.32 56.67
NETAL 0.24 -3.72 71,859.42

WPM were applied for Total Sum Scaled data whereas only WSM was applied for Z-Score

Normalized data since it includes negative values. Higher aligner scores represent higher

performance in both WSMZ−Score and WSMTotalSum columns of Tables 3.2, 3.3, 3.4 and

3.5. On the contrary, higher scores represent the superiority of PERSONA over the compared

aligner in the column WPMTotalSum(PERSONA)/(Other) computed with the relative

performance formulation above.

We carried out all experiments with an Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz

processor and 16 GB RAM on a 64 bit Linux platform. One exception was PINALOG [145]

since we alternatively carried out its execution with the supercomputer at Freie Universität

Berlin (FU Berlin) called CURTA [157] after it endangered the safety of the personal

computer due to an execution period of almost one day and severe heating problems without

termination. The CPU time required by each algorithm on DM-CE Trimmed Intact 2016

Data Set was shown in Table 3.6. We terminated time consuming algorithms after 3 hours of

application except PINALOG [145] that did not present any intermediary result after 3 hours

of execution. We distributed the time consumption proportionally to the number of produced

alignments where applicable.

64



3. Parallel Exchange of Randomized SubGraphs for Optimization of Network Alignment: PERSONA

Figure 3.3: Objective Scores on DM-CE Intact 2016 Data Set. Each row includes an array of
the object specific scores of a particular alignment algorithm, whereas each column corresponds
to a particular objective. The heatmap scales of Total Sum Scaled Results (on top) and Z-Score
Normalized Results (on bottom) are displayed on the right hand side.
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Figure 3.4: Objective Scores on DM-SC BioGRID 2017 Data Set. Each row includes an array
of the object specific scores of a particular alignment algorithm, whereas each column corresponds
to a particular objective. The heatmap scales of Total Sum Scaled Results (on top) and Z-Score
Normalized Results (on bottom) are displayed on the right hand side.
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Figure 3.5: Objective Scores on HS-DM Isobase Data Set. Each row includes an array of the object
specific scores of a particular alignment algorithm, whereas each column corresponds to a particular
objective. The heatmap scales of Total Sum Scaled Results (on top) and Z-Score Normalized Results
(on bottom) are displayed on the right hand side.
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Figure 3.6: Objective Scores on DM-MM Mentha 2021 Data Set. Each row includes an array
of the object specific scores of a particular alignment algorithm, whereas each column corresponds
to a particular objective. The heatmap scales of Total Sum Scaled Results (on top) and Z-Score
Normalized Results (on bottom) are displayed on the right hand side.
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Table 3.3: Aggregate Scores on DM-SC BioGRID 2017. The score columns are sorted in a
decreasing order for WSM and in an increasing order for WPM from left to right.

Competitor WSMTotalSum WSMZ−Score WPMTotalSum

PISwap 0.59 3.43 1.60
PERSONA 0.55 3.34 1.00
PINALOG 0.54 3.11 1.13
PROPER 0.50 2.34 1.55

OptNetAlign 0.50 0.89 1.51
SPINAL1 0.46 -0.13 4.39
HubAlign 0.39 0.33 8.60

SANA 0.39 -1.36 1,044.58
MAGNA++ 0.31 -3.75 30.57
SPINAL2 0.31 -2.51 21.11
GEDEVO 0.24 -3.07 10,733.68
NETAL 0.22 -2.62 8,165.79

Table 3.4: Aggregate Scores on HS-DM Isobase. The score columns are sorted in a decreasing
order for WSM and in an increasing order for WPM from left to right.

Competitor WSMTotalSum WSMZ−Score WPMTotalSum

PERSONA 0.59 3.48 1.00
OptNetAlign 0.58 1.95 1.59

PROPER 0.56 2.96 1.30
PISwap 0.53 1.44 6.46

SPINAL1 0.49 1.62 3.88
PINALOG 0.47 1.30 3.19
HubAlign 0.44 1.02 7.62
SPINAL2 0.40 0.26 10.84

MAGNA++ 0.32 -3.36 25.09
GEDEVO 0.25 -2.84 19,445.10
NETAL 0.22 -3.16 17,764.47
SANA 0.16 -4.67 3,268,998.10

3.4 Discussion of Results and Future Work

Our approach for comparing multi-objective performance of PERSONA with the competitor

GNA algorithms in this study is based on an abstract aggregated objective function as it is
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Table 3.5: Aggregate Scores on DM-MM Mentha 2021. The score columns are sorted in a
decreasing order for WSM and in an increasing order for WPM from left to right.

Competitor WSMTotalSum WSMZ−Score WPMTotalSum

PERSONA 0.61 4.51 1.00
PINALOG 0.58 4.56 1.76
PROPER 0.54 2.52 1.61
HubAlign 0.50 2.18 2.00
SPINAL1 0.47 1.24 3.92
PISwap 0.43 -0.69 18.90

OptNetAlign 0.39 -1.64 6.81
SPINAL2 0.39 0.10 7.59

SANA 0.34 -2.48 1,557.46
MAGNA++ 0.27 -4.13 1,384.43

NETAL 0.24 -3.11 7,410.44
GEDEVO 0.24 -3.07 20,590.75

Table 3.6: Elapsed Time of Competitor Algorithms on DM-CE Trimmed Intact 2016. Elapsed
time is in CPU Seconds and it is sorted in an increasing order.

Competitor Elapsed Time

PROPER 12.1
PISWAP 13.40
NETAL 57.84

PERSONA 240
HubAlign 247.06

SANA 339.11
Spinal 579.14

OptNetAlign 2457.42
MAGNA++ 21625.09
GEDEVO 40991.52
PINALOG 89082.05

explained in Section 3.3.4. For this purpose, we have assigned a coefficient of significance

to each alignment objective and we have used aggregate WSM and WPM scores as the

primary source of comparison since it is very hard to interpret the relative performance of
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each competitor algorithm in each individual objective. The aggregate scores in Tables 3.2,

3.3, 3.4 and 3.5 show that PERSONA is able to achieve a consistently high performance

whereas other aligners occasionally achieved better results in certain data sets. On top of the

aggregate scores, individual objective scores in Figures 3.3, 3.4, 3.5 and 3.6 also gave some

remarkable insights about the alignment methodologies. Furthermore, dual interpretations

of objectives also revealed the trade-offs or compromises inherently carried within each

competitor algorithm. In this context, PERSONA achieved a considerably high performance

on GOC, GOE, Resnik and BS. Additionally, it achieved a relatively good performance

of LCCS. However, the collaboration strategy of PERSONA increased the probability of

leaving unaligned edges due to trying to keep the balance for other objectives. Consequently,

it achieved relatively poor results in S3 as the unaligned edges are penalized.

One key finding was about the effects of some data sets over alignment performance. Accord-

ingly, the major drawback of Trimmed Intact 2016 Data Set was that it ignored pairwise BS

scores less than 150 bits by trimming an essential part of the respective data. Consequently,

the performance of other competitor algorithms were effected drastically due to their higher

sensitivity to the missing part of the data. Since PROPER focuses only on top ranking

sequence similarities by default, it gains an advantage against competitor algorithms that

are able to consider low similarity node pairs in their alignment approach. Despite this fact,

PERSONA managed to generate competent alignments with PROPER by either its regular

approach or by starting the alignment in the post-processing phase so that it could map larger

chunk of node pairs in each cycle with higher finalMappingFactor inputs. The latter approach

achieved higher BS scores than PROPER. Besides, PROPER has scored low GOC and GOE

values despite its relatively high performance in EC and comparable performance in BS.

There were other key findings about the performances of competitors. For instance, PISwap

[91] consistently achieved very high Resnik Similarity Scores in all data sets despite its

moderate scores in GOC and GOE. It also achieved partial best aggregate scores on DM-SC

BioGRID 2017 data set. On the other hand, PINALOG [145] performed better with annota-

tional inputs and consequently its results without them were discarded. It also performed

comparably better in functional and biological objectives despite its lower performance in

topological objectives. Furthermore, HubAlign [90] did not perform well in the pairwise

comparison of DM-SC on primarily the topological similarity objectives in either of the data

sets despite its relatively better performance on the other pairwise comparisons. This shows

that the algorithm is not capable of adapting certain topological network characteristics of

the respective organism pair.
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It is also worth noting that the first mode of SPINAL [89] called SPINAL1 generated better

aggregate results than its second mode SPINAL2 despite its relatively lower performance

on topological similarity objectives. This result was mainly due to the fact that topological

improvement of SPINAL2 has resulted in a more significant compromise in the node similar-

ity objectives and SPINAL1 has managed to generate more balanced alignments. Another

interesting finding was that the second mode of OptNetAlign [92] called OptNetAlign2 was

able to perform well in GOC and GOE whereas it performed very poorly in BS in all data

sets. On the contrary, OptNetAlign1 achieved an overall balance in all the objectives but it

did not demonstrate any distinguishing difference in any of them.

Some competitor algorithms were able to produce meaningful results only in topological

objectives. For instance, the performance of SANA [99] in the widely accepted GOC, GOE

and BS objectives were far from satisfactory due to its different interpretations of these

metrics. As another example, NETAL [116] did not offer any input methodology for node

similarity data although stated otherwise in its documentation. For this reason, it did not

generate any positive results in BS and it could generate barely positive results in GOC and

GOE. Similarly, GEDEVO [147] was not able to produce positive results in the functional

and biological objectives although it was provided an optional biological or annotational

similarity input. Finally, MAGNA++ [144] was able to achieve moderately positive results

on BS and yet it was not able to achieve positive results in the functional objectives of GOC,

GOE and Resnik.

The aim of this study is developing a generic and balanced approach that would perform

well on every kind of network generated through various data sources. On the meta-heuristic

level, the application harnesses the differences between concurrently executing aligners by

comparing their current results in multiple objectives and sending the superior subgraphs

to low scoring aligners so that the population achieves a balanced performance. It is also

possible that some exchanged mappings may not contribute to the receiving aligner since

some of its node pairs are already occupied with other mappings. In such cases, only the

possible mappings of the superior subgraph are used in alignment but then it becomes

possible that the remaining mappings have mostly lost their superiority characteristics.

Fig. 3.7 illustrates such a topological similarity loss upon removal of the central mapping

between proteins A and W from a subgraph. PERSONA employs a removing policy in each

execution cycle in order to filter such remaining mappings that has no contribution. However,

it may also be possible to predict the compromises or trade-offs beforehand and prevent

sending useless subgraphs with a more precise conflict resolution policy. Yet, such a policy
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may conversely create some overhead due to alignment score computation of intersecting

subgraphs beforehand.

The current version of PERSONA does not filter pareto dominated solutions until the final

step. Filtering them during the Collaboration step may also make sense in terms of dealing

with an elite and useful set of alignments. On the contrary, pareto dominated solutions may

still include significant subgraphs to be evaluated by a superior alignment with collaboration

as a remark of partial performance. The significant partial alignments generated throughout

the alignment process of PERSONA may also be used as building blocks for building a

superior global alignment or shed light to a local alignment solution. In this scope, strong

partial alignments achieved by PERSONA or other aligners can easily be merged with each

other by PERSONA infrastructure. One key feature introduced by PERSONA for this task is

the accurate measurement of partial performances in each objective.

PERSONA would also demonstrate a remarkable performance in a hypothetical objective that

unifies biological, topological and annotational similarity objectives since it enables querying

individually and topologically significant node pairs simultaneously as part of a single

heuristic. Individually significant node pairs are individual mappings that possess significant

biological and annotational similarity with each other regardless of their interactions with

other nodes. On the other hand, topological significance refers to multiple node pairs

that form a remarkable number of aligned edges when they are mapped with each other.

Individually and topologically significant node mappings identified by this feature may

compose the core of an alignment since they would require minimal or no compromise in

any objective. Subgraphs composed of such mappings may also be stored as a regional

benchmark in the collective memory to be evaluated by each population member for merging

with its individual alignment. Apart from that, these significant subgraphs may further be

merged with themselves in different combinations in order to build superior alignments with

minimal compromise in most objectives.

Another future improvement in the data model could be modeling the Dynamic Network

Alignment problem [158] mentioned in DynaWAVE [159] on top of the current data model

of PERSONA. The current data model may easily be adapted to the Dynamic Network

Alignment problem that addresses the temporal component of protein-protein interactions

since it only requires node properties for activation and deactivation times of the interactions.

Last but not the least, a many-to-many local or global alignment solution may also be

incorporated into this application by removing the one-to-one mapping restriction from its

built-in search tools and heuristics libraries. Such a solution might either be used as part of a
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Figure 3.7: Removed Mapping Effecting Topological Similarity. The removed mapping demon-
strated with a dashed line has a critical effect upon topological similarity since it forms 3 aligned
edges contributing to topological similarity. However, the remaining mappings cannot form any
aligned edges without it.
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complete alignment procedure or an aggregation procedure of external one-to-one alignments

in the same fashion with Ulign [160].

PERSONA was developed with the recently deprecated Typed Actors technology of Akka

[135]. Nevertheless, implementing the aligners with the active object pattern has the ad-

vantage of benefiting from both object-oriented and Typed Actor paradigms. Neo4j Graph

Database technology [137] was mainly employed in order to be able to utilize the flexible

Cypher Graph Querying Language [136]. Besides, Neo4j embedded-mode that would the-

oretically provide slightly better performance with Java platform was compromised with

the driver-mode to yield visualization on the browser. As a result of this decision, it is

always possible to intervene the alignment process by accessing it from other platforms

and applications with the driver mode so that the alignment process can be performed on

a cluster environment or can be monitored to intervene on special cases. However, there

are various techniques that would yield a disk independent solution so that it is possible

to query the graph database from memory instead of the disk. Disk independency may

be achieved by employing and configuring Neo4j Graph Data Science Library [161] with

in-memory mode or installing the database to the memory rather than the disk manually

or via the ImpermanentDatabase feature primarily intended for testing Neo4j applications.

Such a configuration and implementation would drastically improve performance and enable

employing bolder meta-heuristic optimization rules within the application.

One final future improvement for PERSONA can be publishing all its heuristics and subgraph

exchange methods through a Representational State Transfer (REST) [162, 163] interface

for facilitating a decentralized architecture conveniently. Consequently, population members

residing in different platforms will be able to perform their computations locally and store

their actual alignment status in a remote platform that hosts the central graph database. The

respective distributed architecture will be designed in a fault tolerant fashion that allows

occasional disconnections and ensures the stability of the graph database. It will be possible

to improve the level of proactivity and collaboration in such an architecture since it will

be handled by the host platforms of the population members. It will further be possible to

orchestrate multiple populations for pairwise comparisons or multi organism comparisons

for Multiple Network Alignment by introducing multiple population central nodes that store

the graph database. In this context, it will be necessary to design and implement population

members in a way that processes JavaScript Object Notation (JSON) format messages since

it is the most common message exchange format of REST interfaces for interoperability

[164].
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Global Network Alignment is an informative network comparison method that aims to

predict orthologous proteins with equivalent cellular functions in the PPI Networks of the

compared organisms. GNA results are primarily used to validate PPI Networks conserved

across multiple organisms and detect evolutionarily conserved pathways or protein complexes

[165–167] so that each protein of a particular organism is mapped to an equivalent protein

with known behaviors such as binding the same ligand and similar DNA sites in the compared

organisms [168]. GNA is performed with a one-to-one mapping approach when it is assumed

that each protein represents a single cellular function and the functions of a smaller PPI

Network are a subset of a larger PPI Network during their comparison. As it is mentioned

in Section 1.2, the performance of one-to-one GNA is measured with respect to several

biological, topological and annotational similarity objectives since there is no single model

that explains orthology completely. As a result, it becomes complicated to search for the

most accurate mappings that form an alignment due to the contradicting nature of these

objectives.

The search operation to find acceptable solutions to Network Alignment problems can

mainly be performed by heuristics or meta-heuristics based approaches. Heuristics based

approaches usually intend to find an ideal alignment in a deterministic fashion in contrast

to the non-deterministic meta-heuristics based approaches that intend to find a remarkable

approximation. Meta-heuristics based approaches play a key role for achieving flexibility

in GNA search results since a purely deterministic procedure relies on questionably strong

assumptions that may not be universal. Stützle [169] states that meta-heuristics algorithms

rely on biased and intelligent randomness that originate from probabilistic decisions made

during search in contrast to pure random search. For this reason, it becomes pertinent to

achieve the biased and intelligent randomness in question by randomizing the behavior of

a given set of heuristics based on input parameter values. In this regard, a set of heuris-

tics procedures with diverse solution sets may further be used for biased and intelligent

randomization of a meta-heuristics search procedure in order to achieve flexibility without

compromising computational performance. Furthermore, we may effectively design and

implement such a meta-heuristics search procedure in a population based fashion for GNA

as it is discussed in Section 1.3 due to advantages such as the inherent ability to escape local

optima, adapting multiple objectives, handling problem constraints, adjusting resolution of
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results by population size and performance on NP-hard problems where exhaustive search is

impractical [170].

This thesis proposes two population based meta-heuristics approaches that utilize a set of

heuristics simultaneously to scan the search space of the Global Network Alignment problem

optimally against multiple contradicting objectives. The results show that populations in

cooperation can bring the strong sides of different heuristics together provided that aligners

break away from local maximum solutions with randomization and global memory in order to

prevent premature convergence. The thesis also brings up an extensive library implementing

several fundamental tasks such as supervision, partial solution exchange, local search and

opening search space to be used as the building blocks of a customly defined population

based meta-heuristic approach for the GNA problem. In addition, the thesis puts forward

a suite of heuristics that might be used in various combinations to build a custom singular

alignment method. The outcomes of the two methods are evaluated, compared with each

other and concluded as follows:

4.1 Evaluation of SUMONA

The results achieved with SUMONA prove that it is possible to benefit from the characteristic

advantages of different aligners while trying to optimize for better solutions in network

alignment. The performance comparisons of SUMONA1, SUMONA2 and the original

OptNetAlign algorithm show that the optimization can be less costly if the process is

supervised. The comparisons are performed with different inputs and supervision strategies

for better observation. Plus, it is seen that certain objectives can be prioritized above

others using proper input data and supervision strategy. Eventually, the diverse and elite set

generated throughout the process, is composed of non dominated alignments and improves

the applicability of the results under different conditions by domain experts [92]

On the other hand, the results of both SUMONA variants show that more randomized search

achieves better results with respect to multiple objectives since it provides the chance to cover

more alternative solutions. Plus, classification of input data becomes useful for achieving

the desired level of randomization and proper blend of results. SUMONA2 can be used in

classifying alignments with significantly different characteristics. Therefore it will be more

successful when there are several contradicting optimization objectives specified by the user.

Moreover, the supervised hill climbing methodology of SUMONA2 provides significant

improvement in most desired objectives while resulting in decline in some others. The
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decline may be eliminated by applying an alternative less greedy method such as Steepest

Ascent Hill Climbing or Random-Restart Hill Climbing as the final local search step in each

GA cycle.

It is also important to choose reasonable alignment parameters with the proper supervision

method and input data carefully for performing a high quality optimization. The contradic-

tions and the balance among objectives due to their nature, is an important consideration for

the optimization process. Finally, the performance and quality of source alignments obtained

from other aligners is a key factor in choosing the most effective supervision strategy. This

fact can be observed by the performance of SUMONA2 which indicates that it is better to

use a diverse and yet consistent set of input data for supervising the optimization process.

4.2 Evaluation of PERSONA

PERSONA has been tested with a number of data sets that belong to different years to

demonstrate the evolution of available data in time with new findings. Consequently, it

enables an in-depth analysis of alignment performance with a temporal component. In

this context, the results of this study prove that PERSONA is generating high performance

alignments with all data sets thanks to its collaborative approach. Thus, it becomes obvious

that it follows a network independent and robust methodology compared to other aligners

that demonstrate an unstable performance on various different data sets. Therefore, it

may be concluded that the particle swarm inspired meta-heuristic optimization approach of

PERSONA is able to adapt the characteristics of evolving networks due to its collaboration

strategies as a swarm, individual alignment heuristics as behaviors, interpretation of network

meta-data, randomized discovery in the search space and so on.

PERSONA is able to handle local maximums by removing some of the minimally contribut-

ing mappings of an alignment for opening search space in each execution cycle. In order

not to repeat weak mappings, certain tasks of the algorithm such as assigning parameter

values in alignment heuristics, removal of minimally contributing mappings, search in the

post-processing phase, selecting historically significant partial solutions or selection of partial

alignments to be exchanged in each cycle are implemented in a randomized fashion. Such

randomized tasks enabled access to different regions in the search space so that stronger

mappings could be discovered without converging prematurely. It is also essential to decide

how to initialize the particles of the swarm since the initial mappings heavily effect the final

alignments. The reason is that, initial mappings narrow down the solution space and they
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may also be exchanged among the concurrently progressing aligners even if some of them

are removed from an alignment in the further cycles of execution.

This study showed that PERSONA is able to achieve remarkable results among multiple

objectives of the Global Network Alignment problem. The performance of the PERSONA

and the competitor aligners were evaluated with multiple criteria decision making tools of

WPM and WSM to reach a conclusion in this sense. On the contrary, balance among multiple

objectives may still be compromised for achieving superiority on some of the objectives

based on user priorities. User priorities can always be targeted by altering aligner behaviours.

However, it should be noted that most aligners make more significant compromises in

the objectives that they ignore compared to the superior results that they achieve in the

objectives that they focus. Therefore, the necessity of storing and further utilization of

partial solutions with significant topological similarity and node similarity proves to be true

for preventing huge compromises in contradicting objectives. Proper PERSONA methods

should be employed for further utilization of such partial solutions.

4.3 Comparison of Methods and Concluding Remarks

PERSONA and SUMONA are both population based meta-heuristics methods that intend

to minimize computational time and complexity by narrowing down the search space of

GNA problem effectively. The main reason that these methods employ population based

approaches is that they aim to generate a diverse set of candidate solutions from various

regions of the search space. Each population member in both methods is assigned as

an individual aligner that aims to generate its own alignment by collaborating with other

members of the population as discussed in Section 1.3. The collaboration in question is

carried out by periodically exchanging reliable solution subsets with respect to the meta-

heuristics policy of the population. Both algorithms allow adjusting the exchange frequency

through their input parameters. In addition to collaboration, each aligner perform individual

behavior that distinguishes itself from the rest of the population. In both algorithms, execution

proceeds until termination criteria of either cycler or CPU time are met. The population

based results were aggregated and compared with other prominent algorithms throughout

the experiments carried out for this thesis. It is worth mentioning that the performance of

PERSONA has been thoroughly analyzed since it was compared with more algorithms using

an extensive variety of data sets.

One of the main differences of these methods is that PERSONA population is composed

80



4. Summary and Outlook

of more flexible members capable of randomly switching between heuristics as part of

their individual behavior in contrast to the SUMONA population members that execute a

small scale mutation task in each cycle. Besides, PERSONA aligners display an intelligent

reaction policy during solution exchange with other aligners. This policy involves filtering

the subgraph to receive and deciding on the content of subgraph to send back by querying

and evaluating the respective contributions across all alignment objectives. In contrast,

SUMONA aligners perform a randomized crossover task for solution exchange and then they

finalize each cycle by performing hill climbing for a randomly chosen alignment objective.

As a result, PERSONA aligners have more potential to progress at each cycle due to their

autonomous behavior. In contrast, SUMONA aligners cause less computational overhead

since they are merely performing standard supervision tasks in addition to the core GA

operations. Due to the different progression rates, SUMONA aligners evaluate the difference

of smaller chunks of alignment compared to PERSONA aligners. As such, SUMONA

aligners have more precision in a local region of the search space whereas PERSONA

aligners have a broader picture to evaluate their performance and tackle local optima. For this

reason, PERSONA is more resistant to convergence due to its global evaluation capabilities

and inherent heuristics.

SUMONA and PERSONA have contrasting advantages and disadvantages in terms of setup

requirements. One important category of setup requirements is solution quality and objective

prioritization. In this category, SUMONA enables to adjust the resolution and objective

focus of results by configuring the maximum number of aligners and alignment objectives

with application input parameters for run-time. On the other hand, it is required to explicitly

assign and configure all the heuristics of each aligner to be employed in the PERSONA

population as part of the setup process. For this reason, it is more convenient to configure

the expected objectives in SUMONA. Nevertheless, the explicit configuration of PERSONA

serves as a means to adjust the priority of alignment objectives in detail. The other important

setup requirement category is supervision with input alignments. SUMONA relies on results

of external alignment algorithms and uses them in crossover phase of GA search as explained

in Section 2.2.4. This kind of setup is a bit handy and it requires experience in using external

alignment algorithms. On the other hand, PERSONA is able to create alignments from

scratch. Therefore, it doesn’t need to configure and classify input alignments. Nevertheless,

it may be a good practice to initialize the individual aligners as explained in Section 3.2.4.

SUMONA displays a swap behavior that alters its stationary set of mappings indirectly

with respect to the newly proposed non-stationary ones due to possible violations in the
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one-to-one mapping constraint for both its collaborative and individual tasks. This behavior

is based on the UPMX approach explained in Section 2.2.3 and it is computationally

efficient although it may cause strong mappings of the stationary part of the solution to be

swapped consequently. On the contrary, PERSONA adopts a more conservative approach that

preserves the existing mappings when new mapping are proposed by filtering possible one-to-

one mapping violations as part of its default behavior. However, such a behavior carries the

potential of a premature convergence due to shrinkage in the search space. For this reason,

PERSONA ensures diversity and flexibility by periodically removing weaker mappings and

providing the possibility of mapping the respective free nodes in different combinations.

One final note about the conservative behavior of PERSONA is that it may be disabled by

deactivating the filter for one-to-one mapping violations in case of a premature convergence

since the algorithm is also able to remove the undesired many-to-many mappings periodically

during execution.

One final remark to mention is that SUMONA and PERSONA are both able to process

annotational inputs in addition to BS and PPI Network inputs just like some of the existing

alignment algorithms. Similar to this extensive input strategy, it is possible to use annotational

inputs as the sole Node Similarity input alternative to BS inputs in some other alignment

algorithms. A notable pitfall of using annotational inputs in Network Alignment is that it

introduces some bias since the annotational inputs are further used in measuring alignment

quality despite the fact that they are previously predicted functions by possibly other in-silico

methods. As a consequence, the extreme possibilities can be stated as either proceeding a

prediction task from a wrong assumption in the worst case or forming a consistent alignment

pattern in the best case. For this reason, the alignment quality of both proposed algorithms and

their competitors were evaluated by a balanced combination of topological, biological and

annotational metrics in order to reduce bias to an acceptable level. In this context, SUMONA

was simply compared with its competitors by a Pareto Dominance perspective as well as a

separate statistical significance basis for each alignment objective. Conversely, PERSONA

and its competitors were effectively compared with each other by means of an aggregated

score of overall alignment quality that is extracted from individual topological, biological

and annotational scores of each competitor as mentioned in Section 3.3.4.
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Appendices

A Implementation Details of SUMONA

A.1 Experiment Parameters

The exact format of the command line arguments used in Supervision Strategy 1,2 and 3 are

as follows:

./optnetalign --net1 scere.net --net2 dmela.net --bitscores scdm.sim --annotations1

scere.annos --annotations2 dmela.annos --total --goc --s3 --blastsum --outprefix

test1 --verbose --popsize 100 --generations 1000

The exact format of the command line arguments used in Supervision Strategy 4 is as follows:

./optnetalign --net1 scere.net --net2 dmela.net --bitscores scdm.sim --annotations1

scere.annos --annotations2 dmela.annos --total --ec --s3 --blastsum --goc --outprefix

test4 --verbose --dynparams --popsize 100 --generations 1000 --hillclimbiters 3

These command execution formats are compatible with the original OptNetAlign application.

The default values for niters, cxrate, cxswappb, mutrate, mutswappb, oneobjrate parameters

can also be changed by additional arguments. Please note that the order of optimization

objectives have effect on the results. The value of --hillclimbiters argument is multiplied

by an embedded coefficient of 500 to calculate the value of niters parameter. Besides,

--dynparams argument that dynamically adjusts mutrate, cxrate and oneobjrate to match

their success rates can also be used in producing non-dominated alignments.

Source code of SUMONA variants and data conversion tools can be shared upon request.
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B Implementation Details of PERSONA

B.1 Explanation for Individual Comparison and Exchange

The messaging context with respect to the alignment state are:

• If the performance of the SubGraph in the sent message is superior to the performance

of the receiving aligner in all objectives then all the possible mappings of the alignment

within the sent message are added to the receiving aligner’s alignment.

• If the performance of the SubGraph in the sent message is inferior to the performance

of the receiving aligner in all objectives then the receiving aligner sends its current

alignment as a Future message [135] that will transform into a subgraph back to the

sender.

• If the performance of the SubGraph in the sent message is inferior to the performance of

the receiving aligner in some objectives then the receiving aligner sends the Subgraph

of one of its superior objectives by random selection as a Future message back to the

sender. The message transforms into a subgraph upon the completion of a concurrent

operation and the proper mappings within the message are inserted into the alignment

of the initial sender.

The procedure can be summarized in three fundamental actions highlighting the active aligner

actor:

1. Sender: The initial action of the Sender is about sending Objectives Scores to other

Aligners. If the sender pareto dominates the receiver, the sent subgraph is added to the

receiver’s alignment and 2nd and 3rd steps are skipped.

2. Receiver: The reaction of the Receiver to the initial action is sending back the subgraph

of a randomly selected stronger objective to the previous sender or sending back its

whole alignment if the receiver scores pareto dominate the sender scores.

3. Sender: The final action of the Sender is adding the received subgraph to its alignment.
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B.2 Explanation for Broadcast and Following Leading Aligners

In the global actor environment, the aligner with the globally best score in each objective is

tracked by a specific subgraph ID that marks the mappings of that subgraph. These subgraph

IDs are periodically broadcasted to all other aligners to make them aware of the current

leading performance in that objective and trigger the receivers to add the possible mappings

of the corresponding subgraph to their own alignment.

B.3 Objective Specific SubGraphs

Objective specific SubGraphs are used while aligners are exchanging significant sections

of their alignments in the scope of the “Individual Comparison and Exchange” and “Broad-

cast and Follow Leading Aligners” tasks. In the scope of the “Individual Comparison and

Exchange” task,the inferior objectives of the sent message are listed according to the perfor-

mance of the receiving aligner and one of them is randomly chosen to send back its respective

subgraph. The significant subgraph from the chosen objective is extracted as follows:

• GOC Specific SubGraph: Node Pairs having k common GO terms or more are ex-

tracted.

• BS Specific SubGraph: Node Pairs having a BS similarity above a certain threshold or

more are extracted.

• EC Specific SubGraph: Edge Pairs are extracted in which a pair of node pairs are

connected to each other in both organisms. (A node pair is composed of a single

alignment mapping that has a pair of nodes belonging to the compared organisms)

• ICS [87] Specific SubGraphs: SubGraphs with aligned node pairs of top centrality

scores are extracted when ICS option is picked. The respective centrality measure for

this task is randomly picked among the system wide centrality metrics of “between-

ness”, “harmonic”, “closeness” and “pagerank” parameters.

• S3 Specific SubGraphs: Random Selection from specific aligned subgraphs of “Non-

Induced Mapping Subgraph” and “top scoring connectivity degree subgraph”. Non-

Induced Mapping Subgraph is built by removing aligned edges without counterparts

in the opposite organism from the subgraph in order to prevent the S3 score penalty

that they cause.
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B.4 Possible Heuristics of an Aligner

We developed several alignment heuristics and gathered them as a suite to be used by

members of the PERSONA population in this study. These heuristics are used in progressing

an individual alignment and they identify new valid node mappings based on the initial state

of a particular alignment as well as their runtime parameters. The runtime parameters are

recommended to be altered in each execution cycle in order to cover more search space

during progression of a particular solution. The most common practices of assigning runtime

parameters are random selection from a valid range and gradual relaxation. Each aligner in the

population may adopt a behavior that gathers a selection of various heuristics complementing

each other in a characteristic way. Users of PERSONA are strongly encouraged to change

the behavior of each aligner by changing its assigned heuristics and their range of runtime

parameters in order to achieve a new prioritization of objectives. While doing so, the meta-

heuristic collaboration actions and individual heuristics of each aligner should be kept in a

balanced state that enables efficient collaboration without convergence. One key point to

keep this balance is to configure the execution periods of collaboration actions and individual

heuristics without overlap and dominance against each other in the scheduler of PERSONA.

(The library implemented within PERSONA may also be used to develop other aligners or

other alignment optimizers in additon to configuration. )

Our Aligner Heuristics Suite may be classified into three main and one support group. The

first one of these, the seed-and-extend heuristics group includes several centrality heuristics

to initiate a seed. A centrality heuristic mainly relies on one of the betweenness centrality,

closeness centrality, harmonic centrality, pagerank [138] and connectivity degrees approaches

and it may further have particular biological and annotational similarity thresholds to identify

central nodes with a secondary dimension. The central nodes identified with one of these

heuristics may be extended with an edge-forming heuristic. On the other hand, the second

group includes some cluster mapping heuristics that mainly rely on clusters of “Louvain

Modularity” or “Label Propagation” [138] as well as secondary topological similarity and

node similarity constraints. The cluster membership of each node is computed and stored in

the graph database with respect to its interactions and the overall topology. Cluster Mapping

heuristics assume that the node pairs from a significant cluster pair are both topologically

and individually similar. For this reason, they give priority to mapping members of such

significant clusters. As the third group of our heuristics suite, we present a set of other

heuristics that prioritize node similarity objectives over topological ones. These heuristics are
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a combination of various queries searching for biological and annotational similarity and they

still try to improve topological similarity objectives given that they satisfy certain constraints

of node similarity. Finally, we present some supplementary heuristics for randomization,

cleaning and progression that aim to complement the three main heuristic groups as part of

a complete aligner behavior. The heuristic groups and their individual members are listed

below in detail:

a) Seed & Extend:

Heuristic for Mapping Central Edges: This heuristic intends to map node pairs that reside

on edge pairs provided that they have high centrality scores.

1. First, both node pairs on an edge pair is mapped if their dupleConnectivity, tripleCon-

nectivity and quadrupleConnectivity values are above certain thresholds (ordered by

the decreasing sum of common annotations in both node pairs).

2. Then, a single node pair on an edge pair where the other node pair is already aligned is

mapped if the respective dupleConnectivity, tripleConnectivity and quadrupleConnec-

tivity values are above certain thresholds (ordered by decreasing common annotations

in the unaligned node pair.

Heuristic for Aligning Central Node Pairs with Connectivity Degrees: This heuristic is

used as the seed operation and the following operations are chained to its completion for better

propagation. In this operation, a node pair with biological similarity is mapped with respect

to the number of common annotations, their dupleConnectivity sums, tripleConnectivity

sums and quadrupleConnectivity sums ordered by decreasing quadrupleConnectivity sums

followed by decreasing tripleConnectivity sums followed by decreasing dupleConnectivity

sums of both nodes.

Heuristic for Aligning Central Node Pairs with Connectivity Degrees From Top: This

heuristic is the same with “Heuristic for Aligning Central Node Pairs with Connectivity

Degrees” except that it orders the results with respect to descending connectivity degree

scores from top limited by the number of records to be returned and the percentile of the

minimum result. The powerMode parameter can be: 2,3 or 4.

Heuristic for Aligning Central Node Pairs with Alternative Centrality Algorithms: This

is heuristic can be used as a seed and other operations can be chained to its completion for

better propagation (algorithm: betweenness, harmonic, pagerank and closeness). In this

operation, a node pair with biological similarity is mapped with respect to the number of
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common annotations and each node’s centrality threshold ordered by decreasing centrality

sums of both nodes.

Heuristic for Aligning Central Node Pairs with Alternative Centrality Algorithms
From Top: This heuristic is the same with “Heuristic for Aligning Central Node Pairs with

Power Connectivity” except that it orders the results with respect to descending score of the

respective Centrality algorithm from top limited by the number of records to be returned

and the percentile of the minimum result. The algorithm parameter can be: betweenness,

harmonic, pagerank and closeness.

Heuristic for Mapping Connected Edges: This heuristic aims to map cliques, semi cliques

or small interacting patterns with each other. It has demonstrated poor performance in our

experiments.

b) Cluster Mapping:

Heuristic for Aligning a Node Pair in two Given Clusters: A node pair of given cluster-

types and given cluster IDs with biological similarity is mapped limited by the minimum

common annotations that they share (clusterType: labelpropagation, louvain).

Heuristic for Aligning Edges in two Given Clusters: This heuristic can be used in two

modes one of which aims to map an edge pair completely and the other aims to complement

an existing node pair to an edge pair (clusterType: labelpropagation, louvain).

1. In the edge pair mode, an edge pair of given clustertypes is mapped and given cluster

IDs having similarity limited by the minimum common annotations that each nodes

pair shares.

2. In the complementing mode, a node pair of given clustertypes and given cluster IDs

with biological similarity on an edge pair is mapped where the other node pair is

already aligned limited by the minimum common annotations that the nodes of the

pair shares.

c) Node Similarity Prioritization:

Heuristic For Prioritizing Biological Similarity (BS) Followed By Annotational Similar-
ity (GOC): This heuristic has a gradual constraint relaxation approach. It initially tries to

improve EC as a secondary objective as well as BS and GOC. After then it maps both GOC

and BS improving node pairs. Finally, it maps all possible BS improving node pairs.
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1. First, an edge pair with biological similarity on both node pairs is mapped if their

number of common annotations is above a certain threshold, (ordered by decreasing

biological similarity sum)

2. Then, one node pair of an edge pair with biological similarity on that single node

pair is mapped while the other edge is already aligned if their number of common

annotations is above a certain threshold, (ordered by decreasing biological similarity

followed by decreasing common annotations)

3. Finally, a node pair with biological similarity is mapped if their number of common

annotations is above a certain threshold (ordered by decreasing biological similarity

followed by decreasing common annotations)

Heuristic For Prioritizing Annotational Similarity Followed By Biological Similarity:
This heuristic applies a similar gradual constraint relaxation approach with the previous

heuristic. The only difference is it prioritizes GOC before BS

1. First, an edge pair with biological similarity on both node pairs is mapped if their

number of common annotations is above a certain threshold, (ordered by decreasing

common annotations sum)

2. Then, a node pair with biological similarity is mapped if their number of common

annotations is above a certain threshold (ordered by decreasing common annotations)

3. Finally, one node pair of an edge pair is mapped while the other edge is already

aligned if their number of common annotations is above a certain threshold, (ordered

by decreasing common annotation sum)

Heuristic for Listing the Top Scoring Biological Similarity Values: A predefined number

of Node pairs with top scoring biological similarities are mapped to each other.

Heuristic for Listing the Top Scoring Annotational Similarity Values: A predefined

number of Node pairs with top scoring common node pair annotations are mapped to each

other.

Heuristic for Improving Annotational and Biological Similarity along with Edge Con-
sistency: Edges will be mapped to each other in the two steps below provided that they meet

user defined thresholds for biological and annotational similarity.
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1. If the limiting annotation and biological similarity values are not zero, an Edge Pair

with positive biological similarity is mapped on both node pairs limited by their

number of common annotations and biological similarity on each node pair (ordered

by decreasing biological similarity)

2. Otherwise, one node pair of an edge pair with biological similarity on that single

node pair is mapped while the other edge is already aligned limited by their number

of common annotations and biological similarity (ordered by decreasing biological

similarity)

Heuristic for Improving Annotational Similarity (GOC) as well as DupleConnectivity
Connectivity: This heuristic initially tries to improve bitscore similarity as a secondary

objective as well as its targeted objectives. After this step, it directly improves annotational

similarity and DupleConnectivity Connectivity without any other constraint. Mapping node

pairs with high dupleConnectivity connectivity improves the chances of propagating the

mapping locally with the neighboring edges and provides a potential for improving the topo-

logical similarity objectives EC and S3 by consecutively executing complementary heuristics

( i.e. Heuristic for Forming Edge Pair Mappings from Existing Node Pair Mappings)

1. If the given similarity is greater than zero, one node pair with biological similarity

is mapped limited by the number of common annotations, similarity value and the

dupleConnectivity values for both nodes (ordered by decreasing common annotations

followed by decreasing biological similarity)

2. Otherwise, one node pair is mapped limited by the number of common annotations

and the dupleConnectivity values for both nodes (ordered by decreasing common

annotations followed by decreasing dupleConnectivity value)

d) Supplementary Heuristics:

Heuristic for Aligning Edges: This heuristic should be executed in the final stages of an

alignment in order to reduce the number of unaligned edges.

Heuristic for Forming Edge Pair Mappings from Existing Node Pair Mappings: This

heuristic complements many other heuristics by forming an edge from existing mappings.

1. (Given that the biological similarity is greater than zero), one node pair of an edge

pair with biological similarity is mapped where the other node pairs are aligned if the

number of common annotations and biological similarity of the subject node pairs are

above certain threshold values.
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2. (Otherwise), one node pair of an edge pair is mapped where the other node pairs are

aligned if the number of common annotations of the subject node pair is above a

certain threshold.

Heuristic for Adding a Given Number of Random Mappings: This heuristic maps a

random node pair limited by the given pair count. It is very useful for random search. It can

be used in the post processing phase to finalize the one-to-one alignment.

Heuristic for Removing Low Scoring Mappings: This heuristic removes node pair map-

pings scoring below the threshold values of common annotations, biological similarity and

according to edge presence. It can be decided to keep the edges regardless of the other

threshold values or remove them if they score low in the other threshold values. There

is also another version of the same heuristic that chooses the low scoring mappings to be

removed randomly when the number of mappings to be removed are limited by the respective

parameter.

Heuristic for Removing Mappings Without Edges: This heuristic removes node pairs

that do not constitute a conserved edge for increasing search space in order to achieve better

topological scores. There is also another version of the same heuristic that chooses the low

scoring mappings to be removed randomly when the number of mappings to be removed are

limited by the respective parameter.

Heuristic for Removing Inductive Mappings: This heuristic removes the less contributing

side of inductive mappings without violating the threshold values in the parameters in order

to eliminate them from the inductive mapping definition.

Heuristic for Removing Many-To-Many Mappings: PERSONA is a one-to-one alignment

optimizer since it focuses on the Global Network Alignment problem by mapping each

node of the smaller network into a single node of the larger network. The application

periodically removes unexpected one-to-many or many-to-many mappings that occur during

some complicated queries or parallel executions that violate atomicity in graph database

transactions. The main reason of applying this cleaning process is providing a feasible

solution to the initial one-to-one problem definition and it doesn’t imply superiority of any

particular mapping approach. This heuristic is used to remove those unexpected mappings.

It has two versions one of which removes the latterly added mappings and the other one

removing the weaker mapping among the one-to-many alternatives. Removing the weaker

mappings is computationally more demanding, so the one removing the latterly added

mappings is used throughout the system.
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It is finally worth noting that, the new sets of mappings performed by either the search

tools or the above listed heuristics are added to an alignment unless they do not violate

the one-to-one mapping constraint of that aligner. If a subset of the mappings violate the

constraint, then the violating subset is removed from the set and the rest is added to the

alignment.

B.5 Architecture of Critical Modules

The most critical component of the overall architecture is the concurrency infrastructure

responsible for retrieving information from the single source graph database in a concurrent

fashion. The frameworks for achieving this task are Akka Concurrency Framework [135] that

provides a high level abstraction for multi-threading and Neo4j graph database technology

[137]. The specific entities of the concurrency infrastructure are described below:

a) Future Messages: Sending a message and receiving a reply is essentially a two-step

process. Future data structures are used to adapt this mechanism to a concurrent environment.

A future is a data structure that is used along with actors when it is desired to avoid blocking

calls and retrieve the result of certain concurrent operations in the meantime. The concurrent

operation is invoked by the actor and its result can either be accessed synchronously or

asynchronously [135].

b) Typed Actors: Typed Actors do not directly include a behavior like standard actors

and instead they implement the active object pattern with a combination of object oriented

definitions and asynchronous actors that process method calls. The Active Object Pattern

only decouples method execution from method invocation into different threads of execution

in order to introduce concurrency and fault tolerance. Nevertheless, different behaviors are

embedded to Typed Actors in PERSONA by instructing their reaction when they receive

different types of messages [135].

c) TransactionTemplate: Since transactions can collide with other transactions in a parallel

environment, TransactionTemplates are used for requesting and detecting the operating

resources of the graph database. Transaction templates check whether the database is

occupied or not periodically and request their operation to be executed when they detect it is

available. Nevertheless, some transactions may still collide when they detect the availability

of the database at the same time and such cases are handled in exception handling mechanisms

by triggering the same transactions with 0.5 probability so that one of the requesters may

give up the resource eventually.
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d) Router: In Akka, a router directs the incoming messages from the source to the outbound

destination actors with a specific order in order to manage the concurrent execution of

multiple actors. It is possible to embed a routing approach according to the messaging

characteristics in an Akka Router. All routing approaches have their own characteristic

mechanism of picking the next routee among the round robin, random, smallest mailbox,

broadcast, scatter gather first completed and tail chopping mechanisms for sending the

incoming messages [135].

In PERSONA, routing is used to pick the next recipient Aligner of the active sender Aligner

while performing the periodically scheduled collaboration operations. The specific schedul-

ing mechanism of the router depends on the Tail Chopping Algorithm that will first send an

availability confirmation message to a randomly picked recipient and then after a small delay

to a second randomly picked recipient and so on. The router with this approach waits for the

first reply and forwards the first reply back to the original sender informing the availability

of that recipient and discarding other replies. The goal of this scheduling mechanism is to

decrease latency by performing redundant queries to multiple recipients, assuming that a

randomly selected actor may be faster to respond than the others.

e) Scheduler: In Akka, it is possible to send scheduled messages to actors and execute

scheduled tasks whenever the need for performing tasks in the future arises. There is a

unique instance of a scheduler in every Actor System that is internally used internally

scheduling tasks to happen at specific points in time. Akka Schedulers are able to schedule

up to millions of triggers and it is intended to be used in various use-cases including actor

receive timeouts, future timeouts, circuit breakers and other time dependent events [135].

In PERSONA, periodical operations performed by the Actor System are scheduled by this

entity. These periodical operations are used to simulate real time behaviors of aligner actors

via a turn based fashion. The period of individual alignment behaviors, broadcast messages

and inter-alignment messages are subject to change by the domain expert for further testing

expectations.

f) Aligners: Each aligner in the system is implemented with Typed Actors decoupled with

their interfaces. The essential structure of Aligners are implemented in their onReceive

methods in order to establish their reaction policy upon receiving messages. This method

differentiates the type of the received message and applies a different procedure for different

message types. It directly adds the possible mappings whenever it receives a subgraph from

another aligner and similarly it adds the marked entities associated with a subgraph whenever

it receives a broadcast message from leading aligners. On the other hand, the objective
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scores comparison operations between the sender and receiver are also implemented within

this method, regarding the comparison results of the sender and the receiver as states and

switching to different policies with respect to these comparison results. Each aligner in the

Actor System has a characteristic behavior implemented with a combination of alignment

heuristics that may all execute with different probabilities in each system cycle. The behavior

of aligners are subject to change according to the desired purpose in terms of the applied

heuristics and their probability of occurrence in each cycle. In principle, the domain expert is

encouraged to establish different behaviors out of the provided alignment heuristics in order

to ensure diversity and collaboration among aligners.

B.6 Experiment Parameters & Remarks

• HubAlign is analyzed to be more efficient with parameter λ ranging from 0.1 to 0.2

that improves AFS over EC and parameter α ranging from 0.7 to 1.0 improving EC

over AFS in its own publication. Therefore it is performed with those corresponding

parameter values.

• One implementation detail to consider for NETAL is that it should take the smaller

network as the first argument and the bigger network as the second argument. On

the other hand the only significant parameter of the algorithm is found to be the α

parameter since the other arguments had no visible effect on the results, therefore

the algorithm has been executed by adjusting the α parameter with a step size of 0.1

between 0 and 1 boundary values.

• There is no clear recommendation of parameter values in SPINAL. For this reason, its

alpha value has been incremented by 0.1 from 0 to 1 for invoking both modes SPINAL.

The average of results (apart from the discarded outliers) has been compared with

other competitors.

• In order to map a larger chunk of node pairs in each cycle without compromising

topological quality, the finalMappingFactor parameter should at least be around a

quarter of the size of the smaller network to rapidly achieve satisfactory sequence

similarity results.

• OptNetAlign has been invoked with the following command for all S3, GOC and BS

(blastsum) objectives:
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time ./optnetalign --net1 mm.interaction --net2 dm.interaction --total --s3 --bitscores

mmdm.sim --blastsum --annotations1 mm.annos --annotations2 dm.annos --goc

--cxrate 0.05 --cxswappb 0.75 --mutrate 0.05 --mutswappb 0.0001 --oneobjrate

0.75 --dynparams --popsize 200 --generations 250000000 --hillclimbiters 10000

--timelimit 180 --outprefix mm-dm3 --finalstats » mm-dm3.finalstats

• PINALOG has been invoked with the following command for all topological, biologi-

cal and annotational objectives:

/usr/bin/time -o dmmm_mentha_time.txt ./pinalog1.0 dm.interaction mm.interaction

dmmm.sim mentha.gaf

• SANA was performed with its commit (Mar. 13, 2019) for unnormalized sim files and

it has been invoked with the following command with balanced coefficients across all

topological, biological and annotational objectives:

./sana -g1 DMelanogaster -g2 SCerevisiae -s3 0.2 -go_k 0.4 -esim 1 0.4 -simFile 1

DMelanogaster_SCerevisiae_blastws3ev10.out -simFormat 1 1

• MAGNA++ has been invoked with the following command for all topological and

biological and objectives:

/usr/bin/time -o time_mmdm.txt

./MAGNA++_CLI_Linux64_01_30_2015/magnapp_cli_linux64 -G mm.gw -H dm.gw

-m S3 -o mmdm.result -d mmdm.mat -p 15000 -t 4 -e 0.5 -n 2000 -a 0.5

• PISwap has been invoked with its execution script based on the following line for

topological and biological objectives:

(S, M) = psb09.processOnce(G, G2, GS, M0, 0.6, 200)

• PROPER has been invoked with the following command having the biological input

threshold 150 in all experiments except for DM-MM Mentha comparison where

PROPER scored better with the threshold values 10 and 150 together. The average of

results has been taken into account in this particular case.

./exe/proper

mentha2021-swissprot-uniprotgoa/dm.interaction

mentha2021-swissprot-uniprotgoa/sc.interaction

mentha2021-swissprot-uniprotgoa/dmsc.sim 1 150 proper_mentha_dmsc_10.aln
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• GEDEVO has been invoked from its particular plugin in Cytoscape GUI. Annotational

and Biological Similarity files has been given as optional inputs during experiments.

• PERSONA has been invoked with “gopp” and “epp” flags that improve annotational

search and random search during post processing. Plus, In order to map a larger

chunk of node pairs in each cycle without compromising topological quality, the

finalMappingFactor parameter of PERSONA should at least be around a quarter of the

size of the smaller network to rapidly achieve satisfactory sequence similarity results.

It should also be noted that, PERSONA enables changing objective priority through

aligner behavior modification.

• The Biological Sequence Similarity scores were extracted from FASTA files with

parameters of -word_size of 3 and −evalue of 10 by BLASTP in BioGRID 2017 and

Mentha 2021 data sets.

• Akka 2.5.X series do not have any issues with artifactID value of akka-actor-2.11.

Typed Actors are available until Akka version 2.5.8

• The concept of “connectivity degrees” are mentioned as “powers” in the source code

of PERSONA.

Table B.1 is a summary table showing the possible input files and strengths of each aligner

in objectives:
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Appendix Table B.1: Possible Input Types and Strengths of Each Aligner. The "Optimized
Objectives" column display the objectives that the respective Aligner is strong against.

Alignment
Algorithm

Input Types Optimized Objectives

HubAlign Network, Sequence Similarity EC, BS, LCCS
OptNetAlign Network, Sequence Similarity, Annotations EC, S3, GOC, GOE, BS

NETAL Network, Sequence Similarity EC, S3, BS
PINALOG Network, Sequence Similarity, Annotations EC, GOC, BS, LCCS, Resnik
PROPER Network, Sequence Similarity EC, BS, LCCS

PERSONA Network, Sequence Similarity, Annotations GOE, GOC, BS, LCCS, EC
SPINAL Network, Sequence Similarity EC, BS, LCCS,GOC

GEDEVO Network, Sequence Similarity, Annotation Similarity EC, LCCS
MAGNA++ Network, Sequence Similarity EC, S3

SANA Network, Sequence Similarity, Annotation Similarity S3, EC
PISwap Network, Sequence Similarity EC, BS, Resnik
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alignment. Bioinformatics, 32(20):3155–3164, Number: 20, October 2016.

[122] F. E. Faisal, L. Meng, J. Crawford, and T. Milenković. The post-genomic era of
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Global Network Alignment via both node and edge conservation. Bioinformatics, 31

(14):2409–2411, Number: 14, July 2015.

[145] H. T. T. Phan and M. J. E. Sternberg. PINALOG: a novel approach to align protein

interaction networks—implications for complex detection and function prediction.

Bioinformatics, 28(9):1239–1245, May 2012.

[146] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping community

structure of complex networks in nature and society. Nature, 435(7043):814–818,

Number: 7043 Publisher: Nature Publishing Group, June 2005.

[147] R. Ibragimov, M. Malek, J. Guo, and J. Baumbach. GEDEVO: An Evolutionary

Graph Edit Distance Algorithm for Biological Network Alignment. In T. Beißbarth,

M. Kollmar, A. Leha, B. Morgenstern, A.-K. Schultz, S. Waack, and E. Wingender,

editors, GCB 2013, volume 34 of OpenAccess Series in Informatics (OASIcs), pages

68–79, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

ISBN 978-3-939897-59-0. doi: 10.4230/OASIcs.GCB.2013.68. URL http:// dr

ops.dagstuhl.de/ opus/volltexte/2013/ 4229. ISSN: 2190-6807 Artwork Size: 12

pages Medium: application/pdf Publisher: Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik GmbH, Wadern/Saarbruecken, Germany.

[148] A. Elmsallati, A. Msalati, and J. Kalita. Index-Based Network Aligner of Protein-

Protein Interaction Networks. IEEE/ACM Transactions on Computational Biology

and Bioinformatics, 15(1):330–336, Conference Name: IEEE/ACM Transactions on

Computational Biology and Bioinformatics, January 2018.

[149] A. Elmsallati, S. Roy, and J. K. Kalita. Exploring Symmetric Substructures in Protein

Interaction Networks for Pairwise Alignment. In I. Rojas and F. Ortuño, editors,

Bioinformatics and Biomedical Engineering, Lecture Notes in Computer Science,

pages 173–184, Cham, 2017. Springer International Publishing. ISBN 978-3-319-

56154-7. doi: 10.1007/978-3-319-56154-7_17.

114

http://drops.dagstuhl.de/opus/volltexte/2013/4229
http://drops.dagstuhl.de/opus/volltexte/2013/4229


[150] The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic

Acids Research, 45(D1):D158–D169, January 2017.

[151] R. P. Huntley, T. Sawford, P. Mutowo-Meullenet, A. Shypitsyna, C. Bonilla, M. J.

Martin, and C. O’Donovan. The GOA database: Gene Ontology annotation updates

for 2015. Nucleic Acids Research, 43(D1):D1057–D1063, Number: D1, January

2015.

[152] A. Calderone, L. Castagnoli, and G. Cesareni. mentha: a resource for browsing

integrated protein-interaction networks. Nature Methods, 10(8):690–691, August

2013.

[153] B. Aranda, H. Blankenburg, S. Kerrien, F. S. L. Brinkman, A. Ceol, E. Chautard,

J. M. Dana, J. De Las Rivas, et al. PSICQUIC and PSISCORE: accessing and scoring

molecular interactions. Nature Methods, 8(7):528–529, Bandiera_abtest: a Cg_type:

Nature Research Journals Number: 7 Primary_atype: Correspondence Publisher:

Nature Publishing Group Subject_term: Bioinformatics;Proteomics Subject_term_id:

bioinformatics;proteomics, July 2011.

[154] N. del Toro, M. Dumousseau, S. Orchard, R. C. Jimenez, E. Galeota, G. Launay,

J. Goll, K. Breuer, et al. A new reference implementation of the PSICQUIC web

service. Nucleic Acids Research, 41(Web Server issue):W601–W606, July 2013.

[155] S. Orchard, S. Kerrien, S. Abbani, B. Aranda, J. Bhate, S. Bidwell, A. Bridge,

L. Briganti, et al. Protein interaction data curation: the International Molecular

Exchange (IMEx) consortium. Nature Methods, 9(4):345–350, April 2012.

[156] E. Triantaphyllou. Multi-criteria Decision Making Methods: A Comparative Study,

volume 44 of Applied Optimization. Springer US, Boston, MA, 2000. ISBN 978-

1-4419-4838-0 978-1-4757-3157-6. doi: 10.1007/978-1-4757-3157-6. URL http:

// link.springer.com/10.1007/978-1-4757-3157-6. Series Editors: _:n291.

[157] L. Bennett, B. Melchers, and B. Proppe. Curta: A General-purpose High-Performance

Computer at ZEDAT, Freie Universität Berlin. page 5 S., Artwork Size: 5 S. Publisher:

Freie Universität Berlin, 2020.

[158] V. Vijayan, D. Critchlow, and T. Milenković. Alignment of dynamic networks.
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Zusammenfassung

Die ‘Globale Netzwerkausrichtung’ in Protein-Protein-Interaktionsnetzwerken ist ein NP-
vollständiges Problem aufgrund der widersprüchlichen Natur der biologischen und topol-
ogischen Ausrichtungsziele. Es wurden bereits mehrere Aligner entwickelt, die sich auf
verschiedene Prioritäten und Ziele des Problems konzentrieren. Keine dieser Alignment-
Heuristiken liefert jedoch exakte Lösungen, obwohl sie die Problemziele bis zu einem
gewissen Grad erreichen. Aus diesem Grund ist die Forschungsfrage, wie man stärkere
Aspekte von unterschiedlichen Network Alignment Heuristiken vereinen kann, sehr vielver-
sprechend. In dieser Arbeit wird das Ziel verfolgt, die Methoden zum Durchsuchen des
Suchraumes dieses Problems zu verbessern, indem die gleichzeitige Verwendung mehrerer
Heuristiken verwaltet wird, und zu diesem Zweck werden zwei neuartige populationsbasierte
meta-heuristische Methoden vorgeschlagen.
Bei der ersten dieser Methoden (SUMONA) handelt es sich um einen überwachten genetis-
chen Algorithmus, der eine Erweiterung des rechenintensiven memetischen Multi-Zielsetzung
algorithmus OptNetAlign darstellt. Diese Methode zielt darauf ab, den Ausrichtungsprozess
zu beschleunigen und zu leiten, indem der Crossing-Over-Mechanismus des genetischen
Algorithmus mit Eingaben von anderen Alignern/Heuristiken modifiziert wird. Der Algo-
rithmus basiert auf einer generischen Prozedur, die mehrere Alignments mit wechselnden
Heuristiken und Eingabeparametern generiert, die generierten Alignments klassifiziert, einen
randomisierten Alignment-Auswahlmechanismus aus den klassifizierten Alignments für das
Cross-over etabliert und schließlich globale und lokale Suchparameter anpasst. Mit dieser
Methode ist es möglich, eine bessere Laufzeitleistung zu erzielen, bestimmte Ziele gegenüber
anderen zu priorisieren und auch die sekundären Ziele zu optimieren.
Die zweite Methode (PERSONA) ist ein von einem Partikelschwarm inspirierter kollabora-
tiver Ansatz, der mehrere Aligner so orchestriert, dass sie ihre Teillösungen kontinuierlich
austauschen, während sie Fortschritte machen. Diese Aligner bilden gemeinsam einen
Partikelschwarm, der in einer reaktiven Akteur-Umgebung nach multiobjectiven Lösungen
für das Alignment-Problem sucht. Innerhalb des Schwarms senden die führenden oder
prominenten Akteure den stärkeren Teil ihrer Lösung als Teilgraphen an andere Akteure und
erhalten nach Auswertung dieser Teillösungen die stärkeren Teilgraphen der Gegenpartei
zurück. Die individuellen Alignment-Heuristiken wurden ebenfalls im Rahmen dersel-
ben Forschung entwickelt und auf der Grundlage von Alternativen wie Seed-and-Extend-
Ansätzen mit verschiedenen Zentralitäts- und Sequenz-Seeds, Cluster-Mapping-Ansatz und
Knotenähnlichkeitspriorisierung implementiert. Sowohl die populationsbasierten meta-
heuristischen Aufgaben als auch die individuellen heuristischen Aufgaben wurden in einer
nicht-deterministischen Weise implementiert, um die Flexibilität zu verbessern und zu verhin-
dern, dass man in lokal optimalen Lösungen gefangen ist. Die mit dieser Methode erzielten
Ergebnisse sind sowohl für topologische als auch für Knotenähnlichkeitsziele bemerkenswert
optimiert und ausgewogen.
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