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SUMMARY

The human brain undergoes remarkable changes over the lifespan, including its structural as
well as functional characteristics. One functional change that has been identified in the brain
of older adults is the phenomenon of neural dedifferentiation. This describes a process in which
neural responses lose specificity over the course of aging, rendering neural representations of, for
instance, distinct visual categories increasingly similar to each other. Findings in non-human
animals have shown that tuning profiles of neural populations over a continuous stimulus space
(e.g. an object’s rotation) become broader with age, effectively widening the spectrum of stimuli
that a single neuron responds to. Although research in humans has drawn on this finding as a
potential mechanism for age-related dedifferentiation, it has not yet tested whether this process
occurs for neural representations of continuous space. This presents a disconnect between the
work on neural dedifferentiation in humans on the one hand, and animal work on its mechanisms
on the other. The main goal of this dissertation was to address this disconnect and to further
understand how aging shapes representations of continuous spaces. To achieve this, the three
research articles that form the main body of this dissertation focus on the cognitive domains
of spatial navigation and reinforcement learning.

Article I analyzes functional magnetic resonance imaging (fMRI) data collected during vir-
tual spatial navigation of older and younger adults and presents evidence that the phenomenon
of age-related neural dedifferentiation in humans extends to representations of a continuous vari-
able, namely walking direction. The results are based on a newly introduced analysis approach
that allows the field to assess the similarity of neural responses towards stimuli stemming from
the same continuous space.

Article II combines a double-blind cross-over drug intervention with a design similar to
article I and investigates the mechanistic role of the transmitter dopamine in age-related neural
dedifferentiation. The study replicates the findings of article I and confirms the causal role
of neuromodulation on the specificity of neural representations suggested by computational
models. In particular, results show that the administration of L-DOPA, a dopamine precursor,
enhances the specificity with which different walking directions are represented in the brain of
younger and older adults.

Finally, article III moves towards more abstract continuous space and uses a reinforcement
learning paradigm to assess how a younger and older age group learn from surprising events.
More specifically, it investigates if prediction errors, a continuous quantity reflecting the dif-
ference between an expected and obtained outcome of an action, are represented differently in
learning and behavior of younger and older individuals. Behavioral results indicate that older
adults showed heightened sensitivity to surprise compared to younger adults, overrepresenting
the extreme end of the continuous space of prediction errors in their decisions.

In summary, this thesis has made a number of contributions towards our understanding
of how aging influences representations of continuous space. For one, it provides the first
evidence of age-related neural dedifferentiation of a continuous variable in humans, based on
a newly developed analysis approach. In doing so, it closes an important gap between related
research in humans and non-human animals. It furthermore accounts for a key mechanism
of dedifferentiation, confirming the causal influence of dopamine on the specificity of neural
representations, as predicted by computational models. Finally, the thesis shows that diverging
representations of continuous space in older adults also extend to the more abstract domain of
outcome-based learning.
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ZUSAMMENFASSUNG

Das menschliche Gehirn unterliegt im Laufe des Lebens bemerkenswerten Veränderungen, die sowohl
strukturelle als auch funktionelle Eigenschaften betreffen. Eine funktionelle Veränderung, die insbeson-
dere im Gehirn älteren Erwachsenen festgestellt wurde, ist das Phänomen der neuronalen Dedifferen-
zierung. Dies beschreibt einen Prozess, bei dem die nervlichen Reaktionen im Laufe des Alterns an
Spezifität verlieren, so dass die neuronalen Repräsentationen z.B. verschiedener visueller Kategorien
einander immer ähnlicher werden. Untersuchungen an Tieren haben gezeigt, dass die Reaktionsprofile
neuronaler Populationen über einen kontinuierlichen Reizraum (z.B. die Drehung eines Objekts) mit
zunehmendem Alter breiter werden, wodurch sich das Spektrum der Reize, auf die ein einzelnes Neu-
ron reagiert, effektiv erweitert. Obwohl die Forschung am Menschen auf diesen Befund als einen der
möglichen zugrundeliegenden Mechanismen hingewiesen hat, konnte eine altersbedingte Dedifferenzie-
rung bisher nicht für neuronale Repräsentationen eines kontinuierlichen Raums nachgewiesen werden.
Dies stellt eine Diskrepanz zwischen den Arbeiten zur neuronalen Dedifferenzierung beim Menschen
einerseits und den Arbeiten zu den zugehörigen Mechanismen bei Tieren andererseits dar. Das Haupt-
ziel dieser Dissertation war es, diese Diskrepanz zu beseitigen und besser zu verstehen, wie das Altern
die Repräsentation von kontinuierlichen Räumen formt. Um dies zu erreichen, konzentrieren sich die
drei Forschungsartikel, die den Hauptteil dieser Dissertation bilden, auf die kognitiven Bereiche der
räumlichen Navigation und des Verstärkungslernens.

In Artikel I analysiere ich Daten der funktionellen Magnetresonanztomographie (fMRI), die während
der virtuellen räumlichen Navigation älterer und jüngerer Erwachsener erhoben wurden. Ich präsentiere
Belege dafür, dass das Phänomen der altersbedingten neuronalen Dedifferenzierung beim Menschen
auch Repräsentation einer kontinuierlichen Variable, nämlich der Laufrichtung, betrifft. Die Ergebnisse
basieren auf einem neu eingeführten Analyseansatz, der es erlaubt, die Ähnlichkeit der neuronalen
Reaktionen auf Reize zu bewerten, die aus demselben kontinuierlichen Raum stammen.

Artikel II kombiniert eine doppelblinde Cross-over-Medikamentenintervention mit einem ähnlichen
Design wie Artikel I und untersucht die mechanistische Rolle des Transmitters Dopamin bei altersbe-
dingter neuronaler Dedifferenzierung. Die Studie repliziert die Ergebnisse von Artikel I und bestätigt
die kausale Rolle der Neuromodulation auf die Spezifität der neuronalen Repräsentationen, wie sie von
Computermodellen vorhergesagt wurde. Insbesondere zeigen die Ergebnisse, dass die Verabreichung von
L-DOPA, einer Dopaminvorstufe, die Spezifität mit der verschiedene Laufrichtungen im Gehirn von
jüngeren und älteren Erwachsenen repräsentiert werden erhöht.

Artikel III schließlich befasst sich mit einem abstrakteren kontinuierlichen Raum und verwendet ein
Paradigma des Verstärkungslernens, um zu untersuchen, wie sich jüngere und ältere Menschen beim
Lernen von überraschenden Ereignissen unterscheiden. Genauer gesagt wird untersucht, ob Vorher-
sagefehler, eine kontinuierliche Größe, die die Differenz zwischen der erwarteten und der erhaltenen
Belohnung einer Handlung widerspiegelt, im Lernen und Verhalten von jüngeren und älteren Personen
unterschiedlichen Einfluss nehmen. Die Ergebnisse zeigen, dass ältere Erwachsene im Vergleich zu jün-
geren Erwachsenen eine erhöhte Empfindlichkeit gegenüber überraschenden Belohnungen zeigen und,
dass das extreme Ende des Kontinuums der Vorhersagefehler in ihren Entscheidungen größeren Einfluss
nimmt.

Zusammenfassend lässt sich sagen, dass diese Arbeit eine Reihe von Beiträgen zu unserem Verständ-
nis darüber geleistet hat, wie das Altern die Repräsentationen des kontinuierlichen Raums beeinflusst.
Zum einen liefert sie auf der Grundlage eines neu entwickelten Analyseansatzes den ersten Nachweis für
altersbedingte neuronale Dedifferenzierung im Kontext einer kontinuierlichen Variable. Damit schließt
sie eine wichtige Lücke zwischen verwandten Arbeiten in Menschen und nicht-menschlichen Tieren. Be-
züglich der Mechanismen der neuronalen Dedifferenzierung bestätigt sie darüber hinaus den kausalen
Einfluss von Dopamin auf die Spezifität neuronaler Repräsentationen, wie von Computermodellen vor-
hergesagt. Schließlich zeigt die Arbeit, dass divergierende Repräsentationen des kontinuierlichen Raums
bei älteren Erwachsenen auch im abstrakteren Bereich des ergebnisbasierten Lernens präsent sind.
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1
BACKGROUND

1.1 General Introduction

The aging brain does not have a good reputation. When we think about our cognitive abilities,

especially those that allow us to quickly process or remember important information, many of us

would not expect them to improve in older age. Maybe even quite the opposite. Often we tend

to perceive the later stages of our life course as a period of consistent decline and deterioration.

Just like we expect stereotypical changes in our sense of hearing and vision, we expect to take

longer when performing mental operations or to more often forget about important information.

But is this bad reputation deserved? Is downwards really the only direction the aging brain

is heading? Questions such as this lie at the core of the research field of lifespan development

(Baltes & Lindenberger, 1997; Smith & Baltes, 1999; Baltes, Lindenberger, & Staudinger,

2007). As suggested by its name, lifespan development is concerned with how humans and

other animals change over the entirety of the life course, including the youngest and oldest

ages. The approach to aging taken in this field separate it from other, more naïve perspectives

of aging. One defining difference and diverging from the viewpoint of mono-directional decline

is that lifespan development considers the life course to be a dynamic interaction between losses

and gains, even in the later stages of life (Baltes, 1987). From this perspective, loss is not the

defining feature of older age. Rather, loss is encountered and reacted to, possibly with growth

in other domains as the individual combines selective and compensatory behavior.

This thesis combines the perspectives of lifespan development with cognitive neuroscience

and aims to contribute to a more thorough understanding of the human brain and behavior

in older age. The aging brain has been the focus of a multitude of scientific work, identifying

and describing age-related1 changes in terms of structural as well as functional characteris-

tics and relating them to older adults’ developmental trajectories (see Riddle & Taylor, 2020

1To avoid confusion, I want to underline that the term age-related is used more loosely in this thesis to describe
findings that considered age as an influential factor. If not specified otherwise, it does not imply, for instance,
a linear relationship with years of age or within-person change assessed by longitudinal measurement. See
Salthouse (2019) for further detail on the importance of being aware of this distinction.
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1.2. Variability in Aging 11

and Samanez-Larkin, 2019, respectively). The individual articles forming the basis of this

cumulative dissertation have been focused on age differences in the functional aspects. More

precisely, they have gravitated around a particular functional phenomenon termed neural ded-

ifferentiation (ND). Age-related neural dedifferentiation is defined as the finding that older

age is accompanied by reduced distinctiveness of neural representations2 of perceptual and

conceptual information (Koen & Rugg, 2019). Its presence has been suggested to play a role

in cognitive decline (Li & Lindenberger, 1999), particularly in memory aging (Li & Freund,

2005). The projects included in this thesis are concerned with the age-related changes in

neural representations, addressing open questions, and introducing new approaches in their

investigation. The first project used functional magnetic resonance imaging (fMRI) to study

the neural representations of direction during spatial navigation in older and younger adults

(see article I). The second project used a drug-intervention to assess a related mechanism of

change, particularly levels of the neurotransmitter dopamine (see article II). The third project

used behavioral and computational modelling analyses to investigate representations of key

variables in processes of outcome-based learning, including prediction errors and learning rates

(see article III). However, before we consider the individual contributions in more detail it

is important to do justice to the extensive amount of preceding research that allows for the

existence of this thesis. The following section will therefore focus on what we know about the

aging process and its remarkable variability, specifically in the context of the human brain and

memory.

1.2 Variability in Aging

One of the most significant changes humans encounter in the later stages of the life course

regards memory function. A loss in memory performance is part of a normative aging process

and not exclusive to pathology (Tucker-Drob, 2019). As an essential part of our everyday life,

age-related changes in our ability to remember are a target of personal worry (Kessler, Bowen,

Baer, Froelich, & Wahl, 2012) and adapting to them presents a key challenge of older age. What

2The term neural representation is used throughout this thesis to describe a measurable neural response elicited
by, and containing information about, a specific component of the outside world. In humans this is usually
assessed by techniques of non-invasive neuroimaging such as functional magnetic resonance imaging. For more
detail on the notion see Dietrich (2007) and Vilarroya (2017).
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quickly becomes evident when looking at the change of memory function with age is that it is

more complex than what the brain’s ”bad reputation” for continual decline (see above) might

suggest. Extensive research of the trajectories of memory function over the life course has

shown that the effects of age differ strongly depending on the domain in question (Brickman

& Stern, 2009; Nyberg, Lövdén, Riklund, Lindenberger, & Bäckman, 2012) and the type of

measurement used (longitudinal vs. cross-sectional, Baltes & Schaie, 1974; Hofer & Sliwinski,

2001). To illustrate, cross-sectional approaches to study the domains of episodic memory and

working memory have reported linear drops in performance as early as the third decade of life

(Nilsson et al., 1997; Verhaeghen & Salthouse, 1997). In contrast, semantic and procedural

memory were found to follow a more positive age gradient, showing an increase in performance

up to a much higher age (D. C. Park et al., 2002; Nyberg et al., 2012; Nyberg & Pudas, 2019).

But when we look at longitudinal studies, more resistant to potential confounds such as cohort

effects, they have reported stable episodic memory performance up into the seventh decade of

life (Schaie, 1994; Schaie, Willis, & Pennak, 2005; Rönnlund, Nyberg, Bäckman, & Nilsson,

2005) followed by a more rapid deterioration (Gorbach et al., 2017). Proxy measures provide

evidence that similar changes might also apply in the domain of working memory (Rönnlund

& Nilsson, 2006). Approaches that measure the same individual over multiple time points

therefore show us that the idea of an early and consistently declining brain might not be an

accurate depiction.

One of the reasons for these strong differences between cross-sectional and longitudinal

approaches, which is often overlooked in the results on the population level, is that the inter-

individual variance of aging trajectories is vast (Wilson et al., 2002; Lindenberger & Ghisletta,

2009; Lindenberger, 2014). Acknowledging these substantial differences between individuals

requires a more thorough differentiation when describing aging trajectories of cognitive abil-

ities. The spectrum of possible paths reaches from pathological aging in the face of disease

to the so-called successful aging (see Rowe & Kahn, 1987, 2015), where cognitive functioning

is maintained until very old age (Depp & Jeste, 2006). One of the central goals of the corre-

sponding scientific literature is to understand how some, but not all, older adults are capable

of this maintenance, even in the presence of brain pathology (see Nyberg & Pudas, 2019).

Over the years, several concepts have been proposed to capture this resilience against aging

or disease. From a cognitive neuroscience standpoint, the human brain plays an important role
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in these concepts. Both the brain’s structural as well as its functional properties have been

credited in the making of differential trajectories of aging. Regarding mainly the structural

aspects of the human brain, Nyberg et al. (2012) introduced the concept of brain maintenance

as one primary characteristic of successful memory aging. Individuals that show high brain

maintenance would be best described by an absence of pathology and by a minimization of

the age-related changes that brain tissue is subject to. Healthy humans over 65 years of age

experience a decrease in whole brain volume averaging to 0.45% per year (Fotenos, Snyder,

Girton, Morris, & Buckner, 2005). Studies have further shown that less age-related changes

in global tissue integrity (i.e. brain maintenance) were associated with less decline of global

cognitive functioning (Fletcher et al., 2018; Cox et al., 2021). Such change-change relationships

between structural integrity and cognitive decline have also been investigated in the more

specific context of episodic memory. Results showed that volume changes in older adults,

particularly in the medial temporal lobe (MTL), are related to are related to changing episodic

memory performance (Johansson et al., 2022). When looking at the structural aspects, evidence

therefore seems to support the idea that maintaining the brain’s morphologic integrity might be

one major hallmark in the determination of cognitive aging trajectories. How this process can

potentially be supported is still subject to extensive research. However, promising findings have

been presented with regard to (epi-)genetics, education, and physical activity (for a review, see

Nyberg & Pudas, 2019).

The maintenance of the brain’s structural integrity is not the only aspect that might support

a healthy aging processes. Instead of being able to resist or avoid pathology (brain mainte-

nance), successful aging might depend on neural reserve, the ability of the brain to cope with

pathology (Alvares Pereira, Silva Nunes, Alzola, & Contador, 2022; Stern et al., 2020). While

structural properties of the brain also play a major role by providing the ”neurobiological

capital” (Stern et al., 2020, p. 1308) to cope with age-related brain changes (like in brain

maintenance), the idea of reserve also goes beyond the passive concept of available resources.

What has been termed cognitive reserve, a theoretical concept defined by Stern (2002), is a

more active process in which the individual can cope with pathology by altering functional

properties of the brain. It is defined as ”the adaptability (...) of cognitive processes that helps

to explain differential susceptibility of cognitive abilities (...) to brain aging, pathology, or

insult” (Stern et al., 2020, p. 1306). This adaptability might be expressed in, for instance, the
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recruitment of alternative brain networks to solve the same task in case senescent brain change

made other solutions unavailable.

The notion of functional adaptability is inconsistent with the aging brain’s ”bad reputation”

as a supposed subject of consistent and inevitable decline. It illustrates that the brain of older

adults is not to be perceived as a static system, but that it is embedded in an ongoing process of

development. The topic of functional changes in the aging brain is central to this dissertation.

In the following section I will specifically focus on the literature of functional changes in the

aging brain and how they benefit cognition in the face of neural compromise. Keeping in

mind the concept of cognitive reserve, I will first introduce the hallmarks of compensatory

age-related functional brain changes. We will afterwards talk about their limitations and

present a different notion towards functional changes in the aging brain, those that are not

directly linked to beneficial consequences for cognition. This will lead us toward one particular

functional difference between the brains of older and younger adults central to this dissertation:

the phenomenon of neural dedifferentiation (ND).

1.3 Changes in Memory-Related Brain Signals with Age

What researchers mean when speaking of so-called functional measurements are recordings of

the brain’s activity over a period of time, often while participants are solving cognitive tasks.

Obtaining these measures can be achieved via functional neuroimaging techniques including,

for instance, fMRI and positron emission tomography (PET), with either offering different

perspectives and advantages. Such measurements offer a more elaborate look into the process

of aging, going beyond the investigation of changes in the brain’s structural integrity. They

allow researchers to investigate what influence age has on the inner workings of cognition and

how younger and older adults might differ in the way they utilize the resources offered by their

respective brains. For example, we learned that reaching older age is accompanied by tissue

loss in the MTL, which was specifically linked to age-related changes in memory performance

(Johansson et al., 2022). Focusing on the functional changes in the aging brain in this case

helps us to understand how, in the face of such structural compromise, the cognitive processes

involved in memory are affected

A study by Gutchess et al. (2005) investigated the link between brain activity during en-
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coding and recall of episodic memory content in younger and older adults. One central result

was that MTL activity was generally weaker during the encoding process in older compared to

younger adults, which they interpreted to be in line with the age-related loss of tissue reported

in previous research (see Raz, 2000). However, this finding went hand in hand with a pattern

that considerably shaped many following models of brain aging: the relatively weaker recruit-

ment of the MTL during encoding in older adults was accompanied by increased prefrontal

activation, an overactivation compared to younger adults. This finding speaks in favor of the

idea that memory deficits in older age might not be characterized by overall decreasing brain

signals but rather by more complex functional changes, with strong support coming from other

neuroimaging studies. Works utilizing PET were among the first to report this pattern in older

adults (Bäckman et al., 1997; Grady et al., 1992) but have since then been joined by a number

of fMRI studies and comprehensive meta-analyses (Spreng, Wojtowicz, & Grady, 2010; Spreng,

Shoemaker, & Turner, 2017; G. R. Turner & Spreng, 2012). When compared to younger adults

across several cognitive domains, including memory encoding and retrieval, older individuals

exhibited stronger recruitment of specifically the prefrontal cortex (PFC) across all investi-

gated domains (Spreng et al., 2010; Spreng & Turner, 2019). Therefore, the overactivation

of the PFC is now a fairly established phenomenon found in the aging brain. Regarding the

consequences of this overactivation, Gutchess et al. (2005) also reported that it was correlated

with increased memory performance in the older age group. Such links between overactiva-

tion and increased performance have also been made in domains other than memory encoding,

such as memory recall (Cabeza, Anderson, Locantore, & McIntosh, 2002) or motoric coor-

dination (Heuninckx, Wenderoth, & Swinnen, 2008). This suggests that such elevated fMRI

signals in older adults might reflect additional recruitment of neural resources for the purpose

of maintaining a ”younger” level of performance, effectively taking a compensatory function

(Reuter-Lorenz & Lustig, 2005; Reuter-Lorenz & Cappell, 2008). When we touched upon the

theoretical concept of cognitive reserve in the previous section in order to introduce the idea of

functional brain changes, the compensatory recruitment of PFC networks is a prime example

of the functional adaptability Stern et al. (2020) referred to. This functional compensation is

not necessarily a result of intent, opposed to, for instance, forms of actively pursued behavioral

compensation (Baltes & Baltes, 1990) like writing down important dates in order to remember
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them. Yet, overactivation has been linked to positive effects on performance3 in a variety of

studies, including healthy (Vallesi, McIntosh, & Stuss, 2011; Du, Buchsbaum, Grady, & Alain,

2016; Gallen, Turner, Adnan, & D’Esposito, 2016) and clinical samples (Lenzi et al., 2011;

Meltzer, Wagage, Ryder, Solomon, & Braun, 2013; Elman et al., 2014), as well as a number of

different cognitive domains (Berlingeri et al., 2010).

Multiple theoretical accounts have been made to explain findings that suggest compen-

satory functional changes in the aging brain (for reviews, see Spreng & Turner, 2019; Zahodne

& Reuter-Lorenz, 2019; Reuter-Lorenz & Cappell, 2008). Some of them have been focused on

specific findings such as the posterior to anterior shift in aging (PASA; S. W. Davis, Dennis,

Daselaar, Fleck, & Cabeza, 2008) hypothesis, proposing that weaker activation in posterior

parts of the brain like the MTL is answered by compensatory activation in frontal regions,

or the hemispheric asymmetry reduction in older adults (HAROLD; Cabeza, 2002) describing

beneficial effects of older adults recruiting bilateral brain areas shown across multiple domains

(Cabeza, 2004). One model that tries to embed these in a larger conceptualization of brain aging

is the scaffolding theory of aging and cognition (STAC/STAC-r; D. C. Park & Reuter-Lorenz,

2009; Reuter-Lorenz & Park, 2014). Scaffolding here describes the process through which the

brain forages new neural circuits (”scaffolds”) in response to challenges arising from older age,

in order to maintain its level of cognitive functioning. These compensatory scaffolds offer a

replacement to other, more efficient circuits that are affected by age-related changes including

the previously mentioned anatomical deterioration in grey- but also in white matter (Raz et

al., 2005; Wen & Sachdev, 2004; Bennett & Madden, 2014) as well as functional changes, such

as decreased MTL activity (Gutchess et al., 2005). The STAC is a powerful framework in the

sense that it can account for specific findings, like the recruitment of homologous brain areas

(see Cabeza, 2002), by including the respective regions in the new scaffolds. At the same time

it offers a more general account for the phenomenon of overactivation, considering additional

factors such as structural change or experiences made over the life course (for a comprehen-

sive review on those factors, see Reuter-Lorenz & Park, 2014). However, what especially sets it

apart from other models is its more elaborate account towards the limitations and costs of using

3Note that compensatory effects are investigated within-group, e.g. by assessing if cognitive deficits in the older
age group are less severe in the presence of overactivation. Compensation does not require equal or even better
performance than the reference group.
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overactivation for compensatory processing. For instance, task demand has been credited as a

limiting factor for the compensatory effect of overactivation (Reuter-Lorenz & Lustig, 2005).

Due to compensatory overactivation, older adults are thought to reach their neural resource

ceiling earlier, ultimately leading to worse performance and decreased activation as task de-

mands increase. Additionally, STAC proposes that newly emerging scaffolds in older age come

with a cost for efficiency. While new scaffolds help to cope with other age-related changes, their

usage requires more effort for the same result. Both of these, limitations (Cappell, Gmeindl,

& Reuter-Lorenz, 2010; McEvoy, Pellouchoud, Smith, & Gevins, 2001; Diaz, Rizio, & Zhuang,

2016) as well as costs (Zarahn, Rakitin, Abela, Flynn, & Stern, 2007; Meunier, Stamatakis,

& Tyler, 2014) of compensatory scaffolds have been supported by evidence stemming from

neuroimaging studies.

So far, although there are associated limits and costs, we have seen that functional change

in the aging brain can allow individuals to compensate for compromised neural structures and

information processing to maintain performance (for a detailed review the reader is referred to

Zahodne & Reuter-Lorenz, 2019). However, not all age-related changes in brain functioning

have been explicitly linked to positive consequences for cognition. What has been hypothe-

sized to be of particular importance in the process of cognitive aging is a decline in the brain’s

capacity to modulate neural signals (Gazzaley & D’esposito, 2007; Spreng & Turner, 2019).

This line of research has shown that older age is associated with decreased specificity of neu-

ral representations, for example, in regions of the brain that usually exhibit category-specific

activation profiles (e.g. the fusiform face area Payer et al., 2006; Gazzaley, Cooney, Rissman,

& D’Esposito, 2005). This loss in neural distinctiveness has been termed age-related neural

dedifferentiation. In contrast to the previously described changes, the role of neural dediffer-

entiation in aging is not thought to be compensatory. Instead, it is seen as a contributing

factor in the decline of cognitive functioning (Li & Lindenberger, 1999; Li, Lindenberger, &

Frensch, 2000). Age-related neural dedifferentiation takes a major role in this thesis’ endeavor

to understand how aging shapes neural representations. The next section will take a closer look

into the phenomenon, the part it plays in cognitive aging, and the potential factors involved

in its emergence. Finally, we will move towards open questions and lay the foundation for the

individual works included in this thesis.
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1.4 Neural dedifferentiation

To avoid confusion there is the need to specify what I mean when using the term age-related neu-

ral dedifferentiation (ND). Some have referred to ND as a domain-general pattern of functional

change in aging (D. C. Park, Polk, Mikels, Taylor, & Marshuetz, 2001), describing ”increased

and more spatially distributed neural activity” (Spreng & Turner, 2019, p. 21) or that activity

in the aging brain tends to be more disorganized in general (Craik & Bialystok, 2006). I will use

the term in a more outlined manner, particularly referring to age-related decline in specialized

neural mechanisms or their recruitment (Cabeza et al., 2002; Li, Lindenberger, & Sikström,

2001) so that older adults display less specific patterns of activation in response to certain con-

tent. This is illustrated best by a seminal study conducted by D. C. Park et al. (2004): in an

fMRI experiment with older and younger participants they presented a number of visual stim-

uli stemming from different categories, including faces and scenes. After functionally defining

sets of voxels in the ventral visual cortex that most strongly responded to each category, the

authors compared both age groups on how voxel sets were activated in response to stimuli from

each category. They showed that older adults exhibited less specific responses given by the fact

that, for instance, faces resulted in higher activation of scene voxels in comparison to younger

adults. This presented evidence for the deterioration of specialized information processing and

less distinct neural signals in older age, i.e. age-related ND. In the following, I will elaborate

on the current state of knowledge regarding age-related ND.

Neural dedifferentiation is a robust finding in fMRI studies

The idea that processes in the aging brain dedifferentiate originally stems from behavioral

findings and intelligence research (Reinert, 1970; Lindenberger & Baltes, 1997; Baltes & Lin-

denberger, 1997). These findings suggested that performance across different cognitive and

sensory tasks becomes more correlated as a person reaches older ages, showing less differen-

tiated profiles of cognitive ability. While recent evidence suggests that it is not the cognitive

abilities but rather their rate of change that dedifferentiates with age (de Frias, Lövdén, Lin-

denberger, & Nilsson, 2007; Tucker-Drob, Brandmaier, & Lindenberger, 2019), the potential

neural correlates of dedifferentiation inspired a large body of subsequent work. As of today,

ND has become a robust phenomenon reported in numerous fMRI studies (Koen & Rugg,
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2019). Visual categories, as those used by D. C. Park et al. (2004), present the most commonly

investigated domain in the context of ND. The age-related decrease of specificity in the neural

responses elicited by different visual categories has been shown in a number of studies, with the

most compelling evidence stemming from paradigms including faces and scenes, often houses

(Zheng et al., 2018; Trelle, Henson, & Simons, 2019; Goh, Suzuki, & Park, 2010; Bowman,

Chamberlain, & Dennis, 2019; Voss et al., 2008; Koen, Hauck, & Rugg, 2019; Carp, Park,

Polk, & Park, 2011). But similar losses in specificity of representations have been reported

also for phonemes in auditory cortices (Du et al., 2016) and different movement patterns in

motor cortices (Carp, Park, Hebrank, Park, & Polk, 2011). The (rather) recent advances in

multivariate analyses methods in the field of neuroimaging have furthermore allowed a more

fine grained perspective on the topic via multi-voxel pattern analysis (MVPA, Haxby et al.,

2001) and multivariate classification (Carp, Park, Hebrank, et al., 2011; Carp, Gmeindl, &

Reuter-Lorenz, 2010; Zheng et al., 2018; Koen, 2022; for a special issue on this, see Dennis &

Koen, 2022). Carp, Park, Polk, and Park (2011) revisited the paradigm of D. C. Park et al.

(2004) utilizing an MVPA approach. By assessing how similar patterns of voxels are that were

evoked by the same visual category (e.g. faces) and how different they are to patterns evoked

by another category (e.g. houses) the authors calculated a measure of neural distinctiveness.

In line with previous findings, this distinctiveness was again lower in older adults in the ventral

visual cortex, with further differences detected in early visual areas, the PFC, and the inferior

parietal cortex.

Dedifferentiation is related to worse memory performance

I have mentioned before that age-related ND is thought to be related to the decline of cognitive

abilities. This assumption is built on computational models of cognitive aging (Li et al., 2001;

Li & Rieckmann, 2014) which have linked lower fidelity of neural representations to decreasing

fluid abilities (e.g. working memory, Li & Sikström, 2002) and associative memory (Li, Naveh-

Benjamin, & Lindenberger, 2005). Studies that investigated these relationships were able to

present evidence that measures of neural specificity are indeed linked to measures of cognitive

performance (for reviews, see Koen & Rugg, 2019 and Koen, Srokova, & Rugg, 2020). When

looking at fluid abilities, measured by psychometric test batteries, studies showed a positive

correlation with neural differentiation across different object categories (faces, houses, and
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objects, Koen et al., 2019; D. Park, 2010). Those individuals with more specific representations

of visual categories therefore tended to perform better on psychometric tests. Similar findings

could be presented for episodic memory (St-Laurent, Abdi, Bondad, & Buchsbaum, 2014; St-

Laurent & Buchsbaum, 2019; Zheng et al., 2018). Related to the idea that more distinct

information present during encoding offers a mnemonic benefit (Murdock, 1960; R. R. Hunt,

1995), Koen et al. (2019) showed a positive relationship between the recognition of visual

scenes and the specificity with which the parahippocampal place area could represent them.

Such a benefit of neural specificity was also shown during memory retrieval (Bowman et al.,

2019). Interestingly, in the majority of these studies this relationship was not moderated by

the participant’s age. This points into the direction that the link between ND and memory

performance might be stable across the adult lifespan (Rugg, 2016) which conforms with the

computational models that linked ND and cognitive decline in an age-invariant manner (Li &

Rieckmann, 2014).

The ND of memory content present during encoding or retrieval is therefore likely among

the neural factors involved in memory aging. If we want to better our understanding of the

cognitive aging process, it will prove useful to expand our knowledge regarding age-related ND,

which representations it affects, and the mechanisms involved in its emergence. Computational

models that have already proven useful in predicting the mnemonic consequences of ND have

also been explicitly linked to its potential mechanisms, the topic of our next section.

Age-related changes in neural tuning and transmitter systems are

supposed mechanisms of neural dedifferentiation

Accounts of the mechanisms involved in age-related ND target small-scale processes that are

hard to investigate with non-invasive methods of neuroimaging. For instance, mechanistic

importance has been assigned to the neurotransmitter system or the firing patterns of individual

neurons. In turn, much of the empirical work on the mechanistic background of ND has been

conducted in animals. Although this research has identified multiple suspected mechanisms, it

is important to note that they were not proposed as exclusive. It is more likely that they are

happening in parallel and are, at least to some degree, interdependent.

Neuromodulation is a central concept in the model by Li et al. (2001) which was intro-

duced in the section on cognitive consequences arising from reduced neural specificity. More
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specifically, the model proposes that reductions in neural gain lead to more noisy output on

the population level. Neural gain is a parameter describing how strongly a neuron’s firing is

controlled by afferent signals. This relationship is characterized by a logistic activation func-

tion. Simulations have shown that, while ”younger” networks are able to activate separate

sets of units for different tasks, ”older” networks with reduced neural gain fail to do so. As a

consequence, the distinct sets are activated in both tasks (Li et al., 2001; Li & Sikström, 2002).

The model specifically mentions the neurotransmitter dopamine (DA) as its biological basis,

a so-called neuromodulator that helps to elevate neural signals over the present background

noise (Sawaguchi, Matsumura, & Kubota, 1988), similar to the model’s gain parameter. What

makes the model by Li et al. (2001) a plausible candidate in the explanation of ND is that

research has shown DA receptors (D1 as well as D2) deplete with older age (Wong, Young,

Wilson, Meltzer, & Gjedde, 1997; Y. K. Yang et al., 2003). Relatedly, evidence for the role

of DA in age-related memory impairment has been stemming from multiple sources, including

patients, cellular recordings, and computational modelling (Bäckman, Nyberg, Lindenberger,

Li, & Farde, 2006). What is, however, still lacking is evidence for an effect of DA on the speci-

ficity of neural representations in humans. Investigating the influence of DA in the context of

age-related ND will be one of the main objectives of this thesis.

Another account of the mechanisms of ND is based on findings provided by single-unit

recordings in the brain of aging non-human animals. Schmolesky, Wang, Pu, and Leventhal

(2000) showed rotating bars and gratings to young and old macaque monkeys and recorded

the firing patterns of neurons in the striate cortex. They investigated age-related changes in

particular cells in V1 that exhibit firing patterns tuned to a preferred orientation of visual

stimuli (Hubel & Wiesel, 1968) where the number of elicited action potentials are a function

of the encountered orientation. This tuning function is characterized by a Gaussian curve with

a maximum firing rate at a preferred orientation (different for each neuron) and a stronger

decrease in firing the more the encountered orientation diverges from this preference. In their

study, Schmolesky et al. (2000) could show that selectivity (or “orientational bias”) of these

cells is weaker in older monkeys which was expressed in maximum firing rates for a broader

window of orientations. They referred to this loss of tuning specificity as neural broadening,

a widening of the neuron’s receptive field resulting in increased response to non-preferred

stimuli. Such wider receptive fields in the cells of senescent non-human animals could also be
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identified in the domains of somatosensory (David-Jürgens, Churs, Berkefeld, Zepka, & Dinse,

2008; Spengler, Godde, & Dinse, 1995) and auditory processing (Kamal, Holman, & de Villers-

Sidani, 2013; Costa, Lepore, Prévost, & Guillemot, 2016; J. G. Turner, Hughes, & Caspary,

2005) and also in more downstream visual areas responsible for processing the direction of an

object’s movement (MT; Y. Yang et al., 2008; Liang et al., 2010). Evidence for why aging

might lead to these sort of changes was provided by Leventhal, Wang, Pu, Zhou, and Ma

(2003). They found that the administration of a γ-Aminobutyric acid (GABA) agonist could

restore specificity of tuned cells in older monkeys to the point at which patterns again resembled

those of younger animals, strongly suggesting a role of diminished intracortical inhibition with

age. While evidence for the importance of GABA is still sparse in humans, a recent study by

Lalwani et al. (2019) combined fMRI with MR spectroscopy to investigate ND in the human

auditory cortex while non-invasively measuring the concentration of GABA in different areas

of the brain. They were able to show that an age-related dedifferentiation of auditory neural

signals was negatively associated with levels of GABA in the auditory cortex, but not in other

areas, suggesting that GABA might also play an important role in human ND.

In contrast to an increase of responses to non-preferred stimuli (neural broadening), what

could also lead to less specific population-level signals is a loss in a neuron’s preference all

together. What is summarized under the term neural attenuation is that neurons fire less in

response to previously preferred stimuli (J. Park et al., 2012), an idea that links to findings of

fMRI underactivation in older age (Gutchess et al., 2005; Spreng et al., 2010). On the single-

unit level, Schmolesky et al. (2000) ruled out neural attenuation as an explanation for their

findings by showing that peak firing rates in older monkeys were not decreased. However, a

large-scale fMRI study investigated the possible contributions of both mechanisms, broadening

and attenuation, towards age-related ND on the population level by comparing representations

of faces and houses in 310 participants (J. Park et al., 2012). They investigated if dedifferen-

tiation was stemming from an increased response to non-preferred stimuli (neural broadening)

or from decreased responses to preferred stimuli (neural attenuation). Interestingly, the study

could present evidence for both processes depending on the investigated region, the fusiform

face area or the extended face network (Ishai, 2008). This underlines what was mentioned

before: the processes involved in ND are not mutually exclusive but might be happening in

parallel.
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Investigating neural dedifferentiation over a continuous space will close an

important gap between animal and human work

When we think about the potential single-cell mechanisms (broadening or attenuation) on the

one hand and the population-level findings of age-related dedifferentiation in human fMRI on

the other hand, there is one missing piece of considerable importance. The results on the single-

unit level I presented above are based on cell-specific tuning functions. The extraction of these

tuning functions relies on a quantifiable similarity between presented stimuli along a continuous

dimension. The rotation of a bar or the direction of an object’s movement (Schmolesky et al.,

2000; Leventhal et al., 2003; Liang et al., 2010) are good examples to illustrate this: in this case,

the similarity between two stimuli is given by the angle between them. Carefully manipulating

stimuli along the continuous similarity space of angular distance and measuring a neuron’s firing

allows us to see how the cell’s response changes as a function of similarity and, ultimately, how

this relationship might be altered by progressing age. In contrast to this, studies conducted in

humans have previously investigated age-related ND by applying category-focused approaches.

Participants are usually shown different exemplars of categories, most prominently faces or

scenes. ND has then been formalized across different categories (category-based, J. Park et al.,

2012; Du et al., 2016; Koen et al., 2019) or within the same category (item-based, Goh et al.,

2010; Trelle et al., 2019). However, what both of these have in common is that the similarity

between different exemplars, unlike the rotation of a bar, are hard to quantify. Similarity

measures between two different houses or faces are highly dimensional. While we can turn a

bar by five, ten, and then 15 degrees, theses quantifiable steps are not possible when showing

a participant different faces4. Despite its importance for connecting the work done in animals

and humans, evidence for age-related ND over continuous spaces in humans is still lacking.

We heard so far that one of the most outstanding changes humans are confronted with in

older age is the decline of memory function. The search for correlates in the aging brain has,

apart from alterations in its structure, identified changes in the brain’s functional aspects, some

of which are considered to take a compensatory role. Neural dedifferentiation, the phenomenon

4One could think of a quantifiable similarity measure between, for instance, different faces. However, it would
potentially have to span all possible dimensions a face could vary over. Additionally, not all of these dimensions
might be equal in how strongly they influence the perceived similarity of two exemplars.
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that neural signals in the aging brain exhibit decreased specificity, has been shown to interfere

with memory performance and is a promising target in the quest to understand memory aging.

Results in the search of the potential mechanisms behind neural dedifferentiation come from

animal work, showing that some neurons are tuned to a broader range of stimuli as animals

reach senescence. The category-based approaches used to investigate age-related ND in human

fMRI have so far not provided evidence for specificity changes in neural representations of

continuous space, like those used in animal research. Closing this gap and testing mechanistic

hypotheses requires a new approach to investigate age-related ND in human fMRI, one that

compares neural representations over one continuous variable. The core work of this thesis (see

article I and article II) have been dedicated towards this endeavor and, in this, have turned

towards the domain of spatial cognition, a set of abilities that is concerned with perceiving,

remembering, and acting upon continuous space.

1.4.1 Aging and Dedifferentiation of Spatial Navigation

Spatial cognition and the related ability of navigation take a special stance within this thesis.

This is mainly due to two characteristics. Firstly, it offers a handle on the previously posed

question of whether we can find evidence for age-related ND over a continuous variable. To

successfully navigate an environment, individuals have to keep track of the direction they are

moving in, the distance travelled, and remember their trajectory through space (Spiers & Barry,

2015). In turn, during spatial navigation the brain is confronted with the task of representing

continuous characteristics of the three-dimensional euclidean space around the navigator. With

this anchor to continuous spatial relationships, variables of navigation provide a way to deviate

from the category-based approaches previously used in the fMRI-based investigation of ND.

Secondly, and of note given the lifespan perspective of this thesis, spatial cognition stands out

from other cognitive abilities due to its unique trajectory in lifespan development. Navigation

abilities are heavily vulnerable to age-related decline (Moffat, 2009) and their assessment has

proven useful in the early diagnostics of pathological aging (Moodley et al., 2015). The effects

of age on the brain’s capacity to represent continuous spaces will add to the understanding of

special trajectory that the aging navigational system holds, and potentially inform its clinical

application. On an additional note, findings related to how the brain of older adults represents

continuous space might also be informative to domains of cognition less concerned with physical
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space. Much research in the recent years has focused on how the principals with which the

brain processes spatial knowledge might also apply to more abstract content and serve as a

more general way to organize information (see Behrens et al., 2018; Tolman, 1948).

Staying within the spatial domain, what exactly these principles are and how the brain

manages to overcome the complex challenge of way-finding has been a subject of research

for over 70 years. When examining navigational behavior in rats, Tolman, Ritchie, and Kalish

(1946) obstructed heavily learned paths towards a rewarded goal location. What they observed

was that, even though the usual path had been blocked, the animals were able to take alternative

routes to reach the reward location. Their account as to why the rats were able to show this

behavior was that they are taking advantage of a so-called cognitive map, an organized, map-

like knowledge of the animal’s environment that reflects the continuous relationships of space.

Neuroscience has since then made great advances towards understanding the mechanisms that

allow the construction of this cognitive map, the potential basis of our ability to navigate,

and how the brain might code its important cornerstones: variables like location, distance,

and direction (for a review, see Grieves & Jeffery, 2017). Regarding the neural coding of

space, animal work was able to identify a plethora of specific cell types responding to different

aspects of our environment that are thought of as the cognitive map’s building blocks. The

most prominent ones are so-called place cells and grid cells. Place cells, first reported and most

commonly located in the hippocampus, were found to code specific locations in an environment

explored by freely moving rodents (O’Keefe & Dostrovsky, 1971; O’Keefe & Nadel, 1978). Grid

cells, identified in the rodent’s entorhinal cortex several years later, exhibit similar response

fields. However, unlike place cells, each cell fires in multiple locations that tile the environment

in a systematic, hexagonal lattice (Fyhn, Molden, Witter, Moser, & Moser, 2004; Hafting, Fyhn,

Molden, Moser, & Moser, 2005). Together, place cells and grid cells are hypothesized to provide

information about an animal’s location, travelled distance, and to span a type of coordinate

system in a certain space (Rowland, Roudi, Moser, & Moser, 2016; McNaughton, Battaglia,

Jensen, Moser, & Moser, 2006; Mathis, Herz, & Stemmler, 2012; Moser, Moser, & McNaughton,

2017). Research identified a plethora of other cell types that have been demonstrated to code

for numerous variables of space (see Behrens et al., 2018), such as the distance to walls or targets

(Sarel, Finkelstein, Las, & Ulanovsky, 2017; Solstad, Boccara, Kropff, Moser, & Moser, 2008;

Lever, Burton, Jeewajee, O’Keefe, & Burgess, 2009), travelling speed (Kropff, Carmichael,
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Moser, & Moser, 2015), or the location of other animals (Danjo, Toyoizumi, & Fujisawa, 2018).

Head direction cells are tuned to the continuous space of physical orientation in the

environment

Besides the computation of one’s location and distance to potential targets, successful navi-

gation also requires a sense of direction (Rosenbaum, Spiers, & Bohbot, 2018). An accurate

coding of direction is a critical component of the navigational system and plays a key role in

path integration, the ability to internally combine cues of linear and angular self motion to track

one’s position in space (McNaughton et al., 2006; Etienne & Jeffery, 2004). Direction differs

from other spatial variables like location and distance in that its metric is angular. It is there-

fore not only continuous in nature but at the same time circular, meaning that there are no

boundaries to its space. As an example, a navigator that, while standing still, consistently turns

into the same direction will eventually again approach its original starting orientation. When

we think back to the animal work that identified neural broadening as a potential mechanism

behind ND, the rotating bars Schmolesky et al. (2000) used to investigate these age-related

differences in neural tuning share the same characteristics. With the goal of addressing the

gap between animal and human work and investigating ND over continuous spaces, spatial

orientation therefore offers a promising variable.

Adding to this, the similarities also expand into the neural substrates needed to encode

spatial orientation. Adding to other specified cell-types involved in navigation, Taube, Muller,

and Ranck (1990a) discovered neurons with firing patterns that were tuned to the facing di-

rection of freely-moving rats. The tuning curve of these so-called head direction (HD) cells,

similar to the orientation-selective cells found in V1 investigated by Schmolesky et al. (2000),

was bell-shaped and exhibited the highest firing rates at a cell-specific preferred facing direc-

tion of the rat. This directional tuning is aligned to an allocentric reference frame, meaning

it is relative to stable landmarks in the environment. A rotation of these landmarks leads to

a corresponding shift in a cell’s preferred direction (Taube, Muller, & Ranck, 1990b; Taube &

Burton, 1995). In fact, without visible landmarks HD cells are subject to an accumulation of

error, exhibiting a less accurate representation of the animal’s head direction over time. To

avoid this drift and retain a stable directional signal, the system repeatedly anchors itself to

stable landmark cues. Understanding these characteristics and how the HD system integrates
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the firing of numerous individually tuned cells, vestibular, and visual information in order to

create a sense of direction has been a great effort of animal work. This resulted in detailed

models of the HD system that have so far found substantial neurophysiological support but will

not be discussed here (for reviews, see Knierim & Zhang, 2012; Angelaki & Laurens, 2020)5.

While in insects the neural substrates of such models are fairly centralized (Angelaki & Lau-

rens, 2020), in mammals HD cells can be found more distributed, across the limbic system

and in cortical areas. Reported sites include the subiculum, the antero-dorsal nucleus of the

thalamus, the mammillary bodies, and the retrosplenial cortex (Taube, 2007; Winter & Taube,

2014).

In the context of human work, one question that arises is if it is possible to measure direction

signals using fMRI. While the animal work on the single-unit level constructs a promising basis

to investigate ND over a continuous space, the possible measurements applicable to the human

brain are much more coarse. Addressing this question, Shine, Valdés-Herrera, Hegarty, and

Wolbers (2016) combined immersive virtual reality (VR) in humans with subsequent fMRI

to see if there was a measurable signal of differing allocentric direction in key areas of the

HD system. They showed that this was indeed possible, presenting evidence that signals in

the retrosplenial cortex (RSC) and thalamus, both areas exhibiting populations of HD cells

in rodents (Winter & Taube, 2014; L. L. Chen, Lin, Green, Barnes, & McNaughton, 1994;

L. L. Chen, Lin, Barnes, & McNaughton, 1994; Cho & Sharp, 2001), coded for direction in the

global reference frame of the virtual environment. Similar results were found in a comparable

study showing measurable signals of allocentric goal direction, also in human fMRI (Shine,

Valdés-Herrera, Tempelmann, & Wolbers, 2019). Direction, in the context of spatial navigation,

is therefore not only a promising target due to its parallels with ND-related animal work, like

continuity and tuning. It is also a promising target because previous work has shown that

neural representations of direction can be assessed in humans via non-invasive neuroimaging.

5For the interested reader: Predominant models take the form of a continuous ring attractor (McNaughton,
Chen, & Markus, 1991). Attractor models describe systems in which neighbouring states are drawn towards an
equilibrium point. In the case of direction there exist an infinite amount of these points which are conceptually
arranged on a ring-like structure. Each particular equilibrium of the system reflects a certain direction. For
more detail on the neural substrates of this model, see Angelaki and Laurens (2020).
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Aging strongly affects navigation skills and spatial memory

When it comes to aging, studies have shown that spatial and navigational skills, relying on

an accurate sense of direction, are among the most severely affected in older age (for re-

views, see Moffat, 2009; Lester, Moffat, Wiener, Barnes, & Wolbers, 2017), a finding that is

also reflected in the subjective reports of older adults (Burns, 1999). Behavioral performance

in navigation tasks is strongly decreased in older individuals, with similar patterns in other

species like rodents (Barnes, 1979) or non-human primates (Rapp, Peter R.; Kansky, Mary T.;

Roberts, 1997). One of the most simple assessments of navigation ability are path-integration

tasks. Here, participants start from a particular location and are either passively transported

or asked to walk to two subsequent locations, usually including a slight turn. The task then

consists in walking back to the starting location. To achieve this, participants have to integrate

information about the travelled path and accurately estimate the required turn and distance.

The participant’s final position can then be compared to the starting location, offering a perfor-

mance measure (e.g. see Harris & Wolbers, 2012). In these tasks, older adults’ final locations

have been shown to be less precise compared to younger adults across a variety of different con-

ditions, including when performed in the real world or in VR (G. L. Allen, Kirasic, Rashotte,

& Haun, 2004; Adamo, Briceño, Sindone, Alexander, & Moffat, 2012). The consistency of

these age effects and the reliance of navigational skills on the MTL (Ekstrom et al., 2003) have

sparked an interest in using such tasks in the diagnosis of certain neuropathology, for instance

Alzheimer’s disease (AD), that are known to impact structures in the MTL (for a review, see

Coughlan, Laczó, Hort, Minihane, & Hornberger, 2018). Tests of episodic memory, the com-

mon method in the assessment of dementia (Dubois et al., 2014), are very practical in a clinical

setting but require multiple assessments to separate healthy aging from the pathologically ac-

celerated decline seen in dementia. Furthermore, other types of dementia with separate disease

profiles manifest in similar memory-related symptoms. Studies have shown that assessments of

navigational performance outperform those of episodic memory when having to distinguish AD

from other forms of dementia (Tu et al., 2015; Yew, Alladi, Shailaja, Hodges, & Hornberger,

2012). Moreover, evidence suggests that they further enable differentiation of patients with

mild cognitive impairment into high- and low-risk groups for the development of AD (Howett

et al., 2019).
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Besides the ability to precisely navigate, age-related decline has also been reported in tasks

of spatial memory (Moffat & Resnick, 2002; Holden & Gilbert, 2012; Schuck et al., 2013;

Schuck, Doeller, Polk, Lindenberger, & Li, 2015). An often applied test of spatial memory

requires participants to remember specific allocentric locations in a virtual environment that

displays proximal and distal cues. It has repeatedly been shown that in these tasks, compared

to younger adults, older adults tend to rely more on egocentric strategies, where locations

are encoded in reference to a proximal cue, rather than allocentric strategies that focus more

on distal cues and boundaries of the environment (Schuck et al., 2013, 2015). Egocentric

strategies, however, often lead to more errors, especially in non-static environments (Rodgers,

Sindone, & Moffat, 2012; Wiener, de Condappa, Harris, & Wolbers, 2013). In a study by

Schuck et al. (2015), older and younger participants had to remember the location of several

objects in a 3D desktop VR of a circular arena. The arena offered distal landmarks such as

mountains and clouds at its boundary and a proximal landmark within the arena in the form

of a traffic cone (see Doeller, King, & Burgess, 2008; Doeller & Burgess, 2008). After an

initial encoding phase, participants had to recall object locations from memory and navigate

towards them. Older adults showed worse spatial memory performance compared to younger

adults by placing objects further away from their correct location. Furthermore, older adults

exhibited less improvement over time from provided feedback. To more thoroughly analyze the

participants’ strategies, in the final phase of the task the authors separately manipulated the

size of the arena’s boundary and the location of the proximal cue. They then predicted how

participants would update their encoded object locations, either based on the shifted proximal

cue (egocentric) or re-sized boundary (allocentric). Results showed that the indicated object

locations of older adults were more in accordance with an egocentric model, while younger

adults predominantly followed the allocentric approach.

Potential role of neural dedifferentiation in the spatial domain

What makes the study by Schuck et al. (2015) especially relevant for this thesis is that it

presented evidence for a potential role of ND in spatial memory. A well-established finding in

the literature of rodent and human spatial navigation is that allocentric processing relies more

on structures in the MTL, especially the hippocampus, while landmark-based approaches are

more related to responses in the striatum (McDonald & White, 1994; Packard & McGaugh,
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1996; Doeller & Burgess, 2008; Doeller et al., 2008; Bird, Capponi, King, Doeller, & Burgess,

2010). While this pattern of specific processing was supported by fMRI results in younger

adults, landmark processing in older adults was accompanied by increased activity in the right

hippocampus. This argues for less differentiated processing of spatial information in older

adults.

Although these findings are best described as category-based ND, they support the idea

that aging also influences the specificity of cognitive processes in the context of spatial cogni-

tion. That similar patterns of ND (i.e. decreased specificity) might also be expected over the

continuous space of direction has been indicated in a study by Stangl, Kanitscheider, Riemer,

Fiete, and Wolbers (2020). They investigated the sources of age-related changes in navigation

ability more closely by using computational modelling of extensive path-integration data. This

allowed comparison between different possible sources of error, including internal noise of the

integrator, misestimation of velocity, and a leaky integration process due to memory decay.

Their results suggested that internal noise was by far the strongest error component for the

estimation of one’s position. This marks a parallel to computational models of ND that named

a decreased signal-to-noise ratio as a key factor in the loss of neural specificity (Li et al., 2001).

Adding to this, the authors reported decreased task performance in the older age group, sim-

ilar to previous assessments (Mahmood, Adamo, Briceno, & Moffat, 2009; Bates & Wolbers,

2014). However, the only significantly different error component between age groups was the

magnitude of internal noise, speaking in favour of an age-related affect on signal specificity.

Regarding the source of this noise, the experimenters could show that errors increased with

travelled distance, rather than time passed, suggesting that internal noise likely stems from

sensory inputs during navigation, for instance visual and vestibular information. Both of these

sources are relevant for an accurate signal in direction-selective cells (Winter & Taube, 2014)

and are furthermore innervating neurons in MT that are subject to neural broadening with age

(Liang et al., 2010), a suggested mechanism underlying ND.

To summarize, an open question in the literature of age-related ND is if specificity changes in

neural signals can be found over continuous spaces. That this question has not been answered

presents a disconnect between animal research on the mechanisms behind ND, which sug-

gests that response patterns of cells become less selectively tuned to continuous variables, and

findings in human fMRI where specificity changes have been reported predominantly across dif-
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ferent stimulus categories. Spatial cognition is based on continuous variables, with the specific

variable of direction showing strong parallels to stimuli used in related animal research. It has

been shown that signals of direction can be measured in fMRI (Shine et al., 2016) and com-

putational models of navigation performance suggest that increasingly noisy signaling within

the system contributes to performance differences between age groups (Stangl et al., 2020).

Considering these findings, measuring neural signals over the continuous space of direction

offers a promising opportunity to address the disconnect between animal and human work in

age-related ND by comparing age groups regarding the specificity with which the brain can

represent the continuous space of direction.

1.4.2 Non-spatial continuity: Aging and outcome-based learning

So far, we have spoken about functional differences in the aging brain, specifically ND. We

talked about how it is possible to address the open question of whether the age-related loss of

neural specificity also impacts representations of continuous space. This is the main goal of

article I and II, both of which investigate the spatial variable of direction. However, continuous

variables are not only relevant in physical space. One domain that is inherently connected to

continuity is value-based decision making. Value-based decision making provides a framework

for the analysis and prediction of choices when an agent is confronted with different options.

At the core of the framework is the idea that different choice options are judged based on

a continuous and subjective value metric. Each of the agent’s potential choices are assigned

a conceptual value depending on its outcome and other situational factors, like the agent’s

motivational state or the probability with which an outcome occurs. This value metric allows for

the comparison of different choice options and holds predictive power over an agent’s behavior.

In this sense, value has been the basis of many influential models of decision making (e.g.

prospect theory, Kahneman & Tversky, 1979; Tversky & Kahneman, 1992) and learning (e.g.

Rescorla-Wagner learning rule, Rescorla, 1968; Wagner, Logan, & Haberlandt, 1968).

The neuroscience of decision making has intensively investigated neural substrates of sub-

jective value (see Glimcher, 2014). These investigations have shown that value provides a

continuous metric not only conceptually; it is also represented in the brain. Strong evidence

for neural representations of subjective value have been demonstrated, for instance, in the

human ventro-medial PFC and ventral striatum (Clithero & Rangel, 2014). Supporting the
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idea of a continuous value metric, these responses have been shown to scale with increasingly

rewarding outcomes (Bartra, McGuire, & Kable, 2013). Furthermore, some value representa-

tions, most likely in the orbitofrontal cortex, are adaptive to the range of available rewards

(Padoa-Schioppa, 2009; L. T. Hunt et al., 2012), potentially allowing the system to provide an

equally detailed value metric across varying environments.

However, evidence for a continuous value metric in the brain does not imply that deci-

sion processes, especially in the face of risk, are rational and linear. Work on prospect theory

(Kahneman & Tversky, 1979; Tversky & Kahneman, 1992) has shown that adults overweight

events with low probabilities during decision making, and perceive relatively less gains with

larger outcomes. Especially rare and extreme events that stand out among regularly encoun-

tered values, or those that are located at the edges of distributions have repeatedly been shown

to introduce a bias into the decision making processes (Madan & Spetch, 2012; Madan, Ludvig,

& Spetch, 2014; Ludvig, Madan, McMillan, Xu, & Spetch, 2018). It has been claimed that

this relative overrepresentation of extreme events, in the face of associated cognitive demand

and time, describes an optimal use of finite resources (Lieder, Hsu, & Griffiths, 2014; Lieder,

Griffiths, & Hsu, 2018). More generally, research has shown that aging shapes decision making

and learning with consequences for important aspects of everyday life like monetary and health-

relate choices (Tymula, Rosenberg Belmaker, Ruderman, Glimcher, & Levy, 2013; Eppinger,

Hämmerer, & Li, 2011). In the context of decisions, older adults are differently influenced by

key characteristics of the available choices, like associated risk (Mata, Josef, Samanez-Larkin,

& Hertwig, 2011; Best & Charness, 2015) and uncertainty (Nassar et al., 2016). With these

findings in mind, Pachur, Mata, and Hertwig (2017) addressed the question of how extreme

events are integrated into the decision process of older adults. They confronted a younger and

older age group with different gambling problems, each offering a choice between two monetary

lotteries. Each lottery was associated with two possible outcomes happening with a respective

probability (e.g. lottery A: 50% to win 5$, 50% to win 1$; lottery B: 10% to win 30$ and 90% to

win 0$). Using a computational model based on cumulative prospect theory (Tversky & Kah-

neman, 1992), the study found that both older and younger adults proportionally overweighted

low probability events in their decisions. While this was true for both age groups, older adults

did so to a stronger degree than younger participants, reflecting increased optimism about the
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possibility of a gain6.

Decisions from description, such as those investigated by Pachur et al. (2017), take an im-

portant role in the research of value based decision making. They provide participants with

all necessary details about the outcomes and study decisions in the face of full information.

Another approach is investigating decisions when participants have to collect necessary infor-

mation themselves, usually referred to as decision from experience (see Hadar & Fox, 2009;

Hertwig & Erev, 2009). This approach involves a period of sampling, where participants have

to use trial-by-trial feedback to update their estimate of an option’s value, an outcome-based

learning process. In such cases, when participants have to build up their expectations about

outcomes step-by-step, extreme outcomes are characterized by their associated surprise. This

is expressed by the difference between the participant’s expectation and the encountered out-

come. In models of reinforcement learning (RL), learning processes are based on this difference,

which is called the prediction error (Sutton & Barto, 2018). Estimates of future outcomes are

then adjusted by the prediction error but weighted by a learning rate. Considering the findings

of Pachur et al. (2017), also RL models could technically allow for an analogous overrepresen-

tation of extreme or surprising events, specifically by increasing the learning rate for trials that

offer surprisingly high or low value. But is this biased representation of a continuous outcome

space together with its age-related difference a finding that generalizes from descriptive decision

making towards learning processes? Are older adults learning more from surprising outcomes

than younger adults? Moving away from physical space and towards the representation of

abstract continuous space, the third work of this dissertation aims at addressing these open

questions (see article III).

6Pachur et al. (2017) also included lotteries from the loss domain, where the participants gambled to avoid
monetary losses. Patterns of probability weighting differed in comparison to the gain domain. Furthermore, in
the loss domain there was no age difference in probability weighting, demonstrating the complex interactions
between task framing, decision making, and age differences therein. For detail, see Mata et al., 2011 and Best
& Charness, 2015.
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RESEARCH QUESTIONS

The previous chapter provided a general background regarding the influence of age on mem-

ory, neural dedifferentiation, spatial navigation, and the representation of continuous spaces,

neurally as well as behaviorally. Furthermore, it laid out a set of open questions, which this

dissertation aims to address:

Question 1: Is there evidence for the age-related dedifferentiation of neural repre-

sentations over a continuous space as measured by fMRI?

Previous investigations of age-related ND of human fMRI signals have been focused on cate-

gorical approaches (e.g., see D. C. Park et al., 2001; Carp, Park, Polk, & Park, 2011; Koen

et al., 2019). These helped to establish robust evidence for reduced specificity of neural rep-

resentations in older age and how this phenomenon might contribute to age-related memory

impairment (Koen & Rugg, 2019). One mechanism suspected in the emergence of age-related

ND stems from animal research showing that neurons in senescent monkeys tuned to orien-

tations of a visual stimulus, a continuous variable, exhibit reduced specificity in the form of

wider tuning functions (Schmolesky et al., 2000; Leventhal et al., 2003; J. Park et al., 2012).

So far, no evidence has been provided for age-related ND over a continuous variable in humans,

leaving open an important gap between findings in human fMRI and its suspected mechanisms.

Further, continuous variables enable investigation of a system’s tuning specificity. This can be

used to not only assess if neural specificity changes with age, but also how it changes (see sec-

tion 3.1). Addressing the gap between animal and human work and investigating the principles

age-related ND might follow has been the main objective of article I. Article II extends this

work.

Question 2: Can we provide causal evidence that reduced dopamine functioning

in older age contributes to age-related neural dedifferentiation?

Computational models have suggested a role of the neuromodulator DA in the fidelity of neural

representations (Li et al., 2001; Li & Rieckmann, 2014). In these models, reduced specificity

of downstream neural signals arises from deficient levels of neural gain modulation, a potential

34
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consequence of reduced DA functioning. Earlier work has shown that older age is associated

with reduced D2-receptor density (Wong et al., 1997; Y. K. Yang et al., 2003), limiting the

neuromodulatory function of DA and hence underlining its potential role in the emergence

of age-related ND. Direct evidence that levels of DA influence the neural specificity of fMRI-

signals has not been provided. The work in article II has been conducted to investigate a causal

relationship between the two. By using a similar approach, article II also allowed me to assess

if the results in article I replicate in a different data set.

Question 3: How does age affect the way humans learn from extreme events?

Extreme events introduce a bias into our decision making process (Tversky & Kahneman, 1992;

Ludvig et al., 2018), supposedly since they rationally reflect the most important potential

consequences of our actions (Lieder et al., 2018). The strength of this bias is subject to age

differences. Older adults, more than younger adults, overweight low-probability, extreme events

when making decisions from description in the gain domain, reflecting increased optimism about

the possibility of a large outcome (Pachur et al., 2017). Such an overrepresentation of extreme

outcomes during decision making opens up the possibility of a similar, non-linear influence

during learning. This is because surprise, often connected to extreme outcomes, takes a key

role in trial-wise learning from feedback and influences subsequent decisions. Models of RL

have contributed greatly to the understanding of said learning processes over the life course

(Eppinger, Schuck, Nystrom, & Cohen, 2013; Samanez-Larkin & Knutson, 2014). In these

models, a stronger weight on surprising events could manifest in increased learning rates in

trials with high prediction errors. This framework allows me to tackle the actively debated role

of surprising events in learning experiences and how it might change with age. This endeavor,

the objective of article III, will help to further understand decision making processes in older

adults.

Seeking answers to these questions is the main contribution of this cumulative dissertation,

resulting in the completion of three independent research articles. Addressing the first two

questions (see article I and II) required the development of a new analysis approach. As I

consider this another important contribution of this dissertation, the following chapter will

elaborate more on the applied methodology.
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OVERVIEW OF INDIVIDUAL WORKS

3.1 General Methodology

As laid out in the previous chapters, a central goal of this dissertation was to more closely

connect the findings of age-related ND in human fMRI and those of its potential mechanisms

originating from investigations of cell tuning in animals. Achieving this relied on the investiga-

tion of age-related changes in neural specificity over a continuous variable. This variable was

given by direction during the process of spatial navigation. Different directions are connected

by a continuous, quantifiable distance metric, namely angular distance7. These conditions re-

quired the development of a new approach, which will be described in this section. A schematic

of the approach is displayed in Figure 1. The procedure mainly offered two advantages com-

pared to previous investigations. First, the continuous distance metric made it possible to go

beyond previous measures of neural specificity. In particular, it allowed the construction of

fMRI-level tuning functions for the space of direction. These express how similarity between

neural representations changes with increasing angular distance of the corresponding direc-

tions. In doing so, they present a more principled measure of neural specificity. They provide

information about the organizational principles of the underlying neural representations. For

instance, they can help to distinguish if neural similarity equally differs between all directions

or gradually decreases with larger angular distance. Furthermore, they differentiate if reduced

specificity happens while such organizational principles are upheld or rather due to their dete-

rioration. This is particularly valuable for the research of age-related changes, the main focus

of this work. This information can be accessed by analyzing the shape of the fMRI-level tun-

ing function. A decreasing similarity with increasing angular distance would, for example, be

captured by a Gaussian shape. The width of a fitted Gaussian distribution would in this case

give a measure of neural specificity. The second advantage was that the neural representations

7To illustrate: the angular distance between the allocentric orientation of 120° and 180° equals 60°. It therefore
takes a turn of 60° to transition between both directions. Since the space of direction is circular it has no
boundary. In turn, when considering the shortest connection between two points the maximum angular distance
is 180°. Under this premise, the angular distance between the allocentric directions of 300° and 60° equals −120°,
not 240°.

36
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of direction were extracted from free roaming during a spatial memory task. The approach is

therefore easily adaptable to other data sets that include similar conditions (free navigation

while undergoing neuroimaging). Specifically article II made use of this characteristic.

I implemented the described approach in article I and II. Both publications analyzed paths

travelled during a desktop VR spatial memory task completed by older and younger adults

whilst undergoing fMRI. The tasks allowed participants to freely move around a circular arena

with the goal of navigating to a number of object locations that had to be retrieved from

memory. To extract neural representations of different directions, each participant’s travelled

paths were first calculated from the frequently logged position and azimuth within the arena.

To obtain high fidelity neural representations, we only analyzed episodes of active walking in a

certain direction. The resulting paths were therefore separated into events of consistent forward

walking within the same direction. The collected imaging data then allowed the extraction of

neural signals in response to the isolated events of different walking directions. To ensure

enough events for each direction, the allocentric 360° space was discretized into six, equally

sized bins of 60°. This resulted in a set of neural representations of different directions which,

in contrast to previous category-based approaches, reflected a continuous, circular space.

Individual measurements of participants’ neural specificity and tuning were operationalized

using a multivariate pattern classifier (see Carp et al., 2010; Carp, Park, Hebrank, et al., 2011;

Carp, Park, Polk, & Park, 2011). The classifier was trained on neural patterns of the different

binned walking directions (0°, 60°, 120°, 180°, 240°, 300°). In a testing set of never-before-seen

neural patterns, the classifier then predicted individual participants’ walking direction. To

extract fMRI-level tuning functions we extended the analysis to the classifier’s confusion matrix.

The confusion matrix entails how often the classifier predicted each class given the true class it

should have predicted. This allowed me to investigate how neural similarity (measured by the

frequency of the classifier’s mistakes) changes as a function of stimulus similarity. An example:

when the true class is 60° the false prediction of the neighbouring direction (120°) might come

up more often than the polar opposite direction (300°). This would suggest that similarity

of neural patterns is higher between neighboring directions (60° and 120°) and decreasing as

the angular distance between directions increases (60° and 300°). To quantify this relationship,

confusion matrices were converted into fMRI-level tuning functions by expressing all predictions

based on their angular distance to the target class (-120°, -60°, 0°, 60°, 120°, 180°). I specifically
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Figure 1. Schematic of analysis procedure for article I and II. During the task participants
freely navigated a 3D VR while completing a spatial memory task (see top left). Highly frequent logging
of a participant’s position and azimuth allowed the reconstruction of individual paths. These paths were
separated into events of consistent walking into a specific direction (six directional bins with 60° width;
duration > 1s). Simultaneous recording of fMRI allowed the isolation of neural representations of
walking direction events. A classifier was trained on separated parts of the data to predict participants’
walking direction from the corresponding activation pattern. Its predicted directions from a held-out set
of neural data were then compared to ground truth. The angular distance between the target direction
and the predicted direction (see top right) were contained in the confusion matrix. The classifier’s
predictions could therefore be expressed by the angular distance to the target direction (see bottom
left). The frequency of a 0° distance corresponded to a correct prediction and, in turn, in relation to
the number of all predictions measured classification accuracy. Distances other than 0° were errors of
which their frequency stands in direct relation to the underlying neural similarity between target class
and predicted class. Therefore, the distribution of errors contains information about the underlying
organizational principles with which direction is represented in the brain. Error distributions were
tested with a model comparison (Gaussian: closer in space equals higher neural similarity; Uniform: all
directions are equally [dis-]similar to each other). The shape of the fitted curves gave a more principled
measure of neural specificity containing information of the entire space. In the case of a Gaussian error
distribution this was expressed in measures of dispersion (tuning width, see bottom right).
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chose to investigate neural similarity based on classifier judgments since it comes close to the

problem posed to downstream brain areas which have to read out population-level tuning

functions (Jazayeri & Movshon, 2006; Averbeck, Latham, & Pouget, 2006).

I compared two models of the tuning function. First, a Gaussian curve inspired by tuning

functions found in the animal literature (Schmolesky et al., 2000; Leventhal et al., 2003; Liang

et al., 2010) where false predictions (i.e. neural similarity) decrease with larger angular distance

to the target class. Second, a model that assumed no such relationship and therefore equal

distribution of false predictions among all non-target classes. In areas that showed evidence of a

Gaussian relationship, neural specificity could be assessed by the width of the fitted Gaussian

curve. More narrow curves postulate a quick decrease in neural similarity with even small

differences between underlying stimuli, corresponding to higher neural specificity. Furthermore,

an additional, more general measure of neural specificity was reflected in the amount of the

classifier’s correct predictions, measuring how distinguishable the patterns of each direction

were from every other direction. In order to asses age-related ND older and younger adults

were compared based on both measures. To investigate the role of neural specificity of direction

representations in spatial memory, the measures were also related to task performance.

While a similar approach was used for both article I and II, its implementation was slightly

different. The largest difference consisted in the extraction of neural representations of walking

direction and the applied classifier. In article I, neural representations of walking direction were

extracted based on a general linear model (GLM) with individual regressors for each binned

walking direction. A classifier in the form of a linear support vector machine then operated

on the resulting beta maps. Due to circumstances introduced by its specific drug-intervention

design in article II, I applied a linear regression classifier that operated directly on the neural

patterns associated with a travelled direction. Article III aimed to investigate behavioral data

in a decision making task. Since the methods are unique to article III they are best described

in its summary below.

3.2 Summary of individual works

The present thesis addresses the questions outlined in the previous sections through three

research articles. Article I exhibits the first account of measuring ND in the context of a
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continuous, spatial variable, namely walking direction. ND has previously only been shown

in the context of categorical variables. This study aims to answer open questions not only

about the presence of age-related changes in neural specificity of continuous variables but

also about the specific form these changes may take. Article II builds upon the foundation

of article I, with the aim of evaluating decreased DA functioning as a candidate mechanism

behind age-related ND. Decreased DA functioning in older age has been proposed to influence

neural specificity due to a limitation in the transmitter’s neuromodulatory effect (Li et al.,

2001; Bäckman, Lindenberger, Li, & Nyberg, 2010; Li & Rieckmann, 2014). To examine this,

it applies a similar spatial paradigm as in article I, combined with a double-blind, within-

participant Levodopa (L-DOPA) drug intervention design that allows causal conclusions about

the role of dopamine in age-related ND. Finally, article III shifts the perspective away from

spatial paradigms and towards the more abstract, continuous space of outcomes in a RL task.

The study applies computational modelling of RL to identify differences in the ways older and

younger adults update expected reward of their choices, specifically when confronted with rare

and surprising outcomes.

All work related to the articles was conducted within the Max Planck Research Group

“Neural and Computational Basis of Learning, Decision Making and Memory (NeuroCode)”,

led by Dr. Nicolas W. Schuck at the Max Planck Institute for Human Development in Berlin,

Germany. Funding was provided by an Independent Max Planck Research Group grant awarded

to Dr. Nicolas W. Schuck by the Max Planck Society (M.TN.A.BILD0004). Furthermore, the

International Max Planck Research School on the Life Course (IMPRS-LIFE) supported this

work in the form of a fellowship.

Article I: An fMRI study to investigate age-related neural dedifferentiation
over the continuous space of walking direction

Koch, C., Li, S.-C., Polk, T.A., & Schuck, N.W. (2020). Effects of aging on encoding
of walking direction in the human brain. Neuropsychologia, 141, 107379.
doi: 10.1016/j.neuropsychologia.2020.107379

The goal of this fMRI study was to investigate age-related ND in the context of a continuous

variable to gain further insight into the phenomenon’s mechanisms. The appropriate framework

https://doi.org/10.1016/j.neuropsychologia.2020.107379
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was provided by spatial cognition, a domain with a special stance among aging research which

offered the suiting variable of walking direction.

Theoretical Background

One potential mechanism behind age-related ND is that neurons with narrow tuning to a

preferred stimulus in older age widen their spectrum of preference, effectively responding to a

broader range of stimuli. This idea is based on electrophysiological recordings showing that

senescent monkeys exhibited broader tuning curves of V1 neurons responding to the orientation

of a stimulus (Schmolesky et al., 2000; Leventhal et al., 2003). While this idea of neural

broadening in humans has since been supported with fMRI (J. Park et al., 2012), its evidence

together with findings of age-related ND in general stems from increased pattern similarity

across separate visual categories (e.g. faces and houses, see D. C. Park et al., 2004; Voss

et al., 2008; Burianová, Lee, Grady, & Moscovitch, 2013; Carp, Park, Polk, & Park, 2011).

Within a single, continuous domain, however, there has been no evidence to date for age-

related ND as measured by fMRI. One cognitive domain inherently relying on continuous

information, for example visual and directional information, is spatial navigation. In order to

build a closer link between human and animal literature, article I therefore investigates age-

related dedifferentiation of neural representations of different walking directions during virtual

navigation. The specificity of neural responses has furthermore been linked to encoding and

retrieval of memory content (Zheng et al., 2018; Koen & Rugg, 2019). Therefore, this approach

also offers an additional perspective to further understand older adults’ particularly pronounced

memory impairments in the spatial domain (Moffat, 2009; Lester et al., 2017).

Methods

I re-analyzed data of 43 participants (24 younger adults, 19 older adults) facing a 3D desktop

VR spatial memory task while undergoing fMRI, originally published in Schuck et al. (2015).

To obtain measures of neural specificity for each participant, I applied the analysis approach

laid out above in section 3.1. A support vector machine was used for classification. It operated

on direction-specific beta maps resulting from a GLM that included regressors for each direction

bin. Beta maps were extracted for a set of predefined regions of interest (ROIs) associated with

visual and spatial signals and a motor cortex control. In areas that allowed above-baseline
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classification of direction I further analyzed the classifier’s confusion matrix to construct fMRI-

level tuning functions. If the model comparison confirmed that the resulting tuning functions

within a ROI followed a Gaussian shape, I analyzed the width of the fitted Gaussian curve. To

assess age differences in neural specificity in the respective ROIs I compared both measures of

neural specificity between age groups.

Besides the assessment of age-related ND, a set of additional analyses were performed.

These included an investigation of the relationship between task performance and the reported

measures of neural specificity to assess its involvement in spatial memory. Furthermore, in

a number of additional tests I studied potential influential factors on the tuning function.

Specifically, I evaluated the influence of a smaller bin size of the directional space as well as the

role of visual information. Regarding the latter, I assessed the similarity of the visual input

associated with different directions using a biologically plausible model of the visual stream

(HMAX; Riesenhuber & Poggio, 1999; Serre & Riesenhuber, 2004). I then related differences

in visual similarity between directions to differences in the similarity of their respective neural

representations. Moreover, I analyzed drops in classifier performance when visual informa-

tion and walking direction mismatched during periods of backwards walking. Assessing if a

trained classifier picks up more on the travelled direction (backward) or the viewing direc-

tion (forward) allowed quantification of how strongly direction signals were driven by visual

information. All code related to article I can be found at https://github.com/koch-means-

cook/direction_decoding.

Major Findings

The results present evidence for age-related ND in the context of the continuous variable

walking direction. Data from the early visual cortex (EVC) and retrosplenial cortex (RSC),

areas in which direction could be decoded above a motor control baseline, suggested that neural

specificity as measured by classification accuracy was reduced in older adults. In the RSC, an

area which has previously been linked to direction signals (Shine et al., 2016), this measure

also correlated with participants’ behavior, wherein lower neural specificity was associated

with worse task performance. Furthermore, our new approach unique to continuous spaces

(see section 3.1) investigated tuning across the entire space of direction. This produced two

important results inaccessible to previous approaches. Firstly, tuning functions of both areas

https://github.com/koch-means-cook/direction_decoding
https://github.com/koch-means-cook/direction_decoding
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were better explained by a Gaussian model, meaning that pattern similarity gradually decreased

with the angular distance between the underlying directions. Secondly, analyzing the shape of

the Gaussian curves fit to individual tuning functions showed that early visual cortex (EVC)

tuning functions were broader in older adults, while there was no age difference in the RSC.

These findings suggest that the similarity of neural representations reflects their relationship

in space. Moreover, related specificity changes in older age are less likely to be related to the

deterioration of these organizational principles. Rather, the similarity structure is maintained

but, in the case of the EVC, less precise in older adults.

Article II: An fMRI study to investigate the role of dopamine as a potential
mechanisms behind age-related neural dedifferentiation of walking direction

Koch, C., Baeuchl, C., Glöckner, F., Riedel, P., Petzold, J., Smolka, M.N., Li, S.-C., &
Schuck, N.W. (2022). L-DOPA enhances neural direction signals in younger and
older adults. NeuroImage, 264, 119670.
doi: 10.1016/j.neuroimage.2022.119670

Building upon the findings of article I this drug intervention study investigated a potential,

physiological mechanism behind age-related ND: changes in the availability of the neurotrans-

mitter dopamine (DA).

Theoretical Background

Older adults show reduced DA functioning, supposedly with negative consequences for cognition

(Volkow et al., 1998; Chowdhury et al., 2013; Li, Lindenberger, & Bäckman, 2010; Bäckman

et al., 2010). When the neuromodulatory effects of DA decline, computational models sug-

gest this is expressed in a diminished signal-to-noise ratio and therefore lowered specificity of

neural responses (Cohen & Servan-Schreiber, 1992; Li & Rieckmann, 2014). With this link to

neural specificity, DA therefore offers a potential mechanism for the emergence of ND. Article

I presented evidence for age-related ND over direction-selective fMRI signals in the context of

spatial navigation. This fMRI study aims to investigate a causal link between the specificity

of direction-specific signals and levels of DA in younger and older adults.

https://doi.org/10.1016/j.neuroimage.2022.119670
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Methods

I analyzed fMRI data of 80 participants (37 older adults, 43 younger adults) completing a

paradigm similar to that of article I but embedded in a double-blind cross-over drug inter-

vention design. Each participant completed two sessions of the task, once under the influence

of a Placebo, and once under the influence of L-DOPA, a DA precursor. I again trained and

tested a classifier to decode walking direction from participants’ fMRI patterns using a similar

analysis approach described in section 3.1 and article I. The procedure was adjusted to yield

separate measurements for the Placebo and L-DOPA session. This allowed a direct, within-

participant comparison of the drug’s effect on the neural specificity of direction-specific signals.

Measures again included classification accuracy and tuning width in a set of predefined ROIs.

Furthermore, I analyzed drug effects on spatial memory performance as well as its relationship

to drug-induced changes of neural specificity. This article applied a reproducible and standard-

ized pre-processing of fMRI data using fMRIprep (Esteban et al., 2019; software version 20.0.6,

Esteban et al., 2020). Due to the L-DOPA administration, I further used the MRIQC software

(Esteban et al., 2017) to obtain estimates of participant motion during fMRI image acquisition

and to apply them as nuisance variables during statistical modelling. All code related to article

II was made publicly available at https://github.com/koch-means-cook/damson.

Major Findings

The administration of L-DOPA showed an enhancing effect on the neural specificity of fMRI

patterns associated with walking direction over the set of investigated ROIs. This speaks in

favor of a causal role of L-DOPA for neural specificity in the context of spatial navigation.

Exploratory follow-up analyses showed that the hippocampus exhibited the strongest effect

of L-DOPA which was also independent of age. In the RSC, enhancing effects of L-DOPA

administration were exclusive to the younger adults. Tuning width, however, did not show

any drug-induced changes. Moreover, the study was able to replicate the findings of article I,

demonstrating that older adults exhibited generally lower neural specificity as well as wider

tuning functions, both in the EVC.

https://github.com/koch-means-cook/damson
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Article III: A behavioral study to investigate age-related differences in
learning from a non-spatial continuous space

Koch, C., Zika, O., & Schuck, N.W. (2022). Influence of surprise on reinforcement
learning in younger and older adults. PsyArXiv.
doi: 10.31234/osf.io/unx5y

Continuous spaces are also present in our daily lives outside the spatial domain. This work

investigates age-differences when learning from the more abstract continuous space of rewards

in a reinforcement learning task.

Theoretical Background

Studies have found age differences in the domain of risky decision making (Best & Charness,

2015) and learning from feedback (Samanez-Larkin & Knutson, 2014). One particular finding

is that, compared to younger adults, older adults react differently to choices involving extreme

or surprising values drawn from the edges of continuous reward spaces (e.g. points or monetary

values; Best & Charness, 2015; Mata et al., 2011; Pachur et al., 2017) with studies painting a

complex picture of stronger over- or underweighting of such outcomes in the decision process

of older adults. While RL offers a promising perspective for understanding these findings, the

question of how outcome-based learning from surprising values might change over the lifespan

remains open. The present study addresses this question by investigating how younger and

older adults over- or underweight outcomes that elicit large prediction error (PE)s in an RL

framework.

Methods

We analyzed data of 102 participants (51 younger adults, 51 older adults) completing an online

value-based learning task. The task involved pairwise comparisons of three bandits, one of

which occasionally produced surprising outcomes (i.e., large PEs). The outcome distributions

of the involved bandits were set so that overweighting of surprising outcomes would show

itself in erroneous decisions. Besides comparing both age groups on how these surprising

outcomes might influence individual choices, I also applied computational modelling to gain

further insight to the involved learning process. To capture different weighting of surprising

outcomes we tested a model that allowed a participant’s learning rate (LR) to scale with the

https://doi.org/10.31234/osf.io/unx5y
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encountered PE in a given trial. This enabled stronger (or weaker) updating in the case of

large PEs, a consequence of surprising outcomes. A comparison to other candidate models, e.g.

one incorporating uncertainty, was conducted to see which model best explained participants’

choices and if this differed between younger and older adults. All code related to article III

can be found at https://github.com/koch-means-cook/pedlr.

Major Findings

Behavioral analyses showed that older adults, compared to younger adults, had longer reac-

tion times and more erroneous decisions in the bandit pair affected by surprising outcomes.

Furthermore, when asked to estimate potential outcomes of their choices, older adults showed

stronger distortion of their estimates towards the direction of the surprising outcomes. When

approaching behavioral patterns of participants with different computational models, a model

that allowed for differential weighting of surprising outcomes (Surprise model) explained the

data best across all participants. Interestingly, age groups did not differ in which model offered

the most accurate account of participants’ choices, nor in the winning Surprise model’s pa-

rameterization. Overall, the findings indicate that both older and younger adults differentially

weight surprising events producing large PEs in their decision process. As evident in partic-

ipants’ choices and outcome estimates, older adults seem to overweight surprising outcomes

during learning more strongly compared to younger adults. This presents evidence that the

continuous space of PEs is encorporated differently in the decision making process of older

adults.

https://github.com/koch-means-cook/pedlr
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GENERAL DISCUSSION

In this final chapter, I will first quickly summarize the main results across the three presented

articles. The reported findings will then be discussed in the light of previous research, followed

by a closer look at their limitations. Finally, I will broaden the perspective and focus on

potential future work that could follow the presented articles. The thesis will then close with

a set of concluding remarks that consider its overarching goal.

4.1 Summary and evaluation

The general aim of this thesis was to understand how aging shapes neural representations,

specifically of continuous spaces. One particular functional change described in the aging

brain is neural dedifferentiation (ND), a loss in the specificity with which it is able to represent

information, perceptual or conceptual (Koen & Rugg, 2019). In this context, continuous spaces

have not received enough attention, especially when considering their role in the research on the

potential mechanisms behind ND. To address this disconnect, two of the articles in this thesis

applied a novel approach to measure age-related ND over a continuous space, namely walking

direction in a virtual environment. The results of these works showed that different walking

directions were harder to classify based on their neural representations in older compared to

younger adults, specifically in early visual areas. Further, the continuous space of direction

offered the particular advantage of an underlying continuous and quantifiable distance metric

between stimuli (i.e. angular distance). This allowed the assessment of fMRI-level tuning

functions. In the early visual cortex (EVC) and retrosplenial cortex (RSC), these tuning

functions were best described by a Gaussian curve. This corresponded to a gradual decrease

in neural similarity with larger angular distance of the underlying directions. This was true

for younger as well as older adults. However, in early visual areas the precision of the fitted

Gaussian was lower in older adults, suggesting higher similarity between neural representations

related to neighbouring directions.

The L-DOPA drug intervention-design of the second work allowed for additional findings,

specifically related to the causal influence of DA functioning— a candidate mechanism behind

47
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ND (Li et al., 2001; Li & Rieckmann, 2014). The administration of the DA precursor statis-

tically increased the accuracy of a walking direction classifier across the investigated regions.

This drug related enhancement was present in older as well as younger adults.

Finally, to provide a wider perspective about the influence of age on representations of

continuous spaces, article III moved into the field of RL. It investigated how younger and

older adults diverge in learning from continuous outcomes and representing them in their

decision process. Model comparisons of participants’ behavior showed that choices of both

age groups were best explained by a model that reflected differential influence of surprising

events on participants’ choices, rather than uncertainty. Behavioral results, however, revealed

that surprising outcomes had stronger immediate effects on older adults’ choices and reward

estimates, specifically on decisions that immediately followed large, surprising prediction errors.

Age-related neural dedifferentiation over a continuous variable

The main question that led to article I was if there is evidence for age-related ND over a

continuous variable. This endeavor was motivated by a disconnect between human work and

studies in animals that identified neural broadening (Liang et al., 2010; Schmolesky et al., 2000;

Leventhal et al., 2003), which was suggested as a potential mechanism behind dedifferentiation

(J. Park et al., 2012). While age-related neural broadening was reported in animals using

continuous, circular variables, these had not been investigated in human fMRI work. Due

to the similarity in their approaches, both article I and II, addressed this disconnect. Their

results correspond and together they provide compelling evidence for age-related ND in human

fMRI even when stimuli are analogous to those used in the referenced animal research. This

is reflected by age differences in classification accuracy as well as wider fMRI-level tuning

functions in older adults. The lower classification accuracy found in older adults means that

neural representations of individual directions are less distinguishable from those of the other

directions. Both studies converge on this finding of decreased neural specificity in older age in

the EVC.

When putting these results in the context of previous research, it is important to distinguish

two different types of ND that have been investigated in human fMRI in the past: across- and

within-category (see section 1.4). Across-category (or category-level) dedifferentiation describes

changes in category-specific processing, for instance when areas involved in scene processing
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respond more to other types of stimuli (D. C. Park et al., 2004; Carp, Park, Hebrank, et al.,

2011; J. Park et al., 2012; Zebrowitz, Ward, Boshyan, Gutchess, & Hadjikhani, 2016; Zheng

et al., 2018; Koen et al., 2019; Srokova, Hill, Koen, King, & Rugg, 2020). Within-category (or

item-level) dedifferentiation, on the other hand, is used to reference changes in the specificity

of neural responses to stimuli stemming from the same category (Goh et al., 2010; Yassa,

Mattfeld, Stark, & Stark, 2011; St-Laurent et al., 2014; Reagh et al., 2018; Zheng et al.,

2018). The works included in this thesis show evidence for within-category dedifferentiation.

Previous investigations that applied within-category approaches have produced mixed results.

This might be related to a number of factors. One of them is the methodological approach

used. A number of studies that provided evidence in favor of within-category dedifferentiation

with age (Goh et al., 2010; Yassa et al., 2011; Reagh et al., 2018) applied the method of

repetition suppression (Grill-Spector, Henson, & Martin, 2006 and see Segaert, Weber, de

Lange, Petersson, & Hagoort, 2013). In this approach, a loss in specificity is measured by

the adaptation of neural responses to repeated presentations of the same stimuli, expressed

in diminished activity. Since adaptations are stimulus-specific, stimuli that are perceived as

new elicit non-adapted responses. Goh et al. (2010) repeatedly presented older and younger

adults with pictures of faces and could show that older adults’ adaptation extends to similar

faces. This was interpreted as evidence for older adults’ less differentiated responses to different

faces. In contrast to these studies, research that applied MVPA (Haxby et al., 2001) could not

provide strong evidence for within-category dedifferentiation (Zheng et al., 2018; St-Laurent et

al., 2014). The approach applied in article I and II of this thesis was based on the classification

of multivariate activity patterns. Both articles suggested within-category dedifferentiation,

diverging from the idea that such findings are exclusive to the usage of repetition suppression.

Repetition suppression could, however, offer a valuable tool when investigating ND in the

case of a continuous and circular variable. A study by Shine et al. (2016) showed the presence

of repetition suppression in the case of participants changing allocentric facing directions in

a virtual space. A strength of this approach is that it does not require the definition of

individual categories or classes. Rather, changes in fMRI activation levels after adaption could

be related to the magnitude of directional change. This would yield a detailed profile of

specificity changes, possibly with higher resolution compared to the present investigations. One

disadvantage would be that the systematic adaption towards specific direction requires imposed
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navigation through space (for examples, see Shine et al., 2019). This presents a challenge in the

context of free roaming through space, and therefore would have been a problem for the data

analyzed in this thesis. Nonetheless, a higher resolution when investigating neural similarity

changes, or potentially eliminating the need for binning overall, could warrant experiments

using constrained navigation. In article I we showed that the reported Gaussian similarity

structure also persisted for smaller bin sizes of 10° instead of 60°. An elimination of binning

altogether would, however, be preferable and presents a valuable addition of the repetition

suppression approach.

Another factor behind the mixed results of previous work regarding within-category ded-

ifferentiation could be a quantified stimulus similarity. For instance, Goh et al. (2010) inves-

tigated similar and dissimilar face stimuli. Their results showed that evidence for age-related

ND was only seen for similar faces, with no age difference for less similar faces. A study that

also investigated face stimuli but without a distinction by similarity did report null results in

visual areas (Zheng et al., 2018). One strength of the present work is that different walking

directions cannot only be separated into more or less similar exemplars, but are distributed

along a continuous similarity metric (i.e. angular distance). Therefore, the stimuli eliciting

different neural responses are equidistant and span the entire possible stimulus space. The

analyses of fMRI-level tuning functions in particular showed the importance of a quantifiable

distance metric in the investigation of neural specificity. Taken together, this work’s finding of

age-related ND over the continuous variable of walking direction across articles I and II shows

consistent results by applying a MVPA-based investigation of within-category dedifferentiation.

How the specific application of a multivariate classifier or the usage of a quantifiable distance

metric between stimuli contributed in this regard remains an open question.

Advantages of measuring fMRI-level tuning functions

The usage of stimuli connected by a quantifiable distance metric further allowed the extraction

of ROI-specific fMRI-level tuning functions. These resulted from the analysis of the classi-

fier’s confusion matrix, specifically by relating the amount of classifier confusions between two

directions to their angular distance. In doing so, the measure is separated from overall clas-

sification accuracy and presents an analysis of the errors made during classification (for more

information on confusion matrices, see Powers, 2020). This was also reflected in the statistical
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analysis, in which the peak of the tuning curves (corresponding to classification accuracy) were

excluded from the model comparison of the tuning curves shape (Gaussian vs. Uniform). This

independent assessment of fMRI-level tuning functions allowed me to investigate additional

facets of age-related ND.

Specifically, it addressed not only if neural specificity changes with age but also how it

changes. One main question in the context of age-related ND is whether changes in older adults’

neural specificity are caused by a widened spectrum of a cell’s (or population’s) preferred stimuli

(neural broadening) or rather the absence of preference (neural attenuation, see section 1.4).

These potential mechanisms were derived from cell-specific animal work on tuning functions in

aging (Schmolesky et al., 2000; Leventhal et al., 2003; Hua et al., 2006; Yu, Wang, Li, Zhou, &

Leventhal, 2006; Y. Yang et al., 2008; Liang et al., 2010). Previous fMRI work on age-related

ND in humans provided evidence for neural broadening (Hill, King, & Rugg, 2021), neural

attenuation (Koen et al., 2019), or both (J. Park et al., 2012; Srokova et al., 2020). The results

in favor of each process vary based on the investigated stimuli (e.g. scenes vs. faces) and

brain area, suggesting that both mechanisms are involved in changes to neural specificity with

age. These results were, however, largely based on category-based approaches. Investigating

continuous encoding of direction allowed me to test the claims made by neural broadening and

attenuation more directly. This presented an advantage of being able to measure fMRI-level

tuning functions since classification accuracy alone is not able to distinguish between these

processes. The analysis of the tuning function’s shape showed that the similarity structure

of direction representations in the EVC and RSC remains intact in older age. The neural

similarity in both age groups decreases as a function of angular distance between the underlying

directions, expressed by a Gaussian shape of the respective tuning functions. Further, article I

and II showed that the Gaussian curves fitted to the EVC tuning functions of older adults were

wider compared to younger adults. This finding is consistent with the idea of neural broadening.

If the underlying populations would lose their stimulus preference (neural attenuation), this

would likely be associated with a deterioration of the investigated similarity structure (i.e. a

uniform rather than Gaussian distribution of classifier errors). However, the maintenance of the

similarity structure (EVC and RSC) as well as wider fMRI-level tuning functions in the EVC

speak in favor of neural broadening. Based on our approach these findings provide evidence

for neural broadening in the context it has been reported in animal work.
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Importantly, the assessment of fMRI-level tuning is not exclusive to the approach used in

this study. It could therefore also help to further understand the mechanisms of across-category

dedifferentiation. Using fMRI, the signals of neural populations have been investigated regard-

ing their tuning to visual categories, including distinct features of faces (Zhang, Jiang, Song,

Zhang, & He, 2021) or more general features of objects, like animation (Haxby et al., 2011).

Investigating how these tuning profiles change over age might enable further understanding

of the diverse results regarding the mechanisms behind category-level ND. The same is true

for within-category approaches and other continuous variables besides direction. Importantly,

measuring fMRI-level tuning for continuous variables does not necessarily require a circular

variable. One example given by earlier work is the assessment of number tuning in the human

intraparietal sulcus (Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004). Parietal and prefrontal

cell populations in macaque monkeys have been found to code for numerical quantity on the

basis of neurons exhibiting Gaussian tuning (Sawamura, Shima, & Tanji, 2002; Nieder & Miller,

2003, 2004). Piazza et al. (2004) showed similar tuning in humans using non-invasive fMRI.

Spaces that are continuous but not circular are commonly encountered in daily life (e.g. au-

ditory frequency) and investigating age-related changes in their tuning profiles would allow a

broader perspective of ND, for instance towards domains other than vision. Additionally, it

should be noted that the assessment of tuning has proven useful besides the investigation of

ND. One study tested how tuning functions of populations representing the spatial position

of a stimulus change when said stimuli are paired with an aversive outcome (Friedl & Keil,

2021). Using a similar model comparison approach as article I and II the authors showed that

tuning functions do become more sharp once stimuli are associated with negative outcome.

In summary, the assessment of fMRI-level tuning in this work has supported a closer link be-

tween animal work on neural broadening and its involvement in age-related ND in humans.

The investigation of tuning profiles could furthermore provide an additional perspective on

established findings in the literature of age-related ND and beyond.

Findings in the early visual cortex: which signal dedifferentiates?

The results presented in this thesis show consistent evidence for age-related ND in the EVC.

These findings demonstrate age differences in the specificity of visual signals in response to

varying travelled directions. Just as during natural navigation, direction and visual input were
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linked when participants traversed the virtual arena in both article I and II. Distinguishing

between different walking directions therefore can be perceived as a problem of distinguishing

different scenes. However, there are various aspects of the visual input that set it apart from

scene stimuli used in previous investigations of age-related ND (e.g., see Zheng et al., 2018;

Koen et al., 2019). What participants saw during different walking directions corresponded

to sectors of one continuous, 360° scene. Since walking direction events were independent

of the navigator’s position in the arena and allocated to bins of 60°, the scenic input was not

identical, but varied within the same walking direction. Further, due to participants’ movement

in space, the visual input carried optic flow, an important characteristic in the estimation of

heading direction (Warren, Morris, & Kalish, 1988) and distance travelled (Frenz, Bremmer, &

Lappe, 2003). Therefore the findings in the EVC are describing the age-related dedifferentiation

of neural patterns in response to complex visual input relevant for spatial navigation and

orientation.

One important question is which mechanistic changes might cause this age-related loss of

pattern distinctiveness as measured by fMRI. Given the findings in the EVC, changes in the

specificity of visual processing are one likely candidate mechanism. The visual domain was

also the focus of studies that led to the idea of neural broadening as a mechanism behind

age-related ND. In particular, they reported wider tuning in several instances of direction

and orientation selective cells in primates (Schmolesky et al., 2000; Leventhal et al., 2003;

Y. Yang et al., 2008; Liang et al., 2010) and cats (Hua et al., 2006). These neurons pick up

on the orientation of basic scenic features such as edges and light-dark contours (Hubel &

Wiesel, 1968). The existence of neural populations that exhibit such orientation selectivity

in the human EVC has been demonstrated using fMRI (Kamitani & Tong, 2005; Haynes

& Rees, 2005; Yacoub, Harel, & Uğurbil, 2008). Although the results of this thesis hint

towards the presence of wider tuning functions in older adults (neural broadening), there has

not been any reports that age influences the tuning profiles of these selective populations in

humans to date. Given the complexity of the scenic input, especially the presence of optic

flow, the sources of decreased specificity of the measured activity patterns could furthermore

lie in the neural basis of other visual processing systems. An additional promising site could

be neurons selective to visual motion. Investigations of the primate visual cortex have shown

that V1 contains cells responding to specific motion directions (Movshon, Adelson, Gizzi, &
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Newsome, 1985; Maunsell & Newsome, 1987), a finding that has, on the population-level,

also been demonstrated in humans (Helfrich, Becker, & Haarmeier, 2013). These cells, as

well as targets of their downstream projections like MT, were found to be of relevance for

the perception of optic flow and self-motion (Pasternak & Merigan, 1994; Salzman, Murasugi,

Britten, & Newsome, 1992; Furlan & Smith, 2016; Cullen, 2011), both processes showing

strong impairment with healthy as well as pathological aging (Lich & Bremmer, 2014; Kavcic,

Vaughn, & Duffy, 2011; H. A. Allen, Hutchinson, Ledgeway, & Gayle, 2010; Chou et al., 2009;

Lalonde-Parsi & Lamontagne, 2015). The results in the EVC could be caused by age-related

changes in either, or both of these two well-tuned systems. Addressing this open issue would

be a promising avenue for future research, to further understand the results presented in this

thesis as well as the visual component involved in spatial navigation. One potential experiment

in this regard could, for instance, use a procedure similar to the navigation-based approach in

articles I and II, but with minimized features of the environment (e.g. see Kirschen, Kahana,

Sekuler, & Burack, 2000). This could be used to manipulate the influence of optic flow or

orientation of visual features on the measured neural activity. Further, one could apply the

presented methods outside a navigation paradigm and directly investigate the neural specificity

in response to basic visual features like rotating bars (see Leventhal et al., 2003).

Alternative explanations for the observed age differences in EVC pattern specificity include

visual acuity. Rather than originating during the processing of visual input they could be the

consequence of, for instance, more blurry vision in older adults. Given the designs of arti-

cle I and II, it is not possible to entirely exclude this factor’s contribution to the presented

results. However, what argues against this interpretation is that both experiments only inves-

tigated participants with normal or corrected-to-normal vision, effectively reducing potential

perceptual differences. In relation to this, investigations of the data set analyzed in article I

showed no evidence for age differences in basic visual processing, measured by a contrast of

cue-onset (see supplementary, Schuck et al., 2015). Furthermore, studies focusing on perceptual

processes important for spatial navigation like the estimation of distances (Bian & Andersen,

2013; Norman et al., 2015) and surface slant (Norman, Crabtree, Bartholomew, & Ferrell, 2009)

reported either no age differences or even better performance in an older age group. Besides

differences in visual acuity, parts of my results could also be explained by altered behavior

during perception such as eye movements. Specifically, a study by Dowiasch, Marx, Einhäuser,
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and Bremmer (2015) demonstrated that older adults exhibit slower as well as a reduced number

of saccades when visually perceiving real world environments during navigation. How precisely

these factors might contribute to the reported results warrants further investigation. Ideally,

these should include a detailed assessment of visual acuity and measurements of visual scene

exploration, for instance through eye-tracking.

Findings in the retrosplenial cortex: could it be compensatory?

Besides the EVC, the RSC also showed above-baseline decoding of the current walking direction

in article I and II. Interestingly however, signals in this ROI did not show any evidence for

altered neural specificity between younger and older adults. These results are interesting with

regard to two major questions. The first question is which signal is measured in the RSC.

While the signal carries information about the current walking direction similar to the EVC,

it did not show the same age-related dedifferentiation. This suggests that it is unlikely for

the signals measured in the RSC to be a mere propagation of less specific visual signals.

The RSC is a downstream area of visual processing and integrates visual input with other

sources of information (Van Groen & Wyss, 2003). Article I investigated the influence of

purely visual information on the decoding of walking direction from the EVC and RSC. While

still highly responsive to the visual scene, across all participants its influence was weaker in

the RSC compared to the EVC. This is in line with the idea that the RSC likely integrates

additional sources of information in its walking direction signal. One option underlying this

slightly decreased dependence on the visual scene could be that the signal measured in the

RSC is more heavily influenced by HD cells. Studies in rodents have demonstrated populations

of HD cells in the RSC (L. L. Chen, Lin, Green, et al., 1994; L. L. Chen, Lin, Barnes, &

McNaughton, 1994; Cho & Sharp, 2001), while human work has shown that strokes affecting

the RSC leave patients with an impaired sense of direction (Takahashi, Kawamura, Shiota,

Kasahata, & Hirayama, 1997). These findings are accompanied by results from human fMRI

showing allocentric direction coding in the RSC, similar to HD cells (Shine et al., 2016). The

signal measured in the RSC could therefore be the result of an integration process of visual

information on the one hand and allocentric signals of walking direction on the other. However,

given the strong reciprocal connections with other areas, for instance the hippocampus and

thalamus (van Groen, Vogt, & Wyss, 1993; Naber & Witter, 1998), it is likely that other
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sources also contribute to a different type of direction signal compared to the EVC. The exact

nature of these sources cannot be disentangled within this thesis. Nonetheless, our results

speak in favor of differing signals of walking direction in the EVC and RSC.

This leads us to the second important question, namely the reason behind the missing ev-

idence of age-related ND in the RSC in both article I and II. Potential explanations for this

finding fall in either of two categories: either there is age-related ND, but we cannot measure

it, or the effect is truly absent. Factors that could influence the measurement would likely be

related to our methodological approach. For one, it could be that the number of directional

bins for walking direction events used to train the classifier was too coarse. Decreasing the

size of each bin and increasing the number of direction classes during classifier training and

testing would help to reach a better resolution of the tuning curve. This would also increase the

approach’s sensitivity to detect smaller age differences. In turn, the experiment would require

more data, which could either be achieved by guiding participants’ navigation or increasing

the time on task. Taking these measures would, however, not help in case the problem lies

in the task. All virtual navigation had to be conducted during fMRI, while participants were

lying on their back with instructions to not move. This eliminated any vestibular input during

virtual navigation. Signals of HD cells are strongly dependent on vestibular information (Blair

& Sharp, 1996; Stackman & Taube, 1997; Clark & Taube, 2012; Yoder & Taube, 2014). Espe-

cially when considering the integrative role of the RSC, missing motion cues of one’s own body

could affect its signal specificity. Older adults have been shown to exhibit losses in vestibular

function (Rosenhall & Rubin, 1975; Lopez, Honrubia, & Baloh, 1997; for a review, see Anson &

Jeka, 2016), a finding related to their decreased performance on spatial navigation tasks (Xie et

al., 2017). In this case, it would be possible that higher RSC signal specificity in younger adults

was hindered by the task procedure. Testing this explanation presents a challenge that could

only be addressed using mobile neuroimaging in combination with high-end, head-mounted

VR setups that allow researchers to track participants’ location in space. Such methods have

recently gained traction (Miyakoshi, Gehrke, Gramann, Makeig, & Iversen, 2021) and present

a major opportunity in the investigation of human spatial navigation. How well these setups

will be able to compensate for the reduced spatial resolution of electroencephalography (EEG)

measures remains to be seen. The development of new technology such as portable magne-

toencephalography (OPM-MEG, Tierney et al., 2019; Brookes et al., 2022), however, offers a
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promising future solution to this problem.

Regarding the alternative explanation of the true absence of age-related specificity losses

in the RSC, this thesis offers a highly speculative account. It could be that the computational

processes in the RSC are subject to lifespan-related change and are altered in older age. This

was suggested by age-differences found across article I and II. The results of a univariate fMRI

analysis showed that activity in the RSC of older adults varied stronger between different

directions compared to younger adults. This is combined with a finding in article II, demon-

strating that L-DOPA had an influence on RSC signal specificity in younger adults, while in

older adults it did not lead to any specificity changes. When jointly considering these two

results, one interpretation could be that the patterns with which the RSC reflects the outside

world might change in older age in a way that decouples them from DA-related processing.

This decoupling might increase older adults’ resistance to signal dedifferentiation in the RSC.

The idea that the brain’s functional organization can change over the lifespan and thereby

supports compensatory processing has been laid out in further detail in the introduction (see

section 1.3). The conclusion that the reported findings may be related to a similar compen-

satory process, however, requires a connection to a behavioral benefit. Our investigations could

not provide evidence for such a benefit. In summary, considering the differences between the

results reported in the RSC and early visual areas, it is unlikely that they present a pure

propagation of visual input. Further, the reason for why there was no evidence for age-related

ND in the RSC cannot be answered in a satisfying fashion by the work included in this thesis.

The suggestions that the RSC exhibits a compensatory change of its functional organization

remains highly speculative and lacks important evidence regarding its behavioral benefit. The

investigation of this potential age-related change, however, presents an interesting target for

future investigations.

Potential mechanisms of age-related neural dedifferentiation

One central goal of this dissertation was to further understand the mechanisms underlying

age-related ND. In general, ND is based on two potential sources: sensory input or the neural

processing of said sensory input. The sensory category includes processes that allow us to

perceive the outside world free of systematic distortion. Above it has been mentioned how

age-differences in visual acuity might influence results found in the EVC. Especially in the
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context of spatial navigation, it has been proposed that changes in vestibular perception play

a role in less specific neural signals (Stangl et al., 2020). Due to the missing vestibular input

caused by the fMRI-based approach and the missing assessment of visual acuity after correction,

the contribution of such sensory sources towards the findings reported in the included works

cannot be accurately quantified. Longitudinal studies have shown that rates of change in

cognitive measures and rates of change in visual acuity in aging are related and might share

a common factor (Lindenberger & Ghisletta, 2009). Cognitive abilities like memory and fluid

processing are evidently related to neural signal specificity (St-Laurent et al., 2014; St-Laurent

& Buchsbaum, 2019; Zheng et al., 2018; Koen et al., 2019; D. Park, 2010). For a more principled

understanding of ND and how it might be involved in shared rates of age-related change, the

contribution of sensory sources will need to be defined in future research.

Besides sensory differences in aging, decreased signal specificity can also stem from neural

processing of sensory input. In particular, article II was dedicated towards this endeavor and

allowed the investigation of a causal role of DA in neural signal specificity, as predicted by

computational models (Li et al., 2001). The reported findings speak in favor of a causal role of

DA in the specificity of neural representations of walking direction. Specifically, the adminis-

tration of the DA precursor L-DOPA enhanced the measured signal specificity across both age

groups. While this was a general finding across the investigated ROIs, exploratory follow-up

analyses suggested that the RSC and the hippocampus profited strongest from higher availabil-

ity of DA. This is in line with the computational models of signal specificity (Li et al., 2001)

that based their predictions on DA’s effect on neural gain (Cohen & Servan-Schreiber, 1992;

Thurley, Senn, & Lüscher, 2008). This study is not the first to show this causal influence of

DA on signal specificity measured in human fMRI. Another study by Abdulrahman, Fletcher,

Bullmore, and Morcom (2017) showed that the administration of a DA agonist (Bromocrip-

tine) and antagonist (Sulpiride) causally influenced ND of categorical memory contents in the

hippocampus. Article II supports this relationship in the context of the continuous space of

walking direction. Importantly, this suggests that a similar DA-based mechanism applies for

across- as well as within-category dedifferentiation, in particular content that is connected by

a continuous similarity metric. One factor that warrants further investigation regarding article

II is the absence of overall age differences in the effect of L-DOPA on signal specificity. Only

within the RSC was there an evident difference between age groups expressed in the absence
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of specificity enhancing effects of L-DOPA in older adults. As mentioned above, a highly spec-

ulative account for this finding could be an age-related change in the computational role of

the RSC in the investigated task. Otherwise, the findings seem to deviate from the estab-

lished inverted-U-shape relationship between cognitive performance and levels of DA (Cools

& D’Esposito, 2011; Vijayraghavan, Wang, Birnbaum, Williams, & Arnsten, 2007). Whether

this is an effect of the applied task or a general finding in the context of continuous variables

will need to be determined in future studies.

Besides the availability of DA, there are also other potential sources of age-related dediffer-

entiation that might be related to neural processing. For instance, we found that DA did not

influence signal specificity in EVC, the area we found consistent evidence for age-related neural

dedifferentiation. This finding is in line with the relatively low density of DA receptors in the

visual cortex (Lidow, Goldman-Rakic, Rakic, & Innis, 1989). Another mechanism that might

show stronger influence on dedifferentiation in the visual cortex is GABA-related inhibitory

processing. The administration of GABA agonists in senescent monkeys has been shown to re-

store tuning specificity of orientation selective cells in V1 (Leventhal et al., 2003). Establishing

a link between age-related ND in the EVC and levels of GABA would allow conclusions about

the nature of the findings in the EVC and if they are indeed a consequence of less specific

tuning of orientation selective cells. A link between GABA and neural specificity has already

been established by previous research. Based on the findings of Leventhal et al. (2003), one

study investigated the relationship between levels of GABA and age-related, across-category

ND in the ventral visual cortex (faces vs. houses, Chamberlain et al., 2021). Older adults

exhibited both reduced GABA levels and decreased neural distinctiveness in visual processing.

Furthermore, these two measures were linked in older adults, suggesting a connection between

decreasing GABA and lower neural specificity across distinct visual categories. A similar role

of GABA has been shown in the context of age-related ND in the auditory cortex, when pro-

cessing either foreign speech or music (Lalwani et al., 2019). The investigation of a continuous

variable in this context would also be of value due to its closer link to the findings by Leventhal

et al. (2003). GABA also presents a connecting factor between age-related ND and another

potential mechanism. The fMRI signals measured in older adults have been shown to exhibit

lower variability (Nomi, Bolt, Ezie, Uddin, & Heller, 2017; Garrett, Lindenberger, Hoge, &

Gauthier, 2017; Grady & Garrett, 2018; for a review, see Grady & Garrett, 2014). Less vari-
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ance in the neural signal could be a contributing factor towards less precise representations.

Interestingly, the administration of GABA can restore older adults’ signal variability to levels

present in younger adults (Lalwani, Garrett, & Polk, 2021), presumably because an optimal

balance between inhibition and excitation allows networks to act in a flexible manner (Poil,

Hardstone, Mansvelder, & Linkenkaer-Hansen, 2012; Agrawal et al., 2018). The connection

between GABA, neural signal variability, and neural specificity are yet to be addressed directly.

Therefore, besides DA, a more detailed investigation of GABA will also contribute to a more

principled understanding of ND and its mechanisms.

In summary, article II further investigated the findings of article I and provided additional

evidence in favor of a causal link between levels of DA and the specificity of neural represen-

tations, a prediction based on computational models (Li et al., 2001). It showed that neural

representations reflecting a continuous space exhibit increased specificity under higher availabil-

ity of DA. Identifying the reason behind differing effects of L-DOPA between the investigated

age groups and ROI will require additional studies. Moreover, the relationship between GABA,

fMRI signal variability, and neural specificity should be characterized in more detail. This will

help to build a thorough understanding of the mechanisms that underpin age-related ND.

Aging and abstract continuous space

With article III this thesis aimed to move away from spatial cognition and applied an outcome-

based learning task to investigate if aging also influences the representation of more abstract

(non-spatial) continuity. The reported results included that surprising outcomes eliciting large

prediction errors (PEs, a scalar variable) influenced the behavior of older adults more strongly

relative to younger adults. What does this finding tell us about the question how aging shapes

representations of continuous space? Compared to articles I and II, this behavioral finding does

not speak towards altered neural representations of continuous space in older age. Rather,

it compares age groups regarding how different sections of the continuous space of PEs are

represented in the decision making process. Choices following surprising events as well as par-

ticipants’ outcome estimates suggest that, in older adults, higher PEs at the extreme of the

spanned space are over-represented compared to younger adults and more readily influence

learning and decisions (for accounts towards uncertainty, see article III). In turn, the represen-

tation of the continuous space of PEs in choices made during a RL task seems to be shaped by
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age.

Why might this pattern of over-weighting appear in older adults? One idea might be

that it is a consequence of reaching the limits of finite cognitive resources. Also outside of

the aging literature, the over-weighting of extremes has been reported in several contexts,

such as memory recall (Madan et al., 2014), when calculating the mean of samples (Spitzer,

Waschke, & Summerfield, 2017), or estimation of an event’s probability (Lichtenstein, Slovic,

Fischhoff, Layman, & Combs, 1978). Recent accounts have proposed that this pattern reflects

the rational and efficient use of finite resources (for a review, see Lieder et al., 2018). What

has indeed been shown in sequential sampling tasks is that the over-weighting of extremes

specifically arose in the context of increased processing demands (Spitzer et al., 2017; von

Clarenau, Pachur, & Spitzer, 2022). Considering that older adults are more challenged by

decision-making tasks in comparison to younger adults (Tymula et al., 2013), one explanation

of their over-representation of surprising events in article III could lie in increased cognitive

load. However, although this factor might contribute to the behavioral patterns at hand it does

not capture the wide variability in older adults behavior in this context. By applying monetary

lotteries, Pachur et al. (2017) found a preference of older adults for more risky options offering

higher monetary gains, a pattern that was independent of cognitive ability. The same study

also showed that age-differences in risk aversion varied depending on the domain in question,

for instance, if participants instead gambled for a loss. A comprehensive understanding of why

age might introduce patterns of over-representation therefore requires an integration of findings

across different tasks and contexts, a challenge future research should aim to address.

Another important question is which characteristics define the altered representation of

large PEs in choices of older adults. Precisely how much more influence do they have? Does an

over-representation scale with the encountered magnitude of the PE or does it rather follow a

dichotomization into surprising and non-surprising events? Article III attempted to capture this

specific relationship in its computational models, specifically by allowing the Surprise model

to reflect various potential relationships between PE magnitude and learning rate. In turn,

the model could display patterns of under-, over-, and similar weighting of surprising events,

relationships expressed in the models parameters. Although the Surprise model overall offered

the best account of participant’s choices relative to other candidate models, comparing younger

and older adults’ parameter values did not reflect the age differences evident in behavior. In
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this, it did not allow conclusions in how aging might influence the precise mapping between

the continuous variable of PEs and their representation in learning and choice. What might

have caused this mismatch of model parameters and behavioral results could be an inherent

challenge when investigating surprising events in a stationary environment, namely that such

events can only appear in low frequency. In turn, trials in which participants’ behavior reflects

the impact of surprising outcomes only represent a small proportion of the trials used to fit

computational models, making it more difficult to accurately mimic the process at hand. While

this could be addressed by increasing the amount of bandits in the task, this was avoided to keep

the complexity of the task at a manageable level. The reduced control over the experimental

environment during online data collection has been shown to lead to increased noise (Crump,

McDonnell, & Gureckis, 2013), a finding that should be even more carefully considered in

a study including different age groups (for additional thoughts on the group of older adults

sampled in online data collection, see article III). However, it should be noted that participants’

overall performance in the task suggested that more complex tasks are likely feasible. Defining

the characteristics of the altered representation of large PEs in older adults’ choices should

be a goal of additional studies, preferably a combination of online- and in-lab approaches. A

better understanding of the exact nature of the behavioral changes could allow to relate the

presented findings in the context of more abstract continuous space to changes in the spatial

domain and potentially investigate their relationship with neural dedifferentiation.

4.2 Limitations

Since article I and II aimed to address related questions and share a similar methodology,

this section on the overarching limitations of this thesis will focus on these two publications.

The limitations of article III apply and are addressed in the respective discussion section (see

appendix E).

Unclear relationship to behavior

In order to judge the relevance of ND for age differences in spatial memory, it is necessary to

look at its relationship with behavior. The results across both studies were consistent in that

they showed relationships between neural specificity and task performance. However, these
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relationships involved different ROIs across studies. Article I found a relationship between

increased spatial memory performance and higher decoding accuracy of walking direction in

the RSC independent of age. In article II, task performance was related to decoding accuracy

in the EVC but only in younger adults. Individually, both findings can be interpreted in

line with previous research. Moffat, Elkins, and Resnick (2006) demonstrated that the RSC

plays a role during online navigation and is subject to age-related changes in its activation

during this process. Further, they reported that activity in the RSC was related to task

performance. Regarding the relationship in the EVC, vision is known to be important for

stable directional signals and path integration (Goodridge, 1998; Jeffery, 2007). It is therefore

conceivable that less precise visual signals could influence navigation performance. Nonetheless,

the relationships between measures of ND and behavior varied substantially between both works

and elude a consistent interpretation. Another limitation in this regard is that the investigated

behavioral measure did not allow a clear separation between navigation ability and spatial

memory performance. Task performance was assessed by the euclidean distance between the

true location of an object and the participant’s placement. It is not possible to disentangle if

this distance was due to inaccurate memory or rather inaccurate navigation towards a desired

location. This limitation could be addressed by investigating other behavioral measures. One

option would be to additionally measure navigation efficiency. This could be quantified as

the length of a travelled path from a starting position to a desired goal location. Additional

work should therefore focus on further characterizing the inconsistent relationship between ND

of walking direction signals and spatial navigation. To achieve this it would be valuable to

include multiple behavioral measures and assess separate relationships towards spatial memory

and navigation ability.

Data acquisition using a virtual environment

The collection of fMRI data imposes limitations, especially when investigating a process like

spatial navigation that extensively relies on body-based cues (X. Chen, McNamara, Kelly, &

Wolbers, 2017; Stangl et al., 2020). The absence of vestibular input in particular has nega-

tive consequences for the navigation performance of humans in real-world (Glasauer, Amorim,

Viaud-Delmon, & Berthoz, 2002) as well as virtual settings (Brandt et al., 2005). Similar

results have been presented for other stimulation that is absent while undergoing fMRI, such
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as active motion (Wang & Simons, 1999; Witmer & Kline, 1998). The differences between

virtual and real-world navigation have been discussed thoroughly elsewhere (see Taube, Va-

lerio, & Yoder, 2013). These differences could also be relevant for the measurement process

and subsequent conclusions. A good example is the absence of above-baseline decoding of

walking direction in the subiculum and thalamus reported in article I, which might be linked

to missing vestibular input. Both areas strongly rely on vestibular information to generate

direction signals (Stackman & Taube, 1997; Stackman, Clark, & Taube, 2002). It remains

open if this circumstance might interact with age and potentially influences older adults more

than younger adults. While it has been shown that the use of VR methods is feasible with

older adults with and without AD (R. Davis, 2021), it can still pose a major challenge for older

adults (for a review, see Diersch & Wolbers, 2019). Common difficulties for older adults when

confronted with VR are cybersickness (Liu, 2014) and less experience with new technology

(Barnard, Bradley, Hodgson, & Lloyd, 2013). The results presented in article I and II might

therefore be influenced by selection effects. However, participants were trained in the use of

the dektop VR setup prior to the experiment. Together with the finding that cybersickness

does not seem to be a phenomenon exclusive to the older age group (Saredakis et al., 2020),

it seems unlikely these factors might account entirely for the observed age differences in signal

specificity.

Pre-defined ROIs and findings in the motor cortex

Both neuroimaging studies applied an ROI-based approach. The choices for which ROIs to be

included in the analysis was built upon previous findings related to (head-)direction signals

(subiculum, thalamus, entorhinal cortex, hippocampus, and RSC; Winter & Taube, 2014;

Munn & Giocomo, 2020; Leutgeb, Ragozzino, & Mizumori, 2000; Ben-Yishay et al., 2021;

Shine et al., 2016, 2019). Additional ROIs were chosen to analyse primarily visual signals

(EVC) and to provide a motor control (M1). The ROI-based approach does not allow any

claims about other regions, neither if they may contain decodable information about the current

walking direction nor age differences therein. In a more data-driven approach, the same analysis

could be carried out using a searchlight procedure (Kriegeskorte, Goebel, & Bandettini, 2006).

However, considering that both approaches have their pitfalls, previous investigations have

suggested combining them (Etzel, Zacks, & Braver, 2013). This could be a valuable avenue to
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pursue for future investigations.

A surprising finding of this work included the anticipated control region. I chose M1 as

a control ROI because the forward-tilt motion of the joystick required to move forward in

the virtual environment was identical for all directions. Unexpectedly, the analysis found

moderate decoding accuracy of walking direction in the M1, specifically in article II. The lack

of a clear control region that was defined a-priori therefore presents a limitation of the included

works. The background of the decoding performance in M1 can only be speculated upon

given the present data. A previous fMRI study showed that visual aspects of directed motor

movements were coded in M1, under the premise that they are coupled with consequential

motoric responses (Eisenberg, Shmuelof, Vaadia, & Zohary, 2011). Given that this was the

case in our task, these findings present a potential source of the observed direction information

in M1. Another explanation could be that the classifier picked up on direction-dependent head

motion during data acquisition which lead to an inflated chance-baseline. This effect was,

however, addressed by including an indicator of head motion (framewise displacement) as a

nuisance variable in the statistical models. What further speaks against an inflated chance-

baseline as the reason behind the finding in M1 are clear null-results in other regions. What

further separates the M1 results from those in the RSC and hippocampus is their independence

of L-DOPA administration, although D1- and D2-receptor concentrations are higher compared

to the occipital cortex (Lidow et al., 1989). Given their unexpected nature and deviation from

other presented results, the decodability of walking direction in the motor cortex warrants

further investigation. It furthermore underlines the large network that is supporting spatial

navigation processes and the related challenge to identify a clear control region.

Analysis of unconstrained navigation

Regarding the methodological approach used in article I and II, the analysis of free navigation

data presents an advantage. It enables the application of the introduced method of walking

direction decoding in a large pool of data sets that included free navigation (e.g., see Doeller &

Burgess, 2008; Doeller, Barry, & Burgess, 2010; Thurm et al., 2016; Kunz et al., 2015; Schuck et

al., 2013). In this regard, it holds great potential to obtain and compare results across multiple

studies and contexts. However, the missing control over the participants’ paths during data

acquisition also entails limitations that concern the assessment of fMRI-level tuning functions.
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The free movement of participants leads to a non-random transition structure between direc-

tions (see article I, supplementary material). This is because turns to neighboring directions

are more likely to occur than turns to, for instance, the opposite direction. What follows from

this transition structure is that events of walking direction will be closer in time for neighbor-

ing directions. The relatively slow hemodynamic response function (HRF) could cause activity

patterns of certain walking direction to contain lingering signal of the previous event. This

could artificially increase neural similarity between neighbouring directions. To which degree

this potential confound might contribute to the observed results is only possible to quantify in

a task that involves a controlled transition structure between walking directions (e.g., see Shine

et al., 2019). However, article I and II reported either no change to fMRI-level tuning func-

tions in the older age group (RSC and hippocampus) or their widening (EVC). Interestingly,

these findings seem to point in the opposite direction of the reported age-related changes in

the blood-oxygen-level-dependent (BOLD) signal would suggest in this context: younger adults

have been shown to exhibit higher auto-correlation of the BOLD signal (Geerligs, Tsvetanov,

Cam-CAN, & Henson, 2017) which would be expected to increase the lingering signal and, in

turn, lead to elevated confusions of neighbouring directions. If the findings are solely based

on lingering signal, this would result in wider tuning functions in younger compared to older

adults. In line with this, investigations of the HRF have shown that there are no changes in its

duration between age groups (West et al., 2019) which could have a similar effect as differences

in auto-correlation. Additionally, analyses of the time between events in article I (see supple-

mentary material) showed that older adults exhibit longer delays between individual events,

which contradicts the idea of wider tuning due to increased auto-correlation in the signal. This

limitation should nonetheless be addressed by applying the approach on navigation data with

a controlled transition structure. Finally, it should be noted that this point is exclusive to the

investigation of fMRI-level tuning functions and does not affect classification accuracy, another

reported measure of neural specificity.

Future research: a broader perspective

Starting from a more narrow point of view, there is one main goal future research should

pursue to understand the findings presented in this thesis. This is to further characterize the

physiological background of decreased specificity in walking direction signals in older adults’
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EVC measured by our approach. Our assessments provide a closer connection to the potential

mechanism of neural broadening found in monkeys (Schmolesky et al., 2000) compared to other

investigations of ND. Nonetheless, whether some key characteristics of the animal findings

will translate into our measure remains an open question. One very important factor is the

manipulative power of GABA administration on the tuning specificity of V1 cells found by

Leventhal et al. (2003). To see if the presented measure of neural specificity in EVC shares

this susceptibility to levels of GABA, it would be valuable to repeat the included works while

measuring or manipulating GABA levels in the occipital cortex. Another way to understand the

physiological background in more detail would be with animal work directly. In animals, VR

has been paired with invasive neuroimaging techniques like optical imaging (e.g., see Aronov

& Tank, 2014; Huang et al., 2020). In this setup, age effects on the occipital signals could be

analyzed in a similar fashion to the presented studies but with higher spatial and temporal

resolution. Both of these avenues help to narrow down whether the results found in the EVC

are indeed based on neural broadening of orientation selective cells in V1.

When widening our perspective, another future avenue could be the connection between

the presented findings and other spatial signals. For instance, models of grid cell activity have

assigned a major role to directional signals (for a review, see Raudies, Hinman, & Hasselmo,

2016). Interestingly, these models often consider movement direction instead of pure head

direction due to the importance of velocity information for accurate grid cell firing (Raudies,

Brandon, Chapman, & Hasselmo, 2015). Staying with the idea of animal VR, another useful

application with regard to our findings could therefore be to assess the influence of specificity

changes on grid cell firing. Moreover, grid-like coding has been identified in humans using fMRI

(Doeller et al., 2010) and shows reductions in older age (Stangl et al., 2018) as well as adults

carrying risk factors for AD (Kunz et al., 2015). Given the estimation of signal specificity

of different walking directions and grid-like coding are both possible in the context of free

navigation, it would be interesting to formally assess the relationship between both quantities

in humans. The animal as well as human perspective could help to further understand the

aging navigational system and see if ND might be involved as one of the potential mechanisms

of its decline.

When broadening the view in the context of aging, it is important to not only consider

trajectories of healthy aging, but also of pathological aging. The specificity of neural rep-
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resentations has been shown to be associated with memory performance and other cognitive

abilities (D. Park, 2010; Koen et al., 2019; St-Laurent et al., 2014; Zheng et al., 2018). Yet,

there has so far not been any assessment of the role of neural specificity in memory pathology,

for instance in the presence of mild cognitive impairment (MCI), AD, or adults with respective

genetic risk factors. This gap should be closed by future research. This will enable greater

understanding about the potential characteristics of pathological aging trajectories and possi-

bly establish additional criteria to diagnose them in their early stages. Previous studies have

found that spatial abilities might provide an early window into the diagnosis of neuropathology,

specifically when having to differentiate types of dementia (Coughlan et al., 2018). Considering

the strong influence of vision on spatial skills like path integration (Jeffery, 2007), it would be

helpful to assess how less specific visual signals of walking direction might contribute in this

regard. This might provide a more detailed profile of early AD diagnostics. Data sets that

involve free virtual navigation while undergoing fMRI exist in risk carriers for AD (see Kunz

et al., 2015). Analyzing them with the approach presented in this thesis might lead to the

first conclusions in this matter. With this said, data from patients and risk groups can pose

additional challenges, including limited amounts of data. Whether these limitations can be

overcome will be determined by future work.

Taking a very wide perspective and moving towards speculation, when some of the questions

above have been addressed, the findings could inform measures to aid older adults in real-world

navigation. People suffering from dementia in particular are under increased risk of getting

lost or disoriented in their daily life (Chiu et al., 2004; Emrich-Mills, Puthusseryppady, &

Hornberger, 2021), often with dire consequences for their health (Woolford, Weller, & Ibrahim,

2017). Once the contribution of ND towards declining spatial abilities has been defined, with

respect to visual direction signals in particular, the resulting insights could be translated into

measures to potentially prevent disorientation. As an example, this could influence the design

of large open spaces to decrease the confusability of different directions. This could be achieved

by offering appropriate environmental cues clearly indicating the current travelling direction.

An intervention to shape public spaces in a way that also properly accommodates the elderly

should of course not wait until this work is completed. However, such an intervention might

be improved by a thorough understanding of where errors in navigation are coming from and

how they might be prevented.
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As a final avenue of future research, I want to highlight the importance of a longitudinal

assessment. While cross-sectional approaches are useful to identify potential age-related effects,

they have been subject to strong criticism regarding their accurate estimation (Hofer & Sliwin-

ski, 2001). That cross-sectional and longitudinal results in the research of age-related change

can diverge profoundly has been demonstrated regarding older age (Nyberg et al., 2010) as well

as in early life (Keresztes et al., 2022). In the field of age-related ND, only one study has so far

provided longitudinal evidence (Chong et al., 2019). In the context of spatial navigation, longi-

tudinal assessments have recently gained more traction especially regarding the early identifica-

tion of pathological trajectories in aging (for a review, see Coughlan et al., 2018). Nonetheless,

the number of such studies is low (Verghese, Lipton, & Ayers, 2017; Levine, Roe, Babulal,

Fagan, & Head, 2022), especially those including structural (Lövdén et al., 2012; Korthauer et

al., 2016; Daugherty & Raz, 2017) or functional neuroimaging (Hirshhorn, Grady, Rosenbaum,

Winocur, & Moscovitch, 2012). Unfortunately, so far no longitudinal approach has combined

free virtual navigation and fMRI. This would allow researchers to assess within-participant

changes in neural specificity over a continuous variable and, in turn, a less confounded perspec-

tive. A longitudinal assessment should therefore be a priority of future research. The flexibility

of the presented approach might prove useful in this regard.

Conclusion

This thesis was conducted with the goal of understanding how aging shapes neural represen-

tations of continuous space. What led to this question was the finding that aging changes the

specificity of neural signals responding to distinct visual categories. While neural broadening

was suggested as a potential mechanism behind this process of age-related neural dediffer-

entiation, the studies that investigated neural broadening did so in neurons responding to a

continuous variable rather than distinct categories. It was therefore important to address this

gap and assess whether changes in neural specificity also occur in older adults’ responses to

continuous space. Article I utilized a spatial memory task involving free navigation in a virtual

environment and found that neural representations of the continuous space of walking direction

become less precise with age. Article II extended these results and provided evidence that, as

suggested by computational models, dopamine plays a causal role in the dedifferentiation of

neural signals, specifically within the context of continuous space. When we ask how aging
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shapes neural representations of continuous spaces we can answer that it seems to render them

less precise, similar to the findings in distinct categories. Furthermore, we can say that this

process is at least partly influenced by dopamine functioning and the transmitter’s modulatory

role in the specificity of neural responses. Finally, article III investigated if aging also influ-

ences behavioral representations of learning from the more abstract continuous space of reward.

Behavioral results suggested that large prediction errors located closer to the extremes of such

a space are encorporated differently in the learning and decision process of older adults. To

summarize, this thesis combined three empirical articles to provide additional insights into age-

related functional changes in the human brain and behavior. By utilizing a newly developed

approach, the presented work showed that the well-established finding of neural dedifferen-

tiation in older age extends towards continuous space and is causally influenced by levels of

the neuromodulator dopamine. These findings contribute to a more detailed understanding

of age-related changes in memory functioning and spatial abilities and, therefore, might hold

the potential of aiding with the diagnosis of pathological aging trajectories. Furthermore, the

presented results speak in favor of the idea that age differences found in the representation of

continuous spaces might also extend to more abstract domains.

At the beginning of this thesis, I mentioned that the aging brain does not have a good reputation

and that it is often seen as subject to consistent and inevitable decline. In particular, in the

context of age-related functional changes, I laid out that the brain’s remarkable capacity to deal

with losses in older age is often overlooked. It is intriguing to think that neural dedifferentiation

might be part of the aging brain’s toolkit to deal with neural compromise and allows older adults

to avert more dire consequences for the affected cognitive functions. Rather than presenting

a process of deterioration itself, dedifferentiation might be one of the brain’s ways of handling

deterioration, while at the same time maintaining functionality at an acceptable level. Finding

out whether this is indeed the case, in my opinion presents the most important avenue of future

research on age-related neural dedifferentiation. This thesis contributes towards this endeavour

and hopefully makes clear to the reader that the aging brain’s ”bad reputation” is one thing

above all: undeserved.
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a b s t r a c t 

Previous studies indicate a role of dopamine in spatial navigation. Although neural representations of direction 
are an important aspect of spatial cognition, it is not well understood whether dopamine directly affects these 
representations, or only impacts other aspects of spatial brain function. Moreover, both dopamine and spatial 
cognition decline sharply during age, raising the question which effect dopamine has on directional signals in 
the brain of older adults. To investigate these questions, we used a double-blind cross-over L-DOPA/Placebo 
intervention design in which 43 younger and 37 older adults navigated in a virtual spatial environment while un- 
dergoing functional magnetic resonance imaging (fMRI). We studied the effect of L-DOPA, a dopamine precursor, 
on fMRI activation patterns that encode spatial walking directions that have previously been shown to lose speci- 
ficity with age. This was done in predefined regions of interest, including the early visual cortex, retrosplenial 
cortex, and hippocampus. Classification of brain activation patterns associated with different walking directions 
was improved across all regions following L-DOPA administration, suggesting that dopamine broadly enhances 
neural representations of direction. No evidence for differences between regions was found. In the hippocampus 
these results were found in both age groups, while in the retrosplenial cortex they were only observed in younger 
adults. Taken together, our study provides evidence for a link between dopamine and the specificity of neural 
responses during spatial navigation. 

Significance Statement: The sense of direction is an important aspect of spatial navigation, and neural representa- 
tions of direction can be found throughout a large network of space-related brain regions. But what influences 
how well these representations track someone’s true direction? Using a double-blind cross-over L-DOPA/Placebo 
intervention design, we find causal evidence that the neurotransmitter dopamine impacts the fidelity of direction 
selective neural representations in the human hippocampus and retrosplenial cortex. Interestingly, the effect of 
L-DOPA was either equally present or even smaller in older adults, despite the well-known age related decline 
of dopamine. These results provide novel insights into how dopamine shapes the neural representations that 
underlie spatial navigation. 

1. Introduction 

A role of dopamine (DA) in spatial navigation is well established. 
Anatomically, spatial cognition depends on a network of brain regions 
centered around the hippocampus (HC) and retrosplenial cortex (RSC) 
( Burgess et al., 2002; Chersi and Burgess, 2015 ), both of which are tar- 
gets of dopaminergic innervation ( Berger et al., 1985; McNamara and 
Dupret, 2017 ). Behaviorally, spatial navigation abilities are influenced 
by DA functioning in younger as well as older animals and humans ( El- 

∗ Corresponding author. 
E-mail address: koch@mpib-berlin.mpg.de (C. Koch) . 

Ghundi et al., 1999; Granado et al., 2008; Kentros et al., 2004; Thurm 

et al., 2016 ). 
Much less is known about how DA might change the neural represen- 

tations that support spatial navigation. Particularly interesting for hu- 
man neuroscience are direction selective representations ( Taube, 2007 ), 
which have been found, amongst others, in the HC, the RSC and vi- 
sual cortex ( Cacucci et al., 2004; Flossmann and Rochefort, 2021; Gui- 
tchounts et al., 2020; Shine et al., 2016 ), and can be decoded from 

human fMRI signals ( Koch et al., 2020 ). We hypothesized that DA af- 
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fects direction encoding in the human brain and tested this idea using 
a double-blind placebo controlled intervention design. Specifically, we 
predicted that oral administration of L-DOPA, a dopamine precursor, 
would influence how accurately walking direction can be decoded from 

multi-voxel fMRI patterns in the above named ROIs. 
Next to its role in spatial navigation, DA has also received much at- 

tention in the context of aging, where reduced DA functions are preva- 
lent and are thought to underlie age-related cognitive declines ( Bäckman 
et al., 2006; Chowdhury et al., 2013; Li et al., 2010; Volkow et al., 
1998 ). Computational models have shown that declining neuromodu- 
latory effects of DA lead to losses in the signal-to-noise ratio of neural 
responses ( Cohen and Servan-Schreiber, 1992; Servan-Schreiber et al., 
1990 ), which in the aging brain can lead to neural representations that 
are less specific or “dedifferentiated ” ( Li et al., 2001; Li and Rieckmann, 
2014 ). In line with these models, dedifferentiation has repeatedly been 
observed in older adults (OA) at the behavioral and neural levels ( Carp 
et al., 2011a,b; Koch et al., 2020; Li et al., 2004; Park et al., 2004 ). 
Neural dedifferentiation, in turn, has been linked to decreased memory 
performance ( Koen et al., 2019; Sommer et al., 2019; St-Laurent et al., 
2014 ), establishing an explanatory link between DA, neural representa- 
tions and cognitive aging. 

These roles of DA in spatial navigation and aging might contribute 
to the pronounced decline in spatial cognition with age ( Lester et al., 
2017; Moffat, 2009; Schuck et al., 2015; Wolbers et al., 2014 ), and to 
the neural dedifferentiation of direction-selective ( Koch et al., 2020 ) and 
hippocampal signals ( Schuck et al., 2015 ) in the aging brain. Moreover, 
since the sharp decline of DA with age should lead to lower baseline 
availability of DA in OA, the effects of DA might be stronger in OA rel- 
ative to younger adults (YA) – reflecting DA’s inverted-U-shape relation 
to cognitive performance ( Cools and D’Esposito, 2011; Li et al., 2010; 
2013; Vijayraghavan et al., 2007 ). Indeed, one previous study found age- 
related effects of the DA receptor agonist bromocriptine on dedifferen- 
tiation in the HC ( Abdulrahman et al., 2017 ). Moreover, HC-dependent 
episodic memory, spatial navigation, and learning have been found to 
be affected by genetic polymorphisms related to dopamine D2 receptor 
availability (COMT Val158Met, C957T CC; Li et al., 2013; Papenberg 
et al., 2014 ) or hippocampal function (KIBRA SNP rs17070145; Schuck 
et al., 2013; Schuck et al., 2018 ) in OA, but not YA. Based on these 
findings, we therefore also tested whether L-DOPA effects on walking 
direction decoding would be stronger in OA relative to YA. 

Finally, we expected that DA could also influence the shape of 
population-based tuning functions of direction. Although direction- 
sensitive cells often have a preferred direction, they also fire in re- 
sponse to non-preferred directions in proportion to their similarity to 
the preferred direction ( Taube, 2007 ). Hence, encoding of direction in- 
formation seems to follow a Gaussian tuning function, in particular on a 
population level ( Averbeck et al., 2006 ). Research has also shown that 
age-related neural dedifferentiation results in increased width of such 
tuning functions with age ( Leventhal et al., 2003; Liang et al., 2010; 
Schmolesky et al., 2000 ), which we too have reported previously us- 
ing fMRI ( Koch et al., 2020 ). We therefore also investigated whether 
L-DOPA has effects on the precision of fMRI-derived tuning functions of 
direction information and whether such effects may interact with age. 

2. Materials and methods 

2.1. Participants 

This study was part of a larger project in which the same participants 
performed multiple tasks, including a sequential decision making task 
and a virtual reality spatial memory task inside the scanner and other 
decision tasks outside of the scanner. 

Here, we only report results from the MRI analysis of the VR 

task described below. Specifically, following our previous publication 
( Koch et al., 2020 ), our analyses were specific to neural representations 
of direction signals during the spatial memory task performed while un- 

dergoing fMRI. Other data from the same participants was not within 
the purview of this study and was therefore not investigated. Data of 
102 participants which were recruited for two MRI sessions and ran- 
domly assigned to one of the two drug intervention groups (i.e., L-DOPA 

– Placebo or Placebo – L-DOPA) was available for investigating our re- 
search question. Eighty-eight of these participants (43 OA, 45 YA) suc- 
cessfully completed both sessions without technical errors. Four addi- 
tional OA were excluded from further analyses because they did not 
respond in at least a third of the trials in at least one of the two ses- 
sions. Decoding analyses of the L-DOPA effects introduced additional 
requirements for the distribution of walking direction (see Materials and 
Methods) that were not met for four participants (2 OA, 2 YA). Thus, the 
final effective sample for these analyses also excluded these participants 
and comprise of a total of 37 OA (age 65–75, 6 female) and 43 YA (age 
26–35, 16 female). 

Note that the relatively low number of female OA reflects difficulties 
in recruitment after the onset of the COVID-19 pandemic. 

2.2. Virtual reality task 

During each session of fMRI data collection participants had to com- 
plete a similar variant of a spatial memory task that was used in previous 
studies ( Schuck et al., 2015; Thurm et al., 2016 ). Analyses of the present 
work are mainly concerned with directional signals obtained during free 
navigation, and hence focus on the corresponding task phases. Specif- 
ically, to avoid effects of changed environmental cues on directional 
signals (e.g. Taube et al., 1990 ) or initial learning, we considered only 
data from the feedback phase for this study (see below). On average, the 
included data reflected a period of 17.36 min from free navigation per 
session. 

Briefly, participants were placed in a virtual, circular arena in which 
they could move around freely using a custom-made MRI-compatible 
joystick. The arena consisted of a circular grass plane surrounded by a 
wall. Participants could also see distal cues (mountains, clouds) as well 
as a local cue (traffic cone) to aid orientation (see Fig. 1 ). We asked par- 
ticipants to remember the location of five objects within the 360 ◦ arena. 
First, an initial encoding phase took place in which participants could 
see and walk to the locations of all objects appearing one after the other. 
Learning of object location then continued in a feedback phase: partici- 
pants were placed close to the center of the arena with a random heading 
direction. After the brief presentation of a grey screen and fixation cross, 
a picture of the first object was shown. Participants were asked to navi- 
gate as closely as possible to the location of this object and indicate their 
final position with a button press within a maximum of 60 s. To provide 
feedback, the true object location was shown to participants following 
their response, and they were then asked to navigate to and walk over 
the shown location. After the feedback, participants were shown an- 
other object and the procedure repeated without placing the player in 
the center of the arena until all five objects were completed. The order 
in which the five objects were shown was pseudo-randomized. Once all 
five objects were completed, participants were again placed close to the 
arena’s center and had to navigate to all five objects in the same manner 
for a total of six repetitions (i.e., 5 × 6 = 30 feedback trials). In a final 
transfer phase of the task (data not analyzed in this study, see above), 
either the arena size or the location of the traffic cone were altered, and 
participants‘ object location memory was tested again as above. For the 
second session participants had to learn the location of five different 
objects, but the trial structure and procedures were identical otherwise. 
Completing one session took participants between 14 and 49 min. 

2.3. Drug administration 

Following a double-blind drug administration design, participants 
were given either a total of 225 mg of L-DOPA (Madopar, Roche, Lev- 
odopa/Benserazid, 4:1 ratio) or a placebo (P-Tabletten white 8 mm 

Lichtenstein, Winthrop Arzneimittel) before each MRI session in the 
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Fig. 1. Task procedure during feedback phase. Each trial started with a fixation cross on a grey background for two seconds. Afterwards a cue was presented showing 
the object to which participants needed to navigate (object locations were learned during encoding phase). The participant then had 60 s to navigate from their 
starting location (cross) to the object location according to their spatial memory. Participants indicated that they had arrived at the remembered location (circle) 
by pressing a response button, after which the object appeared at its true location. Participants could observe the difference between their response and the correct 
location and were required to navigate towards and walk over the correct location, before the cue of the next trial was presented. 

form of two orally administered dosages. A first dosage (150 mg L- 
DOPA/Placebo) was given about 10 min before subjects entered the 
MRI scanner, roughly one hour before the spatial navigation task began. 
To assure high dopamine availability during the task, a second booster 
dosage (75 mg L-DOPA/Placebo) was administered roughly ten minutes 
before task onset (cf. Kroemer et al., 2019 ). Participants were pseudo- 
randomly assigned to one of two groups with different session order, 
either the group that received L-DOPA in the first session and placebo 
in the second session (Drug-Placebo group, 40 subjects) or the group 
that started with the placebo in the first session (Placebo-Drug group, 
44 participants). 

2.4. Image acquisition 

All data was collected on a 3 Tesla Siemens Magnetom Trio 
(Siemens, Erlangen, Germany) MRI scanner. T1-weighted structural 
images were collected at the beginning of the first session using 
a MP-RAGE pulse sequence ( 0 . 8 × 0 . 8 × 0 . 8 𝑚𝑚 voxels , TR = 2400 𝑚𝑠 , 
TE = 2 . 19 𝑚𝑠 , TI = 1000 𝑚𝑠 , acquisition matrix = 320 × 320 × 240 , FOV = 

272 𝑚𝑚 , flip angle = 8 ◦, bandwidth = 210 Hz 
Px ). At the beginning of the 

second session T2-weighted structural scan was collected ( 0 . 8 × 0 . 8 ×
0 . 8 𝑚𝑚 voxels , TR = 3200 𝑚𝑠 , TE = 565 𝑚𝑠 , acquisition matrix = 350 ×
350 × 2630 , FOV = 272 𝑚𝑚 , bandwidth = 744 Hz 

Px ). 
Functional on-task data was collected using a T2 ∗ -weighted 

echo-planar imaging (EPI) pulse sequence 3 × 3 × 2 . 5 𝑚𝑚 voxels , 
slice thickness = 2 . 5 𝑚𝑚 , distance factor = 20% , TR = 2360 𝑚𝑠 , 
TE = 25 𝑚𝑠 , image matrix = 64 × 64 , FOV = 192 𝑚𝑚 , flip angle = 80 ◦, 
48 axial slices , GRAPPA parallel imaging , acceleration factor: 2 , 
interleaved acquisition ). The sequence lasted until the task was 
completed and took about 15–50 min. Additional functional scans not 
analyzed in this manuscript included data from the transfer phase, data 
from a decision making task, as well as data from a resting state scan 
collected at the start of each session. 

Quality of all collected functional sequences was assessed using MRI 
quality control (MRIQC; Esteban et al., 2017 ). The quality measure of 
framewise displacement (FD, threshold 3 mm), a measure for movement 
during image acquisition ( Power et al., 2014 ), was extracted and used 
for statistical control. 

2.5. ROIs 

Each ROI was created from anatomical labels obtained from Mind- 
boggle’s FreeSurfer-based segmentation of each participant’s individual 
T1-weighted images ( Klein et al., 2017 ). We investigated three prede- 
fined ROIs in light of previous findings indicating direction selective 
coding in these regions ( Cacucci et al., 2004; Flossmann and Rochefort, 
2021; Guitchounts et al., 2020; Koch et al., 2020; Shine et al., 2016; 

Taube, 2007 ). An early visual cortex (EVC) ROI, consisting of the bi- 
lateral cortical masks of the cuneus, lateral occipital cortex, and the 
pericalcarine cortex (mean number of voxels: 1480.87). A ROI of the 
retrosplenial cortex (RSC) constructed from the bilateral, cortical masks 
of the cingulate ishtmus (mean number of voxels: 198.55). A mask of the 
hippocampus (HC) was extracted from the respective bilateral masks of 
the parcellation (mean number of voxels: 323.64). In addition to these 
core masks, we added a ROI of the left motor cortex, constructed from 

the cortical mask of the left precentral gyrus, to serve as a control (mean 
number of voxels: 555.45). Although our resolution was suboptimal to 
investigate small areas, we included a mask of the entorhinal cortex (EC, 
mean number of voxels: 174.09) in order to explore if direction signals 
could be found there as well (see Inline Supplementary Table S1 for all 
ROI sizes). 

2.6. Image preprocessing 

Copyright Waiver 

Results included in this manuscript come from preprocessing per- 
formed using fMRIPrep 20.0.6 ( Esteban et al., 2018a; Esteban et al., 
2018b ; RRID:SCR_016216), which is based on Nipype 1.4.2 ( Gorgolewski 
et al., 2011; Gorgolewski et al., 2018 ; RRID:SCR_002502). The boiler- 
plate text in this section (2.6) was automatically generated by fMRIPrep 
with the express intention that users should copy and paste this text into 
their manuscripts unchanged . It is released under the CC0 license. 

Anatomical data preprocessing 

The T1-weighted (T1w) image was corrected for inten- 
sity non-uniformity (INU) with N4BiasFieldCorrection 
( Tustison et al., 2010 ), distributed with ANTs 2.2.0 ( Avants et al., 
2008 ; RRID:SCR_004757), and used as T1w-reference throughout the 
workflow. The T1w-reference was then skull-stripped with a Nipype 

implementation of the antsBrainExtraction.sh workflow 

(from ANTs), using OASIS30ANTs as target template. Brain tissue 
segmentation of cerebrospinal fluid (CSF), white-matter (WM) and 
gray-matter (GM) was performed on the brain-extracted T1w us- 
ing fast (FSL 5.0.9; RRID:SCR_002823; Zhang et al., 2001 ). Brain 
surfaces were reconstructed using recon-all (FreeSurfer 6.0.1; 
RRID:SCR_001847; Dale et al., 1999 ), and the brain mask estimated 
previously was refined with a custom variation of the method to 
reconcile ANTs-derived and FreeSurfer-derived segmentations of the 
cortical gray-matter of Mindboggle (RRID:SCR_002438; Klein et al., 
2017 ). Volume-based spatial normalization to two standard spaces 
(MNI152Lin, MNI152NLin2009cAsym) was performed through non- 
linear registration with antsRegistration (ANTs 2.2.0), using 
brain-extracted versions of both T1w reference and the T1w template. 
The following templates were selected for spatial normalization: 
Linear ICBM Average Brain (ICBM152) Stereotaxic Registration Model 

( Mazziotta et al., 1995 ; TemplateFlow ID: MNI152Lin), ICBM 152 
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Nonlinear Asymmetrical template version 2009c ( Fonov et al., 2009 ; 
RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym). 

Functional data preprocessing 

For each of the 4 BOLD runs collected per subject (two task re- 
lated runs reported here and 2 resting state runs not reported here), 
the following preprocessing was performed. First, a reference volume 
and its skull-stripped version were generated using a custom methodol- 
ogy of fMRIPrep . Susceptibility distortion correction (SDC) was omitted. 
The BOLD reference was then co-registered to the T1w reference using 
bbregister (FreeSurfer) which implements boundary-based registra- 
tion ( Greve and Fischl, 2009 ). Co-registration was configured with six 
degrees of freedom. Head-motion parameters with respect to the BOLD 

reference (transformation matrices, and six corresponding rotation and 
translation parameters) are estimated before any spatiotemporal filter- 
ing using mcflirt (FSL 5.0.9; Jenkinson et al., 2002 ). BOLD runs were 
slice-time corrected using 3dTshift from AFNI 20160207 ( Cox and 
Hyde, 1997 ; RRID:SCR_005927). The BOLD time-series were resampled 
onto the following surfaces (FreeSurfer reconstruction nomenclature): 
fsnative, fsaverage . The BOLD time-series (including slice-timing correc- 
tion when applied) were resampled onto their original, native space by 
applying the transforms to correct for head-motion. These resampled 
BOLD time-series will be referred to as preprocessed BOLD in original 

space , or just preprocessed BOLD . The BOLD time-series were resampled 
into standard space, generating a preprocessed BOLD run in MNI152Lin 

space . The first step in this process was that a reference volume and 
its skull-stripped version were generated using a custom methodology 
of fMRIPrep . Several confounding time-series were calculated based on 
the preprocessed BOLD : framewise displacement (FD), DVARS and three 
region-wise global signals. FD and DVARS are calculated for each func- 
tional run, both using their implementations in Nipype (following the 
definitions by Power et al., 2014 ). The three global signals are extracted 
within the CSF, the WM, and the whole-brain masks. Additionally, a 
set of physiological regressors were extracted to allow for component- 
based noise correction ( CompCor ; Behzadi et al., 2007 ). Principal com- 
ponents are estimated after high-pass filtering the preprocessed BOLD 

time-series (using a discrete cosine filter with 128s cut-off) for the two 
CompCor variants: temporal (tCompCor) and anatomical (aCompCor). 
tCompCor components are then calculated from the top 5% variable 
voxels within a mask covering the subcortical regions. This subcortical 
mask is obtained by heavily eroding the brain mask, which ensures it 
does not include cortical GM regions. For aCompCor, components are 
calculated within the intersection of the aforementioned mask and the 
union of CSF and WM masks calculated in T1w space, after their pro- 
jection to the native space of each functional run (using the inverse 
BOLD-to-T1w transformation). Components are also calculated sepa- 
rately within the WM and CSF masks. For each CompCor decomposi- 
tion, the k components with the largest singular values are retained, 
such that the retained components’ time series are sufficient to explain 
50 percent of variance across the nuisance mask (CSF, WM, combined, 
or temporal). The remaining components are dropped from considera- 
tion. The head-motion estimates calculated in the correction step were 
also placed within the corresponding confounds file. The confound time 
series derived from head motion estimates and global signals were ex- 
panded with the inclusion of temporal derivatives and quadratic terms 
for each ( Satterthwaite et al., 2013 ). Frames that exceeded a threshold 
of 0.5 mm FD or 1.5 standardised DVARS were annotated as motion 
outliers. All resamplings can be performed with a single interpolation 

step by composing all the pertinent transformations (i.e. head-motion 
transform matrices, susceptibility distortion correction when available, 
and co-registrations to anatomical and output spaces). Gridded (volu- 
metric) resamplings were performed using antsApplyTransforms 
(ANTs), configured with Lanczos interpolation to minimize the smooth- 
ing effects of other kernels Lanczos (1964) . Non-gridded (surface) re- 
samplings were performed using mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep use Nilearn 0.6.2 
(RRID:SCR_001362; Abraham et al., 2014 ), mostly within the func- 

tional processing workflow. For more details of the pipeline, see the 
section corresponding to workflows in fMRIPrep’s documentation . 

2.7. fMRI analyses 

Classification of walking direction 

All classification of walking direction was performed in 
Python (Python Software Foundation; Python Language Refer- 
ence, version 3.7.8; available at http://www.python.org ) and re- 
lied on scikit-learn ( Pedregosa et al., 2011 ) and nilearn 
( Abraham et al., 2014 ). Statistical analyses and plotting was per- 
formed in R (version 4.0.3, R Core Team, 2021 ), using the packages 
lme4 ( Bates et al., 2015 ), emmeans ( Lenth, 2021 ) and ggplot2 
( Wickham, 2016 ). All conducted post-hoc tests, if not specified other- 
wise, were corrected for multiple comparisons using Tukey correction. 

Functional data was prepared for classification by smoothing images 
with a 3 mm FWHM kernel. Next, nilearn ’s signal.clean func- 
tion was used to detrend, high-pass filter ( 1 128 Hz ), de-noise (using 10 
components of aCompCor) and z-standardize the time courses. 

Participants’ walking direction was extracted from navigated paths 
within the virtual environment. The complete 360 ◦-space of direction 
was binned into six equally spaced bins of 60 ◦. Classifier training ex- 
amples were then constructed by taking fMRI multi-voxel patterns in 
response to consistent walking within one binned direction for at least 
one second. Hence the number of classifier examples for each participant 
and direction were dependent on the travelled paths and the number of 
direction changes (for more detail on the number of classifier examples, 
see SI Section 3 ). If the same example spanned multiple TRs (i.e., was 
longer than 2.36s) all TRs spanned were averaged to assure a single 
voxel-pattern per example. Voxel responses were taken two TRs (4.72s) 
after the event to adjust for hemodynamic lag. A multinomial logistic 
regression classifier (L2 regularization, C = 1, tolerance = 10 -4 , 1000 
maximum iterations; as implemented in scikit-learn ) was applied 
to the resulting activation patterns in order to test whether walking di- 
rection could be classified. Cross-validation was done separately for L- 
DOPA and placebo sessions. 

Each session was split into into three folds, and cross-validated de- 
coding was performed across these folds from the same session. We en- 
sured a balanced number of training examples for each class by upsam- 
pling underrepresented classes if necessary. A balanced accuracy score 
was calculated for each test set and results were pooled across all cross- 
validation runs. To asses above-chance classification accuracy the re- 
sulting scores were tested to exceed a chance baseline (16.66%) using 
one-sided, one-sample t-tests and one-sided comparisons to permutation 
distributions. Said distributions resulted from repeating individual clas- 
sification procedures 1000 times with randomly permuted class labels 
in the training set. A permutation distribution of sample means was ob- 
tained by following the same averaging procedure as for the true values, 
just for each iteration of the permutation. To test whether classification 
accuracy was influenced by the various design factors (most notably, 
L-DOPA and age), linear mixed models (LMM) were used to asses possi- 
ble main effects and their interactions. Specifically, the model included 
fixed main effects of intervention (L-DOPA vs. Placebo), age group (OA 

vs. YA), ROI (EVC, RSC, HC), and session order (L-DOPA – Placebo vs. 
Placebo – L-DOPA), as well as their interaction. The random effects in- 
cluded a participant wise intercept and random slope of intervention. 
For models including data only from one ROI, the random slope of inter- 
vention had to be dropped to avoid singularity (same number of random 

effects as there are data points). 
Additionally, we included several control factors in our models: A 

drug dosage relative to body weight and dosage/kg × intervention in- 
teraction tested for potential effects of body weight; and an effect of 
framewise displacement (FD) and an FD × intervention interaction were 
included in the model as a nuisance variable to capture possible effects 
of drug-related head motion. 

Influence of spatial angular difference on fMRI pattern similarity 
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To test if neural representations of walking direction show the same 
circular similarity structure as directions in geometrical space, we anal- 
ysed the structure of classifiers predictions as in Koch et al. (2020) . If 
the similarity of two fMRI patterns of two different directions is asso- 
ciated with their angular distance in space, this should be reflected in 
the probability distributions over all possible directions. Specifically, we 
extracted the probability estimates of each of the six classes for each ex- 
ample of the testing set as calculated by the logistic regression classifier. 
These estimates were aligned with regard to relative angular difference 
from the target class ( −120 ◦, −60 ◦, 0 ◦, 60 ◦, 120 ◦, 180 ◦) and then aver- 
aged over all examples, resulting in a single curve for each participant 
which we refer to as the confusion function . A simple Gaussian curve in 
the form of 

𝑔( 𝑥 ) = 

1 
𝑍 

𝑒 − 
1 
2 𝜏𝑥 

2 
, (1) 

was used to determine tuning specificity, where 𝑥 denotes the angular 
difference and 𝜏 the precision (the inverse of the variance, 1 

𝜎2 
). Fur- 

thermore, 𝑍 normalizes the curve. This model captures an inverse rela- 
tionship between the angular difference of two walking directions and 
the confusability of their associated neural patterns. Models were fitted 
separately within each participant and ROI. 

The Gaussian model allowed us to assess age-differences in direc- 
tional tuning specificity, which were captured by the precision param- 
eter 𝜏. A LMM identical to the one modelling classification accuracy 
described in the previous section was used to analyze differences in pre- 
cision. 

2.8. Behavioral analysis 

Task performance during the feedback phase was measured by the 
distance error: the Euclidean distance between the true location of an 
object and the location the participant placed the respective object (mea- 
sured in virtual meters; vm; 1vm = 62.5 Unreal units). Performance for 
each trial was given by the average distance error across all five pre- 
sented objects within a trial (missing responses due to exceeding the 
time limit were excluded). Kolmogorov–Smirnov tests indicated that 
performance scores of YA were not normally distributed ( 𝐷 = 0 . 169 , 
𝑝 = 0 . 010 , 𝐷 = 0 . 064 , 𝑝 = 0 . 881 , for YA and OA, respectively; tested for 
performance on the last trial). To assure normality, the average dis- 
tance errors in each trial were log-transformed ( 𝐷 = 0 . 054 , 𝑝 = 0 . 941 , 
𝐷 = 0 . 106 , 𝑝 = 0 . 323 after transform for YA and OA, respectively). To 
assess the process of learning during the feedback phase of the task, we 
compared the difference between the first and last trial. Note that in 
light of non-linear learning curves we did not use a linear model across 
all trials on purpose. The difference between the two log-transformed 
measures was modeled using an LMM including the fixed effects of in- 
tervention (L-DOPA vs. Placebo), age group, and session order (L-DOPA 

– Placebo vs. Placebo – L-DOPA) as well as a random intercept of partic- 
ipant. Additionally, we compared performance after learning (last trial) 
with an identical LMM. Furthermore, group-level performance was com- 
pared to chance given by the average distance error assuming random 

responses for every object. To this end, we uniformly sampled 10 5 pos- 
sible locations within the circular arena. The task was then simulated 
1000 times while each response of each participant was randomly drawn 
from the pool of possible locations. This yielded a distribution of 1000 
group-means assuming random performance over a given trial and al- 
lowed a comparison of trial-specific group-means 

Finally, we aimed to quantify the relationship between the speci- 
ficity of direction signals and task performance to see if more specific 
direction signals allow better performance on the given task. To this 
end, we used previous LMMs of classification accuracy but added the 
regressor of performance in the last trial of the experiment. To assure 
normally distributed values the log-transformed performance variable 
was used. Furthermore, performance values were demeaned to elimi- 
nate a possible confound between age group and task performance. The 
FD-related nuisance regressors as well as the interaction between dosage 

per body weight and intervention were dropped from the model. To see 
if L-DOPA enhanced signal specificity in proportion to its enhancement 
of task performance the above model was adapted to predict the dif- 
ference between sessions in classification accuracy (L-DOPA – Placebo). 
The increase in task performance was given by the session difference 
(L-DOPA – Placebo) of the log-transformed performance in the last trial 
of the task. 

3. Results 

3.1. Behavioral results 

We first asked whether age group and intervention (L-DOPA vs. 
Placebo) affected participants’ object location memory, as expressed in 
distance errors on the last trial after learning. This this end, we ran a 
linear mixed model with fixed effects of interest for intervention and 
age group and a random effect of participant. This analysis showed a 
significant main effect of age group ( 𝜒2 (1) = 167 . 010 , 𝑝 > 0 . 001 ; 𝜒2 val- 
ues reflect likelihood ratio tests, see Methods). Post-hoc tests showed 
that OA had higher distance errors compared to YA at the end of learn- 
ing ( 𝑡 (80) = 12 . 811 , 𝑝 < 0 . 001 ). The model did not display any significant 
main effect of L-DOPA intervention ( 𝜒2 (1) = 1 . 479 , 𝑝 = 0 . 224 ) or L-DOPA 

× age interaction. Results are displayed in Fig. 2 . 
We next investigated performance increases, i.e. log distance er- 

rors on the first minus the last trial, and again found only a main ef- 
fect of age group ( 𝜒2 (1) = 61 . 054 , 𝑝 > 0 . 001 ), but no main effect of L- 
DOPA or L-DOPA × age interaction. A control analysis showed that 
the nuisance variable session order had no main effect in either end- 
of-learning performance ( 𝜒2 (1) = 0 . 1784 , 𝑝 = 0 . 673 ) or in performance 
changes ( 𝜒2 (1) = 0 . 948 , 𝑝 = 0 . 330 ), and also revealed no session order ×
intervention effect in performance changes. Unexpectedly, we found a 
significant interaction of intervention × session order in end-of-learning 
performance ( 𝜒2 (1) = 13 . 744 , 𝑝 < 0 . 001 ), reflecting a negative effect of L- 
DOPA if given in the first session ( 𝑡 (80) = 3 . 368 , 𝑝 = 0 . 002 ) while no effect 
was found if L-DOPA was given in the second session ( 𝑡 (80) = −1 . 693 , 
𝑝 = 0 . 180 , Ŝ idák corrected). 

3.2. Influence of L-DOPA intervention on direction decodability 

We used within-session cross-validation to investigate the decod- 
ability of walking direction (see Methods). A first analysis revealed 
that, averaged across sessions, decoding in our main areas of inter- 
est EVC (23.6%), RSC (18.4%) and HC (17.3%) was above chance 
baseline (16.6%, one-sided t-tests against chance, 𝑡 (79) = 11 . 783 , 𝑝 < 

0 . 001 , 𝑡 (79) = 4 . 627 , 𝑝 < 0 . 001 , 𝑡 (79) = 2 . 011 , 𝑝 = 0 . 047 , respectively), 
while it was at chance in the entorhinal cortex (16.9%, 𝑝 = 0 . 257 , all 
𝑝𝑠 Bonferroni-Holm corrected for 4 ROIs). These results were largely 
confirmed by a permutation test, although the HC effect was borderline 
after correction (EVC: 𝑝 < 0 . 001 , RSC: 𝑝 < 0 . 001 , HC: 𝑝 = 0 . 058 , Entorhi- 
nal Cortex: 𝑝 = 0 . 236 , Bonferroni-Holm corrected). 

Surprisingly, decoding in the left motor cortex was also above chance 
baseline, and significantly higher than in the HC ( 𝑡 (608) = −3 . 672 , 𝑝 = 

0 . 002 ) and entorhinal cortex ( 𝑡 (608) = −4 . 504 , 𝑝 < 0 . 001 ). The high de- 
coding score in the motor cortex was unexpected because participants 
used the same forward movement on the joystick to walk forward, re- 
gardless of the direction they traveled in. While we did not anticipate 
this effect, it indicates that this brain area cannot serve as a useful con- 
trol ROI. The results of the motor cortex are depicted in greater detail in 
Inline Supplementary Figure S1, and will not be detailed further here. 
Note that correction for five instead of four ROIs does not qualitatively 
affect the results reported above. 

Importantly, we next investigated whether classification accuracy 
was affected by dopamine, and indeed found a significant main effect of 
L-DOPA in a corresponding LMM ( 𝜒2 (1) = 6 . 796 , 𝑝 = 0 . 009 ). This effect 
reflected that direction signals were generally stronger under L-DOPA 

than placebo (post hoc test: 19 . 5% vs. 18 . 6% , 𝑡 (74) = 2 . 556 , 𝑝 = 0 . 013 ), in 
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Fig. 2. Behavioral results. Average error in object placement for all six trials for OA and YA. Error was measured as the Euclidean distance in vm between the true 
location of an object and the participants’ placement. Reduction in error shows better task performance. All values of the placebo session depicted in black, all values 
of the L-DOPA session depicted in white. Small dots indicate individual values of participants. Average over participants in each trial shown by the large dots. Shown 
on the upper left are session-specific distributions of 10 3 average performance values in a trial assuming random placement of objects. Note that, in turn, only the 
trial averages (large dots) can be compared to this chance-distribution. 

line with our main hypothesis (see Fig. 3 A). Figure 3 B shows permuta- 
tion tests against chance baseline within the L-DOPA and placebo condi- 
tions. These permutation tests showed that decoding was above chance 
in both conditions in the EVC and RSC (EVC: 𝑝 < 0 . 001 & 𝑝 < 0 . 001 , RSC: 
𝑝 < 0 . 001 & 𝑝 = 0 . 036 for L-DOPA and placebo, respectively) while in 
the HC decoding was above chance only under L-DOPA ( 𝑝 = 0 . 010 ), but 
not under placebo ( 𝑝 = 0 . 884 , all 𝑝 s Bonferroni-Holm corrected). Control 
analyses testing the influence of nuisance regressors (FD, session order, 
dosage) in the LMM showed no main effects or interactions with the L- 
DOPA intervention (all 𝑝 s > 0 . 08 ). The LMM also indicated a number of 
other effects, in particular of age group ( 𝜒2 (1) = 6 . 273 , 𝑝 = 0 . 012 ), ROI 
( 𝜒2 (4) = 271 . 674 , 𝑝 < 0 . 001 ), as well as an age group × ROI interaction 
( 𝜒2 (4) = 60 . 970 , 𝑝 < 0 . 001 ). But no L-DOPA × ROI or L-DOPA × age in- 
teractions were found ( 𝑝 = 0 . 427 and 𝑝 = 0 . 506 ). 

The main effect of ROI reflected that the classification achieved 
in EVC was significantly higher than decoding in the RSC ( 𝑡 (608) = 

10 . 837 , 𝑝 < 0 . 001 ), HC ( 𝑡 (608) = 13 . 108 , 𝑝 < 0 . 001 ), left motor cor- 
tex (19.1%, 𝑡 (608) = 9 . 436 , 𝑝 < 0 . 001 ), and entorhinal cortex (16.9%, 
𝑡 (608) = −13 . 940 , 𝑝 < 0 . 001 ). In addition, decoding in the RSC signifi- 
cantly outperformed that in the entorhinal cortex ( 𝑡 (608) = −3 . 104 , 𝑝 = 

0 . 017 ). 
Post-hoc comparisons of the age group main effect and the age group 

× ROI interaction showed that decoding was overall better in YA com- 
pared to OA, but this age difference was only significant in the EVC 

( 𝑡 (359) = −7 . 424 , 𝑝 < 0 . 001 ) but not in any other ROI ( 𝑝 s ≥ 0 . 833 , Ŝ idák 
corrected) as displayed in Fig. 3 C. Note that the EVC also showed age 
differences in the size of the ROI, as reflected in significantly lower voxel 
numbers in OA compared to YA ( 𝑝 < 0 . 001 , 1583 voxels vs. 1361 voxels 
on average, respectively, 𝑝 < 0 . 001 ). However, repeating the decoding 
analysis in a subsample of participants matched for ROI size showed 
equally strong age differences in decoding, indicating that age differ- 
ences in decoding found in the EVC are not explained by the larger EVC 

ROIs in YA (see Supplementary Materials Section 1 for details). 

As noted above, no L-DOPA × ROI interaction was found. Our re- 
sults therefore indicate that L-DOPA impacts the neural encoding of di- 
rection signals across a variety of brain regions. The following analy- 
ses therefore need to be seen as strictly exploratory. These exploratory 
follow-up analyses showed that the L-DOPA effect was strongest in the 
HC ( 𝑡 (603) = 2 . 153 , 𝑝 = 0 . 032 ), while post-hoc test in RSC and EVC re- 
vealed only marginal ( 𝑡 (603) = 1 . 916 , 𝑝 = 0 . 055 ), or non-significant ef- 
fects ( 𝑡 (603) = 1 . 447 , 𝑝 = 0 . 148 ), respectively (all 𝑝 s uncorrected). Nei- 
ther the left motor cortex nor the entorhinal cortex did show any ef- 
fects of L-DOPA ( 𝑡 (603) = − . 211 , 𝑝 = 0 . 833 , 𝑡 (603) = 0 . 710 , 𝑝 = 0 . 478 , both 
uncorrected). To further explore trends in region-specific effects of L- 
DOPA, and interaction with age group therein, analyses were run sep- 
arately for each ROI. These ROI-specific models reproduced the main 
effects of intervention within the HC ( 𝜒2 (1) = 5 . 263 , 𝑝 = 0 . 022 ) and the 
RSC ( 𝜒2 (1) = 4 . 868 , 𝑝 = 0 . 027 ). In addition, we found an intervention ×
age group interaction within the RSC ( 𝜒2 (1) = 3 . 877 , 𝑝 = 0 . 049 ), but no 
such interaction in HC ( 𝜒2 (1) = 1 . 518 , 𝑝 = 0 . 218 , see Fig. 3 D). Post-hoc 
comparisons showed that the effect in RSC was driven by higher de- 
codability of walking direction in the L-DOPA compared to placebo ses- 
sion in young adults ( 𝑡 (75 . 6) = 2 . 879 , 𝑝 = 0 . 010 ), but not in OA ( 𝑡 (75 . 4) = 

− . 161 , 𝑝 = 0 . 984 , Ŝ idák corrected). Within the EVC, only a main effect 
of age group ( 𝜒2 (1) = 16 . 350 , 𝑝 < 0 . 001 ), but no effect of L-DOPA inter- 
vention ( 𝜒2 (1) = 2 . 038 , 𝑝 = 0 . 153 ) was found. 

Control analyses found no impact of dosage per body weight on the 
intervention effect in any ROI ( 𝜒2 (2) < 3 . 578 , 𝑝 ≥ 0 . 167 , for the inter- 
action). Investigating the movement related variable FD, we found no 
significant main effects of FD ( 𝜒2 (1) ≤ 1 . 448 , 𝑝 ≥ 0 . 229 ) or an interac- 
tion between FD and intervention ( 𝜒2 (1) ≤ 0 . 644 , 𝑝 ≥ 0 . 422 ) in HC or 
RSC. A significant main effect of FD was found in the EVC, however 
( 𝜒2 (1) = 4 . 935 , 𝑝 = 0 . 026 ). This reflected worse classification accuracy 
with higher movement during image acquisition (linear regression relat- 
ing classification accuracy to FD: 𝑏 = − . 118 , 𝑡 (158) = −6 . 302 , 𝑝 < 0 . 001 ). 
A final control analysis within the left motor cortex did neither identify a 
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Fig. 3. Effect of L-DOPA on decoding of neural walking direction signals. A : Intervention-specific decodability of walking direction within each ROI. Black dots 
show values of participants and violin plots depict intervention-specific distribution. Means are represented by white diamonds. Chance-level is shown by dashed 
line and based on the total number of classes (6 classes, 16.6% chance). B : Intervention-specific decodability of walking direction compared to chance baseline. Mean 
decodability in the sample shown as white diamonds. Distributions of 1000 sample means given shuffled labels during classifier training serve as chance baseline. 
Chance-level is shown by dashed line. C : Age group-specific decodability of walking direction. Dots show individual values of participants and bars show group 
averages. Error bars depict standard error of the mean. D : Influence of drug intervention on decodability ( L-DOPA − Placebo ) shown for the RSC and hippocampus 
and split by age groups. Values higher than zero indicate higher decoding accuracy in the L-DOPA condition. Bars reflect group means and error bars reflect SEM. 
Black dots show individual values of each participant. 

main effect of intervention ( 𝜒2 (1) = 0 . 027 , 𝑝 = 0 . 869 ) nor any other main 
effects. Post-hoc tests confirmed that direction decodability in motor 
cortex under L-DOPA was not significantly different from decodability 
under placebo, regardless of session order ( 𝑡 (74 . 9) = −1 . 519 , 𝑝 = 0 . 133 , 
and 𝑡 (74 . 1) = 1 . 202 , 𝑝 = 0 . 233 , L-DOPA – Placebo and Placebo – L-DOPA, 
respectively). 

3.3. Relations between task performance, L-DOPA and direction decoding 

Following up on the above results, we asked whether neural direction 
encoding was related to task performance, and whether this relation was 
affected by L-DOPA. We therefore investigated the link between session- 
specific decoding accuracy and task performance (spatial distance error) 
on the last trial, in addition to age group and intervention. Because per- 
formance on the last trial was highly confounded with age group (see 
Fig. 2 ) performance values were demeaned within each age group to 
investigate effects unrelated to age-specific performance differences. 

A model within the EVC revealed a significant main effect of dis- 
tance error on the last trial on direction decoding ( 𝜒2 (1) = 7 . 594 , 𝑝 = 

0 . 006 , 𝑏 = 0 . 040 ; see Fig. 4 A), pointing towards better decoding ac- 
curacy with better task performance. The relation between task per- 
formance and EVC decoding also interacted with age group ( 𝜒2 (1) = 

3 . 921 , 𝑝 = 0 . 048 ), reflecting that the above mentioned relationship was 
present in YA ( 𝐹 (1 , 111 . 03) = 11 . 912 , 𝑝 < 0 . 001 , 𝑏 = 0 . 033 ) and absent in 
OA ( 𝐹 (1 , 121 . 83) = 0 . 066 , 𝑝 = 0 . 798 , 𝑏 = 0 . 006 , both uncorrected). As ex- 
pected the model of EVC decoding accuracy also displayed a main ef- 
fect of age group ( 𝜒2 (1) = 40 . 244 , 𝑝 < 0 . 001 ; see results for influence of 
L-DOPA on decoding accuracy). No effects related to task performance 
were found in the RSC or the HC ( 𝑝 s ≥ 0 . 053 ). 

We next investigated change-change relations, asking whether L- 
DOPA-related changes in decoding were related to L-DOPA-related 
changes in task performance (see Fig. 4 B). Linear regressions revealed 
that in YA L-DOPA-related changes in direction decoding in EVC were in- 
deed positively related to changes in task performance ( 𝐹 (1 , 72) = 6 . 730 , 
𝑝 = 0 . 011 , 𝑏 = − . 053 , uncorrected, negative slopes since performance in- 
crease means less errors). In OA, this was not the case ( 𝐹 (1 , 72) = 0 . 049 , 
𝑝 = 826 , 𝑏 = 0 . 006 , uncorrected). Linear models within the RSC and HC 

did not show any significant effects in change-change relations. Hence, 
our results reveal that in EVC better direction decoding was related to 
better task performance. Moreover, the more L-DOPA improved direc- 
tion decoding in EVC, the more participants improved on the task from 

the place to the L-DOPA session, in particular among younger adults. 
A analysis of nuisance variables in EVC showed that there was 

no main effect of session order ( 𝜒2 (1) = 0 . 009 , 𝑝 = 0 . 922 ), although 
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Fig. 4. Relationship between decoding accuracy and behavioral performance. A : Relationship between decoding accuracy and log-transformed and demeaned 
distance errors. Shown for the EVC, RSC, and hippocampus separately for both age groups. Dots represent individual participants where OA are shown in white. 
Lines represent linear models of represented subset and are colored according to the ROI and shown in dashed for OA. B : Drug-related change-change relationship 
between decoding accuracy and behavioral performance. Axes show influence of L-DOPA administration by showing the difference in values between the L-DOPA 

session and placebo session. Depiction accordingly to A. Please note that in both, A and B, the slope lines were extended beyond the data points purely to aid visibility. 

a interaction between task performance and session order emerged 
( 𝜒2 (1) = 4 . 332 , 𝑝 = 0 . 037 ). A post-hoc test revealed a trend towards dif- 
fering slopes depending if L-DOPA was given in the first or second 
session ( 𝑡 (132) = 1 . 904 , 𝑝 = 0 . 059 ) but separate tests within each ses- 
sion order did not display any significant relationships between per- 
formance and classification accuracy ( 𝐹 (1 , 143 . 83) = 0 . 607 , 𝑝 = 0 . 437 , 
𝐹 (1 , 118 . 80) = 3 . 164 , 𝑝 = 0 . 078 , for L-DOPA – Placebo and Placebo – L- 
DOPA, respectively). 

3.4. Influence of L-DOPA intervention on tuning specificity 

Finally, we investigated whether L-DOPA also affected tuning width, 
i.e. the how often neural signals encoding nearby directions where con- 
fused with each other. 

Omnibus analyses across the main ROIs revealed no L-DOPA effect, 
a main effect of ROI ( 𝜒2 (2) = 281 . 509 , 𝑝 < 0 . 001 ), and results otherwise 
consistent with those reported below. We therefore immediately report 
results of ROI-specific LMMs. A model of EVC tuning width found no 
main effect of intervention or intervention × age effect. We did find a 
significant main effect of age group ( 𝜒2 (1) = 20 . 631 , 𝑝 < 0 . 001 ), reflect- 
ing lower precision of the fitted Gaussian curves in OA compared to YA 

( 𝑡 (79 . 7) = −4 . 533 , 𝑝 < 0 . 001 ). The same analyses in RSC and HC showed 
no significant main effects of intervention, age, or intervention × age 
interactions. The means of the fitted Gaussian curves in the L-DOPA 

condition are shown in Fig. 5 B. Hence, L-DOPA did not have any effects 
on tuning functions in any of the investigated ROIs. 

No nuisance effect of FD, session order, or FD × intervention inter- 
action were found in any ROI-specific model ( 𝜒2 (1) ≤ 0 . 857 , 𝑝 ≥ 0 . 355 ; 
𝜒2 (1) ≤ 0 . 257 , 𝑝 ≥ 0 . 612 , and 𝜒2 (1) ≤ 0 . 578 , 𝑝 ≥ 0 . 447 , respectively). Ad- 
ditionally, intervention was not involved in any interaction with dosage 
per body weight ( 𝜒2 (2) ≤ 4 . 412 , 𝑝 ≥ 0 . 110 ). Unexpectedly, however, we 
found a significant intervention × session order interaction in the EVC 

( 𝜒2 (1) = 10 . 713 , 𝑝 < 0 . 001 ; see Fig. 5 A), suggesting that tuning preci- 
sion was higher when L-DOPA was administered in the second session 
( 𝑡 (74 . 0) = 2 . 911 , 𝑝 < 0 . 009 ) compared to when it was administered in the 
first session ( 𝑡 (75 . 2) = −1 . 607 , 𝑝 = 0 . 212 ). No intervention × session order 
interaction was found in any other ROI. 

4. Discussion 

In this work we tested the impact of L-DOPA on neural representa- 
tions of walking direction in younger and older adults, using a double- 
blind, cross-over intervention design. In addition to a classic decoding 
approach, we assessed direction specificity of neural signals, a proxy 
for tuning functions, using the relative structure of classifier probability 
estimates. Our results revealed that decodability of walking direction 
signals across all ROIs was enhanced following the administration of L- 
DOPA. Although no interaction between ROI and L-DOPA was found, 
post-hoc analyses hinted numerically at stronger effects in HC and RSC. 
Interestingly, however, task performance (spatial distance error) was 
related to EVC direction decoding in younger adults, and L-DOPA re- 
lated changes in EVC decoding were related to changes in the same spa- 
tial memory measure. Moreover, these results showed that L-DOPA had 
comparable effects on HC walking direction signals in both age groups, 
but in the RSC these DA effects were present only in YA. An investiga- 
tion of tuning specificity revealed no main effects of L-DOPA or L-DOPA 

× age group interactions. 
Investigating age group differences, we found higher classification 

accuracy and precision of tuning functions in the EVC of YA compared 
to OA, a sign of neural dedifferentiation. No age effects on decoding in 
the HPC or RSC were found. These results confirm our previous finding 
that neural representations of walking direction can be found in EVC and 
RSC, and that strong age-related differentiation is present particularly 
in EVC Koch et al. (2020) . We also showed that better EVC classifica- 
tion accuracy was related to better performance on task, suggesting an 
important functional role of this area in our task. 

Importantly, our results also offer a number of novel insights. First, 
we show a causal influence of L-DOPA on how walking directions are en- 
coded in the brain. No statistical evidence for ROI difference were found, 
but the pattern of results suggests that this effect was mainly driven by 
effects in the HC and the RSC. Hence, further investigations are needed 
in this regard. Both areas have been linked to directional and other spa- 
tial information ( Burles et al., 2017; Shine et al., 2016; Spiers and Barry, 
2015 ), and have even been shown to be part of the same dorsal path- 
way involved in visuospatial processing ( Kravitz et al., 2011 ). Addition- 
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Fig. 5. Effect of L-DOPA on tuning specificity. A : Precision of Gaussian curves fitted to individual confusion functions in both age groups. Shown separately for 
the L-DOPA and placebo intervention in the EVC, RSC, and Hippocampus. Black dots show values of individual participants. Intervention-specific distributions are 
shown by violin plots. White diamonds depict means. Plots of OA shown in dashed lines for easier distinction. B : Mean Gaussian tuning curves shown separately for 
age groups and intervention (L-DOPA vs. Placebo). ROI separation identical to that of panel A. OA are depicted with dashed lines. Shaded area represents SEM and 
is colored according to ROI. For each participant a Gaussian curve was fitted to the individual confusion function (given by the classifier). The shown mean Gaussian 
curves were obtained by averaging participants’ individual Gaussian curves. 

ally, both areas display dopaminergic innervation ( Berger et al., 1985; 
McNamara and Dupret, 2017 ), and previous reports have linked DA 

and spatial cognition more generally ( El-Ghundi et al., 1999; Granado 
et al., 2008; Thurm et al., 2016 ). Notably, hippocampal decoding in the 
placebo session was at chance in both age groups, and only significant 
during the L-DOPA intervention. While the lack of decoding effects un- 
der placebo observed here might suggest that the human hippocampus 
under normal circumstances does not bear any information about trav- 
eling direction, this interpretation seems unlikely in light of the large 
literature suggesting otherwise (see Spiers and Barry, 2015 , for a re- 
view). We therefore believe that the lack of effect may be due to issues 
of statistical power and noise in the data. In contrast to the placebo con- 
dition, the significant decoding results in the L-DOPA condition suggests 
that L-DOPA may have amplified existing directional signals in the hip- 
pocampus, rather than causing previously non-existent signals to appear 
de novo. 

Second, the positive effects of DA on decoding are in line with com- 
putational models and empirical findings which suggest that DA affects 
neuronal gain ( Cohen and Servan-Schreiber, 1992; Li and Rieckmann, 
2014; Thurley et al., 2008 ). Accordingly, DA’s influence on neural gain 
could lead to a stronger separation between signal and noise, which 
made different stimuli more specific and easier to distinguish for the 
classifier. It should be noted, however, that we did not find any direct 
effects of L-DOPA on neural direction tuning specificity, which measures 
how similar neural patterns are to similar directions. Given the effects of 
DA on neural gain, we had hypothesized that this measure could be more 
sensitive to the effects of our intervention, but this was not the case. One 
possible explanation is that our design lacked the power to fully capture 
the neural tuning functions within just one session. Tentative analyses 
of EVC and RSC tuning specificity did show DA-related enhancement 
only in participants who received L-DOPA in the second session. We will 
discuss these session-specific effects further below. Third, our study was 
set up to ask whether the L-DOPA intervention might reduce age-related 
neural dedifferentiation. Virtual walking direction offered a promising 
window to answer these questions since it has previously been shown to 

be subject to age-related neural dedifferentiation ( Koch et al., 2020 ) and 
the broader domain of spatial cognition has been shown to be highly age- 
sensitive ( Lester et al., 2017; Wolbers et al., 2014 ). Age is also known 
to cause substantial loss of DA functioning (e.g. Bäckman et al., 2006 ), 
and we speculated that a lower baseline DA availability might magnify 
the effects of L-DOPA. Surprisingly, we did not find that the effects of 
L-DOPA were particularly pronounced in OA. Rather, the HC showed 
age-equivalent effects, and decoding in RSC was in fact enhanced only 
in YA. 

Other than individual differences in baseline DA level, task demand 
may also affect the inverted-U function of DA modulation ( Cools and 
D’Esposito, 2011 ). The spatial navigation task used in our study is quite 
demanding, such that YA though have higher baseline DA level could 
still benefit from the L-DOPA intervention, whereas in OA the task de- 
mand may still outweigh the benefit of L-DOPA intervention. While un- 
expected, these results could offer interesting insights into the complex- 
ity of how external DA medication might interact with neural differ- 
entiation and compensatory plasticity mechanisms that counteract age- 
related losses. One notable aspect in this regard is that we found no 
evidence of age-related dedifferentiation in HC or RSC, which specula- 
tively could be a sign of compensatory mechanisms. It seems possible 
that DA interventions might only recover neural specificity in brain ar- 
eas that are affected by age-related dedifferentiation. Contrary to this 
idea, we found no age-related L-DOPA effects in visual cortex, where 
dedifferentiation was observed – but this might be due to the relatively 
low D2 receptor density in this area ( Lidow et al., 1989 ). Another possi- 
bility is that we did not observe age-specific effects of L-DOPA on neural 
direction encoding in RSC and HC for the same reasons we did not find 
age-related dedifferentiation in these regions. According to this idea, 
compensatory factors that have mitigated dedifferentiation also affected 
the effectiveness of external dopamine administration, for instance be- 
cause of changed connectivity. Both ideas remain speculative and fur- 
ther studies are needed to fully understand how the effects of L-DOPA 

interventions on neural direction encoding interact with age and dedif- 
ferentiation. 
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Beyond these main implications, a number of interesting observa- 
tion arose that warrant further investigation. Although we did not find 
any main effects of session order, we found some indications that ses- 
sion order could influence the effect of L-DOPA on neural signals that 
underlie spatial navigation. Age-differences in learning were stronger 
when L-DOPA was administered in the second compared to the first 
session. In addition, we found tuning specificity in EVC and RSC to be 
enhanced by L-DOPA only in participants who received the drug in the 
second session. Stronger effects when DA is administered in a second 
session have previously been reported in the context of spatial naviga- 
tion ( Thurm et al., 2016 ). The reason why session order effects could 
exist in this context are numerous. Garrett et al. (2015) , for instance, 
highlight two possible explanations in the context of DA effects on neu- 
ral signal variability. One is that previous training may increase the 
amount of baseline DA-release, based on findings in rodents ( Owesson- 
White et al., 2008 ). A DA intervention could therefore lead to differing 
DA-availability depending on whether the participants had already been 
trained with the same or a similar task. A second possible explanation 
raised by Garrett et al. (2015) is that the environment is either learned 
in a state of higher or normal DA-availability. The state of the second 
sessions will consequently always be mismatched to the first session, 
leading to effects of drug administration given the respective session. 
Related to the first idea, we speculate that in our case general learning 
about the environment in a first placebo session could have established 
beneficial baseline for the effects of L-DOPA in the second session. Un- 
fortunately, the present design is unfit to address such explanations and 
further evidence is warranted. 

One open question is why the effect of L-DOPA on decoding in HC 

and RSC was not reflected in task performance, where no L-DOPA effect 
was found. In addition to generally small effects on neural representa- 
tions, another explanation might be that task performance did not only 
depend on direction signals, but also relies on distance estimation and 
using distal and local cues, processes which themselves are affected by 
age ( Schuck et al., 2015 ). The task might therefore have been too com- 
plex to provide a suitable behavioral measure. Interestingly, however, 
we did find some relationships between behavior and the specificity of 
directional information in visual cortex, indicating that neural markers 
might have different relations to performance in our task. This is shown 
by some of our results that also offer insights about age-related changes 
in the context of spatial navigation more generally. The results in the 
EVC showed that OA exhibit lower precision of directional tuning func- 
tions. This is a replication of findings reported in an earlier study using 
a similar analysis approach ( Koch et al., 2020 ). During natural naviga- 
tion and the perception of direction vision plays a major role as it allows 
stable directional signals ( Goodridge, 1998 ) and corrects and prevents 
the accumulation of errors during path integration ( Jeffery, 2007 ). A 

less precise visual signal in OA could therefore influence spatial sig- 
nals downstream and contribute towards the pronounced difficulties OA 

have in spatial tasks. Interestingly, we also found a relationship between 
EVC direction decoding in YA and performance on task, suggesting bet- 
ter spatial memory performance if walking direction could be decoded 
with higher accuracy. While this concurs with previous reports of a link 
between (non-spatial) memory and signal specificity ( Koen et al., 2019; 
Sommer et al., 2019; St-Laurent et al., 2014 ), previous studies have 
mostly reported such links in older adults. Future work is required to 
further understand how age-related loss in specificity of visual signals 
might be involved in spatial cognition. That said, a simple propagation 
of less specific visual signals to the retrosplenial complex network seems 
unlikely, since there was no evidence for age-related dedifferentiation 
in the RSC or HC. 

We would also like to point out a set of limitations that should be 
considered when interpreting the results of the presented work. While 
our results were statistically significant, and decoding performance com- 
pared to chance was broadly in line with previous studies (e.g. Koch 
et al., 2020; Shine et al., 2019 ), the reported classification of direction 
signals remained numerically low in all ROIs. The substantial amount 

of wrong predictions of the classifiers even in the intervention session 
could indicate that effects of L-DOPA were small. We speculate that 
other factors influenced the BOLD signals that are unrelated to direc- 
tion, including aspects related to vasculature, context or learning sen- 
sitivity of neural signals, and mixed selectivity of neural populations. 
In combination with a rather small number of training examples within 
each intervention session, this could explain the weak classifier perfor- 
mance. A second limitation is that the reported results come from a 
largely male sample, which questions whether our results generalize to 
women. Given the small sample size, the presented data also does not al- 
low to draw conclusions regarding sex differences in spatial navigation, 
which have been reported in some (e.g. Andersen et al., 2012; Spriggs 
et al., 2018 ; see Brake and Lacasse, 2018 for a review), but were ab- 
sent in other studies ( Bohbot et al., 2012; Levy et al., 2005; Rodgers 
et al., 2012 ). Another unexpected result was that we found substantial 
decoding performance in motor cortex. This is surprising given the fact 
that no one-to-one mapping between motor actions (joystick movement) 
and walking direction should exist (participants used the same forward 
movement on the joystick to walk forward, regardless of the direction 
they traveled in). One possible explanation is that joystick tilt was sys- 
tematically related to travel direction, which would explain why this 
brain area carried direction information. Indeed, given that brain corre- 
lates of sensorimotor signals are often stronger and less noisy than cor- 
relates of abstracted quantities, the relative strength of decoding seems 
less surprising. In addition, this result may also speak to the fact that 
spatial navigation is supported by a wide network of brain areas, and 
hence a true control area might be less readily available. Of note, this 
decoding does also not seem to reflect an inflated chance baseline, since 
other areas showed no or significantly lower decoding, and no effect of 
L-DOPA in motor cortex was found (see SI Section 2 ). Future work is 
required to address these limitations and to in turn build a more concise 
framework in which our findings can be embedded. 

In summary, we provide first causal insights into the role of 
dopamine in the encoding of spatial direction signals in the human 
brain. In addition, as suggested by exploratory data analysis, this en- 
hancing effect of dopamine on the specificity of neural signals involved 
in navigation might mainly be present in the hippocampus and in the 
retrosplenial cortex, albeit there exclusively in younger adults. In com- 
bination with the replication of our own previous results ( Koch et al., 
2020 ), these findings offer insights into the neural processes underlying 
spatial navigation in the human brain, and how they are affected by age 
more generally. 
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1 Relationship between ROI size and classification accuracy1

Each ROI was created from anatomical labels obtained from Mindboggle’s FreeSurfer-based2

segmentation of each participant’s individual T1-weighted images (Klein et al., 2017). Since the3

segmentation was conducted on individual images, the amount of voxels included in each ROI4

(i.e. size) varied between participants. Average size and variation of each ROI can be found in5

Table S1.6

Table S1: Sample-average and standard deviation of number of voxels included in each ROI.

ROI Mean number of voxels SD

Entorhinal Cortex 174.09 27.86
EVC 1480.87 232.09
Hippocampus 323.64 28.68
RSC 198.55 32.14
Left Motor 555.45 71.59

As a control analysis we wanted to check if the number of voxels available for each subject7

within each ROI influenced classification accuracy. We set up five separate linear models, one8

for each ROI, relating classification accuracy to the number of voxels used to train and test the9

classifier (both variables z-scored). Decoding was significantly related to the number of voxels10

in EVC (β = .342, R2
adj = .106, F (1, 78) = 10.37, p = .002, uncorrected) but no other ROI11

(ps ≥ .124, uncorrected). Specifically, the model described a positive relationship so that higher12

classification accuracy was accompanied by a larger EVC ROI. The relationships are shown in13

Fig. S1.14

Since the EVC was also the only ROI in which we reported age differences in classification15

accuracy, we investigated if this age difference in the EVC was related to differences in ROI16

size. Indeed, a two-sided t-test showed that older adults had smaller EVC ROIs compared to17

older adults (mean number of voxels OA: 1361.324, YA: 1583.744, t(70.432) = −4.79, p < .001).18

To test whether these age difference could explain age differences in classification, we created a19

subsample of 25 older and 25 younger participants with matched numbers of voxels within the20

EVC ROI. Specifically, we selected the 25 older adults with the highest voxel counts and then21
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Figure S1: Linear relationship between decoding accuracy and number of voxels within each ROI (both
variables z-scored within each ROI). Dots represent individual participants. Regression lines are only
displayed for significant relationships.

picked 25 matched younger adults with the closest amount of voxels in the mask. This resulted in22

more comparable ROI sizes (older adults: 1463.56 voxels, vs. 1489.64 voxels in younger adults,23

t(47.56) = −0.512, p = .612). Importantly, a two-sided t-test still showed a significantly lower24

classification accuracy in older adults in the matched sample (diff = -.073, t(45.25) = −5.62,25

p < .001). We therefore conclude that the age differences in decoding found in the EVC are26

unlikely to be an artifact of larger EVC ROIs in younger adults.27

2 Classification accuracy in left motor cortex28

Permutation tests showed that average classification accuracy of direction across both sessions29

was significantly above chance in both age groups (OA: 18.5%, p < .001, YA: 19.6%, p < .001).30

2
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Further splitting up the data by age group and intervention shows that decoding is consistently31

above chance in all conditions (all ps < .022, uncorrected). Classifier performance for each32

intervention and age group is shown in figure S2. As reported in the main text (Results), no33

effects of intervention were found (t(603) = −.211, p = .833) and permutation tests confirmed34

these findings (test of true value against permutation distribution of 1000 differences between35

interventions given shuffled training labels, p = .566).36
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Figure S2: Classification accuracy of direction in the left motor cortex. Bars show average classification
accuracy for each intervention and age group. Dots represent values of individual participants. Error
bars show standard error of the mean.

3 Number of classifier examples between sessions and age groups37

We first investigated systematic differences in the total number of classifier examples between age38

groups and sessions using a linear mixed effects model with a random intercept of participant.39

There was no significant effect of age group on the number of classifier examples (χ2(1) = 1.335,40

p = .248). The model showed a significant effect of session (χ2(1) = 9.405, p = .002), which41

described a lower number of events in the second session (on average 7.8 events difference) as42

revealed by post-hoc tests. This is likely to be caused by a training effect that the task might43

be solved more efficiently the second time resulting in less data due to a shorter navigation44
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time. More importantly, our analyses in the paper are based on the drug intervention, which45

was balanced across both sessions (counter-balanced intervention order: L-DOPA–Placebo or46

Placebo–L-DOPA). When running the same model with a fixed effect of intervention instead of47

session we found no difference in the number of events (mean number of events: 94.05 vs. 94.6948

for Placebo and L-DOPA, respectively; χ2(1) = .051, p = .822). This model also did not display49

an effect of age group (p = .248). Furthermore, neither the model including the fixed effect of50

session, nor the model including the fixed effect of intervention showed a significant interaction51

with age group (ps ≥ .299). When repeating the intervention analysis separately for each of the52

six directions only two of the six models showed marginal effects of age group. Because of the53

weak evidence for these effects and the high amount of comparisons made we did not interpret54

these findings as systematic differences in the number of classifier examples. Based on these55

findings, we are confident that differences in the number of classifier examples cannot explain56

our results.57
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Abstract1

Surprise is a key component of many learning experiences, and yet its precise compu-2

tational role, and how it changes with age, remain debated. One major challenge is that3

surprise often occurs jointly with other variables, such as uncertainty, outcome magnitude4

and outcome probability. To assess how humans learn from surprising events, and whether5

aging affects this process, we studied choices while participants learned from stationary6

asymmetric outcome distributions, which decouple outcome magnitude and probability from7

uncertainty and surprise. A total of 102 participants (51 older, aged 50 – 73; 51 younger, 198

– 30 years) chose between three bandits, one of which had a bimodal outcome distribution.9

Behavioral analyses showed that both age-groups learned the average of the bimodal bandit10

less well, and performed decision errors consistent with heightened sensitivity to surprise,11

as measured by large absolute prediction errors. This effect was stronger in older adults.12

Computational models indicated that learning rates in younger as well as older adults were13

influenced by surprise, rather than uncertainty. Our findings bridge between behavioral eco-14

nomics research that has focused on how outcome probability affects simple choice in older15

adults, and reinforcement learning work that has investigated age differences in the effects16

of uncertainty in complex non-stationary environments. The reported age differences shed17

novel light on the factors that alter learning and choice in older age.18

Significance Statement:19

Keywords: aging; reinforcement learning; behavioral modeling; surprise; uncertainty20
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1 Introduction21

Aging changes how humans learn and decide in ways that can affect important life choices,22

such as monetary or health decisions (Mather et al., 2012; Tymula, Rosenberg Belmaker,23

Ruderman, Glimcher, & Levy, 2013; Nassar et al., 2016; Eppinger, Hämmerer, & Li, 2011).24

Previous research has shown that aging impacts how different characteristics of a choice25

situation, such as risk (Mata, Josef, Samanez-Larkin, & Hertwig, 2011; Best & Charness,26

2015), ambiguity (Tymula et al., 2013), uncertainty (Nassar et al., 2016), feedback (Eppinger,27

Schuck, Nystrom, & Cohen, 2013; Samanez-Larkin & Knutson, 2014; Schuck et al., 2018), or28

explicit knowledge (Curran, 1997) impact learning or decision making. One essential factor29

that could underlie these effects is how humans process outcomes that occur rarely and/or30

are ‘extreme’, i.e. differ significantly from more commonly encountered values. Seminal31

work on prospect theory (Kahneman & Tversky, 1979; Tversky & Kahneman, 1992) has32

for instance shown that college-aged adults overweight events with low probabilities during33

decision making, and perceive relatively less gains with larger outcomes, which could explain34

why people are often uncertainty-averse in the gain domain (Platt & Huettel, 2008). Differ-35

ential processing of rare or extreme outcomes could also influence decision making informed36

by past events: memory tends to be better for values at the edges of distributions (Madan37

& Spetch, 2012; Madan, Ludvig, & Spetch, 2014; Ludvig, Madan, McMillan, Xu, & Spetch,38

2018), and for events associated with less expected outcomes (Rouhani, Norman, & Niv,39

2018).40

Here, we study how aging affects the way in which we learn value maximizing choices from41

extreme versus more common outcomes. While the above mentioned research mostly focused42

on single choices made on the basis of descriptions, we focus on the process that lets humans43

learn how to decide from trial and error. Our theory is based on a reinforcement learning44

(RL) perspective (Sutton & Barto, 2018) that has yielded crucial insights into the behavioral45

and neural aspects of this learning process in the past (e.g., see Dayan & Daw, 2008). At46

the center of RL theory lies the concept of the prediction error, which reflects the relative47

deviation of an observed outcome from the current expectation for a given bandit/gamble.48

In its most basic formulation, RL theory says that the prediction error is used to update49

future expectations after an outcome has been observed by multiplying it with a constant50

2

138



learning rate, α ∈ [0, 1]. Hence, rather than focusing on absolute outcome magnitude, RL51

casts learning and decision making in terms of a relative quantity, i.e. the deviation from a52

given expectation. Prediction errors are also distinct from outcome probabilities. Although53

outcome probabilities and magnitude are correlated in uni-modal Gaussian distributions, this54

correlation is reduced or absent in long-tailed or bi-modal distributions, where for instance55

outcomes with a relatively small difference from the mean can occur equally or more rarely56

than outcomes of greater (relative) magnitude. Here we derive two quantities from the pre-57

diction error that relate to the above mentioned concepts of outcome magnitude, probability58

and uncertainty: the unsigned prediction error, that reflects participants surprise, and the59

trailing average of surprise, which reflects how much uncertainty participants experienced in60

the past (Hayden, Heilbronner, Pearson, & Platt, 2011; Nassar et al., 2016).61

Previous work taking a RL perspective on aging has suggested that in particular un-62

certainty processing, but not surprise processing, is impaired in older adults (Nassar et al.,63

2016). This conclusion, however, was reached in the context of a complex choice situation64

in which participants had to track non-stationary bandits. Using such a task, Nassar et al.,65

2016 focused on how participants modulated learning rates in response to outcome devia-66

tions that reflected a true shift of the bandit mean versus merely a random deviation due to67

variability around each bandit’s mean.68

Although decision making in volatile environments is an interesting computational prob-69

lem, many choices in everyday life are arguably simpler. We therefore considered a much70

simpler situation in which participants learned the means of stationary bandits. This setup71

allowed much simpler formulations of surprise and uncertainty that offer greater similarities72

to the work done on aging in behavioral economics (Mata et al., 2011; Pachur, Mata, &73

Hertwig, 2017) and require fewer assumptions about how the complex computational pro-74

cesses involved in learning about non-stationary environments are implemented in the brain75

(Behrens, Woolrich, Walton, & Rushworth, 2007; Nassar, Wilson, Heasly, & Gold, 2010). In76

order to differentiate surprise from previously studied concept of outcome magnitude and77

probability discussed above, we made use of two facts: (1) that surprise has a non-linear78

relation even to relative outcome magnitude and (2) that bi-modal outcome distributions79

decorrelate outcome magnitude and probability as mentioned above.80
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Following this logic, we developed a novel task that involves learning from stationary bi-81

modal outcome distributions. We used this task to test two effects. On the one hand, inspired82

by work on age differences in probability weighting (Pachur et al., 2017), we stipulated that83

surprise could affect the learning rate with which participants update their expectations. Our84

simple assumption was that surprises would modulate learning rates immediately, i.e. affect85

the update on the very same trial that caused the surprise – akin to a process that gives more86

weight to a very surprising (although not rare) event. Although this idea is similar in spirit to87

proposals by e.g. Nassar et al., 2010, it is distinct from existing RL models in which learning88

rates reflect the agent’s estimate of the volatility of the environment, which is is in turn based89

on variability of past outcomes (Pearce & Hall, 1980; Li, Schiller, Schoenbaum, Phelps, &90

Daw, 2011; Jepma et al., 2016; O’Reilly, 2013; Nassar et al., 2010). Since Pachur et al., 201791

have shown that in the gain domain older adults overweight low probability events more92

compared to younger adults, we expected that surprise-dependent learning rate modulation93

would be larger in the former. The second effect we sought to test was whether younger94

versus older participants differed in the amount of uncertainty/risk aversion in ways that95

goes above and beyond differences in surprise-dependent learning. Specifically, we assessed96

whether a recency-weighted average of past surprise magnitude changed bandit preferences97

independently of the experienced outcomes, and independently of any effects of surprise on98

learning rates. Previous research has indicated that age effects in uncertainty processing99

depend on the specific computational concept and task used to study them (Mata et al.,100

2011; Nassar et al., 2016; Pachur et al., 2017). Hence, we had no specific hypothesis if age101

differences in uncertainty would be found in our computational and task setting.102

2 Materials and Methods103

2.1 Participants104

Participants were recruited using the crowdworking platform Prolific (www.prolific.co).105

We collected data of 64 YA (18-30 years, mean age 24.42) and 56 OA (50-73 years, mean106

age 57.18). Eighteen participants (13 YA, 5 OA) were excluded from all analyses due to107

insufficient task performance across both runs; 17 (12 YA, 5 OA) participants did not show108
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significant above-chance performance in the easiest task condition (using a binomial test109

against chance in low vs. high bandit trials, see below), and one young adult had a dispro-110

portionate amount of errors in guided choice trials compared to the rest of the sample (more111

than three SDs from mean of distribution). The effective sample of choice trials therefore112

consisted of 102 participants (51 YA, 51 OA).113

To ensure high data quality in the analyses of the estimation trials, of which only 16114

existed per run (see below), we applied additional exclusion criteria exclusively for these115

analyses. Specifically, data from runs in which a participant did not show any overall dif-116

ference in estimates of the low versus high bandit, or did not show any variance in their117

estimates, were excluded. This resulted in the exclusion of 12 runs from 10 participants for118

indistinguishable low vs. high estimates (no sig. difference in paired t-test) and of 2 runs119

from one participant due to no variance in submitted answers. Estimation-based analyses120

therefore included data of 99 participants (49 YA, 50 OA), out of which 8 participants had121

only one remaining run.122

The experiment lasted about 60 minutes and was renumerated with a baseline payment123

of 7.5 GBP plus a performance based bonus of up to 3 GBP (see below). All participants124

provided informed consent and the local ethical review board approved the study (approval125

number: N-2020-01).126

2.2 Valued-based Learning Task127

The task consisted of two runs of a value-based choice task. In each run participants learned128

about three different bandits that rewarded outcomes drawn from distributions with a low,129

medium or high mean (outcome range 1-100, details see below). We will refer to these bandits130

as the low, mid, and high bandit, respectively (see below for details, and Fig. 1B). Each131

bandit was indicated by a different Japanese Hiragana symbol (randomly assigned across132

participants), and participants had to learn about each bandits’ value through trial and133

error. Points collected were translated into a monetary bonus of up to 3 GBP at the end of134

the experiment.135

5

141



Figure 1: A: Schematic of task procedure. The first three steps show the procedure of a free choice
or guided choice trial. After a brief inter trial interval of 1000 ms participants were confronted with a
choice between two bandits. In free choice trials participants could freely choose either of both bandits.
In guided choice trials participants were instructed to choose the framed option. After a choice was
made the outcome of said choice was displayed for 1000 ms. Occasionally, participants had to complete
estimation trials in which they had to estimate how many points they will get when choosing each bandit
as well as the range in which the points may vary. B: Schematic of reward distributions. Each bandit was
linked to one of three reward distributions: one with a low, medium, and high average reward. Means
of subsequent distributions were equidistant (16.66). While the low and high distribution were Gaussian
the mid distribution was bimodal with the two modes being 35 points apart. The smaller mode was
always to the left of the greater mode and made up 20% of possible rewards. The absolute means of
distributions varied between runs while the distance between distributions and distance between modes
of the mid distribution never changed.

Reward distributions136

To answer our main question about how participants learn from rare outcomes, we manip-137

ulated the reward distributions of the different bandits (see Fig. 1B). Rewards of the low138

and high average bandit were drawn from regular Gaussian distributions with a standard139

deviation of 5.55 points. The means of both Gaussians were fixed within each run and al-140

ways chosen in a way that they were 33.33 points apart. The rewards of the mid bandit141

followed a bimodal mixture distribution composed of two Gaussians (each sd = 5.55 points):142

a main mode (80% of outcomes) and a smaller mode (20% of outcomes) with a distance of143

35 points. The total mean of the mid bandit was equidistant from the means of the low and144

high bandits, 16.66 points away. Notably, although the overall mean of the mid bandit was145

higher than low bandit, the smaller mode of the mid bandit was lower than the low bandit.146

This asymmetrical outcome distribution of the mid bandit was central to the idea of the147

task: while the medium bandit on average delivered higher outcomes than the low bandit,148

it sometimes produced an unusually low outcome in 20% of choices that was sampled from149

the lower mode of the distribution. We therefore expected that over- or underweighting of150
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surprising outcomes would specifically bias participants’ decisions between and estimations151

of the low and medium bandit.152

At the start of a the second run a separate set of three bandits was introduced. The153

absolute means of each distribution changed between runs by up to 14.8 points, while their154

relative structure (distance between means, distribution shapes) remained the same. Partic-155

ipants were made aware that outcomes and symbols were changed at the start of the new156

run. Rewards were constrained to lie between 0 and 100.157

Free/Guided Choice trials158

On each choice trial participants had to decide between two bandits, ensuring that all pairwise159

bandit combinations appeared with equal frequency within each run. In free choice trials160

(192/240 trials per run), participants could freely chose between the offered bandits within161

a maximum of 3000 ms. After a choice, the outcome was displayed for 1000 ms, followed by162

a fixation cross (1000 ms) to allow for preparation for the next trial. Not responding within163

the maximum of 3000 ms resulted in 0 points and a hint to respond faster. In guided choice164

trials (48/240 trials per run) participants had to chose the bandit that was marked with a165

frame, while all other task aspects were kept the same, and collected points were awarded166

as usual. Choice trials are illustrated in Figure 1A, top.167

Estimation trials168

Each run also included 16 estimation trials in which participants were asked to estimate how169

many points would be obtained from a bandit, and to which degree the outcomes may vary170

(Fig. 1A, bottom). Estimates were collected for all three bandits and had to be provided by171

adjusting two independent sliders that ranged between 0 and 100 for the average estimate172

and from ±0 to ±50 for the range estimate (with a step-size of 1, and a maximum decision173

time of 10 seconds). No feedback about their estimation was provided and participant could174

not earn points for accurate estimations. Estimation trials occurred at pseudo-random times175

within the run, assuring that there were no estimation trials within the first 10 choice trials,176

all estimation trials were at least 10 choice trials apart (on average, estimation trials were177

separated by 14.98 choice trials), and 4-5 estimation trials occurred immediately after a178
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guided choice trial of the mid bandit that produced an extreme, low outcome drawn from179

the smaller mode of the bimodal distribution (see below).180

2.3 Statistical analyses181

Behavioral analyses were done using linear mixed effects (LME) models with fixed effects182

of interest, such as bandit comparison (which bandits are compared, 3 levels, low-mid, mid-183

high, low-high), run number (2 levels), and age group (2 levels: OA vs. YA). Models also184

included a random effect (intercept) of participant. These models investigated overall perfor-185

mance (percentage of correct free choice trials) and choice speed (reaction times; all reaction186

times were collected in milliseconds and log-transformed before entering any analyses). To187

investigate the effect of large PE outcomes specifically, we analyzed free choices in low-mid188

trials before and after participants encountered a rare outcome of the mid bandit (on aver-189

age n = 4.71 and n = 4.44 choices per run/participant, respectively). This was compared to190

choices in low-mid trials following less surprising outcomes from the 20th to 40th percentile191

of the distribution. The model for this analysis included a fixed effect of position relative to192

a rare outcome (pre vs. post), in addition to the fixed and random factors mentioned above,193

i.e. run and age group and participant, respectively.194

Statistical inference was done through χ2 likelihood ratio tests to determine whether the195

inclusion of the a particular fixed effect in the model provided a significantly better fit (R196

package lme4, Bates, Mächler, Bolker, & Walker, 2015). Posthoc test were done using the197

emmeans package for R (Lenth, 2021) and were corrected for multiple comparisons applying198

Šidák correction.199

Analyses of estimation trials200

To check if estimates of each bandit deviated from their true average outcome estimates were201

compared to the running mean of collected outcomes of each bandit. Differences between202

a bandit’s true average and participants’ estimates were calculated to provide a measure of203

under- or over-estimation. Since learning in the initial trials will cause the estimated averages204

to fluctuate (in ways that could depend on participants unknown a-priori expectations of205

average outcomes), we considered only the second half of estimation trials for further analysis.206
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Over- or underestimations were assessed using one-sample t-tests separately for each bandit207

and age group. P values were Bonferroni-Holm corrected.208

We also compared the difference in estimates of two bandits in regard to the their objective209

running average difference. Because our main hypothesis concerned biases in the mid bandit,210

we focused on the estimated differences between the low and mid bandits, and mid and high211

bandits. Subtracting the estimated differences from the corresponding objective differences212

yielded a measure of distortion in perceived distance between bandits for each comparison,213

whereby values lower than zero represent an underestimation of distance. This measure of214

distortion was analyzed using a LME model with fixed effects of age group, run, and available215

options (low-mid vs. mid-high) as well as a random effect of participant.216

2.4 Computational Models of Surprise and Uncertainty217

In order to gain insights into the dynamics of learning, and specifically into how uncertainty218

and surprise influence behavior, we applied four different RL models to participants’ choice219

data. All models were based on a delta-rule updating mechanisms that yielded a recency-220

weighted value estimate of each bandit, but differed with respect to the assumptions about221

the learning rate and the influence of uncertainty on choice. An illustration of the models222

can be found in Fig. 2.223

Rescorla Wagner Model As a baseline model we used a standard Rescorla-Wagner224

model (RW model, Wagner, Logan, & Haberlandt, 1968; Rescorla, 1968), in which the225

value of each bandit is the recency-weighted average of associated rewards, and is calculated226

iteratively as follows:227

Vk,t+1 =Vk,t + α (Rk,t − Vk,t)

=Vk,t + αPE,

(1)

where Vk,t denotes the value estimate of bandit k on trial t, and Rk,t is the corresponding228

reward obtained at time t after choosing k. The difference between the expected and obtained229

value is referred to as the prediction error (PE, here Rk,t − Vk,t), and α ∈ [0, 1] is a learning230

rate fitted as a free parameter. The probability to chose bandit k over bandit l, given the231
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model values, was computed using a logistic regression:232

p(k|V·,t) =
1

1 + e−(β0+β1Vl,t+β2Vk,t)
= σ (β0 + β1Vl,t + β2Vk,t) , (2)

where σ(·) indicates the logistic function and the parameters β0, β1 and β2 reflect the in-233

tercept and the influence of the values of bandits k and l, respectively, determined using234

maximum likelihood estimation, as implemented in function glm in R (R stats; Team, 2021).235

Uncertainty Model To test whether recently experienced uncertainty also influenced236

choices (in addition to values), we constructed the Uncertainty model. We adopted the237

hybrid RW/PH model by Li et al. (2011) to keep track of the recency-weighted uncertainty238

of each bandit:239

Uk,t = (1− π)Uk,t−1 + π |PE t| (3)

The free parameter π ∈ [0, 1] determines the degree of recency-weighting of prediction240

errors that form the agent’s current uncertainty estimate. Values close to 1 mean that only241

the most recent errors are considered while values closer to 0 mean that the agent considers242

long history of errors.243

Note that the prediction error associated with a particular bandit only gets updated when244

that bandit was sampled, while the trial counter t refers to all trials. In the Uncertainty245

model, the uncertainties U were then added to the logistic regression:246

p(k) = σ (β0 + β1Vl,t + β2Vk,t + β3Ul,t + β4Uk,t) (4)

Surprise Model Our second main interest was to ask whether large absolute prediction247

errors, i.e. surprise, influenced learning rates, rather then affecting choices directly as in248

the Uncertainty model. Specifically, we asked whether observing extreme outcomes would249

influence participants’ learning rate, compared to observing less surprising outcomes. To250

this end, we modified the learning rule given in Eqn. 1 to include a variable learning rate251
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α∗, which itself was a logistic function of the (scaled) prediction error:252

α∗ = l +
2

1 + P̂E
−s (u− l)

Vk,t+1 = Vk,t + α∗ PE t

= Vk,t +

(
l +

2

1 + P̂E
−s (u− l)

)
PE t

(5)

Hence, instead of a single learning rate α, this model required three fitted parameters, a253

lower bound l ∈ [0, 1], a upper bound u ∈ [0, 1] and a slope, s ∈ [−20, 20]. These parameters254

regulated the influence of prediction error dependent surprise, specifying the alpha level when255

the PE was 0 (l), when the PE was maximal (u), as well as the slope (s) between these two256

extremes indicating at which levels of surprise learning rates are adjusted (see Fig. 2C).257

Note that in case l > u the function specifies a decreasing function and v.v. if u > l, and the258

slope parameter allowed to accommodate a wide range of relationships between the learning259

rate and the predictions error. P̂E reflects an absolute PE term defined as260

P̂E =
2

1 + e−0.1|PE| − 1 (6)

and scaled by the maximal possible PE value of 60. The updating detailed in Eqn. 5 altered261

the estimated values. These values were then used to predict choices as in the baseline model262

(Eqn. 2), yielding the Surprise model.263

Surprise+Uncertainty Model Finally, we tested for the combined influence of sur-264

prise and uncertainty on choices by entering the new values as estimated by the surprise265

model jointly with the uncertainties into the logistic regression (as in Eqn. 4) to explain266

choices.267

2.5 Model fitting268

Parameter fitting consisted of fitting the β coefficients of the logistic choice model, and269

the parameter(s) of the learning rate function and, if included, the uncertainty function.270

Fitting minimized each models’ choice likelihood using a nested approach akin to a coor-271

dinate descent approach (see Hall-McMaster, Dayan, & Schuck, 2021). Specifically, the272
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Figure 2: Illustration of computational models. For each model depicted on top is the sensitivity of
trial-wise instantaneous updates (learning rate) to the surprise (i.e., unsigned prediction error) associated
with an outcome of a bandit choice. On the bottom via β3 is shown the influence of the left bandit’s
uncertainty U (estimated by the agent) on choice probabilities of the two candidate bandits (see Eq. 2).
A: Rescorla-Wagner model in which updates and choices are insensitive to both, surprise and uncertainty.
B: Uncertainty model in which updates are insensitive to surprise but bandit choices are influenced by
uncertainty. Note, how uncertainty in the left bandit can heighten (β3 > 0) or lower the probability
of choosing the left bandit (β3 < 0). Uncertainty estimates of each bandit are fixed to U = 10 for the
illustration but in the model depend on a free parameter π (see Eq. 3). The influence of the right bandit’s
uncertainty (β4) is left out for simplicity. C: Surprise model which is insensitive to bandit uncertainty,
but in which trial-wise updates are influenced by surprise in dependence of the parameters l, s, and u
(see Eq. 5). As depicted on top, high levels of surprise can either increase (u > l) or decrease the learning
rate on a given trial (u < l). Lower values of the slope parameter s indicate that updating is adjusted
already for lower levels of surprise. Not depicted is the Uncertainty+Surprise model which combines the
principles of B and C.

parameters of the learning rate function (simply α in the RW and Uncertainty models,273

but [l, u, s] in the Surprise models) were set in an outer loop using non-linear search274

method (NLOPT GN DIRECT L, Gablonsky & Kelley, 2001) implemented in the nloptr pack-275

age (Johnson, 2020) in R. The β coefficients were then set using maximum likelihood estima-276

tion in an inner loop, and the resulting choice likelihood was used to inform the non-linear277

search for the outer parameters. To capture the behavioral effect in response to the one-sided278

bimodal distribution of the Mid bandit models were fit to participants’ free choices in low-279

mid bandit comparisons. Furthermore, guided-choice and estimation trials were not used280

during the minimization process. Parameters were constrained to lie in the intervals given281

above. To avoid overfitting, model fits were compared using corrected Akaike Information282

Criterion (AICc, Cavanaugh, 1997) scores, a metric that more strongly considers the amount283

of trials used.284
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3 Results285

3.1 Behavioral analysis286

We first asked whether participants learned to make reward-maximizing choices, and whether287

the proportion of correct responses in free choice trials differed between available options.288

A corresponding LME model of correct choice probabilities revealed a main effect of289

run (χ2(1) = 12.061, p = .001) reflecting a performance increase across runs (post hoc test:290

t(500) = −3.473, p < .001). Independent of this general improvement the LME model also291

showed a main effect of bandit comparison (low-mid vs. mid-high vs. low-high, χ2(2) =292

155.332, p < .001). More specifically, participants performed best on low-high trials with293

92.6% correct choices (t(500) < −4.962, p < .001, copared to low-mid and mid-high). On294

low-mid trials participants chose correctly in 79.2% of trials. Despite the bandit means being295

equidistant in low-mid and mid-high trials, participants were significantly more accurate for296

mid-high comparisons (87.2%, t(500) = 7.420, p < .001), reflecting the asymmetric shape297

of the mid reward distribution. Note that any value compression for numerically higher298

outcomes, as commonly observed in perception (Arnaud, Hubbard, Dehaene, & Sackur,299

2010; Dehaene & Marques, 2002), should have the opposite effect, since 30 and 50 (low-mid300

trials) should be relatively easier to distinguish than 50 and 70 (mid-high trials).301

The model revealed no significant effect of age group (χ2(1) = 3.392, p = .066) or age302

group × bandit comparison interaction (χ2(2) = 2.380, p = .304). Since the data of the OA303

group included two outliers (see Fig. 3D), we investigated the age group × bandit comparison304

interaction effect using a robust regression. A direct comparison of the difference between305

low-mid vs. mid-high trials between OA and YA indicated a significant difference: compared306

to younger adults, older participants had a greater performance decrease in low-mid relative307

to mid-high trials (robust regression with bisquare weights, t(100) = −2.735, p = .010)308

A similar pattern was found in participant’s RTs. An LME model of log-transformed309

RTs also showed a main effect of bandit comparison (χ2(2) = 457.891, p < .001). The310

decreased performance on low-mid trials reported above was also associated with lower RTs311

compared to mid-high trials (t(500) = 16.121, p < .001), while the fastest reactions were312

shown in low-high trials (mid-high vs. low-high: t(500) = 4.126, p < .001). Moreover, the313
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Figure 3: A: Performance over time within run. Plotted are progressing trials in bins of 40 on the
x-axis with the percentage of correct answers (i.e. choosing bandit with higher average outcome) in free-
choice trials on the y-axis. The progression is shown and colored separately for each of the three possible
bandit combinations that could appear in any trial (low-mid, mid-high, low-high). Dashed line indicates
chance-level performance. Error bars show standard error of the mean. B: Across-run difference in overall
task performance, irrespective of presented bandit combination. Participant-specific values are given by
black dots. C & D: On left: Performance for each possible combination of bandits (low-mid, mid-high,
low-high) by age group, averaged across both runs. Older adults are shown in blue, younger adults in
grey. Choosing the bandit with higher average outcome was considered a correct choice. Individual
values are shown by colored dots, group averages by white diamonds. On right: Direct comparison of
correct answers in the low-mid vs. mid-high trials for each age group. Shown are within-participant
differences between those percentages correct in low-mid and mid-high trials depicted in panel C. Values
above the zero line indicate more errors in low-mid trials compared to mid-high trials. Individual values
are given by colored dots, group means by white diamonds. Note, that we specifically compare these
two combinations as the average reward of the Mid bandit was equidistant to those of the Low and High
bandit. E & F: On left: Comparison of reaction times (RT) in free-choice trials across all three possible
bandit combinations by age group. Older adults in blue, younger adults in grey. The y-axis shows the
mean over log-transformed RTs averaged across both runs. Higher values indicate longer RTs (slower
responses). Means and individual values depicted as in C and D. On right: Direct comparison of RTs in
low-mid vs. mid-high trials shown in panel E for each age group. Shown are within-participant differences
in mean log-transformed RTs between the low-mid and mid-high bandit combinations. Values above the
zero line indicate longer RTs in low-mid trials. Means and individual values depicted as in C and D.
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same LME model also showed a main effect of age group (χ2(1) = 31.356, p < .001) as well314

as an age group × bandit comparison interaction (χ2(2) = 16.360, p < .001). This reflected315

that OAs in general reacted slower than YAs (t(100) = 5.600, p < .001). Importantly, OAs316

reacted slower than YA in low-mid trials (difference = .236, t(123) = 6.589, p < .001).317

Captured in the significant age group × bandit comparison interaction was the fact that318

age differences in RTs were more pronounced in low-mid trials compared to other bandit319

comparisons (difference = .164 and .170, t(123) ≥ 4.593, ps < .001 for mid-high and low-320

high, respectively).321

Immediate influence of extreme outcomes322

To better understand how participants were influenced by surprising outcomes, we inves-323

tigated the immediate effect of outcomes that elicited large absolute PEs in the low-mid324

bandit on subsequent choices. Specifically, we compared the proportion of mid bandit325

choices in low-mid trials immediately before vs. immediately after a surprising outcome326

(LME model with effects for before vs. after and age group, see Methods). This analysis327

revealed that across both age groups the choices of the mid bandit following large absolute328

PEs were decreased (main effect pre- vs. post: χ2(1) = 28.160, p < .001; 82.2% vs. 70.1%,329

t(299) > 5.314, p < .001). However, as suggested by a significant position × age group330

interaction (χ2(1) = 5.844, p = .016) the adaption of choices was only significant in OA331

(pre-post difference: 17.6%; t(299) = 5.458, p < .001) while YA only trended towards a332

similar effect (pre-post difference: 6.6%; t(299) = 2.052, p = .080, Šidák corrected). Results333

are displayed in Fig. 4. To see if this was a general reaction towards below-average outcomes334

of the mid bandit, we repeated the same analysis for low-mid trials immediately before and335

after less extreme outcomes (mid-bandit outcomes between the 20th and 40th percentile).336

No effects of either pre vs. post or age group were found (χ2(1) = .541, p = .462 and337

χ2(1) = .968, p = .975, respectively). The model of the immediate effect of surprising out-338

comes also indicated a significant main effect of run (χ2(1) = 12.438, p < .001) that reflected339

a general increase in mid bandit choices in low-mid trials in the second run (t(299) = −3.530,340

p < .001).341

Importantly, we found no evidence of a more general age group difference in mid-bandit342
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Figure 4: Influence of extreme or regular low outcomes on following low-mid comparison choices by age
group. Older adults in blue, younger adults in grey. Small dots give individual values, large dots depict
group means with standard error of the mean shown by error bars. On left: Influence of extremely low
outcomes in the mid bandit on choices in immediate low-mid trials. Shown on the x-axis are positions
of low-mid trials relative to the extreme outcome where −1 and 1 denote low-mid trials happening
immediately before and after the extreme outcome, respectively. Indicated by the zero is the trial which
produced an extreme outcome in the mid bandit (not necessarily a low-mid trial). The y-axis shows the
proportion of mid bandit choices in the respective group of trials given by the x-axis. A lower value
on the y-axis indicates that the proportion of low bandit choices increased. On the right: Influence of
moderately low outcomes (20th to 40th percentile) in the mid bandit on choices in immediate low-mid
trials. See description of left plot for details.

choices (LME model main effect of age group: χ2(1) = 1.363, p = .243; no effect of run,343

χ2(1) = 0.154, p = .694). Hence, the above effect cannot be explained by age group differ-344

ences in risk aversion, which would result in overall reduced choices of the mid bandit due345

to it’s more extreme outcome distribution.346

Value Estimates347

We next checked for systematic biases in estimation trials, rather than choice behavior,348

and asked how accurate participants’ estimates were relative to the ground truth running349

average of each bandit. To avoid effects of non-stationarity during early learning, analyses350

were conducted on the second half of each run. Comparing the across-run average estimates351

vs. ground truth separately for each bandit and age group did not indicate any significant352

difference (YA: ps ≥ .111, OA: ps ≥ .625; the largest difference found indicated a non-353

significant underestimation of the high bandit in YA t(48) = −2.437, p = .111, Bonferroni-354

Holm corrected). This indicates that participants estimates were relatively accurate on355

average.356

Importantly, we next asked how the estimated difference between bandits (i.e. low bandit357
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minus mid bandit or mid bandit minus high bandit) related to their true difference (differ-358

ence of running means). A LME model of the mis-estimation of bandit differences revealed359

a main effect of bandit pair (χ2(1) = 34.536, p < .001), and an interaction of bandit pair360

with age group (χ2(1) = 8.280, p = .004), see Fig. 5. On average, both age groups per-361

ceived the low and mid bandit to be closer together compared to their true distance (OA362

underestimated the difference by −3.68 points, YA by −1.93 points). Post-hoc tests revealed363

that the underestimation of the low-mid difference relative to the mid-high difference was364

significantly larger in older compared to younger adults (t(277) = 2.051, p = .041).365

Figure 5: Bias between perceived and true distance of two neighboring bandits for both age groups.
Older adults in blue, younger adults in grey. Individual values shown by colored dots and means shown
by white diamonds. On the x-axis both pairs of equidistant, neighboring bandits (low-mid and mid-
high). The y-axis shows discrepancy between perceived and true distance of the two compared bandits.
Perceived distance of two bandits was given by the difference between participants’ estimates of the two
compared bandits. True bandit distance was given by the difference between the running means of the
two compared bandits. Subtracting the true distance form the perceived distance allows to quantify
a bias in estimated distances. Values lower than zero indicate an underestimation of bandit distance,
perceiving them closer in space than their true distance.

3.2 Computational modelling366

The above analysis indicated that participants performed worse in low-mid trials compared to367

mid-high trials, and underestimated the same bandit differences. This effect was particularly368

pronounced for older adults, who altered their choice preferences immediately following large369

PE events caused by the mid-bandit’s bi-modal outcome distribution, and underestimated370

the true value of the mid bandit more so than younger adults.371
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Using computational models, we asked whether the differences in low-mid trials could be372

explained by either an influence of uncertainty, surprise or both. We modelled participants373

choices in low-mid trials using the four models specified in the Methods section. A Rescorla-374

Wagner model that assumes a constant learning rate and no effects of uncertainty or surprise375

(Fig. 2A), served as a baseline. The Uncertainty model (Fig. 2B) tested whether subjects’376

choices were influenced by the unsigned magnitude of past prediction errors, i.e. whether they377

showed less or more preference for bandits that were associated with high/low uncertainty378

in the past. The alternative Surprise model (Fig. 2C) focused on the value learning process379

itself, and assumed that values could be updated with either a larger or smaller learning rate380

following each outcome. Finally, a combined Uncertainty+Surprise model encapsulated both381

mechanisms. The models are described in more detail in the Methods and are illustrated in382

Figure 2.383

Logistic regression analyses indicated that the values estimated by the basic RW model384

influenced participants’ choices. The probability of choosing the left bandit was positively385

influenced by the value of the left bandit in older as well as younger adults (avg. β younger:386

0.16 [CI: 0.12 - 0.20], t(50) = 7.92, p < .001; older: β = 0.19 [0.15-0.22], t(50) = 10.37,387

p < .001). The reverse was true for the right bandit, i.e. we found negative betas of the388

right value in younger as well as older adults, both t(50) < −8.88, p < .001, as expected.389

The betas of the left and right bandit values correlated with the average percent of correct390

choices in low-mid bandit comparisons at r = .26 (t(100) = 2.71, p = .016) and r = −.22391

(t(100) = −2.24, p = .027, Bonferroni-Holm corrected), respectively. Hence, participants392

performed the task in a manner generally consistent with reinforcement learning models.393

Notably, however, the RW model did not offer the best fit to participants’ choices.394

Participant-wise AICc comparisons were used to identify the winning model within each395

participant (see Fig. 6A). The most frequently winning model across all participants was396

the Surprise model (35 participants vs. 27, 27, 13, for the RW, Uncertainty, and Uncer-397

tainty+Surprise models, respectively). As shown in Figure 6B, this was was also reflected398

in a high protected exceedance probability for this model (91.8 %; via R package bmsR, Lisi,399

2022; 105 samples; see Stephan, Penny, Daunizeau, Moran, & Friston, 2009). A χ2-test did400

not find any significant difference across the four models and the age groups (χ2(3) = 1.09,401
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p = .780). Analyzing the parametric differences in AICc scores, the Surprise Model had402

significantly lower AICc scores compared to the baseline RW model in both age groups (OA:403

t(50) = −3.41, p = .007, YA: t(50) = −3.50, p = .006) while this was not the case for the404

other models (t(50) > −2.05, ps ≥ .165, Bonferroni-Holm corrected; see Fig. 6C).405

Figure 6: Model comparison. A: Number of participants in which each model offered the best fit
shown across (left) and within age groups (right). The winning model was determined by a within-
participant comparison of AICc scores in which the best fit was given by the lowest AICc score. B:
Protected exceedance probability across all four candidate models and across both age groups. See
Stephan et al. (2009) for details. C: Difference of AICc scores between candidate models and RW
model (AICci−AICcRW ). Lower values indicate a better fit compared to the RW model. Dots represent
individual values, while bars show mean AICc scores across both age groups. Error bars indicate standard
error of the mean. Note, that in order to display the plot in a reasonable scale two outliers (large negative
values, one in Uncertainty, one in Combined model) were removed from the plot. Mean and standard
error of the mean still include all data points.

We therefore focused our following analyses on the Surprise model. Descriptive statistics406

of all model parameters as well as their relationship can be found in Figure 7A. First, we407

validated the model by relating participants’ average performance on low-mid bandit com-408

parisons to the β1 and β2 parameters, reflecting the influence of estimated bandit value on409

choices. Both parameters were significantly correlated with performance across age groups410

(β1: r = −.26, t(100) = −2.72, p = .015; β2: r = .25, t(100) = 2.64, p = .015, Bonferroni-411

Holm corrected). We then investigated the parameters related to the surprise effect on412

learning rate (l, u, and s; see Equation 5). Individual learning rates as a function of experi-413
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enced prediction errors for both age groups are shown in Figure 7B. Our previous behavioral414

analysis suggested OAs consider more surprising prediction errors more strongly in immedi-415

ately following decisions (see Fig. 4). The different weighting of surprising prediction errors416

is captured in the relationship between the u and l parameters. Positive values (u− l > 0) re-417

flect relatively faster learning (i.e., higher learning rate α) from large prediction errors while418

negative values (u − l ≤ 0) reflect relatively faster learning from small PEs. To investigate419

age differences in the differential influence of surprising prediction errors, participants were420

split in two groups based on relative values of u − l. A χ2-test did not indicate any signifi-421

cant difference in age groups and the relative number of participants that showed stronger422

or weaker influence of surprise (χ2(1) = .66, p = .415, see Fig. 7C). When investigating423

u − l values parametrically, YAs trended towards higher learning rates for low surprise lev-424

els (u− l = −0.17, t(50) = −2.19, p = .066) while OAs did not show systematic differences425

(u−l = −.05, t(50) = −0.78, p = .44, one-sided t-test against 0, Bonferroni-Holm corrected).426

Comparing u − l values between both age groups directly, however, did not reveal any age427

differences (t(98.72) = −1.11, p = .268). Investigating the slope parameter s yielded similar428

results and did not show any differences between age groups (t(99.90) = .01, p = .993).429

Finally, we investigated if the immediate effect of surprising mid bandit outcomes on low-430

mid bandit choices found in our behavioral analysis (see Fig. 4) was related to parametric431

u− l differences. A linear model of the behavioral effect including the predictors age group432

and u − l difference was marginally significant (R2
adj. = .044, F (3, 98) = 2.55, p = .060).433

Importantly, however, u − l differences had no predictive power over the behavioral effect434

(t(98) = −.11, p = .913) and the linear model’s significance was driven by the significant435

terms of intercept and age group (ps ≤ .022), as to be expected from the behavioral analysis.436

Taken together, the computational modeling results suggest that participants’ choices in437

low-mid bandit comparisons were mainly driven by surprise, as opposed to uncertainty or438

a combination of both mechanisms. This was shown by the best fit of the Surprise model.439

However, analyses of the Surprise model’s parameters did not show any age differences440

related to the influence of surprising outcomes in low-mid trials evident in the behavioral441

analyses.442
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Figure 7: Analysis of Surprise model. A: Distribution and correlation between Surprise model param-
eters. On left: Histogram of model parameters l, s, and u involved in instantaneously adjusting learning
rate as a function of surprise (i.e., unsigned prediction error; see Eq. 5) for younger and older adults. On
right: Correlation matrix between all model parameters. Brighter colors show stronger positive correla-
tion, darker colors stronger negative correlation. In each cell is shown the Pearson correlation between
the respective parameters. B: Individual relationships between surprise about outcome (i.e., unsigned
prediction error) and trial-specific learning rate α∗ as specified by the model parameters l, s, and u (see
Eq. 5). Depicted separately within each age group are participants whose updating for high levels of
surprise is decreased (u − l < 0, left) or increased (u − l > 0, right). C: Number of participants within
each age group showing decreased (u − l < 0) or increased (u − l > 0) updating from higher levels of
surprise. D: Age group comparison for parameters specifying differential updating from surprising out-
comes. On left: Difference between u and l parameter. Values above zero indicate increased updating
from surprising outcomes. Dots show individual values, diamonds show group-specific mean. Depicted
in the middle are density plots of the respective age group’s parameter distribution. On right: Slope
parameter s. Depiction identical to left plot.
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4 Discussion443

In this study we investigated over- and underweighting of surprising outcomes during re-444

inforcement learning, and asked whether age differences exists in this process. Our main445

hypothesis was that older adults show greater sensitivity to outcomes that elicit large pre-446

diction errors compared to younger adults. To this end, we analyzed behavior of 51 younger447

and 51 older participants in a multi-armed bandit task featuring two bandits with a Gaussian448

reward distribution of low and high mean, and one bandit with a asymmetric, bi-modal re-449

ward distribution of intermediate value. The asymmetric nature of the mid bandit’s reward450

distribution was designed as such that overweighting of surprising outcomes during learning451

should result in non-optimal choices when comparing the mid-value (i.e., bimodal) bandit452

to the low-value bandit. We found that behavioral accuracy in low-mid bandit choices was453

significantly lower compared to mid-high trials despite the fact that both bandit pairs ex-454

hibited the same difference in their mean outcome. This suggests that surprising outcomes455

are overweighted, relative to ordinary outcomes. This effect was also mirrored in explicit456

value ratings, in which both age groups underestimated the difference in average rewards of457

the low and mid bandit, and older adults (OA) showed a stronger tendency to do so. An458

analysis of detailed choice time courses also found that extreme outcomes had a stronger459

influence on consecutive choices in OA compared to younger adults (YA). To explain these460

findings more formally, we compared four RL models that allowed us to address if partici-461

pants’ choices in low-mid bandit comparisons were driven by either uncertainty, differential462

updating from surprising outcomes, or a combination of both. The Surprise model offered463

the best explanation of participants’ decisions overall. Although the Surprise model allowed464

a wide range of relationships between trial-wise learning rates and outcome surprise, the465

model’s parameters did not reflect the age differences evident in the behavioral analyses.466

Our results are consistent with findings that OA show stronger overweighting of low467

probability events when confronted with gambles in the gain and mixed domain (Pachur468

et al., 2017). Inspired by cumulative prospect theory (Tversky & Kahneman, 1992) and469

risky decision making paradigms (Mata et al., 2011), Pachur et al. (2017) asked participants470

to choose between two two-outcome monetary lotteries. Their core finding was that older471

adults overestimated the probability of rare events more than younger adults, i.e. that472
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the probability weighting function, which translates objective outcomes probabilities into473

subjective decision weights, was distorted more strongly in older adults. Notably, all decisions474

in this study were independent of each other, i.e. participants could not learn to improve475

their decisions with time.476

We extended the findings of Pachur et al. (2017) in several ways: first, we showed that477

age-related changes exist not only during the process of evaluating single decisions, but also478

in how younger and older humans learn from outcomes. Our findings therefore link the age-479

effects on behavioral decision-making to the rich literature on reinforcement learning. Using480

RL, we could systematically investigate mechanisms linking outcome history with future481

decisions (see below). Second, our study investigated decisions from experiences rather than482

from descriptions, a difference that is known to possibly alter the effects that aging has on483

choices (Zamarian, Sinz, Bonatti, Gamboz, & Delazer, 2008). Finally, we show that in the484

context of reinforcement learning OA do not exhibit heightened sensitivity to rare events per485

se, but rather to events that elicited particularly large prediction errors (i.e., surprise).486

Recently, another body of work modeled the influence of extreme/surprising events on487

decisions using sequential sampling tasks (Spitzer, Waschke, & Summerfield, 2017; von Clare-488

nau, Pachur, & Spitzer, 2022) which are more closely connected to the kind of instantaneous489

trial-by-trial updating we investigated in this study. These tasks present participants with490

repeated samples in quick succession from one or more distributions, including extreme sam-491

ples from the distributions edges, and ask for a judgment of the mean over samples. The492

results support the idea of selective weighting of extreme outcomes also in the context of a493

task that is based on a sequential learning process. We believe that also this work is extended494

by our findings. In particular, we show that similar behavioral patterns emerge also in much495

slower, single-trial sampling rates and trial-wise choices.496

Previous work has also shown that the probability of events that come to mind easily497

tends to be overestimated (availability bias, Tversky & Kahneman, 1973), and that memory498

for values at the edges of distributions is better (Madan & Spetch, 2012; Madan et al.,499

2014; Ludvig et al., 2018). This might explain why the distorted probability weighting500

functions described above. Note, however, that although in our task the low, mid and high501

outcome distributions differed in their standard deviation, bandits in our task exhibited502
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similar amounts of low-probability outcomes (see Fig. 1B). Hence the choice between bandits503

was not conflated by choices between a safe and risky gambles as characterized by different504

probability profiles. Our work does speak directly to the above mentioned memory biases,505

and suggest the here reported age-differences could be mediated by memory for extreme506

outcomes.507

Our study is also related to work that has focused on how learning rates are adapted in508

non-stationary environments, in which the true value of bandits changes over time (Behrens509

et al., 2007; Nassar et al., 2012, 2010). Unlike our own experiment in which participants510

learn from bandits with a stable outcome distribution, most of these studies investigated how511

participants infer the environment’s uncertainty and volatility (rate of change), and adapt512

their learning rates in response to these variables. Our Surprise model differs substantially513

from these accounts in that it assumes no computation of volatility or uncertainty for future514

use. Rather, the model captures the possibility of instantaneous increase in learning rate515

when outcomes elicit large prediction errors, with no effects on subsequent learning rates, as516

would be predicted by uncertainty or volatility-based accounts. Thus, our models are most517

informative for understanding if surprising events get treated differently in reward-based518

learning in stationary environments. Most relevant for our study is research that investigated519

the effects of age on the role of uncertainty and surprise in learning (Nassar et al., 2016).520

Here, uncertainty was operationalized as a recency-weighted average of absolute prediction521

errors. According to previous normative accounts, uncertainty should be the dominant driver522

of learning rates in stationary environments. Surprise, in contrast, captures the immediate523

effect of an unexpected outcome, i.e. the unsigned prediction error. Although the above524

mentioned previous work (Nassar et al., 2016) has largely pointed out that older adults tend525

to underestimate uncertainty, it also found that in response to surprise older adults adjusted526

their learning rate more than younger adults. Our finding is consistent with the notion527

that older adults show a heightened sensitivity to surprise, even in the context of stationary528

outcome distributions. Since our task featured particularly large negative prediction errors,529

our finding may also offer an explanation for age differences in risk aversion (Albert & Duffy,530

2012) that emphasizes transient learning rate driven effects that temporarily affect decision531

policies.532
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Computational modelling of participants’ behavior was in line with the idea that sur-533

prising events are treated differently during learning. A model that allowed for altered (i.e.,534

increased or decreased) updating from surprising events offered the best prediction of par-535

ticipants’ choices in low-mid bandit comparisons. One potential limitation of this work was536

the fact that model parameters did not reflect age differences evident in behavioral analyses.537

Specifically, the model did not suggest a heightened sensitivity to surprising outcomes that is538

more pronounced in older adults. A potential reason for this finding might be that the effects539

of surprising outcomes on participants choices are highly localized. One inherent problem in540

investigating the influence of surprising events in the context of stationary environments is541

that their number has to be relatively small. This holds the potential danger of model fits542

that are largely dominated by behavior in which the differential effects of surprise cannot be543

reflected in participants’ choices. To counteract this, we made the likelihood of each model544

only dependent on the key comparison regarding surprising outcomes. One additional way545

to address this issue could be to increase the number of bandits in the task that allow for546

large prediction errors. This might, however, lead to increased task difficulty. Due to the547

online setting of the task we decided for a more simple paradigm but results have shown that548

older as well as younger adults perform adequately on the task. Increasing task difficulty549

in favor of a more fine-grained characterization of the effect of surprising events on choices550

therefore seems feasible.551

There are also additional considerations that concern the fact that our data was col-552

lected online via Prolific. The Prolific platform was specifically build to conduct research553

and requires comprehensive profiles of the participants (Palan & Schitter, 2018), and thus554

represents an adequate choice to collect data also for older adults. Yet, less control of the555

experimental environment can lead to increased noise, reflected for instance in lower learning556

performance (Crump, McDonnell, & Gureckis, 2013). In addition, concerns may be raised557

regarding how representative older age group on Prolific is. Skilled internet use of OA is558

more common in populations with higher income and education (Hargittai, Piper, & Morris,559

2019) as well as better levels of health and activity (Cresci, Yarandi, & Morrell, 2010). It is560

therefore likely that the online data collection sampled a slightly different, high-performance561

population of OA when compared to the population sampled in an offline setting. In line562
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with this, our data did not show evidence for age differences in general performance, although563

OA tend to perform worse on reward-based learning tasks (Eppinger et al., 2013; Mell et564

al., 2005). Since it is possible that an offline setting might lead to more pronounced age565

differences in our analyses, it would be beneficial to repeat the same experiment in an in-lab566

setting.567

Taken together, this study provides insight into the differential weighting of surprising568

events during an reinforcement learning task and the role of aging. We found behavioral569

patterns suggesting that overweighting of extreme events was stronger in the group of older570

adults which is consistent with findings from risky decision making in the gain domain571

(Pachur et al., 2017). A model that instantaneously adjusted learning rates based on the572

surprise of the experienced outcome explained key choices (low-mid bandit trials) better than573

other candidate models, including an uncertainty model. The model helped to establish an574

understanding of the learning from surprising events in the context of stationary outcome-575

based learning. However, the model parameters fell short of explaining the behavioral age576

differences. Future research should aim to more clearly identify if surprise-related alterations577

of learning present a general mechanism in the context of stationary environments, or a578

principle that only gets applied locally to outstanding outcomes and see if the model at579

hand can be improved to accurately mimic the found behavioral choice patterns.580
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