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Bilinear Majorana representations for spin operators with spin magnitudes S > 1/2
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We present a classification of bilinear Majorana representations for spin-S operators, based on the real irre-
ducible matrix representations of SU(2). We identify two types of such representations: While the first type can be
straightforwardly mapped onto standard complex fermionic representations of spin-S operators, the second type
realizes spin amplitudes S = s(s + 1)/4 with s ∈ N and can be considered particularly efficient in representing
spins via fermions. We show that for s = 1 and s = 2 this second type reproduces known spin-1/2 and spin-3/2
Majorana representations and we prove that these are the only bilinear Majorana representations that do not
introduce any unphysical spin sectors. While for s > 2, additional unphysical spin spaces are unavoidable they
are less numerous than for more standard complex fermionic representations and carry comparatively small
spin amplitudes. We apply our Majorana representations to exactly solvable small spin clusters and confirm that
their low-energy properties remain unaffected by unphysical spin sectors, making our representations useful for
auxiliary-particle based methods.
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I. INTRODUCTION

The theoretical investigation of quantum spin models has
always constituted a particularly subtle subject in condensed
matter physics, because their purely interacting nature leads
to a lack of small interaction limits. Furthermore, the spin
commutator algebra is more complicated than the correspond-
ing relations for bosonic or fermionic operators. Since the
early days of quantum mechanics, important progress in (ap-
proximately) solving these systems has often been made with
the help of spin representations, where the spin operators are
expressed in terms of auxiliary particles, either of bosonic or
of fermionic type. There are numerous well-established ways
for such rewritings of spin operators, each of which has its
own characteristic range of application where it allows to gain
insights into the physical properties of quantum spin systems.

In a pioneering work by Jordan and Wigner [1], spin S =
1/2 operators are expressed via fermions which is very useful
for 1D spin systems but becomes more complicated in higher
dimensions. On the bosonic side, the Holstein-Primakoff rep-
resentation [2] holds for arbitrary spin magnitudes S and is
usually applied in 2D or higher dimensions where it works
best in the quasiclassical S → ∞ limit. Particularly, it allows
to describe small deviations from a classical magnetically
ordered state via a 1/S expansion giving rise to spin wave
excitations [3,4]. The opposite scenario where a spin sys-
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tem is strongly affected by quantum fluctuations hindering
the formation of long-range magnetic order is known to be
amenable to Abrikosov fermions [5]. This bilinear, fermionic
rewriting of S = 1/2 spin operators (which can also be gen-
eralized to larger S [6–8]) directly incorporates the type of
fractionalization of spinful quasiparticles that is deemed to
be characteristic for quantum spin liquids [9], and, hence,
constitutes the basis for “parton mean-field theories” [10–12].
While the Abrikosov spin representation suffers from the
existence of unphysical subspaces, it is exactly this disad-
vantage that also enables a very insightful description of
quantum spin liquids in terms of emergent gauge theories
[13]. Notably, the Abrikosov representation also provides
the starting point for numerical methods in quantum mag-
netism such as the pseudo fermion functional renormalization
group (PFFRG) [14–26]. The bosonic (and again bilinear)
counterpart of the Abrikosov representation is the Schwinger
boson transformation which may, likewise, be used to explore
quantum spin liquids via an approach called “Schwinger-
boson mean-field theory” [27–29]. Since bosons can undergo
condensation [30–32], this technique describes spin liquid
behavior and long-range magnetic order within the same for-
malism by associating them with gapped and gapless bosonic
excitations, respectively. This, however, comes with the dis-
advantage that only gapped quantum spin liquids can be
accessed.

In recent years, Majorana representations for S = 1/2 spin
operators have gained increasing popularity. The strength
of such Majorana rewritings becomes most apparent when
applying them to the Kitaev honeycomb model where they
enable an exact analytic solution of the system’s spin liquid
ground state [33]. In addition, a Majorana formulation of
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the Kitaev honeycomb model uncovers a very elegant gauge
structure where free fermions couple to a static Z2 gauge field.
Majorana representations have also been extensively used in
generalizations of the honeycomb Kitaev model, particularly,
for other types of three-coordinated lattices [34–40]. Three
variants of Majorana representations for S = 1/2 spin oper-
ators have previously been applied, all being bilinear in the
Majorana operators: Kitaev’s representation, initially used for
the solution of the Kitaev honeycomb model [33], as well as
the so-called SO(3) [41,42] and SO(4) [43] representations,
where the latter is equivalent to the aforementioned complex
fermionic Abrikosov representation [5]. The SO(3) represen-
tation stands out in this list as it only requires three instead
of four Majorana operators and, most remarkably, does not
introduce any unphysical spin states, see Refs. [44–52] for
previous applications. A Majorana representation for S = 3/2
spin operators has also been frequently used [53–65].

This raises the question whether Majorana representations
can be constructed for arbitrarily large spin magnitudes S.
The existence of such representations would indicate that
Majorana fermions are not only useful for the description of
quantum spin liquids at small S but also in the opposite S →
∞ limit where classical spin physics prevails. Our motivation
for investigating this question is partially driven by our efforts
in developing new numerical many-body techniques that are
flexible with respect to the spin magnitude S. Additional in-
sights into spin representations with S > 1/2 are particularly
beneficial in the context of the aforementioned PFFRG and
variants thereof since they fundamentally rely on auxiliary
particle representations for spin operators. It has recently
been demonstrated that these methods allow one to imple-
ment spin-1/2 degrees of freedom via the SO(3) Majorana
representation, yielding an approach called pseudo Majorana
functional renormalization group (PMFRG) [51,52]. Due to
the absence of unphysical states in this representation, the
PMFRG has proven very powerful in describing magnetically
ordered and disordered phases in quantum spin-1/2 systems
[51,52]. Hence, generalizations of Majorana spin representa-
tions for larger S will have a direct use in our ongoing efforts
in developing these methods further.

In this paper, we present a full classification of all pos-
sible bilinear representations of spin operators in terms of
Majorana fermions. Our main result is that Majorana spin
representations exist for arbitrary spin magnitudes S, however,
a particularly appealing class of Majorana representations
occurs for S = s(s + 1)/4 (where s is a positive integer), for
which we provide explicit analytical expressions. Part of this
class are the known Majorana representations for S = 1/2
and S = 3/2, which do not involve any unphysical states.
For larger S, the Majorana fermions generate additional spin
spaces, but far less than for more standard complex fermionic
representations [6–8] and with comparatively small spin am-
plitudes. For example, we identify a spin-3 representation
which only comes along with a rather gentle addition of a
single spin-0 subspace. We further demonstrate that this spin
gap of �S = 3 between the largest realized spin amplitude
S = s(s + 1)/4 and the second largest spin amplitude is char-
acteristic for our Majorana representations. In systems of
interacting spins, the spin gap can be expected to translate
into an energetic difference between the ground states in the

physical and unphysical sectors. We confirm this expectation
for clusters of a few interacting spins, where this energy dif-
ference is indeed found to be a robust property over various
cluster sizes and spin magnitudes. We therefore consider these
Majorana representations useful for future developments of
analytical and numerical approaches for spin systems with
S > 1/2. Given the widespread use of auxiliary particle repre-
sentations for spin operators our findings may also be helpful
beyond the field of quantum magnetism.

The rest of the paper is structured as follows. In the
preparatory Sec. II, we briefly review various known prop-
erties of spin operators and introduce the standard complex
fermionic representations. In Sec. III, we systematically con-
struct and characterize all bilinear Majorana representations
and discuss their relations with complex fermionic repre-
sentations. Section IV focuses more specifically on a few
Majorana representations with the smallest spin magnitudes
and associates them with Majorana representations from pre-
vious literature. This section also briefly discusses possible
approaches for projecting out unwanted spin spaces. Finally,
Sec. V investigates the impact of additional spin spaces on
small interacting spin clusters if such a projection is not per-
formed. The paper ends with a summary and conclusion in
Sec. VI.

II. PREREQUISITES: SPIN OPERATORS AND COMPLEX
FERMIONIC SPIN REPRESENTATIONS

As a preparation for the forthcoming sections, we first
state some general properties of spin operators and introduce
the known complex fermionic spin representations for general
spin magnitudes S � 1/2 [6–8].

A. Properties of spin operators

The fundamental condition, defining a spin operator S =
(Sx, Sy, Sz ) is the spin algebra relation

[Sμ, Sν] = iεμνρSρ, (1)

with μ, ν, σ ∈ {x, y, z}. Furthermore, the spin magnitude s
which can takes values s ∈ {1/2, 1, 3/2, . . .} follows from

S2 = s(s + 1)I2s+1, (2)

where I2s+1 is the identity operator in the 2s + 1-dimensional
spin space. (We note that here, s can also be half-integer
while for our Majorana representations in Sec. III A below
s will be restricted to be integer.) The well known matrix
representations of these spin operators are, up to a factor 1/2,
just the Pauli matrices and their spin s generalizations. We
denote them as Kμ in the following and they are defined as

Kμ
mn = 〈s, m|Sμ|s, n〉, (3)

where |s, m〉 are the eigenvectors of Sz with eigenvalues m ∈
{s, s − 1, ...,−s}. For completeness, we state the explicit ma-
trix forms of Kμ. By definition, Kz is diagonal:

Kz
mn = mδmn. (4)
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Furthermore, Kx and Ky are matrices with finite elements on
the first off-diagonal only, i.e.,

Kx
m,m+1 = Kx

m+1,m = 1

2

√
s(s + 1) − m(m + 1),

Ky
m,m+1 = −Ky

m+1,m = i

2

√
s(s + 1) − m(m + 1), (5)

with m ∈ {−s, s + 1 . . . , s − 1} while all other elements van-
ish.

By construction, the matrices Kμ again fulfill the angular
momentum algebra upon matrix multiplication,

[Kμ, Kν] = iεμνρKρ. (6)

With this property K = (Kx, Ky, Kz ) are 2s + 1-dimensional
generators of a matrix representation of SU(2), whose ele-
ments are given by e−iϕn·K , where ϕ ∈ [0, 2π ) is the rotation
angle and n with |n| = 1 is the rotation axis. Additionally,
the matrix representations of SU(2) following from the Kμ

matrices in Eqs. (4) and (5) are irreducible and (up to unitary
transformations) they are the only irreducible representations
of SU(2) which implies that for each integer dimension d =
2s + 1 there exists exactly one such representation [66].

B. Construction of complex fermionic spin representations

The Majorana representations constructed in the next sec-
tion will have a close relation to the complex fermionic
representations of spin operators, therefore, it is useful to in-
troduce the latter first. The complex fermionic representation
of a spin operator S makes use of 2s + 1 Fermi operators
fm with m ∈ {−s, . . . , s} satisfying the anticommutation re-
lations

{ fm, f †
n } = δmn, { fm, fn} = { f †

m, f †
n } = 0, (7)

and is given by [6–8]

Sμ = f †
mKμ

mn fn. (8)

Here Kμ
mn is the matrix representation of a spin operator with

magnitude s as given in Eq. (3). The fermionic operators and,
hence, Sμ in Eq. (8) act on a 22s+1-dimensional Fock space,
where basis states can be labeled by the occupation numbers
of the fermionic modes m,

Nm = f †
m fm ∈ {0, 1}. (9)

While the spin representation in Eq. (8) fulfills Eq. (1), it
relaxes the condition in Eq. (2) in the sense that it generates
a direct sum of spin degrees of freedom with different mag-
nitudes S forming a set of numbers M(s) where S ∈ M(s).
In other words, S2 calculated from Eq. (8) has a block di-
agonal form, where each block separately satisfies Eq. (2)
with possibly different spin magnitudes S. Note that here and
in the following one needs to strictly distinguish between s
which is a spin quantum number that one can assign to the
matrices Kμ via Eq. (3) and S which are the actual spin
amplitudes generated by the auxiliary particle representation
for spin operators, in the present case Eq. (8). The generation
of multiple spin spaces is a common property of auxiliary
particle representations of spin operators and, hence, we will
allow for this type of relaxation of Eq. (2) throughout this
work.

One way of determining the set of spin quantum numbers
M(s) realized for a given s is to consider the eigenvalues Mz

of Sz from Eq. (8). Since Kz is diagonal [see Eq. (4)] they
easily follow from the occupation numbers Nm,

Mz ∈
{

s∑
m=−s

mNm

}∣∣∣∣∣
{Nm=0,1}

. (10)

Here, the set of quantum numbers Mz is formed by all
combinatorial possibilities of independently choosing the in-
dividual occupation numbers Nm with m ∈ {−s, . . . , s} as 0
or 1. In each 2S + 1-dimensional subspace of the full 22s+1-
dimensional Hilbert space that corresponds to a specific spin
quantum number S, the eigenvalues Mz of Sz are given by
consecutive numbers S, S − 1, . . . ,−S. Hence, to find all real-
ized quantum numbers S ∈ M(s) one needs to identify these
sequences in the set of Eq. (10) in such a way that all numbers
in the set belong to a sequence (for which there is always a
unique solution). For example, for s = 1/2 and 1, one finds
M(1/2) = {1/2, 0, 0} and M(1) = {1, 1, 0, 0}, respectively,
where the first is the standard Abrikosov representation for
spin-1/2 operators [5] which comes along with two extra and
trivial spin-0 subspaces. All these subspaces for spin ampli-
tudes S correspond to a total particle number

Nf =
s∑

m=−s

Nm =
s∑

m=−s

f †
m fm. (11)

For example, subspaces with Nf = 1 and Nf = 2s realize
spins with amplitude S = s [8] while subspaces with Nf = 0
and Nf = 2s + 1 correspond to trivial spin singlets, S = 0.
Note that subspaces with other particle numbers may also
realize multiple different spin spaces S including spaces with
S > s. There exists a variety of methods to single out the
subspace with the desired spin magnitude S by enforcing a
particle number constraint, either approximately [14,16], or
exactly [67,68]. In the case of the spin-1/2 Abrikosov rep-
resentation, an elegant and exact approach is to project out
the spin-0 subspaces with the Popov-Fedotov method [67,68]
which will also be discussed in the context of Majorana rep-
resentations in Secs. IV A and IV C.

As a side remark concerning the notation, in this section it
was convenient to introduce matrices Kμ

mn and vectors of
operators such as fm with an index range m, n ∈ {−s,−s +
1, . . . , s}. For the discussion of Majorana representations in
the following sections it turns out more natural to define
indexed objects in the range m, n ∈ {1, . . . , d}, where d =
2s + 1. As an adaption to this, from now on we will also
use Kμ

mn and fm from this section with a shifted index range
m, n ∈ {1, . . . , d}, i.e., where the same entries appear at in-
dices shifted by s + 1.

III. GENERAL CONSTRUCTION OF BILINEAR
MAJORANA SPIN REPRESENTATIONS

We continue by presenting a systematic and exhaustive
formalism for constructing bilinear Majorana representations
for spin operators, which can be used to describe spins of
magnitudes S � 1/2. To this end, we define d ∈ N Majorana
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operators c1, . . . , cd , which satisfy the following defining re-
lations:

{cm, cn} = 2δmn, (12)

c†
n = cn, (13)

with m, n ∈ {1, . . . , d}. The most general ansatz for a bilinear
Majorana representation of a spin operator S then has the form

Sμ = 1
4 cmK̃μ

mn cn ≡ 1
4CT K̃μ C. (14)

In the rightmost term, we have introduced a shorthand matrix
notation where C = (c1, . . . , cd )T is a d-tuple Majorana op-
erator. Crucially, K̃μ is a skew-symmetric (i.e., K̃μ

mn = −K̃μ
nm)

and Hermitian matrix, which requires all elements to be purely
imaginary. Consequently, diagonal elements vanish, K̃μ

nn = 0.
Enforcing the spin algebra of Eq. (1) one easily finds that

the matrices K̃μ have to fulfill the same type of condition upon
matrix multiplication

[K̃μ, K̃ν] = iεμνρK̃ρ, (15)

implying that K̃ = (K̃x, K̃y, K̃z ), like K in Sec. II B, are
generators of a matrix representation of SU(2) with ele-
ments e−iϕn·K̃ . However, with K̃μ purely imaginary, obviously
these matrix representations are purely real. Consequently,
the bilinear Majorana representations for spin operators are
determined by the real representations of SU(2). While the
complex irreducible representations of SU(2) from Sec. II B
are ubiquitous in physics, the real ones are rarely considered,
but they have been classified mathematically [69]. Up to uni-
tary transformations, there exists exactly one real irreducible
representation of SU(2) for each dimension d that is either odd
or divisible by four, while for dimensions divisible by two but
not by four there only exist reducible representations.

Since (up to unitary transformations) the matrices Kμ in
Eq. (3) already cover all generator matrices of SU(2) the re-
maining task to find K̃μ is to identify a unitary transformation
matrix T which turns Kμ into purely imaginary matrices,

K̃μ = T †KμT . (16)

According to the aforementioned theorem, this way of con-
structing irreducible and imaginary matrices K̃μ only works
if their dimension d is either odd or divisible by four. In
the following section, we start discussing the case of odd d .
As will also be explained below, even though the matrices
Kμ and K̃μ are just related by a unitary transformation, the
corresponding spin representations in Eqs. (8) and (14) realize
different sets of spin spaces M(s).

Generally, one can also consider Majorana spin represen-
tations resulting from reducible matrices K̃μ. Decomposing
these reducible matrices K̃μ into irreducible blocks, each
block itself corresponds to a spin representation which
together form a product space of individual spins. Such repre-
sentations have been employed in previous literature [16,70–
72] and are often very helpful, however, here we do not in-
vestigate this case further since the reducible representations
can be straightforwardly constructed based on the irreducible
ones.

A. Odd-dimensional representations

When d is odd, we can assign an integer spin s = (d −
1)/2 ∈ N to the d × d matrices Kμ and K̃μ via Eq. (3). In the
following, we will describe a general procedure to construct
the unitary transformation matrix T [see Eq. (16)] for arbitrary
s ∈ N. We first write T as a product T = PQ. Here, P is
a permutation, introduced for notational convenience, which
rearranges the diagonal elements of Kz from the consecutive
order s, s − 1, . . . ,−s [see Eq. (4)] to a pairwise and descend-
ing sequence of elements (n,−n) where the single eigenvalue
n = 0 is put at the end,

PT KzP = diag(s,−s, s − 1,−s + 1, . . . , 1,−1, 0). (17)

This way, PT KzP has a 2 × 2 block structure where each
block is proportional to a Pauli spin-1/2 σ z matrix (except
of the last trivial 1 × 1 block). Next, Q is defined as

Q =
[

s⊕
n=1

eiθn

√
2

(−i 1
i 1

)]
⊕ 1. (18)

Applying Q to Eq. (17), to get K̃z = T †KzT , transforms each
σ z block in PT KzP into a block proportional to σ y while the
phase factors eiθn drop out (the trivial 1 × 1 block remains
unaffected). The matrix K̃z then reads as

K̃z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

( 0 is
−is 0

)
. . . ( 0 2i

−2i 0

)
( 0 i
−i 0

)
(0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(19)

Most importantly, with these σ y blocks on the diagonal the
resulting matrix K̃z is purely imaginary, as desired. Indeed,
the block structure of K̃z will turn out very useful below.
The remaining task to also ensure that K̃x and K̃y are purely
imaginary after the transformation with Q is to properly adjust
the phases θn (with n ∈ {1, . . . , s}) which do not drop out in
these two matrices. A simple choice which accomplishes this
is given by θn = (s − n + 1)π/2, however, more possibilities
can be identified but we refrain from discussing them here.

With the knowledge of a matrix T and with Eqs. (14) and
(16) the problem of finding bilinear Majorana representations
of spin operators from odd-dimensional matrices Kμ is for-
mally solved at this point:

Sμ = 1
4CT T †KμTC. (20)

The result is unique up to orthogonal O(d) transformations
of all K̃μ with μ ∈ {x, y, z}. Even though such additional
transformations do not change the physical properties of the
Majorana presentations, it will turn out useful to apply a
subgroup of O(d) transformations leading to a somewhat
more general version Eq. (20). Particularly, we consider an

023067-4



BILINEAR MAJORANA REPRESENTATIONS FOR SPIN … PHYSICAL REVIEW RESEARCH 5, 023067 (2023)

additional rotation R such that Eq. (20) is replaced by

Sμ = 1
4CT RT T †KμT RC, (21)

where R is given by

R =
[

s⊕
n=1

(e−iφnσ
y
)

]
⊕ 1. (22)

The 2 × 2 blocks e−iφnσ
y

in R are real two-dimensional SO(2)
rotation matrices. Since T †KzT consists of σ y blocks, the
additional transformation R does not change Sz in Eq. (21)
compared to Eq. (20) but leads to more general representa-
tions for Sx and Sy where φn ∈ [0, 2π ) are free parameters.
Written out explicitly in terms of Majorana operators, Eq. (21)
takes the following final form:

Sx = − i√
2

(Asc2s−1 + Bsc2s) c2s+1 + i

2

s−1∑
n=1

[An(c2nc2n+1 − c2n−1c2n+2) − Bn(c2n−1c2n+1 + c2nc2n+2)], (23)

Sy = − i√
2

(Bsc2s−1 − Asc2s) c2s+1 + i

2

s−1∑
n=1

[Bn(c2nc2n+1 − c2n−1c2n+2) + An(c2n−1c2n+1 + c2nc2n+2)], (24)

Sz = i

2

s∑
n=1

(s − n + 1) c2n−1c2n, (25)

where

An = 1
2 sin(φn − φn+1)

√
n(2s − n + 1),

Bn = 1
2 cos(φn − φn+1)

√
n(2s − n + 1), (26)

with n ∈ {1, . . . , s} and φs+1 = 0. Note that the square root
expressions in Eq. (26) are the ones from Eq. (5) under the
index shift m = s − n. Choosing the angles φn such that either
the sin or cos terms in Eq. (26) vanish, one obtains Majorana
representations with the minimal number of terms.

From the discussion so far it is clear that our Majorana
representations fulfill the SU(2) spin algebra and are there-
fore proper rewritings of spin operators. However, with an
odd number of Majorana fermions, the many particle Hilbert
space has the formal dimension 2d/2, which is irrational. To
be able to straightforwardly define an action of Sμ on an
integer-dimensional Hilbert space it is convenient to intro-
duce an additional Majorana operator c2s+2. For a lattice spin
system, a physically motivated way of introducing this extra
Majorana fermion is to borrow it from another site which
means that c2s+2 on site i is associated with one of the op-
erators c1, . . . , c2s+1 on site j and vice versa. This way, the
Hilbert space for the pair of sites (i, j) is described by an even
number of Majorana fermions and has the integer dimension
2d . For spin-1/2 Majorana representations this procedure has
previously been applied in Refs. [47,73]. Alternatively, the
extra Majorana operator c2s+2 can just be a “dummy” operator,
which has no further physical meaning (see, e.g., Ref. [46]).
The following discussions include c2s+2 but we leave its origin
unspecified.

We now discuss which spin magnitudes S ∈ M(s) are gen-
erated by the Majorana representation in Eqs. (23)–(25). To
this end, we proceed similarly to Sec. II B, i.e., we consider
the set of eigenvalues Mz of Sz. This set consists of subsets
of consecutive numbers S, S − 1, . . . ,−S, which indicate the
realized magnitudes S. Crucially, we profit from the 2 × 2
block diagonal form of K̃z, which means that Sz decomposes
into fermionic parity terms ic2n−1c2n with n = 1, . . . , s + 1,
see Eq. (25). These operators all commute with each other
and have eigenvalues λn = ±1. The corresponding eigenstates

|λ1, . . . , λs+1〉 with

ic2n−1c2n |λ1, . . . , λs+1〉 = λn |λ1, . . . , λs+1〉, (27)

are a basis in the 2s+1 = 2(d+1)/2-dimensional Hilbert space.
The set of eigenvalues of Mz is then given by

Mz ∈
{

s∑
m=0

m

2
λm

}∣∣∣∣∣
{λm=±1}

. (28)

[Note that this set correctly captures all quantum numbers of
Mz but to lighten the notation we do not adhere to a precise
matching between the contributions from each λm in Eqs. (25)
and (28).] It is instructive to compare this set with the cor-
responding one from a complex fermionic representation in
Eq. (10) for the same value of s. Rewriting the occupation
numbers of complex fermions Nm in terms of a quantum
number λm with eigenvalues ±1 via λm = 2Nm − 1 = ±1,
one finds an analogous expression:

Mz ∈
{

s∑
m=−s

m

2
λm

}∣∣∣∣∣
{λm=±1}

. (29)

Here, only the fact that s can also be half-integer and the range
of the sum differ from Eq. (28). This indicates a more com-
plicated structure of spin subspaces in the complex fermionic
case than in the Majorana case.

Coming back to the set of quantum numbers Mz for Majo-
rana fermions in Eq. (28) the vanishing of the term with m = 0
implies that all eigenvalues of Mz have a degeneracy, which
is a multiple of two. Equivalently, the Hilbert space splits
into two identical copies, which is signalled by the operator
ic2s+1c2s+2 = ±1 not explicitly appearing in Eq. (25). These
two identical subspaces can be distinguished by the eigenval-
ues of the operator

D = (ic1c2)(ic3c4) · · · (ic2s+1c2s+2) = ±1, (30)

which commutes with all spin components in Eqs. (23)–(25),
[Sμ, D] = 0 and which is a generalization of the operator D
known from Kitaev’s Majorana representation for spin-1/2
(see Ref. [33]).
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Setting all eigenvalues λn = +1 the largest realized spin
magnitude Smax in a Majorana representation for a given s is
found to be

Smax = 1

2

s∑
m=1

m = s(s + 1)

4
= d2 − 1

16
, (31)

and, apart from the two copies resulting from D = ±1, there
is no other subspace with this spin magnitude.

Since auxiliary particle representations for spin operators
are primarily meant to realize a single spin subspace, it is an
important question whether there are values s for which no
other subspaces with S < Smax exist. Considering the terms in
Eq. (28),

± 1
2 ± 1 ± 3

2 ± 2 ± . . . , (32)

whenever two different combinations of signs yield the same
contribution there must at least be one additional spin space
with S < Smax. It is easy to see that this first happens when
±3/2 is part of the sum, since then, the same contribu-
tion 1/2 + 1 − 3/2 = −1/2 − 1 + 3/2 = 0 appears for two
different combinations of signs. This already excludes the
existence of a single sequence −S,−S + 1, . . . , S in the set of
Eq. (28) for all s > 2 and additional subspaces are necessarily
generated. It follows that (up to the two redundant sectors
from D = ±1) only the cases s = 1 and 2 realize “pure”
Majorana spin representations with a single spin amplitude,
namely, S = 1/2 and 3/2, respectively, which will be further
discussed in Sec. IV. We list all realized spin spaces of these
Majorana representations and the complex fermionic repre-
sentations for s � 5 in Table II in Appendix which clearly
demonstrates a more complex structure of subspaces in the
complex fermionic case than in the Majorana case.

B. Representations with dimensions d divisible by four

When the dimension d of K̃μ is divisible by four, one
can in principle proceed in the same way as in Eq. (16),
i.e., by starting with the complex d × d matrix Kμ and per-
forming a unitary transformation with a matrix T to yield
a purely imaginary matrix K̃μ. However, as mentioned in
Ref. [69] a simpler method is possible, which starts with
the d/2-dimensional complex matrix Kμ from Eq. (3) and
transforms it to a d-dimensional matrix K̃μ in a procedure
called realification. More precisely, the realification R(H )
of a d/2-dimensional matrix H substitutes each complex
element Hmn = H ′

mn + iH ′′
mn with H ′

mn, H ′′
mn ∈ R by a 2 × 2

matrix according to

R : C
d
2 × d

2 → Rd×d ,

Hmn �→ H ′
mn

(
1 0
0 1

)
+ H ′′

mn

(
0 −1
1 0

)
, (33)

hence doubling its dimension. The desired d-dimensional and
purely imaginary matrices K̃μ which define the Majorana rep-
resentation in Eq. (14) then follow from the d/2-dimensional
complex matrix Kμ via

K̃μ = iR(−iKμ). (34)

Crucially, the procedure of realification preserves the spin
commutation algebra.

However, it is straightforward to see that the d-dimensional
Majorana representations for spin operators constructed this
way are not new. Indeed, they are equivalent to the d/2-
dimensional complex fermionic representations defined in
Eq. (8) when the matrix Kμ in Eq. (8) is the same as the
d/2-dimensional matrix Kμ that is used in Eq. (34). This is
due to the fact that the procedure of realification in Eq. (34) is
identical to the standard mapping between complex fermions
and Majorana fermions via

fn = 1
2 (c2n−1 + ic2n), f †

n = 1
2 (c2n−1 − ic2n), (35)

where n ∈ {1, . . . , d/2} and the fermionic particle num-
ber operator becomes Nn = f †

n fn = (1 + ic2n−1c2n)/2 = (1 +
λn)/2. Particularly, this mapping does not change the gener-
ated spin subspaces S.

As discussed in Sec. II B, the complex d/2-dimensional
fermionic representations that correspond to these d-
dimensional Majorana representations realize a half-odd inte-
ger spin S = (d/2 − 1)/2 in the subspace of single fermionic
occupancy. In the case d = 4 this is the Abrikosov repre-
sentation for spin-1/2 [5] and the associated 4-dimensional
Majorana representation has been coined the SO(4) chiral
representation in Ref. [73].

This concludes the classification of all bilinear Majorana
representations of spin operators, which follow from irre-
ducible spin matrices. While for d mod 4 = 0, as discussed in
this subsection, no new representations are found and hence,
this case will not be considered any further, the case of odd d
from the previous subsection is worth studying in more detail,
which will be done in Sec. IV. Importantly, the representations
from odd d cannot be brought into the complex fermionic
form of Eq. (8) via the mapping in Eq. (35), indicating that
they belong to a separate class of Majorana representations.
Since complex fermionic spin representations never realize a
single spin subspace S, it also follows that spin-1/2 and spin-
3/2 operators are the only ones which allow for a Majorana
rewriting that does not come along with additional spin sub-
spaces (except of a redundancy from the double degeneracy
due to D = ±1, see discussion in Sec. III A).

C. Representations with dimensions d divisible
by two but not by four

It is worth briefly commenting on the case d mod 4 = 2,
even though the sought-after real irreducible matrix repre-
sentations of SU(2) do not exist for such dimensions [69].
However, the realification procedure of d/2-dimensional ma-
trices Kμ via Eq. (34) generates d-dimensional real matrices
K̃μ that fulfill the commutator algebra in Eq. (15). Obviously,
these matrices K̃μ have to be reducible and one, indeed,
finds them to decompose into two identical d/2-dimensional
real irreducible matrices k̃μ, i.e., K̃μ = k̃μ ⊕ k̃μ [69]. Since
d/2 is odd, the d/2-dimensional Majorana representations
that follow when inserting k̃μ into Eq. (14) must already be
covered by the odd-dimensional representations discussed in
Sec. III A. This means that (up to orthogonal transformations)
the Majorana representation from k̃μ is identical to the one
that is obtained from a d/2-dimensional matrix K̃μ via the
transformation procedure described in Eq. (16).

023067-6



BILINEAR MAJORANA REPRESENTATIONS FOR SPIN … PHYSICAL REVIEW RESEARCH 5, 023067 (2023)

This provides an alternative construction of the odd-
dimensional Majorana representations from Sec. III A: One
starts with a complex fermionic representation in Eq. (8),
where Kμ is odd (d/2)-dimensional. This representation is
then rewritten in terms of d Majorana fermions using Eq. (35).
For certain orthogonal transformations of the Majorana vec-
tor C = (c1, . . . , cd )T this representation decomposes into
two identical odd-dimensional representations, each of which
corresponds to those found in Sec. III A. Note that this re-
ducibility into two identical representations only becomes
possible after rewriting the complex fermions as Majorana
fermions via Eq. (35) and cannot be performed through a
unitary transformation of the vector of complex fermions
( f1, . . . , fd/2). The fact that the odd-dimensional complex
fermionic representations in Eq. (8), which realize an inte-
ger spin in the singly occupied fermionic subspace, can be
understood as being composed of two identical Majorana
representations is still indicated by their spectra of realized
spin amplitudes S, see Table II in Appendix. For example, up
to twofold degeneracies, the spin spaces 3 ⊕ 2 ⊕ 1 ⊕ 0 of a
complex fermionic representation with s = 2 can be viewed as
resulting from the S = 3/2 Majorana spin space for the same
value s = 2 when forming the combination 3/2 ⊗ 3/2 = 3 ⊕
2 ⊕ 1 ⊕ 0, and similarly for all other integer values s. Fur-
thermore, subspaces S of complex fermionic representations
with integer s are always doubly degenerate, a property which
is directly inherited from the underlying odd-dimensional
Majorana representations where D = ±1 generates a double
degeneracy.

IV. EXAMPLES FOR EXPLICIT MAJORANA
SPIN REPRESENTATIONS

Having classified all bilinear Majorana spin representa-
tions, we will now study their properties in more detail by
discussing explicit examples with small dimensions d and
associating them with known representations, if possible.
As explained in Sec. III B, the case where the dimension
d = 2s + 1 is divisible by four will not be considered fur-
ther, except of a brief discussion of the SO(4) representation
for spin-1/2 in Sec. IV A. Concretely, in the following
Secs. IV A–IV C, we will focus on the representations in
Eqs. (23)–(25) for s = 1, 2, and 3, respectively, and in
Sec. IV D, we will briefly discuss general properties for ar-
bitrary s ∈ N.

A. Spin-1/2 realized for s = 1

For s = 1 (i.e., d = 3), the construction in Sec. III A pro-
vides a Majorana representation for S = 1/2 spin operators
in terms of three Majorana fermions c1, c2, c3 and possibly a
fourth operator c4 to define a four-dimensional Hilbert space
they act on. Fixing the only leftover parameter φ1 = π/2 in
Eq. (26) and renaming c1 ≡ by, c2 ≡ bx, c3 ≡ bz, c4 ≡ c in
Eqs. (23)–(25), one finds that this is the known SO(3) Majo-
rana representation for spin-1/2 operators [41,42],

Sμ = − i

4
εμνρbνbρ. (36)

Even though this representation is well-known we find it
useful to briefly discuss it here from our perspective and

relate it to other known fermionic spin-1/2 representations,
see also Ref. [73]. As already discussed in Sec. III A, this
representation does not produce any additional spin spaces
with S = 1/2, but comes along with a redundancy in the
form of a two-fold degeneracy. More explicitly, when Sμ from
Eq. (36) is written as a matrix Sμ in the basis

|Sz, D〉 ∈ {|1/2, 1〉, | − 1/2, 1〉, |1/2,−1〉, | − 1/2,−1〉},
(37)

where Sz = −ibxby/2 and D = bxbybzc (see Ref. [33] and
Eq. (30)), one obtains two identical 2 × 2 blocks

Sμ = σμ

2
⊕ σμ

2
, (38)

where σμ are the standard Pauli matrices.
One can now construct Kitaev’s spin-1/2 representation

[33], denoted Sμ
K, by applying D to Eq. (36),

Sμ
K = DSμ = i

2
bμc. (39)

In a matrix representation using the basis from Eq. (37), the
operators Sμ

K have the form

Sμ
K = σμ

2
⊕

(
−σμ

2

)
, (40)

where, compared to Eq. (38), the second 2 × 2 block has
acquired a minus sign for all spin components. The action
of D in the subspace with D = −1 can be interpreted as
time reversal T which transforms a spin S as T : S −→ −S.
Hence, the Kitaev representation is special in the sense that
it yields two copies of spin-1/2 degrees of freedom, where
one copy corresponds to a time reversed spin-1/2 that fulfills
a slightly modified version of the spin algebra in Eq. (1),
i.e., [Sμ, Sν] = −iεμνρSρ . Since in spin lattice models (e.g.,
the Kitaev honeycomb model [33]), mixing between the two
subspaces should be avoided, contributions with D = −1 have
to be projected out, which can formally be achieved with the
projector P = (1 + D)/2.

The spin-1/2 Abrikosov representation and the equivalent
SO(4) Majorana representation [43], labeled Sμ

A, now straight-
forwardly follow via the (normalized) sum of Eqs. (36) and
(39):

Sμ

A = 1
2

(
Sμ + Sμ

K

) = PSμ = PSμP = PSμ
KP. (41)

The last two expressions in Eq. (41) demonstrate that Sμ

A
can be interpreted as a representation where the projection
onto the D = 1 subspace has been carried out on the operator
level, while states with D = −1 are still part of the Hilbert
space. This also manifests in the matrix representation for Sμ

A,
corresponding to the sum of Eqs. (38) and (40),

Sμ

A = σμ

2
⊕ 0 ⊕ 0, (42)

which features a two-dimensional subspace where Sμ

A van-
ishes. In other words, the D = −1 subspace hosts two trivial
S = 0 singlet states.

The precise correspondence between Eq. (41), formulated
in terms of Majorana operators bμ, c, and the usual com-
plex fermionic version of Abrikosov’s representation [see also
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TABLE I. Classification of possible spin representations real-
izing subspaces with (a) spin 1/2, (b) spin 3/2, and (c) spin 3,
together with other spin spaces, as listed. The Majorana represen-
tations correspond to the ones of Eqs. (23)–(25) for a given s while
the Kitaev representations result from the former upon application
of D [see Eq. (30)]. The label “T ” indicates a time-reversed spin
operator. The representations named “complex” refer to the complex
fermionic representations from Eq. (8) where s is chosen such that
it provides spin-1/2, spin-3/2, or spin-3 subspaces, respectively,
in the singly occupied sector with Nf = 1. The complex fermionic
spin-1/2 representation is the Abrikosov representation where the
subspaces correspond to particle numbers Nf = 0, 1, 2 from left to
right. Spin spaces in brackets have the same particle number Nf

(e.g., the two spaces in brackets for the complex fermionic spin-3/2
representation have Nf = 2), and “copies” refers to an exact doubling
of all preceding sectors.

(a) Spin 1/2

Representation Spin spaces

Majorana (s = 1) 1
2 ⊕ 1

2

Kitaev (s = 1) 1
2 ⊕ 1

2

T

Complex (s = 1
2 ) 0 ⊕ 1

2 ⊕ 0

(b) Spin 3/2

Representation Spin spaces

Majorana (s = 2) 3
2 ⊕ 3

2

Kitaev (s = 2) 3
2 ⊕ 3

2

T

Complex (s = 3
2 ) 0 ⊕ 3

2 ⊕ (2 ⊕ 0) ⊕ 3
2 ⊕ 0

(c) Spin 3

Representation Spin spaces

Majorana (s = 3) 3 ⊕ 0 ⊕ copies

Kitaev (s = 3) 3 ⊕ 0 ⊕ copiesT

Complex (s = 3) 0 ⊕ 3 ⊕ (5 ⊕ 3 ⊕ 1) ⊕ (6 ⊕ 4 ⊕ 3 ⊕ 2 ⊕ 0)
⊕ copies

Eq. (8)],

Sμ

A = 1
2 f †

n σμ
nm fm, (43)

with two fermion operators f↑ and f↓, is established by

f↑ = 1
2 (bx − iby), f↓ = 1

2 (−bz + ic), (44)

see also Refs. [43,73,74]. The S = 1/2 subspace with D =
1 is then characterized by a fermionic particle number Nf =
f †
↑ f↑ + f †

↓ f↓ = 1 while the two spin-0 subspaces with D =
−1 correspond to particle numbers Nf = 0 and Nf = 2. The
spin spaces realized for the different spin-1/2 representations
discussed here are summarized in Table I.

This discussion shows that for s = 1 the complex fermionic
representation in Eq. (8) and the Majorana representation in
Eqs. (23)–(25) are simply related via a projection P [see
Eq. (41)] and the transformation in Eq. (44). It should be
emphasized, however, that this type of projective relation
between Eq. (8) and Eqs. (23)–(25) does not hold for larger

s > 1, since PSμ for higher spins is no longer bilinear in the
Majorana fermions. A more general relation between Eq. (8)
and Eqs. (23)–(25) has been discussed in Sec. III C.

An elegant way of projecting out the spin-0 degrees of
freedom in the Abrikosov representation also on the level of
states in the Hilbert space is the Popov-Fedotov approach
[67,68,75]. Since we will discuss a generalization of this
method in Sec. IV C below, we briefly introduce it here. Let
Hf be a general spin-1/2 Hamiltonian for an arbitrary number
of spins (e.g., defined on the sites of a lattice) and arbitrary
spin interactions between them. Furthermore, all spin opera-
tors occurring in Hf are assumed to be expressed in terms of
Abrikosov fermions via Eq. (43). Within the Popov-Fedotov
method Hf is replaced by

Hf −→ H ′
f = Hf + HPF, (45)

where the additional term HPF is given by

HPF = iπ

2β
Nf . (46)

Here, Nf is the total fermion number just for one (arbitrarily
selected) spin. In order to project out the spin-0 subspaces
of all spins, terms HPF also have to be added for the other
spins. However, for our purpose of demonstrating how the
Popov-Fedotov method generally works, it is sufficient here to
consider only a single spin for which the projection is carried
out.

We evaluate the partition function Z = Tr e−βH ′
f for the

considered spin:

Z ∝
⎛
⎝∑

Nf =1

+
∑

Nf =0,2

⎞
⎠e−βE f e− iπ

2 Nf . (47)

Here, the first sum goes over the two spin-1/2 states with
Nf = 1 while the second sum is over the spin-0 subspaces.
Furthermore, E f are the eigenenergies of Hf . In the first sum,
the term e−βHPF only leads to an irrelevant factor i. Crucially,
in the second sum the two spin-0 subspaces with Nf = 0
and Nf = 2 lead to the same contribution from e−βE f . Con-
sequently, the second sum in Eq. (47) can be put in front of
e−βHPF such that the mutual cancellation of the contributions
from the two spin-0 subspaces becomes obvious,∑

Nf =0,2

e
iπ
2 Nf = 1 − 1 = 0, (48)

and the projection is carried out exactly.

B. Spin 3/2 realized for s = 2

We continue discussing the next higher-dimensional Ma-
jorana representation for which s = 2. According to Eq. (31)
and the discussion below Eq. (32) it realizes a “pure” spin-3/2
operator without any subspaces of smaller spin magnitudes.
Due to d = 2s + 1 = 5, the representation is based on five
Majorana operators c1, . . . , c5 and, as before, an extra op-
erator c6 may be introduced to define an eight-dimensional
Hilbert space. Choosing the free parameters in Eq. (26) as
φ1 = 0 and φ2 = −π/2 and renaming the Majorana operators
as c1 ≡ ηz, c2 ≡ θ z, c3 ≡ ηx, c4 ≡ ηy, c5 ≡ θ x, and c6 ≡ θ y,
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Eqs. (23)–(25) reproduce a spin-3/2 representation that has
been used in a number of previous works [53–65],

Sx = i

2
[ηyηz − ηx(θ z −

√
3θ x )],

Sy = i

2
[ηzηx − ηy(θ z +

√
3θ x )], (49)

Sz = i

2
(ηxηy + 2ηzθ z ),

where it often appears in the context of spin-orbit coupled
[53,55–62] and SU(4) symmetric [53,59] models. In contrast,
here we identify the same spin-3/2 representation only on the
basis of the spins’ symmetry group SU(2).

The eigenvalues ±1 of the operator D in Eq. (30) dis-
tinguish between two identical spin-3/2 subspaces of the
eight-dimensional Hilbert space. In analogy to Eq. (39) one
can formulate a “Kitaev-type” spin-3/2 representation as
Sμ

K = DSμ, where the D = −1 subspace hosts a time-reversed
spin-3/2. However, this representation is no longer bilinear in
the Majorana fermions, which holds true for all s > 1. One
can also construct a Majorana spin-3/2 representation in the
subspace with D = 1 by applying the operator D to only parts
of the terms in Eq. (49) as has been done in Ref. [63], yielding
a combination of bilinear and quartic terms. Table I lists the
realized spin spaces for Majorana and complex fermionic
representations [see Eq. (8)] for S = 3/2. Particularly, the
complex fermionic representation that realizes a spin S =
3/2 in the singly occupied Nf = 1 subspace (which requires
s = 3/2) is significantly more complicated than the Majorana
representations and also contains subspaces with S > 3/2,
demonstrating an advantage of Majorana representations.

C. Spin 3 realized for s = 3

Setting s = 3 (i.e., d = 7) in Eqs. (23)–(25), one obtains
the lowest-dimensional Majorana representation that realizes
subspaces with different spin amplitudes S. Listing all the
magnetic quantum numbers according to Eq. (28) one easily
identifies a S = 3 and a S = 0 subspace, both doubly degen-
erate, which altogether form a 16-dimensional Hilbert space.
For completeness, we provide here an explicit representation
for φ1 = φ2 = φ3 = 0 [see Eq. (26)] in terms of seven Majo-
rana operators c1, . . . , c7,

Sx = − i

2

[√
3

2
(c1c3 + c2c4)+

√
5

2
(c3c5 + c4c6)+

√
6c6c7

]
,

Sy = − i

2

[√
3

2
(c1c4 − c2c3)+

√
5

2
(c3c6 − c4c5)+

√
6c5c7

]
,

Sz = i

2
(3c1c2 + 2c3c4 + c5c6). (50)

As before, one may introduce an additional Majorana oper-
ator c8 to define the fermion parity operator D = c1c2 · · · c8,
as already shown in Eq. (30). Then DSμ yields a nonbilin-
ear Kitaev-type representation where one of the two S = 3
subspaces is subject to time-reversal. An intricate and again
nonbilinear representation is obtained by (1 + D)Sμ/2 which,
apart from one S = 3 subspace exhibits nine trivial S = 0

singlet subspaces. Table I summarizes possible realizations of
S = 3 spin representations.

The Majorana spin representation in Eq. (50) is an instruc-
tive example to discuss possible methods for projecting out
unwanted spin subspaces (in this case, two S = 0 spaces) and
to highlight difficulties that arise when trying to do so. Par-
ticularly, we consider a generalization of the Popov-Fedotov
method which has been discussed in the context of the spin-
1/2 Abrikosov representation in Sec. IV A.

A first difficulty arises because, unlike for the Abrikosov
representation, where the particle number Nf is used to dis-
tinguish between the different spin spaces, for Majorana spin
representations no bilinear Majorana operator exists whose
eigenvalues characterize the individual spin spaces. This is
because, if such an operator G of the general form

G = cmgmncn (51)

existed (where g is an imaginary, skew-symmetric d × d ma-
trix), it would have to commute with all spin components Sμ

in Majorana representation, [Sμ, G] = 0. This implies that the
matrix gmn would have to commute with K̃μ

mn [see Eq. (14)]
upon matrix multiplication, [K̃μ, g] = 0. Since K̃μ are irre-
ducible matrix representations for the generators of SU(2)
the only matrix which commutes with all components of K̃μ

is the Casimir matrix (K̃x )2 + (K̃y)2 + (K̃z )2 = s(s + 1)I2s+1.
This means that g must be proportional to the identity matrix
(which is also a consequence of Schur’s lemma) in which
case Eq. (51) becomes a trivial constant, proving our claim
that eigenvalues of operators that are bilinear in Majorana
fermions cannot distinguish between different spin spaces.
Note that this is in contrast to complex fermions where the
identity matrix δmn in the bilinear expression f †

mδmn fn still
yields a nontrivial operator, namely the total fermion number.

This discussion shows that more complicated operators
beyond bilinear ones are required to formulate a generaliza-
tion of the Popov-Fedotov method for the present s = 3 case.
One possible set of operators to distinguish between the spin
spaces 3 ⊕ 3 ⊕ 0 ⊕ 0 for s = 3 is given by D [see Eq. (30)]
and S2 which assume eigenvalues

(S2, D) = (12, 1), (12,−1), (0, 1), (0,−1) (52)

in these spaces, respectively. Note that S2 contains terms quar-
tic in the Majorana fermions.

Based on the operators S2 and D a Popov-Fedotov-like
projection scheme can be formulated, e.g., by choosing HPF

[see Eq. (45)] as

HPF = iπ

24β
(S2 − 12)D. (53)

An analogous expression for the partition function Z =
Tr e−β(Hf +HPF ) as in Eq. (47) yields

Z ∝
( ∑

S2=12,D=±1

+
∑

S2=0,D=±1

)
e−βE f e

iπ
24 (12−S2 )D, (54)

where the first (second) sum goes over all S = 3 (S = 0)
states. In the first sum, the term e−βHPF always yields the
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identity, however, in the second sum,

∝
∑

D=±1

e
iπ
2 D = i − i = 0, (55)

the desired mutual cancellation of contributions from the two
S = 0 subspaces takes place such that only contributions from
the S = 3 spin spaces remain.

While this demonstrates the general existence of a
Popov-Fedotov-like scheme for Majorana spin representa-
tions (which can also be extended to representations with s >

3) it also shows that such projection methods will likely not be
useful for actual calculations since HPF contains complicated
combinations of operators with products involving four to
eight Majorana fermions. On the positive side, however, if one
aims to implement spin-3 operators through the representation
in Eq. (50), the extra spin-0 states can be considered the
mildest possible addition of “unphysical” states. Furthermore,
because of the considerable difference in spin magnitude of
the two subspaces, which can be expected to also translate
into an energetic difference, one might wonder how much
impact the additional spin sectors actually have on the low-
energy physics of a spin system. This question will be further
discussed in Sec. V.

D. Majorana spin representations with s > 3

While for Majorana spin representations with s > 3, the
number of additional subspaces with S < Smax quickly in-
creases, occupying large parts of the Hilbert space, it is
interesting to observe that the second largest realized spin
magnitude is always S = Smax − 3 (as has already been found
in the previous Sec. IV C for the special case s = 3). This
can be seen from the set of generated magnetic quantum
numbers Mz in Eq. (28) where–apart from the double degen-
eracy from λ0 = ±1–there is a unique combinatorial choice
of eigenvalues λm = ±1 with m ∈ {1, . . . , s} which yields the
values Mz = Smax, Mz = Smax − 1, and Mz = Smax − 2 (note
that, to obtain Mz = Smax all eigenvalues must be λm = +1).
However, the value Mz = Smax − 3 can be obtained with two
different sign combinations, namely

Smax − 3 = − 1
2 − 1 + 3

2 + 2 + · · · (56)

= + 1
2 + 1 − 3

2 + 2 + · · · , (57)

which means that another spin space with S = Smax − 3 must
exist. This difference of three units of angular momentum
between the largest and second largest spin magnitude can be
considered advantageous compared to complex fermionic rep-
resentations where, e.g., for s = 3/2 (s = 2) this difference is
only one half (one) unit of angular momentum, see Appendix.
Continuing the above argument for further spin subspaces
realized by our Majorana representations, one finds that for
s > 4, the spin space with the third largest spin amplitude has
S = Smax − 5.

V. INFLUENCE OF ADDITIONAL SPIN SECTORS

In this section, we apply our Majorana spin representations
from Eqs. (23)–(25) to small clusters of interacting spins
that can be diagonalized exactly. We, intentionally, do not
apply any projection scheme on the states to be able to asses

the impact of different spin sectors on the energy spectrum.
We do neglect the identical copy of each spin spectrum (see
Table I) though, as it always appears in the Majorana repre-
sentation and leads to an increasing redundancy in larger spin
clusters. More specifically, we consider Majorana represen-
tations for s = 3, 4, 5 which realize the spin amplitudes S =
3, 5, and 15/2 in the largest spin sector, respectively, [see
Eq. (31)]. In the following, we define this sector as the “phys-
ical” one. Our clusters of equal spins consist of two spins
(dimer), three spins (trimer), and four spins (tetramer) which
interact via antiferromagnetic (Ji j > 0) Heisenberg couplings

H =
∑
i> j

Ji jSiS j . (58)

As illustrated in the top part of Fig. 1, the interactions Ji j are
all equal for the trimer (Ji j ≡ J), while for the tetramer we
consider two cases, where the diagonal couplings J ′ either
vanish (J ′ = 0) or where the diagonal and nearest neighbor
couplings J are in the ratio of J ′/J = 0.6. These clusters
represent typical building blocks of frustrated spin systems
such as kagome, J1−J2 square, and pyrochlore lattices.

For all considered clusters and spin amplitudes the ground
states and a few low-energy states are found to reside in
the physical sector (see gray states in Fig. 1). The lowest
unphysical state (i.e., lowest red state) is separated from
the ground state by an energy difference �E which, on
average over all clusters and spin amplitudes, is approxi-
mately given by ≈6J per site, however, this number varies
considerably between the different systems. We also find a
robust energy difference between the highest physical and
unphysical states at the upper end of the spectrum, indicating
that the same conclusions also hold in the case of ferro-
magnetic couplings. Furthermore, for the tetramer with the
largest considered spin S = 15/2 the histograms in Fig. 1
illustrate how quickly the spectrum is populated with unphys-
ical states. This is because a single spin in an unphysical
sector is already sufficient to characterize the full spin state as
unphysical.

It is interesting to compare these findings with correspond-
ing results from the complex fermionic representations in
Eq. (8). For example, in contrast to the trimer spectra in Fig. 1,
the spin-1/2 trimer in Abrikosov representation has degener-
ate ground states in the physical and unphysical sectors, as
has recently been discussed in Ref. [26]. Since the Majorana
representation with s = 3 and the complex fermionic repre-
sentation with s = 2 both realize a spin S = 3 in the largest
spin sector, this case is particularly suited for a direct compar-
ison between the two representations, see the red and green
histograms in the two panels for S = 3 in Fig. 1. The spectra
for the complex fermionic representation in green exhibit a
larger number of unphysical states and show a significantly
reduced energy difference �E between the lowest states in
the physical and unphysical sectors. Both observations are
a direct consequence of the more complicated structure of
spin spaces in the complex fermionic representation and the
smaller difference in spin amplitudes between physical and
unphysical sectors which is only �S = 1 in this case. These
results demonstrate that the rather large value �S = 3 for the
Majorana representations yields a clear advantage in separat-
ing physical and unphysical states at low energies. Whether
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FIG. 1. Histograms for the numbers of degenerate states for the spin dimer, trimer, and tetramer, which are illustrated in the top panel
(where the tetramer is considered for J ′ = 0 and J ′/J = 0.6). In the four main panels, the spin amplitudes are given by S = 3, 5, and 15/2.
Gray states correspond to the physical states obtained with exact spin operators. The red states are additional unphysical states from extra spin
sectors, which result from our Majorana spin representations with s = 3, 4, and 5, respectively. The green states are additional unphysical
states with S < 3 occurring for a complex fermionic representation with s = 2. Note that the histograms show the spin states ordered by
their energy, however, the horizontral axes are not linear in energy. The energy difference �E between the ground states in the physical and
unphysical sectors are indicated in each plot or in the insets showing magnified versions of the low-energy regimes. The energies of some
selected states are explicitly given.

these properties also remain for larger spin systems, however,
cannot be extrapolated based on the current results.

Finally, we discuss how the unphysical states in these spin
clusters affect thermodynamic quantities, such as the heat
capacity C(T ) = ∂〈E〉/∂T and the magnetic susceptibility
χ (T ) = ∂〈m〉/∂h|h→0 in the limit of small external fields h,

where 〈m〉 is the thermal average over the magnetization. The
results we show in Figs. 2 and 3 as functions of temperature
T for the same clusters (dimer, trimer and tetramer) and spin
amplitudes (S = 3, 5, and 152) as in Fig. 1. Comparing the
heat capacities computed for exact spin operators (i.e., without
any unphysical states) and with the Majorana representations
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FIG. 2. The heat capacity C(T ) as a function of temperature T for the spin clusters dimer, trimer, and tetramer for spins S = 3, 5, and 15/2.
The temperature is given in units of the nearest neighbor coupling constant J . For the tetramer, we consider the two cases, where the interaction
J ′ between second nearest neighbors is either zero or J ′/J = 0.6. Black, dashed graphs illustrate the heat capacity computed from physical
states only. Graphs shown in red (green) are calculated by taking into account the additional states from the Majorana (complex fermionic)
representation. The insets show the heat capacity at low temperatures.

shows that in all considered cases, the unphysical states have a
negligible impact on C(T ) at least up to temperatures T ≈ J .
For the tetramer and the largest considered spin amplitudes the
temperature region where the Majorana representations yield
accurate results ranges up to even larger temperatures T ≈
2J . . . 6J . On the other hand, for the trimer, the heat capac-
ities from exact spins and Majorana representations already
deviate at comparatively smaller temperatures. Furthermore,
in accordance with the observations in Fig. 1, the heat capac-
ities for spin-3 clusters in complex fermionic representation
start differing from the exact results already significantly be-
low T = J . The magnetic susceptibility in Fig. 3 shows a
qualitatively similar behavior. In the ground state and first
few excited states, the partition function and hence the ther-
modynamic quantities are not influenced by the presence of

unphysical states, as they are not thermally activated. The
Majorana representation for S = 3 yields accurate results up
to slightly higher temperatures than the complex fermionic
representation. In all the presented cases the susceptibilities
show even smaller deviations from the exact results, than the
heat capacities.

VI. SUMMARY AND CONCLUSION

In summary, we have shown that bilinear Majorana repre-
sentations of spin operators can be constructed systematically
from the real irreducible matrix representations of SU(2). We
presented two methods to derive these matrix representations
from the higher spin (s > 1/2) Pauli matrices. One approach
was based on their realification which resulted in Majorana
representations that are equivalent to the known complex

023067-12



BILINEAR MAJORANA REPRESENTATIONS FOR SPIN … PHYSICAL REVIEW RESEARCH 5, 023067 (2023)

FIG. 3. Zero field susceptibilities χ (T ) in units 1/J as a function of temperature T in units of the nearest neighbor exchange coupling J are
shown for the dimer, trimer, and tetramer in the Heisenberg model with spins S = 3, 5, and 15/2. For the tetramer we consider the two cases,
where the second nearest neighbor interaction J ′ is either zero or J ′/J = 0.6. Black, dashed graphs illustrate the susceptibility computed from
physical states only. In red (green), we show results, which are calculated from the respective Majorana (complex fermionic) representations.
Insets show an enlarged version of the same results at low temperatures.

fermionic spin representations [8]. The other method made
use of the direct unitary transformation of odd-dimensional
Pauli matrices which uncovered a family of bilinear Majo-
rana representations for spin operators with S = s(s + 1)/4,

where s ∈ N. We derived closed analytical expressions for
the latter ones, which reproduce the known SO(3) Majorana
representation for spin-1/2 [41,42] as well as a spin-3/2 Ma-
jorana representation [54]. While these two representations
do not introduce any additional spin spaces (apart from a
two-fold redundancy) this is no longer the case for larger
spin amplitudes S > 3/2. We explained that these additional
spin spaces cannot be easily projected out because no bilinear
Majorana operator can distinguish them. As a consequence,
the application of an extension of the Popov-Fedotov projec-
tion scheme is significantly more complicated. On the other

hand, however, the intermixing of different spin spaces is less
severe compared to complex fermionic representations. For
example, the largest and second largest spin amplitudes are
well separated by a difference of �S = 3. These advantages
are particularly obvious for our spin-3 Majorana representa-
tion where, for a single spin, the dimensions of physical and
unphysical spin spaces are in a ratio of 7 : 1. Even though
this ratio quickly decreases as more spins are added, our pre-
liminary results for small spin clusters nevertheless indicate
that the low-energy properties are not effected by unphysical
states. Whether this property holds true for larger clusters
or even in the thermodynamic limit of a spin model can,
however, not be decided based on the current results. A spin-3
degree of freedom may already be considered as well suited
to approximate the classical large spin limit.
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TABLE II. Spin spaces, generated by the Majorana representations in Eqs. (23)–(25) and the complex fermionic representations in Eq. (8)
for different values of s. Exponents denote the degeneracy of the respective spin space. Note that the Majorana representations considered here
only exist for integer s, i.e., odd d = 2s + 1.

s Repn Generated spin spaces

1/2 Complex 1
2 ⊕ 02

Majorana 1
2 ⊕ copies

1
Complex 1 ⊕ 0 ⊕ copies

3/2 Complex 03 ⊕ 3
2

2 ⊕ 2

Majorana 3
2 ⊕ copies

2
Complex 3 ⊕ 2 ⊕ 1 ⊕ 0 ⊕ copies

5/2 Complex 9
2 ⊕ 42 ⊕ 5

2
3 ⊕ 22 ⊕ 3

2 ⊕ 04

Majorana 3 ⊕ 0 ⊕ copies
3

Complex 6 ⊕ 5 ⊕ 4 ⊕ 33 ⊕ 2 ⊕ 1 ⊕ 02 ⊕ copies

7/2 Complex 8 ⊕ 15
2

2 ⊕ 63 ⊕ 11
2

2 ⊕ 5 ⊕ 9
2

2 ⊕ 44 ⊕ 7
2

4 ⊕ 5
2

2 ⊕ 24 ⊕ 3
2

2 ⊕ 05

Majorana 5 ⊕ 2 ⊕ copies
4

Complex 10 ⊕ 9 ⊕ 8 ⊕ 73 ⊕ 62 ⊕ 53 ⊕ 44 ⊕ 34 ⊕ 22 ⊕ 12 ⊕ 02 ⊕ copies

9/2 Complex 25
2 ⊕ 122 ⊕ 21

2
3 ⊕ 102 ⊕ 19

2 ⊕ 92 ⊕ 17
2

4 ⊕ 86 ⊕ 15
2

4 ⊕ 72 ⊕ 13
2

4 ⊕ 68 ⊕ 11
2

4 ⊕ 52 ⊕ 9
2

9 ⊕ 48 ⊕ 7
2

4 ⊕ 32 ⊕ 5
2

4 ⊕ 26 ⊕ 3
2

3 ⊕ 1
2 ⊕ 08

Majorana 15
2 ⊕ 9

2 ⊕ 5
2 ⊕ copies

5
Complex 15 ⊕ 14 ⊕ 13 ⊕ 123 ⊕ 113 ⊕ 105 ⊕ 96 ⊕ 86 ⊕ 78 ⊕ 68 ⊕ 59 ⊕ 47 ⊕ 37 ⊕ 25 ⊕ 13 ⊕ 03 ⊕ copies

Applying these representations within the PMFRG-type
approaches mentioned at the beginning of this work, will open
up interesting perspectives of numerically exploring exotic
spin phases at large S. One particularly appealing class of
systems are those realizing a classical spin liquid in the limit
S → ∞ and which defy a simple semiclassical description at
large but finite S. This concerns systems with flat magnetic
bands where the inclusion of seemingly small effects of quan-
tum fluctuations can have a significant impact on the ground
states, possibly inducing a macroscopic superposition of for-
merly degenerate states. An example is the nearest neighbor
Heisenberg model on the pyrochlore lattice, for which the
magnetic behavior at large S is still not resolved [76]. Another
class of flat band systems where the controlled inclusion of
quantum fluctuation at large S may yield new insights into
spin liquids are those realizing effective higher-rank gauge
constraints, see, e.g., Refs. [77,78] and which have an interest-
ing connection to fracton quasiparticles. Taken together, there
is a growing number of spin systems that behave highly non-

trivial even at large S and our Majorana spin representations
in combination with newly developed numerical approaches
may help to decipher their magnetic properties.
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APPENDIX: GENERATED SPIN SPACES FOR MAJORANA
AND COMPLEX FERMIONIC SPIN REPRESENTATIONS

In Table II, we list the spin spaces generated in our Majo-
rana representations [see Eqs. (23)–(25)] and in the complex
fermionic representations [see Eq. (8)] for all values s � 5.
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