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Abstract

String-localized quantum field theory allows renormalizable couplings involving massive vector bosons, 
without invoking negative-norm states and compensating ghosts. We analyze the most general coupling of a 
massive vector boson to a scalar field, and find that the scalar field necessarily comes with a quartic potential 
which has the precise shape of the shifted Higgs potential. In other words: the shape of the Higgs potential 
has not to be assumed, but arises as a consistency condition among fundamental principles of QFT: Hilbert 
space, causality, and covariance. The consistency can be achieved by relaxing the localization properties of 
auxiliary quantities, including interacting charged fields, while observable fields and the S-matrix are not 
affected. This is an instance of the “L-V formalism” – a novel model-independent scheme that can be used 
as a tool to “renormalize the non-renormalizable” by adding a total derivative to the interaction.
© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

1. Introduction

The present study is part of a long-term program [20,26,30,31] whose aim is to build renor-
malizable perturbation theory for the Standard Model on quantum principles (notably Hilbert 
space and causality), and detach it from formal quantization based on classical field theories 
which requires to sacrifice the Hilbert space as soon as the spin or helicity exceeds 1

2 . Well-
established quantitative predictions are unaltered, but the theoretical reasoning changes from 
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recipes to principles. The latter are powerful enough to determine the structure of interactions 
without invoking classical gauge symmetry [17,19]. The program also includes the construction 
of “off-shell” interacting quantum fields. This is a great advantage over the BRST method: Re-
call that the BRST variation of interacting charged fields is non-zero (typically a ghost-valued 
gauge transformation). Such fields are therefore not defined on the positive quotient Hilbert space 
[6,22]. In contrast, with the new method, all interacting fields are defined on the same Hilbert 
space. The charged ones, however, will have a weaker localization due to the interaction. The 
interaction thus “selects” the observables of the theory, namely those interacting fields which 
remain well localized as required by causality.

The weaker localization properties of “off-shell” (i.e., beyond the S-matrix) charged fields 
already allowed to re-address and solve salient infrared problems of QED [24,25], including the 
well-known conflict between locality and the Gauss Law [12], and the infrared superselection 
structure [13]. We expect that it may also shed new light on confinement in QCD.

The focus in the present paper is on massive vector bosons. Massive vector bosons play a 
central role in the Standard Model, exhibiting self-couplings and minimal couplings to fermions. 
The immediate problem with these couplings is that the free massive vector field on a Hilbert 
space (the Proca field with spin 1) has more singular correlation functions than scalar fields. Its 
“short-distance dimension 2” means that the field causes stronger ultraviolet vacuum polariza-
tions, which in turn makes ultraviolet divergences in loop diagrams stronger than with scalar 
fields. In technical parlance: the interaction density coupling the massive vector bosons to itself 
and to Fermi fields (the weak interaction) is power-counting non-renormalizable.

It has become common practice to make the interaction renormalizable by using vector po-
tentials on a Krein space, which means that one admits states of negative norm square. In order 
to get rid of the latter, one needs gauge invariance. Gauge invariance not only requires indefi-
nite metric, it also does not permit a mass term. The Higgs mechanism is invoked to make the 
massless gauge bosons behave “as if” they were massive particles [27,32,34].

The construction to be presented here is an alternative way to secure renormalizability that 
goes without states of negative norm square, ghosts, and spontaneously broken gauge symmetry. 
The same effect of taming the vacuum polarizations can be achieved by “allowing more room in 
space”. This means, one replaces the Proca fields in the interaction by fields that are localized on 
“strings” (rays extending to infinity), see Sect. 2.1. They live on the Hilbert space of the massive 
Proca fields, but have a better UV behaviour. We show that they can have self-interactions only 
in the presence of a scalar field, and the perturbative renormalizability of such couplings requires 
the scalar field to have a potential in the familiar shape of the shifted Higgs potential

V (H) = m2
H

2

(
H 2 + g

m
H 3 + g2

4m2 H 4) = g2m2
H

8m2 H 2(H + 2m

g

)2 (1.1)

with its two degenerate minima.
String-localized quantum field theory (SQFT) offers a variety of tools to prevent that an inter-

action involving string-localized fields makes the entire theory non-local. These tools implement 
what is called the “Principle of String Independence” (PSI). The first purpose of this article is to 
elaborate the more general “L-V formalism”, of which the PSI is a prominent instance. We then 
apply it to the Abelian Higgs Model with only one massive vector boson. One realizes in first 
order of perturbation theory, that the vector boson of mass m must have a unique cubic coupling 
to a scalar field called H of (arbitrary) mass mH , which in turn may have a cubic self-coupling 
H 3. In second order, the PSI admits a quartic self-coupling H 4. In third order, the PSI uniquely 
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fixes the cubic and quartic coefficients. Together with the mass term, the outcome is (1.1), which 
is the “shifted” version of the symmetric Higgs potential

V (�) = κ
(
�∗� − v2

2

)2
. (1.2)

(1.2) is usually invoked to trigger the Higgs mechanism, where the complex scalar field �
is minimally coupled to a massless gauge field. The symmetry of (1.2) is assumed to be bro-
ken spontaneously, and the resulting vacuum expectation value of the complex field makes the 
massless gauge bosons behave as if they were massive particles. The physical real Higgs field H
describes the fluctuations of the complex field around its vacuum expectation value. Expressed 
in terms of H , (1.2) becomes (1.1) with m = gv and m2

H = 2κv2.
To emphasize that (1.1) arises as a prediction of SQFT, rather than an input to define the 

model, is the second main purpose of our article. It retrospectively justifies the name “Higgs 
field” for the scalar field H . But the mass of the vector boson is not generated by spontaneous 
symmetry breaking. It is there from the start.

Popular as it is (and successful as far as the S-matrix is concerned), we think that the Higgs 
mechanism suffers from conceptual weaknesses: To which extent can the degenerate classical 
minima be regarded as different ground states of a quantum algebra (which would justify the 
term “spontaneous symmetry breaking”)? The very (perturbative) construction of such an algebra 
already picks one of the classical minima to expand around.1 Moreover, the algebra cannot be 
constructed on a Hilbert space. The latter has to be recovered with the help of compensating ghost 
fields and the principle of BRST invariance. The interacting Higgs and other fields of interest are 
not BRST invariant and hence are not defined on the BRST Hilbert space.

These detriments can be avoided with SQFT, without compromising on the fundamental prin-
ciples of quantum theory. Remarkably, the outcome of the SQFT approach to the Abelian Higgs 
Model is equivalent to the input of the Higgs mechanism: the presence of a neutral Higgs particle 
with the potential (1.1) with its two degenerate minima. Gauge symmetry is not assumed in the 
SQFT approach (and not spontaneously broken).

The Abelian Higgs Model was previously treated in [18] and [7, Sect. 5.1], see also [29, 
Chap. 4.1], in the causal BRST setting, in order to equally emphasize the latter fact: that gauge 
symmetry needs not to be assumed. In their setting, the shape of the Higgs potential was inferred 
from the consistency of the BRST method in higher orders of perturbation theory. Parts of our 
analysis are in fact quite similar to theirs, with the PSI in the place of BRST invariance. But SQFT 
goes a step further by working in a Hilbert space and with only physical degrees of freedom from 
the outset.

As said before, this is made possible by admitting the vector potential for the massive particle 
to be string-localized (see Sect. 2.1). One can then write down a renormalizable interaction den-
sity and establish that the resulting theory is equivalent (in a sense to be explained in Sect. 2.3) to 
the theory with the non-renormalizable interaction density. We shall show this for the coupling 
to the Higgs field in Sect. 3, and point out that the coupling to Dirac fields can be added without 
difficulties, see Sect. 3.5.

The Abelian Higgs Model is only a toy model for the weak interaction. The actual weak 
interaction (with four vector bosons, electrons and neutrinos, and Higgs with their experimentally 
given masses) was treated without Higgs mechanism in the BRST setting [1,2,10,29], and in 

1 The Feynman rules that give the vector boson mass derive from the “shifted” Lagrangian.
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SQFT [17,19]. In these papers, it was found by way of necessary consistency conditions, that the 
coefficients of cubic self-interaction among several vector bosons must be the structure constants 
of a Lie algebra of compact type, and in the same way the quartic self-couplings are found. 
Moreover, the coupling of the massive vector bosons to the electrons (neutrinos) must be chiral 
(completely chiral), and Yukawa couplings of the Higgs can only involve scalar Fermi currents.

The decisive mechanism in the BRST setting (in [1,2,10,18,29]) is the consistency of BRST 
invariance of the S-matrix in higher orders of perturbation theory, as the necessary tool to recover 
Hilbert space positivity, while locality is manifest. The decisive mechanism in SQFT (in [17,19]
and the present paper) is the consistent implementation of the PSI in higher orders of perturbation 
theory, as the necessary tool to control locality, while positivity is manifest. Neither uses gauge 
symmetry. The universality of results (Yang-Mills type of self-couplings, chirality of couplings 
to Fermi currents, and the shape of the Higgs potential) in several variants of BRST and SQFT 
(see Sect. 4) rather signals an intrinsic consistency between the fundamental principles of Hilbert 
space positivity and locality, which shows up in many different guises.

Plan of the paper. In Sect. 2, we briefly recall the definition and properties of string-localized 
quantum fields and the idea how to use them to improve the renormalizability of perturbative 
quantum field theories that are power-counting non-renormalizable. The S-matrix and interacting 
quantum fields are constructed perturbatively along the lines of “causal perturbation theory” 
[6,11], which best permits to control the locality of interacting fields.

We then formulate (in a model-independent way) the PSI to ensure that the resulting theory 
does not depend on the auxiliary string variables, and develop in quite some detail the recursive 
scheme that generically induces higher order interaction terms. This “induction” mechanism is 
what in the model of our interest eventually produces the potential (1.1).

There are actually two variants of the PSI, referred to as “L-V ” and “L-Q” formalism, re-
spectively (Sect. 2.3). While SQFT deploys its full power in the former, the latter is much easier, 
and therefore best suited to familiarize oneself with the calculus (cancellation of “obstructions”). 
For this reason, we shall in the application to the model (Sect. 3.3) present the L-Q computa-
tions in more detail, mostly referring for the L-V variant to “straightforward computations” in 
Sect. 3.4. It is worth mentioning that the L-V formalism is also useful outside SQFT, whenever 
one wants to assess the effect of total derivatives in the interaction, see Sect. 2.2, and Sect. 4.5
for an example.

The core section is Sect. 3. We apply the method to the Abelian Higgs Model, whose only 
input is its free field content: a string-localized massive vector field (constructed from the Proca 
field), and a canonical scalar field (and no ghosts or Stückelberg fields). The PSI in first order 
determines a unique cubic coupling among these fields plus a cubic self-coupling of the scalar 
field with an undetermined coefficient. In second order, a quartic self-coupling is induced, and 
string independence in third order fixes the cubic and quartic coefficients. The outcome is the 
Higgs potential. We conclude Sect. 3 with a discussion of interacting fields and local observables 
in SQFT in general, and in the Abelian Higgs model in particular.

In Sect. 4, we contrast the L-Q and L-V variants of the string-localized approach on the 
physical Hilbert space with various alternative approaches, beginning with the standard spon-
taneous symmetry breaking (Sect. 4.1). They also include the BRST approach with ghost and 
Stückelberg fields (Sect. 4.2) and a point-localized approach without auxiliary fields in Krein 
space (Sect. 4.5). In both of them, the restoration of Hilbert space positivity is the principle that 
fixes higher orders of the interaction. The latter, however, turns out to be inconsistent in third 
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order. We also present another string-localized ghost-free approach on the Krein space. All these 
alternative approaches need unphysical field degrees of freedom.

While the main result of Sect. 3 was the equivalence between a renormalizable string-
dependent interaction and a non-renormalizable point-localized interaction (which gives rise to 
a prescription to renormalize the latter), we present in Sect. 4.7 strong evidence that the lat-
ter is also equivalent to the (equally non-renormalizable) interaction in the unitary gauge of the 
gauge-theoretic approach. See more on the comparison of approaches in Sect. 4.7.

A crucial message is that the Higgs potential (1.1) is the same in all consistent approaches – 
whether they assume a spontaneously broken classical gauge symmetry, or whether they impose 
quantum principles. We take this as evidence that the observation of the Higgs particle and its 
couplings should not be misconceived as a proof of the Higgs mechanism as a physical process.

2. The L-V formalism

2.1. String-localized quantum fields

String-localization is the mildest form of relaxing the localization, bringing substantial bene-
fits. In [24,25], we have shown how the string-localized massless vector potential of QED

Aμ(x, e) =
∫ ∞

0
ds Fμν(x + se)eν, (2.1)

where Fμν is the Maxwell tensor and e ∈ R4 is a suitable spacelike string direction, can be em-
ployed for a new understanding of the singular infrared structure and the “photon clouds” of 
QED, with the usual gauge redundancy turned into a rich superselection structure. Other advan-
tages have been discussed in [23].

In the present paper, the focus is instead on the improved ultraviolet behaviour, i.e., the 
renormalization of interactions that are non-renormalizable in Hilbert space formulations of 
point-local perturbation theory.

In the Abelian Higgs Model, the string-localized field is given by the same formula (2.1) with 
Gμν = ∂μBν − ∂νBμ, the field strength of the massive Proca field Bμ, in the place of Fμν . It 
is defined on the Wigner Fock space of the Proca field and it creates the same physical particle 
states as the latter. It only differs by an “operator-valued gauge transformation”:

Aμ(x, e) = Bμ(x) + ∂μφ(x, e), (2.2)

where the massive “escort field” φ(x, e) is given by

φ(x, e) =
∫ ∞

0
ds Bμ(x + se)eμ. (2.3)

In particular, if smeared with c(e) of total weight 1, Aμ(c) is another potential for the field 
strength:

Gμν = ∂μAν(c) − ∂νAμ(c).

The crucial feature is that, thanks to the integration along the string, its short-distance dimen-
sion is 1, while that of Bμ is 2. Thus, while the Proca couplings BμBμH and Bμjμ to the scalar 
Higgs field H and to the Dirac current are non-renormalizable, the couplings Aμ(c)BμH and 
Aμ(c)jμ are renormalizable. See [15] why “power counting” is the appropriate criterium for 
renormalizability also with string-localized fields like (2.1).
5
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2.2. L-V pairs and L-Q pairs

An “L-V pair” is a relation

L = L′ + ∂μV μ

between two interaction densities with specific properties, depending on the case. Adding a total 
derivative to the interaction may be beneficial.

E.g., L may be defined on a Hilbert subspace of a Krein space where L′ is defined. This 
happens in BRST, where the variation of the interaction density L′ is a total derivative because 
s(AK

μ ) = −∂μu. To make it zero by adding a total derivative to L′, one may use string-localized 
free fields. E.g., the escort field of QED on the Krein space satisfies s(φ(c)) = u, so that A(c) =
AK + ∂φ(c) and L(c) = A(c)j are BRST invariant. For another example, see Sect. 4.4.

Or L may be power-counting renormalizable while L′ is not. This is the situation in the 
present paper, where both L and L′ live on the physical Hilbert space of the Abelian Higgs 
model. Renormalizability of L is achieved by string-localization.

In classical field theory, total derivatives in the Lagrangian are ineffective for the equations of 
motion because the total action is the same. In contrast, in quantum field theory, the S-matrix

S = T ei
∫

d4x L(x)

is the time-ordered exponential of the action. Because the time-ordering does not commute with 
derivatives, adding a derivative will in general change the S-matrix.

The general formalism to be developed below allows to add derivative terms without altering
the S-matrix. It rather provides an equivalent reformulation of a theory in which complementary 
principles are manifestly satisfied, see (2.14). The equivalence then shows that all principles hold 
simultaneously. E.g., while a non-renormalizable interaction has no autonomous interpretation, 
it is provided by a renormalizable (string-localized) reformulation, see Remark 2.3.

The general idea is quite flexible, and can also be used outside SQFT, whenever derivative 
terms play a role. In the main body of the paper, both L and L′ live on the physical Hilbert space 
of the Abelian Higgs model. This is not possible for QED because of the vanishing photon mass 
and the IR problem: instead, an L-V pair reformulating the standard indefinite (Feynman gauge) 
Krein space interaction as an (embedded) string-localized Hilbert space interaction has proven 
to be a powerful tool for the understanding of infrared features [25]. In Sect. 4.5 of this paper, 
we consider an L-V pair for the Abelian Higgs model between two point-localized formulations, 
one on the Hilbert space and the other on the Krein space.

In Sect. 2.3, we develop the L-V formalism specifically for a pair of a point-localized non-
renormalizable and a string-localized renormalizable interaction. In the general case, only the 
specific properties of the admitted interaction terms have to be changed.

When one adds a string-localized derivative term in order to render a point-localized interac-
tion renormalizable, one has to impose the Principle of String Independence that the S-matrix 
in higher orders (and the local observables of the theory) are independent of the auxiliary string 
direction.

The implementation of this principle may require just standard Ward identities, as in QED. 
In general, as in the Abelian Higgs Model, it requires the addition of “induced” interactions. 
Namely, while the bulk terms of perturbation theory are integrals with delocalized propagators, 
the obstruction terms are integrals with δ-functions, which makes it possible to cancel them 
with interactions of higher-order. Moreover, the cancellation may fix values of parameters that 
were free parameters in lower orders. This is how the Lie-algebra structure of self-interactions 
6
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of vector bosons (Yang-Mills), the necessity of a Higgs coupling in the massive case, and the 
chirality of the coupling of massive vector bosons to Fermi fields (weak interaction) were shown 
[17,19]. This is also how the correct coefficients in (1.1) will be fixed in Sect. 3 of the present 
paper.

String-localized interactions always depart from an L-V pair, or, slightly more flexible, an 
L-Q pair. The former consists of a renormalizable string-localized interaction density L1(c) and 
a Lorentz vector of Wick polynomials V μ

1 (c) such that

L1(c) = L
pt
1 + ∂μV

μ
1 (c), (2.4)

where Lpt
1 is a (typically non-renormalizable) point-localized interaction density. Here c stands 

for the dependence on a string direction e that may be smeared with a smearing function c(e). 
The simplest L-V pairs are of the form

Aμ(c)jμ = Bμjμ + ∂μ(φ(c)jμ), (2.5)

where j is a conserved current, Bμ is a point-localized vector potential, and Aμ(c) = Bμ +
∂μφ(c) is an associated string-localized vector potential of the form (2.2) (smeared with c(e)). 
In QED, Bμ is the Feynman gauge vector potential defined on a Krein Fock space.

A more flexible version is the L-Q pair formalism. It starts from the weaker condition

δcL1(c) = ∂μQ
μ
1 (c) (2.6)

which only states that the variation of the string-localized interaction density w.r.t. the string 
direction or its smearing function is a total derivative. (When L1(c) belongs to an L-V pair, then 
(2.6) is trivially fulfilled with Qμ

1 = δcV
μ
1 .)

Its main advantage is that it does not assume the existence of V μ
1 (c) such that Qμ

1 (c) =
δcV

μ
1 (c), nor of an associated point-localized density Lpt

1 such that (2.4) holds. It therefore 
does not reformulate a given non-renormalizable interaction, but rather allows to establish string-
independence of a renormalizable theory whose interaction is string-localized from the outset. In 
the Abelian Higgs Model, already the L-Q-pair approach allows to fix the Higgs potential. But 
strictly speaking only the L-V -pair approach allows to identify this potential with the Higgs po-
tential of other approaches, because it contains the point-localized interaction to compare with, 
and thus is closer to conventional model building.

Some interactions can be formulated as an L-Q pair on the Wigner Hilbert space of free fields, 
but not as an L-V pair. An example is massless Yang-Mills on the Hilbert space of the free field 
strengths Fa

μν [16,17]. Thus, one will have to resort to the L-Q formalism for QCD, if one wants 
to preserve positivity. See also Sect. 5.

In a way, the L-Q equation (2.10) describes only the infinitesimal departure (in first order 
of ∂χ ) from the adiabatic limit of the L-V identity (2.14). This results in drastic computational 
simplifications. For this reason we begin the next subsection, after some preparations, with the 
exposition of the former.

2.3. Implementing the Principle of String Independence

Notations. In the sequel, we consider fields X as Wick polynomials in a basis of free fields 
labelled by ϕ. In order not to overburden the notation, we shall frequently write X(′) for fields 
X(x(′)). Wick ordering is always understood but not written, except in some lemmas and their 
proofs where otherwise there may be ambiguities. The time-ordering symbol T is meant to apply 
7
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to all fields to its right (brackets omitted). 〈 · 〉 is the free vacuum expectation value. δxx′ stands 
for δ(x − x′) and δxx′x′′ ≡ δxx′δx′x′′ for the total δ-function; and Sn for 1

n! times the sum over all 
permutations of n points x, x′, . . . .

Obstructions. Because we are interested in necessary conditions for string-independence (see 
Remark 2.3), we shall investigate the SI condition only at tree level.

String-independence possibly fails because time-ordering does not commute with derivatives. 
It turns out that the PSI at tree level can be formulated in terms of “obstructions” of the form

OY (X′) := [T , ∂μ]YμX′∣∣tree ≡ T ∂μYμ(x)X(x′)
∣∣tree − ∂μT Yμ(x)X(x′)

∣∣tree
, (2.7)

where Yμ (= V μ or Qμ, respectively) are vector-valued fields. The quantities OY(X′) can be 
expanded in terms of the numerical “two-point obstructions” among the basis fields

Oμ(ϕ;ϕ′) ≡ [T , ∂μ]ϕ(x)ϕ′(x′) ≡ 〈T ∂μϕ(x)ϕ′(x′)〉 − ∂μ〈T ϕ(x)ϕ′(x′)〉. (2.8)

The latter are δ-functions, or derivatives or string-integrals of δ-functions to be determined in 
each model, see App. B. For the Abelian Higgs Model, they are displayed in (3.10)–(3.12).

Lemma 2.1. It holds

OY (X′) =
∑
ϕ,ϕ′

Oμ(ϕ;ϕ′)· : ∂Yμ

∂ϕ

∂X′

∂ϕ′ : . (2.9)

Corollary 2.2. The maps X′ 	→ OY (X′) are derivations on Wick polynomials, i.e., one has the 
Leibniz rule

OY ( : XY : ′) = : OY (X′)Y ′: + : X′OY (Y ′): .

Proof of the lemma. By the Wick expansion, because there is only one contraction at tree level, 
it holds

T YμX′∣∣tree =
∑
ϕ,ϕ′

〈T ϕ(x)ϕ(x′)〉 : ∂Yμ

∂ϕ
(x)

∂X

∂ϕ′ (x
′): .

Apply the same expansion to T (∂μYμ)X′∣∣tree, where ∂μYμ = ∑
ϕ : ∂Yμ

∂ϕ
∂μϕ: , and subtract the 

expansion of ∂μT YμX′∣∣tree. The result (2.9) is obtained, because all terms cancel in which the 
derivative hits the uncontracted factors : ∂Yμ

∂ϕ
(x) ∂X

∂ϕ′ (x′) : . �
Proof of the corollary. Obvious, because the maps X′ 	→ ∂X′

∂ϕ′ are derivations. �
Thus, once the two-point obstructions have been determined in a model, the computation of 

OY (X′) is straightforward. We have automatized it in many higher-order cases involving itera-
tions of maps OY , as in (2.20) or (3.23).

L-Q-pair formalism. The L-Q-pair approach implements the string independence of a model 
with a renormalizable string-localized interaction density in the adiabatic limit when the space-
time cutoff function χ for the coupling constant g goes to 1.
8
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We want to find conditions on a string-dependent renormalizable interaction such that the 
variation of the tree-level S-matrix with respect to the string smearing function c vanishes in the 
adiabatic limit:

lim
χ→1

δcT eiL[χ,c]∣∣tree != 0. (2.10)

Here L[χ, c] is a series of the form

L[χ, c] ≡
∫

dx
(
g χ(x)L1(x, c) + g2

2
χ2(x)L2(x, c) + . . .

)
(2.11)

with a sequence L1(x, c), L2(x, c), . . . of properly adjusted power-counting renormalizable 
string-localized interaction densities.

In first order (no time-ordering needed), the condition (2.10) amounts to the statement that ∫
dx δcL1(x, c) = 0. Thus, δcL1(x, c) must be a total derivative of the form (2.6), which is there-

fore always the starting point of the recursion.
Imposing (2.10) at tree level order by order, results in a recursive scheme determining the 

higher-order interactions Ln: in order n, the sum of contributions from all Lm with m < n may 
not vanish, and this “obstruction” has to be cancelled by Ln. Whether this is possible, depends 
on the model, i.e., on the “initial data” L1(c), Q1(c). We refer to the fulfillability of (2.10) in 
each order as the condition of string-independence (SI condition). The SI condition may induce 
higher-order interactions, and at the same time also fix parameters from lower orders.

After expanding (2.10) to second order:

i2

2

∫
dx dx′ χ(x)χ(x′)

(
δcT L1(c)L

′
1(c) − iδx,x′δcL2(c)

)∣∣tree != 0,

one may insert δcL1 = ∂Q1, and replace T ∂Q1L
′
1 by [T , ∂]Q1L

′
1 because the subtracted term 

∂T Q1L
′
1 vanishes in the adiabatic limit. The resulting second-order obstruction O(2)

LQ must be 
cancelled by δcL2 up to another total derivative. This is the second order SI condition:

O
(2)
LQ(x, x′) := [T , ∂]Q1L

′
1 + [T , ∂ ′]Q′

1L1 = OQ1(L
′
1) + OQ′

1
(L1)

!= iδxx′ · (δcL2(x) − ∂Q2(x)). (2.12)

The condition (2.12) determines L2 and Q2 (possibly with some free parameters). If L1 is cubic 
in the fields, then O(2)

LQ and the second-order densities L2, Q2 are quartic.
After expanding (2.10) to third order, one may insert δcL1 = ∂Q1 and (using (2.12)) δcL2 =

∂Q2 − i
∫

dx′′ O(2)
LQ(x, x′′). One obtains

i3

6

∫
dx dx′ dx′′ χ(x)χ(x′)χ(x′′) ·

·
(

3T ∂Q1L
′
1L

′′
1 − 3iδxx′′

(
T ∂Q1L

′
2 + T ∂Q2L

′
1

) − 3T O
(2)
LQ(x, x′′)L′

1 − δxx′x′′δcL3

) != 0.

One may again replace T ∂Qm . . . by [T , ∂]Qm . . . wherever it occurs. The resulting term 
3S3([T , ∂]Q1L

′
1L

′′
1) can be expanded at tree level, using Lemma A.1:

3S3
([T , ∂]Q1L

′
1L

′′
1

∣∣tree) = 3S3
(
2T OQ1(L

′
1)L

′′
1

∣∣tree)
,

and cancels the term S3(T O
(2)
LQ(x, x′′)L′

1

∣∣tree
). The terms that are left define the third-order 

obstruction O(3) and should be cancelled by δcL3 up to another total derivative:
LQ

9
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O
(3)
LQ(x, x′, x′′) := −3iS3

(
δx′x′′

(
OQ1(L

′
2) + OQ2(L

′
1)

)) != δxx′x′′ · (δcL3 − ∂Q3). (2.13)

The condition (2.13) determines L3 and Q3. If L1 and Q1 are cubic in free fields, then Ln and 
Qn are of polynomial order n + 2. The recursion must stop with L3 = 0, because renormalizable 
Ln of polynomial order > 4 do not exist.

L-V -pair formalism. The more ambitious L-V formalism not only allows to construct 
some string-independent S-matrix. It also establishes the equivalence with a possibly non-
renormalizable point-localized interaction before the adiabatic limit is taken, see Remark 2.3.

We want to establish the identity

T ei(L[χ;c]+V◦∂[χ;c]) = T eiLpt[χ] (2.14)

to hold at tree level for arbitrary cutoff functions χ , where the term V ◦∂[χ] vanishes2 in the 
adiabatic limit χ → 1. More precisely, on the right-hand side

Lpt[χ] ≡
∫

dx
(
g χ(x)L

pt
1 (x) + g2

2
χ(x)2L

pt
2 (x) + . . .

)
(2.15)

is a series of possibly power-counting non-renormalizable point-localized interaction densities. 
Similarly, L[χ, c] on the left-hand side is again given by (2.11) with a series of power-counting 
renormalizable string-localized interaction densities. Finally,

V ◦∂[χ] =
∫

dx
(
g ∂μχ(x)V

μ
1 (x, c)

+ g2

2

[
∂μχ(x)2V

μ
2 (x, c) + ∂μχ(x)∂νχ(x)W

μν
2 (x, c)

] + . . .
)

(2.16)

with a series of string-localized, possibly non-renormalizable tensor densities V μ
n , . . . , Wμ1...μn

n .

Remark 2.3. The virtue of the formula (2.14) is that the left-hand side is renormalizable in 
the adiabatic limit, where the term V ◦∂[χ] vanishes. It thus serves to “renormalize the non-
renormalizable right-hand side”, which is manifestly string-independent and point-localized, by 
fixing infinitely many renormalization constants appearing in loop diagrams in terms of finitely 
many constants on the left-hand side. For this prescription to work, (2.14) must be an identity at 
tree level. We therefore shall restrict the analysis to tree level.

Again, we refer to the fulfillability of (2.14) as the SI condition. In each order O(gn), it is 
an equality between operator-valued distributions evaluated on χ⊗n. It constitutes a recursive 
system, that has to be solved for Ln(c), L

pt
n , Vn(c), Wn(c) with the specifications as given above.

In first order, the SI condition simply reads∫
dx χ(x)

(
L1(x, c) − ∂μV

μ
1 (x, c) − L

pt
1 (x)

) != 0. (2.17)

Its validity for all χ is equivalent to the L-V -pair condition (2.4), which is therefore always the 
starting point of the recursion.

2 The notation “V ◦∂” is only suggestive. The main parts of V ◦∂[χ] are V μ
n (∂μ(χn)), see (2.16). The need to add such 

a term in order to get an identity before the adiabatic limit is taken, was first noticed by Duch [5].
10
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In n-th order, one collects all terms involving Lpt
m, Lm, Vm, Wm with m < n in (2.14), and 

writes them with the help of integrations by parts as

in

n!
∫

dx1 . . . dxn χ(x1) . . . χ(xn)O(n)(x1, . . . , xn).

The “n-th order obstruction” O(n) must then be cancelled by the linear contribution from 
L

pt
n , Ln, Vn, Wn. This condition determines the latter, possibly with free parameters.

Proposition 2.4. The tree-level obstruction in second order is

O(2)(x, x′) = S2

(
2OV1(L

pt
1

′) + OV1(∂
′V ′

1) − ∂ ′OV1(V
′
1)

)
. (2.18)

For the proof, see App. A. Because χ is arbitrary, the SI condition requires the cancellation

O(2)(x, x′) != iδxx′ · (L2(x, c) − L
pt
2 (x) − ∂μV

μ
2 (x, c)

) + ∂μ∂ ′
ν

[
iδxx′ · Wμν

2 (x, c)
]
. (2.19)

Proposition 2.5. After cancellation of the second-order obstruction, the tree-level obstruction in 
third order is

O(3)(x, x′, x′′) = S3

(
OV1

(
OV ′

1
(L

pt
1

′′ + 2L′′
1)

) − 2∂ ′′OV1

(
OV ′

1
(V ′′

1 )
)

+ 3OOV1 (V ′
1)

(L
pt
1

′′) − 3iδx′x′′
(
OV1(L

′
2) − ∂ ′OV1(V

′
2) + OV ′

2
(L

pt
1 )

)
+ 3i∂ ′′

ν δx′x′′ · OW ′ν
2

(L
pt
1 ) − 3i∂ ′∂ ′′[δx′x′′OV1(W

′
2)

])
(2.20)

with obvious contractions of Lorentz indices (and OWν
2
(L

pt
1

′′) ≡ [T , ∂μ]Wμν
2 L

pt
1

′′).

For the proof, see App. A. It is interesting to notice, that all terms in (2.20) are various itera-
tions of expressions of the form OY (X′) as in (2.7). The ensuing SI condition is

O(3)(x, x′, x′′) != δxx′x′′ · (L3(x) − L
pt
3 (x) − ∂μV

μ
3 (x)

)
+S3

(
∂μ∂ ′

ν

[
δxx′x′′ · Wμν

3 (x)
])

. (2.21)

If the initial L-V pair is cubic in free fields, then the higher-order densities are of polynomial 
order n + 2. Renormalizability requires that L3 = 0.

3. The Abelian Higgs Model

The basic field content of the Abelian Higgs Model in the SQFT formulation is given by 
the fields Aμ(c) and φ(c) = −m−2∂μAμ(c) of mass m > 0, and the scalar Higgs field H of 
mass mH > 0. In this spirit, Bμ (the Proca field) is rather a short-hand notation for the string-
independent combination Aμ(c) − ∂μφ(c), see Sect. 2.1. Notice that Aμ(c) and φ(c) are defined 
as in (2.2) and (2.3) smeared with c(e) of total weight 1, so that (2.2) still holds.

However, for the purpose of the computation of obstructions in the subsequent analysis, it is 
more convenient to work in the basis

Bμ,Aμ(c),φ(c),H, ∂μH. (3.1)

We list ∂μH as an independent field because time-ordering does not respect differential relations 
among fields. In contrast, ∂μφ(c) = Aμ(c) − Bμ can be expressed in terms of the basis fields.
11
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We denote the string variation of the escort field by

w := δcφ(c). (3.2)

Its precise form is not relevant here; see, e.g., [23]. Then,

δc∂μφ(c) = δcAμ(c) = ∂μw, δcH = δc∂μH = 0. (3.3)

3.1. First order

We determine the initial L-Q and L-V pairs that define the model. We shall see that self-
interactions of the massive vector field are only possible with the intervention of the scalar Higgs 
field.

Because Aμ(c), φ(c) and H have short-distance dimension 1, the only renormalizable cou-
plings are cubic or quartic Wick polynomials, involving at most one derivative in the cubic case. 
The most general candidate for L1(c) is

L1 = a1 AμAν∂μAν + a2 AμAμφ + a3 Aμφ∂μφ + a4 φ3 + (3.4)

+ b1 AμAμH + b2 Aμ∂μφH + b3 Aμφ∂μH + b4 φ2H +
+ c1 AμH∂μH + c2 φH 2 + dH 3 + e1(A

μAμ)2 + e2 AμAμφ2 + e3 φ4 +
+ f1 AμAμφH + f2 φ3H + g1 AμAμH 2 + g2 φ2H 2 + hφH 3 + j H 4.

Here, we suppress the string-dependence of the fields.

Proposition 3.1. The interaction density L1(c) is part of an L-Q pair if, and only if, it is (up to 
a global factor to be absorbed in the coupling constant g) of the form

L1 = m
(
AμBμH + Aμφ∂μH − m2

H

2
φ2H + a H 3

)
+ a′ H 4 + ∂μ

∑
i
αiU

μ
i , (3.5)

where Uμ
1 = AμAνAν , Uμ

2 = Aμφ2, Uμ
3 = AμφH , Uμ

4 = AμH 2. At this point, a, a′ and αi

(i = 1, 2, 3, 4) are free real parameters. It holds δcL1(c) = ∂μQ
μ
1 (c) and Qμ

1 (c) = δcV
μ
1 (c) with

Q
μ
1 = m

(
BμwH + φw∂μH

) +
∑

i
αiδcU

μ
i , (3.6)

V
μ
1 = m

(
BμφH + 1

2
φ2∂μH

)
+

∑
i
αiU

μ
i , (3.7)

hence L1(c) is also part of an L-V pair L1(c) − ∂μV1(c) = L
pt
1 with

L
pt
1 = m

(
BμBμH + a H 3) + a′ H 4. (3.8)

Remark 3.2. We shall show in Lemma 3.3 that the SI condition in second order requires αi = 0
(i = 1, 2, 3, 4). The term aH 3 in (3.5), (3.8) will become the cubic part of the potential

V (H) = 1

2
m2

H H 2 − g · maH 3 − g2

2
· bH 4. (3.9)

The quartic part will arise in second order in L2 (whereas a′ as part of L1 must vanish), and the 
coefficients a and b will be fixed in third order, see below. That the SI condition uniquely fixes 
the Higgs potential as in (1.1), is the result referred to in the title of this paper.
12
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Proof of Proposition 3.1. We must fix the coefficients in (3.4) such that the string-variation 
δcL1(x, c) is a total x-derivative. The terms dH 3 + jH 4 in (3.4) are string-independent. The 
four combinations ∂μU

μ
i trivially satisfy this condition via δc∂μU

μ
i = ∂μ(δcU

μ
i ). We also have 

(using (3.2), (3.3), and �H = −m2
H H and ∂A = �φ = −m2φ)

δc(A
2H + Aφ

↔
∂ H − 1

2
m2

H φ2H) = (A∂H − m2
H φH)w + (AH + φ

↔
∂ H)∂w

= ∂[(AH − φ
↔
∂ H)w].

Since A − ∂φ = B , these are the solutions displayed in (3.5) and (3.6), with a relabelling 
d → ma, j → a′ of the coefficients. If the coupling constant g is dimensionless, then b1 is 
dimensionful. The choice b1 = m in (3.5) is a matter of convenience.

To prove that there are no further solutions, we may use the given solutions to freely adjust the 
coefficients a1, a3, b1, b3, c1. For an independent solution we may thus assume a1 = a3 = b1 =
b3 = c1 = 0. By homogeneity in the Higgs fields and in the vector boson fields, the conditions 
on the remaining coefficients decouple from each other for the terms with coefficients labelled 
by different letters. E.g., the remaining a-terms give

δc(a2A
2φ + a4φ

3) = a2(A
2w + 2(A∂w)φ) + 3a4φ

2w,

which cannot be a total derivative unless a2 = a4 = 0. The remaining b-terms give

δc(b2A∂φH + b4φ
2H) = b2(A + ∂φ)∂wH + 2b4φwH,

which cannot be a total derivative unless b2 = b4 = 0. Similar for the terms with coefficients ei , 
fi , gi , h, which do not admit combinations whose string-derivatives are a total x-derivative.

The asserted equalities δcV1 = Q1 and L1 −∂V1 = L
pt
1 are verified by direct computation. �

3.2. Two-point obstructions

In order to compute the higher obstructions O(n)
LQ of the S-matrix, one needs the two-point 

obstructions involving the fields (3.1) (and w in the L-Q-pair approach) of the Abelian Higgs 
Model. By (2.7), the latter are directly obtained from the propagators as determined in App. B, 
in combination with the field equations. The given scaling degrees of the propagators allow two 
free renormalization parameters cH , cB in the Higgs and Proca sector, respectively. The relevant 
two-point obstructions for the Higgs field are

Oμ(∂μH ; ∂ ′
νH

′) = −i(1 + cH )∂νδ(x − x′), (3.10)

Oμ(∂μH ;H ′) = iδ(x − x′),
Oμ(H ; ∂ ′

νH
′) = icH ημνδ(x − x′),

Oμ(H ;H ′) = 0.

Those for the fields B , A, φ are

Oμ(Bμ;B ′
ν) = −i(1 + cB) · m−2∂νδ(x − x′), (3.11)

Oμ(Bμ;φ′) = −im−2δ(x − x′),
Oμ(φ;B ′

ν) = −icB · m−2ημνδ(x − x′),
Oμ(φ;φ′) = 0,
13
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as well as

Oμ(Aμ;A′
ν) = −i · (eνIe − (ee′)IeI−e′∂

)
δ(x − x′), (3.12)

Oμ(Aμ;φ′) = −i · (ee′)IeI−e′δ(x − x′),
Oμ(Aμ;B ′

ν) = −i · eνIeδ(x − x′),
Oμ(φ;A′

ν) = 0,

Oμ(Bμ;A′
ν) = 0.

In the L-Q-approach, one also needs the two-point obstructions Oμ(w; X′) for X = A, B, φ. 
These are all found to be zero.

The two-point obstructions O(A, X′) are string-localized. They could spoil the SI conditions, 
because obstructions of (2.10) or (2.14) involving string-integrated δ-functions cannot be can-
celled by higher-order densities. Fortunately, this does not happen, as we shall see.

Lemma 3.3. The SI condition (both in the L-Q and L-V -pair approach) requires in second order 
that in Proposition 3.1,

α1 = α2 = α3 = α4 = 0.

Proof. Q
μ
1 and V μ

1 contain the field A only in the terms δcUi and Ui . By (2.9), obstructions 
with string-integrated δ-functions can occur in second order only through these terms in (3.6)
and (3.7). Because their coefficients according to (2.9) are linearly independent, there can be no 
cancellations. These terms must therefore be excluded altogether: αi = 0. �

We proceed with the L-Q-pair approach. The L-V -pair approach will be treated in Sect. 3.4.

3.3. The L-Q-pair approach

The initial L-Q-pair (2.6) of the Abelian Higgs Model is specified by Proposition 3.1 and 
Lemma 3.3:

L1 = m
(
ABH + Aφ∂H − m2

H

2
φ2H + aH 3

)
+ a′H 4, (3.13)

Q1 = m
(
BH + φ∂H

)
w.

Second order. The string-localized two-point obstructions Oμ(Aμ; X′) in (3.12) do not con-
tribute to the second-order obstruction (2.12) of the S-matrix, because the field A (or ∂φ =
A − B) does not occur in Qμ. This feature of the model distinguishes the choice of the “kine-
matical” propagators for the string-localized fields, as discussed in App. B.3, leaving only the 
parameters cH in (3.10) and cB in (3.11) free.

Proposition 3.4. The SI condition in second order (2.12) requires that the parameter a′ = 0 in 
(3.13). Then the condition is solved by

L2 = m2
((

3a + m2
H

m2

)
φ2H 2 − m2

H

4
φ4 + (1 + cH ) · A2φ2

)
+ (1 + cB) · A2H 2 + bH 4,

Q2 = m2(1 + cH ) · Aφ2w + (1 + cB) · AwH 2. (3.14)

The quartic term of the Higgs potential appears with the coefficient b undetermined.
14
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Proof. The task is to compute the obstruction O(2)
LQ in (2.12). The straightforward computation 

using (2.9) with (3.10), (3.11) yields

OQ1(L
′
1) = m2

(
φw · δxx′ · (AB − m2

H

2
φ2 + 3aH 2 + 4a′

m
H 3)

+ cH Bw · δxx′ · Aφ − (1 + cH )φw · ∂δxx′ · A′φ′)
− wH · δxx′ · (A∂H − m2

H φH) − cBw∂H · δxx′ · AH

− (1 + cB)wH · ∂δxx′ · A′H ′.

Adding OQ′
1
(L1) and using (C.1), one obtains

O
(2)
LQ = iδxx′ · m2

[
2
(
3a+m2

H

m2

)
φwH 2 − m2

H φ3w+(1+cH )
(
2ABφw+(A

↔
∂ w)φ2)]+

+iδxx′ · (1+cB)
( − 2AwH∂H+(A

↔
∂ w)H 2)+iδxx′ · 8ma′φwH 3 =

= iδxx′ · m2
[
δc

((
3a+m2

H

m2

)
φ2H 2 − m2

H

4
φ4

)
+(1+cH )

(
δc(A

2φ2) − ∂(Aφ2w)
)]

+
+iδxx′ · (1+cB)

(
δc(A

2H 2) − ∂(AwH 2)
)+iδxx′ · ma′δc(φ

2H 3). (3.15)

The term φ2H 3 has dimension 5 and is not admissible in L2, hence we must have a′ = 0. Then, 
L2 and Q2 in (2.12) are read off (3.15). �
Third order. Q2 consists of two terms involving the field A with coefficients 1 +cH and 1 +cB . 
By (3.18) and (3.12), these would contribute string-integrated δ-functions in O(3)

LQ, which cannot 
be cancelled. This forces us to fix the renormalization parameters as

cH = −1, cB = −1. (3.16)

In particular, Q2 = 0 with this choice.

Proposition 3.5. The SI condition in third order (2.13) requires that the parameters a in (3.13)
and b in (3.14) take the values

a = −1

2

m2
H

m2 , b = −1

4

m2
H

m2 . (3.17)

Then the condition is solved by L3 = 0 and Q3 = 0.

Corollary 3.6. The values a and b determined by Proposition 3.5 yield the precise form of the 
Higgs potential (1.1).

Proof of the proposition. The task is to compute O(3)
LQ as in (2.13). The straightforward com-

putation yields3

3 We do not know the significance of the following observation. If one works with general cB and cH , then one gets – 
apart from the string-localized obstructions, that do not cancel – four additional point-localized contributions to (3.18)

+2
(
(1 + cH ) + cB(1 + cH ) − (1 + cB) − cH (1 + cB)

)
A2φwH = 0,
15
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O
(3)
LQ = 3δxx′x′′ ·

[
m3

(
2
(
3a + m2

H

m2

) + m2
H

m2

)
φ3wH +

+ m
(

4b − 2
(
3a + m2

H

m2

))
φwH 3

]
. (3.18)

Since the fields φ3wH and φwH 3 cannot be written as δcL3 − ∂Q3 with renormalizable L3, 
their coefficients must vanish. This fixes the parameters a and b, and δcL3 − ∂Q3 = 0. �
Proof of the corollary. (3.9) with a and b as in (3.17) is (1.1). �
3.4. L-V -pair approach

The initial L-V -pair (2.4) of the Abelian Higgs Model, as specified by Proposition 3.1 and 
Lemma 3.3, is

L
pt
1 = m

(
BμBμH + a H 3) + a′ H 4, (3.19)

L1 = m
(
AμBμH + Aμφ∂μH − m2

H

2
φ2H + aH 3

)
+ a′H 4,

V
μ
1 = m

(
BμφH + 1

2
φ2∂μH

)
.

Second order. The string-localized two-point obstructions Oμ(Aμ; X′) in (3.12) do not con-
tribute to the second-order obstruction (2.18) of the S-matrix, because the field A does not occur 
in V μ.

Proposition 3.7. The SI condition in second order (2.19) requires that the parameter a′ = 0 in 
(3.19). Then the condition is solved by

L
pt
2 =−3B2H 2 + (1 + cB) · 4B2H 2 + bH 4, (3.20)

L2=m2
(
(3a + m2

H

m2 )φ2H 2 − m2
H

4
φ4 + (1 + cH ) · A2φ2

)
+ (1 + cB) · A2H 2 + bH 4,

V
μ
2 =−BμφH 2 + m2

6
Bμφ3 + (1 + cH ) · m2

2
Aμφ3 + (1 + cB) · AμφH 2,

W
μν
2 =

(
(1 + cH ) · m2

4
φ4 + (1 + cB) · φ2H 2

)
ημν,

with one new free parameter b.

Proof. We have to compute (2.18), using (2.7). We begin with the choice (3.16) for cH , cB . With 
this choice, the obstructions OV (X′) contain no derivatives or string-integrals of δ(x − x′), and 
it is convenient to write

OV (X′) =: iδ(x − x′) · �V (X). (3.21)

In particular, one has �V1(V1) = 0. This simplifies (2.18) and (2.19) to

which identically cancel each other. This is a remarkable independence of the renormalization parameters. In particular, 
the values of the Higgs potential parameters a and b are not affected.
16
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O(2)(x, x′) = iδ(x − x′) · �V1(L
pt
1 + L1), �V1(L

pt
1 + L1)

!= L2 − L
pt
2 − ∂V2. (3.22)

The straightforward computation yields

�V1(L
pt
1 + L1) = ABH 2 + 2B2H 2 + 2BφH∂H +

+m2
((

3a + m2
H

m2

)
φ2H 2 − 1

2
(A − B)Bφ2 − m2

H

4
φ4

)
+ 4ma′φ2H 3,

which can be re-written as

= 3B2H 2 + m2
((

3a + m2
H

m2

)
φ2H 2 − m2

H

4
φ4

)
+ ∂

(
BφH 2 − m2

6
Bφ3) + 4ma′φ2H 3.

The first term is point-localized, the second term is renormalizable, and the third term is a deriva-
tive. The last term is not compatible with the required form of the cancelling second-order 
densities in (3.22). Thus a′ = 0. Comparing the other terms with (2.19), one reads off (3.20)
for the special values cH = cB = −1.

The additional contributions to O(2)(x, x′) due to different values of cH , cB involve deriva-
tives of δ(x − x′). The formulae in Lemma C.1 in App. C nicely deal with the symmetrization in 
x ↔ x′, and reduce the result to the additional terms

· · · + (1 + cH ) · im2
(
δ(x − x′)

(
A2φ2 − 1

2
∂(Aφ3)

) + 1

4
∂∂ ′[δ(x − x′)φ4]) +

+ (1 + cB) · i
(
δ(x − x′)

(
A2H 2 − 4B2H 2 − ∂(AφH 2)

) + ∂∂ ′[δ(x − x′)φ2H 2]).

This yields the additional terms displayed in (3.20). �
L2 in (3.20) coincides with L2 in (3.14) in the L-Q-pair approach. Notice that, while δcV1 =

Q1, the general setup does not imply that δcV2 should equal Q1.

Third order. V2 contains two terms involving the field A with coefficients 1 + cH and 1 + cB . 
By (2.20) and (3.12), these would contribute string-integrated δ-functions in O(3), which cannot 
be cancelled. This forces us again to fix the renormalization parameters as in (3.16). In this case, 
the two-point obstructions (3.10) and (3.11) do not contain derivatives of δ-functions and can be 
cancelled in each order by induced triples Ln, Vn, L

pt
n (i.e., all Wn = 0). In particular, one has 

(3.21) with �V1(V1) = 0, so that W2 = 0 and (2.20) simplifies considerably:

O(3)(x, x′, x′′) = δxx′x′′
( − �2

V1
(L

pt
1 + 2L1) + 3�V1(L2) + 3�V2(L

pt
1 ) − 2∂�V1(V2)

)
.

(3.23)

Proposition 3.8. The SI condition in third order (2.21) requires that the parameters a in (3.19)
and b in (3.20) take the values (3.17). In this case, it is solved by

L
pt
3 = 12

m
B2H 3, (3.24)

L3 = 0,

V3 = 2

m
BφH 3 − 1

m
φ2H 2∂H − 5m

3
Bφ3H + m

12
φ4∂H,

W3 = 0.
17
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Proof. The computation of (3.23) is straightforward. The result, inserted in the third-order SI 
condition (2.21), can be written as

L3 − ∂V3 − L
pt
3

!= −12

m
B2H 3 − ∂

( 2

m
BφH 3 − 1

m
φ2H 2∂H − 5m

3
Bφ3H + m

12
φ4∂H

)
+

+m
(

6b − 9a − 3
m2

H

m2

)
φ2H 3 + m3

(9a

2
+ 9

4

m2
H

m2

)
φ4H, (3.25)

where L3 must vanish because renormalizable fifth-order Wick polynomials do not exist. The 
last two terms in (3.25) are not compatible with the required form of the left-hand side. Their 
vanishing requires the values given in (3.17), and hence implies the precise form of the Higgs 
potential (1.1), as in Corollary 3.6.

The first term is a total derivative and should be identified with −∂V3. The second term 
is string-independent, and should be identified with −L

pt
3 . These are the third-order terms 

(3.24). �
The renormalizable string-localized interaction density L[χ; c] in (2.11) terminates with the 

quartic terms L2, because renormalizable candidates of higher polynomial order do not exist. 
Higher-order terms appear only in the form of Lpt

n and Vn(c). Recall that the purpose of the (non-
renormalizable) derivative terms V μ

n (∂μχn) is to dispose of the non-renormalizable contributions 
of the point-localized interaction Lpt

n (χn) in (2.14), and that they vanish in the adiabatic limit.

3.5. Coupling to Dirac fields

The Abelian Higgs Model serves as a simplified model for the self-coupling of massive vector 
bosons in the weak interaction, when a cubic self-interaction of a single massive vector field is 
not viable, see the discussion in Sect. 1 and Proposition 3.1. The model can easily be extended 
to include also the coupling to a fermionic current jμ = ψγ μψ . Namely, the interaction (2.5) is 
another L-V pair that can be added to the L-V pair (3.19) of the Abelian Higgs Model.

In order to compute the effect of the extension on the SI condition, one proceeds as before, 
using that the obstruction Oμ(jμ; j ′ν) = −∂μTjμ(x)jν(x′) vanishes by the usual Ward identity. 
With

�L1 = Aj, �L
pt
1 = Bj, �V1 = φj,

one finds that the second and third order SI conditions are satisfied with

�L2 = 0, �L
pt
2 = −4m−1 · BHj − m−2 · j2, �V2 = −m−1 · φHj,

�L3 = 0, �L
pt
3 = 18m−2 ·BH 2j +6m−3 ·Hj2, �V3 = 2m−2 ·φH 2j − 2

3
·φ3j.

In particular, the Higgs potential is not affected by the extension. This was expected, because the 
parameters a and b are fixed at tree level, whereas diagrams involving Dirac fields, that could 
possibly contribute to the coefficients of φ3H 2 and φH 4, must necessarily contain Dirac loops.

3.6. Local observables

The “off-shell” interacting quantum fields are of prime interest for the perturbative construc-
tion of an actual QFT, beyond the S-matrix needed for predictions of experiments. Not all of them 
18
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are local observables; e.g., in BRST the observables are by definition those fields that commute 
with the interacting BRST operator. They are, however, usually not computed in the literature 
[2,29].

Interacting fields are computed in causal perturbation theory by the variation of “relative S-
matrices” with respect to a source function

�
∣∣
L(χ)

(x) := −i
δ

δf (x)
S(χ,0)∗S(χ,f )

∣∣
f =0 (3.26)

where S(χ, f ) = T ei(L(χ)+�(f )). By axiomatizing properties of relative S-matrices, this is the 
way to give a precise meaning (as the adiabatic limit χ → 1 of (3.26)) to Bogoliubov’s formula

�
∣∣
L
(x) := (

T ei
∫

dx L(x)
)∗

T
(
�(x)ei

∫
dx L(x)

)
.

In the L-V approach at hand, the formula has to be qualified: We shall first establish the identity

T
(
�(x)ei(L[χ;c]+V◦∂[χ;c])) = T

(
�[gχ](x)eiLpt[χ]). (3.27)

(3.27) is (2.14) with the insertion of a local free field �(x) on the left-hand side, and of

�[gχ](x) = �(x) + gχ(x)�[1](x) + g2

2
χ(x)2�[2](x) + . . . (3.28)

on the right-hand side. The corrections �[n](x) are free Wick polynomials that are recursively 
determined by (3.27), see below.

The combination of (2.14) and (3.27) yields(
T ei(L[χ;c]+V◦∂[χ;c]))∗

T
(
�(x)ei(L[χ;c]+V◦∂[χ;c])) = (

T eiLpt[χ])∗
T

(
�[gχ](x)eiLpt[χ]).

(3.29)

Either of these two expressions (to be taken in the adiabatic limit χ → 1) defines the interacting 
field �

∣∣
L

, where the left-hand side is renormalizable, and the right-hand side is local if and only 
if �[gχ](x) is point-localized. As in Remark 2.3, infinitely many renormalization constants on 
the right-hand side are fixed as functions of finitely many constants of the left-hand side.

Definition 3.9. A free Wick polynomial � such that �[gχ] is point-localized (i.e., � and all its 
corrections �[n] are point-localized), is called the “seed” of the local interacting field �|L given 
by (3.29). The resulting interacting fields are the local observables of the theory.

In other words: The perturbation theory selects the local observables of the theory. The con-
dition (vanishing of �[n]) can be decided at the level of the free field.

(3.29) generalizes the construction of the interacting Dirac field of QED as a point-localized 
perturbation of the string-localized “dressed Dirac field” [25, Eq. (2.14)]. In QED, the SI con-
dition is fulfilled without any higher order interactions added to the massless L-V pair (2.5). In 
the case at hand, the role of the dressing transformation is taken by the map � 	→ �[gχ] when 
χ → 1.

We now turn to the determination of the correction terms �[n](x) in (3.28). The strategy 
is the same as for the S-matrix, cf. App. A. We sketch it here again in a model-independent 
way, but with the simplifying assumption that the two-point obstructions involve no derivatives 
of δ-functions (otherwise, one would have to admit terms with derivatives of χ in (3.28)), and 
�V (V1) = 0. Recall that in the Abelian Higgs model, the SI condition forces us to choose the 
1
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renormalizations (3.16) such that the simplifying assumptions hold, and as a consequence W2 =
W3 = 0.

Expanding both sides of (3.27) to first order in g, we get

i

∫
dy

(
χ(y)T L1(y)�(x) + ∂χ(y)T V1(y)�(x)

)
= i

∫
dy

(
χ(y)T L

pt
1 (y)�(x) + χ(x)�[1](x)

)
.

Inserting L1 = L
pt
1 + ∂V1, we get

i

∫
dy χ(y)[T , ∂y ]V1(y)�(x) = χ(x)�[1](x)

(3.21)⇒ �[1] = −�V1(�). (3.30)

Expanding (3.27) in second order, we insert L1 = L
pt
1 + ∂V1. This cancels the terms involv-

ing the cubic time-ordered products T L
pt
1 (y)L

pt
1 (y′)�(x). The remaining cubic terms are of the 

form OY (X′, �(x)) as in (A.2) and can be evaluated using Lemma A.1. This produces terms 
2T L

pt
1 �V1(�(x)) +T �(x)�V1(2L

pt
1 + ∂V1), which cancel the quadratic contributions T L

pt
1 �[1]

and T (L2 − ∂V2 − L
pt
2 )�(x). The remaining terms give the surprisingly simple result:

�[2] = �V1 ◦ �V1(�) − �V2(�). (3.31)

If the simplifying assumptions as above are fulfilled, then we conjecture for higher orders:

Conjecture 3.10. All corrections �[n] are linear combinations of iterated obstructions �Vn1
◦

· · · ◦ �Vnk
(�) with 

∑
k nk = n.

That �Vn should come in �[n] with the coefficient −1, can be seen rather easily. Specifically, 
for reasons to be explained below and after (3.34), we guess4

�[3] = ( − �V1 ◦ �V1 ◦ �V1 + 2�V1 ◦ �V2 + �V2 ◦ �V1 − �V3

)
(�). (3.32)

This guess, together with (3.30) and (3.31) and the derivation property of �Vn , implies

(XY)[2] = X[2]Y +2X[1]Y[1] +XY[2], (XY)[3] = X[3]Y +3X[2]Y[1] +3X[1]Y[2] +XY[3].

This structure in turn entails that the point-locality of the corrections of two fields passes to the 
corrections of their Wick product, hence it warrants that the seeds � of local interacting fields 
in Definition 3.9 form an algebra.5 However, this feature only constrains, but does not fix the 
coefficients in (3.32).

The actual computations in the Abelian Higgs model are again straightforward, using (2.9)
and the known two-point obstructions. The first corrections

B
μ
[1] = − 1

m
(BμH + φ∂μH), H[1] = −m

2
φ2, (∂μH)[1] = mBμφ,

of the Proca and the Higgs fields are string-localized. Thus neither the interacting Higgs field nor 
the interacting Proca field are local observables of the model.

4 The effort required for the recursive analysis of (3.27) in third order is comparable to (2.14) in fourth order.
5 This is a desirable feature, but not an axiom because the map � 	→ �int in Definition 3.9 must not be expected to be 

an algebra homomorphism.
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For the massive Proca field strength tensor Gμν = ∂μBν − ∂νBμ, one needs also two-point 
obstructions involving Gμν . The kinematical propagators displayed in App. B.3 yield

Oκ(Bκ,G′
μν) = Oκ(φ,G′

μν) = 0, Oκ(Aκ,G′
μν) = −iIee[μ∂ν]δ(x − x′). (3.33)

Thus, the first two (three, if the above structural conjecture is correct) corrections of Gμν are 
zero for the simple reason that the field A does not occur in V1 and V2 (and V3).

For a Wick polynomial � in B , H , and ∂H to be the seed of a local interacting field, 
�[1] = −�V1(�) must be independent of φ. This condition is a differential equation for �, 
which implies that � must be a polynomial in the composite field

Z := m2B2 + (∂H)2.

Indeed, also the next two corrections of Z are point-localized:

Z[1] = −2mB2H, Z[2] = 6B2H 2, Z[3] = −24

m
B2H 3. (3.34)

Z[3] was computed with (3.32), which is the unique (up to a factor) combination with a point-
localized outcome. We take this as a strong support for the guess (3.32). Clearly, a better 
understanding of the higher-order corrections is strongly desired.

With these evidences, we conjecture

Conjecture 3.11. The interacting fields Gμν and Z = m2B2 + (∂H)2 are local observables of 
the Higgs model.

Other fields, like the interacting Higgs field, may still be regarded as part of the theory, e.g., in 
order to create Higgs particle states. But, just as the interacting dressed Dirac field of QED [25], 
they cannot be local fields in the sense of the usual QFT axiomatics.

When a Dirac field is added to the Abelian Higgs model (see Sect. 3.5), one expects the 
current to be a local observable. Indeed, all corrections j[n] vanish because Oμ(jμ; j ′ν) = 0. 
The corrections to the Dirac field are computed with the help of

Oμ(jμ;ψ ′) = −∂μTjμ(x)jν(x′) = δxx′ψ(x),

giving

ψ[1] = iφψ, ψ[2] = −φ2ψ, ψ[3] = −iφ3ψ.

This is in perfect agreement with the perturbative expansion of the “dressed Dirac field” ψqc =
eiqφ(c) · ψ as discussed in [25] for the QED coupling to massless photons, where a version of 
(3.29) is used to construct the interacting fields. In contrast to the massless case where ψqc can 
be defined as a string-localized field, the massive Wick exponential eigφ(c) is a “Jaffe field” of 
very poor localization properties [21].

4. Comparison with other approaches

We compile here the various approaches to the Abelian Higgs model, not least because the 
same symbols tend to stand for different objects in different settings. See for this Sect. 4.7.
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4.1. Spontaneous symmetry breaking in unitary gauge

In the textbook narrative of the Higgs mechanism, one starts classically with the minimal 
coupling of a charged scalar Higgs field � with the potential U(�∗�) to a massless vector field 
B with field strength G = ∂ ∧ B:

L = −1

4
GμνG

μν + (Dμ�)∗Dμ� − U(�∗�), U(�∗�) = κ
(
�∗� − v2

2

)2
. (4.1)

Parameterizing

�(x) = 1√
2
(v + H(x))eiχ(x)/v,

one can “gauge away” the Goldstone mode χ(x). One then writes the resulting Lagrangian in 
terms of B and H . After suitable identification of the parameters (m2 := g2v2 where g is the 
gauge coupling constant, and m2

H := 2κv2), one arrives at

L = −1

4
GμνG

μν + m2

2
BμBμ + 1

2
∂μH∂μH − m2

H

2
H 2 + LPr, (4.2)

which contains the free massive Proca and Higgs Lagrangians along with the interaction density

LPr = mg
(
B2H − m2

H

2m2 H 3
)

+ g2

2

(
B2H 2 − m2

H

4m2 H 4
)
. (4.3)

The Higgs mass term in (4.2) and the cubic and quartic terms in (4.3) together constitute the 
Higgs potential (1.1). As a quantum interaction, (4.3) is non-renormalizable.

By regarding the unitary gauge as a limiting case at tree level6 of the renormalizable Rξ gauges 
in indefinite metric, and exploiting the unbroken gauge invariance to establish the necessary Ward 
identities, it is concluded that the theory is renormalizable and unitary.

4.2. BRST approach

In [2] and [29, Chap. 4.1], the Abelian Higgs model is constructed without spontaneous 
symmetry breaking. The method of securing BRST invariance of the S-matrix is similar to our 
L-Q-pair method: one recursively fixes induced interaction terms to cancel obstructions in each 
order.

One starts on the indefinite Fock space (Krein space) of the massive vector potential AK in the 
Feynman gauge, the Higgs field H , the ghost fields u, ũ, and the independent positive-definite 
scalar Stückelberg field � of the same mass as AK [28]. The cubic interaction is given by the 
power-counting renormalizable interaction density7

LBRST = mg
(
AK(AKH + 1

m
�

↔
∂ H) + uũH − m2

H

2m2 �2H + aH 3
)
. (4.4)

6 This is not true for loop corrections [37].
7 In [2,7,29], the Higgs field H is denoted by φ or ϕ. We reserve φ for the escort field.
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The nilpotent BRST transformation s is implemented by the graded commutator with a nilpo-
tent free BRST operator Q, whose cohomology H = Ker(Q)/Ran(Q) is the positive-definite 
physical Hilbert space of the free theory. The BRST variations s(X) = i[Q, X]± are

s(AK
μ) = −∂μu, s(�) = −mu, s(u) = 0, s(̃u) = ∂μAKμ + m�, s(H) = 0.

The interaction (4.4) is distinguished by the property that its BRST variation is a total derivative:

s
(
LBRST) = ∂μ

(
(mAKμH + �

↔
∂ μH)u

)
.

The nontrivial condition to secure Hilbert space positivity of the interacting theory is that this 
feature must persist in higher orders of perturbation theory for the S-matrix. This condition in 
second order requires to add quartic terms

g2

2

(
AK2H 2 + AK2�2 − m2

H

4m2 �4 + (
3a + m2

H

m2

)
�2H 2 + bH 4

)
to the interaction density, in order to cancel obstructions. The cubic and quartic coefficients of 
the Higgs potential are fixed in third order. The result is the values (3.17).

The field

Bμ := AK
μ − m−1∂μ� (4.5)

is BRST-invariant. Its two-point function coincides with the positive-definite Proca two-point 
function (B.2). However, ∂μBμ = ∂μAμ + m� �= 0 on the Fock space. But this quantity is a null 
field in the range of s, hence it vanishes on the BRST Hilbert space H. Thus, (4.5) on H is the 
Proca field. Moreover, on H also u vanishes, and the interaction density (4.4) coincides with the 
cubic part of (4.3) up to a total derivative.

4.3. String-localized L-Q-pair approach (on the Hilbert space)

The L-Q-pair approach was exhibited at length in Sect. 3.3. Apart from the values of the 
parameters a and b, its result L[χ; c] cannot be directly compared to point-localized approaches. 
But it can be asserted that the initial L-Q-pair (3.13) defines a string-independent S-matrix iff 
the parameters a and b in L1 and L2 take the values (3.17).

4.4. String-localized L-V -pair approach (on the Hilbert space)

The L-V -pair approach was exhibited at length in Sect. 3.4. Here, the assertion is that for the 
initial L-V pair (3.19), the S-matrix in the left-hand side of (2.14) coincides with (and actually 
defines in the adiabatic limit) the string-independent S-matrix on the right-hand side.

Collecting the pieces Lpt
n in (2.15) as computed in Sect. 3.4 with the choice (3.16) of renor-

malization parameters, one gets

Lpt = mg · (B2H − m2
H

2m2 H 3) + g2

2
· ( − 3B2H 2 − m2

H

4m2 H 4)
+ g3

6
· 12

m
B2H 3 + . . . . (4.6)

It contains the interaction part of the Higgs potential (3.9) whose coefficients are the same as in 
all other approaches; plus possibly further coupling terms like gn · B2Hn (n > 3). The latter will 
be discussed in Sect. 4.7.
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The string-localized interaction density L[c] is also defined on the Krein space of Sect. 4.2, 
where B is given by (4.5) and A(c) and φ(c) are defined by (2.2) and (2.3) (smeared with c(e)). 
It then holds, for any c

s(φ(c)) = u. (4.7)

The cubic SQFT interaction (3.5) (with a′ = αi = 0) differs from (4.4) by

L1(c) = LBRST
1 − s

(
(mφ(c) − �)̃uH

) + ∂μ

(
Bμ(mφ(c) − �)H

+ 1

2m
(m2φ(c)2 − �2)∂μH

)
.

Up to the term in Ran(s) which can be included in LBRST at no expense, this is another instance 
of the example mentioned in the beginning of Sect. 2.2.

4.5. Krein space L-V -pair approach (point-localized)

One may also work with a point-localized L-V pair in the Krein space of the massive vector 
potential AK and the Higgs field, without the ghost and Stückelberg fields. The Proca field B is 
embedded into the Krein space as

Bμ := m−2∂νGK
μν = AK

μ − ∂μφK (4.8)

where GK := ∂ ∧ AK is the field strength, and φK := −m−2(∂AK). We refer to the subspace 
generated from the Krein vacuum by Bμ and H as the “embedded Hilbert space”.

Then one has an L-V pair

LK
1 = LPr

1 + ∂V K
1 (4.9)

with

LPr
1 = m · (B2H + aH 3), (4.10)

LK
1 = m ·

(
AKBH + AKφK∂H − m2

H

2
φK2H + aH 3

)
,

V K
1 = m ·

(
BφKH + 1

2
φK2∂H

)
.

We want to use this pair as the starting point of a recursion as in Sect. 2.3 to reformulate a non-
renormalizable point-localized interaction of the Proca and Higgs fields on the embedded Hilbert 
space, as a renormalizable point-localized interaction on the Krein space. The PSI in this case is 
replaced by the principle of Hilbert space positivity, i.e., the right-hand side of the analogue

T ei(LK[χ;c]+V K[χ;c]) = T eiLPr[χ]

of the identity (2.14) should be defined on the embedded Hilbert space.
We then proceed as in Sect. 2.3 and recursively determine the higher-order densities with the 

specification that LK
n are renormalizable are LPr

n are defined on the embedded Hilbert space. This 
would secure a positive-definite renormalizable theory in the adiabatic limit.

The triple LPr
1 , LK

1 , V K
1 is identical with the triple Lpt

1 , L1(c), V1(c) in Sect. 3.4 with A(c)

replaced by AK and φ(c) replaced by φK. However, the two-point obstructions are different, due 
to the different scaling degrees of the two-point functions and different linear relations among 
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the fields and their derivatives, see in App. B.2. The two-point obstructions (3.10) in the Higgs 
sector are unchanged, those in the vector boson sector are

Oμ(AKμ;B ′
ν) = Oμ(Bμ;AK

ν
′) = Oμ(Bμ;B ′

ν) = −i(1 + cB) · m−2∂νδ(x − x′),
Oμ(AKμ;φK′) = −im−2δ(x − x′),
Oμ(φK;AK

ν
′) = −icB · m−2ημνδ(x − x′),

Oμ(AKμ;AK
ν

′) = Oμ(φK;φK′) = 0,

Oμ(Bμ;φK′) = Oμ(φK;B ′
ν) = 0. (4.11)

With these, one computes the second-order obstruction (2.18) of the L-V pair LK
1 = LPr

1 + ∂V K
1 . 

One finds that it can be cancelled with

LPr
2 =(1 + 4cB) · B2H 2 + bH 4, (4.12)

LK
2 =(AK2 + 3cBAKB)H 2

+ m2
(
(3a + m2

H

m2 + cB)φK2H 2 − m2
H

4
φK4 + (1 + cH )AK2φK2

)
+ bH 4,

V K
2 =(

AK − (1 − cB) · B)
φKH 2 + m2

6
BφK3 + (1 + cH ) · m2

2
AKφK3 + cB · φK2H∂H,

WK
2 =(1 + cH ) · m2

4
φK4 + (1 + cB) · φK2H 2

with a free coefficient b of the quartic part of V (H). However, the term AKBH 2 in LK
2 has 

dimension 5 and is not renormalizable. One therefore has to choose cB = 0. Quite amazingly, 
precisely with this choice the expressions (4.12) are identical with (3.20) (with the replacement 
of string-localized fields by Krein fields).

With cB = 0, the complete computation of the third-order obstruction as in (2.20) is more 
contrived because of the derivatives of δ-functions. We have used (A.6) to compute it up to 
derivatives as in (2.21). It turns out that the third-order obstruction cannot be cancelled by third-
order densities with LPr

3 positive-definite and LK
3 renormalizable, for any value of cH . Thus, this 

approach fails in third order.

4.6. String-localized L-V -pair approach in Krein space

For the sake of completeness, we report yet another L-V pair, which reformulates the point-
localized Krein space interaction as in Sect. 4.5 as the renormalizable string-localized Hilbert 
space interaction as in Sect. 3.4. Unlike in Sect. 4.5, non-renormalizable higher-order terms LK

n

are admitted in the Krein space interaction. We thus want to establish the identity

T ei(L̃[χ;c]+Ṽ◦∂[χ;c]) != T eiL̃K[χ] (4.13)

with the initial L-V pair

L̃1 = L̃K
1 + ∂Ṽ1,

where L̃1 = L1 as in (3.19) and L̃K
1 = LK

1 as in (4.10), thus (because LPr
1 is identical with Lpt

1
embedded into the Krein space)

Ṽ1 = V1 − V K.
1
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Along with the Proca field (4.8), also the string-localized fields are embedded into the Krein 
space via (2.2) and (2.3), and it holds

B = A − ∂φ = AK − ∂φK. (4.14)

The two-point obstructions among the Hilbert space fields and among the Krein space fields are 
as before. One also needs mixed two-point obstructions, which turn out to be

Oμ(φ;φK′) = Oμ(Aμ;φK′) = Oμ(φK;φ′) = Oμ(φK;A′
ν) = 0,

Oμ(φ;AK
ν

′) = Oμ(φ;B ′
ν) = −icB · m−2ημνδxx′ ,

Oμ(AKμ;φ′) = Oμ(Bμ;φ′) = −im−2δxx′ ,

Oμ(Aμ;AK
ν

′) = Oμ(Aμ;B ′
ν) = −ieνIeδxx′ , Oμ(AKμ;A′

ν) = Oμ(Bμ;A′
ν) = 0.

Notice that Oμ(Aμ; AK
ν

′) is string-localized.
Because in this approach, the right-hand side of (4.13) is not required to be renormalizable, 

terms like AKBH 2 are admitted in ̃LK
2 (in contrast to LK

2 in Sect. 4.5). The second-order obstruc-
tion can be cancelled by L̃2 − ∂Ṽ2 − L̃K

2 for arbitrary values of cB and cH , but Ṽ2 contains terms 
involving the string-localized field A with coefficients (1 + cB) or (1 + cH ). As in Sect. 3.4, such 
terms would produce string-localized δ-functions in the third-order obstruction, which cannot be 
cancelled. Therefore, we have to choose again cB = cH = −1. With this choice,

L̃2 = m2
(
(3a + m2

H

m2 )φ2H 2 − m2
H

4
φ4

)
, (4.15)

L̃K
2 = AK(AK − 3B)H 2 + m2

(1

2
(B − AK)BφK2 + (3a + m2

H

m2 − 1)φK2H 2 − m2
H

4
φK4

)
,

Ṽ2 = (B − AK)φKH 2 − BφH 2 + m2

6
Bφ3 + m2

2
B(φK − φ)φφK + (φK − φ)φKH∂H.

We have then computed the third-order obstruction using (3.23).8 All its “mixed terms” (products 
of string-localized and Krein fields) and string-localized terms can be cancelled by derivatives 
∂Ṽ3, except precisely the same last two terms as in (3.25). Because L̃3 must vanish by renor-
malizability of the left-hand side of (4.13), this means that the third-order obstruction can be 
cancelled if and only if the parameters a and b take the values (3.17) of the Higgs potential.

4.7. Synopsis

In all approaches Sect. 4.2–Sect. 4.4, one has the renormalizable interaction density of the 
form

L1 = m
(
ABH + Aφ∂H − 1

2
m2

H φ2H + aH 3
)

8 It contains 39 terms. Although the explicit expressions are of little interest, we just report the final ̃LK
3 :

LK
3 = m−1(2AK2 − 11AKB)H 3 + m

(
(3AK2 + 3

2
AKB + 3B2)φK2H + (2 − 3

m2
H

m2
)φK2H 3)

+ m3(1 − m2
H

4m2
)φK4H.
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(plus ghost terms in the BRST setting), and a relation of the form

Bμ = Aμ − ∂μφ.

However, not only the meanings of the symbols Aμ and φ are very different, but also their cor-
relations, hence propagators and obstructions in perturbation theory. This explains the different 
induced quartic and higher interaction densities found in the various approaches.

In the string-localized approach of the main body of the paper (Sect. 3.4), A = A(c) is a 
string-localized potential and φ = φ(c) its string-localized escort field (an integral over the Proca 
field), both defined on the physical Hilbert space of the Proca field. In BRST (Sect. 4.2), A = AK

is the Feynman gauge vector potential and φ is (up to the factor m) the independent positive-
definite Stückelberg field � with 〈AK�〉 = 0. In the Krein space L-V -pair approach (Sect. 4.5), 
A = AK as in BRST, but φ = φK = −m−2(∂AK) is a derivative of the former and negative-
definite. Finally, in Sect. 4.6, we have two sets of fields A(c), φ(c) and AK, φK, related to each 
other by the two representations (4.14) of the Proca field.

In the BRST approach, ∂A +m� is in the range of the BRST transformation, hence it vanishes 
on the physical Hilbert space. Thus, the positive-definite Stückelberg field is “identified” with 
the negative-definite mφK = −m−1(∂AK) of the Krein space approach. This is of course only 
possible because their difference is a null field, which is zero in the BRST quotient space.

It is remarkable that, although the obstructions appearing in perturbation theory are different, 
they can be cancelled in the BRST and the string-localized approaches, and the fixing of the 
coefficients a, b of the Higgs potential in third order gives the same values in all of them. The 
fact that the cancellation is not possible in the point-localized Krein space approach (without 
a Stückelberg field) shows that it is by no means automatic that identities like (2.14) can be 
recursively fulfilled. Rather, there must be some hidden features of the model whose general 
nature is not transparent to us. Apparently, string-localization provides the necessary flexibility 
that in the BRST and the string-localized Krein space approaches is provided by the blowing-up 
of the field content.

The L-Q-pair approach does not allow to compute Lpt
n . For Ln, it gives compatible results 

with the L-V -pair approach.
Having established, by virtue of the identity (2.14), the equivalence between the renormal-

izable string-localized interaction L(e) with the non-renormalizable point-localized interaction 
Lpt, we should ask whether the latter is equivalent to the interaction LPr as in Sect. 4.1. Lpt in 
(4.6) and LPr in (4.3) differ by the coefficient of the second-order term B2H 2 and by a new third-
order term B2H 3 (and possibly higher-order terms B2Hn).9 On the other hand, the former uses 
the renormalization of the Proca propagator with cB = −1, that was necessary in order to elim-
inate string-localized obstructions in third order. The latter uses the kinematical choice cB = 0. 
We shall now give evidence for the presumed equivalence.

This apparent discrepancy is a variation of the familiar observation in scalar QED, that the 
renormalization (by adding a multiple of the δ-function) of a propagator connecting two cu-
bic vertices, just amounts to another quartic vertex. That the renormalization of the propagator 
〈T ∂μϕ∂νϕ〉 can be traded for the coefficient of the quartic vertex A2ϕ∗ϕ of scalar QED, has 
been proven in all orders in various settings [8,9,33]. Requiring gauge invariance of the total La-
grangian would select the kinematical propagator. But causal perturbation theory does not need 

9 Also the BRST approach in Sect. 4.2 produces a different quartic interaction, except for the Higgs potential.
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gauge invariance and can be done with an arbitrary renormalization. The result is equivalent up 
to a renormalization group transformation interpolating between both values.

The case at hand, with many vertices B2Hn and the Higgs self-couplings, is more contrived 
than scalar QED. Yet, for the tree-level scattering amplitudes for processes

2 vector bosons → n Higgs,

when computed with (4.6) in the L-V -pair approach (cB = −1) and with (4.3) in the unitary 
gauge (cB = 0), we have verified the match for n = 2 and for n = 3, as follows.

For the comparison of different values of the renormalization parameter, (B.3) can be written 
graphically (solid lines = B , n1 + n2 broken lines = H ) as

. (4.16)

This immediately implies the match between (4.6) and (4.3) for n = 2 in order g2:

(where the factors 4 and 8 are the counting factors for equivalent contractions). Note that the 
coupling constants for the B2H 2-term differ by the factor of −3. The difference is made up by 
the contributions from the second diagram on the left-hand side to the first diagram on the right-
hand side, due to (4.16). By the same method, we have verified the match also in the case n = 3
(seven diagrams with permutations, of which two diagrams need not be considered because they 
do not contain differing coupling constants or renormalized propagators), – thus justifying the 
presence of the term B2H 3 in Lpt

3 , and confirming the value of its coefficient.
In view of this evidence for the equivalence between LPr in (4.3) with cB = 0 and Lpt in (4.6)

with cB = −1, it would be most rewarding to find again a renormalization group transformation 
interpolating between them.

All approaches discussed here may be regarded as attempts to define a renormalization of 
a power-counting non-renormalizable interaction. They do not differ in their physical predic-
tions, but in the way how (and whether) fundamental principles of quantum field theory are 
implemented. What stands out is the universality of the Higgs potential, that is the same in all 
consistent approaches. Its universal shape is recognized to be an intrinsic consistency condition, 
rather than an input to trigger a spontaneous breaking of gauge symmetry.

5. Discussion

The ubiquitous clashes between Hilbert space, causality, and renormalizability are worrying 
us since the early days of QFT. The L-V -pair formalism developed in this paper allows to es-
tablish equivalences between formulations of QFT models, in which complementary subsets of 
these fundamental principles are fulfilled, such that, by the very equivalence, all of them hold 
simultaneously – but possibly not in any single formulation. Even more, it allows to fix physical 
parameters (coupling constants) as consistency conditions for the equivalences to hold.
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In particular, by providing the necessary L-V pairs, string-localized QFT can be employed 
with various benefits. In the present paper, we have considered an instance where it can be used 
to “renormalize the unrenormalizable”, provided certain parameters are appropriately fixed to 
secure consistency of the method. The physical manifestation of these parameters is the Higgs 
potential. It owes its universal shape to the fundamental principles of Hilbert space positivity and 
locality, rather than an aesthetic but positivity-violating gauge principle.

In the same way, SQFT has been used earlier to explain the “gauge theory pattern” of massive 
vector boson self-couplings [17], and the chirality of the weak interaction [19].

In a very different way, it has been used to explore the infrared structure of QED. Here, 
the logarithmic infrared divergence of the string integration defining the escort field becomes 
instrumental for a new understanding of the superselection structure of QED [25], in which the 
string smearing function describes the “shape of the photon cloud” of charged states [24]. SQFT 
allows to construct string-dependent charged fields: the Principle of String Independence holds 
for the S-matrix in the neutral sector and for observable fields, but string dependence of charged 
states and unobservable fields becomes a physical feature (the “shape of photon clouds”).

QED is in fact the prototype of an SQFT, which has no second-order obstructions and hence 
no higher-order interactions Ln (n > 1). This property distinguishes QED from the model treated 
in this work, and allows a non-perturbative construction leading “halfways” to QED [25].

It is natural to consider an SQFT treatment of QCD. Massless Yang-Mills theory is an instance 
where an L-Q pair

L1(c) = fabcA
a
μ(c)Ab

ν(c)F
cμν, (5.1)

Q
μ
1 = 2fabcw

aAb
ν(c)F

cμν,

with fabc completely antisymmetric and wa = δcA
a(c), exists on the Wigner Hilbert space of 

the free field strengths Fa
μν , but no L-V pair [16]. (Notice that the same expression (5.1) on the 

Krein space, as in Sect. 4.5, is not even an L-Q pair, because ∂μAaKμ �= 0.)
The case of QCD still remains to be worked out. The L-Q pair (5.1) has second-order ob-

structions, so that there is no immediate analogue of the non-perturbative construction that gives 
rise to the infrared superselection structure of QED. Instead, it is expected that no colour-charged 
states can be constructed at all, which would be a new mechanism to explain confinement.

The use of string-localized quantum fields in the interaction gives us occasion to comment 
on the fact (underlying causal perturbation theory also in the point-localized case): Interaction 
does not need a free Lagrangian. This is advantageous, because “canonical quantization” based 
on free Lagrangians is beset with difficulties. The zero-component of the Maxwell four-potential 
has no canonically conjugate momentum: one needs a “gauge-fixing term” to cure this problem, 
and one needs another cure (the Gupta-Bleuler condition) to make the first cure ineffective for 
the dynamics. Why is the classically purely auxiliary four-potential treated as fundamental in 
the first place, and not the observable Maxwell field tensor? For massive tensor fields of higher 
spin, “free Lagrangians” need a host of auxiliary fields to implement constraints [14]. For spinor 
fields, anti-commutation relations have no a priori “canonical” justification: they are needed to 
reconcile covariance with Hilbert space positivity after the quantization has been performed at 
the one-particle level, and Dirac’s theory to deal with first-class constraints is needed to save the 
idea of canonical quantization with a free Lagrangian that is linear in the momenta.

Weinberg [34] has shown how one can bypass all these pains. Given a unitary one-particle 
representation of the Poincaré group as classified by Wigner [35], one directly constructs free 
fields on the Fock space (i.e., a Hilbert space) over the one-particle space. Their interaction 
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is described by the interaction density L ≡ Lint alone. There is no reference to an interacting 
equation of motion (which in the literal sense does not exist in QFT). The interacting quantum 
field is constructed perturbatively by “causal perturbation theory” due to Glaser and Epstein [11], 
who turned Bogoliubov’s somewhat heuristic formula [4] into a rigorous working scheme.

A side-message of Weinberg’s construction is that quantum fields associated with a given 
particle are by no means unique: the intertwiner condition on the coefficients of creation and 
annihilation operators has many solutions. The resulting fields are all defined on the same Fock 
space and create the same particle states. This is trivially true for derivatives of a given field, and 
derivatives are the only operations that respect causal (anti-)commutativity. But if one is willing 
to relax localization (e.g., in order to tame the UV singularity of the propagator), then more 
flexibility is gained with string-localized fields. Even the NoGo result against local fields for 
infinite-spin particles [36] can be overcome [26] without the need to sacrifice the Hilbert space.

To conclude: There exist several different but equivalent ways to set up the perturbation theory 
of the same QFT model. The setups may be competitive in which fundamental principles they 
respect manifestly, and which ones have to be concluded indirectly. In the case of the Abelian 
Higgs model, SQFT seems to be closest to the “best of all worlds” in which Hilbert space positiv-
ity, covariance, locality and renormalizability are all satisfied at the same time and at every step. 
(String-localization is a very mild relaxation of locality for non-observable fields.) By avoid-
ing unphysical field degrees of freedom, it is also the most economic one. In addition, we have 
stressed that the precise shape of the Higgs potential is determined by internal consistency with 
fundamental principles, without invoking the usual gauge theoretical arguments.
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Appendix A. Second and third-order SI conditions

For the proofs of Proposition 2.4 and Proposition 2.5 it is immaterial that the densities Ln(x, c)
are string-localized and Lpt

n (x) point-localized. We write more generally just Ln and Kn instead, 
so as to cover also the L-V pairs to be discussed in Sect. 4.5 and Sect. 4.6.

Proof of Proposition 2.4. The expansion of (2.14) in second order reads

i2

2

∫
dx dx′ (χχ ′ · T [L1L

′
1] + ∂μχχ ′ · T [V μ

1 L′
1]

+χ∂ ′
νχ

′ · T [L1V
′ν] + ∂μχ∂ ′

νχ
′ · T [V μ

V ′ν]) −
1 1 1
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+ i

2

∫
dx (χ2 · L2 + ∂μχ2 · V μ

2 + ∂μχ∂νχ · Wμν
2 )

!= i2

2

∫
dx dx′ χχ ′ · T [K1K

′
1] + i

2

∫
dx χ · K2.

We insert the initial L-V pair relation L1 = K1 +∂μV
μ
1 , and integrate by parts. After the obvious 

cancellations, this becomes the determining condition for L2, K2, V2, W2∫
dx dx′ χχ ′ ·

[
(O(2)(x, x′)− iδ(x −x′)(L2 −K2 −∂μV

μ
2 )−∂μ∂ ′

ν

(
iδ(x −x′)Wμν

2

)] != 0,

where

O(2)(x, x′) = [T , ∂μ]V μ
1 K1

′ + [T , ∂ ′
μ]K1V

′μ
1 + [[T , ∂μ], ∂ ′

ν]V μ
1 V ′ν

1 .

With the notation (2.7), this is (2.18). �
Proof of Proposition 2.5. Expanding (2.14) in third order, eliminating L1 by the first-order 
condition, and integrating by parts, we get∫

dx dx′ dx′′ χχ ′χ ′′[O(3)(x, x′, x′′)−δxx′x′′(L3 −K3 −∂V3)−S3
(
∂∂ ′[δxx′x′′W3]

)] != 0,

where

O(3)(x, x′, x′′) = S3

(
3[T , ∂]V1K

′
1K

′′
1 + 3[[T , ∂], ∂ ′]V1V

′
1K

′′
1 (A.1)

+ [[[T , ∂], ∂ ′], ∂ ′′]V1V
′
1V

′′
1 −

− 3iδx′x′′
([T , ∂]V1L

′
2 + [T , ∂ ′]V ′

2K1 − ∂ ′[T , ∂]V1V
′
2

) −
− 3iδx′x′′T K1(L

′
2 − K ′

2 − ∂ ′V ′
2)

− 3i∂ ′∂ ′′(δx′x′′([T , ∂]V1W
′
2 + T K1W

′
2)

))
.

The subsequent Lemma A.1 is the tree-level version of the “Master Ward Identity” of [3, 
Sect. 2.4], which the authors postulate to hold as a natural renormalization condition in all loop 
orders. It will allow substantial systematic cancellations in (A.1).

Lemma A.1. For Wick polynomials Y and Xi , let

Oμ(Y ;X1, . . . ,Xn) := [T , ∂μ]Y(x)X1(x1), . . . ,Xn(xn)
∣∣tree

. (A.2)

It holds

OY ( : X1: , . . . , : Xn: ) =
n∑

i=1

T
( : OY (Xi): : X1: . . . : /Xi: . . . : Xn:

)∣∣tree
. (A.3)

Proof. We insert ∂Y = ∑
ϕ

∂Y
∂ϕ

∂ϕ (as Wick polynomials) in T
(
∂YX1 . . .Xn

)
. In the Wick ex-

pansion, the terms in which ∂ϕ is not contracted, cancel against the corresponding terms in the 
Wick expansion of ∂T

(
YX1 . . .Xn

)
in which the derivative hits a noncontracted factor of Y .
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The terms in T
(
∂YX1 . . .Xn

)
in which ∂ϕ is contracted with one of the fields Xi , can be 

written as∑
ϕ,χi

〈T ∂μϕ χi〉 · T ( : ∂Y

∂ϕ

∂Xi

∂χi

: : X1: . . . : /Xi: . . . : Xn:
)∣∣tree

.

Note that at tree level, there are no further contractions between ∂Y
∂ϕ

and ∂Xi

∂χ
, so the latter appear 

in a single Wick product. These terms can be paired with the corresponding terms∑
ϕ,χi

∂μ〈T ϕ χi〉 · T ( : ∂Y

∂ϕ

∂Xi

∂χi

: : X1: . . . : /Xi: . . . : Xn:
)∣∣tree

arising in the Wick expansion of ∂T
(
YX1 . . .Xn

)
, in which the derivative hits a contracted factor 

of Y . Thus, by (2.8), we have

[T , ∂μ]( : Y : : X1: . . . : Xn:
)

=
∑

i

∑
ϕ,χi

Oμ(ϕ;χi) · T
(

: ∂Y

∂ϕ

∂Xi

∂χ
: : X1: . . . : /Xi: . . . : Xn:

)∣∣tree
.

By (2.9), this proves the claim. �
Proof of Proposition 2.5 (cont’d). We need the case n = 2 of Lemma A.1, where Yμ = V

μ
1 is a 

vector field. With notation OY1(X
′, Z′′) ≡ Oμ(Y

μ
1 ; X, Z), the first line of (A.1) can be written as

S3
(
3OV1(K

′
1,K

′′
1 ) + 3OV1(∂

′V ′
1,K

′′
1 ) − 3∂ ′OV1(V

′
1,K

′′
1 ) +

+OV1(∂
′V ′

1, ∂
′′V ′′

1 ) − 2∂ ′OV1(V
′
1, ∂

′′V ′′
1 ) + ∂ ′∂ ′′OV1(V

′
1,V

′′
1 )

)
. (A.4)

By Lemma A.1, and with some rearrangements, this becomes

S3

(
3T O(2)(x, x′)K1(x

′′) + 3OOV1 (V ′
1)

(K ′′
1 )

+OV1

(
OV ′

1
(3K ′′

1 + 2∂ ′′V ′′
1 )

) − 2∂ ′′OV1

(
OV ′

1
(V ′′

1 )
))

with O(2)(x, x′) as in (2.18). Expressing the latter by (2.19) in terms of the second-order fields 
L2, K2, V2, W2, one can cancel the term involving δx′x′′ · T K1(L

′
2 − K ′

2 − ∂ ′V ′
2) in the last line 

of (A.1), and rewrite all the remaining terms as (2.20). �
If one is interested only in the third-order densities K3 and L3, it suffices to compute the 

integral over (2.21) and demand:∫
dx dx′ dx′′ O(3)(x, x′, x′′) !=

∫
dx (L3(x) − K3(x)). (A.5)

Because all total derivatives drop out, the integral over (2.20) reduces to∫
dx dx′ dx′′ O(3)(x, x′, x′′) =

∫
dx

(
�V1(3L2 − �V1(K1 + 2L1))

+ 3�V2−�V1 (V1)(K1)
)
(x), (A.6)

where for vector fields Yμ,

�Y (X) := −i

∫
dx′ OY (X′)
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coincides with (3.21) in the case when there are no derivatives of δ-functions. The form (A.6) is 
easy to evaluate, even when the two-point obstructions involve derivatives of δ-functions. It then 
suffices to equate the integrands of (A.5) and (A.6).

Appendix B. Propagators and two-point obstructions

We denote by Wm(x − x′) and Tm(x − x′) the canonical scalar two-point function and time-
ordered two-point function of mass m, such that iTm is the Feynman propagator, and

(�+ m2)Wm(x − x′) = 0, (�+ m2)Tm(x − x′) = −iδ(x − x′).

B.1. Propagators and two-point obstructions for the Higgs field

The two-point function of the Higgs field is the canonical scalar two-point function of mass 
mH :

〈H(x)H(x′)〉 = WmH
(x − x′).

The two-point functions of derivatives of H are derivatives of WmH
. We define the “kinematical” 

propagators among the fields H and ∂H by the same differential operators acting on the massive 
Feynman propagator iTmH

(x−x′). However, the time-ordering prescription fixes the propagators 
only outside the point x − x′ = 0. The freedom to add an arbitrary derivative of δ(x − x′) is 
constrained, apart from Lorentz covariance, by the scaling degree that must not exceed the scaling 
degree of the kinematical propagators. TmH

has the canonical scaling degree 2. Every derivative 
increases the scaling degree by 1. The δ-function has scaling degree 4. Therefore, 〈T ∂H∂ ′H ′〉
has a freedom of renormalization:

〈T ∂μH(x)∂ ′
νH(x′)〉 = −∂μ∂νTmH

(x − x′) + icH ημνδ(x − x′) (B.1)

with an arbitrary real constant cH .
Using �H = −m2

H H and the definition (2.8), one computes the two-point obstructions 
Oμ(ϕ; ϕ′) among the fields H and ∂H , as displayed in (3.10):

Oμ(H ; ∂ ′
νH

′) = 〈T ∂μH∂ ′
νH

′〉 − ∂μ〈T H∂ ′
νH

′〉 = icH ημνδ(x − x′),
Oμ(∂μH ;H ′) = 〈T�HH ′〉 − ∂μ〈T ∂μHH ′〉 = −(m2

H +�)TmH
(x − x′) = iδ(x − x′),

Oμ(∂μH ; ∂ ′
νH

′) = 〈T�H∂ ′
νH

′〉 − ∂μ〈T ∂μH∂ ′
νH

′〉 = −i(cH + 1)∂νδ(x − x′).

B.2. Propagators and two-point obstructions for Krein space fields

The Feynman gauge two-point function of the Krein potential AK of mass m is

〈AK
μ(x)AK

ν (x′)〉 = −ημνWm(x − x′).

By the definitions φK := −m−2(∂AK) and B := AK − ∂φK as in Sect. 4.5, one computes the 
two-point functions (with Lorentz indices and arguments suppressed in an obvious way)

〈φKφK′〉 = −m−2Wm,

〈φK∂φK′〉 = −〈∂φKφK′〉 = 〈φKAK′〉 = −〈AKφK′〉 = m−2∂Wm,

〈∂φK∂φK′〉 = 〈∂φKAK′〉 = 〈AK∂φK′〉 = m−2∂∂Wm,
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〈BB ′〉 = 〈BAK′〉 = 〈AKB ′〉 = −(η + m−2∂∂)Wm,

〈BφK′〉 = 〈φKB ′〉 = 〈B∂φK′〉 = 〈∂φKB ′〉 = 0.

We define the kinematical propagators by the same differential operators acting on the massive 
Feynman propagator iTm. Only those propagators involving ∂μ∂νTm have scaling degree 4 and 
admit a renormalization proportional to ημνδ(x − x′). By linearity and AK

μ − Bμ = ∂μφK, there 
is only one independent parameter cB :

〈T BB ′〉 = 〈T AKB ′〉 = 〈T BAK′〉 = −(η + m−2∂∂)Tm(x − x′) + icB · m−2ηδ(x − x′),

〈T ∂φK∂φK′〉 = 〈T AK∂φK′〉 = 〈T ∂φKAK′〉 = m−2∂∂Tm(x − x′) − icB · m−2ηδ(x − x′).

With ∂B = 0, ∂AK = −m2φK, and �φK = −m2φK, one computes the relevant two-point 
obstructions among the fields AK, B , φK. The results are (4.11).

B.3. Propagators and two-point obstructions for string-localized fields

The positive-definite two-point function of the Proca field B of mass m is

〈Bμ(x)Bν(x
′)〉 = −(ημν + m−2∂μ∂ν)Wm(x − x′). (B.2)

We use the short-hand notation (IeX)(x) := ∫ ∞
0 ds X(x+se). By the definitions φ(e) := Ie(eB), 

A(e) := B + ∂φ(e) = B + Ie∂(eB), one computes the two-point functions

〈AμB ′
ν〉 = −(ημν + eνIe∂μ)Wm, 〈BμA′

ν〉 = −(ημν − e′
μI−e′∂ν)Wm,

〈Aμφ′〉 = −(e′
μI−e′ + (ee′)IeI−e′∂μ)Wm, 〈φA′

ν〉 = −(eνIe − (ee′)IeI−e′∂ν)Wm,

〈AμA′
ν〉 = −(ημν + eνIe∂μ − e′

μI−e′∂ν − (ee′)IeI−e′∂μ∂ν)Wm,

〈Bμφ′〉 = −(e′
μI−e′ + m−2∂μ)Wm, 〈φB ′

ν〉 = −(eνIe − m−2∂ν)Wm,

〈φφ′〉 = −((ee′)IeI−e′ − m−2)Wm,

where it was used repeatedly that �Wm = −m2Wm and (e∂)(IeX)(x) = −X(x).
We define the kinematical propagators by the same differential and integral operators as in the 

two-point functions, acting on iTm(x − x′). The propagator i〈T BB〉 has scaling degree 4 and 
admits the renormalization (the same as in the Krein space approach App. B.2)10:

〈T BμB ′
ν〉 = −(ημν + m−2∂μ∂ν)Tm(x − x′) + icB · m−2ημνδ(x − x′). (B.3)

By inspection of the scaling degree that is lowered by 1 by a string integration, one observes that 
all other propagators admit only renormalizations involving string-integrals over δ-functions.

The kinematical propagators produce string-localized two-point obstructions Oμ(Aμ; X′), as 
displayed in (3.12). We have made a careful analysis of possible string-localized renormalizations 
of the propagators. Their precise structure is dictated by the scaling degree, Lorentz invariance, 
the number of string integrations, homogeneity in e and e′, and the identity −(e∂)Ie = 1 which 

10 The freedom of propagator renormalization in causal perturbation theory should not be confused with propagators 
in different gauges, like Rξ gauges. The latter would violate causality because of their momentum space denominators 
k2 − ξm2.
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implies the axiality property eμAμ = 0. It turns out that it is impossible to make all string-
localized two-point obstructions vanish – one would rather produce more of them.11 There is 
thus the risk that the second-order obstructions (2.12) and (2.18) of the S-matrix become string-
localized. In this case, they cannot be cancelled by admissible higher-order densities, as outlined 
in Sect. 2.3. In the Abelian Higgs model, they do not occur, thanks to a characteristic feature 
of the model (namely, the string-localized field A does not appear within Vn) that prefers the 
kinematical choice of propagators for the string-localized fields, see Sect. 3.

We take therefore all relevant propagators in the Proca sector except (B.3) to be the kinemati-
cal ones. One can then directly compute the relevant two-point obstructions. One obtains (3.11)
and (3.12).

For the L-Q-approach in Sect. 3.3, we also need obstructions Oμ(w; X′) involving the 
field w = δcφ(c). These obstructions vanish because Oμ(φ; X′) in (3.11) and (3.12) are string-
independent, and Oμ(w; X′) = δcOμ(φ; X′).

In Sect. 3.6, we also need obstructions of the field strength Gμν = ∂μBν −∂νBμ. The obstruc-
tions (3.33) follow from the unique propagators

〈T BκG′
μν〉 = (δκ

ν ∂μ − δκ
μ∂ν)Tm, 〈T φ(e)G′

μν〉 = (eν∂μ − eμ∂ν)IeTm (B.4)

and the kinematical propagator

〈T Aκ(e)G′
μν〉 = (

(δκ
ν ∂μ − δκ

μ∂ν) + (eν∂μ − eμ∂ν)∂
κIe

)
Tm. (B.5)

Appendix C. Useful identities

The following structures appear in the computation of O(2) as in (2.18). Let throughout X(′) ≡
X(x(′)), ∂(′) ≡ ∂x(′) , and δxx′ ≡ δ(x − x′) and δxx′x′′ ≡ δxx′δx′x′′ .

Lemma C.1. It holds

X · δxx′ · Y ′ + X′ · δxx′ · Y = δxx′ · 2XY, (C.1)

X · ∂αδxx′ · Y ′ + X′ · ∂ ′
αδxx′ · Y = δxx′ · X↔

∂ αY,

∂ ′
α(X · δxx′ · Y ′) + ∂α(X′ · δxx′ · Y) = δxx′ · ∂α(XY),

∂ ′
α(X · ∂βδxx′ · Y ′) + ∂α(X′ · ∂ ′

βδxx′ · Y) = (∂ ′
α∂β + ∂α∂ ′

β)(δxx′ · XY) − δxx′ · ∂α(Y∂βX).

Proof. The proof is elementary, using identities of the form X · ∂δxx′ · Y ′ = ∂(X · δxx′ · Y ′) −
∂X · δxx′ · Y ′, as well as (∂ + ∂ ′)δxx′ = 0. �

The following structures appear in the computation of O(3) as in (3.23).

Lemma C.2. It holds

3S3
(
δx′x′′ · ∂ ′δxx′ · X) = 2δxx′x′′ · ∂X, (C.2)

3S3
(
δx′x′′ · ∂ ′δxx′ · XY ′) = δxx′x′′ · (2Y∂X − X∂Y).

11 E.g., contributions to the obstruction Oμ(Aμ; A′
ν) in (3.12) could come from renormalizations of 〈T AμA′

ν 〉 or 
〈T φA′

ν 〉 (via ∂μAμ = −m2φ). But the latter (scaling degree 1) admits no renormalization at all, and the renormalization 
of the former (scaling degree 2) by ((ee′)ημν − e′

μeν)IeI−e′δ(x − x′) would (via ∂μφ = Aμ − Bμ) produce a non-zero 
obstruction Oμ(φ; A′

ν).
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Proof. For the first identity, write

3δx′x′′ · ∂ ′δxx′ · X = −3δx′x′′ · ∂δxx′ · X = 3δxx′x′′ · ∂X − 3∂(δxx′x′′ · X).

In the second term, 3δxx′x′′ · X = δxx′x′′ · (X + X′ + X′′) is separately symmetric. Apply the 
symmetrization:

3S3
(
δx′x′′ · ∂ ′δxx′ · X) = 3δxx′x′′ · ∂X − 1

3
(∂ + ∂ ′ + ∂ ′′)

(
δxx′x′′ · (X + X′ + X′′)

)
,

and use that (∂ + ∂ ′ + ∂ ′′)δxx′x′′ = 0 while δxx′x′′ · (∂ + ∂ ′ + ∂ ′′)(X + X′ + X′′) = 3δxx′x′′ · ∂X. 
This proves the first identity. For the second identity write

∂ ′δxx′ · XY ′ = ∂ ′(δxx′ · XY ′) − δxx′ · X∂ ′Y ′ = ∂ ′δxx′ · XY − δxx′ · X∂Y,

and apply the first identity. �
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