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Abstract

Knowledge about the dynamical properties of biomolecules is essential to understand their

function in biological processes. This thesis approaches the task to compute dynamical prop-

erties with two different strategies. Part A focuses on Molecular Dynamics (MD) simulations

combined with path reweighting. Three of the most widely used underdamped Langevin inte-

grators for MD simulations are the splitting methods BAOAB and BAOA which are available

in the MD packages OpenMM and AMBER and the Gromacs Stochastic Dynamics (GSD)

integrator implemented in GROMACS. We found that all three integrators are equivalent

configurational sampling algorithms and thus yield configurational properties at equivalent

accuracy. MD simulations with stochastic integrators such as Langevin integrators offer the

possibility to reweight estimated dynamical properties using path reweighting. With path

reweighting we can for example recover the original dynamics from MD simulation that have

been conducted with enhanced sampling methods. The key component of path reweight-

ing is the path reweighting factor M which strongly depends on the chosen integrator. We

derive ML for underdamped Langevin dynamics propagated by a variant of the Langevin

Leapfrog integrator. Additionally, we present two strategies which can be used as blueprints

to straightforwardly derive ML for other Langevin integrators. The previously reported path

reweighting factor matches the Euler-Maruyama integrator for overdamped Langevin dy-

namics and was used as standard reweighting factor even though the MD simulation was

conducted with an underdamped Langevin integrator. We prove that this path reweighting

factors differs from the exact ML only by O(ξ4∆t4) and thus yields highly accurate dynamical

reweighting results (∆t is the integration time step, and ξ is the collision rate.).

Part B of this thesis combines experimental and theoretical approaches to investigate Multi-

ple Inositol Polyphosphate Phosphatase 1 (MINPP1)-mediated inositol polyphosphate (InsP)

networks. We use 13C-labeling experiments combined with nuclear magnetic resonance spec-

troscopy (NMR) to uncover a novel branch of InsP dephosphorylation in human cells. Ad-

ditionally, we extract the corresponding reaction rates using a Markovian kinetic scheme as

theoretical model to describe the network.
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Zusammenfassung

Wissen über die dynamischen Eigenschaften von Biomolekülen ist für das Verständnis ihrer

Funktion in biologischen Prozessen unerlässlich. Diese Arbeit geht die Berechnung dynamis-

cher Eigenschaften auf zwei verschiedene Arten an. Teil A konzentriert sich auf moleküldy-

namische (MD) Simulationen in Kombination mit Pfadumgewichtung. Drei der am weitesten

verbreiteten Langevin-Integratoren für MD-Simulationen sind die Splittingmethoden BAOAB

und BAOA, die in den MD-Paketen OpenMM und AMBER verfügbar sind, sowie der Gro-

macs Stochastic Dynamics (GSD)-Integrator, der in GROMACS implementiert ist. Wir

zeigen, dass alle drei Integratoren äquivalente Konfigurations-Sampling-Algorithmen sind

und somit Konfigurationseigenschaften mit gleicher Genauigkeit liefern. MD-Simulationen

mit stochastischen Integratoren wie z. B. Langevin-Integratoren bieten die Möglichkeit, dy-

namische Eigenschaften mit Hilfe von Pfadumgewichtungsmethoden umzugewichten. Mit

Pfadumgewichtungsmethoden können wir zum Beispiel die ursprüngliche Dynamik aus MD-

Simulationen wiederherstellen, welche mit Enhanced-Sampling-Methoden durchgeführt wur-

den. Die Schlüsselkomponente von Pfadumgewichtungsmethoden ist der Pfadumgewich-

tungsfaktor M , der stark von dem gewählten Integrator abhängt. Wir leiten ML für eine

angevin-Dynamik her, die mittels einer Variante des Langevin-Leapfrog-Integrators propagiert

wird. Zusätzlich stellen wir zwei Strategien vor, die als Blaupausen zum Herleiten der

ML anderer Langevin-Integratoren verwendet werden können. Der zuvor berichtete Pfad-

umgewichtungsfaktor entspricht dem Euler-Maruyama-Integrator für überdämpfte Langevin-

Dynamik und wurde als Standardpfadumgewichtungsfaktor verwendet, obwohl die jeweilige

MD-Simulation mit einem Langevin-Integrator durchgeführt wurde. Wir beweisen, dass sich

dieser Pfadumgewichtungsfaktor vom exakten ML nur um O(ξ4∆t4) unterscheidet und somit

hochpräzise umgewichtete dynamische Größen liefert (∆t ist der Integrationszeitschritt und

ξ ist die Kollisionsrate.).

TeilB dieser Arbeit kombiniert experimentelle und theoretische Ansätze um Inositol Polyphos-

phat (InsP) Netzwerke, welche von Multiple Inositol Polyphosphate Phosphatase 1 (MINPP1)

vermittel wurden, zu untersuchen. Wir verwenden 13C-Markierungsexperimente in Kombina-

tion mit Kernspinresonanzspektroskopie (NMR), um einen neuen Zweig der InsP-Deposphorylierung

in menschlichen Zellen aufzudecken. Darüber hinaus extrahieren wir die entsprechenden

Reaktionsraten unter Verwendung eines Markov’schen kinetischen Schemas als theoretisches

Modell zur Beschreibung des Netzwerks.
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1 Introduction

Motivation Everywhere in nature, dynamical processes occur on timescales of various mag-

nitudes. Our solar system formed and evolved over billions of years,[1] continents on earth

have taken several million years to form,[2] and weather phenomena can last for minutes to

centuries.[3] Much shorter time scales can be observed on a microscopic scale. The dynamics

of biomolecules, for example, span multiple orders of magnitude,[4–7] from fast bond vibra-

tions[8,9] to slow protein folding events.[10–16] Biomolecules are fundamental building blocks of

living organisms and their dynamics are a critical element of their function.[17] To investigate

the behavior of biomolecules, we can evaluate dynamical quantities such as binding rates,

time scales of conformational changes between metastable states, relaxation times and reac-

tion rates. To measure dynamical quantities, we can either deploy computer simulations or

perform experiments. In laboratory experiments, we usually measure the properties of bulk

matter. One of the advantages of laboratory experiments is that we can, for example, observe

biomolecules in environments as close as possible to their corresponding living organism or

we can isolate them in biochemical experiments. However, the experimental techniques to

handle biomolecules and measure their properties with quantification methods usually pose

a major challenge. In computer simulations such as Molecular Dynamics (MD) or Quantum

Mechanics (QM) simulations, we usually describe the system on a molecular level. A big ad-

vantage of computer simulations is that we can observe microscopic quantities that would be

extremely complex or even impossible to observe in laboratory experiments. Unfortunately,

depending on the size of the system and the level of theory, computer simulations can be

computationally expensive and very time consuming.

This thesis explores both simulation-based and experimental strategies to determine dynam-

ical quantities. Part A focuses on MD simulations and the Girsanov reweighting method

which can be used to shed light onto dynamical processes characterized by large energy bar-

riers. PartB combines experimental and theoretical approaches in order to study the complex

dephosphorylation network of two different inositol polyphosphates.

A: MD simulations MD simulations are computer simulations that describe the system

of interest on a molecular level. The molecules are represented as a set of particles, whose

inter- and intramolecular interactions are approximated by a potential energy function and a

corresponding parameter set referred to as a force field. Solving the equation of motion yields

an integration scheme, also called integrator, that can be used by an MD simulation program

to approximate the true solution of the given equation of motion as a time-discretized trajec-

tory.[18–20] The trajectories can then be analyzed to give insight into the different dynamical

processes of the system.[21–25]

This thesis focuses on Langevin dynamics approximated by Langevin integrators[26], which

belong to the class of stochastic integrators and are widely deployed to correctly sample

the canonical ensemble.[27] There exist two regimes for Langevin dynamics: the under-



2 1 Introduction

damped regime governed by the Langevin equation of motion and the overdamped regime

that corresponds to its high friction limit. The most commonly used integrator for over-

damped Langevin dynamics is the Euler-Maruyama integrator[28,29], however, for under-

damped Langevin dynamics a huge variety of different integrators[19,30–45] is available. As

a consequence, we are immediately confronted with the questions: What are the similari-

ties and differences between the underdamped Langevin integrators? Which integrator is

the best choice for a specific application? During the last decade, these questions have

been addressed and similarities between integrators under specific conditions have been re-

ported.[30,31,33,37,40,46–50] Part A1 of this thesis picks up at this point and argues that two of

the most widely used Langevin integrators are equivalent configurational sampling algorithms.

Potential reweighting Due to large energy barriers, some molecular transitions have time

scales well beyond what MD simulations are capable of covering. To overcome this limitation

we can deploy enhanced sampling techniques that either raise the temperature of the sys-

tem[51–55] or introduce a bias to the potential energy function[56–60] in order to provide more

energy to cross the barriers. Unfortunately, enhanced sampling techniques alter the dynamics

because they add energy to the system as schematically shown in fig. 1.1, left. To recover

the original dynamical information from the biased simulations we have to apply dynamical

reweighting techniques, such as potential reweighting or temperature reweighting. This the-

sis focuses on potential reweighting and for further information on temperature reweighting,

the reader is referred to Refs. [61–63]. Another application of potential reweighting is found

in the context of force field optimization. Fig. 1.1, right schematically shows how potential

reweighting can help to study the influence of force field parameters on the dynamics of the

system with minimal computational effort.

In recent years, a number of potential reweighting techniques have been proposed that are

based on different formulations of molecular transitions. Part A2 of this thesis collects all

of these methods in a review paper and groups them into four main categories based on the

framework from which the method has been developed and its underlying assumptions. Path

reweighting represents one of these categories and is a method that reweights path ensem-

ble averages like time-lagged correlation functions from short paths generated by a biased

simulation. For successful reweighting in path space, we need the mathematical expression

of the path reweighting factor M , which is the ratio of the probability to observe a path in

the unbiased potential and the probability to observe the same path in the biased potential.

Unfortunately, this expression strongly depends on the integrator that was used to generate

the biased paths and has to be derived from the corresponding integrator equations. For over-

damped Langevin dynamics, the path reweighting factor is connected to the Onsager-Machlup

function[64–66] and has been known for several decades. Path reweighting factors for under-

damped Langevin dynamics integrators have not yet been reported. Additionally, we face the

problem that M is very expensive to calculate because it requires knowledge of the configu-

rational state and the corresponding unbiased forces at each and every simulation step. This

quickly leads to performance issues and memory problems for high-dimensional systems. As
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a consequence, potential reweighting has been limited to diffusion in low-dimensional energy

landscapes[67–70] and to short trajectories of alanine dipeptide.[71] The Girsanov reweighting

method[72–75] for Markov State Models[76–81] (MSMs) proposed a solution to this problem.

The method expresses M in terms of the random number ηk that was drawn by the integra-

tor at each simulation step k and the random number difference ∆ηk that relates the biased

trajectory to the unbiased forces. This way, only the biasing force instead of the unbiased

forces is required at each simulation step. Donati et al. additionally implemented Girsanov

reweighting on-the-fly and were the first to report the application of potential reweighting

to a long trajectory of a molecular system.[73] Later on, Donati et al. successfully combined

the enhanced sampling technique metadynamics[58–60] with Girsanov reweighting to compute

mean first hitting times in alanine dipeptide and to estimate the implied timescale associ-

ated with the opening and closing of a β-hairpin as well as the corresponding conformational

states.[74,82] In both works, the authors use underdamped Langevin dynamics to generate the

biased trajectories and achieved excellent results with an reweighting factor Mapprox that ap-

proximates ∆ηk with the expression derived from overdamped Langevin dynamics. However,

at the time it was not quiet clear why this approximation yielded such accurate results. Part

A3 of this thesis provides an answer to this question including the corresponding mathe-

matical proof and, for the first time in literature, reports the path reweighting factor for an

underdamped Langevin integrator. Additionally, A3 reports a simple scheme that can be

used to derive the path reweighting factor for any other underdamped Langevin integrator

and provides detailed insight into the relationship between biasing force, biased forces and

random numbers. Please note that this relationship has already been indicated in Refs. [72]

and [73].

Figure 1.1:
Schematic representation of two different potential reweighting applications: in combination with metady-
namics (left) and as a tool for force field optimizations (right).
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B: Experimental data and kinetic models The combination of theoretical and experi-

mental approaches can be a very powerful tool to investigate the function of biomolecules in

natural processes like metabolism or signal transduction pathways. Dynamical quantities are

usually not directly accessible with analytical methods and we have to measure correlations

or time series of quantities that contain dynamical information about the system. Unfor-

tunately, it can be very difficult to extract this kind of information from experimental data

because it is often noisy and different species are difficult to distinguish. However, if the mea-

sured data set is well-resolved and interpretable, theoretical models can be used to extract

dynamical quantities. A very simple but powerful theoretical model to extract reaction rates

from experimentally measured time series of concentrations is the kinetic scheme.[83,84]

Figure 1.2:
Schematic representation of a kinetic scheme with 5 states.

A kinetic scheme as depicted in Fig. 1.2 can be understood as a network of distinct states

where the connections between the states represent the reaction step from one state to the

other. If the connections are constant with respect to time, the kinetic scheme is called

Markovian. The mathematical representation of a kinetic scheme is called a master equation

and describes the dynamics in terms of the probability to occupy each of the states at time t.

As an example, we can interpret Fig. 1.2 as the reaction network of an enzyme that converts

substrate A via two intermediates B and C to the products D and E along two distinct

pathways. In this context, we can understand the different species A,B, . . . , E as distinct

states and link the concentration of a species at time t to the probability to find the system

in the corresponding state. Additionally, we can interpret the line between two states as the

(time-constant) reaction rate for the forward and the backward reaction. The kinetic scheme

can be used to either calculate the time evolution of the concentrations from the reaction

rates or to extract the reaction rates from the time evolution of the concentrations.

A real life example of such a kinetic network is the inositol polyphosphate (InsP) metabolism

in eukaryotes. InsPs are small, water-soluble molecules that play a key role in fundamental

physiological processes.[85–87] All InsPs have a myo-inositol scaffold but vary in their phospho-

rylation pattern.[88–91] Studies showed, that inositol-1,3,4,5,6-pentakisphosphate (InsP5[2OH])
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and inositol hexakisphosphate (InsP6) are precursors for the biosynthesis of inositol pyrophos-

phates (PP-InsPs) which have recently drawn increasing attention due to their involvement in

central signaling processes.[92] Moreover, InsP6 has been reported to be a structural cofactor

in proteins and protein complexes and as a “molecular glue” for protein-protein interac-

tions.[93–96] It is known that different InsPs can be converted into each other via phospho-

rylation or dephosphorylation pathways catalyzed by kinases or phosphatases, respectively.

The kinase-mediated phosphorylation pathways have been studied fairly well, however, the

dephosphorylation pathways are largely unresolved.[97] The only known phosphatase in the

human genome able to dephosphorylate InsP6 is MinPP1 (Multiple Inositol Polyphosphate

Phosphatase 1). MINPP1 has recently been linked to a neurodegenerative disease that

severely impacts cognitive functions and life expectancy.[98,99] To gain a deeper insight into

the functions of InsPs and the role of MINPP1 in human health and diseases it can be very

beneficial to study the MINPP1 mediated dephosphorylation pathways of different InsPs.

Part B1 of this thesis studies the MINPP1 mediated dephosphorylation of InsP5[2OH] and

InsP6 in collaboration with the Fiedler group (Leibniz-Forschungsinstitut für Molekulare

Pharmakologie and Humboldt-Universität zu Berlin). We combine advanced biochemical
13C-labeling experiments with BIRD-{1H-13C}HMQC-NMR measurements to extract the

concentration time series of different InsP metabolites and deploy a kinetic scheme to extract

reaction rates from the experimental data set.
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1.1 Structure and research questions

This thesis is divided into two parts: A dynamical quantities via MD simulations and B

dynamical quantities via experimental data.

Section 2 provides a short explanation of the mathematical background and the meth-

ods used to address the research questions in both parts. We explain the basic concepts

of stochastic calculus, introduce underdamped and overdamped Langevin dynamics and es-

tablish the connection between the corresponding stochastic differential equations and their

Fokker-Planck equations. Furthermore, we introduce path probabilities and path expected

values and summarize the concept of path reweighting. Finally, we briefly recall the theoret-

ical background for Markov State Models.

Section 3 presents all publications that have been produced as a part of this thesis. Addi-

tionally, we give a short summary of each paper in the individual prefaces.

A1 In this publication we focus on the underdamped Langevin integrators

BAOAB, BAOA and GSD. We address the research questions:

1) What are the similarities and differences between the Langevin integra-

tors?

2) Which integrator is the best choice for a certain application?

A2 In this publication we summarize and categorize state-of-the art potential

reweighting techniques. We address the question:

1) Which potential reweighting methods exist?

2) What are their similarities and differences?

A3 In this publication, we focus on the path reweighting for overdamped and

underdamped Langevin dynamics. We address the research questions:

1) How can we derive path reweighting factors for underdamped Langevin

dynamics integrators?

2) Why does reweighting with Mapprox yield excellent reweighting results

for underdamped Langevin dynamics?

3) What is the relationship between the different representations of the

reweighting factor?

SI Supporting Information for part A

This section presents non-published additional information for part A. We

repeat the numerical accuracy studies reported in part A1 with more un-

derdamped Langevin integrators and extend the study to dynamical quan-

tities. Additionally, we apply the strategy introduced in part A3 to derive
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the path reweighting factor M for the ABOBA integrator.

B1 This publication combines experimental and theoretical approaches to shed

light onto the MINPP1 mediated dephosphorylation pathways of InsP5[2OH]

and InsP6, respectively. We address the research questions:

1) Do lower phosphorylated InsPs play a role in the InsP metabolism in

mammalian cells?

2) What are the distinct MINPP1 mediated dephosphorylation pathways

of InsP5[2OH] and InsP6?

Section 4 draws the conclusion of this thesis and provides an outlook on how research could

be proceeded from here.
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2 Theory

2.1 Stochastic calculus

In Molecular Dynamics (MD) simulations, the dynamics are governed by an equation of

motion which describes the movement of each particle in the system according to classical

mechanics. To perform simulations in the NV T ensemble (number of particles N , volume V ,

temperature T ) and hence control the temperature, we can deploy deterministic thermostats

such as the Nosé-Hoover thermostat or stochastic thermostats such as the Andersen[100] or the

Langevin thermostat.[27] This thesis focuses on Langevin thermostats which include stochastic

forces to couple the system to an external heat bath. Consequently, we have to work with

stochastic processes, Stochastic Differential Equations (SDEs) and methods from stochastic

calculus. This section briefly introduces the Wiener process and stochastic integration and

uses both to derive the solution of the Ornstein-Uhlenbeck process. All content within this

section is based on Refs. [19, 29, 101, 102]. The mathematics is presented for the one-

dimensional case but can also be extended to N dimensions (see Refs. [19, 29, 101, 102]).

2.1.1 Stochastic processes

A stochastic process is a mathematical model that can be used to describe systems that

appear to vary in a random manner. They have a variety of applications for example in

biology,[103] chemistry,[83] physics[83,104] or signal processing.[105] A stochastic process can be

described by a random variable X(t) whose values x0, x1, x2, . . . at times t0, t1, t2, . . . can

be measured. The time evolution of X(t) can be represented by an SDE. Additionally, we

assume the existence of a set of joint probability densities P (x0, t0;x1, t1; . . . ) which describe

the system completely. This means, that we can either study the system from a probabilistic

point of view via diffusion equations and Fokker-Planck equations (discussed in sec. 2.3)

or from a trajectory point of view via the SDE (discussed sec. 2.2). Note that sec. 2.3.1

discusses the connection between FP-equations and SDEs in detail. In general, there exists a

variety of stochastic processes with different properties such as Bernoulli, Wiener or Poisson

processes.[29,101] However, this thesis only focuses on Wiener processes (sec. 2.1.3).

2.1.2 The Gaussian distribution

The Gaussian distribution, also called normal distribution or bell curve, is a type of continu-

ous probability distribution. In physics, metrology and social science it is used to represent

the distribution of real-valued random variables. One of its most prominent applications is
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the description of Brownian motion. The importance of Gaussian distributions in the pre-

viously mentioned fields is partly due to the central limit theorem.[106] The theorem states

that the properly normalized sum of many independent random variables converges towards

a Gaussian distribution as the number of random variables increases. This is the case even

if the random variables themselves are not Gaussian.

Consider the Gaussian random variable X. The corresponding probability density function

is the Gaussian

X ∼ P (x) =

√
1

2πα2
exp

(
−1

2

(x− µ)2

α2

)
(2.1)

with µ being the mean and α2 representing the variance of P (x). A Gaussian with mean µ

and variance α2 can equivalently be represented by the notation N (µ, α2).

The moments of X are given as

first moment ⟨X⟩ = µ (2.2)

second moment
〈
X2
〉
= µ2 + α2 . (2.3)

The first moment ⟨X⟩ is always equal to the mean µ. If the mean is zero µ = 0 then the

second moment is always equal to the variance

Var(X) =
〈
(X − µ)2

〉
= ⟨X2⟩ − ⟨X⟩2 = ⟨X2⟩ = α2 . (2.4)

Another general property of the variance is that Var(kX) = k2Var(X) holds for k ∈ R.

Hence, we can describe any random Variable X ∼ N (µ, α2) by the scaled and shifted random

variable Z

X = αZ + µ with Z ∼ N (0, 1) , (2.5)

where Z is distributed according to the standard Gaussian with zero mean and unit variance.

Gaussians with unit variance are more convenient to handle and with the relation in eq. 2.5

we can simplify any given Gaussian.

2.1.3 The Wiener process

A Wiener process W (t) is a real-valued continuous-time stochastic process with station-

ary independent increments which is Markovian and has normally distributed increments

W (t) − W (s). There are many areas in which the Wiener process occurs frequently, e.g.

physics, economics, finance, evolutionary biology, mathematics and engineering. In physics
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it is used to describe diffusion processes like Brownian motion or other types of diffusion that

can be represented by a Fokker-Planck (FP) or Langevin dynamics. A Wiener process can

be characterized in many different ways. It can for example be constructed as the scaling

limit of a random walk which will not be discussed in detail in this thesis.

The derivation we want to show here uses the probabilistic description of the stochastic

process X(t). In this context, we introduce the conditional probability density P (x, t|x0, t0)
which describes the probability to find the system in state x at time t given it was in x0 at t0.

Additionally, we assume that X(t) is Markovian. Then, the time evolution of P (x, t|x0, t0) is
given by the diffusion equation

∂

∂t
P (x, t|x0, t0) =

1

2

∂2

∂x2
P (x, t|x0, t0) , (2.6)

which is a second order partial differential equation (PDE). We consider the boundary con-

ditions

lim
x→±∞

P (x, t|x0, t0) = 0 (2.7)

and the initial condition P0 at t = t0 is given as a Dirac δ-function at x0

P (x, t0|x0, t0) = P0 = δ(x− x0) . (2.8)

To solve eq. 2.6 with this initial condition we transfer the problem to Fourier space. In

Fourier space, the second order PDE in eq. 2.6 reduces to a first order ordinary differential

equation (ODE) which is easy to solve. We define the Fourier transform P̂ (s, t|s0, t0) of the
probability density function P (x, t|x0, t0) as

P̂ (s, t|s0, t0) =

∞∫

−∞

dx exp(isx)P (x, t|x0, t0) Fourier transform (2.9)

P (x, t|x0, t0) =

∞∫

−∞

ds

2π
exp(−isx) P̂ (s, t|s0, t0) inverse Fourier transform . (2.10)

Hence, the Fourier transform of the FP-equation (eq. 2.6) reads

∂

∂t
P̂ (s, t|s0, t0) = −1

2
s2P̂ (s, t|s0, t0) . (2.11)
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and the corresponding solution is given as

P̂ (s, t|s0, t0) = exp

(
−1

2
(t− t0)s

2

)
P̂0

= exp

(
−1

2
(t− t0)s

2

)
exp(isx0)

= exp

(
−
[
1

2
(t− t0)s

2 + ix0s

])
, (2.12)

where P̂0 is the Fourier transform of the initial condition in eq. 2.8

P̂0 = exp(isx0) . (2.13)

We perform the inverse Fourier transformation of the solution in eq. 2.12 and get the expres-

sion

P (x, t|x0, t0) =
√

1

2π(t− t0)
exp

(
−1

2

(x− x0)
2

(t− t0)

)
. (2.14)

P (x, t|x0, t0) is a Gaussian with the properties

1st moment (mean) ⟨X(t)⟩ = x0 (2.15)

2nd moment
〈
X2(t)

〉
= x20 + (t− t0) (2.16)

variance
〈
[X(t)− x0]

2
〉
= t− t0 . (2.17)

Eq. 2.14 clearly shows, that the initially sharp probability density function P0 gets spread

out over time.

Let’s now focus on the Wiener process W (t). Per definition, the element at time t0 = 0 is

given as W (0) = 0 and from eqs. 2.15 - 2.17 follows that

mean ⟨W (t)⟩ = W (0) = 0 (2.18)

variance
〈
[W (t)−W (0)]2

〉
=
〈
W (t)2

〉
= t . (2.19)

The increments of W are independent, meaning that all future increments W (t+∆t)−W (t)

with ∆t ≥ 0 are independent of the past valuesW (s) with s ≤ t. Furthermore, the increments

are distributed according to a Gaussian W (t +∆t) −W (t) ∼ N (0,∆t) with zero mean and

∆t variance. The properties of W (t) are summarized in table 1.
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Table 1: Properties of the Wiener process W (t).

1. W (0) = 0

2. W has independent increments

3. W has Gaussian increments W (t+∆t)−W (t) ∼ N (0,∆t)

4. W (t) is continuous in t

2.1.4 Stochastic integration

In the previous section, we introduced the Wiener process W (t) as a time-continuous stochas-

tic process. In this section, we want to extend the methods of calculus to such a stochastic

process.

Before we move to stochastic calculus, let’s recall the definition of a Riemann integral. Con-

sider the time-continuous real-valued integrable function g(t) on the interval [0, τ ]. The

integral with respect to time is given by the Riemann integral

τ∫

0

g(t) dt = lim
n→∞

n−1∑

i=0

g(χi)δt

= lim
n→∞

n−1∑

i=0

g(χi)[ti+1 − ti] , (2.20)

which is defined as the limit of a Riemann sum (right hand side). To construct the Riemann

sum, we divide the interval [0, τ ] into n sub-intervals [ti, ti+1] with i = 0, 1, . . . , n − 1 and

t0 = 0, tn = τ . The time increment δt = [ti+1 − ti] = τ/n is constant for all sub-intervals.

Each element of the Riemann sum represents the area of a rectangle with width δt and height

g(χi), where χi is chosen from the i-th sub-interval ti ≤ χi ≤ ti+1. In this context, the choice

of the χi is arbitrary and it is irrelevant if we take the left or right endpoint, the midpoint

or any other point from the respective sub-interval.

To approach stochastic calculus let’s start with an explicit example. Similar to eq. 2.20, we

can define the integral as the limit of a sum

τ∫

0

W (t) dW (t) = lim
n→∞

n−1∑

i=0

W (χi) [W (ti+1)−W (ti)] . (2.21)

Again, we divide the interval [0, τ ] into n sub-intervals [ti, ti+1] with i = 0, 1, . . . , n − 1 and

t0 = 0, tn = τ . The term [W (ti+1)−W (ti)] represents the increments of the Wiener process

whose properties are shown in table 1. However, in contrast to the Riemann integral in
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eq. 2.20, the choice of the intermediate point χi with ti ≤ χi ≤ ti+1 is not arbitrary.

To emphasize this fact, let’s explicitly calculate the right hand side of eq. 2.21. Using the left

point rule χi = ti and the abbreviations W (ti) = Wi and W (ti+1) = Wi+1 we get

τ∫

0

W (t) dW (t) = lim
n→∞

n−1∑

i=0

Wi [Wi+1 −Wi] . (2.22)

With the identity

W 2
i+1 −W 2

i = (Wi+1 −Wi)
2 + 2Wi(Wi+1 −Wi)

⇔ Wi(Wi+1 −Wi) =
1

2

(
(W 2

i+1 −W 2
i )− (Wi+1 −Wi)

2

)
(2.23)

we can replace the summand as

τ∫

0

W (t) dW (t) = lim
n→∞

1

2

n−1∑

i=0

[
(W 2

i+1 −W 2
i )− (Wi+1 −Wi)

2
]

= lim
n→∞

1

2

[ n−1∑

i=0

(W 2
i+1 −W 2

i )−
n−1∑

i=0

(Wi+1 −Wi)
2

]
. (2.24)

The first sum in eq. 2.24 can easily be computed as

n−1∑

i=0

(W 2
i+1 −W 2

i ) = W 2
n −W 2

0 = W 2(tn)−W 2(0) = W 2(τ) . (2.25)

According to the third point in table 1, the limit of the second sum in eq. 2.24 converges to

lim
n→∞

n−1∑

i=0

(Wi+1 −Wi)
2 = tn = τ . (2.26)

Consequently, the solution of the stochastic integral in eq. 2.21 with the left point rule χi = ti

is given as
τ∫

0

W (t) dW (t) =
1

2

(
W 2(τ)− τ

)
(2.27)

Using the left point rule is also known as Itô calculus and eq. 2.27 is called an Itô stochastic

integral. Approaching eq. 2.21 with the midpoint rule χi = ti+ 1
2
is called Stratonovich

calculus and a Stratonovich stochastic integral is denoted as
∫ τ
0 ◦ dW (t). For the example in
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eq. 2.21 we get in the Stratonovich case

τ∫

0

W (t) ◦ dW (t) = lim
n→∞

n−1∑

i=0

W (ti+ 1
2
) [W (ti+1)−W (ti)]

= lim
n→∞

n−1∑

i=0

W (ti+1) +W (ti)

2
[W (ti+1)−W (ti)]

= lim
n→∞

1

2

n−1∑

i=0

[
W 2(ti+1)−W 2(ti)

]

=
1

2
W 2(τ) . (2.28)

It is apparent that Itô calculus (eq. 2.27) and Stratonovich calculus (eq. 2.28) differ from each

other. From now on and throughout this thesis and all included publications, we solely use

Itô calculus to compute stochastic integrals. For a more detailed discussion on the similarities

and differences between Itô and Stratonovich calculus the reader is referred to Refs. [29, 101].

2.1.5 Properties of Itô stochastic integrals

Consider a smooth deterministic function g(t) and a Wiener process W (t). The Itô stochastic

integral defined as

Y (τ)
def
=

τ∫

0

g(t) dW (t) (2.29)

represents a random variable Y (τ) which is distributed according to a Gaussian with the

moments

mean ⟨Y (τ)⟩ = 0 (2.30)

variance
〈
Y 2(τ)

〉
=

τ∫

0

g2(t) dt . (2.31)

Eq. 2.31 represents the variance for a random variable that is given as an Itô stochastic

integral and the equality holds due to the Itô isometry.[29] Additionally, we want to point out

that eq. 2.29 can be seen as the solution of the stochastic differential equation

dY (τ) = g(τ) dW (τ) (2.32)

given the initial condition Y (0) = 0.

Finally, let’s consider the time interval [0,∆t] and g(t) = 1 for all t. Via eq. 2.29 we can



16 2 Theory

define the random variable X(∆t) as

X(∆t) =

∆t∫

0

dW (t) , (2.33)

where X(∆t) is the solution of the SDE

dX(∆t) = dW (τ) with X(0) = 0 . (2.34)

The first two moments of X(∆t) are given as

mean ⟨X(∆t)⟩ = 0 (2.35)

variance
〈
X2(∆t)

〉
=

∆t∫

0

dt = ∆t . (2.36)

In general, eq. 2.33 computes the increments of the Wiener process and thus it is not surprising

that eqs. 2.35 and 2.36 are equivalent to eqs. 2.18 and 2.19. As a consequence, X(∆t) is

distributed according to

X(∆t) ∼ N (0,∆t) =
√
∆tN (0, 1) , (2.37)

where the equality is explained in eq. 2.5.

2.1.6 Itô’s formula

Itô’s formula is used for changing variables in the stochastic case and can be interpreted as the

stochastic counterpart to the chain rule. The formula can be used to convert an SDE, e.g. a

Langevin equation of motion, to the corresponding Fokker-Planck equation (see section 2.3.1).

To derive the formula, we consider an arbitrary function f(x, t) which is a twice differentiable

scalar function. With the Taylor expansion for bivariate functions we can express df(x, t) as

df(x, t) =
∂f(x, t)

∂t
dt+

∂f(x, t)

∂x
dx+

1

2

∂2f(x, t)

∂x2
(dx)2 + · · · . (2.38)

Suppose x is a stochastic process that obeys the SDE

dx = A(x, t) dt+B(x, t) dW (t) , (2.39)
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with drift A(x, t) ∈ R, Wiener process W (t) and diffusion B(x, t) ∈ R. Substituting dx in

eq. 2.38 with eq. 2.39 yields

df(x, t) =
∂f(x, t)

∂t
dt+

∂f(x, t)

∂x

(
A(x, t) dt+B(x, t)dW (t)

)

+
1

2

∂2f(x, t)

∂x2

(
A2(x, t) (dt)2 + 2A(x, t)B(x, t) dt dW (t) +B2(x, t)(dW (t))2

)
+ · · ·

=
∂f(x, t)

∂t
dt+

∂f(x, t)

∂x
A(x, t) dt+

∂f(x, t)

∂x
B(x, t)dW (t)

+
1

2

∂2f(x, t)

∂x2

(
A2(x, t) (dt)2 + 2A(x, t)B(x, t) dt dW (t) +B2(x, t)dt

)
+ · · · ,

(2.40)

where we used (dW (t))2 = dt.[101] The terms that scale with (dt)2 and dtdW (t) are ne-

glectable because they are of higher order than the last term and thus quickly vanish in the

limit dt → 0

df(x, t) =
∂f(x, t)

∂t
dt+

∂f(x, t)

∂x
A(x, t) dt+

∂f(x, t)

∂x
B(x, t)dW (t) +

1

2

∂2f(x, t)

∂x2
B2(x, t)dt .

(2.41)

Rearranging yields Itô’s formula

df(x, t) =

(
∂f(x, t)

∂t
+

∂f(x, t)

∂x
A(x, t) +

1

2

∂2f(x, t)

∂x2
B2(x, t)

)
dt+

∂f(x, t)

∂x
B(x, t) dW (t) .

(2.42)

The term with the second derivative indicates that changing variables in the Itô stochastic

case cannot be described with ordinary calculus.

2.1.7 The Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process is a model to describe the momentum p of a Brownian

particle with mass m under the influence of friction. Besides the friction force, the model

also includes a random force (stochastic force), which is represented by a Wiener process

W (t). The corresponding SDE is given as

dq(t) =
1

m
p(t) dt

dp(t) = −ξp(t)dt+ σ dW (t) , σ =
√

2kBTξm > 0 (2.43)
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with collision rate ξ, Boltzmann constant kB and temperature T . With the previously defined

Itô stochastic integral we are able to derive an analytic solution for the Ornstein-Uhlenbeck

process. First, we introduce the integration factor exp(ξt) which has the property

d
(
p(t) exp(ξt)

)
= exp(ξt) dp(t) + ξp(t) exp(ξt) dt (2.44)

and multiply eq. 2.43 by exp(ξt)

exp(ξt)dp(t) = −ξp(t) exp(ξt)dt+ σ exp(ξt) dW (t) . (2.45)

We can replace the term on the left hand side and the first term on the right hand side by

eq. 2.44

d
(
p(t) exp(ξt)

)
= σ exp(ξt) dW (t)

⇔ exp(ξt)p(t) = p(0) + σ

t∫

0

exp(ξs) dW (s) (2.46)

and integrate both sides to obtain

p(t) = exp(−ξt)p(0) + σ exp(−ξt)

t∫

0

exp(ξs) dW (s) , (2.47)

where p(0) represents the initial condition. The remaining integral is an Itô stochastic integral

which defines the random variable Y (t) (via eq. 2.29) with mean ⟨Y (t)⟩ = 0 and variance

〈
Y 2(t)

〉
=

t∫

0

exp(2ξs) ds =
exp(2ξt)− 1

2ξ
. (2.48)

Because of eq. 2.5, we can represent Y (t) by the scaled random variable η(t)

t∫

0

exp(ξs) dW (s) = Y (t) =

√
exp(2ξt)− 1

2ξ
η(t) with η(t) ∼ N (0, 1) . (2.49)

Inserting eq. 2.49 into eq. 2.47 yields

p(t) = exp(−ξt)p(0) + σ exp(−ξt)

√
exp(2ξt)− 1

2ξ
η(t) . (2.50)
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We insert σ =
√
2kBTξm and get the solution of the Ornstein-Uhlenbeck as

p(t) = exp(−ξt)p(0) +
√
kBTm (1− exp(−2ξt)) η(t), η(t) ∼ N (0, 1) . (2.51)

with initial momentum p(0).

2.2 Langevin dynamics

As previously mentioned, we can use stochastic thermostats such as the Langevin thermo-

stat to perform MD simulations at a constant temperature. Langevin thermostats, also

called Langevin dynamics, include stochastic processes that are based on the Wiener process.

Consequently, the Langevin equation of motion is given as a stochastic differential equation

(SDE). Additionally, there exists a high friction limit of Langevin dynamics which is called

overdamped Langevin dynamics. To ensure a clear distinction between the two, we refer to

Langevin dynamics as underdamped Langevin dynamics from now on. This section briefly

introduces underdamped and overdamped Langevin dynamics for a one-dimensional system

as well as for a system with N particles. Furthermore, we present a method to derive nu-

merical schemes, also called integrators, that can be used to approximate the solution of the

underdamped Langevin equation of motion as a time-discretized path. All content within

this section is based on Refs. [19, 28, 30, 31, 101, 106, 107].

2.2.1 Underdamped Langevin dynamics

Underdamped Langevin dynamics is a mathematical model that can be used to describe the

dynamics of molecular systems immersed in a fluid. The model includes friction and random

forces that mimic the viscous aspect of the fluid, where the random forces arise from the nu-

merous collisions with the surrounding solvent molecules. Additionally, a drift force governed

by a potential energy function V (x) can be included. The random force couples the system

to an external heat bath and thus enables an exchange of energy between the system and

the heat bath. Underdamped Langevin dynamics models the system in the NV T ensemble

(canonical ensemble) where particle number N , volume V and temperature T are constant.

Consequently, underdamped Langevin dynamics can be used as a thermostat to control the

temperature of the system. Furthermore, underdamped Langevin dynamics is Markovian,

reversible and ergodic.
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The equation of motion for underdamped one-dimensional Langevin dynamics with time-

constant friction is

dq(t) =
1

m
p(t) dt

dp(t) = −∇qV (q(t)) dt︸ ︷︷ ︸
drift term

−ξp(t) dt︸ ︷︷ ︸
friction term

+ σ dW (t)︸ ︷︷ ︸
random term

, σ =
√

2kBTξm , (2.52)

with mass m, position q(t) and momentum p(t) at time t, collision rate ξ, temperature T ,

Boltzmann constant kB, potential energy function V (q(t)), gradient ∇q = ∂/∂q and Wiener

process W (t) with properties as summarized in table 1. The solution ω(t) = (q(t), p(t)) ∈ Ω

of eq. 2.52, also called trajectory, fully represents the state of the system at time t, with

Ω ⊂ R2 denoting the state space. Eq. 2.52 represents an SDE as defined in eq. 2.39 with

x(t) = ω(t), A(ω(t), t) = −(∇qV (q(t)) + ξp(t)) and B(ω(t), t) = σ > 0. Note, that the

SDE which describes the Ornstein-Uhlenbeck process (eq. 2.43) represents an underdamped

Langevin dynamics with ∇qV (q(t)) = 0 for all q(t).

For a system with N particles that can move in three-dimensional Euclidean space the

Langevin equation of motion is given as

dq(t) = M−1p(t) dt

dp(t) = −∇qV (q(t)) dt− ξp(t) dt+ σ̂M
1
2 dW(t) , σ̂ =

√
2kBTξ , (2.53)

with q,p,W ∈ R3N , mass matrix M = diag{m1,m1,m1, . . . ,mN ,mN ,mN} ∈ R3N×3N and

gradient ∇q. The solution of eq. 2.53 is the state-space vector ω(t) = (q(t),p(t)) ∈ Ω with

Ω ⊂ R6N .

2.2.2 The scaling factor of the random term

The random term in a underdamped Langevin equation of motion (eq. 2.52) is represented

by a Wiener process which is scaled by the constant σ > 0. From a mathematical point of

view, the choice of σ is arbitrary. However, if the underdamped Langevin equation of motion

is supposed to accurately represent the dynamics of the system in the sense of classical

mechanics, σ has to be defined accordingly. In classical mechanics, the energy of a system is

evenly distributed among all degrees of freedom in thermal equilibrium.[106] In this context,

the equipartition theorem

〈
Ekin

〉
=

1

2
NdofkBT (2.54)
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relates the temperature T of a system with Ndof degrees of freedom to its average kinetic

energy ⟨Ekin⟩. Consequently, for each degree of freedom the average squared momentum in

the long-time limit ⟨p2⟩ is

〈
p2
〉
= kBTm . (2.55)

Under this condition, the momenta have to be distributed according to the Maxwell-Boltzmann

distribution

P (p) =

√
1

2πkBTm
exp

(
− p2

2kBTm

)
. (2.56)

To understand why σ is set to σ =
√
2kBtξm, we start at eq. 2.52. The drift term can

be neglected because it only depends on the positions q(t) which leads us to eq. 2.43. The

corresponding solution for the momenta p(t) with σ > 0 is given in eq. 2.50 and rearranging

yields

p(t) = exp(−ξt)p(0) + σ

√
1− exp(−2ξt)

2ξ
η(t) with η(t) ∼ N (0, 1) . (2.57)

In order to compare eq.2.57 to the equipartition theorem we compute ⟨p2(t)⟩ where we average
over η(t)

〈
p2(t)

〉
= exp(−2ξt)p2(0) + 2 exp(−ξt)p(0)σ

√
1− exp(−2ξt)

2ξ
⟨η(t)⟩

+ σ2

(
1− exp(−2ξt)

2ξ

)〈
η2(t)

〉

= exp(−2ξt)p2(0) + σ2

(
1− exp(−2ξt)

2ξ

)
. (2.58)

where we used the mean ⟨η(t)⟩ = 1 and the variance ⟨η2(t)⟩ = 1. Finally, we can compute

the long-time limit t → ∞ and define the result to be equal to the equipartition theorem

lim
t→∞

〈
p2(t)

〉
=

σ2

2ξ

def
= kBTm (2.59)

which yields σ =
√
2kBTξm. Eq. 2.59 is also known as the fluctuation-dissipation relation.
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2.2.3 Langevin splitting schemes

Note, that parts of this section were taken from the supporting information of paper A1 pre-

sented in sec. 3.1 where we summarized the concept of splitting methods for underdamped

Langevin dynamics.

The solution of the underdamped Langevin equation of motion shown in eq. 2.52 is the

time-continuous path or trajectory ω(t) = (q(t), p(t)) where q(t) denotes the position and

p(t) denotes the momentum at time t. Unfortunately, for most systems it is impossible to

derive an analytic expression for ω(t). However, we can discretize eq. 2.52 in time and derive

numerical integration schemes which are also called integrators. These integrators can be

used to generate a time-discretized approximation ωτ = (ω0, ω1, . . . ωn) of ω(t) at resolution

∆t where τ = n·∆t denotes the path length. The initial state w0 = (q0, p0) has to be specified

a priori as a starting point for the integrator.

There exist various different methods to derive numerical integration schemes for problems

as shown in eq. 2.52 and hence, a huge variety of underdamped Langevin integrators[19,30–45]

has been reported. Here, we focus on splitting methods which split the vector field in the

Langevin equation of motion into three parts labeled A,B and O

d

(
q(t)

p(t)

)
=

(
p(t)
m

0

)
dt

︸ ︷︷ ︸
A

+

(
0

−∇qV (q(t))

)
dt

︸ ︷︷ ︸
B

+

(
0

−ξp(t)dt+ σdW (t)

)

︸ ︷︷ ︸
O

. (2.60)

with σ =
√
2kBTξm. Part A and B yield PDEs while part O represents the SDE of the

Ornstein-Uhlenbeck process (eq. 2.43).

A : dq(t) =
p(t)

m
dt (2.61a)

B : dp(t) = −∇qV (q(t)) dt (2.61b)

O : dp(t) = −ξp(t) dt+ σ dW (t) . (2.61c)

With the initial condition (qk, pk)
⊤, each of the three parts can be solved separately to yield

the update operators A,B and O which act on the discrete state (qk, pk)
⊤ at iteration step k
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A
(

qk

pk

)
=

(
qk +

∆t
m pk

pk

)
(2.62a)

B
(

qk

pk

)
=

(
qk

pk −∆t∇qV (qk)

)
(2.62b)

O
(

qk

pk

)
=


 qk

e−ξ∆tpk +
√

kBTm(1− e−2ξ∆t) ηk


 with ηk ∼ N (0, 1) . (2.62c)

Eq. 2.62c is the solution of the Ornstein-Uhlenbeck process as reported in eq. 2.51 and ηk

denotes a random number which is drawn from a standard Gaussian distribution. Update

operator A is a deterministic update in position space. Update operators B and O represent

updates in momentum space with B being deterministic and O being stochastic. Eqs. 2.62a

- 2.62c can be used to derive a variety of integrators by applying different sequences of A,B
and O to perform a full time step update (qk, pk)

⊤ → (qk+1, pk+1)
⊤.

The ABO integrator

To illustrate the concept let’s consider the ABO integrator. The name of the integrator

denotes the update sequence in a left-to-right fashion. Thus, we first apply the update

operator A, then B and lastly O to perform a full time step update

(
qk+1

pk+1

)
= OBA

(
qk

pk

)
. (2.63)

When we work with update operators as in eq. 2.63, the operator sequence is given in a

right-to-left fashion because the operator to the very right is the first to act on the state of

the system. With eqs. 2.62a - 2.62c the integrator equations for the ABO integrator are

qk+1 = qk +
∆t

m
pk (2.64a)

pk+1/2 = pk −∆t∇qV (qk+1) (2.64b)

pk+1 = e−ξ∆tpk+1/2 +
√
kBTm(1− e−2ξ∆t) ηk . (2.64c)

Please note, that the subscript 1/2 is solely used to enumerate the intermediate steps for the

momentum update and have no relation to intermediate physical time. That is, read pk+1/2

as “1 of 2 intermediate steps completed”. Other possible splitting sequences are AOB, BAO,

BOA, OAB and OBA. All integrators of this type are called first order accurate, because the

corresponding error of the splitting scheme is O(∆t2).[19,30,31,108]
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We can also construct update sequences in which one or more operators occur twice. In this

case, the respective update operator is carried out for half a time step ∆t
2 , and we denote the

corresponding operators with a prime

A′
(

qk

pk

)
=

(
qk +

∆t
2mpk

pk

)
(2.65a)

B′
(

qk

pk

)
=

(
qk

pk − ∆t
2 ∇qV (qk)

)
(2.65b)

O′
(

qk

pk

)
=


 qk

e−ξ∆t
2 pk +

√
kBTm(1− e−ξ∆t) ηk


 with ηk ∼ N (0, 1) . (2.65c)

Eqs. 2.65a - 2.65c are for example relevant for the symmetric integrators ABOBA, BAOAB,

AOBOA, BOAOB, OBABO and OABAO or for the non-symmetric integrator BAOA.[19,30,31]

Note, that OBABO is also called also called Bussi-Parrinello thermostat.[34]

The ABOBA integrator

To illustrate the concept of half time step updates, let’s consider the ABOBA integrator.

Here, we have the two consecutive half time step updates A’ and B’, then the full time step

update O and finally the two consecutive half time step updates B’ and A’

(
qk+1

pk+1

)
= A′B′OB′A′

(
qk

pk

)
. (2.66)

Note, that the prime notation is omitted in the integrator name. With eqs. 2.62a - 2.62c and

2.65a - 2.65c the integrator equations for the ABOBA integrator are given as

qk+1/2 = qk +
∆t

2m
pk (2.67a)

pk+1/3 = pk −
∆t

2
∇qV (qk+1/2) (2.67b)

pk+2/3 = e−ξ∆tpk+1/3 +
√

kBTm(1− e−2ξ∆t) ηk with ηk ∼ N (0, 1) (2.67c)

pk+1 = pk+2/3 −
∆t

2
∇qV (qk+1/2) (2.67d)

qk+1 = qk+1/2 +
∆t

2m
pk+1 . (2.67e)

Again, the subscript 1/2, 1/3 and 2/3 are solely used to enumerate the intermediate steps

for the position and momentum updates and have no relation to intermediate physical time.

This kind of splitting is called Strang splitting[109] which is second order accurate. The er-

ror of strang splitting is of order O(∆t3).[19,30,31,108] The integrator equations for BAOAB,

AOBOA, BOAOB, OBABO and OABAO and BAOA are summarized in Appendix A.2.



2 Theory 25

Finally, we want to mention that the splitting methods presented in this section can also

be used to approximate the solution of high-dimensional underdamped Langevin dynamics

as defined in eq. 2.53. In this case, the full time step position and momentum updates of

each degree of freedom are defined by the respective integrator equations. For example, to

update the state (xk,pk)
⊤ → (xk+1,pk+1)

⊤ with qk,pk ∈ R3N using the ABOBA integrator,

each degree of freedom (q
(i)
k , p

(i)
k )⊤ is updated according to eqs. 2.67a - 2.67e, where i =

1, 2, . . . , 3N .

2.2.4 Overdamped Langevin dynamics

Overdamped Langevin dynamics, also called Brownian dynamics is the high friction limit
dp
dt ≪ ξp of eq. 2.52 and thus a special case of Langevin dynamics. The assumption is that

due to high friction the acceleration can be neglected and we can set dp = 0 in eq. 2.52

mdq(t) = p(t) dt (2.68)

0 = −∇qV (q(t)) dt− ξp(t)dt+
√
2kBTξmdW (t) . (2.69)

We merge eqs. 2.68 and 2.69, rearrange and get the SDE for overdamped Langevin dynamics

dq(t) = −∇qV (q(t))

ξm
dt+ σ̂ dW (t) , σ̂ =

√
2kBT

ξm
, (2.70)

with mass m, time t, position q(t), momentum p(t), collision rate ξ, temperature T , Boltz-

mann constant kB, potential energy function V (q(t)), gradient∇q = ∂/∂q andWiener process

W (t) with properties as summarized in table 1. The solution ω(t) = q(t) ∈ Γ of eq. 2.70

fully describes the state of the system at time t where Γ ⊂ R denotes the configuration space.

Overdamped Langevin dynamics is Markovian, reversible and ergodic.

For a system with N particles that evolves in three-dimensional Euclidean space according

to overdamped Langevin dynamics we get

dq(t) = −∇qV (q(t))

ξ
M−1 dt+ σ̄M− 1

2 dW (t) , σ̄ =

√
2kBT

ξ
, (2.71)

with q,W ∈ R3N , mass matrix M = diag{m1,m1,m1, . . . ,mN ,mN ,mN} ∈ R3N×3N and

gradient ∇q. The solution of eq. 2.71 is q(t) ∈ Γ with Γ ⊂ R3N .
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2.2.5 The Euler-Maruyama method

The Euler-Maruyama method is the extension of the Euler method to SDEs and can for

example be used to solve the equation of motion for overdamped Langevin dynamics. The

Euler-Maruyama integrator approximates the true solution ω(t) = q(t) of eq. 2.70 as the time

discretized path ωτ = (ω0, ω1, . . . , ωn) = (q0, q1, . . . , qn) with resolution ∆t where τ = n ·∆t

denotes the path length. The initial position q0 must be specified a priori as a starting point

for the integrator.

The Euler-Maruyama integrator is given as

qk+1 = qk −
∇qV (qk)

ξ
∆t+

√
2kBT

ξm
ηk with ηk ∼ N (0, 1) , (2.72)

where the random number ηk at iteration step k is drawn from a standard Gaussian.

For a system with N particles that evolves according to eq. 2.71 in three-dimensional Eu-

clidean space, the Euler-Maruyama integrator is given as

q
(i)
k+1 = q

(i)
k − ∇qV (q

(i)
k )

ξ
∆t+

√
2kBT

ξm(i)
η
(i)
k with η

(i)
k ∼ N (0, 1) , (2.73)

wherem(i), q
(i)
k and η

(i)
k denote the mass, position and momentum of the i-th degree of freedom

with qk ∈ R3N and ηk ∈ R3N .

2.3 The Fokker-Planck equation

Consider the stochastic process X(t) whose time evolution can be described with an SDE,

e.g. as a Langevin dynamics, that includes a drift, diffusion and friction. The corresponding

Fokker-Planck (FP) equation is a partial differential equation (PDE) which governs X(t) as

the time evolution of the probability density function P (x, t|x0, t0) associated with X(t). In

other words, we can approach a given diffusion process via two different points of view and

either study an SDE (Langevin picture) or a PDE (FP-picture). Depending on the research

question, one of the two approaches may be more effective than the other. However, it is

reasonable to study both points of view to grasp the full picture of the nature of diffusion

processes.

This section briefly establishes the connection between SDEs (Langevin dynamics) and FP-

equations for a one-dimensional system and introduces the FP-equation for overdamped

Langevin dynamics and the Ornstein-Uhlenbeck process. For the sake of completeness, we

show the high dimensional versions of the respective FP-equations but refer to Refs. [29, 101]
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for a detailed derivation. All content within this section is based on Refs. [19, 29, 101, 102].

2.3.1 From stochastic differential equations to Fokker-Planck equations

Consider the random process X(t) defined by the SDE in eq. 2.39

dx = A(x, t) dt+ σ dW (t) , (2.74)

with drift A(x, t) and constant diffusion term B(x, t) = σ > 0. Additionally, we assume

that X(t) has the conditional probability density function P (x, t|x0, t0). With Itô’s formula

(eq. 2.42) we can write

df(x, t) =

(
∂f(x, t)

∂t
+

∂f(x, t)

∂x
A(x, t) +

σ2

2

∂2f(x, t)

∂x2

)
dt+ σ

∂f(x, t)

∂x
dW (t) , (2.75)

for the arbitrary twice differentiable function f(x, t) and Wiener process W (t). Taking the

expectation yields

〈
df(x, t)

〉
=

(〈
∂f(x, t)

∂t

〉
+

〈
∂f(x, t)

∂x
A(x, t)

〉
+

σ2

2

〈
∂2f(x, t)

∂x2

〉)
dt , (2.76)

where we used we used that ∂f/∂x and dW (t) are uncorrelated[29,101]

〈
σ
∂f(x, t)

∂x
dW (t)

〉
= σ

〈
∂f(x, t)

∂x

〉〈
dW (t)

〉
= 0 . (2.77)

We divide eq. 2.76 by dt and get

⟨df(x, t)⟩
dt

=
d

dt

〈
f(x, t)

〉

=

〈
∂f(x, t)

∂t

〉
+

〈
∂f(x, t)

∂x
A(x, t)

〉
+

σ2

2

〈
∂2f(x, t)

∂x2

〉
. (2.78)

With the boundary conditions

lim
x→±∞

P (x, t|x0, t0) = 0

lim
x→±∞

∂P (x, t|x0, t0)
∂x

= 0 (2.79)
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we can compute the expected values in eq. 2.78 as

d

dt

∫
dx f(x, t)P (x, t|x0, t0) =

∫
dx

∂f(x, t)

∂t
P (x, t|x0, t0) +

∫
dx

∂f(x, t)

∂x
A(x, t)P (x, t|x0, t0)

+
σ2

2

∫
dx

∂2f(x, t)

∂x2
P (x, t|x0, t0) , (2.80)

where we abbreviated
∫
dx =

∫∞
−∞ dx. On the other hand, the product rule gives

d

dt

∫
dx f(x, t)P (x, t|x0, t0) =

∫
dx

∂f(x, t)

∂t
P (x, t|x0, t0) +

∫
dx f(x, t)

∂P (x, t|x0, t0)
∂t

(2.81)

and setting eq. 2.81 equal to eq. 2.80 yields

∫
dx f(x, t)

∂P (x, t|x0, t0)
∂t

=

∫
dx

∂f(x, t)

∂x
A(x, t)P (x, t|x0, t0) +

σ2

2

∫
dx

∂2f(x, t)

∂x2
P (x, t|x0, t0) (2.82)

= −
∫

dx f(x, t)
∂

∂x

(
A(x, t)P (x, t|x0, t0)

)
+

σ2

2

∫
dx f(x, t)

∂2

∂x2
P (x, t|x0, t0) . (2.83)

In the last step, we integrated by parts as shown in detail in appendix A.1. Eq. 2.81 has to

hold for all integrable functions f(x, t) and thus

∂P (x, t|x0, t0)
∂t

= − ∂

∂x

(
A(x, t)P (x, t|x0, t0)

)
+

σ2

2

∂2

∂x2
P (x, t|x0, t0) , (2.84)

which is the FP-equation that corresponds to the SDE in eq. 2.74.

Equivalently, we can derive the FP-equation for a system with N particles

∂

∂t
P (x, t|x̃, t0) = −

3N∑

i=1

∂

∂xi

(
A(x, t)P (x, t|x̃, t0)

)
+

σ2

2

3N∑

i=1

3N∑

j=1

∂2

∂xi∂xj
P (x, t|x̃, t0) , (2.85)

where P (x, t|x̃, t0) denotes the conditional probability density function to find the system in

state x = (x1, x2, . . . , x3N )⊤ at time t given it was in x̃ at time t0. For a detailed derivation

of eq. 2.85 the reader is referred to Ref. [101].
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2.3.2 The Smoluchowski equation

Consider the SDE for overdamped Langevin dynamics (Brownian dynamics) defined in eq. 2.74

with x = q, A(x, t) = −∇qV (q)/(ξm) and σ = σ̂. Consequently, we can use eq. 2.84 to derive

the FP-equation that corresponds to overdamped Langevin dynamics

∂

∂t
P (q, t|q0, t0) =

∂

∂q

(∇qV (q(t))

ξm
P (q, t|q0, t0)

)
+

σ̂2

2

∂2

∂q2
P (q, t|q0, t0) (2.86)

with σ̂ =
√

(2kBT )/(ξm) and the conditional probability density function P (q, t|q0, t0) to

find the system at position q at time t given it was at q0 at t0. Eq. 2.86 is also called Smolu-

chowski equation.

For a system with N particles that moves in three-dimensional Euclidean space, the Smolu-

chowski equation is given as

∂

∂t
P (q, t|q̃, t0) =

3N∑

i=1

∂

∂qi

(∇qV (q(t))

ξ
M−1 P (q, t|q̃, t0)

)
+

σ̂2

2

3N∑

i=1

3N∑

j=1

∂2

∂qi∂qj
P (q, t|q̃, t0) ,

(2.87)

where P (q, t|q̃, t0) denotes the conditional probability density function to find the system at

position q = (q1, q2, . . . , q3N )⊤ at time t given it was in q̃ at time t0 and σ̂ as defined above.

2.3.3 The Fokker-Planck equation of the Ornstein-Uhlenbeck process

The SDE in eq. 2.43 describes the Ornstein-Uhlenbeck process in one dimension. Replacing

the variable x = p(t) and A(p, t) = −ξp(t) in eq. 2.84 yields the FP-equation for the Ornstein-

Uhlenbeck process

∂

∂t
P (p, t|p0, t0) =

∂

∂p

(
ξp · P (p, t|p0, t0)

)
+

σ2

2

∂2

∂p2
P (p, t|p0, t0) , (2.88)

with σ =
√
2kBTξm and P (p, t|p0, t0) being the conditional probability to find the particle

with momentum p at time t given it had the momentum p0 at time t0. The solution of eq. 2.88
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is the Gaussian

P (p, t|p0, t0) =
√

ξ

πσ2
(
1− exp(−2ξ(t− t0))

)

· exp


− ξ

σ2

(
p− p0 exp(−ξ(t− t0))

)2

1− exp(−2ξ(t− t0))


 . (2.89)

that converges to

lim
t→∞

P (p, t|p0, t0) =
√

ξ

πσ2
exp

(
− ξ

σ2
p2
)

(2.90)

in the long-time limit. With σ =
√
2kBTξm, eq. 2.90 represents the Maxwell-Boltzmann

distribution defined in eq. 2.56. For a more-dimensional treatment of the Ornstein-Uhlenbeck

process, the reader is referred to Refs. [29, 101].

2.4 Path probabilities and path expected values

Stochastic integrators, such as underdamped or overdamped Langevin integrators, generate

time-discretized paths with a probability between zero and one. This probability is called

time-discretized path probability. As illustrated in fig. 2.1a, there are two different routes

which can be taken to derive the corresponding mathematical expression given that we start

at the equation of motion. Following route 1, we discretize the equation of motion in time

and construct numerical integrators (MD algorithms) as explained in sec. 2.2.3. Based on

the integrator equations, we can subsequently derive an expression for the time-discretized

path probability by averaging-out the stochastic part. Depending on the chosen integra-

tor, this approach yields slightly different expressions for the path probability. Paper A3 in

sec. 3.3 demonstrates the second step of route 1 using a simplified version of the underdamped

Langevin integrator developed by Izaguirre et al.[39] as an example.

Following route 2, we stay in the time-continuous picture and formulate the time-continuous

path probability as a path integral. The path integral can subsequently be time-discretized

to yield an expression for the time-discretized path probability. However, the path integral

formalism is not trivial and requires fundamental knowledge about the Wiener measure. For

a detailed discussion on this topic, the reader is referred to Refs. [102, 103, 110].

This section introduces the concept of time-discretized path probabilities for underdamped

Langevin dynamics and briefly discusses path ensemble averages.

Consider the time-discretized path ω = (ω0, ω1, . . . , ωn) = ((q0, p0), (q1, p1), . . . , (qn, pn)) gen-

erated by underdamped Langevin dynamics (eq. 2.52) with time step ∆t. Here, n denotes
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Figure 2.1:
(a) Schematic representation of how time-discretized path probabilities can be derived from an equation of
motion.
(b) Schematic representation of a time-discretized path ω = (ω0, ω1, . . . , ωn) of length n with ωk ∈ R2. The
time tk is given as tk = k∆t with k = 0, 1, . . . , n. P (ω1|ω0;∆t) represents the single-step probability to observe
the step ω0 → ω1 in time ∆t.

the number of time steps and ωk ∈ Ω represents the state at iteration step k with state space

Ω ∈ R2. A schematic representation of ω is shown in fig. 2.1b. The dynamics is governed by

the potential energy function V (q) and the path ω ∈ S of length n + 1 is an element of the

path space S ∈ Ωn+1. The equilibrium distribution P (ω) of the state ω is given as

Pπ(ω) = Pπ(q, p) =
1

Z
exp

(
−V (q)

kBT

)
·
√

1

2πkBTm
exp

(
− p2

2kBTm

)
, (2.91)

with partition function Z =
∫∞
−∞ dq exp(−V (q)/(kBT )), temperature T , Boltzmann constant

kB and mass m. Pπ(ω) is associate with the state space probability measure

π(A) =

∫

A
dωPπ(ω) ∀A ⊂ Ω , (2.92)

where π(A) describes the probability to find the system in subset A of state space Ω. The

probability P (ω) to observe the particular path ω is

P (ω) = P (ω0, ω1, . . . , ωn)

= Pπ(ω0)Pµ(ω1, . . . , ωn|ω0)

= Pπ(ω0) ·
n−1∏

k=1

P (ωk+1|ωk; ∆t) , (2.93)

with Pπ(ω0) being the equilibrium distribution of the initial state ω0 as defined in eq. 2.91.

P (ω1, . . . , ωn|ω0) is the conditional probability to observe the particular path ω conditioned

to the initial state ω0 and P (ωk+1|ωk; ∆t) denotes the single-step probability to observe the
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step ωk → ωk+1 in time ∆t. The equality in eq. 2.93 holds because ω is Markovian. Note, that

the functional form of the single-step probability depends on the chosen integrator and on the

potential energy function. The conditional path probability Pµ(ω1, . . . , ωn|ω0) is associated

with the path probability measure

µ(A) =

∫

A1

dω1

∫

A2

dω2 · · ·
∫

An

dωn Pµ(ω1, . . . , ωn|ω0) , (2.94)

where µ(A) describes the probability to find the system in subset A = A1×A2×· · ·×An ⊂ Ωn

with Ai ⊂ Ω.

Next, we introduce the path observable o : S → R and the corresponding path expected value

⟨o⟩ =
∫

Ω
dω0

∫

Ω
dω1 · · ·

∫

Ω
dωn o(ω)P (ω) (2.95a)

= lim
s→∞

1

s

s∑

i=1

o(ω(i)) . (2.95b)

which can be estimated from a set of s paths {ω(1),ω(2), . . . ,ω(s)} generated at the same con-

ditions as described above. The equality in eq. 2.95b holds because underdamped Langevin

dynamics is ergodic.

Another path expected value is the time-correlation function C(τ) of the integrable function

f : Ω → R which maps a discrete state ωi of the path ω to a real number

C(τ) =

∫

Ω
dω0

∫

Ω
dω1 · · ·

∫

Ω
dωn f(ω0) f(ωn)P (ω)

= lim
s→∞

1

s

s∑

i=1

f(ω
(i)
0 ) f(ω(i)

n ) (2.96)

where τ = n∆t denotes the lag time. Since underdamped Langevin dynamics is ergodic, C(τ)

can also be estimated from a set of paths a set of s paths {ω(1),ω(2), . . . ,ω(s)} generated at

the same conditions as described above with ω(i) = (ω
(i)
0 , ω

(i)
1 , . . . , ω

(i)
n ).

2.5 Path reweighting

Path reweighting is a technique that can be used to compute dynamical quantities of unbiased

dynamics from a set of path generated at a biased dynamics. In the case of a stochastic dy-

namics, such as underdamped Langevin dynamics, the Girsanov theorem[111] can be exploited

to realize reweighting in path space. Hence, path reweighting is sometimes called Girsanov
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reweighting.[73–75] In this section, we briefly introduce the concept of path reweighting for

underdamped Langevin dynamics in one-dimensional Euclidean space. Transferring the con-

cept to a high-dimensional space is straightforward.[73,74] Here, the biased dynamics is called

simulation system and the unbiased dynamics are called target system. All content of this

section is based on Refs. [72–74]

Consider a particle that moves according to underdamped Langevin dynamics (eq. 2.52)

in one-dimensional Euclidean space. In the simulation system, the particle moves in the

simulation potential V (q). In the target system, the particle moves in a perturbed version of

the simulation potential which we call target potential

Ṽ (q) = V (q) + U(q) , (2.97)

with U(q) denoting the bias. Additionally, consider the time-discretized path ω = (ω0, ω1, . . . , ωn)

with ωk ∈ Ω, where Ω ⊂ R2 denotes the state space. The probability P (ω) to observe this

specific ω at the simulation potential is defined in eq. 2.93. Similarly, the path probability

P̃ (ω) to observe ω at the target potential is given as

P̃ (ω) = P̃π(ω0) P̃µ(ω1, . . . , ωn|ω0) . (2.98)

Here, the equilibrium distribution P̃π(ω0)

P̃π(ω) = P̃π(q, p) =
1

Z̃
exp

(
− Ṽ (q)

kBT

)
·
√

1

2πkBTm
exp

(
− p2

2kBTm

)
, (2.99)

with partition function Z̃ =
∫∞
−∞ dq exp(−Ṽ (q)/(kBT )) is associated with the state space

probability measure at the target potential

π̃(A) =

∫

A
dωP̃π(ω) ∀A ⊂ Ω . (2.100)

The conditional probability P̃µ(ω1, . . . , ωn|ω0) is associated with the path probability measure

at the target potential

µ̃(A) =

∫

A1

dω1

∫

A2

dω2 · · ·
∫

An

dωn P̃µ(ω1, . . . , ωn|ω0) . (2.101)

The core concept of path reweighting is, to compare the probability P̃ (ω) to observe ω at

the target potential to the probability P (ω) to observe the exact same path at the simulation
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potential

W (ω) =
P̃ (ω)

P (ω)

=
P̃π(ω0)

Pπ(ω0)
· P̃µ(ω1, ω2, . . . , ωn|ω0)

Pµ(ω1, ω2, . . . , ωn|ω0)

= g(ω0) ·M(ω1, . . . , ωn|ω0) . (2.102)

The first term in eq. 2.102 is the state space reweighting factor g. It is defined as the likelihood

ratio between the probability measures π̃ and π

g(ω0) =
dπ̃

dπ
=

P̃π(ω0)

Pπ(ω0)
=

Z

Z̃
exp

(
−U(q0)

kBT

)
(2.103)

and requires the condition of absolute continuity

π̃(A) = 0 ⇒ π(A) = 0, ∀A ⊂ Ω (2.104)

between the state probability measures π̃ and π (eq. 2.92).[29] M is called path space reweight-

ing factor or just path reweighting factor

M(ω1, . . . , ωn|ω0) =
P̃µ(ω1, ω2, . . . , ωn|ω0)

Pµ(ω1, ω2, . . . , ωn|ω0)
(2.105)

and its functional form depends on the chosen integrator. Deriving M for Langevin inte-

grators is a fundamental part of this thesis and and we refer to sec. 3.3 and sec. 3.4. For

Langevin dynamics, the existence of M is guaranteed by the Girsanov theorem[111] given the

absolute continuity

µ̃(A) = 0 ⇒ µ(A) = 0, ∀A ⊂ Ωn (2.106)

between the path probability measures µ̃ and µ (eq. 2.94) is fulfilled.[29] The product of g

and M (eq. 2.102) can be interpreted as the weight W (ω) the path ω has with respect to the

target potential. If the weight is larger than one, W > 1, then ω has a higher probability at

the target potential than at the simulation potential. This means, its contribution towards

a path expected value is more significant at the target potential than at the simulation po-

tential. The opposite is true if W < 1 and if W = 1 then ω has equal probability in both

potentials.
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In path reweighting, eq. 2.102 is used to express the path expected value ⟨̃o⟩ at the target

potential in terms of the path probability P (ω) at the simulation potential

⟨̃o⟩ =
∫

Ω
dω0

∫

Ω
dω1 · · ·

∫

Ω
dωn o(ω) P̃ (ω)

=

∫

Ω
dω0

∫

Ω
dω1 · · ·

∫

Ω
dωn o(ω)W (ω)P (ω)

=

∫

Ω
dω0

∫

Ω
dω1 · · ·

∫

Ω
dωn o(ω) g(ω0)M(ω1, . . . , ωn|ω0)P (ω) . (2.107)

Consequently, we can compute ⟨̃o⟩ at the target potential from a set of paths Ssim =

{ω(1), . . . ,ω(s)} generated at the simulation potential

⟨̃o⟩ = lim
s→∞

1

s

s∑

i=1

W (ω(i))o(ω(i))

= lim
s→∞

1

s

s∑

i=1

g(ω
(i)
0 )M(ω

(i)
1 , . . . , ω(i)

n |ω(i)
0 ) o(ω(i)) , (2.108)

with ω(i) = (ω
(i)
0 , ω

(i)
1 , . . . , ω

(i)
n ).

Equivalently, we can compute the time-correlation function C̃(τ) at the target potential

C̃(τ) = lim
s→∞

1

s

s∑

i=1

W (ω(i))f(ω
(i)
0 )f(ω(i)

n )

= lim
s→∞

1

s

s∑

i=1

g(ω
(i)
0 )M(ω

(i)
1 , . . . , ω(i)

n |ω(i)
0 ) f(ω

(i)
0 )f(ω(i)

n ) , (2.109)

from a set of paths Ssim generated at the simulation potential with time step ∆t. τ = n∆t

denotes the lag time. Eqs. 2.108 and 2.109 clearly show, that each path contributes to the

path expected value with a certain weight. Paths that are improbable in the target system

have a small weight and their contribution to the path expected value is rather insignificant.

This observation is a direct consequence of violating the absolute continuity requirements in

eqs. 2.104 and 2.106.

2.6 Markov State Models

Molecular systems are high dimensional and the corresponding dynamics can be very complex.

Markov State Models[72–75] (MSMs) are a tool to evaluate Molecular Dynamics (MD) data

in order to build a low-dimensional model which captures the slow dynamics of the system.

MSMs can be build from MD trajectories that were generated by a dynamics which ensures
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Markovianity, ergodicity and microreversibility. An MSM discretizes the configuration space

Γ of a system into y disjoint subsets B1, B2, . . . , By with
⋃y

i=1Bi = Γ and approximates the

trajectory as a Markov jump process between these discrete states. The key component of

an MSM is the time-correlation matrix C(τ) ∈ Ry×y whose elements cij are given as time-

correlation functions. Eq. 2.96 defines the time-correlation function for the arbitrary function

f : Ω → R. In the case of MSMs, this arbitrary function in replaced by the indicator function

1Bi(ω) =




1, if ω ∈ Bi

0, else
(2.110)

and the elements cij of the time-correlation matrix C(τ) with lag time τ = n∆t can be

computed from a set of s paths {ω(1),ω(2), . . . ,ω(s)} as

cij(τ) = lim
s→∞

1

s

s∑

i=1

1Bi(ω
(i)
0 ) 1Bj (ω

(i)
n ) , (2.111)

where ω(i) = (ω
(i)
0 , ω

(i)
1 , . . . , ω

(i)
n ) denotes the i-th path. The set of paths can for example be

extracted from a single long ergodic MD trajectory.[112] In this case, the sum in eq. 2.111 can

be interpreted as counting the transitions from Bi to Bj within time τ along the trajectory.

Row-normalizing C(τ) yields the transition probability matrix T(τ) whose elements tij(τ)

describe the probability to observe a jump from subset Bi to subset Bj in time τ

tij(τ) =
cij(τ)∑y
j=1 cij(τ)

. (2.112)

The left an right eigenvectors li and ri of the transition probability matrix can be computed

by solving the eigenvalue problems

T(τ)ri = λi(τ)ri (2.113a)

l⊤i T(τ) = λi(τ)l
⊤
i , (2.113b)

where λi denotes the corresponding eigenvalues. The approximation quality of the MSM can

be evaluated by checking whether the implied time scales

ti = − τ

ln(λi(τ))
(2.114)

are constant ∀τ > 0. The dominant left and right eigenvectors characterize the MSM and

represent the slow dynamical processes of the system. The corresponding eigenvalues provide

information about the timescales at which the respective process occurs.
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Finally, we want to point out that path reweighting can be used to build the MSM of a target

dynamics from a set of paths generated at a simulation dynamics. Since the construction of

MSMs is based on computing time-correlation functions, the reweighting concept explained

in sec. 2.5 can straight-forwardly be applied to reweight MSMs.
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Summary

We can use Molecular Dynamics (MD) simulations to investigate stationary and dynamical

quantities of a given system, which are usually calculated as averages with respect to the

underlying equilibrium distributions. In an MD program, the dynamics are governed by an

equation of motion which describes the movement of each particle in the system according

to classical physics. To solve the equation of motion, the MD program uses a numerical

algorithm, also called an integrator, that generates a time-discretized trajectory at time step

resolution. A trajectory is a time series that contains the positions and the momenta of each

particle in the system at every time step ∆t.[18,19,29]

Langevin integrators are widely used to perform MD simulations that sample the canonical

ensemble (NV T ; constant temperature T , particle number N and volume V ).[27] They in-

clude a stochastic force that couples the system to an external heat bath which is the reason

why they are also called Langevin thermostats. The corresponding equilibrium distributions

are the configurational Boltzmann distribution in position space and the Maxwell-Boltzmann

distribution in momentum space.

There exist different approaches to solve the Langevin equation of motion and a huge variety

of different Langevin integrators have been reported.[19,30–45] It is also known, that the accu-

racy of the sampled equilibrium distributions varies with the chosen integrator and the size

of the time step.[30,31,33,37,40,46–50] Due to the large number of different Langevin integrators,

we are confronted with two questions:

1) What are the similarities and differences between the Langevin integrators?

2) Which integrator is the best choice for a certain application?

In this publication, we aim to answer question 1 and partially answer question 2 for the widely

used Langevin integrators: BAOAB[30,31], GROMACS Stochastic Dynamics (GSD)[35] and

BAOA[36]. Both the BAOAB and the BAOA integrator emerge from an approach that splits

the vector field in the Langevin equation of motion into three parts labeled A, B and O. Part

A and B are ordinary differential equations (ODEs) that describes a deterministic motion

in position and momentum space, respectively. Part O represents a stochastic differential

equation called the Ornstein-Uhlenbeck process which describes the motion in momentum

space that is due to the friction and random force. All three parts can be solved separately

yielding the update operators A,B and O. Combining the update operators consecutively

yields Langevin integrators whose names represents the applied sequence of update operators

in a left-to-right fashion.[19,30,31]

The BAOAB integrator is frequently used in atomistic MD simulations and is implemented

in the toolkit OpenMMTools[113] for the MD package OpenMM.[114] It has been shown ana-

lytically as numerically, that BAOAB accurately reproduces the configurational Boltzmann

distribution even at large time steps[30,31,33,47,115] and is frequently used in atomistic MD
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simulations.[116,117] The BAOA integrator, also called LFMiddle[37], has recently been im-

plemented in the MD packages OpenMM and AMBER[118]. BAOAB and BAOA are closely

related, as has already been reported in literature.[30,36,37,50] Both algorithms sample the same

positions and only differ in the momenta by a shift of ∆t
2 . In contrast to BAOAB and BAOA,

the GSD integrator has been derived by extending the leapfrog algorithm for deterministic

dynamics by an impulsive application of friction.[35] GSD has been implemented as the stan-

dard Langevin algorithm in GROMACS[119] and has been treated separately from BAOAB

and BAOA in literature.

In this publication, we show analytically and numerically that GSD and BAOA are equiva-

lent algorithms. We additionally visualize this result with numerical experiments in a one-

dimensional model system, a cubic water box and an ideal gas. Since BAOA and BAOAB

sample the same positions, it immediately follows that we can transfer BAOAB’s superior

configurational properties to GSD. Likewise, any analysis or benchmark of the configurational

accuracy obtained for one of the three integrators equally applies to the other two integra-

tors. These results also have practical implications on path reweighting methods.[73–75,120]

The mathematical expression of the path reweighting factor strongly depends on the integra-

tor equations, meaning that we expect the same expression for GSD, BAOA and BAOAB.

Furthermore, the numerical studies in this publication imply that the BAOA/GSD integra-

tor samples the Maxwell-Boltzmann distribution with higher accuracy and thus yields more

accurate kinetic averages. Similar observations are mentioned in Ref. [37] and the documen-

tations of OpenMM[121] and AMBER 2021.[122] However, we explicitly want to point out that

the accuracy of the Boltzmann and Maxwell-Boltzmann distribution that we can observe for

BAOA/GSD might not extend to correlations between positions and momenta.

The full publication is available at https://doi.org/10.1021/acs.jctc.2c00585.

https://doi.org/10.1021/acs.jctc.2c00585
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Summary

The conformational dynamics of biomolecules are essential for their function in living or-

ganisms.[5–7,123] Biomolecules have a high dimensional potential energy surface with various

local minima that correspond to metastable conformations, separated by barriers of differ-

ent heights. In principal, we can use Markov State Models[76–81] (MSMs) constructed from

Molecular Dynamics (MD) simulations to capture the slow dynamics of a given system. The

dominant eigenspace of the MSM describes the transitions between the long-lived conforma-

tional states and the corresponding eigenvalues can be used to calculate the relaxation time

scales for the equilibrations across the energy barriers. However, high energy barriers can

make it very challenging or even impossible to investigate the dynamics of long-lived confor-

mations of biomolecules with unbiased MD simulations.

To overcome these difficulties, we can combine MD simulations based on a stochastic ther-

mostat with enhanced sampling methods, such as umbrella sampling[56,57] or metadynam-

ics.[58–60] The enhanced sampling techniques introduce a bias to the potential energy to facil-

itate the exploration of state space. Unfortunately, the bias alters the dynamics of a system

and we have to apply dynamical reweighting methods to recover the unbiased dynamics.

In this publication, we focus on potential reweighting methods and answer the questions:

1) Which potential reweighting methods exist?

2) What are their similarities and differences?

Based on the framework the method has been derived from, we classify state-of-the-art po-

tential reweighting methods into four categories, explain the underlying assumptions and

summarize the applications that have been reported so far.

In the first category, we collect the reweighting methods[124–126] that are designed to reweight

Kramers rate theory,[127,128] which describes the reaction rate kAB between two long-lived

conformations A and B along a single reaction coordinate. A very successful method in this

category is the combination of reweighting and infrequent metadynamics[126] which has been

used to investigate several protein-ligand unbinding processes.[129–131]

The other three categories include methods which can be used to reweight MSMs. To con-

struct an MSM, we discretize the state space into disjoint subsets Si and either compute the

rate matrix K whose elements kij represent the rates between subsets Si and Sj , or we count

the number of transitions cij from Si to Sj in a given trajectory and use these counts to

calculate the transition probability matrix P, whose elements pij describe the probability to

go from Si to Sj . Note, that the matrices P and K are strictly related and therefore share

the same eigenspace.

Methods[24,132] in the category “Reweighting by rescaling the flux” describe the dynamics

in terms of the probability density function that spreads over state space as time evolves
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and reweight the elements of the rate matrix K. The reweighting is based on rescaling the

geometrical averages of the stationary weights of adjacent subsets Si and Sj . The methods

have been used to study membrane permeabilities of a series of drug molecules[24] and to

successfully predict the effects of mutations on the folding kinetics of proteins.[133]

The category “Reweighting by formulating a likelihood function” collects methods[134–137]

that consider MD simulations at different biasing potentials. They formulate a likelihood

function for each potential which depends on the elements pij of the transition matrix P and

on the transition counts cij observed in the MD simulation at the respective biasing poten-

tial. The likelihood is then maximized by varying the elements pij to obtain a statistically

optimal MSM at the corresponding biasing potential. The reweighting is based on combining

all likelihood functions into an overall likelihood function, such that data from all potentials

can be used to optimize P at a specific potential. The methods have been used to study the

complete binding equilibrium of a small inhibitor molecules to proteins.[135,137]

The category “Path reweighting” collects methods[67–69,71–74,82] which use a long trajectory

generated at the biased potential and cut it into short path snippets. The snippets are then

used to reweight the transition counts cij from which we can calculate P. The reweighting

is based on calculating the weights which the simulated paths would have in the unbiased

potential. The methods have been used to compute mean first hitting times in alanine dipep-

tide[82] and to estimate the time scales associated with the opening and closing of a β-hairpin

peptide.[74]

Since this publication does not include dynamical reweighting methods like temperature

reweighting or reweighting for path sampling strategies, we want to refer to Refs. [61–63] and

Refs. [138, 139], respectively. Moreover, we want to mention Ref. [140] as an excellent work

that has been published after this publication has been released and can be classified in the

category “Reweighting by rescaling the flux”. Lastly, we want to point to a recent review[75]

that focuses on two methods from the categories “Reweighting by rescaling the flux” and

“Path reweighting”.

The full publication is available at https://doi.org/10.1016/j.sbi.2019.12.018.

https://doi.org/10.1016/j.sbi.2019.12.018
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authors contributed to the final version of the manuscript.

https://doi.org/10.1063/5.0038408
https://doi.org/10.48550/arXiv.2011.12849


3 Publications 75

Summary

In part A2 of this thesis, we introduced Markov State Models[76–81] (MSMs) and potential

reweighting techniques[75,120] to recover unbiased MSMs from Molecular Dynamics (MD) tra-

jectories generated with enhanced sampling techniques. MSMs are a useful tool to capture

the slow dynamics of a system along a small number of relevant coordinates. The core piece

of an MSM is the count matrix C, whose elements are represented by time-lagged correlation

functions.

Enhanced sampling techniques, such as umbrella sampling[56,57] or metadynamics,[58–60] in-

troduce a bias to the potential energy in order to facilitate the exploration of state space

during the MD simulation. To construct the unbiased MSM from the biased trajectory, we

can for example use path reweighting techniques[67–69,71–74,82] to “remove” the impact of the

bias on elements of the count matrix C.

In path reweighting, we split a trajectory generated at the biased potential into short paths

ω and calculate the statistical weight W that each path would have in the unbiased potential.

The weights and the respective biased paths are then used to calculate the unbiased count

matrix C, and subsequently the unbiased MSM. The statistical weight W = g ·M depends on

the potential energy and is composed of the weight in state space g (state space reweighting

factor) and the weight in path space M (path space reweighting factor). One of the difficul-

ties in path reweighting is to find a mathematical expression of the path reweighting factor,

because M strongly depends on the integrator that was used to generate the biased paths.

In part A1 of this thesis, we introduced Langevin integrators[19,30–45] as stochastic integrators

that can be used to perform MD simulations in the canonical ensemble.[27] In the context

of path reweighting, Langevin integrators are beneficial because we can use the Girsanov

theorem[29,111] as a basis to derive an expression for M via the conditional path probability

p. The path reweighting factor for overdamped Langevin dynamics has been known for sev-

eral decades[64–66], whereas M for underdamped Langevin integrators has not been reported

prior to this publication. As a solution, path reweighting methods used an approximate path

reweighting factor Mapprox to reweight underdamped Langevin dynamics.[72–74] Surprisingly,

this strategy yielded excellent results although the derivation of Mapprox is based on over-

damped Langevin dynamics.

This publication reports the reweighting factor ML for a variant of the Langevin leapfrog

integrator developed by Izaguirre, Sweet, and Pande (ISP integrator).[39] With ML, we are

able to perform exact path reweighting for an underdamped Langevin integrator for the first

time. Additionally, this publication aims to answer several questions:

1) How can we derive path reweighting factors for underdamped Langevin dynamics

integrators?
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2) Why does reweighting with Mapprox yield excellent reweighting results for under-

damped Langevin dynamics?

3) What is the relationship between the different representations of the reweighting

factor?

In the context of question 1, we present two different strategies to derive ML for the ISP

integrator. In one strategy, we derive the expression of the conditional path probability p

in terms of the path ω and the corresponding force by integrating out the random number

dependency. ML is then defined as the ratio of the probability a given path would have in the

unbiased potential and the probability the same path would have in the biased potential. In

the other strategy, we ask what random number η is needed to generate ω in the biased po-

tential and what random number is needed to generate the same ω in the unbiased potential.

We can then derive an expression for ML via the random number difference ∆η = η̃−η. This

second strategy is conceptually easy and straight forward to apply which is why we proposes

the strategy as a blueprint to derive ML for other Langevin integrators.

Having the expression forML provides the basis to tackle question 2. In this context, we prove

analytically that Mapprox is an excellent approximation to ML given that the time step ∆t

and the collision rate fulfill the condition ξ∆t < 1. To understand why Mapprox ≈ ML is true,

we show that the integrator choice only seems to have a minor effect on the random number

difference ∆η. Additionally, we demonstrate the same result numerically by reweighting the

MSM of a one-dimensional model potential and the MSM on the torsion angle in butane.

In the context of question 3, we explain that the path reweighting factor for underdamped

Langevin dynamics can be expressed in terms of the sampled path ML(ω) or in terms of the

random number sequence, that was used to generate this path ML(η). The same applies to

overdamped Langevin dynamics and we get Mo(ω) and Mo(η), with Mo(η) = Mapprox. We

show that ML(ω) and ML(η) are connected via η as defined in the ISP integrator equation

and Mo(ω) and Mo(η) are connected via η as defined in the Euler-Maruyama integrator[28,29]

equation.

For a path generated with ISP we demonstrate analytically and numerically that Mo(η) =

ML(η) = ML(ω) ̸= Mo(ω). Please note that Refs. [72] and [73] already include an indirect

answer to question 3.
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ABSTRACT

Path reweighting is a principally exact method to estimate dynamic properties from biased simulations—provided that the path probability
ratio matches the stochastic integrator used in the simulation. Previously reported path probability ratios match the Euler–Maruyama scheme
for overdamped Langevin dynamics. Since molecular dynamics simulations use Langevin dynamics rather than overdamped Langevin dynam-
ics, this severely impedes the application of path reweighting methods. Here, we derive the path probability ratio ML for Langevin dynamics
propagated by a variant of the Langevin Leapfrog integrator. This new path probability ratio allows for exact reweighting of Langevin dynam-
ics propagated by this integrator. We also show that a previously derived approximate path probability ratio Mapprox differs from the exact ML

only by O(ξ4Δt4) and thus yields highly accurate dynamic reweighting results. (Δt is the integration time step, and ξ is the collision rate.) The
results are tested, and the efficiency of path reweighting is explored using butane as an example.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0038408., s

I. INTRODUCTION

Molecular dynamics are astonishingly complex and occur in
a wide range of length and timescales.1–3 To elucidate the mecha-
nisms by which different parts of a molecular system interact and
how macroscopic properties arise from these interactions, molec-
ular dynamics (MD) simulations have become an indispensable
tool.4–9 Because the timescales covered by MD simulations are often
orders of magnitude lower than the slowest timescale of the system,
a wide variety of enhanced sampling techniques have been devel-
oped, which distort the dynamics of the simulation such that rare
molecular transitions occur more frequently. This can be achieved
by raising the temperature or by adding a bias to the potential energy
function.10,11 How to extract the correct values of dynamical prop-
erties (mean-first passage times, residence times, binding rates, or
transition probabilities) from these accelerated dynamics is an open
question and a very active field of research.

The goal of dynamical reweighting methods is to estimate
dynamical properties of the system at a target state S̃ from a trajec-
tory generated at simulation state S. S could correspond to a higher

temperature or to a biased potential. Starting points for the deriva-
tion of dynamical reweighting methods are Kramers rate theory,12–15

the likelihood function for estimating the transition probabilities
from MD trajectories,16–19 or a discretization of the Fokker–Planck
equation.7,20–22 The methods differ in the ease of use and the severity
of the assumptions they make.23

A principally exact formalism to reweight dynamic properties is
path reweighting methods, which have been reported already early
in Refs. 24–28. In path reweighting methods, the trajectory gener-
ated at state S is split into short paths ω. Then, the path probabil-
ity P̃L(ω;Δt∣(x0, v0)) of a given ω at the target state S̃ is calculated
by reweighting the path probability PL(ω; Δt|(x0, v0)) of ω at the
simulation state S,

P̃L(ω;Δt∣(x0, v0)) ≈M ⋅ PL(ω;Δt∣(x0, v0)). (1)

(x0, v0) is the initial state of the path ω, and Δt is the integra-
tion time step. M(ω) is the path probability ratio or reweight-
ing factor. Equation (1) is exact if the path probability ratio M= P̃L(ω;Δt∣(x0, v0))/PL(ω;Δt∣(x0, v0)) is derived from the numer-
ical integration scheme used to generate ω. The mathematical basis
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for path reweighting methods is the Girsanov theorem,29,30 or else,
they can be derived from the Onsager–Machlup action.24–27,31 A pre-
requisite for path reweighting is that a stochastic integrator is used
in the MD simulation, e.g., a Langevin thermostat.

However, it has been challenging to apply path reweighting
to simulations of large molecular systems. For example, the vari-
ance of the reweighting estimators increases rapidly with increasing
path length such that for long paths, reweighting becomes inefficient
compared to direct simulation of the target state. Combining path
reweighting techniques with Markov state models (MSMs) alleviates
this problem.32–35 In MSMs,36–42 the dynamics of the system is repre-
sented by transitions between discrete states in the conformational
space of the molecular system, where the lag time τ of the transi-
tion is much shorter than the slow timescales of the system. Thus,
only short paths of length τ are needed to estimate and reweight the
transition probabilities.

Second, a number of technical difficulties arise. The path prob-
ability ratio M decreases exponentially with the path length τ such
that the standard numerical accuracy is quickly exceeded. This prob-
lem can be solved by using high precision arithmetic libraries.35

To calculate the path probability ratio M, one needs to know the
trajectory and the random numbers of the stochastic integrator at
every integration time step. Writing this information to disk at every
integration time step is not a workable option. We, therefore, pro-
posed to calculate the path reweighting factor “on-the-fly” during
the simulation and to write out intermediate results at regular inter-
vals, e.g., whenever the positions are written to disk. The additional
storage requirements and computational costs for the “on-the-fly”-
calculations are negligible compared to the overall cost of the simu-
lation.34,35 Having solved the technical challenges, we tested the path
reweighting method on several peptides using path lengths of up to τ
= 600 ps.34,35 Applications to larger systems and longer path lengths
are likely within reach.

Yet, the equation for the path probability ratio M poses a bar-
rier to a more widespread use of path reweighting methods. Because
M is derived from the stochastic integration scheme used to simulate
the system, one cannot readily apply a path probability ratio derived
for one integration scheme to a simulation generated by another
integration scheme.

In temperature reweighting, i.e., when simulation and target
state differ in the temperature, only the random term of the stochas-
tic integrator is affected by the change in temperature. Path proba-
bility ratios for temperature reweighting have been constructed by
rescaling the normal distributions of the random or noise terms of
the stochastic integration scheme.32,43

In potential reweighting, i.e., when simulation and target state
differ in the potential energy function, one needs to account for
changes in the drift terms of the stochastic integration scheme.
The path probability ratio Mo for the Euler–Maruyama scheme
for overdamped Langevin dynamics has been reported multiple
times.24–26,33 However, the dynamics of large molecular systems is
better reproduced by Langevin dynamics, and MD programs imple-
ment a wide variety of Langevin integration schemes.44–53 The time-
continuous Onsager–Machlup action for Langevin dynamics has
been reported,27 but to the best of our knowledge, path probabil-
ity ratios for Langevin integration schemes ML have not yet been
reported. Thus, exact path reweighting for Langevin dynamics has
not been possible, so far.

In Refs. 34 and 35, we demonstrated that path reweighting
can be applied to biased simulations of large molecular systems,
nonetheless. We used an approximate path probability ratio Mapprox
that is based on the path probability ratio for the Euler–Maruyama
scheme but uses the random numbers that are generated dur-
ing the Langevin MD simulation. We tested Mapprox extensively,
and for low-dimensional model systems and for molecular sys-
tems, this approximate path probability ratio yielded very accurate
results. In these two publications, we used a variant of the Langevin
Leapfrog integration scheme developed by Izaguirre, Sweet, and
Pande49 to propagate the system. Both the Langevin Leapfrog inte-
gration scheme and its variant are implemented in OpenMM54 (see
Appendix A). We will abbreviate the variant by the “ISP scheme.”

In this contribution, we derive the path probability ratio ML
for Langevin dynamics propagated by a variant of the Langevin
Leapfrog integrator.49 ML allows for exact reweighting of Langevin
dynamics (Sec. IV). We analyze why Mapprox is an excellent approx-
imation to ML (Sec. VI), and we discuss whether there are scenarios
in which Mo is a viable approximation to ML (Sec. V). The general
framework of the path reweighting equations and the correspond-
ing equations for the Euler–Maruyama scheme are summarized in
Secs. II and III. Section VIII reports the computational details.

II. PATH REWEIGHTING

The path probability P(ω; Δt|(x0, v0)) is the probability to gen-
erate a time-discretized path ω = (x0, x1, . . ., xn) starting in a pre-
defined initial state (x0, v0) at the simulation potential V(x). The
notation emphasizes that the probability is conditioned on an ini-
tial state (x0, v0) and that the path has been generated with a fixed
time step Δt, whereas ω is the argument of the function. In short,
P(ω; Δt|(x0, v0)) maps a path in position space to a probability. Its
functional form depends on the integration scheme used to generate
ω and the potential energy function.

The path probability ratio is the ratio between the probability
P̃(ω;Δt∣(x0, v0)) to generate a path ω at a target potential,

Ṽ(x) = V(x) + U(x), (2)

and the probability P(ω; Δt|(x0, v0)) to generate the same path ω at
the simulation potential V(x),

M(ω;Δt∣(x0, v0)) = P̃(ω;Δt∣(x0, v0))
P(ω;Δt∣(x0, v0)) . (3)

The potential energy function U(x) is usually called perturbation or
bias.

In integration schemes for stochastic dynamics, random num-
bers are used to propagate the system. If a single random number
is drawn per integration step, then the probability to generate ω is
equal to the probability P(η) to generate the corresponding random
number sequence η = (η0, η1, . . ., ηn−1),

P(ω;Δt∣(x0, v0)) = P(η), (4)

where ω and η are linked by the equations for the integration
scheme. Since the random numbers ηk are drawn from a Gaussian
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TABLE I. References to the equations for the properties introduced in Sec. II.

Overdamped Langevin Langevin

Equation of motion Eq. (11) Eq. (19)
Integration scheme Eq. (12) Eqs. (20) and (21)
Path probability P(ω; Δt|(x0, v0)) Eq. (13) Eq. (22)
Path probability ratio M(ω; Δt|(x0, v0)) Eq. (14) Eq. (23)
Random number ηk Eq. (15) Eq. (24)
Random number difference Δηk Eq. (17) Eq. (26)
Random number probability ratio M(ω, η; Δt|(x0, v0)) Eq. (18) Eq. (27)

distribution with zero mean and unit variance, the functional form
of P(η) is

P(η) = N exp(−1
2

n−1∑
k=0

η2
k) , N = ( 1

2π
) n

2
. (5)

P(η) is a function that maps a random number sequence to a
probability. One can interpret Eq. (4) as a change in variables from ω
to η, where the change is defined by the equations for the integration
scheme.

Suppose that η is the random number sequence needed to gen-
erate ω at a simulation potential V(x). To generate the same path at
a target potential Ṽ(x), one would need a different random number
sequence η̃ = (η̃0, η̃1, . . . , η̃n−1), with

η̃k = ηk + Δηk. (6)

Δηk is the random number difference, and it depends on the inte-
gration scheme and the difference between the two potentials. The
random number probability ratio is the ratio between the probability
of drawing η and the probability of drawing η̃k,

P(η̃)
P(η) =

N exp(− 1
2

n−1∑
k=0
(ηk + Δηk)2)

N exp(− 1
2

n−1∑
k=0

η2
k)

= exp(− n−1∑
k=0

ηk ⋅ Δηk) ⋅ exp(−1
2

n−1∑
k=0
(Δηk)2). (7)

Mathematically, the following has happened in the previous
paragraph. The path ω remained unchanged. The functional form
of the path probability has changed as P̃(ω;Δt∣(x0, v0)) because the
potential energy enters the equations for the integration scheme.
Likewise, the change in variables from ω to η̃ has changed. The func-
tional form of the random number probability remains the same
[Eq. (5)]. The analogon to Eq. (4) for the target potential is

P̃(ω;Δt∣(x0, v0)) = P(η̃), (8)

where ω and η̃ are linked by the equations for the integration scheme
using Ṽ(x). Given the two changes in variables for the simula-
tion and the target potential, the path probability ratio [Eq. (3)]
and the random number probability ratio [Eq. (7)] are equal. Note
that Eq. (3) is a ratio of two different functions that have the same

argument ω, whereas Eq. (7) is the ratio of the same function with
different arguments η and η̃.

Equation (7) is of little practical use because η̃ is not avail-
able from a simulation at the simulation state. However, the random
number difference Δηk can be expressed as a function of ω, and the
random number probability ratio can thus be expressed as a function
of ω and η,

M(ω,η;Δt∣(x0, v0)) = P(η̃)
P(η) . (9)

For a path ω and the corresponding random number sequence η that
was used to generate this path, we will use the following equality:

M(ω,η;Δt∣(x0, v0)) =M(ω;Δt∣(x0, v0)). (10)

The functional form and the value of the properties intro-
duced in this section depend strongly on the integration scheme.
In Sec. III, we summarize the equations for the Euler–Maruyama
scheme for overdamped Langevin dynamics. In Sec. IV, we derive
the corresponding equations for the ISP integration scheme for
Langevin dynamics (see Table I). Throughout this manuscript, prop-
erties associated with Langevin dynamics are subscripted with L,
and properties associated with overdamped Langevin dynamics are
subscripted with o.

III. OVERDAMPED LANGEVIN DYNAMICS

A. Equation of motion and integration scheme

Consider a one particle system that moves in a one-dimensional
position space with temperature T and potential energy function V.
The overdamped Langevin equation of motion is

ẋ(t) = −∇V(x(t))
ξm

+

√
2kBT
ξm

η(t), (11)

with particle mass m, position x, velocity v = ẋ, and Boltzmann con-
stant kB. x(t) ∈ Ωo is the state of the system at time t, where Ωo ⊂ R
is the state space of the system. The collision rate ξ (in units of s−1)
models the interaction with the thermal bath. η(t) ∈ R describes
an uncorrelated Gaussian white noise with unit variance centered at
zero, which is scaled by the volatility

√
2kBT
ξm .

A numerical algorithm to calculate an approximate solution to
Eq. (11) is the Euler–Maruyama integration scheme,30,55
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xk+1 = xk − ∇V(xk)ξm
Δt +

√
2kBT
ξm
√
Δt ηo,k, (12)

where Δt is the time step, xk is the position, and ηo ,k is the random
number at iteration k. The random numbers are drawn from a Gaus-
sian distribution with zero mean and unit variance. For k = 0, . . .,
n − 1, Eq. (12) yields a time-discretized overdamped Langevin path
ωo = (x0, x1, . . ., xn), which starts at the pre-defined initial position
x0. Note that while the state of the system at iteration k is defined by
the position xk, the progress to xk+1 depends on xk and on the value
of the random number ηo ,k. The random number sequence that was
used to generate a specific ωo is denoted by ηo = (ηo ,0, . . ., ηo ,n−1).

B. Path probability and path probability ratio

The probability to observe a path ωo generated by the Euler–
Maruyama scheme [Eq. (12)] is28,34,56,57

Po(ωo;Δt∣x0)
= ⎡⎢⎢⎢⎢⎣
√

ξm
4πkBTΔt

⎤⎥⎥⎥⎥⎦
n

⋅ exp(− ξm
4kBTΔt

n−1∑
k=0
(xk+1 − xk +

Δt
ξm
∇V(xk))2). (13)

For the Euler–Maruyama scheme, the path probability Po(ωo; Δt|x0)
does not depend on the initial velocity; hence, we dropped v0 in the
notation. However, it does depend on the potential energy function
V(x) that has been used in Eq. (12) to generate the path ωo.

The path probability that the same path ωo has been gener-
ated at a target potential Ṽ(x) [Eq. (2)] is P̃o(ωo;Δt∣x0), which is
obtained by replacing the potential V(x) with Ṽ(x) in Eq. (13). The
ratio between the two path probabilities is

Mo(ωo;Δt∣x0)
= P̃o(ωo;Δt∣x0)
Po(ωo;Δt∣x0)
= exp

⎛⎜⎜⎜⎜⎝
−

n−1∑
k=0
(xk+1 − xk)(∇Ṽ(xk) − ∇V(xk))

2kBT

⎞⎟⎟⎟⎟⎠
× exp

⎛⎜⎜⎜⎜⎝
−

n−1∑
k=0
(∇Ṽ2(xk) − ∇V2(xk))Δt

4kBTξm

⎞⎟⎟⎟⎟⎠
. (14)

Equation (14) is a function of the path ωo and does not depend
on the random number sequence ηo explicitly. It is equivalent to
Eq. (B4) in Ref. 34.

C. Random numbers and random number
probability ratio

Given ωo, the sequence of random numbers ηo that was used to
generate ωo at the simulation potential V(x) can be back-calculated
by rearranging Eq. (12) for ηo ,k,

ηo,k =
√

ξm
2kBTΔt

(xk+1 − xk +
∇V(xk)

ξm
Δt). (15)

We remark that the path probability [Eq. (13)] can formally be
derived by inserting Eq. (15) into Eq. (5). Since Eq. (15) defines a
coordinate transformation from xk to ηo ,k, one needs to normalize
with respect to the new coordinates in order to obtain the correct
normalization constant. The random number sequence η̃o needed
to generate ωo at a target potential Ṽ(x) is calculated by inserting
Eq. (2) into Eq. (15),

η̃o,k =
√

ξm
2kBTΔt

(xk+1 − xk +
∇V(xk)

ξm
Δt) +

√
Δt

2kBTξm
∇U(xk)

= ηo,k + Δηo,k. (16)

Equation (15) defines the change in variables from ω to ηo for
the Euler–Maruyama scheme at the simulation potential. Likewise,
Eq. (16) defines the change in variables from ω to η̃o at the target
potential. The random number difference is

Δηo,k =
√

Δt
2kBTξm

∇U(xk). (17)

It depends on the perturbation U(x), but not on the simulation
potential V(x). Inserting Δηo ,k [Eq. (17)] into Eq. (7) yields the
random number probability ratio,

Mo(ωo,ηo;Δt∣x0)
= exp

⎛⎝−
n−1∑
k=0

√
Δt

2kBTξm
∇U(xk) ⋅ ηo,k

⎞⎠
⋅ exp(−1

2

n−1∑
k=0

Δt
2kBTξm

(∇U(xk))2). (18)

Because of Eq. (10), Eqs. (14) and (18) are equal. However, the
two probability ratios use different time-series and different infor-
mation on the system to evaluate the path probability ratio. To
evaluate Eq. (14), one needs the path ωo, the simulation poten-
tial V(x), and the target potential Ṽ(x). To evaluate Eq. (18), one
needs the path ωo, the random number sequence for the simulation
potential ηo, and the perturbation U(x). Because U(x) often only
affects a few coordinates of the systems, i.e., it is low-dimensional,
Eq. (18) is computationally more efficient. Besides the force cal-
culation −∇V(x) needed to generate the path ωo, it requires an
additional force calculation −∇U(x) only along the coordinates that
are affected by the perturbation. By contrast, Eq. (14) requires an
additional force calculation on the entire system −∇Ṽ(x).
IV. LANGEVIN DYNAMICS

A. Equation of motion and integration scheme

Consider a one particle system that moves in a one-dimensional
position space with temperature T and potential energy function V.
The Langevin equation of motion is

mẍ(t) = −∇V(x(t)) − ξmẋ(t) +
√

2kBTξmη(t), (19)

with particle mass m, position x, velocity v = ẋ, acceleration a = ẍ,
and Boltzmann constant kB. The state of the system at time t is deter-
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mined by the position and the velocity (x(t), ẋ(t)) ∈ ΩL, where
ΩL ⊂ R2 is the state space of the system. The collision rate ξ (in units
of s−1) models the interaction with the thermal bath. η ∈ R describes
an uncorrelated Gaussian white noise with unit variance centered at
0, which is scaled by the volatility

√
2kBTξm.

A numerical algorithm to calculate an approximate solution to
Eq. (19) is the ISP scheme,49

xk+1 = xk + exp(−ξΔt) vkΔt − [1 − exp(−ξΔt)] ∇V(xk)
ξm

Δt

+

√
kBT
m
[1 − exp(−2ξΔt)]ηL,k Δt, (20)

vk+1 = xk+1 − xk
Δt

, (21)

whereΔt is the time step, xk is the position, vk is the velocity, and ηL ,k
is the random number at iteration k (see Appendix A). The random
numbers are drawn from a Gaussian distribution with zero mean

and unit variance. For k = 0, . . ., n − 1, Eqs. (20) and (21) yield a
time-discretized Langevin path ωL = ((x0, v0), (x1, v1), . . ., (xn, vn)),
which starts at the pre-defined initial state (x0, v0). Note that while
the state of the system at iteration k is defined by the tuple (xk, vk)∈ΩL, the progress to (xk+1, vk+1) depends on (xk, vk) and on the value
of the random number ηL ,k. The random number sequence that was
used to generate a specific ωL is denoted by ηL = (ηL ,0, . . ., ηL ,n−1).

The position xk+1 is treated as a random variable because it
directly depends on a random number [Eq. (20)], while the veloc-
ity vk+1 is calculated from the new position xk+1 and the preceding
position xk. Because the velocity vk in Eq. (20) is determined by the
positions xk and xk−1 [Eq. (21)], it carries a small memory effect into
the time-evolution of x.

B. Path probability and path probability ratio

The probability to generate a path ωL by the ISP scheme
[Eqs. (20) and (21)] at the simulation potential V(x) is

PL(ωL;Δt∣(x0, v0)) = [n−1∏
k=0

δ(vk+1 − xk+1 − xk
Δt

)] ⋅ [√ m
2πkBTΔt2(1 − exp(−2ξΔt))]

n

× exp
⎛⎜⎜⎝−

n−1∑
k=0

m(xk+1 − xk − exp(−ξΔt)vkΔt + (1 − exp(−ξΔt))∇V(xk)ξm Δt)2

2kBT(1 − exp(−2ξΔt))Δt2

⎞⎟⎟⎠. (22)

The derivation of Eq. (22) is shown in Appendixes B and C.
Appendix B explains the strategy for the derivation, and Appendix C
shows how to solve the integrals that appear in the derivation.

The path probability P̃L(ωL;Δt∣(x0, v0)) to generate a path ωL
by the ISP scheme at the target potential is obtained by insert-
ing Ṽ(x) [Eq. (2)] into Eq. (22). The path probability ratio for
overdamped Langevin dynamics is

ML(ωL;Δt∣(x0, v0))
= P̃L(ωL;Δt∣(x0, v0))
PL(ωL;Δt∣(x0, v0))
= exp

⎛⎜⎜⎜⎜⎝
−

n−1∑
k=0
(xk+1 − xk)(∇Ṽ(xk) − ∇V(xk))
kBTξ(1 + exp(−ξΔt))Δt

⎞⎟⎟⎟⎟⎠
⋅ exp

⎛⎜⎜⎜⎜⎝

n−1∑
k=0

vk(∇Ṽ(xk) − ∇V(xk))
kBTξ(1 + exp(ξΔt))

⎞⎟⎟⎟⎟⎠
⋅ exp

⎛⎜⎜⎜⎜⎝
− exp(ξΔt) − 1

exp(ξΔt) + 1
⋅
n−1∑
k=0
(∇Ṽ2(xk) − ∇V2(xk))

2kBTξ2m

⎞⎟⎟⎟⎟⎠
.

(23)

Analogous to Eq. (14), Eq. (23) is a function of the path ωL and does
not depend on the random number sequence ηL.

C. Random numbers and random number
probability ratio

Given ωL, the sequence of random numbers ηL, which was
used to generate ωL at the simulation potential V(x), can be back-
calculated by rearranging Eq. (20) for ηL ,k,

ηL,k =
√

m
kBT(1 − exp(−2ξΔt))Δt2

×(xk+1 − xk − exp(−ξΔt)vkΔt
+ (1 − exp(−ξΔt))∇V(xk)

ξm
Δt). (24)

The random number sequence η̃L needed to generate ωL at a target
potential Ṽ(x) is calculated by inserting Eq. (2) into Eq. (24),

η̃L,k =
√

m
kBT(1 − exp(−2ξΔt))Δt2

×(xk+1 − xk − exp(−ξΔt)(xk − xk−1)
+ (1 − exp(−ξΔt))∇V(xk)

ξm
Δt)

+
√

1
kBTξ2m

⋅ 1 − exp(−ξΔt)√
1 − exp(−2ξΔt)∇U(xk)

= ηL,k + ΔηL,k. (25)
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Equation (24) defines the change in variables from ω to ηL for the
ISP scheme at the simulation potential. Likewise, Eq. (25) defines the
change in variables from ω to η̃L at the target potential. The random
number difference is

ΔηL,k =
√

1
kBTξ2m

⋅ 1 − exp(−ξΔt)√
1 − exp(−2ξΔt)∇U(xk). (26)

Again, the random number difference depends on the perturbation
potential U(x), but not on the simulation potential V(x). Inserting
ΔηL ,k [Eq. (26)] into Eq. (7) yields the random number probability
ratio,

ML(ωL,ηL;Δt∣(x0, v0))
= exp

⎛⎜⎜⎜⎜⎝
− 1 − exp(−ξΔt)√

1 − exp(−2ξΔt) ⋅
n−1∑
k=0
∇U(xk)ηL,k√
kBTξ2m

⎞⎟⎟⎟⎟⎠
× exp

⎛⎜⎜⎜⎜⎝
−(1 − exp(−ξΔt))2

1 − exp(−2ξΔt) ⋅
n−1∑
k=0
∇U2(xk)

2kBTξ2m

⎞⎟⎟⎟⎟⎠
. (27)

Analogous to the path probability ratio for overdamped Langevin
dynamics, ML(ωL; Δt|(x0, vo)) [Eq. (23)] and ML(ωL, ηL; Δt|(x0, v0))
[Eq. (27)] yield the same path probability ratio for a given path ωL
that has been generated using the random number sequence ηL, but
they use different arguments. Again, the path probability from ran-
dom numbers ML(ωL, ηL; Δt|(x0, v0)) requires an additional force
calculation −∇U(x) only along the coordinates that are affected
by the perturbation, making it computationally more efficient than
ML(ωL; Δt|(x0, v0)) in most cases.

V. COMPARING LANGEVIN AND OVERDAMPED
LANGEVIN DYNAMICS

A. Test system

Our test system is a one-dimensional one particle system at
the simulation potential V(x) (Fig. 1, orange line) and at the target
potential Ṽ(x) (Fig. 1, black line). The trajectories generated at V(x)
will be reweighted to the target potential Ṽ(x). The black lines in
Fig. 4(b) represent the first three dominant MSM eigenfunctions40

associated with the target potential. The implied timescales37 are
t0 = ∞, t1 = 20.5 s, and t2 = 6.0 s, which are shown as black lines
in Fig. 4(c). Computational details are reported in Sec. VIII.

B. From random numbers η to paths ωo and ωL
Given a random number sequence η = (η0, . . ., ηn−1) and a

starting state (x0, v0), one can use the Euler–Maruyama scheme to
generate an overdamped Langevin path ωo, or else, one can use the
ISP scheme to generate a Langevin path ωL. We discuss briefly how
the difference between ωo and ωL depends on the combined param-
eter ξΔt, which can be interpreted as the number of collisions per
time step.

In the limit of high friction ξmẋ ≫ mẍ, the Langevin
dynamics [Eq. (19)] approaches the overdamped Langevin dynamics

FIG. 1. Simulation potential V(x) (orange) and target potential Ṽ(x) (black).

[Eq. (11)]. More specifically, in Eq. (19), set mẍ = 0, and rearranging
yields Eq. (11). However, even though the equation of motion for
Langevin dynamics converges to the equation of motion for over-
damped Langevin dynamics, the ISP scheme [Eqs. (20) and (21)]
does not converge to the Euler–Maruyama scheme [Eq. (12)] in the
limit of high friction. By “high friction,” we denote the range of col-
lision rates ξ for which e−ξΔt ≈ 0 in Eq. (20), but ∣∇Vξm ∣ > 0. (As
reference, e−0.1 = 0.904, e−1 = 0.368, and e−5 = 0.007.) If e−ξΔt ≈ 0,
then also e−2ξΔt ≈ 0, and Eq. (20) becomes

xk+1 ≈ xk − ∇V(xk)ξm
Δt +

√
kBT
m

ηL,k Δt. (28)

The first two terms on the right-hand side are identical to the Euler–
Maruyama scheme [Eq. (12)], but the random number term differs
from the Euler–Maruyama scheme. Thus, even in the limit of high
friction, the two algorithms yield different paths for a given random
number sequence η. The difference between a Langevin path ωL and
an overdamped Langevin path ωo can be scaled by the combined
parameter ξΔt. For some value ξΔt > 1, the difference between the
two paths becomes minimal before increasing again, but for no value
of ξΔt, the two paths fully coincide.

When Langevin integration schemes are used as a thermostat in
MD simulations, the optimal friction coefficient should reproduce
the expected temperature fluctuations and therefore depends on
the system and the simulation box.58 Reported collision rates49,50,59

(while keeping the time step at Δt = 0.002 ps) range from 0.1 ps−1

to ∼100 ps−1, corresponding to ξΔt = 0.0002 to ξΔt = 0.2. However,
even for a large collision rate of 100 ps−1, e−ξΔt = e−0.2 = 0.819 ≉ 0.
For these two reasons—MD simulations are not conducted in the
high-friction regime, and even in the high-friction regime, ωo differs
from ωL—a simulation with the ISP scheme yields a materially dif-
ferent path ensemble than a simulation with the Euler–Maruyama
scheme.

C. From a path ω to random numbers ηo and ηL
In Sec. V B, we showed that given a random number sequence

η, the path generated by the Euler–Maruyama integration scheme
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FIG. 2. Overview of path probabilities and path probability ratios for a sample path
ω = (x0, . . . xn).

for overdamped Langevin dynamics differs from the path generated
by the ISP integration scheme for Langevin dynamics. More rele-
vant for path reweighting is the reverse situation: Given a sample
path ω = (x0, . . ., xn) in position space and the parameters of the
dynamics (m, V, T, ξ, kB, and Δt), how does the random number
sequence ηo needed to generate ω with the Euler–Maruyama scheme
[Eq. (12)] differ from the random number sequence ηL needed to
generate the same ω with the ISP scheme [Eqs. (20) and (21)]? An
equivalent question is as follows: How does the path probability that
ω has been generated by the Euler–Maruyama scheme differ from

the path probability that ω has been generated by the ISP scheme?
How does this difference affect the path probability ratios between
the simulation and a target potential? Figure 2 gives an overview of
the quantities we will compare. Note that we dropped the index o or
L from the path ω because ω is a given dataset, which will be analyzed
using various approaches to calculate the path probabilities.

First, we need to discuss whether such a comparison between
the ISP scheme and the Euler–Maruyama scheme is even possible.
From an algorithmic view point, this is clearly possible because both
integrators [Eqs. (12) and (20)] use a single random number per
integration time step. The path probabilities are then equal to the
probability of the different random number sequences ηL and ηo
needed to generate ω. From a physical view point, the answer is not
as clear because overdamped Langevin dynamics evolves in position
space (xk), whereas Langevin dynamics evolves in phase space (xk,
vk). The velocity vk enters the integration scheme [Eq. (20)] and the
path probability [Eq. (22)]. However, vk is fully determined by the
current position xk and the previous position xk−1 [Eq. (21)]. Thus,
if the initial velocity v0 is known, the position trajectory is enough
to evaluate the path probability [Eq. (22)], and the comparison to
overdamped Langevin dynamics is possible.

We consider the test system described in Sec. V A at the sim-
ulation potential V(x) (double-well potential) simulated by the ISP
scheme for Langevin dynamics. With ξ = 50 s−1 and Δt = 0.01 s,
we have e−ξΔt = e−0.5 = 0.607 ≉ 0, meaning that the system is not
in the high-friction limit. Figure 3(a) additionally shows that with
these parameters O(ξmẋ) ≈ O(mẍ) and also according to the crite-
rion for the stochastic differential equation, the system is not in the
high-friction limit.

Figure 3(b) shows a sample path ω = (x0, x1, . . ., x10).
Figure 3(c) shows the random numbers ηo needed to generate ω
with the Euler–Maruyama scheme [blue solid line, calculated using
Eq. (15)] and the random numbers ηL needed to generate ω with the
ISP scheme [green solid line, calculated using Eq. (24)]. As expected
for the low-friction regime, these two random number sequences
differ markedly.

Consequently, the path probabilities differ. Figure 3(d) shows
the unnormalized path probability for generating ω with the Euler–
Maruyama scheme (blue solid line),

Po(ω;Δt∣x0)
∼ exp(− ξm

4kBTΔt

n−1∑
k=0
(xk+1 − xk +

Δt
ξm
∇V(xk))2), (29)

and for generating ω with the ISP scheme (green solid line),

PL(ω;Δt∣(x0, v0)) ∼ exp
⎛⎜⎜⎝−

n−1∑
k=0

m(xk+1 − xk − exp(−ξΔt)vkΔt + (1 − exp(−ξΔt))∇V(xk)ξm Δt)2

2kBT(1 − exp(−2ξΔt))Δt2

⎞⎟⎟⎠, (30)

where we omitted those factors from Eqs. (13) and (22) that cancel in
the path probability ratio. We checked that the path probabilities are
consistent with P(ηo) and P(ηL). The two path probabilities diverge
from the first simulation step on. After ten integration time steps,

they differ by two orders of magnitude. Clearly, PL(ω; Δt|(x0, v0))
cannot be used as an approximation for Po(ω; Δt|x0).

However, an interesting observation arises when we consider
reweighting ω to the target potential Ṽ(x) (triple-well potential).
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FIG. 3. (a) The acceleration term mẍ
and the friction ξmẋ for the test system
at V(x). (b) Example path ω of length
n = 10. (c) Random number sequences
ηL (green solid), ηo (blue solid), η̃L
(green dashed), and η̃o (blue dashed)
that correspond to ω. (d) Path probabili-
ties PL(ω; Δt|(x0, v0)) (green solid), P(ω;
Δt|x0) (blue solid), P̃L(ω;Δt∣(x0, v0))
(green dashed), and P̃o(ω;Δt∣x0) (blue
dashed). (e) Path probability ratios:
ML(ω, Δt|(x0, v0)) (green) and Mo(ω;
Δt|x0) (blue).

Figure 3(c) shows the random numbers η̃o needed to generate ω
with the Euler–Maruyama scheme at Ṽ(x) [blue dashed line, cal-
culated using Eq. (16)] and the random numbers η̃L needed to gen-
erate ω with the ISP scheme at Ṽ(x) [green dashed line, calculated
using Eq. (25)]. The corresponding unnormalized path probabilities∼ P̃o(ω;Δt∣x0) and ∼ P̃L(ω;Δt∣(x0, v0)) are shown as dashed lines
in Fig. 3(d). Strikingly, a change in the integration scheme from the
Euler–Maruyama scheme to ISP has a much stronger influence on
the random numbers and the path probability than the modification
of the potential energy function. Figure 3(e) shows the path prob-
ability ratios, i.e., the ratio between the dashed and the solid lines
in Fig. 3(d), for the Euler–Maruyama scheme Mo = Mo(ω; Δt|x0)
= Mo(ω, ηo; Δt|x0) (blue line) and the ISP scheme ML = ML(ω;
Δt|(x0, v0)) = ML(ω, ηL; Δt|(x0, v0)) (green line). Because, within
an integration scheme, the path probability does not change dras-
tically when going from the simulation potential V(x) to the target
potential Ṽ(x), both path probability ratios remain at ≈1 through-
out the path and follow similar curves, that is, the path probability
ratios for Langevin and overdamped Langevin dynamics are much
more similar than the underlying path probabilities.

D. Path reweighting

We return to the scenario described in the Introduction and
ask the following: are the two path probability ratios similar enough
that we can use Mo as an approximation to ML in Eq. (1)?
Figure 4(a) compares different ways to calculate the path proba-
bility P̃L(ω;Δt∣(x0, v0)), i.e., the probability with which an example
path ω would have been generated at the target potential Ṽ(x). The

black line is the reference solution calculated by inserting Ṽ(x) into
Eq. (22). It is identical to the green dashed line in Fig. 3(d). The
green line in Fig. 4(a) shows the reweighted path probability, where
we used the exact path probability ratio for the ISP scheme, ML(ω;
Δt|(x0, v0)) [Eq. (23)], in Eq. (1). As expected, this reweighted path
probability coincides with the directly calculated path probability.
The blue line shows the reweighted path probability, where we used
the path probability ratio for the Euler–Maruyama scheme, Mo(ω;
Δt|x0) [Eq. (14)], as an approximation to ML in Eq. (1). The path
probability deviates from the reference solution, but overall follows
a similar curve.

Figure 4(a) merely serves to illustrate the concepts. With only
ten steps, the example path ω is far too short to judge the accu-
racy of the two path probability ratios for reweighting dynamic
properties. We, therefore, constructed MSMs for the target poten-
tial Ṽ(x). The reference solution has been generated from simula-
tions at the target potential Ṽ(x) using the ISP scheme. The dom-
inant MSM eigenfunctions and associated implied timescales are
shown as black lines in Figs. 4(b) and 4(c). Next, we ran simula-
tions at the simulation potential V(x) using the ISP scheme and
constructed a reweighted MSM using the exact reweighting factor
ML(ω; Δt|(x0, v0)) [Eq. (23)]. The dominant MSM eigenfunctions
are shown as green lines in Fig. 4(b). They exactly match the ref-
erence solution. The reweighted implied timescales are shown as
green lines in Fig. 4(c) and are in good agreement with the ref-
erence solution. Finally, we used the simulation at V(x) to con-
struct a reweighted MSM using the reweighting factor for the Euler–
Maruyama scheme Mo(ω; Δt|x0) [Eq. (14)]. The dominant MSM
eigenfunctions are shown as blue lines in Fig. 4(b). The eigenfunc-
tions differ considerably from the reference solution. Most notably,
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FIG. 4. (a) Reference and reweighted path probabilities for ω for Langevin dynamics. (b) Reference and reweighted first three dominant MSM left eigenfunctions l1, l2, and l3
associated with Ṽ(x) for Langevin dynamics. (c) Reference and reweighted implied timescales corresponding to l2 and l3.

the stationary distribution is not reproduced correctly [blue line in
the upper panel of Fig. 4(b)]. The left peak is reduced to a shoulder
of the central peak, and the relative heights of central peak and the
right peak do not match those of the reference solution. Likewise,
the implied timescales [blue line in Fig. 4(c)] are severely underesti-
mated. This indicates that using the path probability ratio for over-
damped Langevin dynamics, Mo(ω; Δt|x0), to reweight Langevin
trajectories does not yield acceptable results.

VI. APPROXIMATE PATH PROBABILITY RATIO

A. Derivation and numerical results

With the results from Sec. IV, the exact random number prob-
ability ratio ML(ω, ηL; Δt|(x0, v0)) [Eq. (7)] for the ISP scheme is
straightforward to evaluate from a simulation at V(x): the random
number sequence η = ηL can be recorded during the simulation,
and the random number difference Δη = ΔηL is given by Eq. (26).
Inserting ηL and ΔηL into Eq. (7) yields ML(ω, ηL; Δt|(x0, v0)). How-
ever, ΔηL ,k in Eq. (26) is specific to the ISP scheme. If one uses
a different Langevin integration scheme to simulate the dynam-
ics at V(x), one needs to adapt Eq. (26) via the strategy outlined
in Sec. IV.

Fortunately, the random number difference for overdamped
Langevin dynamics Δηo ,k [Eq. (17)] is approximately equal to ΔηL ,k
for any given perturbation U(x). Figure 3(c) already suggests that.
In Appendix D, we show that the difference between Δη2

L,k and Δη2
o,k

is, in fact, only of O(ξ4Δt4) so that for ξΔt < 1, we can assume with
high accuracy that

ΔηL,k ≈ Δηo,k,√
1

kBTξ2m
1 − exp(−ξΔt)√
1 − exp(−2ξΔt) ⋅ ∇U(xk) ≈

√
Δt

2kBTξm
⋅ ∇U(xk).(31)

The difference between ΔηL ,k and Δηo ,k is determined by the pref-
actors in front of ∇U(xk) in Eq. (31), which are shown as a func-
tion of ξΔt in Fig. 5(b). For ξΔt < 1, the two curves are virtually
identical.

With the approximation in Eq. (31), we can derive an approx-
imate random number probability ratio, by using the recorded ηL,
but substituting ΔηL ,k [Eq. (26)] by Δηo ,k [Eq. (17)] in Eq. (7), we
obtain

ML(ω,ηL;Δt∣(x0, v0)) ≈Mapprox(ω,ηL;Δt∣x0)
= exp

⎛⎝−
n−1∑
k=0

√
Δt

2kBTξm
∇U(xk) ⋅ ηL,k

⎞⎠
⋅ exp(−1

2

n−1∑
k=0

Δt
2kBTξm

(∇U(xk))2).

(32)

Equation (32) has the same functional form as the random number
probability ratio for the Euler–Maruyama scheme Mo(ω, ηo; Δt|x0)
[Eq. (18)], but it uses ηL, the random numbers generated during the
ISP simulation, instead of ηo. Equation (32) is the approximation
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FIG. 5. (a) Sketch of a step xk → xk +1 and the quantities of influence for Langevin and overdamped Langevin dynamics. (b) Prefactors of ΔηL ,k and Δηo ,k as a function
of ξΔt. (c) Absolute difference (absolute error) between the random numbers ⟨|ηo ,k − ηL ,k |⟩ and the random number differences ⟨|Δηo ,k − ΔηL ,k |⟩ as a function of ξΔt.
(d) Relative difference (relative error) between the random numbers ⟨|(ηo ,k − ηL ,k )/ηL ,k |⟩ and the random number differences ⟨|(Δηo ,k − ΔηL ,k )/ΔηL ,k |⟩ as a function
of ξΔt.

that we used in Refs. 34 and 35 because we had not yet derived ML(ω,
ηL; Δt|(x0, v0)) [Eqs. (23) and (27)].

Figure 4 demonstrates the accuracy of the approximate ran-
dom number probability ratio Mapprox(ω, ηL; Δt|x0) [Eq. (32)] for
our test system. The orange dashed line in Fig. 4(a) shows the
reweighted path probability for the short example path, where we
used Mapprox(ω, ηL; Δt|x0) [Eq. (32)], in Eq. (1). It exactly matches
the reference solution (black line).

Next, we constructed a reweighted MSM for the target poten-
tial Ṽ(x) based on our simulations at the simulation potential V(x)
using Mapprox(ω, ηL; Δt|x0) [Eq. (32)] to reweight the transition
counts. The dominant MSM eigenfunctions of the reweighted MSM
are shown as orange dashed lines in Fig. 4(b). They exactly match
the reference solution. The reweighted implied timescales are shown
as orange dashed lines in Fig. 4(c) and seem to match the refer-
ence solution even better than the ones calculated using the exact
path probability ratio [green line in Fig. 4(c)]. However, the dif-
ference between the orange dashed line and the green line is likely
within statistical uncertainty. In summary, Mapprox(ω, ηL; Δt|x0) is
a highly accurate approximation to ML(ω, ηL; Δt|x0) for ξΔt < 1.
Using Mapprox(ω, ηL; Δt|x0) instead of ML(ω, ηL; Δt|x0) could even
have the following advantages: (i) the implementation is less error-
prone because the functional form of Mapprox is simpler than that of
ML and (ii) Mapprox might be numerically more stable because the
calculation of exponential function on the left-hand side of Eq. (31)
is avoided.

B. Intuition

We discuss why Mapprox(ω, ηL; Δt|x0) is a better approxima-
tion to ML(ω, ηL; Δt|x0) than Mo(ω; Δt|x0) = Mo(ω, ηo; Δt|x0).
Figure 5(a) shows one integration time step of a stochastic integra-
tion scheme from xk to xk+1 (black line). From k to k + 1, the system
has progressed by Δx = xk+1 − xk. In the ISP scheme, this progress is
composed of a progress

Δxdrift,L = exp(−ξΔt) vkΔt − [1 − exp(−ξΔt)] ∇V(xk)
ξm

Δt (33)

due to the drift force and the velocity of the system [second and third
terms on the right-hand side of Eq. (20)] and a progress

Δxrandom,L =
√

kBT
m
[1 − exp(−2ξΔt)]ηL,k Δt (34)

due to the random force [fourth term on the right-hand side of
Eq. (20)] such that Δx = Δxdrift,L + Δxrandom,L. Δxdrift,L and Δxrandom,L
are illustrated as green solid lines in Fig. 5(a). The probability of
generating the step xk → xk+1 is determined by Δxrandom,L, which is
proportional to the random number ηL ,k (green solid arrow).

With a different potential energy function Ṽ(x) at xk, the dis-
placement due to the drift force differs from the original Δxdrift,L.
To achieve the same overall displacement Δx, Δxrandom,L needs to
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be adjusted (green dotted line). The corresponding random number
η̃L,k is shown as a green dotted arrow, and the difference between
the two random numbers ΔηL ,k is shown as a red line. In path
reweighting, one constructs η̃L,k by adding ΔηL ,k to ηL ,k,

η̃L,k = ηL,k + ΔηL,k (35)

[analogous to Eq. (6)], which then yields the general form of the
random number probability ratio in Eq. (7).

An analogous analysis applies to the Euler-Maruyama scheme,
where the progress due to the drift force is

Δxdrift,o = −∇V(xk)ξm
Δt (36)

[second term on the right-hand side of Eq. (12)], and the progress
due to the random force is

Δxrandom,o =
√

2kBT
ξm
√
Δt ηo,k (37)

[third term on the right-hand side of Eq. (12)]. In Fig. 5(a), Δxdrift,o
and Δxrandom,o are illustrated as blue solid lines, and the random
number is represented as a blue solid arrow. With a different poten-
tial energy function Ṽ(x) at xk, the progress due to the drift force dif-
fers from the original Δxdrift,o. To achieve the same overall progress
Δx, Δxrandom,o needs to be adjusted (blue dotted line). The corre-
sponding random number η̃o,k is shown as a blue dotted arrow, and
the difference between the two random numbers Δηo ,k is shown as
an orange line.

In Sec. VI A, we have shown that ΔηL ,k ≈ Δηo ,k (for ξΔt < 1).
Thus, approximating ΔηL ,k by Δηo ,k in Eq. (35), or, visually, approx-
imating the red line by the orange line in Fig. 5(a), is valid. However,
the displacement due to the drift Δxdrift,o in the Euler–Maruyama
scheme can differ strongly from Δxdrift,L in the ISP scheme, and con-
sequently, the random numbers needed to generate the same overall
progress Δx differ

ηL,k ≉ ηo,k (38)
[blue solid and green solid arrow in Fig. 5(a)]. Consequently,
approximating ηL ,k by ηo ,k in Eq. (35), or visually approximating the
green solid arrow by the blue solid arrow in Fig. 5(a), is not valid.

The exact random number probability ratio ML(ω, ηL; Δt|(x0,
v0)) [Eq. (27)] uses the exact ηL recorded during the simulation and
the exact ΔηL [Eq. (26)]. It therefore yields results that exactly match
the reference solutions (green lines in Fig. 4). Mapprox(ω, ηL; Δt|x0)
uses the exact ηL recorded during the simulation but approximates
ΔηL ,k by Δηo ,k. This introduces only a small error but still yields
excellent reweighting results in our test system (orange dashed lines
in Fig. 4). However, in Mo(ω; Δt|x0) = Mo(ω, ηo; Δt|x0), one addi-
tionally approximates ηL by ηo. The difference between ηL and ηo
is much larger than the difference between ΔηL and Δηo, and this
additional approximation leads to the distorted reweighting results
we observed as the blue lines in Fig. 4.

The proportions in Fig. 5(a) are not exaggerated. The black line
in Fig. 5(c) shows the average absolute difference between the ran-
dom numbers ⟨|ηo ,k − ηL ,k|⟩ as a function of ξΔt. Visually, this is the
difference between the green solid arrow and the blue solid arrow in
Fig. 5(a). The orange line in Fig. 5(c) shows the average absolute dif-
ference between the random number differences ⟨|Δηo ,k − ΔηL ,k|⟩,

i.e., the difference between the orange and the red line in Fig. 5(a).
The graph has been calculated by averaging over a path with 106 time
steps. The standard deviations are shown as vertical bars. ⟨|Δηo ,k− ΔηL ,k|⟩ is close to 0 for all values of ξΔt, whereas there is a substan-
tial difference between ηL and ηo. ⟨|ηo ,k − ηL ,k|⟩ has a minimum at
ξΔt ≈ 2 because the difference between the Euler–Maruyama scheme
and the ISP scheme is minimal for ξΔt ≈ 2 (see Sec. V B). Figure 5(d)
shows the corresponding average relative errors. For ξΔt > 1, ⟨|(ηo− ηL)/ηL|⟩ (black line) decreases in accordance with the decrease
in the absolute difference ⟨|(ηo − ηL)|⟩ and ⟨|(Δηo − ΔηL)/ΔηL|⟩
(orange line) increases, reflecting the fact that the approximation
[Eq. (31)] does not hold for ξΔt > 1. However, for ξΔt < 1, the region
in which MD simulations are conducted, the relative error for the
random numbers is much larger than the relative error for the ran-
dom number difference. This reinforces that the random numbers
ηL ,k should not be approximated in the path probability ratio but,
instead, should be recorded from the simulation at V(x). By contrast,
the random number difference ΔηL ,k can reliably be approximated
by Eq. (31).

VII. MOLECULAR EXAMPLE: BUTANE

The slowest degree of freedom in butane is the torsion around
the C2–C3 bond, which exhibits three metastable states: the trans-
conformation at ϕ = π and the two gauche-conformations at ϕ= ± 1

3π. Consequently, butane has three dominant MSM eigen-
vectors, where l1 corresponds to the stationary density and l2 and
l3 represent slow transitions along ϕ [Fig. 6(a)]. Because the two
gauche-conformations are equally populated, l2 and l3 are degener-
ate [Fig. 6(b)]. We simulated butane in implicit water at three differ-
ent temperatures, T = 300 K, T = 200 K, and T = 150 K, using direct
and biased simulations. As we lower the temperature, we expect that
the relative population of the trans-conformation increases, but that
otherwise, the overall shape and sign-structure of the eigenvectors
remain unchanged.

At T = 300 K and T = 200 K, the reweighting results using
Mapprox(ω, ηL; Δt|x0) [Eq. (32), orange dashed line] or ML(ω, ηL;
Δt|(x0, v0)) [Eq. (23), green solid line] match the MSM obtained
by direct simulation. In particular, the eigenvectors are repro-
duced with very high precision. By contrast, the reweighted results
using Mo(ω; Δt|x0) [Eq. (14), blue line] deviate considerably from
the reference MSMs obtained by direct simulations. The station-
ary distribution l1 is not reproduced correctly, which then leads
to further errors in the dominant eigenvectors l2 and l3. The
associated implied timescales are underestimated. Moreover, for
T = 200 K and T = 150 K, the use of Mo(ω; Δt|x0) yielded numer-
ically instable transition matrices for lag times of τ > 100 ps. This
demonstrates that path reweighting with an appropriate path prob-
ability ratio, such as Mapprox(ω, ηL; Δt|x0) or ML(ω, ηL; Δt|(x0, v0)),
yields accurate results. However, Mo(ω; Δt|x0) should not be used
as an approximation for the exact path probability ratio ML(ω, ηL;
Δt|(x0, v0)).

Note that reweighting results using the approximate probability
ratio Mapprox(ω, ηL; Δt|x0) are virtually indistinguishable from the
results using the exact probability ratio ML(ω, ηL; Δt|(x0, v0)) for all
three temperatures. This confirms our analysis that Mapprox(ω, ηL;
Δt|x0) can be used as highly accurate approximation to ML(ω, ηL;
Δt|(x0, v0)).
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FIG. 6. Dynamics of the torsion angle in butane at T = 300 K, 200 K, and 150 K. (a) Dominant left eigenfunctions l1, l2, and l3 of the MSM along the torsion angle ϕ, obtained
by evaluating direct simulations at the target potential, as well as by reweighting biased simulations. (b) Implied timescales corresponding to l2 and l3 in (a). Solid lines: mean
and shaded area: standard deviation. Standard deviations for the eigenvectors are too small to be shown.

The variation of the temperature from 300 K to 200 K and 150 K
illustrates under which circumstances path reweighting is an effi-
cient method. At T = 300 K, many transitions across the torsion
angle barriers are observed in the direct simulation. Path reweight-
ing and direct simulation yield identical results. However, path
reweighting has a larger statistical uncertainty. At T = 200 K, fewer
transitions are observed in the direct simulations, which results in
an increased statistical uncertainty in the direct MSM. Finally, at T
= 150 K, the transitions in the direct simulation are insufficient to
correctly sample the stationary density. The MSM of the direct sim-
ulation predicts a higher population for the gauche-conformation at

ϕ = + 1
3π than for the gauche-conformation at ϕ = − 1

3π, which is
clearly a sampling error. This error in the stationary density then
leads to vastly incorrect estimates for l2 and l3. Additionally, the
direct MSM predicts that the degeneracy is lifted. By contrast, the
results of the reweighted MSM are in line with what we expect:
the gauche-conformations are equally populated, the overall shapes
of the dominant eigenvectors correspond to those of the eigenvec-
tors at higher temperatures, and l2 and l3 are degenerate. In con-
clusion, path reweighting in combination with enhanced sampling
techniques is a promising tool in situations, where the stationary
density cannot be sampled accurately by direct simulation.
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VIII. METHODS

A. Simulations of the test system

The test system is a one-dimensional one particle system with
mass m = 1 kg and kBT = 2.494 J (corresponding to kB = 0.008 314
J/K and T = 300 K). The simulation potential (orange line in
Fig. 1) is

V(x) = (x2 − 1)2, (39)

and the target potential (black line in Fig. 1) is

Ṽ(x) = 4(x3 − 3
2
x)2 − x3 + x. (40)

For the results in Figs. 3–5, we simulated the system using the ISP
scheme [Eqs. (20) and (21)] with a time step of Δt = 0.01 s. The initial
conditions were x0 = 1.50 m, v0 = 0 m/s. The number of time steps
Nt , the collision rate ξ, and the potential energy function used are
summarized in Table II.

In Fig. 3(a), we computed the acceleration ẍ = a as ak+1= vk+1−vk
Δt . Figure 3(b) displays the first ten steps of the simulation

as an example path ω, and all quantities displayed in Figs. 3(c)–3(e)
are calculated from this short path.

The absolute and relative differences of the random numbers in
Fig. 5 were calculated as

⟨∣ηo,k − ηL,k∣⟩ = 1
Nt − 1

Nt−1∑
k=0
∣ηo,k − ηL,k∣ (41)

and

⟨∣ηo,k − ηL,k

ηL,k
∣⟩ = 1

Nt − 1

Nt−1∑
k=0
∣ηo,k − ηL,k

ηL,k
∣. (42)

Analogous equations were used for ⟨|Δηo ,k − ΔηL ,k|⟩ and ⟨|(Δηo ,k− ΔηL ,k)/ΔηL ,k|⟩. ηL ,k was recorded during the simulation. We used
Eq. (26) to calculate ΔηL ,k, Eq. (15) to calculate ηo ,k, and Eq. (17) to
calculate Δηo ,k.

The reference MSM in Figs. 4(b) and 4(c) has been constructed
from the simulation at the target potential Ṽ(x). The state space has
been discretized using a regular grid of 100 microstates (S1, . . ., S100)
in the range −1.7 ≤ x ≤ 1.6. Transition counts between microstates
were calculated as

cij(τ) = 1
Nt − τ

Nt−τ∑
k=0

χi(xk)χj(xk+τ), (43)

TABLE II. Simulation parameters.

Figures Nt ξ Potential

3(a) 105 50 s−1 V(x)
4(b) and 4(c) 107 50 s−1 V(x)
4(b) and 4(c) 107 50 s−1 Ṽ(x)
5(c) and 5(d) 107 0.1 s−1–1000 s−1 V(x)

with

χi(x) = {1 if x ∈ Si
0 else,

(44)

where xk is the trajectory and lag time τ = 200 steps. The result-
ing count matrix C(τ) was symmetrized as C(τ) + C⊺(τ) to enforce
detailed balance and row-normalized to obtain the MSM transi-
tion matrix T(τ). The dominant MSM eigenvectors li and associ-
ated eigenvalues λi(τ) were calculated from T(τ) using a standard
eigenvalue solver, and the implied timescales were calculated as
ti = −τ/ln(λi(τ)).

The reweighted MSMs in Figs. 4(b) and 4(c) have been con-
structed from the simulation at the simulation potential V(x) using
the same grid and lag time as for the reference MSM. Transition
counts between microstates were counted and reweighted as34,35

c̃ij(τ) = 1
Nt − τ

Nt−τ∑
k=0

W((xk, xk+1, . . . , xk+τ);Δt∣(xk, vk))
χi(xk)χj(xk+τ). (45)

The weight W is defined as

W((xk, xk+1, . . . , xk+τ);Δt∣(xk, vk))= g(xk) ⋅M((xk, xk+1, . . . , xk+τ);Δt∣(xk, vk)), (46)

with M being the path probability ratio [Eq. (3)] and g being

g(xk) = exp(−U(xk)
kBT

), (47)

where the perturbation U is defined in Eq. (2). The remaining
procedure was analogous to the reference MSM.

B. Butane—Direct simulations

We performed all-atom MD simulations of n-butane in implicit
water using the OpenMM 7.4.154 simulation package. The GAFF
(Generalized Amber Force Field)60 was used to model butane, and
the GBSA (Generalized Born Surface Area) model61 was used to
model implicit water. Interactions beyond 1 nm were truncated. The
trajectory was propagated according to the ISP integration scheme
for a 3N-dimensional system,

xik+1 = xik + exp(−ξΔt) vikΔt − [1 − exp(−ξΔt)] ∇iV(xk)
ξmi

Δt

+

√
kBT
mi
[1 − exp(−2ξΔt)]ηiL,k Δt, (48)

vik+1 = xik+1 − xik
Δt

, (49)

with i = 1, 2, . . ., 3N and N being the number of atoms. xik, vik, and ηik
are the position, velocity, and random number along dimension i at
iteration step k, mi is the mass of dimension i, and ∇iV(xk) denotes
the gradient of V(xk) along dimension i measured at the position
xk, with x ∈ R3N . We implemented the ISP integration scheme using
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the simtk.openmm.openmm.CustomIntegrator62 class of OpenMM.
The collision rate was ξ = 10 ps−1. The simulation time step was Δt
= 0.002 ps. Positions were written to disk every txout = 50 steps
= 0.1 ps. We generated three trajectories with 500 ns each at T
= 300 K, T = 200 K, and T = 150 K. These direct simulations
correspond to simulations at the target potential Ṽ(x).

For the analysis, we cut each trajectory into five pieces of length
100 ns. For each 100-ns-trajectory, we constructed a MSM follow-
ing the procedure outlined in Sec. VIII A. As state space we chose
the C2–C3 dihedral angle ϕ, which we discretized using a regular
grid of 100 microstates in the range 0 ≤ ϕ ≤ 2π. This resulted in five
MSMs for each temperature. Figure 6 shows the mean and the stan-
dard deviation of the first three left MSM eigenvectors (evaluated at
lag time τ = 1 ps) and the mean and the standard deviations of the
associated implied timescale.

C. Butane—Path reweighting

We biased the simulations along the C2–C3 dihedral angle ϕ.
To generate the bias potential U(ϕ), we constructed a histogram of
the free-energy function F̃(ϕ),

F̃(ϕ) = −kBT ln(̃p(ϕ)), (50)

where p̃(ϕ) is the stationary density along ϕ as measured from the
500 ns direct simulations at T = 300 K. Fitting the histogram with a
third order Fourier series yielded

F̃300 K(ϕ) = 8.985 + 3.122 cos(ωϕ) + 0.959 cos(2ωϕ)
+ 7.742 cos(3ωϕ) + 0.095 sin(ωϕ)
+ 0.047 sin(2ωϕ) + 0.002 sin(3ωϕ), (51)

with ω = 0.989. The same procedure for the simulation at T = 200 K
yielded

F̃200 K(ϕ) = 8.311 + 2.847 cos(ωϕ) + 0.841 cos(2ωϕ)
+ 7.697 cos(3ωϕ) + 0.046 sin(ωϕ)
+ 0.026 sin(2ωϕ) + 0.004 sin(3ωϕ), (52)

withω = 0.989. F̃300 K(ϕ) and F̃200 K(ϕ) are almost identical. The sim-
ulation atT = 150 K did not yield a converged stationary density, and
thus, no free-energy function was constructed for this temperature,
and instead, F̃300 K(ϕ) was used.

The biased simulations were carried out with the potential

Vα(x) = Ṽ(x) − α ⋅ F̃(ϕ(x)), (53)

where Ṽ(x) is the target potential and α ∈ [0, 1] specifies the bias
strength. Vα(x) corresponds to the “simulation potential” within the
terminology of this paper; thus,

U(ϕ(x)) = α ⋅ F̃(ϕ(x)). (54)

α was set to 0.1 in all biased simulations, corresponding to “10% of
the full metadynamics potential.” We carried out biased simulations
at three temperatures T = 300 K, T = 200 K, and T = 150 K, with bias
potentials U300 K(ϕ) = 0.1 ⋅ F̃300 K(ϕ), U200 K(ϕ) = 0.1 ⋅ F̃200 K(ϕ), and

U150 K(ϕ) = 0.1 ⋅ F̃300 K(ϕ). All other simulation parameters were as
described in Sec. VIII B.

The path probability ratios for the biased simulations were cal-
culated on-the-fly34,35 and were written to disk at the same frequency
txout as the positions. For the approximate path probability ratio
Mapprox, we calculated

Mapprox(b) = 3N∑
i=1

b⋅txout−1∑
k=(b−1)⋅txout

⎛⎝−
√

Δt
2kBTξmi

∇iU(xk)ηiL,k

− Δt
4kBTξmi

(∇iU(xk))2⎞⎠ (55)

and constructed the complete path probability ratio as

Mapprox(ω,ηL;Δt∣x0) = exp( A∑
b=1

Mapprox(b)) (56)

during the construction of the MSM, where A ∈ N such that
τ = A ⋅ txout ⋅Δt.

For the Langevin path probability ratio ML, we calculated the
terms

ML,1(b) = 3N∑
i=1

b⋅txout−1∑
k=(b−1)⋅txout

(xik+1 − xik)(∇iṼ(xk) − ∇iV(xk)), (57)

ML,2(b) = 3N∑
i=1

b⋅txout−1∑
k=(b−1)⋅txout

vik(∇iṼ(xk) − ∇iV(xk)), (58)

ML,3(b) = 3N∑
i=1

b⋅txout−1∑
k=(b−1)⋅txout

((∇iṼ(xk))2 − (∇iV(xk))2)
mi

(59)

and constructed the complete path probability ratio as

ML(ω,Δt∣x0)
= exp[ A∑

b=1
(− ML,1(b)

kBTξ(1 + exp(−ξΔt))Δt
+

ML,2(b)
kBTξ(1 + exp(ξΔt)) − exp(ξΔt) − 1

exp(ξΔt) + 1
ML,3(b)
2kBTξ2 )] (60)

during the construction of the MSM, where A ∈ N such that τ
= A ⋅ txout ⋅Δt.

For the overdamped Langevin path probability ratio Mo, we
calculated the terms

Mo,1(b) = 3N∑
i=1

b⋅txout−1∑
k=(b−1)⋅txout

(xik+1 − xik)(∇iṼ(xk) − ∇iV(xk)), (61)

Mo,2(b) = 3N∑
i=1

b⋅txout−1∑
k=(b−1)⋅txout

((∇iṼ(xk))2 − (∇iV(xk))2)
mi

(62)

and constructed the complete path probability ratio as

Mo(ω,Δt∣x0) = exp[ A∑
b=1
(−Mo,1(b)

2kBT
− Mo,2(b)Δt

4kBTξ
)] (63)
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during the construction of the MSM, where A ∈ N such that
τ = A ⋅ txout ⋅Δt.

For the analysis, we cut each trajectory into five pieces of length
100 ns. For each 100-ns-trajectory, we constructed a MSM following
the procedure outlined in Sec. VIII A. As state space we chose the
C2–C3 dihedral angle ϕ, which we discretized using a regular grid of
100 microstates in the range 0 ≤ ϕ ≤ 2π. Transition counts between
microstates were counted and reweighted as described in Eq. (45)
with xk = ϕk and

g(ϕk) = exp(−U(ϕk)
kBT

) = exp(−0.1 ⋅ F̃(ϕk)
kBT

), (64)

where ϕk is the first entry in the path of length τ. This resulted in five
reweighted MSMs for each temperature. Figure 6 shows the mean
and the standard deviation of the first three left MSM eigenvectors
(evaluated at lag time τ = 1 ps) and the mean and the standard
deviations of the associated implied timescale.

Example scripts for simulation and analysis are included as the
supplementary material.

IX. CONCLUSION AND OUTLOOK

We have presented two strategies to derive the path probability
ratio ML for the ISP scheme. In the first strategy, the correctly nor-
malized path probability is derived by integrating out the random
number ηk from the one-step transition probability. In the second
strategy, the equations for the ISP scheme are solved for ηk, and
the resulting transformation is used as a change in variables on the
Gaussian probability density of the random numbers. This yields
an unnormalized path probability. The path probability ratio ML
is then calculated as the ratio between the path probability at the
target potential P̃L(ωL;Δt∣(x0, v0)) and the path probability at the
simulation potential PL(ωL; Δt|(x0, v0)).

With ML, we are now able to perform exact path reweighting
for trajectories generated by the ISP integration scheme. Moreover,
the two strategies serve as a blueprint for deriving path probabil-
ity ratios for other Langevin integration schemes, which use Gaus-
sian white noise.44–47,49–53 Thus, path reweighting can now read-
ily be applied to MD simulation conducted at the NVT ensemble
thermostatted with a stochastic thermostat.

We compared the approximate path probability ratio Mapprox

that we used in earlier publications34,35 to the exact path probability
ratio ML, both analytically and numerically. We showed that the two
expressions only differ by O(ξ4Δt4). Thus, Mapprox is an excellent
approximation to ML for Langevin MD simulations. To understand
why the approximation is so good, we showed that the random num-
ber ηk needed to generate a given step xk → xk+1 is highly dependent
on the integration scheme. However, Δηk, the difference between the
random number η̃k at Ṽ(x) and the random number ηk at V(x), has
about the same value in the ISP scheme and in the Euler–Maruyama
scheme.

In Mapprox, one uses the random numbers directly recorded
during the simulation at V(x), which does not introduce any error
and approximates Δηk by the expression from the Euler–Maruyama
scheme Δηo ,k to construct η̃k.

We have chosen the ISP algorithm for the present analysis in
order to be consistent with our previous work.34,35 However, the

same strategy can be used to derive the path probability ratio for
other Langevin integrators.44–47,49–53 Specifically, solve the integrator
equations for the random number ηk; from there, derive an expres-
sion for Δηk, record ηk during the simulation at V(x) and calculate
Δηk on the fly, and insert ηk and Δηk into Eq. (7). For a large appli-
cation of path reweighting, using a modern Langevin integrator is
likely worthwhile, such as the the BAOAB method51 (or alterna-
tively the VRORV method53). This method is exceptionally efficient
at sampling the configurational stationary distribution, which allows
for increasing the time step.51,53

It is tempting to speculate that Δηk for other Langevin inte-
gration schemes could also have about the same value as Δηo ,k for
the Euler–Maruyama scheme. This would open up a route to a gen-
eral approximate path probability ratio M≈ and would eliminate
the problem that the path probability needs to be adapted for each
integration scheme. On the other hand, the structure of the ISP
scheme is closer to that of the Euler–Maruyama scheme than most
other Langevin integrators. Whether the approximate path proba-
bility can indeed be generalized to these integrators is, therefore, not
yet obvious and needs to be checked carefully.

Our one-dimensional test system and our molecular system
showed that the accuracy of the reweighting sensitively depends on
an accurate representation of ηk in the path probability ratio. For
example, reweighting a Langevin path by the path probability ratio
for the Euler–Maruyama scheme yielded very distorted results. Nei-
ther the MSM eigenvectors nor the implied timescales were repro-
duced correctly. It is, however, possible that the distortion is less
severe in the limit of infinite sampling of the combined space of
molecular states and random numbers (probably less relevant to
actual applications) or if the dynamics is projected onto a reaction
coordinate before the reweighted dynamical properties are evaluated
(probably very relevant to actual applications).

We used path reweighting to reweight MSMs. The dynami-
cal property that is reweighted to estimate a transition probability
is a correlation function. It is important to point out that correla-
tion functions are a combination of path ensemble averages, where
the path is conditioned on a particular initial state (x0, v0) and a
phase-space ensemble average for the initial states. Thus, the total
reweighting factor for MSMs is combined of the path probability
ratio M for the path ensemble average and the Boltzmann probabil-
ity ratio for the phase-space ensemble average g(x) [Eq. (47)].27,32–34

Even though the reweighting of the path ensemble average can be
made exact, by averaging over the initial states within a microstate,
one assumes local equilibrium within this microstate.23 Beyond
local equilibrium, the formalism has been extended to reweight-
ing transition probabilities from non-equilibrium steady-state
simulations.63

When is the combination of enhanced sampling and path
reweighting more efficient than a direct simulation? This depends
on the uncertainty of the transition counts estimated from a direct
simulation [Eq. (43)] compared to the uncertainty of the reweighted
transition counts [Eq. (45)]. The molecular example demonstrated
that path reweighting is particularly useful if the stationary density
cannot be sampled accurately by direct simulation with the available
computer resources. Furthermore, the efficiency of path reweighting
increases if the number of transitions at the enhanced sampling sim-
ulation is large compared to the direct simulation and if the weights
W = g ⋅M are not too small. The path probability ratio M decreases

J. Chem. Phys. 154, 094102 (2021); doi: 10.1063/5.0038408 154, 094102-15

© Author(s) 2021

3 Publications 91



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

with the path length τ and with the dimensionality of the bias poten-
tial U. The path length is kept short by combining path reweighting
with MSMs and can be further limited by using advanced MSM dis-
cretization techniques.64–66 The bottleneck for the dimensionality
U already occurs at the stage of sampling because most enhanced
sampling techniques10 are limited to very low-dimensional biases
in practice. Note that increasing the dimensionality of the overall
system does not lower the efficiency of the path reweighting. The
question of how strong the bias should be is more difficult to answer.
Strong biases increase the transitions in the biased simulation but
reduce both g and M. In Ref. 35, we empirically found that a bias
of ca. 10% of the full metadynamics biasing potential yielded opti-
mal results, but this will likely depend on the system. Here, we have
restricted ourselves to systems with low barriers in the order of kBT
so that we could generate reference solutions by direct simulation.
However, we believe that path reweighting is most useful for systems
with large barriers that cannot be sampled by direct simulation. An
example is the β-hairpin folding equilibrium in Ref. 35.

Path reweighting is closely related to path sampling techniques,
in particular path sampling techniques that aim at optimizing the
path action.67–70 The combination of enhanced sampling, path sam-
pling, and path reweighting might change the way we explore the
molecular state space and investigate rare events.

SUPPLEMENTARY MATERIAL

See the supplementary material for an example OpenMM script
and the corresponding Python3 scripts to construct a reweighted
MSM.
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APPENDIX A: LANGEVIN LEAPFROG
AND THE ISP SCHEME

Izaguirre, Sweet, and Pande developed the following Langevin
Leapfrog algorithm:

vk+ 1
2
= exp(−ξΔt

2
)vk − [1 − exp(−ξΔt

2
)]∇V(xk)

ξm

+

√
kBT
m
[1 − exp(−ξΔt)]ηk, (A1)

xk+1 = xk + vk+ 1
2
Δt, (A2)

vk+1 = exp(−ξΔt
2
)vk+ 1

2
− [1 − exp(−ξΔt

2
)]∇V(xk+1)

ξm

+

√
kBT
m
[1 − exp(−ξΔt)]ηk+1 (A3)

[Eqs. (14)–(16) in Ref. 49]. First, the velocity vk+ 1
2

is updated by a
half step using vk, xk, and a random number ηk [Eq. (A1)]. Then, the
position update to xk+1 is computed from xk, assuming a constant
velocity vk+ 1

2
in the interval [k, k + 1] [Eq. (A2)]. Finally, the remain-

ing half step of the velocities to vk+1 is computed using xk+1, vk+ 1
2
,

and a new random number ηk+1 [Eq. (A3)].
This Langevin Leapfrog algorithm has been converted to the

following full-step scheme in the C++ CpuLangevinDynamics class
of OpenMM:71

vk+1 = exp(−ξΔt)vk − [1 − exp(−ξΔt)]∇V(xk)
ξm

+

√
kBT
m
[1 − exp(−2ξΔt)]ηk, (A4)

xk+1 = xk + vk+1Δt, (A5)

where the velocities are propagated by a full step [i.e., Δt/2 in
Eq. (A1) is replaced by Δt, and Δt in Eq. (A1) is replaced by
2Δt] and the position update is based on vk rather than on vk+ 1

2
.

The second half step for the velocities [Eq. (A3)] is omitted. This
integration scheme only uses a single random number per itera-
tion. Equations (A4) and (A5) are the integration scheme we used
in Refs. 34 and 35. To distinguish it from the original Langevin
Leapfrog scheme [Eqs. (A1)–(A3)], we will refer to Eqs. (A4) and
(A5) as the “ISP scheme.”

To be able to analyze the path probability as a function of
the positions, we rearrange Eqs. (A4) and (A5) such that we first
update the positions using a stochastic step [replace vk+1 in Eq. (A5)
by Eq. (A4)] and then update the velocity as finite difference
[rearrange Eq. (A5) with respect to vk+1]. This yields Eqs. (20)
and (21).

APPENDIX B: PATH PROBABILITY
FOR LANGEVIN DYNAMICS

We derive the closed-form expression for PL(ωL; Δt|(x0, v0)) in
Eq. (22) from the integration scheme [Eqs. (20) and (21)] by follow-
ing the approach in Ref. 57. As a first step, we derive a closed-form
expression for the one-step probability PL(xk+1, vk+1; Δt|(xk, vk))
of observing a step (xk, vk) → (xk+1, vk+1). According to Eqs. (20)
and (21), the tuple (xk+1, vk+1) at iteration step k + 1 is entirely
determined by the tuple (xk, vk) at iteration step k if addition-
ally the random number ηk is known. Thus, PL(xk+1, vk+1; Δt|(xk,
vk, ηk)), i.e., the one-step probability with fixed random number
ηk, is a Dirac delta function centered at (xk+1, vk+1). Our strategy
is to derive a closed-form expression for this Dirac delta function
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using Eqs. (20) and (21) and to integrate out the dependency on
ηk. In this Appendix, we omit the index L in ηL ,k to simplify the
notation.

We reformulate the two-dimensional probability PL(xk+1, vk+1;
Δt|(xk, vk, ηk)) as a product of two one-dimensional probabilities,

PL(xk+1, vk+1;Δt∣(xk, vk,ηk)) = PL(vk+1;Δt∣(xk+1, xk, vk,ηk))⋅PL(xk+1;Δt∣(xk, vk,ηk)) (B1)

using the rule P(A, B|C) = P(A|B, C) ⋅ P(B|C), with A = vk+1, B = xk+1,
and C = (xk, vk, ηk). This rule is the extension of the conditional
probability P(A, B) = P(A|B) ⋅ P(B) to an additional condition C. The
first factor is a Dirac delta function constrained to Eq. (21),

PL(vk+1;Δt∣(xk+1, xk, vk,ηk)) = PL(vk+1;Δt∣(xk+1, xk))
= δ(vk+1 − xk+1 − xk

Δt
), (B2)

where the first equality emphasizes that vk+1 does not depend on
ηk or vk in Eq. (21). Note that the probability of the velocity vk+1
[Eq. (B2)] does not depend on a random number, which mirrors our
previous observation that vk+1 is not treated as a random variable
in Eq. (21). The second factor in Eq. (B1) is a Dirac delta function
constrained to Eq. (20),

PL(xk+1;Δt∣(xk, vk,ηk)) = δ⎛⎝xk+1 − xk − exp(−ξΔt) vkΔt
+ [1 − exp(−ξΔt)] ∇V(xk)

ξm
Δt

−
√

kBT
m
[1 − exp(−2ξΔt)]ηkΔt⎞⎠.

(B3)

Reinserting the two factors into Eq. (B1) yields the desired closed-
form expression for PL(xk+1, vk+1; Δt|(xk, vk; ηk)). Since we know
that the random numbers ηk are drawn from a Gaussian distribution
P(ηk) with zero mean and unit variance

P(ηk) = N−1 exp(−η2
k

2
) , N = √2π, (B4)

we can average out the random number dependency in Eq. (B1) to
obtain the one-step probability,

PL(xk+1, vk+1;Δt∣(xk, vk))
= ∫ ∞

−∞ dηkP(ηk)PL(xk+1, vk+1;Δt∣(xk, vk,ηk))
= δ(vk+1 − xk+1 − xk

Δt
)

⋅∫ ∞
−∞ dηkPη(ηk)PL(xk+1;Δt∣(xk, vk,ηk)). (B5)

The challenge lies in solving the integral in this equation. The solution, which is detailed in Appendix C, yields the closed-form expression for
the one-step probability,

PL(xk+1, vk+1;Δt∣(xk, vk)) = δ(vk+1 − xk+1 − xk
Δt

) ⋅√ m
2πkBTΔt2(1 − exp(−2ξΔt))

× exp
⎛⎜⎜⎝−

m(xk+1 − xk − exp(−ξΔt)vkΔt + (1 − exp(−ξΔt))∇V(xk)ξm Δt)2

2kBT(1 − exp(−2ξΔt))Δt2

⎞⎟⎟⎠. (B6)

Applying the Chapman–Kolmogorov equation72 recursively to the one-step probability yields the closed-form expression for the path
probability PL(ωL; Δt|(x0, v0)), shown in Eq. (22).

APPENDIX C: SOLVING THE DOUBLE INTEGRAL

We compute the integral

PL(xk+1;Δt∣(xk, vk)) =
∞
∫−∞ dηk P(ηk)PL(xk+1;Δt∣(xk, vk,ηk)) (C1)

from Eq. (B5). First, we replace P(ηk) according to Eq. (B4). Sec-
ond, we substitute PL(xk+1; Δt|(xk, vk, ηk)), which is a δ-function

[Eq. (B3)], with its Fourier transform

δ(z − z′) = +∞
∫−∞

dw
2π

exp(iw(z − z′)), (C2)

where z = xk+1 and z′ is equal to the right-hand side of Eq. (20). This
yields a double integral whose outer integral is with respect to w,
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while the inner integral is with respect to ηk,

PL(xk+1;Δt∣(xk, vk))
= +∞
∫−∞

dw
2π

+∞
∫−∞

dηk
N

exp(−η2
k

2
)

× exp
⎛⎝iw
⎡⎢⎢⎢⎢⎣xk+1 − xk − exp(−ξΔt) vkΔt

+[1 − exp(−ξΔt)] ∇V(xk)
ξm

Δt

−
√

kBT
m
[1 − exp(−2ξΔt)]ηkΔt⎤⎥⎥⎥⎥⎦

⎞⎠
= +∞
∫−∞

dw
2π

exp(iwB) +∞
∫−∞

dηk
N

exp(−η2
k

2
− iwRηk), (C3)

where we moved all terms that do not depend on ηk out of the inner
integral and defined the abbreviations,

B = [xk+1 − xk − exp(−ξΔt) vkΔt
+[1 − exp(−ξΔt)] ∇V(xk)

ξm
Δt],

R = Δt
√

kBT
m
[1 − exp(−2ξΔt)]. (C4)

Both integrals in Eq. (C3) can be solved with the completing-the-
square technique for Gaussian integrals. The goal of this technique
is to expand and rearrange the inner integral such that we can use
the analytic solution

∞
∫−∞ dx exp(−a(x ± b)2) = √π

a
for a, b ∈ R. (C5)

This can be achieved by a systematic step-to-step procedure that can
be applied to all Gaussian integrals of this type,

+∞
∫−∞

dηk
N

exp(−η2
k

2
− iwRηk)

= +∞
∫−∞

dηk
N

exp
⎛⎜⎜⎜⎝−

1
2

⎡⎢⎢⎢⎢⎢⎢⎣
η2
k + 2iwRηk

=0³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
+i2w2R2 − i2w2R2

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎠

= exp(−w2R2

2
) +∞
∫−∞

dηk
N

exp(−1
2
(ηk + iwR)2)

= exp(−w2R2

2
) 1
N
√

2π

= exp(−w2R2

2
). (C6)

In the first line, we isolate η2
k by factoring out− 1

2 and complete the
first binomial formula by adding a zero. Then, we separate the expo-
nent into the binomial formula and the term exp(−w2R2

2 ), which can
be moved in front of the integral because it does not depend on ηk. In
the third line, we solve the remaining integral using Eq. (C5), which

can be further simplified by inserting the normalization constant of
the Gaussian distribution: N = √2π.

Inserting Eq. (C6) into Eq. (C3) yields the outer integral

+∞
∫−∞

dw
2π

exp(iwB) exp(−w2R2

2
) = +∞
∫−∞

dw
2π

exp(−w2R2

2
+ iwB),

which is solved using the same procedure,

+∞
∫−∞

dw
2π

exp(−w2R2

2
+ iwB)

= +∞
∫−∞

dw
2π

exp

⎛⎜⎜⎜⎜⎜⎝
−R2

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
w2 +

2iwB
R2

=0³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
+
i2B2

R4 − i2B2

R4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠
= exp(− B2

2R2 )
∞
∫−∞

dw
2π

exp(−R2

2
(w +

iB
R2 )2)

= exp(− B2

2R2 ) 1
2π

√
2π
R2

=
√

1
2πR2 exp(− B2

2R2 ). (C7)

Inserting the expressions for the constants R and B [Eq. (C4)] yields

PL(xk+1 ;Δt∣(xk ,vk))
=√ m

2πkBTΔt2(1 − exp(−2ξΔt))
× exp

⎛⎜⎜⎝−
m(xk+1 − xk − exp(−ξΔt)vkΔt + (1− exp(−ξΔt))∇V(xk)

ξm Δt)2

2kBT(1− exp(−2ξΔt))Δt2

⎞⎟⎟⎠.

(C8)

This is inserted into Eq. (B5) to yield Eq. (B6).

APPENDIX D: PROOF OF EQ. (31)

(1 − e−x)2

x ⋅ (1 − e−2x) = 1
2
− x2

24
+

x4

240
±O(x5),

(1 − e−x)2 = x
2
⋅ (1 − e−2x) − x2

24
⋅ x ⋅ (1 − e−2x)

±O(x4) ⋅ x ⋅ (1 − e−2x), (D1)

(1 − e−x)2 = x
2
⋅ (1 − e−2x) −O(x4).

The first line shows the Taylor expansion of the expression on
the right-hand side. To obtain the second line, we multiplied by
x ⋅ (1 − e−2x). In the third line, we used the fact that the leading term
of the Taylor expansion of x ⋅ (1 − e−2x) is 2x2, thus yielding an error
of O(x4). Substituting x = ξΔt yields

J. Chem. Phys. 154, 094102 (2021); doi: 10.1063/5.0038408 154, 094102-18

© Author(s) 2021

94 3 Publications



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

(1 − e−ξΔt)2 = ξΔt
2
⋅ (1 − e−2ξΔt) −O(ξ4Δt4),

(1 − e−ξΔt)2 ≈ ξΔt
2
⋅ (1 − e−2ξΔt), (D2)

and multiplying by 1
kBT ξ2 m (1−e−2ξΔt)(∇U(xk))2 yields

1
kBTξ2m

(1 − e−ξΔt)2

1 − e−2ξΔt (∇U(xk))2 ≈ Δt
2kBTξm

(∇U(xk))2,

Δη2
L,k ≈ Δη2

o,k.

(D3)

Thus, the difference between Δη2
L,k [Eq. (26)] and Δη2

o,k [Eq. (17)] is
of order O(ξ4Δt4). Equation (D3) is Eq. (31) squared. ◽
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3.4 SI: Supporting Information for part A

All content of this section has not been published in any form prior to this thesis.

3.4.1 SI: Introduction

In part A1 of this thesis, we introduced four underdamped Langevin integrators BAOAB,

ABOBA,[30,31] BAOA[36] and an integrator developed by Goga et al.[35] which we call GRO-

MACS Stochastic Dynamics (GSD). We argued that GSD and BAOAB are equivalent con-

figurational sampling algorithms and showed that GSD and BAOA are equivalent algorithms

in both configurational and momentum space. Further, we discussed the numerical accu-

racy for configurational as well as kinetic properties for all four integrators in the case of a

one-dimensional model system and a water box at near-ambient conditions. As explained in

sec. 2.2.3, the BAOAB and ABOBA integrators can be derived by Strang splitting[109] the

vector field of the underdamped Langevin equation of motion into three parts.[19,30,31] This

strategy yields four other symmetric integrators AOBOA, BOAOB, OBABO and OABAO,

where OBABO is also called Bussi-Parrinello thermostat.[34] Here, we repeat the numerical

accuracy study shown in part A1 for the AOBOA, BOAOB, OBABO and OABAO integra-

tors and extend the study to dynamical quantities by investigating the performance of all

seven integrators in the context of computing escape rates.

Furthermore, we want to follow up on partA3 of this thesis, where we extended path reweight-

ing to underdamped Langevin dynamics and derived the exact path reweighting factor for a

variant of the underdamped Langevin integrator developed by Izaguirre, Sweet and Pande.[39]

In the same publication, we suggested a strategy to derive the random number difference ∆η

and subsequently the path reweighting factorM for other underdamped Langevin integrators.

Here, we use this strategy to formally derive M for the ABOBA integrator.

3.4.2 SI: Numerical accuracy

Numerical accuracy: Statistical properties

Part A1 of this thesis (sec. 3.1) tests the numerical accuracy of ABOBA, BAOAB and

BAOA/GSD for a one-dimensional potential where the test concept is based on Ref. [31].

In this SI, we extend the test to BOAOB, OBABO, AOBOA and OABAO and present the

results in fig. 3.1. In part A1, we generated extraordinary long trajectories to compute the

results for ABOBA, BAOAB and BAOA/GSD. In fig. 3.1, however, we compute the equilib-

rium distributions and the temperatures from shorter trajectories yielding identical accuracy

but much shorter simulation times.
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This means that we conducted new simulations for ABOBA, BAOAB and BAOA/GSD in
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Figure 3.1:
Left column: Configurational Boltzmann distributions with the inset magnifying the region around the
deepest well (top) and Maxwell-Boltzmann distributions with the inset magnifying the region around the mean
momentum (bottom) for the one-dimensional potential and time step ∆t = 0.25. The analytic distributions are
shown in red. Right column: Relative error in the average configurational temperature (top) and average
kinetic temperature (bottom) for the one-dimensional potential. The equation of the second order line is
ε2nd = exp(∆t2).

fig. 3.1 and did not reuse the results published in Ref. [141] (part A1). The corresponding

computational details are summarized in sec. 3.4.4.

The left column in fig. 3.1 compares the sampled equilibrium distributions in position and

momentum space for each integrator and a rather large time step ∆t = 0.25 to the analytic

Boltzmann (top) and the analytic Maxwell-Boltzmann distribution (bottom). As expected,

the most accurate sampling in position space is achieved by BAOAB and BAOA while all

other integrators yield results that deviate to varying degrees from the analytical Boltzmann

distribution. AOBOA and ABOBA generate the same configurational distribution which

slightly underestimates the distribution in the steepest well. The results for BOAOB and

OBABO are equivalent and their distribution significantly underestimates the steepest well.

OABAO significantly overestimates the distribution in the steepest well. In momentum space,

BOAOB, BAOA, OBABO and OABAO generate indistinguishable equilibrium distributions
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Figure 3.2:
One-dimensional potential with configuration space discretization into two states A and B.

that are a very accurate representation of the corresponding Maxwell-Boltzmann distribution.

The results for AOBOA and ABOBA are equivalent. Their velocity distribution underesti-

mates the analytic distribution whereas BAOAB overestimates the analytic distribution.

As a measure for the accuracy with which each integrator reproduces the target temperature

we show the relative error (eq. 3.18) as a function of ∆t for the same system. The average

temperature can either be computed as an average with respect to the Boltzmann distribu-

tion, which is called configurational temperature Tconf , or as an average with respect to the

Maxwell-Boltzmann distribution which is referred to as kinetic temperature Tkin. All inte-

grators yield second order accuracy, meaning we expect an relative error of ε2nd = exp(∆t2)

(dotted line) for both temperatures. In accordance with the observed accuracy of the sampled

Boltzmann distributions, BAOAB and BAOA yield the most accurate configurational tem-

peratures, whereas all other integrators produce significantly less accurate results with more

than 10 % discrepancy to the reference temperature for all ∆t. Furthermore, groups of inte-

grators that generate equivalent Boltzmann distributions also yield equivalent configurational

temperatures. In accordance with the observed accuracy of the sampled Maxwell-Boltzmann

distributions, OBABO, BAOAB, OABAO and BAOA yield accurate kinetic temperatures

with less than 1 % discrepancy where OABAO and BAOA yield the most accurate results

even at large ∆t. In comparison, BAOAB, AOBOA and ABOBA compute kinetic tempera-

tures with more than 10 % discrepancy to the reference temperature. Additionally, the results

in the right column in Fig. 3.1 show that BAOA, BAOAB and OABAO remain numerically

stable even at large time steps ∆t > 0.24.

Numerical accuracy: Dynamical properties

In fig. 3.3, we consider the same one-dimensional potential as in fig. 3.1 and test how accurate

the seven integrators compute escape rates at rather large ∆t > 0.2. In this context, we divide

the position space into two distinct states A and B, that are spatially separated from each

other as depicted in fig. 3.2.
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Figure 3.3:
(a) Transition from state A to B: Escape rates (left) where the markers represent the mean and the error
bars the standard deviation computed from 10 independent long trajectories per integrator and time step
combination. Relative error of the escape rate as a function of ∆t with respect to the escape rate computed
at the suitable small time step ∆t = 0.001 for each integrator individually.
(b) Transition from state B to A as described above.

The escape rates rA→B and rB→A describe the average rates at which the system transitions

from state A to B or from state B to A, respectively. Since the particle has to cross a much

larger barrier when going from A → B, we expect to observe a significantly smaller rate than

for the transition B → A. The left column in fig. 3.3 shows the average escape rates as a

function of ∆t for each integrator where the markers represent the mean and the error bars

the standard deviation computed from 10 independent trajectories per integrator and time

step combination. As expected, the escape rates for the transition A → B are approximately

one order of magnitude smaller than the escape rates for the transition B → A. The right

column in fig. 3.3 shows the relative error ε(∆t) = (r(∆t)−rref)/rref of the escape rates r(∆t)

for each integrator. In addition to the strength of the deviation, this definition of ε(∆t) also

allows a statement about whether an integrator over- or underestimates the escape rate at
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the given ∆t compared to the reference value. Since all integrators yield a trajectory that

converges to the true solution for ∆t → 0, we computed the escape rate each integrator yields

at a suitable small time step ∆t = 0.001 as the respective reference value rref . In contrast to

the statistical quantities examined in fig. 3.1, the results for the escape rates indicate that

the accuracy of dynamical quantities is more affected by large time steps. For both escape

rates, BOAOB, OBABO, AOBOA, and ABOBA yield very similar results that overestimate

the respective rate with increasing discrepancy along the time axis. BAOAB, BAOA and

OABAO yield almost identical results that underestimate the respective rate with approx-

imately constant discrepancy along the time axis. The discrepancy between the results of

the integrators overestimating and the integrators underestimating the rate is approximately

0.007 1/s for both rates. In total, BAOAB, BAOA and OABAO yield the most accurate

rates for both transitions and all time steps.

We suggest that the observed splitting of the results into a set of integrators that overes-

timates and a set of integrators that underestimates the escape rate could be due to the

respective splitting sequences. In the case of BAOAB, BAOA and OABAO, the momentum

updates B and O are interspersed by a position update A, whereas all integrators that over-

estimate the escape rate perform the combined momentum update ”BO”, ”OB”, ”BOB” or

”OBO”.

The results shown in fig. 3.3 were computed at the stability limit of the integrators with

respect to the time step. For model systems like the one we considered here, we usually

run the MD simulations at time steps much smaller than the respective stability limit of

the integrator. Consequently, the differences in the results of the seven integrators becomes

negligible. In MD simulations for molecular systems however, we typically choose a time step

of 2 fs which is indeed close to the stability limit of the underdamped Langevin integrators as

shown by Leimkuhler and Matthews.[31] This means that the underdamped Langevin integra-

tors might yield dynamical quantities with for example a difference up to 10 % as indicated

by fig. 3.3. However, in complex systems the accuracy with which rates can be computed

is limited and literature usually reports rates on a logarithmic scale which ranges over mul-

tiple orders of magnitude.[142–144] In this context, the differences between the underdamped

Langevin integrators is negligible, especially compared to the uncertainties introduced by the

force field or insufficient sampling.

3.4.3 SI: Path reweighting factor of the ABOBA integrator

Part A3 of this thesis suggests a strategy to derive the random number difference ∆ηk

at iteration step k for an underdamped Langevin integrator which can then be used to

derive the path reweighting factor M . A part of this strategy is to solve the underdamped

Langevin integrator equation for the random number ηk which can get quiet cumbersome and

confusing. Here, we derive the random number difference ∆ηk for the ABOBA integrator in
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a mathematical more formal way.

As explained in sec. 2.2.3, the vector field of the Langevin equation of motion can be split

into three parts A, B and O where every part can be solved separately. The corresponding

update operators for a full time step update from state (qk, pk)
⊤ ∈ Ω to (qk+1, pk+1)

⊤ ∈ Ω

with state space Ω ∈ R2 are given as

A
(

qk

pk

)
=

(
qk + apk

pk

)
(3.1a)

B
(

qk

pk

)
=

(
qk

pk + b(qk)

)
(3.1b)

O
(

qk

pk

)
=

(
qk

d pk + f ηk

)
(3.1c)

where we used the abbreviations

a =
∆t

m
(3.2a)

b(qk) = −∆t∇qV (qk) (3.2b)

d = e−ξ∆t (3.2c)

f =
√
kBTm(1− e−2ξ∆t) . (3.2d)

The corresponding update operators for a half time step update are

A′
(

qk

pk

)
=

(
qk + a′pk

pk

)
(3.3a)

B′
(

qk

pk

)
=

(
qk

pk + b′(qk)

)
(3.3b)

O′
(

qk

pk

)
=

(
qk

d′ pk + f ′ ηk

)
(3.3c)

where the abbreviations are denoted with a prime

a′ =
∆t

2m
(3.4a)

b′(qk) = −∆t

2
∇qV (qk) (3.4b)

d′ = e−ξ∆t
2 (3.4c)

f ′ =
√

kBTm(1− e−ξ∆t) . (3.4d)

For a detailed explanation of this splitting method, we refer to sec. 2.2.3. In the case of

ABOBA, the update operator UABOBA which defines the update (qk, pk)
⊤ → (qk+1, pk+1)

⊤
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can be calculated as

UABOBA

(
qk

pk

)
= A′B′OB′A′

(
qk

pk

)

= A′B′OB′
(

qk + a′pk
pk

)

= A′B′O
(

qk + a′pk
pk + b′(qk + a′pk)

)

= A′B′
(

qk + a′pk
dpk + db′(qk + a′pk) + fηk

)

= A′
(

qk + a′pk
dpk + db′(qk + a′pk) + fηk + b′(qk + a′pk)

)

=

(
qk + a′pk + a′[dpk + db′(qk + a′pk) + fηk + b′(qk + a′pk)]

dpk + db′(qk + a′pk) + fηk + b′(qk + a′pk)

)
(3.5)

Next, we consider a target system governed by the target potential Ṽ (q) = V (q)+U(q), where

we call V (q) simulation potential and U(q) bias. To generate the same update (qk, pk)
⊤ →

(qk+1, pk+1)
⊤ as in eq. 3.5 at the target potential, we use a different random number η̃k per

iteration step in order to account for the change in the potential. The corresponding update

operator ŨABOBA is given as

ŨABOBA

(
qk

pk

)
=

(
qk + a′pk + a′[dpk + db̃′(qk + a′pk) + fη̃k + b̃′(qk + a′pk)]

dpk + db̃′(qk + a′pk) + fη̃k + b̃′(qk + a′pk)

)
,(3.6)

with b̃′(qk) being defined in eq. 3.4b where we inserted the target potential Ṽ (q). We require

that both update operator yield the same update, i.e. the path remains unchanged,

(
qk+1

pk+1

)
= UABOBA

(
qk

pk

)
= ŨABOBA

(
qk

pk

)
. (3.7)

Thus, we need to solve

UABOBA

(
qk

pk

)
− ŨABOBA

(
qk

pk

)
=

(
0

0

)
(3.8)

for ∆ηk = η̃k − ηk, i.e. we determine the change in the random number that yields the same

path even though the potential has changed. Inserting eqs. 3.5 and 3.7 into eq. 3.8 yields

(
0

0

)
=

(
qk + a′pk + a′(dpk + db′(qk + a′pk) + fηk + b′(qk + a′pk))

dpk + db′(qk + a′pk) + fηk + b′(qk + a′pk)

)
−
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(
qk + a′pk + a′(dpk + db̃′(qk + a′pk) + fη̃k + b̃′(qk + a′pk))

dpk + db̃′(qk + a′pk) + fη̃k + b̃′(qk + a′pk)

)

=

(
a′[d · b′(qk + a′pk) + fηk + b′(qk + a′pk)]

db′(qk + a′pk) + fηk + b′(qk + a′pk)

)
−

(
a′[d · b̃′(qk + a′pk) + fη̃k + b̃′(qk + a′pk)]

db̃′(qk + a′pk) + fη̃k + b̃′(qk + a′pk)

)

=

(
a′

1

)
[d · b′(qk + a′pk) + fηk + b′(qk + a′pk)]−

(
a′

1

)
[d · b̃′(qk + a′pk) + fη̃k + b̃′(qk + a′pk)]

=

(
a′

1

)
[d · b′(qk + a′pk) + fηk + b′(qk + a′pk)− d · b̃′(qk + a′pk)− fη̃k − b̃′(qk + a′pk)] .

We use η̃k = ηk +∆ηk and U(q) = Ṽ (q)− V (q) to get

(
0

0

)
=

(
a′

1

)
[(d+ 1) · b′(qk + a′pk)− (d+ 1) · b̃′(qk + a′pk) + f(ηk − η̃k)]

=

(
a′

1

)
[(d+ 1) · ∆t

2
∇qU(qk+1/2)− f∆ηk] . (3.9)

where we substituted qk+1/2 = qk+a′pk (eq. 2.67a). Solving eq. 3.9 for ∆ηk yields the random

number difference

∆ηk =
(d+ 1)

f

∆t

2
∇qU(qk+1/2)

=
1 + e−ξ∆t

√
kBTm(1− e−2ξ∆t)

∆t

2
∇qU(qk+1/2) (3.10)

According to eqs. 7 and 9 in Ref. [145] (part A3) the exact path reweighting factor for the

ABOBA integrator is then given as

M(ω|ω0) = exp

(
−

n−1∑

k=0

[
ηk ·∆ηk +

1

2
(∆ηk)

2

])
(3.11)

with ∆ηk as defined in eq. 3.10.

In principal, the same strategy can be used to derive the path reweighting factor for other

Langevin integrators. However, we strongly emphasize that for some integrators, the random

number difference might not simultaneously be able to account for both, the changes in con-

figuration as well as momentum space. This means, that some integrators can only generate

an identical configuration sequence q = (q0, q1, . . . , qn) or an identical momentum sequence
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p = (p0, p1, . . . , pn) at both potentials but not an identical path ω in state space. To adapt

the presented strategy to such cases is the task of a future work.

3.4.4 SI: Methods

For all numerical studies, we implemented the ABOBA, BAOAB, BAOA, AOBOA, BOAOB,

OBABO, OABAO integrator equations as defined in appendix A.2 in Python 3. Following

Ref. [31], we chose the tilted double well potential

V (q) = (q2 − 1)2 + q, q ∈ R (3.12)

(fig. 3.2) to test how accurate the Langevin integrators generate the equilibrium distribu-

tions, reproduce the configurational and kinetic temperature (fig. 3.1) and to compute the

escape rates (fig. 3.3) at large time steps. The potential defined in eq. 3.12 has two minima at

q ≈ −1 and q ≈ 1 and a maximum at q ≈ 0. We set the following simulation parameters for

all simulations: Boltzmann constant kB = 1, collision rate ξ = 1, mass m = 1, temperature

T = 1, initial position q0 = 0 and initial velocity v0 = 0.

Fig. 3.1, left column: We generated a trajectory with 107 iterations at time step ∆t = 0.25

for all seven integrators ABOBA, BAOAB, BAOA, AOBOA, BOAOB, OBABO, OABAO. We

computed the distributions as normed histograms where we divided the interval [−2, 2] for the

Boltzmann distribution and the interval [−5, 5] for the Maxwell-Boltzmann distributions into

100 equidistant bins. As a reference, we compute the configurational Boltzmann distribution

ϕ(q) =
exp

(
− 1

kBT V (q)
)

∞∫
−∞

exp(− 1
kBT V (q))dq

, (3.13)

and the analytical Maxwell-Boltzmann distribution

ρ(p) =

√
1

2kBTmπ
exp

(
− 1

2kBTm
p2
)

. (3.14)

Fig. 3.1, right column: We generated 500 independent trajectories of length n = 107

iterations for each of the seven integrators at different time steps ∆t = 0.20, 0.22, 0.24, 0.26.

We evaluated the average configurational temperature

Tconf =
⟨q · ∇qV (q)⟩

kB
=

lim
n→∞

1
n

n∑
i=0

qi · ∇qV (qi)

kB
(3.15)
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and the average kinetic temperature

Tkin =

〈
p2

m

〉

kB
=

lim
n→∞

1
n

n∑
i=0

p2i
m

kB
(3.16)

from each trajectory. This resulted in 500 independent values for Tconf and 500 independent

values for Tkin from which we computed the average

Tav(∆t) =

500∑
i=1

T
(i)
conf/kin

500
, (3.17)

for each integrator and time step combination. The relative errors were computed as

ε(∆t) =
|Tref − Tav(∆t)|

Tref
(3.18)

with reference temperature Tref = 1.

Fig. 3.3: To compute escape rates, we discretized the position space into two distinct states

A and B, where the particle is in state A if q < −0.8 and in state B if q > 0.8 (see Fig. 3.2).

Accordingly, the escape time tiA→B represents the time that evolves between the first time

the particle enters state A and the first time it subsequently enters state B. We defined the

escape time tiB→A as the time that evolves between the first time the particle enters state B

and the first time it subsequently enters state A. Please note that these definitions include

recrossing events, e.g. when the particle leaves state A and returns to state A without reach-

ing state B.

We used different values for the time step ∆t = 0.20, 0.22, 0.24, 0.26 and all seven under-

damped Langevin integrators mentioned above. For each time step and integrator combina-

tion, we conducted 10 independent MD simulations of length 107 iterations and extracted the

escape time tiA→B of all n escape events A → B and the escape time tiB→A of all m escape

events B → A that occurred along a trajectory. We computed the average escape rates

rA→B =
1

mean(tiA→B)
=

n
n∑

i=1
tiA→B

(3.19)

rB→A =
1

mean(tiB→A)
=

m
m∑
i=1

tiB→A

. (3.20)

per trajectory, yielding 10 values for rA→B and 10 values for rB→A per integrator and time

step combination. In the left column of fig. 3.3, we show the mean r(∆t) of the respective 10

rates as markers and the corresponding standard deviation as error bars for each integrator
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as a function of ∆t.

To get a reference escape rate, we generated 10 independent trajectories of length 108 iter-

ations at time step ∆t = 0.001 for each integrator. Following the protocol described above,

we computed the reference escape rate rref for each transition as the mean of the 10 escape

rates rA→B and the mean of the 10 escape rates rB→A. The relative error ε(∆t) is shown in

the right column of fig. 3.3 and was computed for each integrator individually as

ε(∆t) =
r(∆t)− rref

rref
. (3.21)
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Summary

Part B of this thesis nicely illustrates that the combination of experimental and theoretical

approaches is a powerful strategy to study complex processes in nature. One such a complex

process is the inositol polyphosphate metabolism in eukaryotes.

Inositol polyphosphates (InsPs) are small, water-soluble molecules that vary in the phospho-

rylation pattern of their myo-inositol scaffold. They act as secondary messengers in signal

transduction pathways and are key to fundamental physiological processes.[85–87] Inositol-

1,3,4,5,6-pentakisphosphate (InsP5[2OH]) and inositol hexakisphosphate (InP6) are reported

to be the most abundant InsPs in mammalian cells.[93–96,146,147] Both are highly phospho-

rylated InsPs and can be converted into lower phosphorylated InsPs via dephosphorylation

pathways.[97]

The dephosphorylation is mediated by Multiple Inositol Polyphosphate Phosphatase 1 (MINPP1),

which is the only known enzyme in the human genome capable to dephosphorylate InsP6.
[148–150]

Since MINPP1 was recently linked to a genetic disorder which affects cognitive functions and

life expectancy of humans,[98,99] it is of great interest to shed light onto MINPP1 mediated

processes. Depending on the phosphorylation level of the InsP, MINPP1 was shown to de-

phosphorylate different positions with different affinities and kinetics.[151,152] In the case of

InsP6, MINPP1 is annotated as a 3-phosphatase, meaning it predominantly removes the

phosphoryl group at the 3-position.[153]

To date, literature only reports in vitro experiments which showed MINPP1 mediated de-

phosphorylation of InsP6 to only sparsely annotated InsPs with three or four phosphoryl

groups.[90,91,154–156] However, the distinct dephosphorylation pathways with the relevant InsP

intermediates and the corresponding kinetics are still unknown and the role of lower phos-

phorylated InsPs remains unclear. Due to the limitations of current analytical tools, it is

particularly challenging to analyze mixtures of InsP metabolites and to provide answers to

the previous questions.

This publication presents a strategy to distinguish between different InsPs and simultaneously

measure the time evolution of the respective InsP concentrations via BIRD-{1H-13C}HMQC-

NMR measurements. In this context, we synthesize[157] fully and asymmetrically 13C-labeled

isotopomers of myo-inositol and InsPs and utilize them in both, biochemical and cellular

metabolic labeling experiments. We demonstrate that the NMR signals of different InsPs

cluster in a systematic manner, where the asymmetric labeling experiments help to resolve

enantiomers. We use this perception in a methodological way to identify the different InsPs

signals and answer the following questions:

1) Do lower phosphorylated InsPs play a role in the InsP metabolism in mammalian

cells?



110 3 Publications

2) What are the distinct MINPP1 mediated dephosphorylation pathways of InsP5[2OH]

and InsP6?

In the context of question 1, we report inositol 2-monophosphate (Ins(2)P) and inositol 2,3-

bisphosphate (Ins(2,3)P2) as major mammalian metabolites, as has previously been noted.[91,158]

Furthermore, CE-MS experiments with cells lacking MINPP1 could not detect any InsP(2,3)P2

and InsP(2) metabolites. We conclude that the formation of InsP(2,3)P2 and InsP(2) de-

pends on MINPP1 and we assume that they are generated directly from InsP6. To validate

this assumption, we aim to answer question 2.

In biochemical experiments, we investigated the in vitro activity of MINPP1 against fully
13C-labeled InsP5[2OH] and InsP6, respectively. We performed 2D NMR measurements to

extract the progress curves of the main intermediates over a period of 69 hours and built a ki-

netic network assumption for each dephosphorylation pathway. The progress curves describe

the time evolution of the concentration of each InsP at a suitable time resolution and thus

constitute a data set which is very well suited for computing dynamical quantities, such as

reaction rates. Since MINPP1 is a phosphatase, we can describe the dephosphorylation net-

work as a set of consecutive, irreversible, one-step reactions between the individual InsPs and

use a Markovian kinetic scheme to extract the reaction rate of each dephosphorylation step.

In this context, Markovian means that the reaction rates are time constant. We formulated

the corresponding Master equation and determined the reaction rate matrix with a numerical

optimization routine that minimized the error between the theoretically predicted and the

experimentally measured progress curves of each InsP. Our experimental as well as numerical

results confirm MINPP1’s annotation as a 3-phosphatase and the two highest reaction rates

correspond to the reported canonical MINPP1 activity towards InsP5[2OH].[151,152] In the

case of InsP6, the experiments confirmed the formation of Ins(2,3)P2 and InsP2 as products

of the MINPP1 mediated dephosphorylation pathway. Experiments with asymmetrically
13C-labeled InsP6 revealed that both Ins(2,3)P2 and Ins(1,2)P2 are formed with an excess of

Ins(2,3)P2.

Finally, we showed numerically as well as experimentally that InsP6 could act as an inhibitor

for the dephosphorylation of the MINPP1-generated intermediates.
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ABSTRACT: The water-soluble inositol phosphates (InsPs)
represent a functionally diverse group of small-molecule messengers
involved in a myriad of cellular processes. Despite their centrality,
our understanding of human InsP metabolism is incomplete because
the available analytical toolset to characterize and quantify InsPs in
complex samples is limited. Here, we have synthesized and applied
symmetrically and unsymmetrically 13C-labeled myo-inositol and
inositol phosphates. These probes were utilized in combination with
nuclear magnetic resonance spectroscopy (NMR) and capillary
electrophoresis mass spectrometry (CE-MS) to investigate InsP
metabolism in human cells. The labeling strategy provided detailed
structural information via NMR�down to individual enantiomers�which overcomes a crucial blind spot in the analysis of InsPs.
We uncovered a novel branch of InsP dephosphorylation in human cells which is dependent on MINPP1, a phytase-like enzyme
contributing to cellular homeostasis. Detailed characterization of MINPP1 activity in vitro and in cells showcased the unique
reactivity of this phosphatase. Our results demonstrate that metabolic labeling with stable isotopomers in conjunction with NMR
spectroscopy and CE-MS constitutes a powerful tool to annotate InsP networks in a variety of biological contexts.

■ INTRODUCTION
Myo-inositol polyphosphates (InsPs) are ubiquitous, water-
soluble small molecules found in all eukaryotes. InsPs are
involved in a wide spectrum of biological functions as they are
key to fundamental physiological processes. A well-charac-
terized example is inositol-1,4,5-trisphosphate (Ins(1,4,5)P3)
as a Ca2+ release factor. More recently, InsPs were shown to
regulate the activity of class I histone deacetylases as well as
Bruton’s tyrosine kinase (Btk), which implies a wider role for
InsPs in transcriptional regulation and in governing intra-
cellular signal transduction.1−3

The InsPs vary greatly with respect to their phosphorylation
patterns, and over 20 different InsPs are currently thought to
be part of mammalian InsP metabolism.4−7 The most
abundant InsPs in mammalian cells are inositol-1,3,4,5,6-
pentakisphosphate (InsP5[2OH]) and inositol hexakisphos-
phate (also called phytic acid, InsP6), with cellular concen-
trations ranging from the lower micromolar range to >100 μM
in human cells and even in the sub-millimolar range in slime
molds.8,9 InsP5[2OH] and InsP6 are precursors for the
biosynthesis of inositol pyrophosphates (PP-InsPs), which
have recently drawn increasing attention due to their dense
phosphorylation patterns and their involvement in central
signaling processes.10 InsP6 is also found in a growing number
of proteins and protein complexes as a structural cofactor or as
a “molecular glue” for protein−protein interactions.11−14

While the kinase-mediated pathways of InsP biosynthesis are
fairly well studied, there is limited information on dephosphor-
ylation of InsPs in mammalian cells,15 especially with respect
to the higher phosphorylated members. To date, MINPP1
(Multiple Inositol Polyphosphate Phosphatase 1) is the only
recognized enzyme in the human genome capable of
dephosphorylating InsP6.

16,17 MINPP1 is related to phytases,
a highly conserved group of enzymes in many other organisms
that can dephosphorylate various InsPs.18 MINPP1 has been
shown to play a role in apoptosis, ER-related stress, and bone
and cartilage tissue formation.17,19 Recently, MINPP1 was
connected to a genetic disorder: patients with loss-of-function
mutations in MINPP1 exhibit pontocerebellar hypoplasia
(PCH), a neurodegenerative disease severely impacting
cognitive functions and life expectancy.20,21 Therefore, it is
important to understand the molecular mechanisms of
MINPP1-governed functions in healthy and diseased states.
Although MINPP1 is annotated as a 3-phosphatase, i.e., it

predominantly removes the phosphoryl group at the 3-position

Received: September 2, 2022
Published: December 5, 2022

Research Articlehttp://pubs.acs.org/journal/acscii

© 2022 The Authors. Published by
American Chemical Society

1683
https://doi.org/10.1021/acscentsci.2c01032

ACS Cent. Sci. 2022, 8, 1683−1694

D
ow

nl
oa

de
d 

vi
a 

FR
E

IE
 U

N
IV

 B
E

R
L

IN
 o

n 
M

ar
ch

 1
5,

 2
02

3 
at

 1
2:

33
:3

0 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

3 Publications 111



of InsP6,
22 MINPP1 is also able to dephosphorylate several

InsPs at different positions with varying affinities and
kinetics.23,24 The current assumption is that MINPP1
dephosphorylates InsP6 to hitherto only sparsely annotated
InsP4/3 species (Figure 1a).6,7,25−27 However, this activity has
only been demonstrated in vitro and in intact cells over-
expressing a cytosolic variant of MINPP1. Whether this activity
is relevant in vivo and which InsP intermediates are exactly
involved is still not clear.25 Furthermore, there is no consensus
how MINPP1 accesses its InsP substrates. While early studies
suggest MINPP1 to be localized to the ER,28,29 others have
also shown alternative localizations into the Golgi, in
lysosomes, or even secreted in exosomes.30,31

Probing and quantifying InsP metabolites and their
interconversion is still a challenging task due to the limitations
of current analytical tools. Many established methods for the
detection and analysis of InsPs rely on some form of
physicochemical separation of different InsPs from a complex
mixture. The most common methods are strong-anion
exchange chromatography (SAX-HPLC)-based fractionation
in combination with radiolabeling and scintillation counting,
high-density polyacrylamide electrophoresis with cationic

staining, or, more recently, capillary electrophoresis coupled
to mass spectrometry (CE-MS).26,32−37 Most of these methods
are sensitive and powerful for the analysis of highly
phosphorylated InsPs, but the separation and detection of
lower InsPs (i.e., InsP1, InsP2, and InsP3 species) in a mixture
with isobaric sugar phosphates remain difficult. Our group
recently established a metabolic labeling strategy using
isotopically labeled [13C6]myo-inositol. Analysis of the
extracted metabolites by 2D nuclear magnetic resonance
(NMR) spectroscopy enabled the quantification of higher
phosphorylated InsPs (InsP6, InsP5[2OH], and PP-InsPs;
Figure 1b) without the need for analytical separation.38 In
addition, 2D-NMR measurements provide important informa-
tion on the InsP phosphorylation patterns and should be able
to detect the whole range of InsP metabolites, including the
lower phosphorylated species.
Here, we combined fully 13C-labeled and asymmetrically

13C-labeled isotopomers of myo-inositol and InsPs in both
biochemical and cellular metabolic labeling experiments.
Making use of their inherent properties (position-specific
NMR activity and different molecular masses), we uncovered
an uncharacterized branch of human InsP metabolism.

Figure 1. Probing InsP metabolism with myo-inositol isotopomers. (a) Simplified overview of InsP metabolism with MINPP1-mediated processes
highlighted. It is assumed that MINPP1 dephosphorylates InsP6 and various other InsPs down to sparsely annotated InsP3 isomers. PIPs,
phosphatidylinositol phosphates; GroPI, glycerophosphoinositol; Glc6P, glucose-6-phosphate; MINPP1, multiple inositol polyphosphate
phosphatase1; Ins(X,Y)Pz, myo-inositol with z phosphoryl groups at positions X,Y; InsP5[XOH], inositol pentakisphosphate with a hydroxyl
group at position X. IUPAC numbering convention of the positions on the inositol scaffold is shown in red. (b) Workflow for the analysis of cellular
InsP pools through metabolic labeling: human cells are grown in medium devoid of nonlabeled myo-inositol but supplemented with an isotopomer
of myo-inositol ([13C6]Ins, 4,5[13C2]myo-inositol, 1[13C1]myo-inositol, or 3[13C1]myo-inositol) which are incorporated into the cellular InsP pool.
Metabolites are then extracted, resulting in a complex sample containing all water-soluble biomolecules, such as nucleotide triphosphates (NTPs),
inorganic phosphate (Pi), and the labeled InsPs. This mixture can be analyzed via NMR or CE-MS exploiting NMR activity and mass difference of
the 13C label.

ACS Central Science http://pubs.acs.org/journal/acscii Research Article

https://doi.org/10.1021/acscentsci.2c01032
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Ins(2,3)P2 and Ins(2)P were identified as major InsPs species
in human cells, and their levels are dependent on MINPP1
activity toward InsP6 in vitro and in cellula. Through in vitro
characterization, computational kinetic modeling, and meta-
bolic flux via CE-MS analysis, we dissect the complex reactivity
of MINPP1. We envision that this combined application of
myo-inositol isotopomers in NMR and CE-MS experiments
will help unravel complex InsP networks in different biological
contexts in the future.

■ RESULTS
InsP Phosphorylation Patterns Are Well Resolved by

BIRD-{1H,13C}HMQC NMR Spectra. The analysis of complex
mixtures of InsP metabolites still constitutes a significant
analytical challenge. To identify inositol-derived signals in
biological samples via NMR in a methodical way, BIRD-
{1H,13C}HMQC-NMR spectra of 19 different InsPs and PP-
InsPs (commercially available or synthesized) were recorded
and assigned. The collective data of these spectra illustrate that
the NMR signals of InsPs cluster in a systematic manner
(Figures 2 and S1). NMR signals corresponding to methine
groups adjacent to a nonphosphorylated hydroxyl substituent
(CH−OH) are separated from methine group signals with a
phosphate substituent (CH−O−PO3

2−), which are collectively
shifted downfield in both 1H and 13C dimensions. Within these
two groups, clusters for the different positions on the myo-
inositol ring are apparent. The 2- and 5-positions form clusters
of their own, while positions 1 and 3 as well as positions 4 and
6 are intertwined due to the symmetry plane of the myo-
inositol ring. These combined spectra illustrate that a complete
set of NMR signals of an InsP can be used to determine the
phosphorylation pattern, and thus the identity, of a given InsP.
In the case of chiral InsPs, their NMR spectra cannot be used
for a definitive assignment but can narrow the identity down to
a pair of enantiomers. For distinguishing two InsP
enantiomers, a desymmetrization strategy has to be employed,

such as unsymmetrical isotopic labeling of the myo-inositol ring
with 13C, as will be discussed below.

Ins(2,3)P2 and Ins(2)P Are Major Mammalian Metab-
olites. We next performed metabolic labeling of human cell
lines (HEK293, HCT116, HT29, H1Hela, H1975) with [13C6]
myo-inositol (Figure 1b).38 In brief, cells were grown in a
custom medium based on DMEM which contains no natural
[12C]myo-inositol but is instead supplemented with [13C6]myo-
inositol or an isotopomer of choice (see below). After the cells
incorporated the 13C label into their InsP pool to equilibrium
(over 2 passages), cells were harvested and their water-soluble
metabolites extracted and analyzed by BIRD-{1H,13C}HMQC-
NMR. This NMR experiment detects 13CH groups selectively
over nonlabeled CH groups, making it particularly suitable for
measuring the 13C-labeled InsP pool within a complex
background. The information from Figure 2 allowed us to
annotate all detectable 13C-labeled species from such extracts.
Quantification was performed through relative integration of
the signal corresponding to the 2-position against an internal
standard and back-calculated to packed cell volumes. The
annotation of the different InsPs in an HCT116 metabolic
extract is shown exemplarily in Figure 3a (for full annotation
see Figure S2). The same set of InsP species was observed in
all other cell lines as well (Figures 3b and S3): the major
labeled species include InsP6, InsP5[2OH], 1/3-glycerophos-
pho-myo-inositol (1/3-GroPI), inositol 1- or 3-monophosphate
(Ins(1/3)P), inositol 1,2- or 2,3-bisphosphate (Ins(1/3,2)P2),
inositol 2-monophosphate (Ins(2)P), and myo-inositol. All of
these metabolite assignments were validated through spike-in
experiments with commercially available InsP standards into
13C-labeled metabolic extracts (Figure S4). Interestingly,
labeling of Schizosaccharomyces pombe (Figure S5) revealed a
somewhat different metabolite composition.
In order to differentiate the possible enantiomers in the

mammalian InsP pool, we synthesized asymmetrically 13C-
labeled myo-inositols following our previously published

Figure 2. HMQC signals of InsPs with different phosphorylation patterns cluster systematically. Collection of BIRD-{1H,13C}HMQC NMR data of
various InsP standards in metabolic extract buffer conditions (saturated KClO4 in D2O, pH* 6.0). HMQC signals of different InsPs are represented
with symbols, while the position on the inositol ring is color-coded. HMQC signals cluster together depending on phosphorylation status (dotted
line) and position on the inositol ring. CH groups bearing the pyrophosphate moiety of PP-InsPs or the 1-glyceryl phosphate group of GroPI
cluster with the phosphorylated CH groups and were treated accordingly for creating bagplots (Figure S1).
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protocol.38 Using the singly labeled isotopomer 1[13C1]myo-
inositol and doubly labeled 4,5[13C2]Ins, respectively, we
repeated the metabolic labeling in HEK293 and HCT116 cells.
Focusing on the 1[13C1]myo-inositol labeling, the resulting
spectra (Figures 3a, 3b, and S6a) show that the signals that
correspond to the phosphorylated 1/3-positions of 1/3-GroPI
and Ins(1/3)P are labeled, i.e., the enantiomers present in
mammalian cells are 1-GroPI and Ins(1)P. The phosphory-
lated 1/3-position of Ins(1/3,2)P2 is not labeled, which
identifies Ins(2,3)P2 as the prevalent enantiomer, an
observation that was reproducible in both cell lines. To
confirm this conclusion, HEK293 cells were also labeled with
3[13C1]myo-inositol. Now, the phosphorylated position of the
putative InsP2 remains labeled, unambiguously identifying
Ins(2,3)P2 as the main InsP2 enantiomer present in human cell
lines (Figure 3b).
GroPI and Ins(1)P are established products of cellular

phosphatidylinositide turnover;7,39 their detection was there-
fore anticipated. The presence of Ins(2,3)P2 and Ins(2)P in the
micromolar range (especially in HCT116 cells, see Figure 3c)
was an unexpected observation. Ins(2,3)P2 and Ins(2)P have
not been associated with any established InsP-related pathway
so far. Although Ins(2)P and Ins(1/3,2)P2 were detected in
1995 by Mitchell and colleagues,7,40 these metabolites received
little attention and have been neglected since then.

Overall, the structural information contained in the HMQC-
NMR spectra could be used to assign all detectable 13C-labeled
species in mammalian cells, and in combination with the
asymmetrical inositol isotopomers, enantiomers could be
resolved spectroscopically. This analysis uncovered high
amounts of previously poorly characterized lower InsPs,
which were not easily accessible with other analytical methods.

Formation of Ins(2,3)P2 and Ins(2)P Is Dependent on
MINPP1. In the biosynthetic pathway toward InsP6 there are
no InsP intermediates that are phosphorylated at the 2-
position. The 2-phosphoryl group of InsP6 is installed only in
the last step, in which IPPK (inositol pentakisphosphate 2-
kinase) converts InsP5[2OH] to InsP6. Ins(2,3)P2 and Ins(2)P
may therefore be generated downstream of InsP6. A central
InsP phosphatase is the mammalian phytase-like enzyme
MINPP1, the only recognized InsP6 phosphatase. To
investigate possible relationships between Ins(2,3)P2,
Ins(2)P, and MINPP1, we turned our attention to cells
lacking MINPP1. MINPP1−/− HEK293 cells were labeled with
[13C6]myo-inositol, and the metabolites were analyzed by
NMR (Figure 4). The MINPP1−/− cells exhibited slightly
elevated InsP6 levels and accumulated one new InsP species,
which was assigned as InsP5[3OH] or its enantiomer
InsP5[1OH] (Figure S4e). InsP5[1/3OH] was not present in
any investigated WT cell line. Labeling of MINPP1−/−
HEK293 cells with the asymmetric isotopomers 1[13C1]myo-

Figure 3. Identification and quantification of major InsPs in human cells. (a) Overlay of BIRD-{1H,13C}HMQC-NMR spectra of metabolic extracts
from HCT116 cells which were labeled with either [13C6]myo-inositol (black spectrum) or 1[13C1]myo-inositol (green) and a reference spectrum of
Ins(1,2)P2 (blue). Annotation of identified InsPs was limited to the most important signals for clarity. Complete annotation is provided in Figure
S2. (b) Overlay of BIRD-{1H,13C}HMQC-NMR spectra of metabolic extracts from HEK293 cells which were labeled with [13C6]myo-inositol
(black), 1[13C1]myo-inositol (green), or 3[13C1]myo-inositol (blue). Annotation was limited to C1/3 positions for clarity. 1[13C1]myo-inositol-
labeled 1 positions of GroPI and Ins(1)P confirm their enantiomeric identity. In contrast, the phosphorylated 3 position of Ins(2,3)P2 is confirmed
by labeling with 3[13C1]myo-inositol. (c) Scatter dot plot of quantified InsPs from metabolic extracts of various cells (HCT116, n = 3; H1975, n =
3; HT29, n = 3; HEK293, n = 6, biological replicates) with bars representing the means.
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inositol, 3[13C1] myo-inositol, and 4,5[13C2]myo-inositol
unambiguously identified the InsP5 in question as InsP5[3OH]
(Figure S6b, S6d, and S6e).
Strikingly, another change observed in the MINPP1−/− cell

extracts was the complete absence of Ins(2,3)P2 and Ins(2)P,
establishing a connection between MINPP1 and these lower
phosphorylated InsPs. The lack of an undefined InsP2 species
was also noted in a previous analysis of the same cell line using
a radiolabeling approach.21 Taking into consideration the only
sparsely annotated intermediates and products of MINPP1-
mediated dephosphorylation of InsP6, it seemed possible that
MINPP1 could generate Ins(2,3)P2 and Ins(2)P directly from
InsP6.

MINPP1 Dephosphorylates InsP5[2OH] and InsP6 via
Fully Distinct Pathways. To validate this hypothesis, we
next sought to investigate the in vitro activity of MINPP1
against different InsPs. The expression and purification of
recombinant MINPP1 in E. coli was optimized to isolate
protein yields compatible with biochemical reactions on an
NMR scale (Figures S7 and S8). Next, MINPP1 was incubated
with fully 13C6-labeled InsP5[2OH], and the reaction was
monitored using 2D NMR measurements. In the first
experiments we chose a substrate concentration of 50 μM,
which is in the middle to upper range of physiological
concentrations (Figure S9).7,34,41 To enable the detection and
assignment of all intermediates, we subsequently increased the
substrate concentration to 175 μM, which did not alter the
overall outcome (Figure 5a). The structures of the
intermediates were identified using the information from
Figure 2 and additional cross-correlation NMR and spike-in
experiments where necessary. In agreement with the
annotation of MINPP1 as a 3-phosphatase, the first major
intermediates for InsP5[2OH] dephosphorylation are Ins-
(1,4,5,6)P4 and subsequently Ins(1,4,5)P3. MINPP1 therefore
directly reverses the phosphorylation reactions catalyzed by
IPMK (inositol phosphate multikinase).24,42,43 Ins(1,4,5)P3 is
subsequently converted slowly to a mixture of different
InsP1/2s (Figure 5b; a full scheme with all minor intermediates
is shown in Figure S10).
We then proceeded to probe MINPP1-mediated dephos-

phorylation of InsP6. In contrast to InsP5[2OH] as a substrate,
we observed a complex mixture of intermediates (Figure 5c).
In addition, the overall conversion of InsP6 was visibly slower.

The two major reaction paths are depicted in Figure 5d
(complete scheme in Figure S11): One dephosphorylation
sequence proceeds via InsP5[3OH] and Ins(1,2,6)P3 as
intermediates, and a second pathway generates Ins(1,2,3)P3
as an intermediate via an unidentified (due to low abundance)
InsP5 isomer. Importantly, Ins(1/3,2)P2 and Ins(2)P were
observed as the final products of the dephosphorylation of
InsP6, validating that MINPP1 is capable of generating these
InsPs directly from InsP6.
To assess which enantiomers were formed during MINPP1-

mediated dephosphorylation of InsP6, we synthesized 1[13C1]-
InsP6.

38 The InsP5, InsP4, and InsP3 intermediates which are
produced by MINPP1 from 1[13C1]InsP6 are enantiopure, as
no dephosphorylation of the 1-position was observed (detailed
explanation is given in Figures S12a and S12b). Surprisingly
though, a mixture of Ins(1,2)P2 and Ins(2,3)P2 was formed
during the later stages of the reaction (Figures S12c and S12d).
The rather high ratio of Ins(2,3)P2 to Ins(1,2)P2 suggests that
Ins(1,2)P2 is formed exclusively via Ins(1,2,6)P3, and Ins-
(1,2,3)P3 is selectively converted to Ins(2,3)P2. Both InsP2s
are, in turn, dephosphorylated to Ins(2)P. Our in vitro
assessment of MINPP1 activity thus confirms the notion that
MINPP1 can directly generate the novel cellular InsP species
from InsP6.
Another interesting observation, which runs counter to

assumptions on MINPP1 activity,6,25,44−46 is that the
dephosphorylation sequences for InsP6 and InsP5[2OH] do
not share any overlap (compare Figures S10, S11, S20, S26,
and S27) because MINPP1 seems to be incapable of removing
the phosphoryl group at the 2-position. Likely, the charged
phosphoryl group on the only axial position of the myo-inositol
scaffold plays a role in positioning the InsPs inside MINPP1’s
catalytic pocket.47

MINPP1 Exhibits Different Kinetic Properties toward
InsP5[2OH] and InsP6. To characterize the kinetic properties
of MINPP1, we next numerically determined the reaction rates
of the dephosphorylation steps from the respective exper-
imental data based on a time-independent rate model. We
formulated the kinetics of the reaction network as a Master
equation and approximated the corresponding rate matrix with
a least-squares method that iteratively optimized the rates with
respect to the scaled experimental data.48,49 The reaction rates
for the MINPP1 reaction starting with InsP5[2OH] as a

Figure 4. Identification of InsPs in HEK293 and MINPP1−/− HEK293 cells. (a) Overlay of [13C6]myo-inositol-labeled HEK293 (black) and
MINPP1−/− HEK293 cells (green). Ins(2,3)P2 and Ins(2)P are not observable in MINPP1−/− cells; instead, InsP5[3OH] accumulates. (b) Scatter
dot plot of quantified InsPs from these cell lines (WT, n = 6 same data as in Figure 3c for illustrative purposes; MINPP1−/−, n = 6, biological
replicates). Bars represent the means, nd = not detected. Enantiomer-specific identification of InsP5[3OH] is shown in Figure S6.
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substrate are shown in Figure 6b and were calculated from the
experimental data (Figure 5a) and the corresponding network
(Figure S10). The calculated rates predict progress curves
(Figures 6a and S25) that are in good agreement with the
experimental data, which supports the assumption of time-
independent rates and thus the absence of inhibition processes.
The highest reaction rate (k_20 equaling 330 nmol/(min mg
enzyme)) also corresponds to the canonical MINPP1 activity
toward InsP5[2OH] in the literature.23

However, in the case of InsP6, the computational analysis of
the experimental data (Figure 5c) with the network
assumption depicted in Figure S11 yielded poor results; only

the consumption of InsP6 could be numerically analyzed with a
rate of 9.3 × 10−4 min−1 (see SI). The poor fits indicate that
the rates in the InsP6 dephosphorylation network might not be
time independent but are instead affected by inhibition
processes that implicitly introduce a time dependence. Because
of its relative stability and slow dephosphorylation, it seemed
possible that InsP6 could act as an inhibitor for the
dephosphorylation of the MINPP1-generated intermediates.23

This notion is further reinforced by the fact that the conversion
of the intermediates progressed notably faster with lower InsP6
starting concentrations (Figure S13). To test this, [13C6]-
InsP5[2OH] was incubated with MINPP1 in the presence of

Figure 5. Dephosphorylation of InsP5[2OH] and InsP6 by MINPP1 in vitro. (a) Progress curves of MINPP1 reaction with 175 μM
[13C6]InsP5[2OH] showing the first 12 h of the reaction (for full scope of progress curves and progress curves at 50 μM substrate concentration see
SI). Progress curves shown here are representative of two replicates. (b) Simplified reaction scheme of the MINPP1-mediated dephosphorylation of
InsP5[2OH]. Complete reaction scheme that includes all minor intermediates is in Figure S10. (c) Progress curves of MINPP1 reaction with 175
μM [13C6]InsP6 with simplified reaction scheme depicting the two main reaction paths. Progress curves shown here are representative of two
replicates. Corresponding progress curve for 50 μM substrate concentration in Figure S13. (d) Simplified reaction scheme for the
dephosphorylation of InsP6. Complete reaction scheme that includes all intermediates is in Figure S11. Note that the two enantiomers Ins(1,2)P2
and Ins(2,3)P2 are quantified together. (*) Structure of these InsPs could not be assigned with certainty due to low abundance and interference of
more abundant signals.
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different amounts of [13C6]InsP6. Indeed, a clear inhibitory
effect of InsP6 on the dephosphorylation of InsP5[2OH] by
MINPP1 was observed with an apparent IC50 value of 2 μM
(Figure 6c). With changing substrate concentrations, the IC50
value also changed as predicted by the Cheng−Prusoff
equation, indicating that this inhibition is likely competitive
(Figure S14).50

Ins(2,3)P2 and InsP5[3OH] Are Biosynthetically De-
rived from InsP6 In Cells. With the biochemical con-
firmation that MINPP1 can generate InsP5[3OH], Ins(2,3)P2,
and Ins(2)P in vitro, we sought to perform metabolic flux
analysis to confirm this reaction sequence in living cells.
HEK293 or MINPP1−/− HEK293 cells were labeled with
[13C6]myo-inositol to equilibrium and subsequently exposed to
medium containing 4,5[13C2]myo-inositol for various periods
of time before harvesting (Figure 7a). These two isotopomers
were chosen to enable analysis by CE-MS: A mass difference of

at least 2 Da allows the distinction of the differently labeled
InsPs but also the differentiation of Ins(2,3)P2 from other
highly abundant, nonlabeled sugar bisphosphates. Following
cell lysis, InsP mixtures were extracted with TiO2 beads and
analyzed via CE-MS to monitor the incorporation of the 13C2-
isotopomers and the decrease of the 13C6-isotopomers
simultaneously.
CE-MS analysis readily detected the expected [13C6]- and

[13C2]InsP species. In addition, all samples contained around
3% of nonlabeled InsPs (12C6), which presumably stems from
inositol neogenesis from glucose-6-phosphate.51 The metabolic
flux analysis (Figure 7b) indicates that exogenous myo-inositol
is incorporated first into the pool of InsP5[2OH], then into
InsP6, and last into Ins(2,3)P2 (whose chemical identity was
also confirmed with standards in CE-MS measurements, Figure
S15). This incorporation sequence supports the hypothesis
that Ins(2,3)P2 is indeed derived from InsP6 in human cells
and is not an intermediate in the biosynthesis of InsP5[2OH]
or InsP6 (Figure 7d).
In MINPP1−/− HEK293 cells, no Ins(2,3)P2 was observed

above the limit of detection, although the sensitivity of CE-MS
is superior to NMR. Thus, CE-MS analysis confirms that
generation of Ins(2,3)P2 is dependent on MINPP1. Similarly,
in the biosynthetic sequence, InsP5[3OH] is generated after
InsP6 (Figure 7c and 7d), hinting at an unidentified 3-
phosphatase activity acting on InsP6, which has been suggested
in the past.16 Nevertheless, InsP5[3OH] was not detectable in
HEK293 WT cells.

■ DISCUSSION
We have expanded the detection and identification of complex
InsP mixtures using different isotopomers of myo-inositol,
InsP5[2OH], and InsP6 in both cellular and biochemical
settings. Detection via NMR spectroscopy provided important
structural information, enabling the assignment of previously
poorly characterized InsPs. Application of asymmetrically
labeled 1[13C1]myo-inositol, 3[13C1]myo-inositol, and 4,5-
[13C2]myo-inositol readily facilitated the distinction of
enantiomers in a complex sample, which has remained an
analytical challenge to this day. InsP isotopomers with different
masses also proved to be useful tools when used in
combination with CE-MS analysis, as the higher sensitivity of
this technique allows for detailed metabolic flux analyses.
Taking advantage of our labeled myo-inositol isotopomers

and InsPs, we uncovered a branch of human InsP metabolism
mediated by MINPP1, which was confirmed through in-depth
characterization of MINPP1’s reactivity in vitro and in cellula.
The in vitro data illustrated that InsP5[2OH] is the preferred
substrate for MINPP1, compared to InsP6. Under identical
reaction conditions, InsP5[2OH] was depleted with an
apparent reaction rate that is 2 orders of magnitude higher
than the rate for InsP6 (9.8 × 10−2 versus 9.3 × 10−4 min−1 or
∼330 versus ∼3 nmol/(min mg enzyme), respectively). These
activities are in line with previous kinetic analyses of
mammalian MINPP1 (211 and 12 nmol/(min mg enzyme),
respectively).23 The subsequent slow dephosphorylation of
Ins(1,4,5)P3 in vitro (rate constant of 10−4 min−1 or 0.3 nmol/
(min mg)) is likely not biologically significant as there are
several other Ins(1,4,5)P3 dephosphorylating enzymes with 4−
5 magnitudes higher activity (5300−25 000 nmol/(min
mg)).54 Interestingly, depletion of cellular MINPP1 did not
significantly alter InsP5[2OH] levels, suggesting that other

Figure 6. Numerical assessment of MINPP1 reaction rates. (a)
Experimental and numerically approximated progress curves of
MINPP1 dephosphorylation reactions with 175 μM InsP5[2OH].
Solid lines represent the experimental data (same data as in Figure
5a). Dashed lines represent the progress curves predicted by the
numerically determined reaction rates. (b) Numerically determined
reaction rates representative of two replicates. Reaction rates marked
with an asterisk (*) are subject to constraints. SI also includes
attempted numerical approximation of the MINPP1 reaction with
InsP6. (c) Demonstration that InsP6 can inhibit dephosphorylation of
InsP5[2OH] (175 μM) by MINPP1 (0.5 μM) with high potency. IC50
value is reported with standard error of log10 IC50 in brackets.
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enzymes are able to dephosphorylate InsP5[2OH] in a cellular
setting.52,53

In contrast to the straightforward reaction paths for
InsP5[2OH] dephosphorylation by MINPP1, the dephosphor-
ylation of InsP6 occurs via an intricate network of
intermediates. The first observable intermediates can be
attributed to the 3-phosphatase activity of MINPP1; however,
a significant portion of InsP6 must initially be dephosphory-
lated at a different position because the symmetrical Ins-

(1,2,3)P3 accumulates as an intermediate. Despite this
complicated dephosphorylation network, the InsP6 dephos-
phorylation sequence converges to two final compounds,
Ins(1/3,2)P2 and Ins(2)P in vitro. In all human cells we tested,
Ins(2,3)P2 and Ins(2)P were present at notable concentrations
and constitute a hitherto uncharacterized part of mammalian
InsP metabolism. It was somewhat surprising that Ins(2,3)P2 is
the predominant InsP2 species within cells, given that MINPP1
is annotated as a 3-phosphatase. Our in vitro data demonstrate

Figure 7. Metabolic flux analysis via time-dependent isotopic exchange of InsPs in HEK293 and MINPP1−/− HEK293 cells. (a) General workflow
of the metabolic flux analysis. (b and c) Ratios of 6-fold 13C-labeled and doubly 13C-labeled InsPs HEK293 (b) and MINPP1−/− HEK293 (c) cells
in TiO2-extracted cell lysates. Data of two biological replicates are plotted individually, and means are connected with lines. All extracts contained a
constant ∼3% of nonlabeled InsP species, likely stemming from de novo inositol synthesis (Figure S16). Ins(2,3)P2 in MINPP1−/− cells and
InsP5[3OH] in WT cells were below the limit of detection. (d) Updated overview of MINPP1-mediated InsP metabolism in human cells. As shown
in this work, MINPP1 can dephosphorylate both InsP6 (blue arrows) and InsP5[2OH] (light blue arrows) via through two distinct, nonoverlapping
metabolic pathways. Question mark hints toward unidentified phosphatase activities, which might explain the accumulation of InsP5[3OH]
observed in MINPP1−/− cells or how Ins(2,3)P2 accumulates selectively in cells while both enantiomers are generated in vitro. Asterisks indicate
that we cannot rule out the existence of additional phosphatases that might assist MINPP1-mediated dephosphorylation of InsP6.

ACS Central Science http://pubs.acs.org/journal/acscii Research Article

https://doi.org/10.1021/acscentsci.2c01032
ACS Cent. Sci. 2022, 8, 1683−1694

1690

118 3 Publications



that MINPP1 is capable of producing both enantiomers,
Ins(1,2)P2 and Ins(2,3)P2, via the aforementioned dephos-
phorylation pathways from InsP6. It thus seems feasible that
Ins(1,2)P2 can also be generated by MINPP1 in cells but may
be depleted faster to Ins(2)P by either MINPP1 (which could
be modified in its activity through post-translational
modifications or different isoforms31) or a separate phospha-
tase altogether.
Remarkably, the many different dephosphorylation products

of InsP6 do not overlap with any intermediates of InsP5[2OH]
dephosphorylation, because MINPP1 appears incapable of
removing the phosphoryl group at the 2-position of the inositol
ring (Figure 7d). While MINPP1 converts InsP5[2OH] to its
biosynthetic precursors Ins(1,3,4,5)P4 and Ins(1,4,5)P3 in
vitro, InsP6 on the other hand is exclusively dephosphorylated
to metabolites, which keep the phosphoryl group at the 2-
position. This data is in stark contrast to the common
assumption that MINPP1 would convert InsP6 to InsP5[2OH],
as is often depicted in overview schemes on InsP
metabolism.6,25,44−46 It was shown in the past that the
phosphoryl group at the 2-position of the myo-inositol ring
(the only axial position) can play an important role for proper
recognition of InsPs by protein binding partners.55,56 Our data
further corroborates the importance of the phosphorylation
status of the 2-position (and thus IPPK activity) because it
appears that InsPs may be “sorted” into the known and
reversible InsP network (when InsPs contain a free hydroxyl
group at the 2-position) or InsPs enter the slower, and
potentially irreversible, MINPP1-mediated circuit where they
remain phosphorylated at the 2-position.
While this sorting could be accomplished solely by the

preferred dephosphorylation by MINPP1, the accessibility to
the two different substrates InsP5[2OH] and InsP6 likely also
plays a role. We found that the dephosphorylation of
InsP5[2OH] was strongly inhibited by low concentrations of
InsP6 in vitro (Figures 6c and S15). In the cellular context, this
potent inhibitory effect of the abundant InsP6 metabolite raises
the question if, and how, MINPP1 can dephosphorylate
InsP5[2OH] at all. MINPP1 would need to access localized
pools of said InsPs that are tightly regulated to either avoid or
make use of the inhibitory effect. Interestingly, MINPP1 is
thought to predominantly localize to the ER,28 so how it
accesses cytosolic (and presumably nuclear) InsPs is a question
that has yet to be answered. While some studies have shown
that MINPP1 (isoforms) might also be localized in cellular
compartments other than the ER (Figure S17),30 or could be
even secreted,31 tools to measure intracellular concentrations
of different InsPs with spatial resolution are currently not
available. An intriguing avenue for regulation could be that
MINPP1 remains localized to intracellular organelles (ER or
lysosomes) into which InsPs are controllably translocated and
then dephosphorylated. This dephosphorylation could poten-
tially proceed all the way to myo-inositol�with the aid of
additional phosphatases�which could then be released
through inositol transporters like SLC2A13 (HMIT). HMIT
is known to be localized in intracellular membranes due to its
ER-retention sequence and internalization sequence.30,31,57−59

Using asymmetrically isotope-labeled myo-inositol, it was
possible to assign the uncharacterized InsP5 isomer that
accumulates in MINPP1−/− cells as InsP5[3OH]. This
accumulation appears counterintuitive, since MINPP1 is
currently the only known enzyme in the human genome
capable of generating InsP5[3OH]. Nevertheless, Chi et al. also

observed a residual 3-phosphatase activity in MINPP1−/−
mice.16 An analogous activity in human cells could be
responsible for producing InsP5[3OH] from InsP6, as
illustrated by our CE-MS-based metabolic flux analysis.
Elucidating the identity of this 3-phosphatase will be of
interest in the future as it constitutes an additional point of
regulation within the InsP network. Furthermore, two recently
reported cell lines with elevated intracellular phosphate levels
were shown to contain a nonannotated InsP5 isomer (which
we assume is also InsP5[1/3OH] based on the SAX-HPLC
elution profiles).51,60 Once the absolute configuration of these
InsP5 isomers has been determined, and ideally the enzymatic
activities responsible for generating these isomers, the impact
of cellular phosphate homeostasis on InsP signaling could be
further explored.
The physiological role of the herein described dephosphor-

ylation pathway for InsP6 and its intermediates has yet to be
explored. The InsPs produced by MINPP1 could be part of a
recycling system converting InsP6 back to Ins(2)P, which
might be converted to myo-inositol by an inositol mono-
phosphatase (although the lithium-sensitive human enzymes
IMPA1/2 are not known to act on Ins(2)P4,61). As MINPP1 is
a homologue of phytases, which take part in inositol recycling/
scavenging, this possibility does not seem far fetched.18 We
cannot exclude the existence of other unknown phosphatases
that contribute to this dephosphorylation pathway; however,
the accumulation of InsP5[3OH] in MINPP1−/− cells suggests
that MINPP1 is obligatory for the dephosphorylation of
InsP5[3OH]. Furthermore, the complete absence of Ins(2,3)P2
in MINPP1−/− cells indicates that MINPP1 must carry out the
key dephosphorylation of InsP6 on the path toward Ins(2,3)P2.
In addition, it remains to be investigated which enzymes can
utilize the herein identified Ins(1/3,2)P2 as substrates.
Whether any of the InsP6-derived MINPP1 products have
signaling functions themselves is also an open question. It is
possible that some MINPP1-generated InsPs (or the lack
thereof) could be important contributing factors in MINPP1-
regulated processes, i.e., ER stress, endochondral ossification,
and neuronal function.17,19,21 For example, it would be
interesting to investigate if the hyperaccumulation of
InsP5[3OH] or the absence of Ins(2,3)P2 and Ins(2)P is
partially responsible for causing PCH in patients with MINPP1
loss-of-function mutations.20,21 Ucuncu et al. proposed that
hyperaccumulation of InsP6 in neuronal cells of PCH patients
might be a mechanistic cause of this disease by chelating iron
ions.21 In fact, all InsP species which possess the 1,2,3-
phosphorylated motif might be capable of binding iron ions.62

In contrast to their reported 3−4-fold increase of [3H]InsP6
levels (normalized against total tritiated PIPs) in MINPP1−/−
HEK293 cells compared to WT cells, we only observed a slight
increase using the same cell line but normalizing against
packed cell volume. This discrepancy points toward several
interesting possibilities: (a) PIP levels, or the incorporation of
exogenous myo-inositol, could be (indirectly) influenced by
MINPP1 activity, (b) radioactivity-induced cell stress could
have an effect on MINPP1 expression,17 or (c) knockout of
MINPP1 changes the cell shape/volume. To differentiate
between these possibilities, different quantification methods
(e.g., normalization against total protein or DNA concen-
tration) should be compared in the future, and the
composition of PIP isotopomers during metabolic labeling
experiments could be probed with mass spectrometry-based
methods.63−65
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As a next step, the combination of inositol isotopomers,
NMR and CE-MS which we used in this study could be useful
to probe InsP metabolism in a variety of biological contexts.
For example, it could be investigated how the InsP pool
changes during ER-related stress, during which MINPP1 is
upregulated, and how this might correlate with the onset of
apoptosis.17 Another interesting application would be to
determine the fate of inositol (phosphates) in pathogenic
parasites such as T. cruzi, in which InsP metabolism is essential
for the developmental cycle.66 The question if or how InsP
metabolism of the host cell and the parasite influences each
other might lead to new therapeutic avenues for these
parasitoses. The dissection of InsP degradation in an
extracellular context, namely, how InsPs contained in food
are converted by digestive processes or the gut microbiome
and if the resulting metabolites might have beneficial or
detrimental effects on health, is also a fascinating ques-
tion.47,67,68 With the tools and methods reported here, these
topics now become addressable.

■ METHODS
All experimental and computational methods are described in
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ACN acetonitrile 

BIRD bilinear rotation decoupling 

BIRD-HMQC HMQC with BIRD pulse 

BPG 2,3-bisphoshpoglycerate 

CD circular dichroism spectroscopy 

CE-MS capillary electrophoresis electrospray mass spectrometry 

4,5-DCI 4,5-dicyanoimidazole 

DCl deuterium chloride 

DCM dichloromethane 

DMEM Dulbecco’s Modified Eagle Medium 
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HMQC  heteronuclear multiple-quantum correlation 

Ins myo-inositol 
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MINPP1 multiple inositol polyphosphate phosphatase 1 
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Supporting Figures and Tables 
 

 

Figure S1: The bagplots illustrate the clustering depending on phosphororylation state (a) (blue: OH 
groups, red: phosphorylated groups) and position on the inositol ring (b). A fence factor of 6 was used to 
include all data points in the respective bags, the underlying data is the same as shown in Figure 2. 
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Figure S2: Complete annotation of [13C6]Ins-labeled HEK293 WT (black spectrum) and MINPP1-/- (green 
spectrum) metabolic extracts.  

 

   
Figure S3: Additional NMR spectra of metabolic extracts from immortalized human wild-type cells. (a): 
HT29, (b): H1975. All labeled wild-type cells lines contain the same set of InsPs with varying 
concentrations. 
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Figure S4: NMR spectra of [13C6]Ins-labeled H1Hela WT metabolic extracts spiked with InsP standards 
(black) overlayed with spectra of the same standard in saturated KClO4 solution in D2O, pH* = 6.0 (green). 
a: GroPI; b: Ins(1,2)P2; c: Ins(2)P, d: Ins(1)P. e: NMR spectrum of [13C6]Ins-labeled HEK293 MINPP1-/- 
metabolic extract (black) overlayed with InsP5[3OH] (green). The corresponding positions on the inositol 
ring are annotated with arrows. For Ins(1,2)P2 the annotations for the spike-in standard are written in green 
while the annotation for the other enantiomer Ins(2,3)P2, which is the species present in mammalian cells, 
are written in black. Note that in a and b the solvent signal is shifted between the extract and the InsP 
standards due to different sample temperatures during NMR measurement. 
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Figure S5: HMQC spectrum of metabolically [13C6]myo-inostiol-labeled S. pombe. The labeling protocol 
has already been published elsewhere.1 While several InsPs were observed that overlap with mammalian 
InsP species (InsP6, Ins(2)P, GroPI and Ins(1)P, annotation was limited to the 2-position for clarity), S. 
pombe extracts contain multiple high-intensity triplet signals that do not match any clusters established in 
Figure 2. Therefore, these myo-inositol-derived species likely do not represent myo-inositol phosphates. 
The exact identity of these metabolites will be addressed in future work. 
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Figure S6: HMQC spectra of HEK cell lines which were metabolically labeled with asymmetrical 
isotopomers of myo-inositol (green) overlayed on the respective spectra of [13C6]myo-inositol-labeled cells 
(black). Annotations were limited to labeled positions. (a): 1[13C1]myo-inositol-labeled HEK293 WT cells 
(same data as in Fig. 3b). This labeling experiment illustrates that the signal for the phosphorylated position 
of Ins(1/3,2)P2 (yellow arrow) is not labeled, thus excluding Ins(1,2)P2 as a possible enantiomer. Note that 
non-labeled positions of myo-inositol are still visible due to the large relative abundance of myo-inositol in 
the extract. (b): 1[13C1]myo-inositol-labeled HEK293 MINPP1-/- cells. Here the signal for the 1-position of 
InsP5[1/3OH] is clearly still phosphorylated (insert showing the magnified region), while the 
dephosphorylated 1/3-position (yellow arrow) is not labeled, indicating that the enantiomer present cannot 
be InsP5[1OH], but must be InsP5[3OH]. (c): 4,5[13C2]myo-inositol-labeled HEK293 WT cells. For 
4,5[13C2]myo-inositol-labeled spectra the 4-positions are marked with a blue arrow and 5-positions with a 
black arrow. Note that the InsP signals now show a characteristic doublet pattern due to 13C-13C coupling. 
(d): 4,5[13C2]myo-inositol-labeled HEK293 WT MINPP1-/- cells. Here, the signal for the 4-position of 
InsP5[3OH] is shifted away from the signals of the 4/6-positions of InsP6/InsP5[2OH], which is consistent 
with the observed shifts for the InsP5[3OH] standard, but not InsP5[1OH] (see also Figure S4e). (e): 
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3[13C1]myo-inositol-labeled HEK293 MINPP1-/- cells. The dephosphorylated position of InsP5[1/3OH] is 
labeled, consistent with the enantiomer InsP5[3OH]. 

 

Figure S7: Testing resolubilization buffers for MINPP1 purification from inclusion bodies. MINPP1 was 
expressed according to the procedure described in the Experimental section. One part of the cell debris 
pellet obtained after lysis was washed only once with DI water, weighted, resuspended in little water and 
distributed into six 15 mL tubes (110 mg of wet pellet per tube). 4 mL of each resolubilization buffer 
(Experimental section under Cloning and production of MINPP1) were added to each tube, and incubated 
for 16 h at 4 °C on a reciprocal shaker. The tubes were centrifuged (30 min, 3000 g, 4 °C). 10 µL of 
supernatant were each diluted with 60 µL deionized water, 30 µL SDS running buffer, 40 µL Lämmli-buffer 
(incl. β-mercaptothanol) and all samples except for the guanidinium hydrochloride-based sample were 
boiled for 5 min at 90 °C. 30 µL of each sample were loaded on an SDS-PAGE gel, 150 V were applied 
until the loading marker completely ran into the gel. The wells were then flushed with SDS running buffer 
to remove excess guanidium hydrochloride to prevent gel distortions. Then the SDS-PAGE was continued 
(150 V, 45 min) and stained using colloidal Coomassie.  
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Figure S8: MINPP1 isolated from inclusion bodies (IB) exhibits similar properties to non-refolded MINPP1 
obtained from the soluble fraction of E. coli lysate (Sol). (a) and (b): Sol. MINPP1 produces the same 
intermediates from [13C6]InsP6 compared to IB MINPP1 (a: 24-36h, b: 72-96h). (c): Reaction rates of Sol. 
MINPP1 and IB MINPP1 against different substrates determined by Malachite green assay are similar. 
2,3-bisphosphoglycerate (BPG), InsP5[2OH] (left y-axis) and InsP6 (right y-axis) were incubated with Sol. 
MINPP1 or IB MINPP1 as described in the Experimental section. Shown in grey is Vmax

 determined by Cho 
et al..2  
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Figure S9 Progress curves of MINPP1 reaction with 50 µM InsP5[2OH] (a and the first 180 min in b).  
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Figure S10: Complete MINPP1-mediated dephosphorylation pathway observed for InsP5[2OH] 

 

 

 

Figure S11: Complete MINPP1-mediated dephosphorylation pathway observed for InsP6. The dashed 
arrows indicate theoretically possible paths which we assume are not relevant to the overall outcome. 
More investigation is needed to confirm this. 
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Figure S12: MINPP1 dephosphorylation of 1[13C1]InsP6. The spectra show reactions in which MINPP1 was 
incubated with either 175 µM 1[13C1]InsP6 (green) or a 1:1 mixture of [13C6]Ins:1[13C1]Ins (black). (a): 
Control sample without enzyme. InsP6 is clearly shown to be labeled at the 1-position. The other visible 
signals belong to buffer components. (b): Reaction mixture after 24 h of incubation. The 1-position is not 
dephosphorylated at this stage. Thus, the shown enantiomers are enantiopure. The 3-position of 
Ins(1,2,3,6)P4 is slightly shifted upfield with regards to the 13C-dimension, compared to the labeled 1-
position of Ins(1,2,4,5)P4. Also, the signals at ~75 and ~79 ppm (13C dimension) are buffer components 
from the MINPP1 stock solution. (c): Reaction mixture after 36 h incubation. The 1-position of Ins(1,2,6)P3 
and 3/1-position of Ins(1/3,2)P2 overlap with the buffer component at ~75 ppm which seems to increase in 
intensity. The labeling of the 1-position appearing in both the region for phosphorylated and the region for 
dephosphorylated positions indicate that a mixture of Ins(2,3)P2 and Ins(1,2)P2 is formed. (d): Reaction 
mixture after 72 h of incubation. The dephosphorylated 1-position of Ins(2,3)P2 is now evident while the 1-
position of Ins(1,2)P2 is still phosphorylated, indicating that a mix of both enantiomers has been formed, 
despite the enantio-specific nature of the previous dephosphorylation steps in (b). A rough integration of 
all labeled 1-position signals (green spectrum) resulted in a near 1:1 ratio between the dephosphorylated 
1-position of Ins(2,3)P2 and the combined phosphorylated 1-position of Ins(1,2)P2 and Ins(1,2,6)P3. This 
high ratio suggests that MINPP1 likely converts Ins(1,2,3)P2 exclusively into Ins(2,3)P2, while all 
intermediates downstream of InsP5[3OH] must result in the other enantiomer Ins(1,2)P2. 
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Figure S13: Due to substrate inhibition the MINPP1 progress curves for InsP6 show different kinetics with 
respect to the dephosphorylation intermediates at lower (50 µM) initial concentrations of InsP6, compare 
also with Figure 5c (175 µM initial concentration). Representative of 3 replicates.  
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Figure S14: InsP6 inhibits the MINPP1-mediated dephosphorylation of different substrate concentrations 
of InsP5[2OH] with changing IC50-values in agreement with the Cheng-Prusoff equation. Either 70 or 20 µM 
InsP5[2OH] were incubated with 0.5 µM MINPP1 and different amounts of InsP6 (two-fold dilution series 
ranging from 12.8 – 0.025 µM final InsP6 concentration) and phosphate release was determined using a 
Malachite green-assay kit after 24 min reaction time (20 µM) or 1 h (70 µM). IC50-values are reported with 
standard error of log10IC50 in brackets. Starting from the determined IC50 = 1.97 (±0.02) at 175 µM substrate 
(see Fig 6c), the expected IC50-values according to the Cheng-Prusoff equation assuming competitive 
inhibition are 0.77-0.82 µM for 70 µM substrate (found: 0.77 µM (±0.06)) and 0.22-0.23 µM for 20 µM 
substrate (found: 0.21(±0.04)). With starting concentrations far above the Michaelis-Menten constant for 
InsP5[2OH] (40 nM), un- and non-competitive inhibition would show a substrate-concentration independent 
IC50.3 
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Figure S15: Confirmation of the identity of Ins(1/3,2)P2 via CE-MS. The metabolic extract of [13C6]Ins 
metabolically-labeled HEK293 WT cells were spiked with commercial standards of different InsP2 isomers 
and analyzed via CE-MS. Depicted are the extracted ion chromatograms corresponding to the masses of 
the intracellularly synthesized [13C6]InsP2 (black) and the non-labeled InsP2 standards. Only Ins(1,2)P2 
coelutes with the [13C6]InsP2 signal in question (a) while all other tested InsP2 standards (b: Ins(1,3)P2, c: 
Ins(2,4)P2, d: Ins(1,5)P2, e: Ins(1,4)P2, f: Ins(4,5)P2) do not. 
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Figure S16: Example EICs (extracted ion chromatograms) of [13C6/2/0]InsP6 in a HEK293 WT cells which 
were metabolically labeled with [13C6]myo-inositol to equilibrium and then with 4,5[13C2] myo-inositol for 
48h. For the metabolic flux analysis (Figures 7b, 7c) the integrals of the respective isotopomer peaks (blue/ 
orange) were used for relative quantification. The InsP pools contained a constant ~3% of non-labeled 
InsPs (black) due to glucose-6-phosphate-dependent neogenesis of myo-inositol.  
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Figure S17: MINPP1 Western blots of HEK293 WT and MINPP1-/- cells and subcellular fractions. (a): 
MINPP1 is present in HEK293 WT cell lysates but expectedly not in MINPP1-/- HEK lysates and is 
predominantly found in the soluble fraction. (b): MINPP1 is not found in the nucleus but in ER (microsomes) 
and mitochondria. Calnexin was used as an ER marker, citrate synthase as a mitochondrial marker and 
fibrillarin as a nuclear marker.                                               
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Experimental section 
Safety statement 
No unexpected or unusually high safety hazards were encountered. 

General Information 
Chemicals were obtained from Sigma Aldrich, VWR, Roth, TCI, Thermo Scientific or Roche and used 
without further purification unless stated otherwise. 

InsP standards were purchased as sodium, potassium, ammonium or cyclohexylammonium salts from 
SiChem (Ins(3,4,5,6)P4, Ins(1,4,5,6)P4, Ins(1,4,5)P3, Ins(1,3,4)P3, InsP5[3OH], InsP5[1OH]), Cayman 
chemical (Ins(2,3,5)P3, Ins(1,2)P2), Echelon Bioscience (Ins(1,4)P2, Ins(1,2,6)P3, GroPI), Biomol 
(Ins(1,5)P2, Ins(1,4,6)P2) or Sigma-Aldrich (Ins(1)P, Ins(2)P) or synthesized in-lab ([13C6]InsP6, 
[13C6]InsP5[2OH], [13C6]1PP-InsP5, [13C6]5PP-InsP5, [13C6]1,5(PP)2InsP4) as described previously.4 Non-
labeled InsPs were dissolved in a saturated KClO4 solution in D2O (pH* 6.0) to mimick the conditions of 
the metabolic extracts. Non-labeled standards were dissolved in the smallest volume possible for NMR 
measurements (min. 500 µL). All samples were adjusted to pH* 6.0 if necessary using DCl and NaOD 
solutions in D2O (all deuterated solutions obtained from Eurisotop). 

For NMR-based quantification purposes standards (TMPBr (Sigma, 288268) or phosphonoacetic acid 
(TraceCert 31P-NMR standard, Supelco, 79251), respectively) were dissolved/ diluted in dry D2O 
(Eurisotop D215T) and aliquots are frozen until use. 

NMR data acquisition and processing 
For NMR measurements and NMR data analysis TopSpin 3.5 was used. Measurements were conducted 
on a Bruker AV-III spectrometer (Bruker Biospin, Rheinstetten, Germany) operating at 600 MHz for 1H and 
151 MHz for 13C nuclei equipped with a cryo-QCI probe. The pulse sequence for BIRD-{1H,13C}HMQC is 
based on the hmqcbiph pulse program from Bruker. Measurement parameters are adapted depending on 
sample composition. Typically, metabolic extracts were recorded with TD(13C) = 1024, 140 scans, spectral 
width (13C) limited to 40 – 100 ppm. Typically, samples from in vitro experiments were recorded with 
TD (13C) = 512, 64 scans, spectral width (13C) limited to 50 – 90 ppm. All samples were recorded at 310 K.  

BIRD-{1H,13C}HMQC-NMR spectra were processed without digital water suppression with manual phasing 
and automatic baseline correction.  

Quantification of NMR data were conducted as follows: For metabolic extracts InsPs were quantified 
against a known concentration of tetramethylphosphonium bromide (TMPBr). A standard curve for InsP6 
and InsP5[2OH] against TMPBr was recorded earlier 5. For other InsP species the standard curve for InsP6 
was used as an approximation as there are no fully 13C-labeled standards available. For the samples from 
the in vitro dephosphorylation of InsP6/5 by MINPP1 the InsP signals were quantified relatively to each 
other and normalized to a total InsP concentration matching the initial substrate concentration. As the 
signals of the 2-positions are the sharpest and best resolved (due to the reduced coupling to the 
neighbouring CH groups), the 2-position signals were used for quantification. In the cases where the 2-
position signals of two InsPs species are not baseline-separated, the signals were integrated together and 
split by the ratio of the 5-position signal integrals. 

CE-MS measurement 
CE-ESI-MS has been found to be an efficient platform for the analysis of inositol polyphosphate.6 A CE-
ESI-QQQ setup is used for this study, which consists of an Agilent 7100 CE, a triple quadrupole tandem 
mass spectrometry Agilent 6495c, connected to an Agilent Jet Stream (AJS) electrospray ionization (ESI) 
source. A commercial CE-MS sheath liquid coaxial interface was used, with an isocratic LC pump 
constantly delivering the sheath-liquid (via a splitter set with a ratio of 1:100). All experiments were 
performed on a bare fused silica capillary with a length of 100 cm (50 μm internal diameter and 365 μm 
outer diameter). 35 mM ammonium acetate titrated by ammonia solution to pH 9.7 was employed as 
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background eletrolyte (BGE). Samples were injected by applying 100 mbar pressure for 15 s, 
corresponding to 1.5% of the total capillary volume (30 nL). 

 

The sheath liquid is a mixture of water-isopropanol (1/1, v/v) and with a constant flow of 10 µL/min. The 
MS source parameters settings were as follows: nebulizer pressure was set to 8 psi, gas temperature was 
150 °C with a flow of 11 L/min, sheath gas temperature was 175 °C and with a flow of 8 L/min, capillary 
voltage was -2000 V with nozzle voltage 2000 V. Negative high-pressure RF and low-pressure RF (Ion 
Funnel parameters) were 70 V and 40 V, respectively. Mass spectrometer parameters for MRM transitions 
are shown below. 

Compound Name Precursor Ion Product Ion dwell Frag  
(V) 

CE 
(V) 

Cell Acc 
(V) 

Polarity 

[13C6]InsP6 331.9 486.9 60 166 13 4 Negative 

[13C2]InsP6 329.9 482.9 60 166 13 4 Negative 

[12C6]InsP6 328.9 480.9 60 166 13 4 Negative 

[13C6]InsP5 292 504.9 60 166 9 3 Negative 

[13C2]InsP5 290 500.9 60 166 9 3 Negative 

[12C6]InsP5 289 498.9 60 166 9 3 Negative 

[13C6]InsP4 252 424.9 60 166 5 1 Negative 

[13C2]InsP4 250 420.9 60 166 5 1 Negative 

[12C6]InsP4 249 418.9 60 166 5 1 Negative 

[13C6]InsP2 345 247 60 166 21 4 Negative 

[13C2]InsP2 341 243 60 166 21 4 Negative 

[12C6]InsP2 339 241 60 166 21 4 Negative 

 

Data handling 
For plotting and other analyses Microsoft Excel, OriginPro 2016 and GraphPad Prism 5 were used. 
Bagplots were created in R (version 4.1.2) with the aplpack package (version 1.3.5). 

For details of the kinetic modelling of MINPP1 see separate SI file “Supporting Information: Numerical 
Analysis”. 

Synthesis of 13C-labeled Ins and InsPs 
The synthesis of 13C-labeled myo-inositol and its derivatization to InsPs were carried out based on 
published procedures for [13C6]Ins with slight improvements of the protocol as described below.5 
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Chemoenzymatic synthesis of myo-inositol isotopomers 

 

Ins isotopomers were synthesized chemoenzymatically from the respective D-glucose isotopomer: 
1[13C1]Ins (S3a) was synthesized from 4[13C1]D-glucose (S1a), 3[13C1]Ins (S3a’) was synthesized from 
6[13C1]D-glucose (S1a’), 4,5[13C2]Ins (S3b) was synthesized by starting from 1,2[13C2]D-glucose (S1b), and 
[13C6]Ins (S3c) from [13C6]D-glucose (S1c). 13C-labeled material was obtained from Eurisotop/ Cambridge 
Isotope Labs. Generally, we observed improved yields with higher synthesis scale with 1 to 3 g glucose 
as starting material yielding up to 55% Ins. However, the asymmetric isotopomer S3a was synthesized 
only on a 500 mg scale. 

Briefly, S1a/a’/b/c is first converted enzymatically to the respective D-glucose-6-phosphate (S2a/a’/b/c) 
with hexokinase and crudely purified via an anion exchange hand column. The subsequent lyophilization 
step of the eluate in the original procedure can be replaced by concentrating using a rotavap without 
reduction of yield while saving time. The resulting product/salt mixture is then converted to inositol-3-
monophosphate (Ins(3)P) through the action of inositol monophosphate synthase (IPS), which is 
monitored via NMR. We recommend preparing recombinantly expressed IPS as closely to the protocol in 
5 as possible to ensure sufficient activity of the IPS (esp. induction at high OD600 and purification via heat-
treatment); prolonged reaction times causes the NAD+ cofactor to degrade, inhibiting IPS activity even 
after resupplementing more IPS and NAD+. Subsequently, Ins(3)P is dephosphorylated to Ins (S3a/a’/b/c) 
by alkaline phosphatase. The reaction progress is also monitored via NMR. The ion exchange treatment 
in the original procedure can be skipped upon complete conversion and the aqueous solution can be 
reduced on a rotavap instead, yielding a crude brown solid. The Ins is then purified through chemical 
derivatization by acetylation to myo-inositol hexakisacetate (S4a/a’/b/c), purification via extraction and 
column chromatography on silica gel (~500 mL silica gel for a 3 g synthesis scale), followed by 
deacetylation and precipitation in acetonitrile (the precipitation is repeated twice if necessary) to afford the 
desired myo-inositol isotopomer S3a/a’/b/c in pure form following the published protocol. 

 

1[13C1]Ins (S3a): yield: 122 mg (starting from 500 mg S1a, 24%)  

1H NMR (600 MHz, D2O) δ[ppm]: 3.99 (s, 1H, 2-position), 3.56 (ps-q, J = 9.8 Hz, 2.5H, 4/6-position and 1-

position), 3.46 (d, J = 9.9 Hz, 1H, 3-position), 3.34 (d, J = 11.4 Hz, 0.5H, 1-position), 3.21 (t, J = 9.5 Hz, 

1H, 5-position). Please note that the 1-position is coupling with 13C with a coupling constant of 1JCH = 

143.4 Hz. 
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13C NMR (151 MHz, D2O) δ[ppm]: 77.09 (d, J = 6.7 Hz, 5-position), 75.17 (d, J = 33.4 Hz, 6-position), 
75.14 (s, 4-position), 74.91 (d, J = 32.4 Hz, 2-position), 73.88 (large s, satellite d, J = 39.0 Hz, 1- and 3-
position). 

HRMS m/z: [M – H]- calcd. for 13C1
12C5H11O6 180.0595; found 180.0593. 

 

3[13C1]Ins (S3a’): yield: 563 mg (starting from 1000 mg S1a, 56%)  

1H NMR (600 MHz, D2O) δ[ppm]: 4.09 (dt, J = 5.3, 2.9 Hz, 1H, 2-position), 3.66 (m, 2.5H, 4/6-position and 

3-position), 3.56 (dd, J = 10.1, 3.0 Hz, 1H, 1-position), 3.44 (dd, J = 9.9, 2.9 Hz, 0.5H, 3-position), 3.31 (t, 

J = 8.9 Hz, 1H, 5-position). Please note that the 3-position is coupling with 13C with a coupling constant of 
1JCH ≈ 140 Hz. 

13C NMR (151 MHz, D2O) δ[ppm]: 77.12 (d, J = 6.8 Hz, 5-position), 75.20 (d, J = 33.9 Hz, 4-position), 
75.17 (s, 6-position), 74.94 (d, J = 32.8 Hz, 2-position), 73.9 (large s, satellite d, J = 39.1 Hz, 3- and 1-
position). 

HRMS m/z: [M – H]- calcd. for 13C1
12C5H11O6 180.0595; found 180.0593. 

 

4,5[13C2]Ins (S3b): yield: 450 mg (starting from 1 g S1b, 45 %) 

1H NMR (600 MHz, D2O) δ[ppm]: 4.19 (t, J = 3 Hz, 1H, 2-position), 3.75 (tdd, J = 144.3, 9.9, 4.2 Hz, 1, 4-
position) 3.75 (td, J = 9.7, 4.7 Hz, 1H, 6-postition), 3.66 (d, J = 9.8 Hz, 2H, 1/3-position), 3.40 (tdd, J = 
140.7, 9.3, 4.1 Hz, 1H, 5-position). 

13C NMR (151 MHz, D2O) δ[ppm]: 77.23 (d, J = 38.8 Hz, 5-position), 75.28 (d, J = 38.9 Hz, 4+6position), 
75.05 (2-position), 74.02 (d, J = 6.8 Hz, 1-position), 74.00 (dd, J = 39.5, 7.1 Hz, 3-position). 

HRMS m/z: [M – H]- calcd. for 13C2
12C4H11O6 181.0628; found 181.0627. 

 

[13C6]Ins (S3c): yield: up to 1.55 g (starting from 3 g S1c, 52%) 

Analytical data for [13C6]Ins were published previously. 5 

 

Synthesis of 1[13C1]InsP6 

 

Synthesis of 1[13C1]InsP6 (S6) was carried out following published procedures 5 with slight modifications: 
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1[13C1]Ins (30 mg, 0.17 mmol) is resuspended together with commercial o-xylylene N,N-
diethylphosphoramidite (S7) (Sigma Aldrich, 360 mg, 1.5 mmol) and a stirring bar in anhydrous acetonitrile 
under nitrogen atmosphere. To reduce water content further, the suspension is reduced and evaporated 
under high vacuum for an hour. The dried mixture is then resuspended in 5.5 mL of 1:1 anhydrous 
dichloromethane:acetonitrile and sonicated briefly. The mixture is cooled to 0 °C using an acetone bath to 
which dry ice was added in a controlled manner. 4,5-DCI (254 mg, 2.15 mmol) was added and the gas 
phase was exchanged three times against nitrogen. The reaction is allowed to warm to room temperature 
and stirring is continued overnight under nitrogen/argon atmosphere. The subsequent workup is identical 
as described preciously 5 yielding S5  in 68% yield (144 mg, 0.116 mmol) with slight impurities. 

S5: 

1H NMR (600 MHz, CDCl3) δ[ppm]: 7.40 – 7.31 (m, 20H), 7.27 – 7.25 (m, 4H, overlaps with solvent signal signal), 
5.75 (dd, J = 13.8, 9.3 Hz, 2H), 5.65 (dt, J = 13.0, 8.0 Hz, 3H), 5.59 – 5.51 (m, 6H), 5.39 (dd, J = 13.8, 12.3 Hz, 2H), 
5.30 – 4.93 (m, 18H). 

13C NMR (151 MHz, CDCl3) δ[ppm:] 138.54, 138.51, 138.35, 138.16, 137.29, 132.34, 132.21, 132.08, 132.07, 
132.04, 132.00, 131.83, 131.75, 80.01, 79.80, 79.59, 76.59, 76.56, 76.54, 72.46, 72.40, 72.29, 72.24, 72.19, 72.14, 
72.11, 72.06. 

31P NMR (243 MHz, CDCl3) δ[ppm]: -2.81 (d, J = 2.9 Hz, 1P), -3.37 (d, J = 3.0 Hz, 2P), -4.37 (s, 1P), -4.53 (s, 1P). 

HRMS m/z: [M + H]+ calcd. for 13C1
12C53H55O24P6 1274.1537; found 1274.1526. 

 

144 mg (S5, 0.116 mmol, 1 eq.) was dissolved in 28 mL t-BuOH and Milli-Q® water 6:1, and 250 mg of 
palladium black (10% Pd/C) was added. The suspension was stirred overnight under hydrogen 
atmosphere. Upon depletion of starting material (according to LC-MS analysis) 2 ml Milli-Q® water was 
added to adjust the solvent to a ratio of 4:1 t-BuOH:Milli-Q® and stirring under hydrogen atmosphere was 
continued overnight. The catalyst was removed by centrifuging the suspension in 50 ml centrifugal tubes 
at 3000 g for 15 min and the supernatant was passed through a PTFE syringe filter (0.45 µm). The catalyst 
pellet is washed once with 5 ml Milli-Q® water, centrifuged and the supernatant is again filtered and the 
filtrates are united and tBuOH is removed on the rotavap before the aqueous solution is lyophilized. The 
resulting white solid is redissolved in 200 ml water and magnesium chloride solution is added to a final 
concentration of 26 mM (49 eq.). The solution is adjusted with sodium hydroxide solution to a final pH of 
9.0 – 9.2 which initiates precipitation of S6 as a Mg2+-complex. The mixture was incubated at 4 °C 
overnight. The precipitate is pelleted by centrifugation (3000 g, 15 min) in a 50 ml tube and washed twice 
with 20 ml of 8 mM MgCl2 solution at pH 9.0. The resulting pellet is resuspended in 10 ml of water resulting 
in a milky solution without any clumps. Meanwhile 15 ml bed volume of Amberlite® IRC-748 (chelating) ion 
exchange resin (Alfa Aesar, L19570), which was washed in advance extensively with deionized water and 
methanol and stored in methanol until use) is loaded into a 20 ml peptide reactor column (or another small 
column) and equilibrated by passing through 100 ml of water. 8 ml bed volume of this Amberlite are added 
to the InsP6 suspension and incubated at rt on a shaking platform for 30 min until the supernatant turns 
clear. The content of the tube was transferred onto the remaining Amberlite column and the eluate (gravity-
flow) was collected. Additional 20 ml of water pushed through the Amberlite column and the eluates are 
combined and lyophilized. The resulting clean material was redissolved in D2O for analysis, filtered through 
a 0.2 µm PTFE syringe filter and pH was adjusted by addition of DCl solution to 7.0 and dilution to a defined 
volume. The concentration of 1[13C1]InsP6 was determined against a quantitative NMR-standard 
(phosphonoacetic acid). In total 0.105 mmol (91%) of clean 1[13C6]InsP6 were obtained. 

1[13C6]InsP6 (S6): 

1H NMR (600 MHz, Deuterium Oxide) δ 4.90 (dq, J = 7.7, 2.5 Hz, 1H, 2-position), 4.39 (qt, J = 9.5, 2.9 Hz, 
2H, 4/6-position), 4.11 (q, J = 9.6 Hz, 1H, 3-position), 4.09 (t, J = 9.5 Hz, 1H, 5-position), 4.09 (dt, J = 
144.0, 9.4 Hz, 1H, 1-position). 
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13C NMR (151 MHz, D2O) δ[ppm]: 80.16, 78.69, 76.91, 76.24 (1-position). 

31P NMR (243 MHz, D2O) δ 1.94, 1.08, 0.73. 

HRMS m/z: [M – 2H]2- calcd. for 13C1
12C5H16O24P6 329.4251; found 329.4242. 

 

Cloning, expression and purification of recombinant human MINPP1 
A gene sequence encoding for human MINPP1 (29-487, Uniprot Q9UNW1-1) lacking the N-terminal signal 
peptide was designed and ordered using Thermo Fisher’s GeneArt service. The sequence was codon-
optimized for expression in E. coli and contains a NdeI (at initial ATG) and XhoI (after the stop codon) 
restriction site. The MINPP1 gene was cloned into the vector pET-15b using the NdeI and XhoI restriction 
sites. The resulting plasmid (pET-15b-MINPP1) encodes an N-terminal His-tag with a thrombin cleavage 
site followed by MINPP1. For plasmid preparation the E. coli Top10 strain was used. 

The complete nucleotide sequence of the ORF of pET-15b-MINPP1 is as follows: 

CCATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATAT
GCGTTGTAGCCTGCTGGAACCGCGTGATCCGGTTGCAAGCAGCCTGAGTCCGTATTTTGGTACAA
AAACCCGTTATGAAGATGTGAATCCGGTTCTGCTGAGCGGTCCGGAAGCACCGTGGCGTGATCCT
GAACTGCTGGAAGGCACCTGTACACCGGTTCAGCTGGTTGCACTGATTCGTCATGGCACCCGTTA
TCCGACCGTTAAACAAATTCGTAAACTGCGTCAGCTGCATGGTCTGCTGCAGGCACGTGGTAGCC
GTGATGGTGGTGCCAGCAGCACCGGTAGTCGTGATCTGGGTGCAGCACTGGCAGATTGGCCTCT
GTGGTATGCAGATTGGATGGATGGTCAGCTGGTAGAAAAAGGTCGTCAGGATATGCGTCAACTG
GCACTGCGTCTGGCAAGCCTGTTTCCGGCACTGTTTAGCCGTGAAAATTATGGTCGTCTGCGTCT
GATTACCAGCAGCAAACATCGTTGTATGGATAGCAGCGCAGCATTTCTGCAAGGTCTGTGGCAGC
ATTATCATCCGGGTCTGCCTCCGCCTGATGTTGCAGATATGGAATTTGGTCCGCCTACCGTTAATG
ATAAACTGATGCGTTTTTTTGACCATTGCGAGAAGTTTCTGACCGAGGTTGAAAAAAATGCAACCG
CACTGTATCATGTGGAAGCATTTAAAACAGGTCCGGAAATGCAGAACATCCTGAAAAAAGTTGCA
GCAACCCTGCAGGTTCCGGTTAATGATCTGAATGCCGATCTGATTCAGGTTGCCTTTTTTACCTGT
TCATTTGACCTGGCCATTAAAGGTGTTAAAAGCCCGTGGTGTGATGTGTTTGATATTGATGATGCA
AAGGTGCTGGAATATCTGAACGATCTGAAACAGTATTGGAAACGCGGTTATGGCTATACCATTAA
TAGCCGTAGCAGCTGTACCCTGTTTCAGGATATTTTTCAGCATCTGGATAAAGCCGTTGAACAGAA
ACAGCGTAGCCAGCCGATTAGCAGTCCGGTTATTCTGCAGTTTGGTCATGCGGAAACCCTGCTGC
CGCTGCTGAGCCTGATGGGTTATTTCAAAGATAAAGAACCGCTGACCGCCTACAACTATAAAAAG
CAGATGCATCGTAAATTTCGCAGCGGTCTGATTGTTCCGTATGCAAGCAATCTGATTTTTGTGCTG
TATCATTGCGAAAATGCGAAAACCCCGAAAGAACAGTTTCGTGTTCAGATGCTGCTGAATGAAAA
AGTTCTGCCGCTGGCATATAGCCAAGAAACCGTTAGCTTTTATGAGGACCTGAAAAACCACTACA
AAGATATCCTGCAGAGCTGTCAGACCAGCGAAGAATGTGAACTGGCACGTGCAAATAGCACCAG
TGATGAACTGTAACTCGAGGATCC 

Complete ORF of pET-15b-MINPP1. Restriction sites are highlighted (NcoI in yellow, NdeI in green, XhoI 
in light blue). The sequence encoding MINPP1 is shown in bold and the font colour for chosen component 
of the protein are changed (His-tag in blue, thrombin cleavage site in orange, catalytic histidine in red).  

 

For protein expression E. coli BL21 (DE3) was used which was transformed with the MINPP1-encoding 
plasmid using the heat-shock method. A 5 ml-overnight culture of the transformed bacterial strain in terrific 
broth (TB, Formedium) and Ampicillin (100 µg/mL, Roth) at 37 °C was inoculated into 500 ml of TB and 
Ampicillin. The culture was cooled to 18 °C when OD600nm = 0.5 was reached (~160 min after inoculation). 
Protein expression was induced at OD600nm = 0.6 (~170 min after inoculation) with 0.6 mM Isopropyl β-D-
1-thiogalactopyranoside (IPTG, Thermo Scientific). The culture was incubated at 18 °C for 18-20 h. The 
bacterial suspension was centrifuged (3000 g, 15 min, 4 °C) upon which a bacterial pellet of ~1.5 g wet 
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weight was obtained. The pellet was resuspended in 50 ml ice-cold lysis buffer (150 mM NaCl, 
10 mM Tris*HCl (Roth), pH 8.0, 1 mM DTT (Roth or VWR), 1X cOmplete™ protease inhibitor cocktail 
(Roche)) and a spatula tip of lysozyme (Roth) and DNAse I (Roche) were added. The bacterial cells were 
lysed using a homogenizer (LM10 Microfluidizer, Microfluidics, 15000 psi, 5 passages). The resulting 
suspension was centrifuged (20 000 g, 20 min, 4 °C). The supernatant was used for purification of soluble 
MINPP1 while the resulting pellet was used for MINPP1 isolation from inclusion bodies (see below). 
Inclusion body-purification of MINPP1 yielded higher amounts. 

The purification of soluble MINPP1 was adapted from Craxton et al. 7: The supernatant was filtered (VWR 
vacuum filter, PES 0.45 µm) and the flowthrough was applied to a 5 ml Ni-NTA column (GE, HiTrap IMAC 
FastFlow) on a FPLC system (NGC Quest 10 Chromatography System, Bio-Rad) equilibrated to buffer A 
(150 mM NaCl, 10 mM Tris*HCl, pH 8.0, 1 mM DTT). The column was subsequently washed with 
5 column volumes (CV) buffer A, 5 CV buffer A:B 10:7, 5 CV buffer B (1 M NaCl, 10 mM Tris*HCl, pH 8.0, 
1 mM DTT), 5 CV buffer A with 2% buffer C (buffer C is identical to buffer A containing additional 500 mM 
imidazole (AppliChem), pH 8.0). For elution a gradient of 2% buffer C in A to 75% buffer C in A over 20 CV 
was applied. Fractions containing MINPP1 were united, concentrated using centrifugal filters (15 ml 10 
kDa MWCO, Amicon Ultra) and dialyzed against 1 L of dialysis buffer 1 (150 mM NaCl, 10 mM Tris*HCl, 
pH 8.0, 1 mM DTT, 10 Vol-% glycerol (Roth), 0.25% CHAPS (Roth)) twice for 1.5 h. Protein concentration 
was determined using a BCA assay kit (Pierce™ BCA Protein Assay Kit). Protein solution was aliquoted 
and stored at -80 °C. However, soluble MINPP1 was obtained in only low amounts this way (2 mg from 
1 L culture ) which is a known problem with heterologous expression of MINPP1.8 

For purification of MINPP1 from inclusion bodies: After removing the lysate, the pellet was washed by 
thoroughly resuspending in 35 ml ice-cold deionized water, centrifugation (20 000 g, 20 min, 4 °C) and 
after discarding the supernatant the resulting pellet was washed in the same manner two more times after 
which a pellet of 1.4 g wet weight was obtained. Per 0.7 g pellet mass, the pellet was resuspended in 30 ml 
resolubilization buffer (0.2 w/v-% N-lauroylsarcosin sodium salt (Sarkosyl, Fisher Scientific), 
10 mM Tris*HCl, pH 8.0, 1 mM DTT). The suspension was incubated overnight at 4 °C in a 50 ml-tube 
under light agitation on a reciprocal shaker. The tube was centrifuged (3000 g, 30 min, 4 °C). 20 ml of 
recovered supernatant containing MINPP1 was dialyzed first against 1 L dialysis buffer 2 (150 mM NaCl, 
10 mM Tris*HCl, pH 8.0, 1 mM DTT, 10 Vol-% glycerol, 0.1 % Triton-X100 (Roth)) for 3 h at 4 °C and then 
again against fresh dialysis buffer overnight at 4 °C. Protein concentration was determined using a BCA 
assay kit (Pierce™ BCA Protein Assay Kit). The dialyzed protein solution was adjusted to a final glycerol 
content of 30 Vol-%, aliquoted, flash-frozen in liquid nitrogen and stored at -80 °C. Using this inclusion 
body purification procedure 73 mg MINPP1 could be obtained from half of a 500 mL culture. 

The activity of MINPP1 preparations were validated against its substrates 2,3-bisphophoglycerate (BPG), 
InsP5[2OH] and InsP6 using a Malachite green assay. The activity of inclusion body-purified MINPP1 
against BPG was determined to be 22 nmol min-1 mg-1 enzyme, which is comparable to the value 16 nmol 
min-1 mg-1 enzyme reported in the literature.2 The activity of soluble MINPP1 and inclusion-body purified 
MINPP1 did not differ drastically (see also Figure S8). 

No decrease in activity was observed after over a year of storage (without freeze-thaw cycles). 

Alternative solubilization buffers 

Different solubilization buffers were also tested for the inclusion body purification of MINPP1 on a smaller 
scale. Several mild solubilization buffers 9 were unable to sufficiently resolubilize MINPP1 (40 mM TrisHCl, 
pH 8, with either 5 Vol-% DMSO or 5 Vol-% n-propanol (VWR); 90 mM TrisHCl, pH 8.6, 2 M urea). Among 
the resolubilization buffers only the following managed to solubilize MINPP1: 40 mM TrisHCl, pH 8 with a) 
0.2% sarkosyl, b) 8 M urea or c) 6 M guanidinium chloride (see Figure S7). 

The resolubilized MINPP1 solution from a) and b) were dialyzed against dialysis buffer with and without 
Triton-X. In general, it was observed that protein concentration with urea was higher than with Sarkosyl 
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(~1 mg/mL vs. ~3 mg/mL) and with Triton-X-containing dialysis buffer the protein yield was also slightly 
higher by ~0.2mg/mL.  

For all in vitro experiments MINPP1 preparations were used based on resolubilization with sarkosyl and 
Triton-X-containing dialysis buffer (see above). 

NMR-based enzymatic assays 
For the in vitro dephosphorylation of InsP6 and InsP5[2OH] by MINPP1 the following conditions were used 
unless stated otherwise: 

The reaction buffer contained 100 mM NaCl, 100 mM Na2SO4, 25 mM HEPES, pH* = 7.4, 1 mM DTT, 
1 mM EDTA (Sigma), 0.2 mg/mL BSA (Roth), 2 mM CHAPS, 175 µM (or 50 µM) of inositol phosphate 
substrate, 0.5 µM enzyme. The reactions were carried out in D2O. For each sample (500 µL final volume), 
the reaction mixture was prepared without InsP substrate in a 1.5 ml microcentrifuge tube, prewarmed to 
37 °C for 5 min before the reaction was started by adding the substrate. The reactions were quenched by 
boiling at 95 °C for 5 min. NMR spectra were recorded without further workup. For the substrate inhibition 
experiments, InsP5[2OH] was mixed with aliquots of a dilution series of InsP6 prior to addition to the 
reaction mixture.  

Malachite green-based enzymatic assays 
For comparing the enzymatic activities of MINPP1 preparations the dephosphorylation of BPG, InsP5[2OH] 
and InsP6 were compared.  The reaction buffer contained 100 mM NaCl, 100 mM Na2SO4, 25 mM HEPES, 
pH* = 7.4, 1 mM DTT, 1 mM EDTA, 0.2 mg/mL BSA, 2 mM CHAPS, 0.5 µM enzyme. 5 mM 2,3-BPG, or 
50 µM InsP, respectively, were used and the reaction was carried out in Milli-Q® water (50 µL total volume 
per sample) at 37 °C in 0.2 mL tubes. The reaction mixtures lacking MINPP1 were preincubated at 37 °C 
for 5 min and reactions were started by addition of MINPP1. After 15-25 min (BPG and InsP5[2OH]) and 
19 h (InsP6), 20 µL of the reaction mixture were transferred into a clear, flat-bottom 96-well plate, each 
well already containing 20 µL of Malachite green assay solution (Sigma) and 40 µL Milli-Q® water. After 
incubation for 30 min at room temperature, absorption was measured at 620 nm on a TECANInfinite 200 
Pro M-Plex Plate Reader. For calculating the amount of released phosphate, a dilution series of inorganic 
phosphate standard was measured in parallel with the same buffer background and no-enzyme controls 
(MINPP1 preparations did not show any phosphate background). All samples were prepared in triplicate. 

For determining IC50 values for the inhibition of MINPP1-mediated dephosphorylation of InsP5[2OH] by 
InsP6. Same buffer used as described above but 0.1 µM enzyme was used. InsP5[2OH] concentrations 
were either 70 µM or 20 µM and InsP6 concentrations ranged from 12.8 µM to 0.025 µM in a two-fold serial 
dilution and 0 µM InsP6. Phosphate release was measured as stated above but 40 µL reaction mixture 
were used. The samples were quenched after 1 h (70 µM substrate) or 25 min (20 µM substrate). For 
calculating the amount of released phosphate, a dilution series of inorganic phosphate standard was 
measured in parallel with the same buffer background and no-enzyme control). All samples were prepared 
in triplicate.  

Mammalian cell culture and metabolic labeling 
HT29 WT cells were a kind gift from the lab of Jan Carette10 (William Kaiser laboratory, RRID: 
CVCL_0320). HEK293 cell lines (WT and MINPP1-/-) were a kind gift of the labs of Adolfo Saiardi and 
Vincent Cantagrel and the generation of the MINPP1-/- cells was described previously.11 The absence of 
MINPP1 in MINPP1-/- cells was verified by Western blots (see Figure S17). HCT116 were obtained from 
ATCC. H1975 cells were a kind gift of the Klingmüller lab (originally ATCC, CRL-5908). 

Unless stated otherwise all cell lines are cultivated in DMEM (Gibco DMEM high glucose, no glutamine, 
product no. 11960044) supplemented with streptomycin/penicillin (100 U/mL final concentration, Gibco), 
L-glutamine (1X, Gibco GlutaMAX™) and 10% FBS (Pan Biotech), at 37 °C in an atmosphere with 5% 
CO2, and 95% humidity. 
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The metabolic labeling was conducted as described in a previous publication.5 Briefly, cells are seeded 
at a density of 3·105 on a 15 cm culture dish in custom DMEM containing no regular inositol nor FBS but 
100 µM [13C6]myo-inositol (or the respective isotopomer) and 10% dialyzed FBS (Gibco, product no. 
26400044) instead (from here on referred to as “labeling medium”). Upon reaching ~85 % confluency, the 
cells are split into five 15 cm culture dishes in labeling medium. Upon reaching confluency cells were 
harvested by trypsination, collected in 50 ml tubes and washed twice with 50 ml ice-cold PBS or 0.9% NaCl 
solution. Packed cell volumes were determined for quantification. The collected cell pellets were either 
processed immediately after harvest or flash-frozen and stored at -80 °C. Metabolites were extracted by 
HClO4-extraction. Lyophilized metabolite extracts were redissolved in D2O, re-lyophilized, and finally 
measured in D2O (dry D2O from ampulla, Eurisotop D215T). For quantification 100 µM TMPBr was added 
to each sample. Standard curves for InsP6 and InsP5[2OH] concentrations against TMPBr are reported 
previously.5 The concentrations of other 13C-labeled InsP species for which no labeled standards were 
available were estimated using the standard curve for InsP6. Cellular InsP concentrations were 
backcalculated from PCV. 

TiO2 enrichment of InsPs for NMR samples was adapted from published procedures.12 Briefly, 500 µL 
of InsP containing sample is mixed 1:1 with ice-cold 1 M aq. perchloric acid and incubated for 30 min on 
ice (frozen samples are thawn directly in the perchloric acid and then incubated on ice). The sample is 
then centrifuged (10 min, 18 000 g, 4 °C) and the supernatant transferred into a separate 1.5 mL tube 
containing 5 mg of TiO2 beads (Titanosphere 5 µm, GL Sciences), which were already washed with 500 µL 
Milli-Q® water and 500 µL 1 M perchloric acid (HClO4, Supelco). The extract and TiO2 beads were mixed 
on a rotary shaker on low speed for 5 min at 4 °C. The beads were briefly washed twice with 500 µL ice-
cold 1 M perchloric acid (note: For centrifugation a table centrifuge (IKA miniG, 6000 rpm) was used at 1 
min, and for transferring the supernatant without disturbing the TiO2 beads a 2 µL Eppendorf tip attached 
to the tip of a 1 mL tip was used). Supernatans were united to check for unbound InsP species, neutralized 
roughly with 750 µL 2 M potassium hydroxide, centrifuged and the supernatant lyophilized. To eluate InsPs 
from the TiO2 beads, the beads were incubated with 250 µL of 10% ammonia solution for 5 min at rt on a 
rotary shaker. After centrifugation the supernatant was collected in a separate tube. The elution step is 
repeated once more and the eluates are combined. The combined eluates are filtered through a 0.2 µM 
syringe filter (Sartorius Minisart RC4) which was subsequently rinsed with 150 µL of Milli-Q® water. The 
filtrate was collected in a new 1.5 mL tube and lyophilized. To reduce the water content for NMR analysis 
the lyophilized eluates were redissolved in 500 µL D2O and lyophilized again. For NMR measurement the 
eluates are redissolved in 500 µL D2O, pH* was adjusted to 6.0.    

For the metabolic flux analysis via CE-MS HEK293 cells were first metabolically labeled with [13C6]Ins 
as described above over two passages. One week prior to harvest, 4·105 of the [13C6]Ins-labeled cells were 
seeded into one 15 cm dish per time point in [13C6]Ins-labeling medium. For each time point (72, 48, 24, 
18, 12.5, 8, 4, 2 and 1 h before harvest) one plate had its medium removed and washed once with 0.9% 
NaCl solution. The cells were then continued to incubate in 4,5[13C2]Ins-containing labeling medium. For 
harvesting, the cells of one plate were washed with 25 mL 0.9% NaCl solution, trypsinized (3 mL), then 
resuspended in 7 mL 0.9% NaCl solution, then pelleted, washed once with 15 mL 0.9% NaCl per pellet 
and kept on ice until flash-freezing and storage at -80 °C until further processing. For preparing CE-MS 
each cell pellet was processed as follows: Cells were lysed by resuspending in 1 mL ice-cold 1 M HClO4 
(4 °C, 10 min) and centrifuged (18 000 g, 5 min, 4 °C). The supernatant was added to 4 mg of TiO2 beads 
(prepared as described above) and the TiO2 enrichment protocol was followed as described above until 
the first lyophilization step. Lyophilized samples were stored at -20 °C until CE-MS measurement. CE-MS 
measurements were carried out as described above. InsP-isotopomers were quantified relatively to each 
other.  

Subcellular organelle isolation 
For isolating cellular organelles, wild-type HEK293T were grown in complete DMEM up to 80% confluency. 
The cells were then harvested by scraping (cell scraper VWR, 734-2604) and were washed thrice with 
PBS by centrifugation at 250 g for 5 mins at 4 °C. The cell pellet was then processed for organelle isolation 

148 3 Publications



S27 
 

using the respective protocols as mentioned below. All the buffers in the following protocols contain 
protease inhibitors (5 mM Benzamidine and 20 µg/mL pepstatin). Once isolated, the protein concentration 
was measured using a BCA assay kit following brief sonication. The organelle preparations were then 
stored at -80 °C until further use. Results are shown in Figure S17. 

ER (microsome) Isolation 

Intact microsomes were isolated according to published procedures with slight modifications.13 Briefly, 
harvested cells we suspended in 2 mL SH buffer (0.25 M sucrose, 5 mM HEPES, pH 7.4) and 
homogenized in a dounce homogenizer with a clearance of 0.15 – 0.2 mm (tight fitting) with ten strokes. 
The lysate was centrifuged at 6000 g for 5 mins and the pellet was discarded. The supernatant was 
centrifuged at 15 000 g for 5 mins. The supernatant was transferred to a new tube while the pellet was 
resuspended in fresh buffer and centrifuged again at 15 000 g for 5 mins. The two supernatants were 
pooled and centrifuged at 105 000 g for 40 mins. The pellet was resuspended in 100 µL of SH buffer and 
stored at -80 °C for further use.  

Mitochondria Isolation 

Mitochondria were isolated following published procedures with some modifications.14 Briefly, the 
harvested cell pellet was weighed and 1 mL cold T-K-Mg buffer (10 mM Tris-HCl pH 7.4, 10 mM KCl, 
0.5 mM MgCl2) per 0.15 g of cell pellet was used for resuspending the cells. The suspension was incubated 
on ice for 10 mins and passed through a 5 µm syringe filter to lyse the cells. Sucrose stock solution (1 M 
sucrose, 10 mM Tris-HCl pH 7.4) was added immediately to achieve a final concentration of 0.25 M 
sucrose (3:1 lysed suspension : 1 M sucrose). The lysate was then centrifuged at 1200 g for 3 mins to 
pellet unbroken cells, nuclei, and other cellular debris. The pellet was discarded and this step was repeated 
until no pellet was visible. The supernatant was then centrifuged at 15 000 g for 5 mins to pellet the 
mitochondria. The supernatant was discarded and the pellet was resuspended in STE buffer (0.32 M 
sucrose, 1 mM EDTA, 10 mM TrisHCl pH 7.4). The pellet was washed with STE buffer twice at 15 000 g 
for increased mitochondrial purity. The pellet containing mitochondria was resuspended in minimal volume 
of STE buffer and stored at -80 °C for further use. 

Nuclei Isolation 

The protocol for isolating nuclei was adapted from Hymer et al.15 with slight modifications. Briefly, cells 
were grown and harvested by scraping and washing with PBS with centrifugation at 250 g for 5 mins. The 
cell pellet was resuspended in ice-cold nuclear extraction buffer (320 mM Sucrose, 5 mM MgCl2, 10 mM 
HEPES,pH 7.4 1% Triton X-100) and incubated on ice for 10 min with mild intermittent mixing. The 
suspension was centrifuged at 2000 g for 5 mins at 4 °C and the supernatant was discarded. The pellet 
was washed with nuclear wash buffer (320 mM sucrose, 5 mM MgCl2, 10 mM HEPES, pH 7.4) by 
centrifugation at 2000 g for 5 mins at 4 °C. The nuclei were then stored at -80 °C for further use.   

Western blots 
For Western blots the following primary antibodies were used: MINPP1: MIPP(A-8) sc-514214 (Santa 
Cruz), Calnexin: Calnexin-HRP conjugate C5C9 #40090 (Cell signalling), Fibrillarin: Fibrillarin(B-1)-HRP 
conjugate sc-166001 (Santa Cruz), Citrate synthase: D7V8B #14309 (Cell signaling). Following secondary 
antibodies were used: Anti-rabbit IgG, HRP-linked 7074S (Cell Signaling), Anti-mouse IgG, HRP-linked 
7076S (Cell Signaling). 

For Western blot analysis 20 µg of the respective samples (except recombinant MINPP1, 0.02 µg) were 
subjected to SDS-PAGE (4-20% Mini-PROTEAN® TGX Precast gels, 10 well, BioRad, 60 - 90 min, 100V, 
in SDS running buffer (25 mM Tris, 192 mM glycine, 3 mM sodium dodecylsulfate). A Trans-Blot® SD 
system (BioRad) was used for transfer onto a nitrocellulose membrane. Standard immunoblotting 
techniques were applied afterwards.  
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NMR spectra 
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3[13C1]Ins (S3a’):   
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4,5[13C2]Ins (S3b): 
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1[13C6]InsP6 (S6): 
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1 Introduction

This Supplementary Information (SI) contains all information on the numerical evalu-

ation of the reaction rates for the InsP5[2OH]- and InsP6-dephosphorylation from the

experimental data. For additional information on the experimental part and figures S1 -

S12, please consult the other SI file. Here, we explain the theoretical background of the

applied model and the procedure and assumptions that let to the final results presented

in main part Fig. 6a and 6b. In this SI, we introduce a six-digit binary representation

of the structure names as shown in S18. The numbers in the binary code represent the

groups attached to the Cyclohexane scaffold, where the number ”0” encodes the hydrox-

yle group -OH and the number ”1” encodes the phosphoryl group -OPO2−
3 . The position

of the number in the binary code (read from left to right) corresponds to the position of

the corresponding group in the Cyclohexane scaffold (see S18). For example, the binary

representation of Ins(1,2,5,6)P4 reads 110011 and the binary representation of Ins(4,6)P2

is 000101.

S 18:
InsP5[2OH] and InsP6 and their corresponding binary representations and structures.

2 Theory

2.1 Full InsP5[2OH] dephosphorylation network

S19 depicts the full reaction pathway of the MINPP1-mediated dephosphorylation of

InsP5[2OH]. The network contains all possible intermediates and products including their

connection pattern. Each line in S19 represents a rate that describes the reaction from

the higher phosphorylated InsPx to the lower phosphorylated InsPx. Since MINPP1 is a

phosphatase, the respective reverse reactions are neglected and the network is to be read

from top to bottom. The full network contains a total of 75 rates and 31 species, 10 of

S36
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S 19:
Full reaction network with all theoretically possible intermediates and reaction rates of the MINPP1-mediated dephospho-
rylation of InsP5[2OH]. The structures enclosed in a blue box have been identified in the NMR-experiments with the blue
lines depicting the corresponding connection pattern.

which have been identified in the NMR-experiments (blue boxes). We assume that the

dephosphorylation network of InsP5[2OH] is dominated by these 10 observed InsPx (see

S8) and the corresponding 13 rates (blue lines).

2.2 Full InsP6 dephosphorylation network

S20 depicts the full reaction network of the MINPP1-mediated dephosphorylation of InsP6

in the binary representation. The network contains all possible intermediates and prod-

ucts including their connection pattern. Each line represents a rate that describes the

reaction from the higher phosphorylated InsPx to the lower phosphorylated InsPx. Since

MINPP1 is a phosphatase, the respective reverse reactions are neglected and the network

is to be read from top to bottom. The full network contains a total of 186 rates and

63 species, 14 of which have been identified in the NMR-experiments (blue highlighted

boxes) with symmetrically and asymmetrically 13C-labeled InsP6. We assume that the

S37
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S 20:
Full reaction network with all theoretically possible intermediates and reaction rates of the MINPP1-mediated dephospho-
rylation of InsP6. The structures highlighted in blue have been identified in the NMR-experiments with the blue lines
depicting the corresponding connection pattern. The InsP5 dephosphorylation network (S19) is highlighted in green.

InsP6 dephosphorylation pathway is dominated by the observed 14 InsPx (see S9) and

the corresponding 21 rates (blue lines). Additionally, S20 compares the InsP6 dephos-

phorylation network (highlighted in blue) to the InsP5[2OH] dephosphorylation network

(highlighted in green). We can clearly see that the two networks do not overlap and

therefore do not share a single structure or rate.

2.3 Master equation formalism

All processes in the InsP5[2OH] dephosphorylation network (SI Fig 19) as well as in the

InsP6 dephosphorylation network (S20) are irreversible chemical reactions of the type

Aj
kij−→ Ai with i, j = 0, 1, . . . , N − 1, i ̸= j , (2.1)

where species Aj reacts to species Ai with the rate constant kij. N is the total number of

species within the network. Please note that we start counting from zero to present the

theory in line with the implementation of our analysis in Python3. The rate constants kij

are the matrix elements of the rate matrix K ∈ RN×N . To ensure mass conservation the

S38
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diagonal elements of K are defined as the negative of the sum of all other elements in the

same column (constraints to master equation)

kii = −
N∑

j=1

kji for i = 0, 1, . . . , N − 1 and i ̸= j (2.2)

such that the sum over each column evaluates to zero. In other words, K is column-

normalized to zero. The vector ϕ(t) ∈ RN collects the density (or concentration) ϕAi
(t)

at time t of all species. The master equation that corresponds to scheme 2.1 reads

ϕ̇(t) = Kϕ(t) , (2.3)

where ϕ̇(t) is the first derivative of ϕ(t) with respect to time. Eq. 2.3 yields N coupled

linear homogeneous first order differential equations which describe the kinetics of the

entire network. Given the time series ϕ(t) (e.g. from experimental data), the master

equation can be used to numerically determine the corresponding rates kij and incorporate

additional constraints.[1,2]

2.4 Propagator formalism

In the previous subsection, we describe the kinetics with the corresponding master equa-

tion, that is via the change of the density (or concentration) with respect to time. Next,

we want to introduce the propagator formalism with which the time evolution of the den-

sity (or concentration) for N species can be described directly without the use of time

derivatives.

The solution of eq. 2.3 is given as

ϕ(τ) = exp(Kτ)ϕ0 , (2.4)

where ϕ0 = ϕ(τ = 0) denotes the initial condition at time τ = 0. Eq. 2.4 contains the

operator

P(τ) = exp(Kτ) with: P(τ) ∈ RN×N , (2.5)

which is called propagator and acts on the initial density ϕ(0) = ϕ0 ∈ RN to yield the

density ϕτ after time τ . A given propagator P(τ) can only propagate the density in

increments of the lag time τ to yield the time series ϕ0,ϕτ ,ϕ2τ , . . . ,ϕnτ with n ∈ N

S39
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according to

ϕτ = P(τ)ϕ0

ϕ2τ = P(τ)ϕτ

ϕ3τ = P(τ)ϕ2τ

...

ϕnτ = P(τ)ϕ(n−1)τ (2.6)

By recursively inserting each equation into the other we get

ϕnτ =

n times︷ ︸︸ ︷
P(τ)P(τ) · · ·P(τ) ϕ0

ϕnτ = Pn(τ)ϕ0 . (2.7)

We want to emphasize that, similar to the master equation formalism, conservation of

mass is automatically incorporated into the propagator formalism via the rate matrix K

(see eq. 2.2) such that P is column-normalized to one. In summary, given a propagator

P(τ) we can compute the density ϕnτ at time nτ either by computing all intermediate

steps as described in eqs. 2.6 or evaluate ϕnτ directly via eq. 2.7. In other words, given

all rates kij we can use the propagator formalism to predict the progress curves of all N

species in the network.[2,3]

2.5 Minimization method to numerically determine rates

Let’s assume we experimentally obtained the concentration of all N species within a

network at different discrete times. In other words, we know the density (concentration)

vectors ϕexp
0 ,ϕexp

τ ,ϕexp
2τ , . . . ,ϕexp

nτ ∈ RN at times 0, τ, 2τ, . . . , nτ . From this time series, we

can numerically determine the time-derivatives as a finite difference

ϕ̇
exp

mτ =
ϕexp

(m+1)τ − ϕexp
mτ

τ
with m = 0, 1, . . . , n− 1 . (2.8)

Additionally, we can define a set of n master equations

ϕ̇mτ = Kϕexp
mτ , (2.9)

where the elements of K are unknown. With eq. 2.9 we can predict ϕ̇mτ for a specific

choice of K. By selecting one value of m we obtain one master equation for this specific
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m as

y = Kxexp , (2.10)

where we abbreviate ϕexp
mτ = xexp = (xexp

0 , xexp
1 , . . . , xexp

N−1)
T and ϕ̇mτ = y = (y0, y1, . . . , yN−1)

T .

Let ϕ̇
exp

mτ = yexp = (yexp0 , yexp1 , . . . , yexpN−1)
T be the density vector at time mτ which was cal-

culated numerically from the experimental data via eq. 2.8. We use the mean squared

error ∆(mτ)

∆(mτ) =
N−1∑

i=0

(yi − yexpi )2 , (2.11)

to measure the error of the prediction of y described in eq. 2.10 and the experimentally

obtained yexp (eq. 2.8).

K is column-normalized to zero such that we can substitute the diagonal matrix elements

kii by eq. 2.2. The error in eq. 2.11 then only depends on the off-diagonal elements of

K. We can now use a least-square method to minimize ∆(mτ) with respect to these

off-diagonal elements to get a rate matrix K that produces y as close as possible to the

experimentally observed yexp.

With eqs. 2.10 and 2.11 we only made use of the experimental data ϕexp
(m+1)τ and ϕexp

mτ at

two distinct times m and m + 1 to determine K. Next, we extend our approach to all

values of m such that we can include the entire experimental time series as described in

eq. 2.9. In this context, we define the overall error ∆ as a sum over all individual errors

∆(mτ) (eq. 2.11)

∆ = ∆(τ) + ∆(2τ) + · · ·+∆(nτ) . (2.12)

and minimize eq. 2.12 with respect to the off-diagonal elements kij in order to get a good

estimate for the rate matrixK. Please note, that the described least-square method is par-

ticularly effective if the unknownK is sparse, meaning if it contains a lot of zeros. Further-

more, the method allows for additional constraints (additional to column-normalization,

e.g. fixing certain reaction rates to a predefined value) and upper and lower limits for the

value of the unknown parameters (e.g. for reaction rates we have kij ∈ [0, 1]). As indicated

in S20, the InsP5[2OH] dephosphorylation is dominated by 10 different InsPx forming a

network that includes 13 different rates. Consequently, the corresponding rate matrix K

is 10×10-dimensional and sparse, which makes the minimization process described above

a very well suited tool to determine the reaction rates of the kinetic network. The same

argument holds for the InsP6 dephosphorylation network which consists of 12 species and

17 rates, yielding a sparse 12×12-dimensional rate matrix. Finally, we want to emphasize

that a good initial guess for all elements of K is crucial for the convergence behaviour of

a minimization routine as described above.
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2.6 Consecutive first-order kinetics

We consider the simplest example of consecutive first order kinetics which is given as

A1
k21−−→ A2

k32−−→ A3 . (2.13)

where one irreversible reaction from species A1 to A2 with the reaction rate k21 is followed

by a second irreversible reaction from A2 to A3 with the reaction rate K32. The naming

convention of the reaction scheme follows eq. 2.1. The corresponding master equation is

defined in eq. 2.3 with ϕ(t) = (ϕA1(t), ϕA2(t), ϕA3(t))
T ∈ R3 and K ∈ R3×3. The diagonal

elements of K are given as k11 = −k21 and k22 = −k32 (see eq. 2.2). The master equation

yields a system of three coupled linear differential equations

ϕ̇A1(t) =
dϕA1(t)

dt
= −k21ϕA1(t) (2.14)

ϕ̇A2(t) =
dϕA2(t)

dt
= k21ϕA1(t)− k32ϕA2(t) (2.15)

ϕ̇A3(t) =
dϕA3(t)

dt
= k32ϕA2(t) , (2.16)

with the analytic solution

ϕA1(t) = ϕ0
A1

exp(−k21t) (2.17)

ϕA2(t) = k21ϕ
0
A1

exp(−k21t)− exp(−k32t)

k32 − k21
(2.18)

ϕA3(t) = ϕ0
A1

(
1 +

k21 exp(−k32t)− k32 exp(−k21t)

k32 − k21

)
, (2.19)

for the case k21 ̸= k32 and the initial condition ϕA1(0) = ϕ0
A1
.[4] S21 shows an example for

the progress curves defined in eqs. 2.17-2.19 for randomly selected rates.
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S 21:
The progress curves for two consecutive first order reactions as defined in eq. 2.13 for a set of example rates.

3 Analysis

3.1 Analysis protocol

To extract the reaction rates from the scaled experimental data shown in S22 and S22 we

use the least-square minimization routine described in SI section 2.5 following the protocol

presented below for both replicas of the InsP5[2OH] dephosphorylation respectively as well

as for the InsP6 dephosphorylation.

1. scale experimental data such that conservation of mass is fulfilled

2. fit scaled experimental data with analytic fit functions

3. create network assumption

4. use fit functions to generate time-equidistant series ϕexp
0 ,ϕexp

τ , . . . ,ϕexp
nτ with resolu-

tion τ = 1 min

5. use analytical time-derivatives to compute time series ϕ̇
exp

0 , ϕ̇
exp

τ , . . . , ϕ̇
exp

nτ

6. use corresponding network to set-up rate matrix K and identify all elements that are

not equal zero

7. set-up corresponding master equation and extract set of coupled differential equations

8. determine boundary conditions (bounds) and constraints

9. generate initial guess

10. write numerical program using scipy.optimize.minimize

11. compute all rates

12. use the rates to predict corresponding progress curves (eq. 2.7) and compare to scaled

experimental data
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3.2 Experimental data InsP5[2OH] dephosphorylation
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S 22:
Measured progress curves (solid lines) and scaled progress curves (dashed lines) of MINPP1 reaction with 175 µM
[13C6]InsP5[2OH] as a concentration time series for two replicas with identical experimental setup. The top row mag-
nifies the first 180 min, the middle row shows the full 96 hours and the bottom row represents the sum over all progress
curves, for each of the experiments respectively. The dashed lines in the left column top and middle represent the same
data set as main part Fig. 5a.

S22 shows the progress curves of two replicas of the MINPP1 reaction with 175 µM

[13C6]InsP5[2OH] (columns) with identical experimental setup, where we conducted NMR-

measurements at 10 different points in time for replica 1 and at 8 different points in time

for replica 2. The plot at the top magnifies the first 180 min of the experiment and the plot

in the middle shows the full 96 hours time interval of the measurements, respectively. The

solid lines represent the experimentally measured concentration time series ϕexp
i (t) with

i = 0, . . . , N − 1 of the N = 10 species that could be identified in the NMR-experiments.

The orange line in the bottom plot represents the corresponding sum Sexp(t) over the
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concentrations of all 10 species at each point in time

Sexp(t) =
N−1∑

i=0

ϕexp
i (t) , (3.1)

We can clearly see that Sexp(t) ̸= 175 µM for all t, meaning that we ”loose” mass during

the course of the experiment and conservation of mass is not fulfilled by the original

experimental data. Since conservation of mass is crucial for the kinetic model we use to

extract rates from the experimental data, we correct for the loss of mass by scaling the

experimental data according to

ϕscaled
i (t) =

ϕoriginal
i (t)

Sexp(t)
· 175 µM (3.2)

such that

Sscaled(t) =
N−1∑

i=0

ϕscaled
i (t) = 175 µM ∀t . (3.3)

The scaled progress curves ϕscaled
i (t) are shown as dashed lines in S22 and in main part

Fig. 5a. The results of of both replicas exhibit similar behaviour but the progress curves

of replica 2 indicate slightly faster kinetics. In the main part we chose replica 1 as repre-

sentative for both replicas. To extract kinetic of the InsP5 dephosphorylation, we perform

the numerical analysis on both replicas separately and compare the resulting rates in SI

section 4.1. Please note that we solely use the scaled progress curves for the numerical

analysis.

To prepare the scaled experimental data for the numerical analysis, we fitted the progress

curves of each species with an analytic fit function. The fit functions provide access

to more and time-equidistant data points and analytical derivatives for each progress

curve (no numerical derivatives necessary). S23 compares the fit function to the scaled

experimental data for both replicas and SI table 1 summarizes the fit functions and the

corresponding fit parameters. Please note, that we used the kinetic function defined in

eq. 2.18 to fit the progress curve of Ins(1,4,5)P3 (dark green circles) meaning that the fit

parameters k1 and k2 can already be interpreted as reaction rates.
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S 23:
Scaled progress curves (dashed lines) of MINPP1 reaction with 175 µM [13C6]InsP5[2OH] as a concentration time series
and corresponding fit functions (solid lines). The top row magnifies the first 180 min and the bottom row shows the full 96
hours.
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SI Table 1:
Fit functions and parameters used to fit the scaled experimental data of [13C6]InsP5[2OH] dephosphorylation for two
replicas.

species Replica 1 Replica 2

InsP5[2OH]
f(t) = a exp(−kt)

a = 182.834
k = 0.100

f(t) = a exp(−kt)
a = 182.020
k = 0.114

Ins(1,3,4,6)P4

f(t) = a · tb · exp(−kt)
a = 0.734
b = 0.459
k = 0.0008

f(t) = a · tb · exp(−kt)
a = 0.575
b = 0.612
k = 0.002

Ins(1,4,5,6)P4

f(t) = a · tb · exp(−kt)
a = 7.508
b = 1.322
k = 0.048

f(t) = a · tb · exp(−kt)
a = 7.722
b = 1.520
k = 0.080

Ins(1,4,5)P3

f(t) =
c0 k1

k2 − k1
(exp(−k1t)− exp(−k2t))

k1 = 0.006
k2 = 0.000262
c0 = 167.378

f(t) =
c0 k1

k2 − k1
(exp(−k1t)− exp(−k2t))

k1 = 0.0153
k2 = 0.000553
c0 = 169.494

Ins(1,4,6)P3

f(t) = a · tb · exp(−kt)
a = 0.181
b = 0.937
k = 0.003

f(t) = a · tb · exp(−kt)
a = 0.111
b = 1.115
k = 0.005

Ins(1,4)P2

f(t) = S − (S − a) · exp(−bt)
a = −0.052
b = 0.0003
S = 70.446

f(t) = S − (S − a) · exp(−bt)
a = −2.263
b = 0.0005
S = 95.617
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species new experiment old experiment

Ins(1,5)P2

f(t) = S − (S − a) · exp(−bt)
a = −0.289
b = 0.0003
S = 17.523

f(t) =
d

a+ b exp(−ct)
exp(−gt)

a = 2.029
b = 78.948
c = 0.003
d = 33.623
g = 0.00007

Ins(4,5)P2

f(t) = S − (S − a) · exp(−bt)
a = −0.582
b = 0.0002
S = 71.352

f(t) = S − (S − a) · exp(−bt)
a = −1.303
b = 0.0005
S = 51.389

Ins(1)P1

f(t) = a t2

a = 7.89 · 10−8
f(t) = a t2

a = 1.7 · 10−7

Ins(4)P1

f(t) = a t2

a = 7.06 · 10−8
f(t) = a t2

a = 9.64 · 10−8
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3.3 Experimental data InsP6 dephosphorylation

0 12 24 36 48 60 72 84 96

time in h

0

25

50

75

100

125

150

175

In
sP

co
n

ce
n
tr

at
io

n
in

µ
M

InsP6

InsP5[4OH]

InsP5[3OH]

Ins(1,2,3,6)P4

Ins(1,2,5,6)P4

Ins(1,2,4,5)P4

Ins(1,2,3)P3

Ins(1,2,6)P3

Ins(1,2,5)P3

Ins(1,2)P2

Ins(2,5)P2

Ins(2)P1

0 20 40 60 80 100

0

25

50

75

100

125

150

175

sum experimental data

sum scaled experimental data

S 24:
Measured progress curves (solid lines) and scaled progress curves (dashed lines) of MINPP1 reaction with 175 µM
[13C6]InsP6 as a concentration time series (top) and the sum over all progress curves at each point in time (bottom).
The dashed lines in the top plot represent the same data set as main part Fig. 5c.

S9 and S20 depict our assumption of the complete MINPP1-mediated InsP6 dephos-

phorylation pathway and main part Fig. 5d shows the corresponding simplified version.

The pathway contains the enantiomers Ins(1,2,4)P3 and Ins(1,2,6)P3 and the enantiomers

Ins(1,2)P2 and Ins(2,3)P2 which can only be distinguished in asymmertrically 13C-labeled

NMR experiments. However, we base our numerical analysis on the progress curves

shown in S24,top which resulted from the MINPP1 reaction with symmetrically labeled

[13C6]InsP6. Consequently, both pairs of enantiomers are represented by one progress

curve each, which we labeled with one representative for each pair of enantiomers. This

reduces the network in S20 from 14 to 12 different species. The solid lines in S24,top, rep-

resent the experimentally measured concentration time series ϕexp
i (t) with i = 0, . . . , N−1

and N = 12. The orange line in S24, bottom represents the sum Sexp(t) over the con-

centrations of all 12 species at each point in time. Since the original experimental data

does not obey conservation of mass over the entire time axis, we scale the data accord-

ing to eq. 3.2. The scaled progress curves are shown as dashed lines and are equivalent

to the solid lines in main part Fig. 5c. We want to emphasize that we solely use the

scaled progress curves for all further analysis. To prepare the scaled experimental data
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for the numerical analysis, we fitted the progress curves of each species with an analytic

fit function. S25 compares the fit function to the scaled experimental data and SI table 2

summarizes the fit functions and the corresponding fit parameters. We used eq. 2.17 as

fit function to fit the InsP6 progress curve which means that we can interpret the fit

parameter k as the reaction rate that quantifies the depletion of InsP6 over time. More-

over, we used eq. 2.18 to fit the InsP5[3OH] progress curve and thus we can interpret the

fit parameters k1 and k2 as reaction rates that dictate the growth and the depletion of

InsP5[3OH] concentration in time.
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S 25:
Scaled progress curves (dashed lines) of MINPP1 reaction with 175 µM [13C6]InsP6as a concentration time series and
corresponding fit functions (solid lines).
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SI Table 2:
Fit functions and parameters used to fit the scaled experimental of [13C6]InP6 dephosphorylation.

species fit data

InsP6

f(t) = a exp(−kt)
a = 175.00
k = 0.000932

InsP5[4OH]

f(t) = atb exp(−kt)
a = 6.2 · 10−18

b = 6.697
k = 0.00460

InsP5[3OH]

f(t) =
k1 c0

k2 − k1
(exp(−k1 t)− exp(−k2 t))

k1 = 0.00074
k2 = 0.00093
c0 = 175

Ins(1,2,3,6)P4

f(t) = a · exp
(
− (t− µ)2

σ2

)

a = 45.149
µ = 2057.099
σ = 709.875

Ins(1,2,5,6)P4

f(t) = atb exp(−kt)
a = 0.0000021
b = 2.603
k = 0.00272

Ins(1,2,4,5)P4

f(t) = a · exp
(
− (t− µ)2

σ2

)

a = 55.045
µ = 2849.46
σ = 1045.39
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species fit data

Ins(1,2,3)P3

f(t) = a exp

[
− b

(
1− exp(−c(t− d))

)2]

a = 61.89
b = 4.578
c = 0.00076
d = 3133.40

Ins(1,2,6)P3

f(t) =
d

a+ b exp(−c t)
exp(−e t)

a = 0.0973
b = 45.655
c = 0.00249
d = 7.480
e = 0.00014

Ins(1,2,5)P3

f(t) = a · exp
(
− (t− µ)2

σ2

)

a = 9.909
µ = 3338.044
σ = 626.472

Ins(1,2)P2

f(t) =
d

a+ b exp(−c t)
a = 0.000046
b = 1394.199
c = 0.00442
d = 0.00590

Ins(2,5)P2

f(t) =
d

a+ b exp(−c t)
exp(−e t)

a = 11.970
b = 0.000024
c = −0.00497
d = 0.000468
e = −0.00486

Ins(2)P1

f(t) =
d

a+ b exp(−c t)
a = −8.741
b = −3609.11
c = 0.000978
d = −168.34
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3.4 Analysis setup InsP5[2OH] dephosphorylation

S 26:
(a) Assumed network for MINPP1 reaction with 175 µM InsP5[2OH] including all reactions rates. A copy of this network
is shown in S8 and a simplified version is depicted in main part Fig. 5b.
(b) Schematic representation of the corresponding rate matrix and density (concentration) vector. Matrix: The white
squares mark all matrix elements that are equal to zero, the blue squares all elements that are not zero and the green
squares represent the diagonal elements defined via eq. 2.2. Vector: The representation indicates which vector element is
associated with which InsP.

Network:

Based on the NMR-data (see main part Fig. 3 and S22), we assume that the InsP5[2OH]

dephosphorylation network is dominated by 10 different InsPx that form the network

depicted in S26, a. All possible reactions from a higher phosphorylated InsPx to a lower

phosphorylated InsPx are indicated with a line and are associated with a reaction rate

kij ̸= 0.

Density (concentration) vector and corresponding time derivative:

We use the fit functions (SI table 1) to create time-equidistant data points ϕexp
0 ,ϕexp

τ , . . . ,ϕexp
nτ

and ϕ̇
exp

0 , ϕ̇
exp

τ , . . . , ϕ̇
exp

nτ (eq. 2.9) with a resolution of τ = 1 min for each replica.

Rate matrix:

To build the rate matrix K, we number all species in the network from zero to nine in a

left-to-right and top-to-bottom fashion and assign the corresponding rates according to

eq. 2.1. These rates are represented in S26, b as blue squares. The diagonal elements
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(green squares) are defined via eq. 2.2 and given as

k00 = −(k10 + k20)

k11 = −k41

k22 = −(k32 + k42)

k33 = −(k53 + k63 + k73) (3.4)

k44 = −k54

k55 = −(k85 + k95)

k66 = −k86

k77 = −k97 .

All other matrix elements are equal to zero (white squares in S26, b).

Set of differential equations:

With the rate matrix K defined, we can now formulate the corresponding master equation

(eq. 2.3) which yields the following set of 10 coupled first-order differential equations

ϕ̇0 = k00ϕ0

ϕ̇1 = k10ϕ0 +k11ϕ1

ϕ̇2 = k20ϕ0 +k22ϕ2

ϕ̇3 = +k32ϕ2 +k33ϕ3

ϕ̇4 = +k41ϕ1 +k42ϕ2 +k44ϕ4

ϕ̇5 = +k53ϕ3 +k54ϕ4 +k55ϕ5

ϕ̇6 = +k63ϕ3 +k66ϕ6

ϕ̇7 = +k73ϕ3 +k77ϕ7

ϕ̇8 = +k85ϕ5 +k86ϕ6

ϕ̇9 = +k95ϕ5 +k97ϕ7

(3.5)

Constraints and bounds:

Here, we report the applied constraints that yielded the best results for the reaction rates

reported in main part Fig. 6a and 6b. In total, we constrained 4 rates (k10, k41, k73 and

k42), which leaves us with 9 reaction rates that have to be optimized during the mini-

mization routine.

k10 and k41:

Since the progress curve of Ins(1,3,4,6)P4 evolves at very low concentrations (less than 9

µM for the entire time series), we decided to exclude this species from the analysis and
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set the corresponding rates to zero, k10, k41 = 0, for both replicas.

k73:

As mentioned in section 3.2 , we use eq. 2.18 as fit function for the progress curve of

Ins(1,3,4)P3 (SI table 1). Since this function emerges from a kinetic model, we can in-

terpret the corresponding fit parameters k1 and k2 as kinetic rates with k1 describing the

increase and k2 the decrease of concentration. The increase in Ins(1,3,4)P3 concentration

is determined by k32 and the decrease is determined by k53 + k63 + k73. We use the fit pa-

rameter k2 (2.62 ·10−4 min−1 for replica 1 and 5.53 ·10−4 min−1 for replica 2) to constrain

the rate k73 as k73 = k2−k53−k63 and leave k32 unconstraint for each replica respectively.

k42:

During our analysis, we found that the increase in Ins(1,4,6)InsP3 concentration was gen-

erally overestimated by the minimization routine and thus we decided to constrain the

rate k42 towards Ins(1,4,6)InsP3 by hand. In an iterative procedure, we found that the

constraint k42 = 0.001 yields the most promising results for both replicas.

bounds:

Since reaction rates are a real number between zero and one, we bound all rates to the

interval kij ∈ [10−6, 1].

Initial guess:

We built the rate matrix K by formulating an initial guess for each rate, used eq. 2.7 to

predict the corresponding progress curves and compared these prediction to the scaled

experimental data (S22, dashed lines). In an iterative procedure, we corrected the rates

by hand until the set of rates produced progress curves that roughly matched the scaled

experimental progress curves. The set of rates is summarized in SI table 3 and serves as

initial guess for our minimzation routine.

Technical details:

We used Python3 and scipy.optimize.minimize[5] to implement the minimization rou-

tine described in SI section 2.5, where we passed eq. 2.12 as objective function to be

minimized, the initial guess and bounds as described above and left all other parameters

at their default settings. Since we constraints 4 of the 13 rates, the implemented mini-

mization routine optimizes the remaining 9 rates such that the resulting rate matrix K

yields progress curves that are in excellent agreement with the scaled experiment data.
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SI Table 3:
Initial guess for all rates of the InsP5[2OH] dephosphorylation network in min−1 for both replicas.
∗) The marked rates are subject to constraints.

rate replica 1 replica 2

k10 0.00∗ 0.00∗

k20 9.76 · 10−2 9.76 · 10−2

k41 0.00∗ 0.00∗

k32 6.84 · 10−3 6.84 · 10−3

k42 1.00 · 10−3∗ 1.00 · 10−3∗

k53 1.09 · 10−4 1.09 · 10−4

k63 4.16 · 10−5 4.16 · 10−5

k73 (2.62 · 10−4 − k53 − k63)
∗ (5.53 · 10−4 − k53 − k63)

∗

k54 6.11 · 10−4 6.11 · 10−4

k85 1.00 · 10−5 1.00 · 10−5

k95 1.08 · 10−5 1.08 · 10−5

k86 5.77 · 10−5 5.77 · 10−5

k97 2.40 · 10−6 1.00 · 10−6
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3.5 Analysis setup InsP6 dephosphorylation

S 27:
(a) Assumed network for MINPP1 reaction with 175 µM InsP6 including all reactions rates.
(b) Schematic representation of the corresponding rate matrix and density (concentration) vector. Matrix: The white
squares mark all matrix elements that are equal to zero, the blue squares all elements that are not zero and the green
squares represent the diagonal elements defined via eq. 2.2. Vector: The representation indicates which vector element is
associated with which InsP.

Network:

S27a depicts the network assumption on which we base our numerical analysis. Ins(1,2,6)P3

and Ins(1,2)P2 are chosen as representatives for their respective pair of enantiomiers (see

also section 3.3). All possible reactions from a higher phosphorylated InsPx to a lower

phosphorylated InsPx are indicated with a line and are associated with a reaction rate

kij ̸= 0. The network consits of 12 different InsPx and 17 reaction rates.

Density (concentration) vector and corresponding time derivative:

We use the fit functions (SI table 2) to create time-equidistant data points ϕexp
0 ,ϕexp

τ , . . . ,ϕexp
nτ

and ϕ̇
exp

0 , ϕ̇
exp

τ , . . . , ϕ̇
exp

nτ (eq. 2.9) with a resolution of τ = 1 min.
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Rate matrix:

To build the rate matrix K, we number all InsPx included in the network from zero to

eleven in a left-to-right and top-to-bottom fashion and assign the corresponding rates

according to eq. 2.1. S27,b represents these rates as blue squares. The diagonal elements

(green squares) are defined via eq. 2.2 and given as

k00 = −(k10 + k20)

k11 = −(k31 + k41)

k22 = −(k42 + k52)

k33 = −(k63 + k73)

k44 = −(k74 + k84)

k55 = −k85 (3.6)

k66 = −k96

k77 = −k97

k88 = −(k98 + k108)

k99 = −k119

k1010 = −k1110 .

All other matrix elements are equal to zero (white squares).

Set of differential equations:

With the rate matrix K we can formulate the corresponding master equation (eq. 2.3)

which yields the following set of coupled first-order differential equations

y0 = +k00x0

y1 = +k10x0 +k11x1

y2 = +k20x0 +k22x2

y3 = +k31x1 +k33x3

y4 = +k41x1 +k42x2 +k44x4

y5 = +k52x2 +k55x5

y6 = +k63x3 +k66x6

y7 = +k73x3 +k74x4 +k77x7

y8 = +k84x4 +k85x5 +k88x8

y9 = +k96x6 +k97x7 +k98x8 +k99x9

y10 = +k108x8 +k1010x10

y11 = +k119x9 +k1110x10

(3.7)
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Constraints and bounds:

Here, we report the applied constraints that yielded the best results for the reaction rates

reported in SI table 5. In total, we constrain 3 reaction rates (k10, k20 and k52) which left

us with 14 reaction rates that have to be optimized during the minimization routine.

k20 and k52:

As mentioned in section 3.3, we used eq. 2.18 as fit function for the progress curve of

InsP5[3OH] (SI table 2). Consequently, we can interpret the fit parameter k1 as reaction

rate that describes build-up of concentration and k2 as reaction rate that describes the

decrease of concentration. According to the network in S27a, the increase of InsP5[3OH]

concentration is solely determined by k20 and thus we constrain k20 = k1 = 7.4 · 10−4

min−1. The decrease of InsP5[3OH] concentration is determined by k42 + k52 and we set

the constraint k52 = k2 − k42 = 9.3 · 10−4 − k42.

k10:

We used eq. 2.17 as fit function for the progress curve of InsP6 (SI table 2) and thus the fit

parameter k represents the reaction rate that dictates the decrease of InsP6 concentration

over time. According to the network in S27,a, this decrease is described by k10 + k20 and

we constrain k10 = k − k20 = 1.9 · 10−4 min−1.

bounds: We set the bounds k108 ∈ [10−3, 1], k119 ∈ [10−5, 1] and k1110 ∈ [10−4, 1] to brute-

force increase the influence of these rates on the network and prevent the minimization

routine from setting all of them to the lowest possible value 10−6. All other rates were

bound to the interval kij ∈ [10−6, 1].

Initial guess:

To generate a good initial guess for the unconstrained rates, we started with a reduced

network that included InsP6, InsP5[4OH], InsP5[3OH], Ins(1,2,3,6)P4, Ins(1,2,5,6)P4 and

Ins(1,2,4,5)P4 and performed a minimization run. Next, we increased the network by in-

cluding Ins(1,2,3)P3, Ins(1,2,6)P3 and Ins(1,2,5)P3 and repeated the minimization, where

we used the results from the previous run for k10, k31 and, k41 and the default initial guess

for the remaining rates. Finally, we repeated this step with the full network which yielded

a good initial guess for all 13 unconstrained rates as shown in SI table 4.

Technical details:

For all technical details, the reader is referred to section 3.4.
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SI Table 4:
Initial guess (in min−1) and bounds for all rates in the [13C6]InsP6 dephosphorylation network.
∗) The marked rates are subject to constraints.

rate initial guess bounds

k10 1.9 · 10−4∗ -

k20 7.4 · 10−4∗ -

k31 2.9 · 10−3 [10−6, 1]

k41 1.0 · 10−5 [10−6, 1]

k42 3.0 · 10−4 [10−6, 1]

k52 9.3 · 10−4∗ − k42 -

k63 5.0 · 10−4 [10−6, 1]

k73 3.7 · 10−4 [10−6, 1]

k74 1.4 · 10−3 [10−6, 1]

k84 1.5 · 10−4 [10−6, 1]

k85 4.2 · 10−4 [10−6, 1]

k96 2.0 · 10−4 [10−6, 1]

k97 2.0 · 10−4 [10−6, 1]

k98 3.9 · 10−3 [10−6, 1]

k108 1.0 · 10−5 [10−3, 1]

k119 1.0 · 10−3 [10−5, 1]

k1110 1.0 · 10−3 [10−4, 1]

4 Results

4.1 Results InsP5[2OH] dephosphorylation

The numerically determined set of rates for both replicas are presented in S29. We can

see that replica 2 exhibits slightly faster kinetics than replica although both share an

identical experimental setup. Excluding the rates k95 and k97, both sets of rates are in

good agreement (S29, b). The fastest process is described by k20 ≈ 10−1 min−1 which

governs the reaction InsP5[2OH] → Ins(1,4,5,6)P4. This result is in good agreement

with MINPP1’s annotation as a phosphatase that predominantly removes the phosphoryl

group at the 3-position.[6] The reaction rates of the subsequent dephosphorylation steps

are separated by at least one order of magnitude, where we get kij ≈ 10−2 min−1 for

reactions of the type InsP4 → InsP3, kij ≈ 10−4 min−1 for reactions of the type InsP3 →
InsP2 and kij ≈ 10−5 min−1 for reactions of the type InsP2 → InsP1.

In S28, we compare the scaled experimental data (dotted lines ) to the progress curves

(solid lines) predicted from the numerically determined set of rates (eq. 2.7) for each

replica. The predicted progress curves match the experimental data both qualitatively

and quantitatively which strongly supports the assumption that the reaction rates in the

InsP5[2OH] dephosphorylation network are time independent. Furthermore, the results

S60

186 3 Publications



0 30 60 90 120 150 180

time in min

0

25

50

75

100

125

150

175

In
sP

co
n

ce
n
tr

at
io

n
in

µ
M

Replica 1

0 30 60 90 120 150 180

time in min

0

25

50

75

100

125

150

175

In
sP

co
n

ce
n
tr

at
io

n
in

µ
M

Replica 2

0 24 48 72 96

time in h

0

25

50

75

100

125

150

175

In
sP

co
n

ce
n
tr

at
io

n
in

µ
M

0 24 48 72 96

time in h

0

25

50

75

100

125

150

175

In
sP

co
n

ce
n
tr

at
io

n
in

µ
M

InsP5[2OH]

Ins(1,3,4,6)P4

Ins(1,4,5,6)P4

Ins(1,4,5)P3

Ins(1,4,6)P3

Ins(1,4)P2

Ins(1,5)P2

Ins(4,5)P2

Ins(1)P

Ins(4)P

S 28:
Predicted progress curves (solid lines) obtained via minimization routine and scaled experimental data (dashed lines) for
two replicas (columns) of MINPP1 reaction with 175 µM [13C6]InsP5[2OH], where the top row magnifies the first 180 min
and the bottom row the entire time axis of the experiment. The results for replica 1 are a copy of the results shown in main
part Fig. 6a.

S 29:
(a) Computed rates in min−1 for both replicas of the [13C6]InsP5[2OH] dephosphorylation. The column for replica 1 is a
copy of the results presented in main part Fig. 6b. ∗) The marked rates are subject to constraints.
(b) Visual comparison of the rates computed from the scaled experimental data of replica 1 and replica 2, respectively. The
rates k10, k41 = 0 are not included in the representation.

confirm that the network depicted in S26 accurately describes the MINPP1-mediated

dephosphorylation of InsP5[2OH].
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4.2 Results InsP6 dephosphorylation
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S 30:
Predicted progress curves (solid lines) obtained via minimization routine and scaled experimental data (dashed lines) of
MINPP1 reaction with 175 µM [13C6]InsP6.

SI Table 5:
Computed reaction rates in min−1 for [13C6]InsP6 dephosphorylation network.
∗) The marked rates were subject to constraints.

rate reaction rate

k10 1.90 · 10−4∗

k20 7.42 · 10−4∗

k31 2.95 · 10−3

k41 1.00 · 10−6

k42 2.88 · 10−4

k52 6.49 · 10−4∗

k63 5.10 · 10−4

k73 3.67 · 10−4

k74 1.56 · 10−3

k84 2.13 · 10−5

k85 5.99 · 10−4

k96 2.02 · 10−4

k97 2.22 · 10−4

k98 3.88 · 10−3

k108 1.00 · 10−3

k119 1.00 · 10−5

k1110 1.49 · 10−4

S30 shows the comparison between the scaled experimental data (dashed lines) and the

progress curves predicted by the numerically determined rates (solid lines). We can clearly

see that the computed rates yield a poor representation of the experimental progress

curves which strongly indicates that the applied time-constant rates model is insufficient
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to describe the InsP6 dephosphorylation. The shapes of the experimental progress curves

already indicate a kinetic network with time-dependent rates, e.g. the InsP6 progress

curve does not represent an exponential decay as we would expect from a first-order

reaction. Instead, we observe a damped decrease which could emerge from a inhibition

process. As mentioned in main part (Fig. 6c) we suggest that InsP6 itself could act as an

inhibitor for the dephosphorylation of its own MINPP1-mediated intermediates.[7] This

assumption is further supported by the fact, that the kinetics clearly accelerate as soon

as InsP6 is fully depleted. However, we can roughly approximate the rate at which InsP6

is depleted as k10+k20 = 9.3 · 10−4 min−1. Based on our results and the discussion above,

we conclude that our master equation ansatz (SI section 2.5) is not capable to capture

the true kinetics for the MINPP1-mediated dephosphorylation of InsP6 and thus does not

provide any more insight into the main pathways that generate the enantiomers Ins(1,2)P2

and Ins(2,3)P2. For the sake of completeness, we report the numerically determined rates

in SI table 5 but did not include these results in the main part of our work. We renounce

to extend our ansatz in order to include inhibition processes but this kind of analysis is

beyond the scope of this paper.
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4 Conclusion

This thesis presented different methods to compute dynamical quantities. Part A focused

on underdamped Langevin integrators for MD simulations and path reweighting methods to

reweight biased dynamics in order to build the unbiased MSM. We reported that the un-

derdamped Langevin integrators BAOA and GSD are equivalent sampling algorithms and

thus produce configurational and kinetic properties with identical accuracy. Furthermore, we

argued that BAOA/GSD and BAOAB are equivalent configurational sampling algorithms.

These results are of particular relevance for the MD community because BAOA, BAOAB and

GSD belong to the most widely used Langevin integrators. BAOA (also called LFMiddle[37])

is implemented in the MD packages OpenMM[114] and AMBER[118], GSD is the standard

Langevin integrator in GROMACS[119] and BAOAB is frequently used in atomistic MD sim-

ulations (available in OpenMM via the toolkit OpenMMTools[113]). In other words, all three

MD packages generate trajectories with equivalent configurational sampling accuracy and we

can straightforwardly transfer benchmark studies of one of the integrators to the other two.

Our studies also indicated that BAOA/GSD sample the marginal distribution of momenta

more accurately than BAOAB. This observation is surprising because BAOAB is a symmetric

Langevin integrator[32] and thus would be expected to yield a more accurate momenta distri-

bution than unsymmetrical Langevin integrators like BAOA/GSD.[108] Additionally, it could

be possible that the accuracy of the marginal distributions might not extend to correlations

between positions and momenta. Further studies are required to confirm or falsify this as-

sumption and to provide further explanation as to why unsymmetrical Langevin integrators

yield excellent uncorrelated momenta.

MD trajectories that have been generated with stochastic integrators like Langevin integra-

tors can be reweighted by dynamical reweighting methods. This thesis presented an overview

of state-of-the-art potential reweighting techniques which can be used to recover the unbi-

ased dynamics from simulations that have been conducted at a biased potential. One of

these methods is path reweighting which is based on calculating the weights that the sim-

ulated paths would have in the unbiased potential. The weight is composed of the state

space reweighting factor g and the path space reweighting factor M . So far, we used the

path reweighting factor Mapprox which is based on the expression of the random number

difference ∆η derived for overdamped Langevin dynamics even though the MD simulation

was conducted with an underdamped Langevin integrator. In this thesis, we derived ML

for a simplified version of an underdamped Langevin integrator that we called ISP.[39] With

ML we performed exact reweighting for underdamped Langevin dynamics for the first time.

Additionally, we were able to explain why Mapprox yielded excellent results for underdamped

Langevin dynamics and proved mathematically that the approximation ML ≈ Mapprox is

O(ξ4∆t4) order accurate. Here, ξ represents the collision rate and ∆t the simulation time

step.
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Since ξ∆t < 1 usually holds in MD simulations, we can readily apply Mapprox to reweight

trajectories generated by the ISP scheme. In this context, we strongly assume that ML ≈
Mapprox also holds for other underdamped Langevin integrators. From the results mentioned

above, we already know that BAOA and GSD have an identical path reweighting factor

which we expect to be similar if not identical to the expression for BAOAB. Furthermore,

we presented two strategies that can be used as blueprints to derive the path reweighting

factor for other underdamped Langevin integrators. The strategy that makes use of the

random number difference ∆η is particularly promising in order to simply and quickly derive

M which we demonstrated with the ABOBA integrator. In a future work, this strategy could

be used to derive ML for other integrators. The expressions could then be used to address

the previously mentioned assumption that ML ≈ Mapprox also holds for other underdamped

Langevin integrators.

In general, path reweighting is a powerful tool that can be combined with methods like

enhanced sampling techniques[56–60] and Markov State Models[76–81] (MSMs) to study the

dynamics of a given system.[74,75] In this context, reweighting is particularly useful when the

uncertainty of transition counts estimated from a direct simulation is larger than the uncer-

tainty of the reweighted transition counts. This is the case if a direct simulation does not

have enough energy to cross large energy barriers a statistically meaningful amount of times.

Combining the MD simulation with an enhanced sampling technique increases the amount

of barrier crossings significantly and we can reweight the unbiased transition counts. If the

path reweighting factor matches the chosen integrator and if absolute continuity in configu-

ration as well as in path space is fulfilled, the reweighting does not introduce any additional

uncertainty. In future work, we could take maximum advantage of this fact and combine

transition path sampling[159–163] (TPS) methods with metadynamics and path reweighting.

Let’s assume the system of interest comes with a large energy barrier between two metastable

states along a relevant coordinate, e.g. the dissociation of an an ion pair. With TPS we could

start several independent trajectories in one of the metastable states and use metadynamics

to push the system over the energy barrier into the second state. We could then use path

reweighting to compute a count matrix per trajectory and sum them up to an overall count

matrix from which we then compute the MSM. This combination might yield a new powerful

technique to study rare events like dissociation processes.

Another field of application where path reweighting can be valuable is force field optimization.

In this context, Ref. [75] already studied how the Coulomb potential and the corresponding

electric constant influences the dynamics of the system using path reweighting. To date, force

fields have been optimized to reproduce experimentally measured structural and thermody-

namic properties. However, dynamical properties such as rates of interconversion between

metastable states were not subject to the optimization process so far, although experimental

knowledge about these rates exists. Ref. [164] published a method that can be used to improve

force field optimization in this regard. The authors combined path reweighting with a maxi-

mum caliber approach to impose a dynamical constraint in a complex molecular transition.
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The method optimizes the force field parameters with respect to the dynamical constraint

while keeping the prior trajectory as unperturbed as possible. So far, all path reweighting

methods are formulated for the Euler-Maruyama (EM) integrator for overdamped Langevin

dynamics and work with the corresponding path reweighting factor. Since the EM integrator

is not a good choice to describe the dynamics of a molecular system, it is crucial to derive

M for underdamped Langevin integrators. Additionally, the confirmation of the previously

made assumption that ML ≈ Mapprox would make the path reweighting factor independent

of the chosen integrator and would consequently facilitate the handling of path reweighting

methods significantly. This would facilitate the handling of path reweighting methods signif-

icantly and methods that already work with Mapprox would not need to be adapted.

Part B investigated the MINPP1 mediated dephosphorylation pathways of InsP5[2OH] and

InsP6 with 13C-labeling experiments combined with BIRD-{1H-13C}HMQC-NMR measure-

ments and extracted the corresponding reactions rates via a kinetic scheme model.[83,84] We

assumed a Markovian kinetic scheme, meaning the reaction rates are time independent. This

assumption yielded excellent reaction rates for the InsP5[2OH] dephosphorylation pathway

but only poor results in the case of InsP6. We assumed that InsP6 could act as an inhibitor for

the dephosphorylation of the MINPP1-generated intermediates. Our experiments confirmed

this assumption and we observed a clear inhibitory effect of InsP6 on the MINPP1 mediated

dephosphorylation of InsP5[2OH]. In future work, we could incorporate this inhibitory effect

into the kinetic scheme via competitive inhibition. Competitive inhibition is a model that

modifies Michaelis-Menten kinetics to include the binding of one or more inhibitors to the

free enzyme. With this model, we could describe each reaction rate in the dephosphorylation

pathway with respect to the concentrations of the other InsP intermediates and thus include

an implicit time dependence. From an experimental point of view, the next step could be

to use our experimental and analytical setup to investigate the InsP metabolism in other

biological contexts. For example, the role of inositol (phosphates) in pathogenic parasites

such as T. cruzi could be investigated. It is known that the InsP metabolism is essential for

the development cycle of the parasite.[165] An understanding of the respective metabolism in

the host and in the parasite and how they influence each other might help in the development

of new therapies for these parasitoses. Another question that could be addressed is related

to MINPP1’s upregulation during endoplasmic reticulum-related stress. It has yet to be ex-

plored how this affects the InsP pool and how everything might be correlated with the onset

of apoptosis.[150]

Finally, we want to mention that the MINPP1 mediated dephosphorylation of InsP5[2OH]

and InsP6 are a biochemical dynamics which could be modeled as reaction-diffusion processes.

Consequently, the dephosphorylation networks could be an excellent application for methods

that are based on the chemical diffusion master equation (CDME).[166,167]
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A Appendix

A.1 From stochastic differential equations to Fokker-Planck

equations: Integration by parts

This part of the appendix shows the integration by parts that was performed to get from

eq. 2.82 to eq. 2.83. The integral on the left hand side of eq. 2.82 can be computed as

∫
dx

∂f(x, t)

∂x

(
A(x, t)P (x, t|x0, t0)

)

= f(x, t)A(x, t)P (x, t|x0, t0)
∣∣∣
+∞

−∞
−
∫

dxf(x, t)
∂

∂x
A(x, t)P (x, t|x0, t0) . (A.1)

The integral on the right hand side of eq. 2.82 evaluates to

σ2

2

∫
dx

∂2f(x, t)

∂x2
P (x, t|x0, t0)

=
σ2

2

[
∂f(x, t)

∂x
P (x, t|x0, t0)

∣∣∣∣∣

+∞

−∞
−
∫

dx
∂f(x, t)

∂x

∂P (x, t|x0, t0)
∂x

]

=
σ2

2

[
∂f(x, t)

∂x
P (x, t|x0, t0)

∣∣∣∣∣

+∞

−∞
− f(x, t)

∂P (x, t|x0, t0)
∂x

∣∣∣∣∣

+∞

−∞
+

∫
dxf(x, t)

∂2P (x, t|x0, t0)
∂x2

]
.

(A.2)

All surface terms in eqs. A.1 and A.2 are equal to zero because we defined the boundary

conditions in eq. 2.79. Discarding the surface terms and adding eqs. A.1 and A.2 yields

−
∫

dxf(x, t)
∂

∂x
A(x, t)P (x, t|x0, t0) +

σ2

2

∫
dxf(x, t)

∂2P (x, t|x0, t0)
∂x2

, (A.3)

which represents the right hand side of eq. 2.83.

A.2 Integrators for underdamped Langevin dynamics

This part of the appendix summarizes the integrator equations for the underdamped Langevin

integrators. ∆t is the time step, m is the mass, qk the position, pk the momentum and ηk the

random number at iteration step k, ξ the collision rate, V (qk) the potential energy function

and ∇q the gradient and ηk the random number.
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The BAOAB integrator

pk+1/3 = pk −
∆t

2
∇qV (qk) (A.4a)

qk+1/2 = qk +
∆t

2m
pk+1/3 (A.4b)

pk+2/3 = e−ξ∆t pk+1/3 +
√

kBTm(1− e−2ξ∆t) ηk (A.4c)

qk+1 = qk+1/2 +
∆t

2m
pk+2/3 (A.4d)

pk+1 = pk+2/3 −
∆t

2
∇qV (qk+1) (A.4e)

The BAOA integrator

pk = pk− 1
2
−∆t∇qV (qk) (A.5a)

qk+ 1
2

= qk +
∆t

2m
pk (A.5b)

pk+ 1
2

= e−ξ∆tpk +
√
kBTm (1− e−2ξ∆t)ηk (A.5c)

qk+1 = qk+ 1
2
+

∆t

2m
pk+ 1

2
(A.5d)

The AOBOA integrator

qk+1/2 = qk +
∆t

2m
pk (A.6a)

pk+1/3 = e−
ξ∆t
2 pk +

√
kBTm(1− e−ξ∆t) η

(1)
k (A.6b)

pk+2/3 = pk+1/3 −∆t∇qV (qk+1/2) (A.6c)

pk+1 = e−
ξ∆t
2 pk+2/3 +

√
kBTm(1− e−ξ∆t) η

(2)
k (A.6d)

qk+1 = qk+1/2 +
∆t

2m
pk+1 (A.6e)

The BOAOB integrator

pk+1/4 = pk −
∆t

2
∇qV (qk) (A.7a)

pk+2/4 = e−
ξ∆t
2 pk+1/4 +

√
kBTm (1− e−ξ∆t) η

(1)
k (A.7b)

qk+1 = qk +
∆t

m
pk+2/4 (A.7c)

pk+3/4 = e−
ξ∆t
2 pk+2/4 +

√
kBTm (1− e−ξ∆t) η

(2)
k (A.7d)

pk+1 = pk+3/4 −
∆t

2
∇qV (qk+1) . (A.7e)
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The OBABO/Bussi-Parrinello integrator

pk+1/4 = e−
ξ∆t
2 pk +

√
kBTm (1− e−ξ∆t) η

(1)
k (A.8a)

pk+2/4 = pk+1/4 −
∆t

2
∇qV (qk) (A.8b)

qk+1 = qk +
∆t

m
pk+2/4 (A.8c)

pk+3/4 = pk+2/4 −
∆t

2
∇qV (qk+1) (A.8d)

pk+1 = e−
ξ∆t
2 pk+3/4 +

√
kBTm (1− e−ξ∆t) η

(2)
k (A.8e)

The OABAO integrator

pk+1/3 = e−
ξ∆t
2 pk +

√
kBTm(1− e−ξ∆t) η

(1)
k (A.9a)

qk+1/2 = qk +
∆t

2m
pk+1/3 (A.9b)

pk+2/3 = pk+1/3 −∆t∇qV (qk+1/2) (A.9c)

qk+1 = qk+1/2 +
∆t

2m
pk+2/3 (A.9d)

pk+1 = e−
ξ∆t
2 pk+2/3 +

√
kBTm(1− e−ξ∆t) η

(2)
k (A.9e)
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