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Abstract: Zwitterionic compounds such as pyridine-containing tellurenyl compounds are interest-
ing building blocks for heterometallic assemblies. They can act as ambiphilic donor/acceptors as
is shown by the products of reactions of the zwitterions HpyTeCl2 or HCF3pyTeCl2 with the rhe-
nium(V) complex [ReOCl3(PPh3)2]. The products have a composition of [ReO2Cl(pyTeCl)(PPh3)2]

and [ReO2Cl(CF3pyTeCl)(PPh3)2] with central {O = R



e = O . . . Te(Cl)py}+ units. The Re-O bonds
in the products are elongated by approximately 0.1 Å compared with those to the terminal oxido
ligands and establish Te . . . O contacts. Thus, the normally easily assigned concept of oxidation states
established at the two metal ions becomes questionable (ReV/TeII vs. ReIII/TeIV). A simple bond
length consideration rather leads to a description with the coordination of a mesityltellurenyl(II)
chloride unit to an oxido ligand of the Re(V) center, but the oxidation of the tellurium ion and the for-
mation of a tellurinic acid chloride cannot be ruled out completely from an analysis of the solid-state
structures. DFT calculations (QTAIM, NBO analysis) give clear support for the formation of a Re(V)
dioxide complex donating into an organotellurium(II) chloride and the alternative description can at
most be regarded as a less favored resonance structure.
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1. Introduction

Organotellurium(II) compounds are valuable synthons in the organic chemistry of
this element, but have also found increasing interest as components of coordination com-
pounds [1–8]. They can act as Lewis-acidic metal centers or as donors similar to their
lighter sulfur or selenium homologs. Particularly flexible are organotellurides, which
contain additional donor positions in their scaffold allowing chelate formation together
with the potential tellurium donor or an ambiphilic behavior with the Te(II) atom acting
as Lewis acid. Such chelators are frequently established with phosphines [9–14], but also
assemblies with amines, Schiff bases, or phenolates are known and are under discussion for
potential applications as photoactive materials, catalysts and/or in material science [15–23].
Heavy chalcogens and halogens are known to establish non-covalent chalcogen-halogen,
chalcogen-chalcogen, or halogen-halogen interactions, which frequently result in uncom-
mon structural features and allow the modulation of the electronic situation in such com-
pounds. A special situation is given, when a {TeX}+ unit (X = halide) is bonded to a pyridine
ring. The structures given in Figure 1 perfectly reflect the ambiphilic character of such
pyridine-based tellurenyl halides. Already the solid-state structures of the unsubstituted
[pyTeX] compounds (X = Cl, I) crystallize as dimers with the pyridine nitrogen donating to
the tellurium(II) ion [24,25].
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Figure 1. Pyridyltellurenyl halides and some of their complexes [23–27]. 

Contrastingly both nitrogen and tellurium act as donors in [{MepyTeCl2}PdCl2] [26]. 
The bonding situation in the second palladium compound of Figure 1 is more sophisti-
cated, since all three of the tellurium atoms seem to donate to the transition metal, but one 
of them parallelly accepts electron density from the adjacent pyridine rings [27]. The zwit-
terionic acidification products of the pyridyltellurenyl chlorides [HpyTeX] have been 
shown to be versatile synthons for metal complexes [27], which stimulated us to perform 
experiments with the common oxidorhenium(V) precursor [ReOCl3(PPh3)2]. With regard 
to our continuing interest in fluorinated ligand systems and the effects of fluorination on 
the coordination properties of such systems, we also incorporated CF3-substituted pyri-
dyltellurenyl halides in this study. 

2. Materials and Methods 
Unless otherwise stated, reagent-grade starting materials were purchased from com-

mercial sources and either used as received or purified by standard procedures. Bis(2-
pyridyl)ditellane, [HPyTeCl2] and [ReOCl3(PPh3)2] were synthesized according to pub-
lished protocols [27,28]. The solvents were dried and deoxygenated according to standard 
procedures. NMR spectra were recorded at room temperature with JEOL 400 MHz ECS 
or ECZ multinuclear spectrometers. Chemical shifts are given relative to TeMe2 (125Te) and 
CFCl3 (19F). Elemental analyses were determined with a Heraeus Vario El III elemental 
analyzer. FTIR spectra were recorded on a Bruker Vertex spectrometer using attenuated 
total reflection (ATR). Confocal FT-Raman spectra were measured with a Bruker Senterra 
micro-Raman spectrometer using a 785 nm laser. 

2.1. Syntheses 
Bis(5-trifluoromethyl-2-pyridyl)ditellane (1): Sodium borohydride (5 g, 132 mmol) 

was added to a mixture containing tellurium powder (2.55 g, 20 mmol) and sodium hy-
droxide (0.8 g, 20 mmol) in 200 mL of ethanol. The mixture was heated under reflux in a 
Schlenk flask under an argon atmosphere until the solution became colorless. Then, the 
system was cooled to room temperature, and 2-chloro-5-(trifluoromethyl)pyridine (7.261 
g, 40 mmol) was added. The resulting mixture was heated on reflux for 6 h. After cooling 
to room temperature, the reaction mixture was extracted with chloroform (3 × 100 mL). 
The organic layers were collected, dried and the solvent was removed leaving a red, oily 
residue. Crystallization was performed from a CHCl3/MeOH mixture. Orange red, crys-
talline solid. Yield: 87% (4.76 g) based on elemental tellurium. Elemental analysis: Calcd 
for C12H6F6N2Te2: C 26.33, H 1.10, N 5.12%. Found: C 26.35, H 1.12, N 5.13%. 1H NMR 
(CDCl3, ppm): 8.65 (s, 2H), 8.09 (d, J = 8.2 Hz, 2H), 7.54 (d, J = 8.2, 2H). 13C NMR (CDCl3, 
ppm): 146.6 ppm (q, J = 4.1 Hz), 140.5 (q, J = 1.6 Hz), 133.4 (q, J = 3.4 Hz), 124.9 (q, J = 33.3 
Hz), 123.2 (q, J = 272.5 Hz). 19F NMR (CDCl3, ppm): −62.5. 125Te NMR (CDCl3, ppm): 454.6. 
IR (cm−1): 3046, 2902, 1583, 1553, 1315, 1061, 746, 487. Raman (cm−1): 1332, 1061, 736, 487, 
202. 

[HCF3pyTeCl2] (2): A solution of 1 (109 mg, 0.2 mmol) in CHCl3 (5 mL) was overlay-
ered with hydrochloric acid (3 mL, 37%) and kept for four days. During this time, an or-
ange-yellow solid precipitated. This solid was separated by filtration and dried in a 
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Contrastingly both nitrogen and tellurium act as donors in [{MepyTeCl2}PdCl2] [26].
The bonding situation in the second palladium compound of Figure 1 is more sophisticated,
since all three of the tellurium atoms seem to donate to the transition metal, but one
of them parallelly accepts electron density from the adjacent pyridine rings [27]. The
zwitterionic acidification products of the pyridyltellurenyl chlorides [HpyTeX] have been
shown to be versatile synthons for metal complexes [27], which stimulated us to perform
experiments with the common oxidorhenium(V) precursor [ReOCl3(PPh3)2]. With regard
to our continuing interest in fluorinated ligand systems and the effects of fluorination
on the coordination properties of such systems, we also incorporated CF3-substituted
pyridyltellurenyl halides in this study.

2. Materials and Methods

Unless otherwise stated, reagent-grade starting materials were purchased from com-
mercial sources and either used as received or purified by standard procedures. Bis(2-
pyridyl)ditellane, [HPyTeCl2] and [ReOCl3(PPh3)2] were synthesized according to pub-
lished protocols [27,28]. The solvents were dried and deoxygenated according to standard
procedures. NMR spectra were recorded at room temperature with JEOL 400 MHz ECS or
ECZ multinuclear spectrometers. Chemical shifts are given relative to TeMe2 (125Te) and
CFCl3 (19F). Elemental analyses were determined with a Heraeus Vario El III elemental
analyzer. FTIR spectra were recorded on a Bruker Vertex spectrometer using attenuated
total reflection (ATR). Confocal FT-Raman spectra were measured with a Bruker Senterra
micro-Raman spectrometer using a 785 nm laser.

2.1. Syntheses

Bis(5-Trifluoromethyl-2-pyridyl)ditellane (1): Sodium borohydride (5 g, 132 mmol)
was added to a mixture containing tellurium powder (2.55 g, 20 mmol) and sodium
hydroxide (0.8 g, 20 mmol) in 200 mL of ethanol. The mixture was heated under reflux
in a Schlenk flask under an argon atmosphere until the solution became colorless. Then,
the system was cooled to room temperature, and 2-chloro-5-(trifluoromethyl)pyridine
(7.261 g, 40 mmol) was added. The resulting mixture was heated on reflux for 6 h. After
cooling to room temperature, the reaction mixture was extracted with chloroform (3 ×
100 mL). The organic layers were collected, dried and the solvent was removed leaving a
red, oily residue. Crystallization was performed from a CHCl3/MeOH mixture. Orange
red, crystalline solid. Yield: 87% (4.76 g) based on elemental tellurium. Elemental analysis:
Calcd for C12H6F6N2Te2: C 26.33, H 1.10, N 5.12%. Found: C 26.35, H 1.12, N 5.13%. 1H
NMR (CDCl3, ppm): 8.65 (s, 2H), 8.09 (d, J = 8.2 Hz, 2H), 7.54 (d, J = 8.2, 2H). 13C NMR
(CDCl3, ppm): 146.6 ppm (q, J = 4.1 Hz), 140.5 (q, J = 1.6 Hz), 133.4 (q, J = 3.4 Hz), 124.9
(q, J = 33.3 Hz), 123.2 (q, J = 272.5 Hz). 19F NMR (CDCl3, ppm): −62.5. 125Te NMR (CDCl3,
ppm): 454.6. IR (cm−1): 3046, 2902, 1583, 1553, 1315, 1061, 746, 487. Raman (cm−1): 1332,
1061, 736, 487, 202.

[HCF3pyTeCl2] (2): A solution of 1 (109 mg, 0.2 mmol) in CHCl3 (5 mL) was over-
layered with hydrochloric acid (3 mL, 37%) and kept for four days. During this time,
an orange-yellow solid precipitated. This solid was separated by filtration and dried in
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a vacuum. Orange-yellow crystals. Yield: 55 mg (40%). Elemental analysis: Calcd for
C6H4Cl2F3NTe: C 20.85, H 1.17, N 4.05%. Found: C 20.80, H 1.10, N 4.08%. IR (cm−1):
3422, 3086, 3072, 2997, 1560, 1535, 1242, 1025, 783, 492. Raman (cm−1) 1518, 1231, 1058, 236,
284, 260.

[HCF3pyTeBr2] (3): This compound was prepared according to the procedure given
for compound 2 using HBr (48%) instead of HCl. Orange-yellow crystals. Yield: 46%.
Elemental analysis: Calcd for C6H4Br2F3NTe: C 16.59, H 0.93, N 3.22%. Found: C 16.51, H
0.98, N 3.19%. IR (cm−1) 3405, 3088, 3070, 2983, 1587, 1529, 1235, 1022, 782, 490. Raman
(cm−1): 1233, 1026, 784, 268, 189, 167.

[ReO2Cl(CF3pyTeCl)(PPh3)2] (4): Solid [ReOCl3(PPh3)2] (83 mg, 0.1 mmol) was added
to a suspension of [HCF3pyTeCl2] (35 mg, 0.1mmol) in 6 mL of a DMF/EtOH mixture
(1:1, v/v). The sparingly soluble solids slowly dissolved upon heating under reflux for
approximately 15 min. The resulting, almost clear solution was filtered and red crystals
were obtained after slow evaporation of the solvents. Red crystals. Yield: 53%. Elemental
analysis (for a carefully dried sample to remove the co-crystallized solvent): Calcd for
C42H33Cl2F3NO2P2ReTe: C 46.39, H 3.06, N 1.29%. Found: C 46.38, H 3.04, N 1.31%. IR
(cm−1): 2930, 2864, 1557, 1496, 1326, 1063, 998, 910, 751, 659, 446, 254. Raman (cm−1): 1325,
1053, 1000, 656, 254.

[ReO2Cl(pyTeCl)(PPh3)2] (5): The compound was prepared following the procedure
given for complex 4 using [HpyTeCl2] instead [HCF3pyTeCl2]. Red crystals. Yield: 66
mg (65%). Elemental analysis: Calcd for C41H34Cl2NO2P2ReTe: C 48.31, H 3.36, N 1.37%.
Found: C 48.38, H 3.36, N 1.40%. 125Te NMR (CDCl3, ppm): 1724.4. 31P NMR (CDCl3,
ppm): −7.6 ppm. IR (cm−1): 3080, 3056, 1558, 1544, 1051, 997, 913, 745, 669, 449, 259. Raman
(cm−1): 1050, 1000, 639, 249.

2.2. X-ray Crystallography

The intensities for the X-ray determinations were collected on an STOE IPDS II instru-
ment with Mo Kα radiation or on Bruker Apex CCD diffractometers with Mo Kα or Ag
Kα radiation. The space groups were determined by the detection of systematic absences.
Absorption corrections were carried out by multiscan or integration methods [29,30]. Struc-
ture solution and refinement were performed with the SHELX program package using
the OLEX2 platform [31–33]. Hydrogen atoms were derived from the final Fourier maps
and refined, or placed at calculated positions and treated with the ‘riding model’ op-
tion of SHELXL. The representation of molecular structures was done using the program
DIAMOND 4.2.2 [34].

2.3. Computational Details

DFT calculations were performed on the high-performance computing systems of the
Freie Universität Berlin ZEDAT (Curta) using the program packages GAUSSIAN 09 and
GAUSSIAN 16 [35,36]. The gas phase geometry optimization was performed using coordi-
nates derived from the X-ray crystal structure using GAUSSVIEW [37]. The calculations
were performed with the hybrid density functional B3LYP [38–40]. The double-ζ pseudopo-
tential LANL2DZ basis set with the respective effective core potential (ECP) was applied to
Re, while additional polarization functions (dp) were included for tellurium [41–43]. The
6-311++G** basis set was applied for all other atoms [44–48]. All basis sets as well as the
ECPs were obtained from the basis set exchange (BSE) database [49]. Frequency calculations
confirmed the optimized structures as minima. No negative frequencies were obtained
for the given optimized geometries of all compounds. The NBO analysis was performed
using the NBO6.0 functionality as implemented in GAUSSIAN. Further analysis of orbitals,
charges, topology, etc., and their visualization was performed with the free multifunctional
wavefunction analyzer Multiwfn [50,51]. Visualization of the mapped basins, which were
calculated in Multiwfn, was done with GAUSSVIEW [37]. The visualization of the orbitals
was done in Avogadro [52].
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3. Results and Discussions
3.1. Bis(5-Trifluoromethyl-2-pyridyl)ditellane and the Zwitterions [HCF3pyTeX2] (X = Cl, Br)

The CF3-substituted pyridylditellane 1 can readily be prepared following the gen-
eral procedure for the non-substituted compound [27]. The treatment of 2-chloro-5-
(trifluoromethyl)pyridine with two equivalents of elemental tellurium and an excess of
NaBH4 in boiling ethanol gives the ditelluride in excellent yields (Scheme 1). A crystalline
product is obtained from a chloroform/ethanol mixture. The orange-red crystals are readily
soluble in common organic solvents such as CHCl3, acetonitrile, or THF. The purity of
the ditelluride 1 can readily be checked by its 19F and/or 125Te NMR spectra. They give
narrow signals at−62.5 ppm (19F) and 454.6 ppm (125Te). The 125Te resonance appears close
to the signal, which was previously obtained for the non-fluorinated ditelluride {pyTe}2
(427.7 ppm) [27].
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Scheme 1. Syntheses of {CF3pyTe}2 (1), [HCF3pyTeCl2] (2), and [HCF3pyTeBr2] (3).

Single crystals of 1 suitable for X-ray diffraction were obtained from the slow evapora-
tion of a CHCl3/EtOH mixture. An ellipsoid representation of the molecular structure of
the CF3-substituted ditellane is shown in Figure 2. The solid-state structure is unexceptional
with a Te-Te bond length of 2.689(2) Å and C-Te-Te angles of 99.83(6) and 100.05(6)◦. These
values are close to those found for (2-pyTe)2 [53]. More details about the crystallographic
data are given in Supplementary Material.
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to hexameric units in the solid state due to Te . . . Cl long range interactions.

The treatment of a solution of compound 1 in CHCl3 with HCl or HBr results in a
cleavage of the Te-Te bond and the formation of zwitterionic compounds of the composition
[HCF3pyTeX2] (X = Cl: 2, X = Br: 3). This synthetic route has been shown to be favorable
for the synthesis of zwitterions, which precipitate directly from the reaction mixture. In
this way, products of higher purity can be obtained than following the conventional route,
where elemental halogens are used for the oxidation of tellurium [54–58]. Unfortunately, the
low solubility of the [HCF3pyTeX2] zwitterions and their gradual decomposition in solution
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prevent from the recording of NMR spectra of sufficient quality. The presence of hydrogen
bonds between the pyridine rings and the halides is supported by the detection of IR
bands in the range around 2500 cm−1. FT-Raman spectra of 2 and 3 allow the identification
of some more characteristic bands as νC-F vibrations (1231 and 236 cm−1 for 2 and 1233
and 268 cm−1 for 3). Bands at 284 and 260 cm−1 (compound 2), and 189 and 169 cm−1

(compound 3) can be assigned to the corresponding νTe-X stretches. The values agree with
previous assignments on similar compounds [59–61].

Single crystals of 2 and 3 suitable for X-ray diffraction were obtained directly from the
reaction mixtures. All our attempts to recrystallize the compounds did not result in crystals
of better quality, since a gradual decomposition of the fluorinated products in solution
was observed. Figure 2 contains ellipsoid plots of the two zwitterions. They show the
expected T-shaped coordination environment of the tellurium atoms with C-Te-X angles
between 87.1 and 90.7◦. The Te-Cl bond lengths of 2.576(1) and 2.525(1) Å and the Te-Br
bonds between 2.640(1) and 2.819(1) Å are in the usual range for tellurium(II) compounds.
Hydrogen bonds are established between the pyridinium nitrogen atom and chlorine or
bromine atoms. Summarizing, the structural features found in the molecular structures of
[HCF3pyTeCl2] and [HCF3pyTeBr2] are similar to those of the non-substituted zwitterions
[HpyTeX2] [27,62].

The solid-state structures of compounds 2 and 3 are characterized by weak contacts
between the tellurium and halogen atoms. Such non-covalent bonds are not unusual in the
chemistry of heavy chalcogens and the nature of such chalcogen and/or halogen bonds is of
permanent interest in different fields of chemical science [63–67]. Intermolecular tellurium-
chlorine contacts of 3.462(2) Å produce hexameric assemblies in the rhombohedral structure
of [HCF3pyTeCl2], while trimeric units with Te . . . Br contacts of 3.561(1) Å are established
in the monoclinic structure of compound 3. A visualization of the latter contacts can be
found in the Supplementary Material.

3.2. [ReO2Cl(CF3pyTeCl)(PPh3)2] (4) and [ReO2Cl(pyTeCl)(PPh3)2] (5)

The zwitterionic tellurenyl compounds do not just show interesting bonding features
in their solid-state structures but are also facile synthons in coordination chemistry. This has
been shown with the synthesis of several copper and palladium complexes [25,26,68]. Since
rhenium complexes with tellurium-containing ligands are still rare and are mainly restricted
to telluroethers, tellurolates, and some ditellurides [69], we now performed a reaction of
the common rhenium(V) precursor [ReOCl3(PPh3)2] with [HCF3pyTeCl2] (Scheme 2). The
sparingly soluble starting materials dissolve in a boiling mixture of DMF/EtOH within
15 min and red crystals deposit during slow evaporation of the solvents. They have a
composition of [ReO2Cl(CF3pyTeCl)(PPh3)2] (4). The presence of a Re=O double bond is
strongly indicated by an IR band at 910 cm−1, which is the typical region for the trans-
{ReO2}+ complexes, while the corresponding bands in mono-oxido complexes usually
appear at higher wavenumbers [70].
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Similar to the zwitterionic starting materials, the rhenium complex with the CF3-
substituted ligand is not stable in the solution. Its gradual decomposition allows the
recording of 31P and 19F NMR spectra, but unfortunately not of 125Te spectra of sufficient
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quality due to the long data acquisition times for this nucleus. This is particularly un-
fortunate since information about the electronic situation of the tellurium atom in the
novel complex would be helpful to understand the bonding situation in the bimetallic
compound. Luckily, the crystals, which were deposited from the reaction mixture, could
be used for an X-ray diffraction study. The molecular structure of 4 is shown in Figure 3a
and selected bond lengths and angles are summarized in Table 1. It becomes evident that
the zwitterionic starting material deprotonates and coordinates with its pyridine ring in
the equatorial coordination sphere of rhenium replacing a chlorido ligand. An additional
and interesting interaction is established between the tellurium atom and an oxygen atom,
which is bonded to rhenium. The bonding situation in the{Re-O2-Te(py)Cl}3+ fragment is
somewhat ambiguous, since it can be understood as a donation of electron density from an
oxido ligand of the rhenium complex to the tellurium building block giving a “ReV/TeII

situation” (Figure 3c), but also the formation of a tellurinic acid fragment, which donates
with its oxygen atom to the sixth coordination position of rhenium, cannot be ruled out
entirely. The latter case would produce a “ReIII/TeIV situation”.
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Table 1. Selected bond lengths/Å and angles/◦ in ReO2Cl(CF3pyTeCl)(PPh3)2] (4) and
(b) [ReO2Cl(pyTeCl)(PPh3)2] (5).

Re-O1 Re-O2 O2-Te Te-Cl2 O1-Re-O2 Re-O2-Te O2-Te-Cl2 O2-Te-C1

4 1.721(4) 1.822(3) 2.102(4) 2.578(2) 165.9(2) 135.2(2) 171.6(1) 81.0(2)

5 1.730(2) 1.824(2) 2.102(2) 2.5736(9) 168.42(9) 134.3(1) 169.99(6) 81.23(9)

In order to produce a second example for such compounds, which probably would
be stable enough in solution to provide 125Te NMR data for the evaluation of the bonding
situation, we performed a reaction of [ReOCl3(PPh3)2] with the unsubstituted zwitterion
[HpyTeCl2] (Scheme 2). The product, [ReO2Cl(pyTeCl)(PPh3)2] (5), finally possesses the
same basic structure as compound 4. An ellipsoid representation of the molecular structure
is shown in Figure 3b and selected bond lengths and angles are compared with the values
in complex 4 in Table 1.

The arrangement of the two oxygen atoms in both complexes strongly suggests the
presence of a trans-{ReO2}+ core, which is frequently found in rhenium(V) complexes with
neutral co-ligands [70]. A slightly bent O-Re-O bond as well as the lengthening of the
Re-O2 bonds compared with those to the terminal oxido ligands can be understood by
the O-Te interactions, which are established from these atoms. Interactions between a
lone-pair of an oxido ligand and Lewis acids are not without precedence. Typical examples
are rhenium(V)-oxygen-boron bridges, which are readily formed e.g., to electron-deficient
boranes [71–76], but also the formation of the {O=Re-O-Re=O}4+ unit with a linear oxido
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bridge between two oxidorhenium(V) centers can be regarded in this sense [70]. More
instructive is the bonding situation in a series of 6-diphenylphosphinoacenaphthyl-5-
tellurenyl species, 6-Ph2P-Ace-5-TeX (X = Cl, Mes), which have been studied by Beckmann
and co-workers [77]. Oxidation of such compounds with H2O2 results in the formation of
the corresponding phosphine oxides 6-Ph2P(O)-Ace-5-TeX, in which P=O...Te interactions
are established similar to those in the rhenium complexes of the present study. Interestingly,
the nature of such interactions was found to be dependent on the residue X, in a way that
only weak O...Te interactions a formed with X = Mes (O-Te distance: 2.837(2) Å), while
‚dative bonds‘ were found for X = Cl (O-Te distance: 2.310(3) Å) [77]. The latter situation
approximately describes what we found for the rhenium complexes 4 and 5, where O-Te
distances of 2.102 Å were detected.

[ReO2Cl(pyTeCl)(PPh3)2] (5) is, fortunately, more stable in solution than its CF3-
substituted analog 4. This allows the recording of 31P and 125Te NMR spectra (Figure 4).
Particularly the 125Te spectrum should be indicative for an evaluation of the bonding situa-
tion. At the first glance the measured chemical shift of 1724.4 ppm for 5 is surprising, since
the value comes close to that observed for the monomeric tellurinic acid (ppy)TeIV(O)OH
(1469 ppm), where pph is (2-phenylazo)phenyl-C,N’ [78]. But also with this point, the
careful study of Beckmann et al. gives a plausible explanation. They also detected a strong
dependence of the 125Te chemical shift on the efficacy of the oxygen-tellurium orbital
overlap [77]. They found values of 519.1 ppm for 6-Ph2P(O)-Ace-5-TeMes (with only weak
O . . . Te contacts), but 1622.5 ppm for 6-Ph2P(O)-Ace-5-TeCl with the oxygen atom of the
phosphine oxide donating to the Te(II) unit (vide supra) [77]. A recently published, detailed
analysis of 125Te NMR chemical shifts in organotellurium(II) compound confirmed the
observed strong effects of substituents on the shielding of the tellurium nuclei in such
compounds [79].
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4. Computational Studies

The character of the O1-Re-O2-Te bonding is interesting for two reasons: (1) the oxida-
tion states of rhenium and tellurium (although formal) should be fixed and (2) the bonding
situation between these three atoms needs to be clarified. To answer these questions, we
performed some DFT calculation on the B3LYP level. The gas-phase optimized geometry
matches the experimentally observed geometry within 0.01 Å for the organic parts of the
molecule, while the deviations are larger around the metals with an average deviation
of 0.02 Å. The maximum deviation was found for the tellurium chlorine bond (0.058 Å).
Such deviations around the metals are expected for a gas-phase calculation compared to
the solid-state experimental data at this level of theory. The small deviations from the
experimental data and the verification of the energetic minimum by a frequency calculation
indicate that the obtained geometry is reasonable.

To understand about the oxidation state of the tellurium and the general charge
distribution in the compound, we performed a QTAIM partitioning followed by integration
of the electron density in the basins with a medium-sized grid and additional approximate
refinement of the basin boundaries (giving the Bader-type charges) and a calculation of
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atomic dipole moment corrected Hirshfeld charges (ADCH) [5]. Several other local (i.e.,
calculated at the critical points in the topological analysis) and integral (i.e., calculated
over the atomic basin in different space partitioning methods) topological descriptors
of the electron density were employed in the past analyses of the bonding in molecules
containing transition metals. Some of the most important local descriptors at the (3,−1)
critical point, also referred to as bond critical point, are the electron density ρ(r), the
ellipticity ε(r) = [λ1(r)/λ2(r)]− 1 where λ1(r) and λ2(r) are the lowest and the second lowest
eigenvalues of the Hessian matrix of ρ(r), the ratio values between the perpendicular and
the parallel curvatures–a covalency index η(r) = |λ1(r)|/λ3(r) with λ1(r) and λ3(r) as the
lowest and the highest eigenvalues of the Hessian matrix of ρ(r), the Laplacian of the
electron density (∇2ρ(r)), the kinetic energy density ratio (G(r)/ρ(r)), and the total energy
density ratio (H(r)/ρ(r); H(r) = G(r) + V(r)) as well as 1/4∇2ρ(r) = 2G(r) + V(r), where V(r)
is the potential energy density [5,80–82]. The delocalization index δ(A–B) is an integral
property and indicates the number of electron pairs shared by the basins belonging to the
atoms A and B [5,80–82]. Several of these descriptors, namely ρ(r), ε(r), η(r), ∇2ρ(r) and
H(r) were studied in the present system. Additionally, we calculated the Wiberg bond
order matrix [5]. To rationalize these results, we also performed a natural bond orbital
(NBO) analysis of the system and regarded the second-order perturbation analysis for
metal-involving multiple bonding. Details about the results of these considerations (tabular
material and visualizations) are given in the Supplementary Material.

First and foremost, the NBO analysis reveals only one lone-pair localized on rhenium
and two lone-pairs localized on tellurium. Therefore, the overall Lewis structure depiction
is consistent with a Re(V) center and a Te(II) center. The lone-pairs (LP) are shown in
Figure 5. This finding is consistent with the respective Bader and Atomic Dipole Moment
Corrected Hirshfeld atomic charges, which indicate a larger positive charge of rhenium
compared to that of tellurium.

Chemistry 2023, 5, FOR PEER REVIEW 8 
 

 

refinement of the basin boundaries (giving the Bader-type charges) and a calculation of 
atomic dipole moment corrected Hirshfeld charges (ADCH) [5]. Several other local (i.e., 
calculated at the critical points in the topological analysis) and integral (i.e., calculated 
over the atomic basin in different space partitioning methods) topological descriptors of 
the electron density were employed in the past analyses of the bonding in molecules con-
taining transition metals. Some of the most important local descriptors at the (3,−1) critical 
point, also referred to as bond critical point, are the electron density ρ(r), the ellipticity ε(r) 
= [λ1(r)/λ2(r)] − 1 where λ1(r) and λ2(r) are the lowest and the second lowest eigenvalues 
of the Hessian matrix of ρ(r), the ratio values between the perpendicular and the parallel 
curvatures–a covalency index η(r) = |λ1(r)|/λ3(r) with λ1(r) and λ3(r) as the lowest and the 
highest eigenvalues of the Hessian matrix of ρ(r), the Laplacian of the electron density 
(∇²ρ(r)), the kinetic energy density ratio (G(r)/ρ(r)), and the total energy density ratio 
(H(r)/ρ(r); H(r) = G(r) + V(r)) as well as 1/4∇²ρ(r) = 2G(r) + V(r), where V(r) is the potential 
energy density [5,80–82]. The delocalization index δ(A–B) is an integral property and in-
dicates the number of electron pairs shared by the basins belonging to the atoms A and B 
[5,80–82]. Several of these descriptors, namely ρ(r), ε(r), η(r), ∇²ρ(r) and H(r) were studied 
in the present system. Additionally, we calculated the Wiberg bond order matrix [5]. To 
rationalize these results, we also performed a natural bond orbital (NBO) analysis of the 
system and regarded the second-order perturbation analysis for metal-involving multiple 
bonding. Details about the results of these considerations (tabular material and visualiza-
tions) are given in the Supplementary Material. 

First and foremost, the NBO analysis reveals only one lone-pair localized on rhenium 
and two lone-pairs localized on tellurium. Therefore, the overall Lewis structure depiction 
is consistent with a Re(V) center and a Te(II) center. The lone-pairs (LP) are shown in Fig-
ure 5. This finding is consistent with the respective Bader and Atomic Dipole Moment 
Corrected Hirshfeld atomic charges, which indicate a larger positive charge of rhenium 
compared to that of tellurium. 

 
Figure 5. Mapping of (a) the s-type LP1 σ-orbital isosurface of Te, (b) the p-type π-orbital LP2 isosur-
face of Te and (c) the dx²−y²-type δ-orbital LP1 orbital isosurface of Re at isosurface values of 0.06. 

Regarding the bonding in the O1-Re-O2-Te fragment, the O1-Re bond represents a 
rather covalent double bond with significant triple bond character due to additional delo-
calization of LP1 and LP2 into the unoccupied LV1 orbital of rhenium. This observation is 
also expressed in the Wiberg bond order, which is bigger than 2 for this bond, and the 
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as a rather ionic single bond with double bond character due to a significant donation of 
LP3 of O1 into the Re-O1 π*-symmetry anti-bond, which essentially leads to the formation 
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of 0.06.

Regarding the bonding in the O1-Re-O2-Te fragment, the O1-Re bond represents
a rather covalent double bond with significant triple bond character due to additional
delocalization of LP1 and LP2 into the unoccupied LV1 orbital of rhenium. This observation
is also expressed in the Wiberg bond order, which is bigger than 2 for this bond, and
the valency of 3 for the oxygen atom O1. On the other hand, the Re-O2 bond can be
described as a rather ionic single bond with double bond character due to a significant
donation of LP3 of O1 into the Re-O1 π*-symmetry anti-bond, which essentially leads to
the formation of a highly delocalized 3c4e bond. The O2-Te bond is again a rather ionic
single bond due to stabilizing donation of the LP1, LP2 and LP4 lone pairs of O2 into the
empty LV1 orbital on the tellurium atom. Albeit significant π- or double bond character
is implied, the bond orders of O2 with Re and Te, respectively, are consistent with single
bonds resulting in the overall valency of 2 for the oxygen atom O2. Due to the low mutual
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geometric accessibility (LP1 to LV1: F = 0.095) combined with the high energy difference of
the respective orbitals (LP4 to LV1 ∆E = 0.58 Hartree) of the tellurium atoms to form an
additional π-bond with the oxygen, a tellurium-oxygen double bond cannot be evidenced
despite some indicated delocalization. Conversely, the high delocalization energy from
the geometrically accessible LP2 and LP4 orbitals of O2 into the LV1 of rhenium (F = 0.176
and F = 0.186) allows for the conclusion of a partial double or even triple bond between
these two atoms, albeit with high energy differences between the donor and acceptor
orbital. Overall, the bigger delocalization energy gain for the formal Re-O2 multiple-bonds
compared to the Te-O2 multi-bond character, a Re(V)/Te(II) combination is evidenced
albeit some resonance structures involving a Re(III)/Te(IV) structure appears valid. The
donor and acceptor orbitals of the lone-pairs of the oxygen atom O2 are shown in the
Supplementary Material.

A mapping of the electron localization function (ELF) in the Re-O-Te plane visualizes
the degree of electron delocalization (Figure 6a). Critical points of the types (3,−3), (3,−1)
and (3,1) are indicated as well as the paths connecting them. Details about their meaning
and interpretation are given as Supplementary Information. For the present example,
the Wiberg bond orders, the charges, and the NBO analysis of the system support the
interpretation of (3,1) critical points, also referred to as ring critical points, as descriptors
of an aromatically delocalized ring system involving Re and Te. On the contrary, the
implied high ionicity of most of the participating electron pairs is consistent with a higher
local concentration of the corresponding electrons around the donor atoms. This is also
visualized by the ELF and the Laplacian maps in the Re-O-Te plane. Nevertheless, in the
centers of the Re and Te involving ring systems, there is a region of considerable charge
depletion around the corresponding (3,1) critical points, indicating the presence of ring-
shaped, resonance-delocalized electron density around them. On the donor atoms, the
directionality of the donor orbitals is clearly visible.
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corresponding orbitals towards each other. This is also presented by the ellipticities of ca. 
0.2 for the bond critical points in the chelate ring, except for the Re-O2 bond, which has 
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Figure 6. (a) ELF with critical points and bond paths: (3,−3) = brown, (3,−1) = blue, (3,1) = orange,
bond path between (3,−3) and (3,−1) critical points = black. Contour lines of electron density
isosurfaces and van der Waals radius (blue) are shown. (b) Laplacian map of the electron density
(blue = negative; red = positive) with negative values corresponding to local electronic charge
accumulation while positive values indicate regions of local electronic charge depletion in the O1-Re-
O2-Te plane with topological descriptors and bond critical points: (3,−3) = brown, (3,−1) = blue, (3,1)
= orange, bond path between (3,−3) and (3,−1) critical points = cyan. A contour line of the van der
Waals radius is shown in black.

All bonds in the chelate ring feature some π-participation, given the bending of the
corresponding orbitals towards each other. This is also presented by the ellipticities of
ca. 0.2 for the bond critical points in the chelate ring, except for the Re-O2 bond, which
has an ellipticity of only 0.04. This is especially surprising, given the large degree of
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delocalization of π-electrons according to the NBO analysis, and could be interpreted as a
hint towards a Re(III)/Te(IV) resonance structure with less π-participation in the Re-O2
bond. Furthermore, an ellipticity of ca. 0.5 verifies the large π-character in the triple bond
between Re and O1. Overall, the ∇2ρ(r)>0, the small η(r), the small ρ(r) and the small
δ(A,B) for the Re-O2 and O2-Te bonds are consistent with a non-covalent closed-shell nature
of these bonds [5,80–82]. In contrast, the Re-O1 bond, is more covalent than the bonds
involving O2. The covalency, thus, increases in the order Te-O2 < Re-O2 < Re-O1.

Finally, we calculated the gradient vector field of the electron density and mapped it
with electron density contour lines and topological features to learn about the directionality
of the bonds under discussion (Figure 7). As a result, it can be stated that rhenium-ligand
bonds are more directional than the tellurium-ligand bonds when looking at the ligand
basins. However, in the metal basins, the rhenium shows a more directional and even
distribution of electron density over the space with the ligand bonds located between
the rhenium lone-pair. Conversely, tellurium is more polarized and less directional in
this plane. The highly directional C-Te bond is an exception to the other rather dispersed
tellurium-ligand bonds. Furthermore, it is evident, that the bonds involving O2 show very
little directionality and are spread between the tellurium and rhenium rather evenly in this
σ-bond plane.
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Overall, the [ReO2Cl(RpyTeCl)(PPh3)2] complexes are best described as rhenium(V)
dioxido compounds with one of the oxido ligands donating into an organotellurium(II)
chloride. However, a tellurinic(IV) acid chloride donating to a rhenium(III) oxido complex
is a possible resonance structure. A definite Lewis structure is thus not completely rep-
resentative of the bonding situation in this compound. A guess on a delocalized Lewis
representation is given in Figure 7b, where the length of the arrows indicates the donor
strength and dotted lines represent 3c4e hyperbonds. The concluding structural represen-
tation is well in accordance with the analysis of the bond lengths and angles determined
experimentally by X-ray diffraction. It also fits with the diamagnetism of the complexes.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/chemistry5020063/s1, Figures S1–S6: Crystallographic data of (CF3pyTe)2 (1);
(HCF3py)TeCl2 (2); (HCF3py)TeBr2 (3); [ReO2Cl(pyTeCl)(PPh3)2] (5) and [ReO2Cl(CF3pyTeCl)(PPh3)2]
(4), Figures S7–S24: Spectroscopic Data, Figures S25–S35: Computational Chemistry, Table S1: Crys-
tallographic data and data collection parameters; Table S2: Selected bond lengths (Å) and angles (◦)
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in (CF3pyTe)2 (1); Table S3: Selected bond lengths (Å) and angles (◦) in (HCF3py)TeCl2 (2); Table S4:
Selected bond lengths (Å) and angles (◦) in (HCF3py)TeBr2 (3); Table S5: Selected bond lengths (Å)
and angles (◦) in [ReO2Cl(pyTeCl)(PPh3)2] (5); Table S6: Selected bond lengths (Å) and angles (◦)
in [ReO2Cl(CF3pyTeCl)(PPh3)2] (4); Table S7: Results of the charge analysis for selected atoms in
[ReO2Cl(pyTeCl)(PPh3)2] (5). Wiberg bond order matrix for selected atoms, relevant bond orders
are bold; Table S8; Lone-pair decomposition of Re and Te in [ReO2Cl(pyTeCl)(PPh3)2] (5); Table S9:
Natural electron configuration of selected atoms in [ReO2Cl(pyTeCl)(PPh3)2] (5); Table S10: Selected
parameters from the second order perturbation analysis of [ReO2Cl(pyTeCl)(PPh3)2] (5). Delocaliza-
tion, which was interpreted as an ionic bond is bold; Table S11: Three-centered trans-bonds around
Re (3c4e hyper-bonds) in [ReO2Cl(pyTeCl)(PPh3)2] (5); Table S12: Selected properties of the electron
density at important bond critical points in [ReO2Cl(pyTeCl)(PPh3)2] (5). References [29,31–34,83]
are cited in the supplementary materials.
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