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1
I N T R O D U C T I O N

The Desoxyribonulceic acid (DNA) is a molecule shared by all living
organisms. It is the blueprint for all life on earth. DNA is a polymer
present in each individual cell - a sequence drawn from an alpha-
bet of four nucleotides: Adenine (A), Guanine (G), Cytosine (C), and
Thymine (T). The DNA molecule consists of two individual polynu-
cleotides called strands that are identical in sequence but differ in ori-
entation: The forward (sense) and the reverse (antisense) strand. The
two strands are coiled into a double-helix structure in which pairs of
nucleotides (A with T, G with C) are connected via hydrogen bonds.
This DNA double-helix is further organized into chromosomes, larger
structures found in the nucleus of eukaryotic cells. The entirety of
all chromosomes in a cell is called a genome. Its nucleotide sequence
is commonly separated into coding and non-coding regions. Coding
regions encode amino-acid sequences processed during transcription
and translation. Non-coding regions are not actively transcribed but
contain regulatory elements such as promoters and enhancers that con-
trol the expression of genes.

The basic building block - the nucleotide alphabet - is shared across
all eukaryotes but the genomic sequence is highly variable. With in-
creasing evolutionary distance the genetic variability between species
tends to increase, as mutations accumulate over generations. Some
large-scale events such as genome duplications or ancestral chromo-
some fusions can also influence the genome composition in compa-
rably short evolutionary time frames. However, these events occur
much less frequently than changes affecting the nucleotide sequence
of the genome - also called variants. Variants can be passed on from a
previous generation (germline variants) or occur in individual cells af-
ter conception (somatic variants). They can be categorized by the num-
ber of nucleotides they affect and range from single nucleotide variants
(SNV) and short Insertions/Deletions (InDels) to larger genomic alter-
ations, collectively described as structural variants (SVs).

Our human genome is diploid i.e. it consists of two sets of 23 chromo-
somes - 22 autosomes and 1 allosome - one inherited by the father and
one by the mother. One set of chromosomes comprises approximately
3.1 billion nucleotides or base pairs (bp). Even though this sequence
of nucleotides is highly similar between humans (>99% similarity),
the average number of genetic variation in a human genome covers
approximately 4-5 million bp [1]. This set of variants and the associ-
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2 introduction

ated alternative sequences (alleles) of each individual are also called
its genotype. The groups of alleles inherited by a single parent are
referred to as haplotypes. If a variant is present in both haplotypes it
is called homozygous. Variants inherited by a single parent are called
heterozygous. Even though the majority of the variants are not disease-
causing, they can influence the individual’s phenotype i.e. their de-
velopment, physical attributes, and disease susceptibility. Disease-
causing variants can act by themselves affecting, for example, single
genes causing monogenic disorders or in relation to other variants re-
sulting in multi-factoral/complex disorders. Monogenic disorders are
also referred to as Mendelian since they follow recessive and dominant
inheritance patterns first established by Gregor Mendel.

SVs are responsible for the majority of altered nucleotides in the hu-
man genome [2]. They have been associated with a wide range of
diseases such as limb malformations, autism and cancer [2–4]. The
genetic variability in the human genome is therefore likely to be as
dependent on SVs as on smaller genetic mutations. While SNVs and
InDels have been studied extensively - especially those affecting cod-
ing sequences - disease-causing mechanisms of SVs remain for the
most part unknown. This is largely due to challenges in the detec-
tion of SVs. SNVs and small InDels can be reliably identified and are
routinely investigated in clinical practice. SVs, however, are much
more challenging to detect. They tend to occur in repetitive regions
that can not be accurately processed using short-read sequencing ap-
proaches - the currently most frequently used experimental method
to investigate genetic sequences [5]. In addition, SVs are a much
more heterogeneous group of variation than SNVs including multi-
ple subgroups with unique variant signatures. Long-read sequencing
in combination with current variant detection methods have shown
great promise to overcome these limitations [6–9]. However, the high
cost of these sequencing technologies has limited their application
to genetic research. With continuously improving sequencing proto-
cols and machines, the experimental cost has decreased drastically
suggesting that long-read sequencing could be included in standard
clinical practice more frequently in the future.

The quality and accuracy of sequencing experiments and variant callers
are fundamental to the detection of disease-causing variants. Deriv-
ing the molecular diagnosis from the detected variation i.e. the priori-
tization of variants, however, is an equally important and challenging
task. Sequencing experiments result in thousands of potential candi-
date SVs that need to be filtered and prioritized in order to identify
in many cases a single disease-causing variant. While a large vari-
ety of prioritization methods for SNVs and InDels are available to
assess their functional impact, few methods have been developed for



1.1 research objective 3

the prioritization of potentially disease-causing SVs. In addition, the
available current approaches focus almost exclusively on the coding
effects of SVs even though several instances of disease-causing yet
non-coding SVs are known. Their number is however still marginal
in comparison to coding variation. This limits the potential to de-
velop and validate any automated prioritization approach involving
non-coding features. To address the lack of data more studies are
required that identify SVs in rare disease patients with state-of-the-
art methods and investigate non-coding disease-causing mechanisms.
This raises the need for dynamic frameworks adaptable to cohort-
specific disease contexts that allow to accurately detect SVs with cur-
rent sequencing technologies and prioritize them with respect to their
pathogenic potential.

1.1 research objective

In this thesis, we discuss the detection and prioritization of SVs on
the example of a patient cohort with congenital limb malformations.
We include the entire process from sequencing experiments to the
identification of disease-causing candidates. The results are based on
a novel pipeline that allows determining a comprehensive SV call set
by combining short- and long-read sequencing. Using this pipeline
we prioritize SVs based on their potential pathogenic impact with
respect to a set of functionally relevant annotations, supported by
RNA-seq and Hi-C analysis. We also extend and evaluate a previ-
ously introduced method for the automated prioritization of CNVs
outperforming current comparable approaches. The novel contribu-
tions of this thesis are:

• a pipeline that allows for the accurate detection of SVs using
short- and long-read sequencing technology and their prioriti-
zation based on functional impact.

• a flexible annotation framework using sets of coding and non-
coding elements relevant for specific disease contexts that can
be applied to all types of SVs.

• the identification of potentially disease-causing candidates in
a cohort of limb-malformation patients.

• the extension and evaluation of a automated prioritization method
for CNVs.

1.2 thesis overview

In this chapter, we gave a brief introduction to the field of genetics
and introduced the scope of the thesis. Chapter 2 extends this in-
troduction providing information on methods and technologies that
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have been used to identify variants and discussing their use in clini-
cal practice. In Chapter 3 we focus on our patient cohort, limb mal-
formations, and relevant previous analyses. Chapter 4 provides a
methodical overview of the analyses presented in this dissertation.
Chapter 5 presents the results of our variant calling pipelines and
the comparison of sequencing technologies and algorithms with re-
spect to their ability to identify SVs. In Chapter 6 we discuss current
methods for variant prioritization, evaluate the CNV prioritization
method, introduce our manual annotation framework, and the cura-
tion of functional annotations for the identification of disease-causing
SVs. In Chapter 7 we present the potentially disease-causing variants
identified in our patient cohort. Finally, we discuss the results of this
thesis in Chapter 8.



2
VA R I A N T D E T E C T I O N A N D P R I O R I T I Z AT I O N

The work we present in this thesis can be separated into two parts:
First, we employ short- and long-read sequencing in combination
with several current calling algorithms to generate a comprehensive
call set for each patient. Then we aim to identify coding or non-
coding disease-causing candidates among thousands of detected SVs.
In this chapter, we provide relevant background information for both
parts in the context of current and supporting genetic research. We
begin with a brief history of variant detection, and the underlying
experimental methods including an overview of current algorithmic
approaches for SV calling. Then we discuss the application of genome
sequencing in the context of clinical diagnostics and previous work
on the prioritization of disease-causing variation.

2.1 a brief history of variant detection

2.1.1 Experimental Procedures

Large genomic alterations were systematically identified as early as
the mid-20th century through Karyotyping. Karyotyping is a cyto-
genetic method in which mitosis is arrested during metaphase and
the chromosomes of a cell are arranged and displayed to be viewed
under a microscope. These initial studies not only allowed to de-
tect aneuploidies i.e. an untypical number of chromosomes but also
larger anomalies in individual chromosomes [10, 11]. The potential
to identify and characterize these anomalies increased with more so-
phisticated staining methods. Fluorescence in situ hybridization (FISH)
introduced the staining and visualization of individual chromosome
pairs and targeted sequences [12]. This allowed for the identification
of a much greater variety of genomic alterations [13].

In the late 1970s DNA sequencing was first introduced by Sanger et
al. [14]. The experimental process also know as the chain-separation
method allowed to determine the nucleotide sequence of a DNA frag-
ment in three steps: chain-terminating polymerase-chain-reaction (PCR),
size separation by gel electrophoresis and sequence determination.
The method defining step i.e. the chain termination PCR is based
on the concept of dideoxyribonucleotides (ddNTPs) which are added
to a growing DNA strand during PCR preventing any further nu-
cleotides to bind and therefore restricting the strand to a specific size.
The resulting DNA strands are then assessed in channels of gel elec-
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trophoresis. Since the size of the strand determines the speed with
which they pass through the medium, the DNA sequence can be re-
constructed by concatenating the nucleotides from the bottom up. Us-
ing Sanger sequencing, any variant can be identified with nucleotide
precision. Due to its accuracy, it is still used as a gold standard and
validation for more recent approaches. While it is highly accurate the
method is comparably slow and expensive, limiting its use for any
large-scale genome analyses.

With the introduction of microarrays, multiple regions of the genome
could be investigated for variations in parallel albeit only at kilobase
(kb) resolution [15]. In addition, microarrays are only able to detect
changes in the amount of genomic material i.e. Copy number varia-
tions (CNVs). By targeting individual regions of the human genome
(probes), generating complementary DNA (cDNA), and measuring the
relative nucleotide sequence abundance in the DNA fragments of an
individual (target) after hybridization, a genotype for each region can
be established. Lower relative nucleotide sequence abundance indi-
cates a lower copy number or a Deletion while increased relative abun-
dance indicates a higher copy number e.g. a Duplication. Even though
microarrays are not able to detect variants at nucleotide resolution,
they are still used in clinical practice in combination with targeted
gene panels to identify potentially disease-causing CNVs at low cost.

The class of Next-generation sequencing (NGS) approaches extends upon
the initial sequencing concept, gradually replacing microarrays and
cytogentic methods. NGS methods allow for automated, relatively
cheap and fast sequence analysis, changing the quantity and resolu-
tion of detected variants dramatically [16]. In addition to the identifi-
cation of variants in all known exons - whole-exome sequencing (WES)
- entire genomes can be sequenced - whole-genome sequencing (WGS).
The initial protocol consists of two main steps: clonal amplification
of DNA fragments through PCR and massive parallel sequence deter-
mination by synthesis. This process produces millions of sequenced
DNA fragments or reads which are further processed in downstream
analysis.

The initial NGS protocol has been adapted in various ways to target
individual research questions: RNA-seq allows to asses the transcrip-
tome - the entirety of all transcribed genomic fragments [17]. Through
cross-linking DNA fragments and subsequent digestion and ligation
with restriction enzymes, chromatin conformation capture (3C) methods
can determine the spatial organization of DNA in the nucleus [18].
By combining chromatin immunoprecipitation and sequencing, ChiP-
seq allows to analyse the binding sites of transcription factors and
histone modifications [19]. Single-cell sequencing protocols produce
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individual DNA or RNA profiles for each cell [20]. With the addition
of bisulfite conversion the methylation of cytosines can be analyzed
through whole-genome bisulfite sequencing (WGBS) [21]. Since their in-
troduction, these NGS technologies any many other adaptions have
revolutionized genetic research. Still, for the detection of variants
they have several drawbacks: Due to the relatively short read length,
NGS technologies are not able to accurately determine the sequences
in repetitive regions and especially larger SVs are challenging to de-
tect as they exceed the standard NGS read length. Finally, all NGS
technologies rely on PCR which is inefficient in regions of increased
GC-content [22].

In the last decade, efforts were made to address these limitations
with the introduction of third-generation sequencing technologies. The
first published method, Pacific Biosciences’s single-molecule-real-time
(PacBio-SMRT) sequencing, is a PCR-amplification free technology
producing reads in kb-range [23]. During sequencing, circular single-
stranded DNA templates are processed individually in so-called zero-
mode waveguiders (ZMWs) that contain a DNA polymerase. Depend-
ing on the sequencing mode DNA templates either pass once or mul-
tiple times through the polymerase producing continuous long reads
(CLRs) or circular consensus reads (CCRs), respectively. Errors during
PacBio sequencing occur randomly and the majority appear as small
InDels in the data. Sequencing a template multiple times i.e. gen-
erating CCRs can therefore reduce the error rate significantly from
5-15% to below 1% [24]. However, high-coverage CLRs sequencing
experiments are considerably cheaper than CCR and have increased
average read length.

A second method, introduced shortly after PacBio-SMRT is Nanopore
sequencing by Oxford Nanopore Technologies (ONT) [25]. While Nanopore
sequencing can also be categorized as a SMRT technology, the ap-
proach is fundamentally different in comparison to PacBio-SMRT. Briefly,
the technology makes use of small protein pores i.e. nanopores in a
biological or solid-state membrane with an electrical field that is de-
signed to measure changes in the electric current when molecules
pass through them. Since each nucleotide produces a characteris-
tic change in the electric current, this allows for determining the se-
quence of a DNA fragment that is passing through a nanopore. Sim-
ilar to PacBio-SMRT CLR reads, the ONT sequencing error rate for
long reads is between 5% and 15% depending on the experimental
protocol [26]. While the majority of errors during sequencing also
appear as small InDels, they are not random but systematic errors
in homopolymer regions [27]. Newer sequencing kits in combination
with computational methods to detect and eliminate systematic er-
rors aim to reduce the error rate with promising results [28].
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Due to their increased read length Nanopore and PacBio sequencing
have since their introduction drastically increased variant detection
sensitivity in regions that were previously unmappable and have laid
the groundwork for the accurate identification of the entire spectrum
of SVs [26].

2.1.2 Computational Approaches

With new experimental protocols and sequencing technologies new
algorithms needed to be developed to leverage their potential. Given
the differences between short- and long-read sequencing and even
individual long-read technologies, these methods are typically de-
signed for a unique combination of sequencing technology and vari-
ant type. However, the initial preprocessing step - the alignment - is
required by all variant detection methods. For the alignment, the
sequencing data is either represented by an assembly, a single nu-
cleotide sequence representing an individual’s genome, or a collec-
tion of reads. Constructing an assembly can reduce certain biases
in downstream analysis increasing the accuracy during variant detec-
tion but requires considerable resources e.g. long-read technologies
with high coverage and in some cases, complementary sequencing
experiments for scaffolding such as Hi-C, a chromosome conformation
capture method [26]. Since most analyses - especially those involving
multiple individuals - cannot meet these requirements, the far more
frequent representation of the sequencing data are reads. The reads
are passed to an alignment algorithm that conducts a base-wise com-
parison with a reference genome determining matches and mismatches as
well as deletions and insertions. Given the size of the human genome,
this alignment process is a computationally challenging task that has
been addressed by various algorithms for both short- and long reads.
A recent review and evaluation of current alignment methods has
been conducted by Alser et al. including bwa-mem and minimap2 - the
algorithms used in the work presented in this dissertation for short-
and long-read data, respectively [29].

The choice of the reference genome depends on the species and se-
quencing experiment. For humans, reference genomes are available
in multiple versions which are continuously updated. Since the first
published version - the result of the human genome project [30] - con-
siderable efforts have been made towards filling unmapped regions
or gaps in the reference sequence. By taking advantage of recently
developed long-read sequencing technologies even the highly repet-
itive telomeric and centromeric regions have now been sequenced
resulting in the first complete human reference genome - the telomere-
to-telomere reference (T2T) [31]. While the T2T reference allows detect-
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ing SVs in previously unmappable regions, it is a very recent develop-
ment. The majority of variant detection in clinical practice including
our analysis is still performed with respect to previous versions of the
human reference i.e. GRCh37 or GRCh38 since restructuring the ex-
isting alignment and variant calling pipelines requires a substantial
effort. In addition, annotations of regulatory elements established
through complementary sequencing technologies such as ChIP-seq
have been determined with respect to a specific reference. This limits
any downstream prioritization attempts involving functional annota-
tion to the mappable genomic regions of the corresponding reference
version.

The alignment process reveals differences between the investigated
individual and the reference. The evidence of these differences is con-
tained in the aligned reads which are encoded in Sequence Alignment
Map (SAM) or Binary Alignment Map (BAM) format. Variant callers
collect and process the evidence from the SAM/BAM files aiming to
identify variant signatures, determine the corresponding variant type,
and report them in a variant call format (VCF) file. Numerous callers
are available for specific sequencing experiments, variant types, and
specialized purposes such as detecting variants in repeat elements
[32]. The identification of SNVs and InDels with short-read sequenc-
ing mainly relies on methods employing Bayesian models to deter-
mine the most likely genotype at a single position from stacks of
aligned reads [33]. A comparison of the currently most used short-
read SNV and InDel callers at different sequencing depths has been
conducted by Supernat et al [34]. Given the low error rate of short-
read sequencing approaches, all callers achieve high accuracy on SNV
test sets even in low-coverage regions.

The detection of SVs is, however, more challenging since each SV
type has a unique signature in the alignment. SVs are also abundant
in repetitive regions and can extend beyond the length of individual
reads further complicating the variant calling process. To identify SV
signatures three types of evidence are commonly used: split-read (SR),
paired-end (PR), and read-depth (RD) evidence. Several complementary
approaches have been developed focused on individual types of evi-
dence or combinations of them. The majority of short-read SV callers
collect SR and PR evidence. A widely used and highly cited exam-
ple is Delly, which operates based on an undirected, weighted graph
that connects paired-end read pairs if they support the same variant
signature [35]. Some short-read SV callers e.g. lumpy [36] addition-
ally aim to improve their performance for CNVs by supplementing
RD evidence. Others like cn.MOPS are specifically designed for the
detection of copy number changes solely based on coverage informa-
tion [37, 38]. These specialized implementations lead to unique call
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sets depending on the choice of the caller. Most short-read pipelines,
therefore, employ multiple callers to maximize sensitivity. This, how-
ever, requires rigorous downstream filtering to discard any potential
artifacts or false-positive calls accumulated over the individual call
sets.

Long-read sequencing technologies generate single reads. PR evi-
dence can therefore not be used. In addition, they are often per-
formed with comparably low coverage due to the associated high
cost, limiting the use of RD evidence. Thus, long-read SV callers
largely rely on SR evidence alone to extract signatures of SVs, as
shown in Figure 2.1, from the aligned reads. State-of-the-art and
frequently used callers, as indicated by the number of citations, are
Sniffles2, SVIM and pbsv [39–41]. Since these algorithms rely on the
same type of evidence, the differences in their implementation are
less pronounced in comparison to short-read SV callers. However,
the clustering of SR signatures and the assignment of individual SV
types can still differ considerably. SVIM, for example, is able to de-
termine the original reference location of an inserted segment and
can therefore separate interspersed duplications from novel-element
insertions while Sniffles and pbsv classify all insertions as either tan-
dem duplications or novel-element insertions. In addition to the di-
vergent assignment of SV signatures and clustering, the callers also
include built-in filtering parameters and thresholds that influence the
number of reported calls and the proportions of individual SV types.
Since no single best-performing method has yet been determined, an
ensemble approach, as for the short-read callers, can be used to in-
corporate the results of several callers increasing the sensitivity but
raising the need for a more extensive filtering process.

Figure 2.1: Overview of SV Types based on SR evidence. The subfigure
show illustrations of split-reads aligned to a reference indicating
Deletions, Duplications (tandem and interspersed), Inversions,
and Insertions.
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2.2 from sequencing to clinical diagnosis

NGS technologies have been used extensively to investigate the hu-
man genome for almost two decades. Large-scale studies of popu-
lations with thousands of individuals have shed light on the genetic
variability in humans, generating comprehensive catalogs of common
variation and investigating selective pressure throughout the human
genome [1, 42, 43]. In recent years comparable efforts have been
published using third-generation sequencing further extending our
understanding of genetic variation - especially concerning SVs [44,
45]. Genome-wide-association-studies (GWAS) explore the statistical as-
sociations between human traits and genotypes by exploiting linkage
disequilibrium (LD) [46]. These associations, however, often include
multiple variants associated with a single phenotype i.e. complex dis-
eases and do not allow inferring a direct causative relation. Studying
rare disease and inherited disorders in humans requires a more spe-
cialized approach. WES and gene panel sequencing have been widely
used to study variants affecting known coding regions and have be-
come significant tools used in clinical diagnostics. Rare disease pa-
tients are now frequently sequenced and their data is analyzed with
the use of various variant calling and interpretation methods to de-
termine the molecular origin of their phenotype [47–49].

WES can offer a substantial increase in successful molecular diag-
nosis in comparison with previous conventional genetic testing [50].
The diagnostic yield is, however, highly variable depending on the
disease context and investigated tissue [51, 52]. With recorded diag-
nostic yields around 30%, many patients remain without a molecular
diagnosis after WES analysis [52]. Since the exome constitutes only
2% of our genome, it is highly likely that the cause of the pheno-
type for many of these unsolved cases lies in non-coding regions [53].
Several mechanisms have been identified linking non-coding variants
to human disease: 1) Loss- or Gain-of-Function in target genes of en-
hancers caused by variants disrupting enhancer sequences [54, 55].
2) Misexpression of genes through copy number modification of en-
hancers and other regulatory elements [56]. 3) Perturbation of the
chromatin conformation resulting in changes of the regulatory envi-
ronment through balanced and unbalanced SVs. These perturbations
can rewire interactions between enhancers and genes in a process
called enhancer adoption or enhancer hijacking [57]. Given these docu-
mented cases of disease-causing variation, it is necessary to include
non-coding regions in standard clinical analysis through WGS to max-
imize the diagnostic yield.

There are, however, several challenges for the large-scale assessment
of non-coding variants in the context of clinical diagnostics: First, the
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non-coding variants identified using WGS greatly outnumber cod-
ing variants. On average ∼ 12, 000 variants are identified using WES
with 90% present in public databases while a WGS experiment pro-
duces approximately ∼ 5 million variants [58]. Reducing the num-
ber of non-coding variants to a set with few enough to be assessed
by a clinician/geneticist, requires rigorous and sophisticated filtering
and prioritization approaches. Secondly, our knowledge about the
non-coding regions and their biological function is far from complete.
In a clinical diagnostic scenario, a single functionally relevant and
disease-causing variant among hundreds of thousands needs to be
identified. In comparison to coding variants, which can be directly
assessed by their effect on transcription and translation i.e. amino-
acid sequences and protein function, non-coding variants often affect
regions without known biological function. To address this limita-
tion substantial efforts have been made to understand the regulatory
involvement of non-coding regions. Examples include the ENCODE
project, a large-scale collection of ChIP-seq and chromatin accessibil-
ity data in hundreds of tissues and cell types [59], studies present-
ing extensive investigations of chromatin conformation [60–62], Cap-
analysis gene expression sequencing (CAGE-seq) experiments to identify
transcribed enhancers [63] as well as curated sets of experimentally
validated regulatory elements [64].

Supported by the continuously extending knowledge of the tissue-
specific function of non-coding elements, recent WGS studies show
promising results toward the identification of disease-causing vari-
ation in larger cohorts [65]. Still, the regulatory function of most
identified non-coding elements remains unclear and the potential of
WGS to identify disease-causing non-coding variation therefore is not
yet exhausted. In addition, short-read sequencing is, as mentioned in
the previous section, severely limited with respect to SV calling [66].
Thus, it is likely that even in clinical studies investigating genotype-
phenotype relations using WGS SVs are underrepresented. To maxi-
mize the sensitivity of variant calling and the diagnostic yield, a com-
bination of WGS and long-read sequencing has to be used. This also
requires specialized prioritization approaches for SVs that allow for
identifying functionally relevant coding and non-coding variation.
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S E Q U E N C I N G PAT I E N T S W I T H C O N G E N I TA L L I M B
M A L F O R M AT I O N S

Signaling pathways in limb development are known to be largely
conserved but significant morphological differences can be observed
across species. This indicates that gene regulation is a major driving
factor of limb development. Since the limb is an organ that is eas-
ily observable and experimentally modifiable, it is an ideal model to
study the mechanisms of gene regulation and has been widely used
as such. In our cohort of patients with congenital limb malformations,
these mechanisms have likely been disrupted by genetic alterations.
Our aim is to identify these disease-causing variations with respect
to the potentially disturbed regulatory environments. To provide the
necessary background for this analysis we briefly summarize in this
chapter the regulatory pathways involved in limb development. Then
we discuss a previously conducted short-read WGS analysis includ-
ing the majority of patients in our cohort which motivated the work
discussed in this dissertation. Finally, we present an overview of our
extended analysis.

3.1 human limb development and limb malformations

The limb development originates from the lateral plate mesoderm.
First the limb bud is formed, an ectodermal pocket that encloses the
proliferating mesenchyme. The development continues along three
closely coordinated axes [67]: proximal-distal (PD), anterior-posterior
(AP), and dorsal-ventral (DV). The development of each axis is asso-
ciated with an individual signaling center. The PD-axis is under the
control of the apical ectodermal ridge (AER) sitting on the tip of the
limb bud. During limb development, the AER continues to keep
the underlying mesenchyme in a proliferating state, which allows
the rest of the limb to grow. The signaling center of the AP-axis
is the zone of polarized activity (ZPA), which expresses the sonic
hedgehog gene (SHH). The DV-axis is controlled by the WNT family
member 7A (WNT7A). The development of each axis and the coordi-
nation between them is tightly controlled by numerous genes and cis-
regulatory elements. One prominent example involves the differentia-
tion between hindlimb and forelimb i.e. thelimb identity. While the un-
derlying regulatory process has not been entirely solved, several key
factors have been established based on molecular evidence: The tran-
scription factors TBX5 and TBX4 are expressed in the mesenchyme of
the forelimb and hindlimb, respectively, presumably playing a major
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role in establishing limb identity. Both trigger the expression of the
fibroblast-growth-factor 10 (FGF10) which in turn induces the expres-
sion of FGF8 in a feedback loop. Through FGF8 the mesenchymal
cells remain proliferated, promoting limb outgrowth. The expression
of TBX5 and TBX4 has been found to depend on the sequential ros-
trocaudal HOX gene expression patterns.

With the introduction of ChIP-seq, RNA-seq, and chromatin confor-
mation methods many such cis-regulatory elements and gene inter-
actions associated with limb development have been identified and
investigated both in the context of evolutionary changes [68] and hu-
man disease [69]. Since in this dissertation, we focus on the disease-
causing mechanism of genetic variation, we only provide a small se-
lection of the evolutionary studies at this point and extend further
on limb-associated human disease in the following paragraph: Digit
reduction in mammals [70], wing acquisition in bats [71] and limb
loss in snakes [72, 73]. A more comprehensive review of limb-related
evolutionary studies has been conducted by Petit et al. [74].

The study of the genetic mechanisms underlying congenital limb mal-
formations in humans reaches back to the beginning of the 20th cen-
tury. After the rediscovery of Mendel’s work in 1900, the first hu-
man disorder recognized to follow his principles of inheritance was
a limb malformation, specifically, the now-called brachydactyly type
A1 [75]. Limb malformations are individually rare but overall appear
in approximately 1 out of 500 individuals [76]. The prevalence of
individual subtypes can vary significantly. They can be caused by
environmental factors such as teratogens [77] as well as spontaneous
and inherited genetic variation. Many of the identified causal variants
have been associated with syndromes which include a range of other
symptoms in addition to limb malformations [78]. This indicates that
the involved genes are not specific to limb development but are also
active in other relevant pathways. Non-syndromic or isolated limb
malformations are therefore more likely to be caused by variation
in cis-regulatory elements rather than coding regions, which is sup-
ported by individual examples of variants including SVs disrupting
non-coding regulatory elements [3, 69]. A prominent disease-causing
mechanism of SVs associated with limb malformations is the disrup-
tion of topologically associating domains (TADs) resulting in a rewiring
of relevant enhancer-gene interactions [79, 80]. TADs are windows
at the sub-megabase scale with increased interaction frequency deter-
mined through chromatin conformation capture. TAD boundaries are
significantly enriched for the CCCTC-binding factor (CTCF) which
acts as a key insulator protein [81, 82]. Disruption of TAD boundaries
through SVs can therefore lead to newly formed interactions between
genes and enhancers with potentially disease-causing consequences.
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Examples of SVs disrupting non-coding regulatory mechanisms and
causing human limb malformations are shown in Figure 3.1.

Figure 3.1: Clinical Examples of Non-Coding SVs in Patients with Limb
Malformations. This figure is adapted from Spielmann et al.
2018. It shows several limb malformations and depictions of the
corresponding disease-causing mechanisms.

3.2 previous short read analysis

We center the discussion of SVs and their potential to cause human
disease in this thesis around a cohort of 21 patients (LM01-LM21)
with limb malformations. All patients are non-syndromic and ex-
hibit isolated limb malformations. While some symptoms are shared
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between patients, the combination of symptoms is unique for each
individual, with the exception of LM17 and LM18. The patients are
a subset of a larger cohort with limb malformations collected by the
Department of Hand Surgery of the Katholisches Kinderkrankenhaus
Wilhelmstift Hamburg and the Institute of Medical and Human Ge-
netics at the Charité Berlin. The patients were previously tested for
known genetic variants using gene panel sequencing and microarrays.
Both investigations were unsuccessful in finding disease-causing vari-
ations. Elsner et. al, therefore, conducted an analysis using WGS data
exploring variations located in coding and non-coding regions of the
genome [83].

The Elsner et al. analysis included a total of 69 individuals with limb
malformations. For 64 patients, the parents were sequenced allowing
for the identification of de novo or shared variants if a parent showed
limb malformations comparable to the patient. The main focus of this
analysis was on small variations (SNVs and InDels). However, SVs
larger than 1, 500bp were also included. The initial set of high-quality
variants was filtered based on allele frequency (AF) both with respect to
public databases and cohort-specific allele counts (AC). Rare variants
were split into coding and non-coding variants depending on their
overlap with known gene transcripts, then separately annotated and
prioritized. Disease-causing coding variants were identified using
their predicted effect on the corresponding protein in combination
with phenotype information [84]. For non-coding variants, Elsner
et al. constructed a framework including multiple cis-regulatory an-
notations associated with limb development that allows identifying
variants potentially disrupting the regulatory environment of genes
of interest. For 12 out of the initial 69 patients, candidate variants
could be identified. All identified candidate variants are SNVs or
InDels acting through coding disease-causing mechanisms.

3.3 extended analysis of the unsolved cases

Since short-read sequencing has been shown to capture only a mi-
nor proportion of SVs present in the average human genome, it is
likely that the majority of SVs including potentially disease-causing
variants in the remaining unsolved cases have not yet been detected.
Therefore, the sequencing facility at the Max Planck Institute for Molec-
ular Genetics (MPIMG) sequenced 21 patients out of the 69 limb mal-
formation cases with PacBio long-read sequencing and we set out to
identify a more comprehensive set of SVs based on this new data. We
implemented a novel pipeline to process the long reads, reanalyze
the original WGS data and perform extensive formatting and filter-
ing steps resulting in a final call set of rare and potentially pathogenic
SVs. To assess their functional impact, we curated a set of cis-regulatory
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annotations relevant to limb development supported by patient-specific
Hi-C and RNA-seq analysis and developed an annotation and priori-
tization framework for both coding and non-coding SVs. Finally, we
manually inspected functionally relevant SVs and derived a set of
candidate variants for each patient.





4
M E T H O D S

In this chapter, we provide detailed descriptions of the methods un-
derlying the results discussed in this dissertation and relevant previ-
ous analyses. First, we provide a summary of a CNV prioritization
method - the TAD-annotation (TADA) tool - first introduced in the
master thesis leading up to and motivating the work done during the
Ph.D. In this description, we focus primarily on the methodical de-
tails. A more extensive discussion of variant prioritization in general
and the available state-of-the-art methods can be found in Chapter 6.
We then describe the methods used for the evaluation of TADA’s pre-
dictive performance in comparison with several current prioritization
methods. In the second part of this chapter, we present the pipeline
we implemented to process the sequencing data of the limb malfor-
mation cohort, call and filter SVs as well as prioritize and visualize
them. This includes the changes made to TADA i.e. adjusting it to
incorporate all types of SVs and specializing the annotation process
to reflect the patients’ phenotypes.

4.1 tada - automated prioritization of pathogenic cnvs

The motivation for the development of TADA was to quantify the
pathogenic potential of larger genomic alterations based on machine-
learning (ML) models trained on sets of known pathogenic and be-
nign variants. Current catalogs of annotated pathogenic SVs consist,
however, almost exclusively of CNVs due to the limitations of the ex-
perimental methods used to detect SVs that were available in the last
decades. The most frequently used method to determine larger vari-
ants was microarrays which only allow the detection of copy number
changes. To increase the predictive performance of the automated
prioritization model, we, therefore, decided to limit TADA to CNVs
rather than the entire spectrum of SV types. We collected two call
sets: A set of common i.e. non-pathogenic CNVs and a set of known
pathogenic CNVs. We obtained the pathogenic CNVs from DECI-
PHER [85]. The common variant set is a compendium from four
different data sources [44, 86–88]. After several filtering steps based
on AF and overlap between data sets, the size and number matched
training set of pathogenic and non-pathogenic CNVs included 6, 130
Deletions and 3, 410 Duplications (see Hertzberg et al. for details
[89]).

We then set out to quantify the impact of CNVs based on the coding
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and non-coding regulatory elements they affect. This process was
centered around a set of TAD boundaries. Their purpose in the anno-
tation process is three-fold: First, TAD boundaries serve as a proxy
of regulatory regions across the genome. This allows us to limit the
genomic annotations affected by the CNVs to the loci between bound-
aries and compute features for CNVs with respect to the regulatory
environment rather than just the directly affected loci. Secondly, they
considerably reduced TADA’s computational overhead since the fea-
ture computation is performed for TAD-sized windows rather than
entire chromosomes. Third, they serve as non-coding annotations
themselves. An overview of this TAD-based annotation framework is
shown in Figure 4.1.

Figure 4.1: Technical Workflow of TADA. The figure shows an illustration
of the CNV prioritization using the TADA tool. First, TADs are
annotated given a set of functionally relevant annotations. The
set of TADs is either a default set derived from hESC cells or pro-
vided by the user. Then sets of CNVs can be annotated with
features derived from the affected annotated TADs. For this,
a Feature Type needs to be selected i.e. extended for the default
feature set or distance for user-defined annotations. The anno-
tated CNVs are then either directly used in a manual analysis
with user-specific filters or an automated analysis based on the
pathogenicity score returned by the pre-trained Deletion and Du-
plication models. Additionally, users can provide two sets of
CNVs for training an alternative random forest model with ex-
tended or distance features.

The annotation process requires an extensive catalog of coding and
non-coding elements with metrics indicating their potential regula-
tory importance to best quantity the functional impact of CNVs. We
collected dosage sensitivity and intolerance to Loss-of-Function scores
for genes e.g. LOEUF [86, 90], a gene-set associated with developmen-
tal disease [85, 86], predicted and validated sets of enhancers [63, 64],
CTCF sites [59] and conservation metrics [91]. We first sorted the ge-
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nomic annotations into their corresponding TAD environment. Then
we computed features for CNVs based on the overlapping TADs. The
features included the distance to the closest element of each annota-
tion set as well as compound metrics such as the combined haploin-
sufficiency (HI) i.e. HI Log-Odds score across all affected genes. The
resulting features are included in the default running mode of TADA.
However, we also allowed for user-defined sets of annotations. With
this tissue-specific information can be included in the annotation pro-
cess if needed.

The annotated CNVs can be used in two ways: A manual analysis,
filtering based on individual features or they can be processed fur-
ther to train machine learning models distinguishing between two
sets of CNVs. To automatically prioritize pathogenic CNVs, we an-
notated the size- and number-matched sets of pathogenic and non-
pathogenic Deletions and Duplications. For this, we included 14 func-
tional annotation-derived features. Then we split the CNVs 70%
30% in training and test-set and used the training sets to train two
separate random forest models for Deletions and Duplications. These
random forest models are the basis for the evaluation and comparison
with other prioritization methods presented in this dissertation.

4.1.1 Evaluation of TADA

ROC-AUC Analysis

For the first comparison of TADA with current prioritization approaches
based on ROC-AUC values we used three sets of CNVs: A 5-fold
cross-validation (CV) split of our training data i.e. the 70% split of
the previously described set of Deletions and Duplications, the CNVs
contained in the 30% test-split and a set of ClinVar variants. We
collected the ClinVar CNVs from (https://www.ncbi.nlm.nih.gov/clinvar/
by using the following filter settings: Type of variation = copy num-
ber gain OR copy number loss OR Deletions OR duplications. We first
separated the variants into Deletions and Duplications (73, 533 Dele-
tions; 47, 022 Duplications) and then into pathogenic i.e. Pathogenic
and Likely pathogenic (11, 816 Deletions; 3, 880 Duplications) and non-
pathogenic i.e. Benign and Likely benign (13, 381 Deletions; 11, 609
Duplications). For the evaluation, we only used variants located on
autosomes. We also discarded any duplicated variants as previously
described [89] and those overlapping with the training data (90% re-
ciprocal overlap) resulting in 17, 553 Deletions and 10, 062 Duplica-
tions.

The Receiver Operating Characteristic (ROC) curves are based on two
metrics: the false positive rate (FPR) on the x-axis and the true posi-
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tive rate (TRP) also referred to as sensitivity or recall on the y-axis. The
curve itself is computed by selecting varying thresholds on the predic-
tion probability. An ideal classifier would achieve perfect sensitivity
without any false positives i.e. an area under the curve (AUC) of 1. To
compare the performance of TADA with other prioritization methods
we, therefore, use the ROC-AUC values as an approximation of their
predictive ability.

4.1.2 F1-Score Analysis

For the second evaluation of TADA we employ the F1-Score which
also allows measuring the predictive performance of classification
methods with categorical rather than continuous predictions. We
compute the F1-Score as follows:

F1 = 2 ∗ precision ∗ recall
precision+ recall

=
2TP

2TP+ FN+ FP
(1)

with TP as the number of true positive, FP false positive and FN false
negative predicitions. All F1-Score computations are based on the
ClinVar CNVs previously used for the ROC-AUC Analysis.

4.1.3 Ranking Analysis

In the third evaluation we set out to test the calibration of TADA’s
pathogenicity score in comparison with other prioritization approaches.
For this, we generated test-batches of ClinVar Deletions and Dupli-
cations, each containing a single pathogenic variant and 99 benign
variants. To account for the size bias between pathogenic and non-
pathogenic ClinVar CNVs, we binned the benign variants by size us-
ing an empirical cumulative distribution function (ECDF) and 60 bins.
For each pathogenic variant, we then sampled 99 benign CNVs from
the same size bin. This resulted in a total of 3, 425 batches of Dele-
tions and 415 batches of Duplications. Finally, to assess the ranking
ability of the prioritization methods we first computed pathogenicity
scores for all test-batches. Then we sorted the 100 CNVs in each batch
by the pathogenicity scores separately such that the index of the true
pathogenic variants could be used in a performance evaluation. We
repeated the sampling process across 30 random seeds.

4.2 analysis of the unsolved cases

For the analysis of the unsolved limb malformation cases, we imple-
mented a novel pipeline in snakemake (v.7.16.1) consisting of multi-
ple workflows to process the short- and long-read sequencing data,
call variants and prioritize them. A directed acyclic graph (DAG) of the
entire snakemake pipeline is shown in Figure A.1 and a more general-
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ized overview in Figure 4.2. In the following paragraphs, we describe
the individual workflows i.e. rules of the snakemake pipeline.

First, we present the methodical details of the workflow we imple-
mented to process the PacBio and Illumina data, as well as compare
the call sets across callers and technologies (Chapter 5). Then we de-
scribe the adjustments to the TADA tool that allows us to perform
a limb-malformation-specific annotation. We also provide details on
the Hi-C and RNA-seq analysis that contribute to the collection of rel-
evant functional annotations. Finally, we present the methods used
to manually inspect functionally relevant variants to distinguish be-
tween false- and true positives and the visualization method applied
to the filtered set of candidate variants.

Figure 4.2: Workflow of the Unsolved Cases Analysis. We implemented
SV calling pipelines for Illumina and PacBio sequencing, then
merged, formatted, and filtered the calls based on AF resulting
in a final SV call set. To analyze the potential impact of each SV
we constructed a set of functionally relevant annotations includ-
ing the results of patient-specific Hi-C and RNA-seq analysis.
Finally, we perform a manual assessment of the remaining can-
didates with respect to the supporting sequencing evidence and
the affected regulatory environment.



24 methods

4.2.1 PacBio Processing

Alignment

First, we aligned the subreads to the reference GRCh38 producing
BAM files for each sequencing run. For the alignment, we initially
used both the pbmm2 version of the minimap2 algorithm [92] and the
nglmr approach [93]. However, the alignment with nglmr was con-
siderably more time-consuming without significant improvement in
alignment statistics as measured in coverage, percentage of aligned
reads, and within read alignability. Thus, all results are based on the
alignment with minimap2 alone. We generated index files for the sub-
reads of each PacBio run using pbmm2 index and the SUBREAD preset.
Then we aligned the raw data to the GRCh38 reference using pbmm2

align (v1.3.0) with the following command:

1 pbmm2 align --preset "SUBREAD" --unmapped --median-filter --strip

--log-level INFO -j {threads} {index} {input.bam} {output.

bam}

We sorted the aligned reads and again generated index files using
samtools (v1.9). Finally, we merged all aligned files across runs for
each patient into a single pooled BAM file with samtools merge, if
necessary, and added MD tags with samtools calmd. We pooled all
alignments for the patients sequenced in multiple SMRT cells, gen-
erating a single BAM file. We then analyzed the aligned sequenc-
ing data using visualizations generated with custom python scripts
and computed the coverage by dividing the number of aligned bases
by the number of mappable bases in the GRCh38 reference genome
(3, 088mb).

Variant Calling

We employ three callers to identify SVs based on our aligned long-
read data: SVIM [40], Sniffles2 [39] and PBSV [41]. For SVIM (v.1.4.2)
and Sniffles (v2.0.2) we performed SV calling with single commands
as shown below:

sniffles --tandem-repeats {tandem_repeats} --input {input.bam} --

minsvlen 50 --minsupport-auto-mult 0.4 --vcf {output.vcf} --

threads 4

svim alignment --sample {patient} --max_sv_size 5000000 --segment
_gap_tolerance 20 --segment_overlap_tolerance 10 --tandem_

duplications_as_insertions --interspersed_duplications_as_

insertions --read_names --zmws {working_dir} {input.bam} {

reference}

To call SVs using PBSV (v2.8.0) we used two separate commands pbsv
discover and pbsv call. The tandem repeat file is provided in the
PBSV Github repository:
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pbsv discover --tandem-repeats {tandem_repeats} {input.bam} {

output.signatures}

2

pbsv call -j {threads} --types INS,DEL,BND,INV --call-min-reads-

all-samples 5 --call-min-reads-one-sample 5 --call-min-read-

perc-one-sample 40 {reference} {input.signatures} {output.vcf

}

We replaced the headers of all resulting VCF files to generalize the
format of the patient IDs and normalized the calls using bcftools

norm -c s -d all.

Formatting

The callers in our pipeline share several similarities in their implemen-
tation. All first identify so-called signatures from the CIGAR strings,
encoded information of the read alignment found in the BAM files.
The CIGAR string includes evidence of deleted or inserted segments
inside of individual reads as well as split read information. Depend-
ing on the evidence the algorithms attempt to classify the signature
as one of the known SV types. The number of types depends on the
caller. Sniffles2, the most frequently used SV caller based on the num-
ber of citations, and PBSV allow identifying 5 major SV types: Dele-
tions (DEL), Insertions (INS), Inversions (INV), Translocations (BND),
and (Tandem-)Duplications (DUP). SVIM additionally identifies in-
terspersed Duplications. The frameworks designed to assign an SV
type to a signature depend on a set of rules guiding the decision. For
example, a read that is aligned to two separate regions mapped to dif-
ferent chromosomes indicates a Translocation. If the two regions are
located on the same chromosome and next to each other but mapped
in different orientations, the signature indicates an Inversion. Since
the set of rules differs depending on the underlying decision frame-
work, the SV types assigned to the signatures are unique to each
caller. It should be noted that the variant calls of Translocation i.e.
BNDs also refer to Breakends which are detected but unresolved SV
signatures in the alignment data. This is the case for both PacBio and
short-read callers.

In addition to differences in the assignment of SV types, there are
inconsistencies in the output i.e. the VCF files produced by the three
callers. VCF files include in addition to the chromosome and start
position of an SV call several metrics relevant for the comparison
of variants including the SV type, length, end position, mate break-
points, alternative alleles, and variant IDs. While all callers report
these metrics, their data type and definition vary across callers.

To address these inconsistencies between the call sets we implemented
a custom script to generalize their format. With the formatting, we
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explicitly address the following differences between the callers: First,
the method-specific assignments of SV types. Second, the deviations
in the VCF format. Third, we convert all types of Duplications to In-
sertions while retaining the originally reported inserted/duplicated
sequence for downstream analysis, if possible. For callers that do
not return the duplicated sequence for Duplication calls by default,
we retrieved the corresponding sequence from the GRCh38 reference
genome using the python package pysam (v.0.19.0).

Filtering

Most long- and short-read callers employ several built-in filtering me-
chanics that attempt to reduce the number of false-positive SVs while
retaining as many true-positive calls as possible. SVIM is an exception
since it does not filter its output by default but insteads recommends
adjusting the threshold on the computed quality score to reduce the
number of false-positives in a post-processing step. PBSV requires an
absolute minimum of 2 supporting reads by default and Sniffles aims
to identify potential false-positives based on coverage with a default
minimum support multiplier of 0.1. The number of reported SVs, there-
fore, also varies greatly between callers solely based on the applied
filtering mechanisms.

To exclude biases during the comparison between callers introduced
by the unique build-in filtering mechanisms, we designed a common
set of filters and if possible adjusted the default calling parameters of
each of the three callers accordingly: We restricted the reported SVs
to those ⩾ 50bp and supported by a number of reads ⩾ 40% of the
long-read coverage. In addition, we discarded all variants located in
regions with suspiciously high coverage. These regions mainly con-
tain highly repetitive sequences leading to misalignment and conse-
quently an increased number of false-positives even when using long-
reads. To determine such regions, we first computed the coverage
of 10kb windows across the genome using bedtools makewindows -w

10000, samtools bedcov and applied custom formatting with awk. We
then discarded all variants located in regions with at least 5 times the
mean coverage.

4.2.2 Illumina Processing

Alignment

We applied bwa-mem (v0.7.17-r1188) to align the raw sequencing data
to the GRCh38 reference genome, compressed the resulting file, and
filled in mate coordinates and insert size:
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bwa mem {reference} -t 16 -Y -v 3 -M -R ’@RG\tID:{patient}\tSM:{

patient}\tPL:ILLUMINA’ {input.fq1} {input.fq2} | samtools

view -b - | samtools fixmate -m - {output.bam}

Using samtools sort and samtools markdup we sorted and marked
duplicated reads in the resulting BAM files. We then applied the gatk

BaseRecalibrator v(4.2.6.1) and gatk ApplyBQSR with recommended
settings including dbSNP and Mills reference variant sets for GRCh38.
These were mainly included for the SNP and InDel calling and repro-
duction of the results of the initial WGS analysis. The results of this
reproduction are not shown in this dissertation.

Variant Calling

Using the re-calibrated aligned reads as input, we generated individ-
ual call sets using Manta (v1.6.0), Delly2 (v0.8.3) and Lumpy (Smoove
v0.2.3) with the following commands:

python2.7 configManta.py --callRegions grch38_contigs.bed.gz --

bam {input.bam} --referenceFasta {reference} --runDir {

working_dir}

python2.7 runWorkflow.py

4 delly call -q 20 -s 15 -x human.hg38.excl.ts -g {reference} -o {

output.bcf} {input.bam}

smoove call -x --genotype --name {patient} --outdir {outdir} -f {

reference} -p {threads} {input.bam}

As preparation for the comparison between callers and technologies,
we then replaced the headers of all generated VCF files generalizing
the format of the patient IDs and normalized the calls using bcftools

norm -c s -d all.

Filtering & Formatting

In contrast to the PacBio long-read callers, the implementations of
the short-read SV callers are much more diverse. A major contribu-
tion to these differences is the larger variety of read-based evidence
provided by short-read sequencing data. In addition to the split-read
(SR) evidence that is leveraged by long-read SV callers, short-read
data also provides the information of discordant read pairs i.e. paired-
end (PE) reads. While initial short-read SV callers leveraged only
SR evidence, current methods use both types of evidence and some
the additional read-depth (RD) information for CNV calling. In our
pipeline, all callers mainly rely on SR and PE information. However,
each of the SV callers uses a unique method to detect SV signatures
from the aligned reads: Manta employs a graph-based approach ap-
plied to genome segments and performs additional assembly of reads
supporting variant loci to improve the breakpoint accuracy. In its
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final processing step, Manta then classifies signatures as a specific
SV type. Delly first extracts SV signatures from PE evidence and
then refines them using SR evidence. Lumpy centers its SV detec-
tion around an abstract breakpoint definition, collecting SR, PE, RD,
and, if provided, so-called generic evidence e.g. known variation in
a population. Similar to the PacBio callers, the short-read SV callers
also employ unique built-in filtering mechanisms. This results in sig-
nificant performances difference even on well-studied cell lines with
high coverage short-read data [94].

To account for this variability we applied common filtering steps: We
only retain SVs ⩾ 50bp and variants supported by a number of reads
⩾ 40% of the short-read coverage. We also discarded all variants
located in regions with suspiciously high coverage as previously de-
scribed for the PacBio call sets. In addition, we set an upper limit on
the SV size filtering all SVs ⩾ 1mb. This additional filter is based on
an inspection of the SV calls from Delly and Lumpy after coverage-
based filters were applied that revealed a total of 5, 704 and 2, 676 SV
calls ⩾ 1mb, not supported by any other caller or long-read sequenc-
ing. Since these calls are highly likely to be false positives, predomi-
nately called due to misaligned reads in repeats regions, we excluded
them from any further analysis. The unfiltered Delly and Lumpy calls
with their corresponding size distribution are shown in Figure A.3.

Finally, we converted the filtered VCF files into a generalized for-
mat with a custom script allowing for a direct comparison between
the Illumina and the PacBio callers. With this, we account for the
inconsistencies between the caller outputs such as method-specific
assignments of SV types, and general deviations in the VCF format
e.g. variant identifiers as well as definitions of end positions and
SV length. Since manta returns by default two break points for each
Inversion, we also generated single entries for all Manta inversions
using the converInversion.py script provided in Manta’s GitHub
repository https://github.com/Illumina/manta. We also converted
the Duplications of all callers to Insertions while retaining the orig-
inally reported inserted/duplicated sequence. If the duplicated se-
quence was not provided by default, we extract it from the GRCh38

reference genome using the python package pysam (v.0.19.0).

4.2.3 SV Merging Approach

To merge SV calls across callers and technologies we implemented
a custom clustering approach on the basis of nested containment lists
with the python package ncls. Nested containment lists are data
structures specifically developed for interval overlap queries [95]. Dur-
ing our approach, we aim to cluster SVs of the same type that poten-

https://github.com/Illumina/manta
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tially represent a single event. The clustering itself is controlled by SV
type-specific matching criteria. The criteria for SVs that can be rep-
resented as an interval i.e. Deletions, Inversions, and Insertions are
based on reciprocal overlap. For Insertions we choose their reference
position as starting locus and add their length to compute an artificial
end position, allowing us to represent them as intervals. The criteria
for Translocations are based on distance metrics for both the first and
the second i.e. the mate breakpoint.

Matching pairs are determined as follows: An interval SV x and an
SV of the same type y match if there is a reciprocal overlap ⩾ 50%.
If both x and y are smaller than 5 kb this threshold is reduced to
10%. Two Translocations are matching if the distance between the
first breakpoints is ⩽ 100bp and the distance between the two mate
breakpoints is also ⩽ 100bp. For each resulting SV cluster, the al-
gorithm returns a representative. We aimed to define representatives
including as much of the potentially affected locus as possible since
this will prevent any missed affected regulatory annotation during
prioritization. Deletions and Inversions are represented as the maxi-
mum interval spanning from the leftmost locus and rightmost locus
of all SVs in the cluster. For Insertions, the algorithm returns the left-
most reference locus and the rightmost reference locus without the
added insertion sequence length. The Insertion representative also
includes the insertion sequence of the initial SV in the cluster. Translo-
cation clusters are represented by the leftmost reference locus of all
first breakpoints in the cluster and a list of all mate breakpoints as
alternative alleles. Our approach also retains the original identifiers
of the SVs in the clusters of all representatives to allow backtracking
in downstream analysis.

4.2.4 Comparison with Catalogs of Common Variation

To assess the allele frequencies of our call-set with respect to pub-
licly available catalogs of common SVs, we combined multiple data
sources (Table 3): A comprehensive collection of SVs from the Gno-
mAD consortium including 308, 858 SVs based on 10, 847 unrelated
individuals sequenced with paired-end short-read WGS [86], 96, 585
SVs from 15 individuals sequenced with Pacbio long-read sequencing
[44]. 111, 746 SVs from 64 individuals deeply sequenced using PacBio
CCS [45] and finally a curated set of common SVs 82, 288 from multi-
ple studies from NCBI (nstd186) [96]. All calls were either originally
called with respect to the GRCh38 reference or lifted over [97]. We fil-
tered each set individually retaining common variation i.e. SVs with
AF⩽ 0.01. For the two long-read data sets we discarded all variants
unique to a single individual rather than applying an AF-based filter
due to their comparably low cohort size. Additionally, we excluded
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all SVs < 50bp. We also discarded SVs classified as CNVs i.e. unclas-
sified changes in copy-number from the GnomAD catalogs since they
could not be compared to the SV types in our cohort call set. Finally,
we formatted all public SV catalogs according to the criteria used for
both our short-read and long-read call sets. To identify common vari-
ation in our cohort, we then merged the SVs detected by all six callers
with the call sets of common SVs using the same set of parameters
as for the comparison of callers and sequencing technologies. This al-
lowed us to identify and discard any cluster of SVs including at least
one variant present in the common SV catalogs.

4.2.5 RNA-seq Analysis

The preparation of experimental data was performed by Uirá Souto
Melo and the sequencing by the sequencing facility of the MPIMG..
The fibroblast samples of the 21 patients were cultured in DMEM
with 10% FBS, 1% L-glutamine, and 1% pen-strep. RNA extraction
from fibroblasts was performed in all 21 samples using the RNeasy
mini kit (Qiagen, Hilden, Germany). The Poly(A) mRNA capture was
done using the KAPA mRNA HyperPrep Kit (KR1352 -v5.17) and se-
quencing was performed on a HiSeq4000 (Illumina) using a single
technical replicate (PE75, 50 million fragments per sample).

We processed the raw sequencing data with a custom snakemake pipeline:
First, we aligned the reads to the GRCh38 reference using STAR
(v.2.7.9a) [98] with the following command:

STAR --runMode alignReads --alignIntronMax 1 --readFilesCommand

zcat --bamRemoveDuplicatesType UniqueIdentical

We filtered for reads with a minimum mapping quality (MAPQ) of 5.
To identify DEGs for each patient we conducted a one vs. all analysis
with respect to the UCSC hg38 knownGene library using a custom R
script. Briefly, we removed any data mapped to sex chromosomes and
counted the reads of each patient per exon with summarizeOverlaps.
We then applied the DESeq2 (v1.26) function DESeq computing the
difference between read counts of a single sample and the remaining
cohort [99]. Finally, we normalized the results using vst, computed
the logarithmic Fold-Change (Log2FC) per gene, and returned the top
50 genes with the highest Log2FC as the list of DEGs for each patient.
It should be noted that the low number of replicates likely influences
the accuracy of our one vs. all analysis. In addition, the expression
of the genes in fibroblast samples does not directly correspond to
their expression during limb development which potentially limits
the application of our RNAseq results in the prioritization.
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4.2.6 Hi-C Analysis

The experimental preparation of the samples and the sequencing
were performed by Uirá Souto Melo and sequencing facility at the
MPIMG, respectivley. PCR amplification (4–8 cycles) was done us-
ing NEBNext Ultra II Q5 Master Mix (New England BioLabs, M0544).
The PCR purification and size selection was carried out using Agen-
court AMPure XP beads (Beckman Coulter, A63881). Libraries were
sequenced in 75bp, or 100bp paired-end runs on a NovaSeq6000 (Il-
lumina) using between 2 and 5 technical replicates.

We conducted the bioinformatic analysis in a custom snakemake pipeline.
First, we processed the raw sequencing data using the Juicer pipeline
(v.1.6) [100] with bwa (v0.7.17) for aligning the reads to the GRCh38

reference. We then merged the deduplicated and filtered reads across
technical replicates. For each patient, we applied the pre function
from Juicer-Tools (v1.22.01) to generate Hi-C maps including all mapped
reads with MAPQ⩾ 30. In addition, we merged the deduplicated
reads across the entire cohort creating a high-resolution fibroblast Hi-C
map.

To determine TAD boundaries we first generated patient-specific VC
SQRT normalized contact maps at 25kb resolution for each chromo-
some using the Juicer-Tools dump function and then applied TopDom
[101]. Currently, no gold standard method for calling TAD bound-
aries has been determined and large-scale comparisons have observed
high variability across callers and data sets [102]. The choice of TAD
calling method was therefore not trivial. For our annotation, we re-
quired a non-hierarchical TAD caller to define non-overlapping reg-
ulatory windows across the genome and TopDom has been shown to
produce robust results in comparison to other callers for this purpose.
Still, the resulting TAD boundaries have been shown to be variable
depending on the chosen parameters mainly the window-size [102].

To assess this variability within our own Hi-C data we executed Top-
Dom with window-size parameters of 5, 10, 20, and 30 using the high-
resolution fibroblast Hi-C map. This resulted in 9, 356, 7, 042, 5, 801
and 5, 401 genome-wide TopDom entries, respectively. To reflect the
high variability between the number of TADs for different window-
sizes we included two separate TAD sets in our annotation: We per-
formed the initial TAD annotation with respect to the window-size
10 TADs and include the window-size 5 TADs as an additional non-
coding annotation. Both sets are based on the merged cohort Hi-C
map which provides more robust TAD calls than patient-specific Hi-
C data due to its increased resolution. We illustrate the resolution
difference between patient-specific Hi-C maps and the merged cohort
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map at the SOX9 locus in Figure 4.3. Since the patient-specific infor-
mation could still prove valuable for the interpretation of potential
SV effects i.e. perturbations of regulatory interactions we included
both types of Hi-C data in the visualization of candidate SVs.

(a) Cohort Hi-C map.

(b) Patient Hi-C map.

Figure 4.3: Comparison of Patient and Cohort Hi-C Map. The figure shows
the resolution of a) the merged cohort Hi-C map and b) the Hi-C
map of the LM01 patient at the SOX9 locus. Refseq gene annota-
tion are indicated in green.

4.2.7 PLAC-seq Analysis

The significant PLAC-seq interactions determined by Yu et al. [103]
were not yet available during our analysis. Thus, we implemented
custom scripts to reproduce their results in human tissues. First,
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we retrieved the raw contact information from 4DNA (ID: 4DNES-
BUE56SA) and lifted the contact pairs over to hg38 [104]. Given
the high rate of lost contact pairs during the initial liftover process
with a MinMatch setting of 0.95 we reduced the threshold to 0.70.
We then determined significant Peak2All interactions using FitHiChip
with the following parameters: BINSIZE=10000 LowDistThr=1000000
BiasType=1 MergeInt=1 QVALUE=0.01. The final merged set contained
10, 351 significant interactions.

4.2.8 TADA 2.0

Since TADA was exclusively designed for CNVs, we needed to ex-
tend the original framework for the entire spectrum of SVs. Deletions
and Duplications are represented as intervals in the annotation pro-
cess. The inclusion of Inversions in the updated TADA version was
therefore trivial. However, Translocations and Insertions require ad-
ditional processing. In our final call set of limb malformation, many
Insertions were originally called as Duplications to allow for a more
permissive merging process. For the annotation process, we again
assign Duplication labels to Insertions if this SV type is shared across
all supporting callers. For template-Insertions, we reasoned that a po-
tential contribution to their functional impact is represented in the
inserted sequence. To incorporate this in our annotation process
we first align the insertion sequences back to the reference genome
(GRCh38) using the command line version of blat (v.37) [105]. To
improve the run time for individual sequences we include a .ooc-file
for the GRCh38 reference genome, then formatted each insertion se-
quence to resemble an entry in a FASTA file. We restricted the en-
tries to the first 2kb of each insertion sequence to further reduce the
alignment duration. For each sequence we executed blat with the
following parameters: -stepSize=5 -repMatch=2253 -minScore=30

-fastMap 0 -minIdentity=0 -noHead. Given the output file, we com-
puted an alignment score as the difference between matches and mis-
matches (including Inserts). For each Insertion sequence, we picked
the highest-scoring alignment, extended the position by the initial
length of the sequence, and returned the corresponding genomic posi-
tion. During TADA’s annotation process, we then regarded template-
Insertions as an SV consisting of two parts: The locus of the Insertion
itself ±500bp and the locus of the inserted sequence, if available. For
novel sequence insertions, we restrict the representation to the Inser-
tion locus ±500bp. For Translocations, we include both the first and
the mate breakpoint ±500bp in the annotation.
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4.2.9 Manual Inspection of SVs

We employed two methods to visualize and manually inspect SVs:
1) Samplot depictions of the SV loci using the aligned Illumina and
PacBio reads [106] and 2) a custom script developed by Nico Alavi
at the MPIMG allowing to inspect the read support of Insertions and
Translocations using CIGAR string. Samplot can be applied to short-
and long-read data but is limited to variants that can be represented
as an interval spanning multiple base pairs. For Deletions and Du-
plications, Illumina complements the PacBio reads with additional vi-
sual RD evidence. We, therefore, generated Samplot figures including
the coverage and read alignment of Illumina and PacBio data for all
Deletions, Duplications, and Inversions contained in the set of func-
tionally relevant SVs. The majority of the Translocations in the call-set
of functionally relevant SVs are supported by Illumina callers only
(91.78%) indicating a high rate of false-positives of this variant type
likely called due to ambiguous read pair alignments. We attempt to
reduce that rate by inspecting the long-read sequencing evidence at
each breakpoint location. While we are aware that the calls were not
directly supported by PacBio callers, we reason that individual long-
read SR evidence should at least indicate the presence of true-positive
calls, and the lack of any supporting evidence strongly suggest false-
positive variant calls. In a similar fashion, we inspect long-reads at
Insertion loci. Due to their increased length, PacBio-derived SR evi-
dence at these breakpoints can better distinguish true-positives from
false-positive Insertions. In summary, we collected aligned PacBio
reads around Insertions and Translocations ±500bp and visualized
the corresponding CIGAR strings. This allowed us to identify the
concordance between split reads at the breakpoint loci.

In order to efficiently inspect the around 200 SVs for each patient,
we implemented a custom web application that combines the visual-
ization approaches and allows iterating through an SV call set. For
each SV the application retrieves a visualization of the sequencing
evidence depending on the variant type. The user then assigns true-
positives and false-positive labels, generating a CSV file with annotated
variant information including the manual inspection decision.

4.2.10 Visualization of Candidate SVs

We implemented a custom visualization approach that is based on
the python package coolbox [107]. Coolbox allows to visualize genomic
data in the majority of formats used in standard bioinformatic anal-
yses including Hi-C data derived from Juicer analyses. It offers both
Juypter notebook support and command-line capabilities. First, We
slightly modified the original implementation to allow specific gene
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groups to be highlighted among visualized data from an Ensembl
GTF-file. We then implemented a script that retrieves all annotations
of the Limb Regulome. This includes two sets of Hi-C data - the fibrob-
last Hi-C map merged across all patients and a patient specific Hi-C
map - as well as overlapping coding and non-coding annotations. Fi-
nally, we iterate over candidate variants, producing visualizations of
the affected loci ±400kb. For each patient, we generate a final report
including all visualization in PDF-format.





5
D E T E C T I O N

The first step towards a successful molecular diagnosis and identi-
fying the corresponding disease-causing mechanisms is the accurate
detection of variation from sequencing data. To maximize the SV
detection sensitivity we combine short- and long-read sequencing in
the analysis of the limb malformation cohort. Figure 5.1 shows an
overview of the variant detection pipeline involved in this part of the
project. We implemented two separate workflows to process short-
and long-read sequencing, call SVs and filter them.

In the following sections, we will present the results generated by
our pipeline for each technology and conduct a comparison across
the corresponding callers. With this, we aim to identify the unique
properties i.e. potential advantages and disadvantages of the meth-
ods with respect to their ability to detect SVs, and demonstrate the in-
creased detection sensitivity of our ensemble approach i.e. the combina-
tion of multiple SV callers. We then conduct an analysis of the call set
merged across short- and long-read data, allowing us to highlight sig-
nificant differences between the technologies. In the third section of
this chapter, we discuss the results of the filtering approaches we use
to reduce the merged call set to the rare and potentially pathogenic
variants based on catalogs of common variation and the allele fre-
quency of SVs in our own cohort. Finally, we present the results of
the entire variant detection pipeline - the reduced set of rare vari-
ant calls that serves as the basis for our prioritization of potentially
pathogenic SVs.

5.1 pacbio

The PacBio CLR sequencing data for each of our 21 patients is based
on cultured fibroblast cells. Since the data has not yet been pub-
lished we briefly describe the experimental setup here. All exper-
imental work was performed by Uirá Souto Melo and the Seqcore
facility at the MPIMG. The high molecular weight (HMW) DNA was
extracted from the fibroblasts with a smart DNA prep kit (Analytik
Jena). Quality control (QC) steps were performed on the DNF-467

Genomic DNA 50kb Analysis Kit using a 5200 Fragment Analyzer
system (Agilent). For library preparation, the DNA was sonicated
using the Megaruptor 3 shearing kit and the Megaruptor 3 instru-
ment (Diagenode; parameters 20µg, HMW-DNA; Speed: 3). The
corresponding QC was performed with the DNF-464 High Sensitiv-
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Figure 5.1: The SV Detection Pipeline. The detection pipeline includes two
workflows: One for Illumina short-read sequencing and one for
PacBio long-read sequencing. After the alignment of the sequenc-
ing data to a reference genome, we employ three callers for each
technology to detect SVs. The call sets then undergo formatting,
quality control, and filtering steps designed specifically for this
combination of SV callers. Finally, we combine the filtered SVs
of the technologies across all six callers into a single call set com-
paring the merged variants with public databases and comput-
ing cohort-wide allele frequencies to determine and ultimately
discard common variation.

ity Large Fragment 50kb kit and size selection using the BluePippin
Size-Selection System (Sage Science) with range selection mode (BP-
start= 30kb; BPEnd= 80kb) and a library input of 3–5µg. All sequenc-
ing was done with Sequel II systems. The majority of patients were
sequenced on a single SMRT cell (16 patients) with some exceptions:
LM01 (8 cells), LM10 (2 cells), LM11 (5 cells), LM12 (5 cells), LM14 (5
cells), LM15 (3 cells) and LM20 (7 cells).

5.1.1 PacBio Alignment

To investigate any potential issues during alignment or sequencing
we first set out to analyze the quality of our aligned reads. This
analysis included the coverage, read length, within-read align abil-
ity, nucleotide distribution, and GC content. The coverage and read
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length are shown in Figure 5.2. The results of the remaining align-
ment analysis are shown in the appendix (Figure A.2).

The number of aligned bases varies considerably across patients (be-
tween 48, 093mb for LM01 and 121, 467mb for LM15) as does the num-
ber of aligned reads (between 2, 596, 664 for LM05 and 7, 528, 967 for
LM03). To achieve reasonable sensitivity in SV calling we required
at least 15X coverage in each of our samples. Coverages beyond this
threshold only marginally increase the performance of the callers in
our pipeline [40]. The computed coverages for the patients in our
cohort are between 15.6X and 52.4X with a cohort-wide average of
29.21X, satisfying the minimal threshold of 15X.

The mean length of aligned reads also differs signficantly across the
patients (between 16, 580bp for LM10 and 24, 850bp for LM06) with
a cohort-wide average of 21, 342bp. Most reads are smaller than
40kb indicated by the highest observed third quartile of 35.14kb. Un-
aligned reads are generally shorter than aligned reads (cohort-wide
average 5.43kb). For all patients, we can also observe outliers of
aligned reads ⩾ 100kb with a maximum observed length of 262kb
(LM05). The cohort-wide mean of within-read align ability is 85.86%
indicating that the majority of reads are almost fully aligned. Based
on the measured read length, coverage, and within read-align ability
the assessment of the aligned data indicates successful sequencing
runs that should allow detecting a wide range of SVs.

5.1.2 PacBio SV Calling

To maximize the sensitivity during variant calling we employed three
long-read SV callers: SVIM, Sniffles2 and PBSV [39–41]. We adjusted
the calling parameters to reflect our thresholds for read support (num-
ber of supporting reads ⩾ 40% coverage) and SV size (⩾ 50bp). We
then formatted the filtered call sets to allow for a direct comparison
between callers addressing the inconsistencies of the three SV callers
in terms of SV type assignment and VCF-file output (see Methods
for details). Finally, we visualized the filtered and formatted call sets
and size distributions for SVIM, Sniffles2, and PBSV as shown in Fig-
ure 5.3. The visualizations allow us to highlight the general proper-
ties of the call sets and unique differences between callers which we
discuss in the following paragraph.

The majority of identified SVs (mean across callers and samples) are
Insertions (59.8%) followed by Deletions (38.9%), a small proportion
of Inversions (0.5%) and Translocations (0.7%). The proportion of
variant types remains robust across callers with the exception of an
increased number of Inversions identified by Sniffles2 in a subset of
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(a) Coverage of PacBio CLR data.

(b) Read Length Distribution of PacBio CLR data

Figure 5.2: Alignment Statistics of the PacBio data.a) shows the coverage
(X) of each patient and b) the read length distribution in kb.
Whiskers indicate the 25th and 75th percentile and dots the me-
dian.

patients. While the mean number of SV calls is similar for all three
callers: 16, 279 (SVIM), 17, 199 (Sniffles2), and 16, 254 (PBSV), there
are considerable differences across patients (up to 6, 548 SVs) and
when comparing individual patients across callers (up to 2, 927 SVs).
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Most identified variants are between 50 and 500bp (> 75% for all
callers). We can observe two prominent peaks in the size distribu-
tion of all callers at 300bp and 1kb that also have been described in
previous studies [44, 45]. The peaks correspond to groups of trans-
posable elements - the first at 300bp to ALU- and the second at 6kb
to LINE1-elements. With increasing size, the number of variants de-
creases drastically for all callers.

Sniffles identifies a higher number of large SVs (⩾ 100kb). This has
a significant influence on the cumulative length of the call set. While
the call sets of SVIM (183mb) and PBSV (175mb) are of similar length,
SVs identified by Sniffles span a total of 976mb. This is largely due to
a set of 185 large (⩾ 100 kb) SVs unique to the Sniffles call set with a
cumulative length of 620 mb. The majority of the large SVs are Inver-
sions (100 out of 185) with a maximum length of 122 mb. SVIM, in
comparison, identifies a total of 76 SVs ⩾ 100 kb - none of which are
Inversions - with a cumulative length of 2.3 mb.

This subgroup of unique Sniffle calls is an example of the implemen-
tation differences between callers during the SV-type assignment that
directly influence the generated call sets. SVIM uses a threshold (de-
fault 100 kb) as an upper bound for SVs to be classified as Inversions
or Deletions indicated by SR evidence. All SVs larger than the set
threshold are classified as Translocations. Sniffles, however, does not
apply such a distinction leading to the inflated number of large In-
versions seen in our comparison. The underlying cause for the sig-
natures of these large events is likely the presence of repeat elements
located at multiple loci in the same chromosome. Segments of SRs
can be aligned to two locations of the same repeat e.g. the left side
of the first repeat location and the right side of the second location.
Thus, indicating a Deletion or Inversion depending on the read orien-
tation between the two loci. While these calls are highly likely to be
false-positive, there is no other signal than the length to distinguish
them from true-positive SVs. Thus, we retain these unique variants
in our variant detection pipeline to avoid discarding any potential
true-positive SV calls.

5.1.3 Custom SV Merging

A major part of this thesis revolves around the comparison of SV calls
from different callers and technologies. To analyze and visualize the
agreement between call sets systematically we needed to merge all
corresponding SVs into a single set and assess the amount of shared
identified variation. Since this merging process is not only required
for the PacBio analysis but for all downstream comparisons between
callers, technologies, and public databases, the choice of the under-
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(a) SVIM calls. (b) SVIM calls size distribution.

(c) Sniffles calls. (d) Sniffles calls size distribution.

(e) PBSV calls. (f) PBSV calls size distribution.

Figure 5.3: PacBio SV Calls and Size Distributions. The left-side figures
show the number of SV calls grouped by SV type for SVIM, Snif-
fles and PBSV, respectively. Variant types are Insertions (INS),
Deletions (DEL), Translocation (BNDs) and Inversions (INV).
The entries on the X-axis are sample identifiers and the Y-Axis
shows the number of SV Loci. The total number of SVs for each
patient is shown on top of each bar. The right-side figures show
the corresponding size distribution again grouped by SV type
for each caller.

lying matching algorithm and criteria is not trivial. The majority of
current large-scale sequencing experiments compute the overlap or
distance between variants depending on the SV type and match two
individual SVs if specific reciprocal overlap or distance criteria are
met [44, 45, 86]. These thresholds on overlap or distance directly con-
trol the trade-off between sensitivity and precision. Since no standard
has yet been established, the number of SVs in a sample can therefore
change considerably between studies even though the initial call set
might be the same.
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Several more sophisticated methods have been proposed in recent
years that allow matching SVs across callers or genotype SVs based
on the support in individual sequencing technologies [108–110]. How-
ever, the algorithms are either designed for a specific set of callers or
would require extensive adjustment to support the callers and tech-
nologies we use in our pipeline. We, therefore, implemented a custom
approach that allows merging variants across callers and technologies.
Briefly, the approach clusters SVs of the same type if type-specific
matching criteria are fulfilled and returns a single representative for
each cluster. A detailed description of the approach and the matching
criteria is provided in Chapter 4.

5.1.4 Comparison of PacBio Callers

Using our custom merging approach we generated a combined PacBio
call set for each of our patients. With this, we aim to quantify the pre-
viously observed differences between callers further highlighting the
importance of combining individual callers to increase sensitivity. We
computed the number of variants grouped by SV type identified by
a single, two, or all three callers. The results are shown in Figure 5.4.
Of the variants in our cohort-wide call set 62.97% are shared by all
three callers. This proportion changes significantly when testing for
individual SV types. For Deletions and Inversions, the proportion
of shared variation across callers is 70.02% and 61.2%, respectively.
Roughly 4.8% of Inversions are identified by all callers and 4.63% of
Translocations are shared. We can clearly observe the previously re-
ported increased proportion of Inversions uniquely identified by Snif-
fles2 in Figure 5.4d. In addition, we observe significant differences
in the number of variants shared by two callers depending on the
SV type: Sniffles2 and PBSV identify 12.19% Insertions that are not
detected by SVIM, a proportion more than three times the number of
Deletions identified only by SVIM and PBSV. However, for Transloca-
tions, the shared proportion of variants between Sniffles2 and SVIM
(16.53%) is considerably higher than the number of variants uniquely
identified by PBSV and Sniffles.

While the PacBio callers share a considerable proportion of detected
SVs, many calls are unique to single callers. This highlights the need
to employ multiple SV callers to increase sensitivity even for long-
read sequencing data. However, variants supported by a single caller
in many cases could prove to be false positives. A hard threshold on
caller support would likely significantly reduce the number of false
positives. However, we reason that any hard thresholds discard poten-
tially true positives as well and can even increase the bias introduced
by the shared evidence for SV detection between callers. Thus, we
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retain all calls identified by a single caller at this stage of the pipeline.

5.2 illumina

The WGS data has already been investigated for disease-causing vari-
ation in a previous analysis by Elsner et al. [83]. With the exception of
two cases, all cases remain without a molecular diagnosis. Since the
analysis was mainly focused on SNVs/InDels and coding SVs ⩾ 1500

bp, a more thorough analysis of SVs could reveal the disease-causing
variation in the unsolved cases. While we expect the majority of SVs
to be detected by PacBio, the information in the short reads can serve
as additional evidence supporting individual SV calls and in some
cases allows for a more accurate determination of breakpoint posi-
tions due to the low base-wise error rate. We therefore also include
the short-read Illumina data in our analysis. We implemented sev-
eral novel processing steps as part of our pipeline, updating callers
and adding alternative methods not used in the Elsner et al. analysis
as well as implementing custom SV filtering (see Methods for details).
While we had access to the initially processed data, our novel pipeline
allowed us to conduct a comparison between callers and technolo-
gies previous to any significant post-processing. The underlying raw
sequencing data and the experimental processing, however, are the
same as in the initial WGS analysis and are described in the corre-
sponding publication [83].

5.2.1 Alignment

First, we investigated the quality of the raw reads using fastqc [111].
Fastqc allows the assessment of a variety of quality metrics for raw
fastq files including sequence quality and length, per-base quality,
over-represented sequences, and sequence Duplication levels. The re-
port produced for the samples in our cohort showed no indication of
irregularities based on the built-in quality control mechanisms. An
example is that the Phred-scaled base quality does not drop below 20.

After the quality assessment, we aligned the reads for each patient to
the GRCh38 reference using bwa-mem (see Methods for details) [112].
We then computed as described for the PacBio data the coverage of
the aligned reads to ensure a successful downstream analysis. Fig-
ure 5.5 shows the resulting coverage values for all patients which
varies between 26X and 43X with a cohort-wide average of 35X. In
comparison to the PacBio data, the Illumina coverage is considerably
more stable across patients. This is likely due to the more established
experimental protocol which allowed sequencing each patient in a
single run.
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(a) All SV Types.

(b) Deletions. (c) Insertions.

(d) Inversions (e) Breakends / Translocations.

Figure 5.4: Comparison Between PacBio long-read SV Callers. The total
number of SVs after merging for each type is shown on top of
the individual Venn diagrams. The size of a circle is scaled by
the number of variants identified by the corresponding caller.
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Figure 5.5: Coverage of the Illumina WGS Data. The Y-Axis shows the total
number of aligned bases divided by the number of all mappable
bases in the GRCh38 reference genome for each patient on the
X-Axis.

5.2.2 SV Calling

We employ three SV callers for the short-read data in our pipeline to
maximize the detection sensitivity: 1) Delly [35], 2) Lumpy [36] and
3) Manta [113]. Both Lumpy and Manta have not been applied in
the analysis by Elsner et al. and could provide previously undetected
SV calls potentially including a functionally relevant candidate vari-
ant. We processed the SV calls in a similar fashion as the PacBio call
sets: First, we filtered all calls based on read support (min. number
of support reads ⩾ 40%) and SV size (⩾ 50bp). Then we formatted
all VCF files accounting for the inconsistencies between the output of
individual callers. Details on the filtering and formatting process are
provided in Chapter 4. Finally, we visualized the number of filtered
and formatted calls grouped by SV type and the corresponding size
distributions as shown in Figure 5.6. The visualizations allow us to
identify the unique properties of the SV callers which we present and
discuss in the following paragraph.

The majority of SVs identified from the short-read data are Deletions
with an average across patients and callers of 56.32%. For Delly and
Manta, Insertions are the second most frequently identified SV type
with an average of 27.43% followed by Translocations (14.14%) and In-
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(a) DELLY calls. (b) DELLY calls size distribution.

(c) Manta calls. (d) Manta calls size distribution.

(e) Lumpy calls. (f) Lumpy calls size distribution.

Figure 5.6: Illumina SV Calls and Size Distributions. The figures on the
left side show the number of SV calls grouped by SV type for
DELLY, Manta and Lumpy, respectively. The variant types are
the same as for the PacBio data: Insertions (INS), Deletions
(DEL), Translocations (BNDs) and Inversion (INV). The X-axes
show the sample IDs and the Y-Axis the number of SVs with
the total number indicated on the top of each bar. The figures
on the right show the corresponding size distribution of SV calls
grouped by SV type for each caller. In these figures the X-axis
are also sample IDs and the Y-Axis shows the number of SVs.
Each SV type is plotted individually.

versions (2.81%). Lumpy identifies a higher proportion of Transloca-
tions (26.64%) than Insertions (14.47%) but a comparable proportion
of Inversions (1.15%). The total number of SVs varies significantly
across callers with a cohort-wide mean of 6, 586, 8, 234, and 4, 233 for
Delly, Manta, and Lumpy, respectively. The maximum difference be-
tween patients for individual callers is 1, 941 SVs in the Manta Call
set between patients LM15 and LM19.
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Similar to the size distributions of the PacBio call sets we can observe
a peak at ∼ 300bp corresponding to ALU elements and a peak at ∼ 6kb
corresponding to LINE1 elements. The individual size distributions
of the short-read callers, however, vary significantly. While the ma-
jority of Delly SV calls are small variants ⩽ 500bp (50.07%), there is
still a high number of large SV calls ⩾ 100kb (3, 899 out of 105, 231)
and SVs ⩾ 5kb ( 21.94%) even after discarding any SVs ⩾ 1mb (see
Methods for details). In comparison, in Manta’s call set 82.25% of the
SVs are ⩽ 500bp and 5.00% ⩾ 5kb. We observe the strongest devi-
ation from any previously shown size distributions for Lumpy. The
majority of Lumpy calls are > 500 bp (63, 50%). This is reflected in
the cumulative length of the call sets which span 1, 634 mb, 587 mb,
and 2, 461 mb for Delly, Manta, and Lumpy calls, respectively. The
Lumpy call set, therefore, has a cumulative length of more than 4.2
times higher than Manta while reporting on average 1.95 times fewer
variants.

Overall, our analysis of the filtered and formatted call sets generated
by the short-read callers indicate significant differences in the propor-
tion of SV types and size distributions. Several of these differences
can be directly linked to unique processing steps of the algorithms.
An example is the increased proportion of small SVs, especially In-
sertions, reported by Manta which uses both PE and SR evidence
to build a signature graph while Delly relies on signatures initially
only identified with PE evidence and refines them with SR evidence.
This limits its potential to identify smaller SVs. In addition, Manta
performs an assembly of reads at breakpoints allowing to more accu-
rately detect SVs larger than the read size and sequence resolve them
resulting in an increased number of Insertions around 300 bp not ob-
served in the call sets of the other short-read SV callers. While the
significant lack of small variation reported by Lumpy can not directly
be linked to the model itself since it should detect SVs from SR, PE,
and RD evidence with equal weight, a previous comprehensive com-
parison of short-read SV callers reports a similar lack of sensitivity
for smaller SVs [94]. This indicates an issue in the implementation
that requires further analysis.

5.2.3 Comparison of Callers

To quantify the differences between the short-read callers and assess
their contribution towards a comprehensive call set, we merged the
SVs for each patient with the previously described matching crite-
ria into a single short-read call set and computed the proportion of
shared variation. The resulting call set includes a total of 177, 335 SVs
with an average number of 8, 867 SVs per patient. The proportion of
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shared variation is shown in Figure 5.7.

Of the merged SV calls 15.63% are identified by all three callers. This
proportion varies depending on the SV type with a higher propor-
tion of shared Deletions (27.54%) and Inversions (16.81%) than Inser-
tions and Translocations (5.14% and 3.60%, respectively). Particularly
Manta identifies a large proportion of unique Insertions (70.35%) and
Deletions (26.69%). The vast majority of these unique Insertions are
small variants (98, 71 ⩽ 500bp) also indicated in the differences of
the previously presented SV size distributions. Lumpy identifies the
smallest proportion of unique SVs across all variant types (10.44%)
followed by Delly which uniquely identifies 14.28% of the merged
call set. The proportions of shared variation between two callers are
higher for Manta and Delly with 20.88% Deletions and 38.29% Inver-
sions than for Lumpy in combination with any of the other two callers
(less than 6% for all variant types).

The analysis shows that the overlap between the call sets of the Il-
lumina short-read callers is significantly less than between the long-
read SV callers. Thus, the combination of multiple callers is necessary
to achieve high detection sensitivity allowing for a more thorough
analysis of SVs in the limb malformation patients. In addition, many
of the detected variants - especially those < 1500 bp have not been
part of the initial analysis conducted by Elsner et. al and could repre-
sent functionally relevant candidate variants.

5.3 technology comparison

Few cohorts have been investigated using both long-read and short-
read sequencing with the aim to identify potentially disease-causing
variation. Even in current public reference databases of long-read se-
quencing data, the SV catalogs are based on less than 100 samples
[44, 45]. We, therefore, have a unique opportunity to analyze the
agreement between the SV calls from the two sequencing technolo-
gies in a larger cohort and in a setting similar to potential future
clinical practice. Other studies have previously performed compar-
isons using gold-standard SV call-sets consisting of validated varia-
tion such as Genome-in-a-Bottle (GIAB) or deeply sequenced trio data
to derive technology-specific performance metrics [114, 115]. Since
we lack such a set of validated SVs for our cohort, we conduct a more
explorative analysis (Figure 5.8). With this, we aim to highlight the
benefits of combining multiple technologies and callers to maximize
the SV detection sensitivity.

We base the comparison on a call set of SVs merged across sequenc-
ing technologies and the corresponding callers using the previously
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(a) All SV Types.

(b) Deletions. (c) Insertions.

(d) Inversions (e) Breakends / Translocations.

Figure 5.7: Comparison Between Illumina short-read SV Callers. The total
number of SVs after merging for each SV type is shown on top
of the individual Venn diagrams. The size of the circles is scaled
by the number of variants of the SV type identified by the corre-
sponding caller.
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described merging strategy. The total number of merged variants
stratified by SV type and size distributions are shown in (Figure 5.8a,
Figure 5.8c). Our merging approach results in a call set of 536, 159
variants with a mean number of 25, 808 SVs per patient. The majority
of SVs are Insertions (52.56%) followed by Deletions (35.24%), Translo-
cations (10.48%), and Inversions (1.72%). The proportions of SV types
remain generally stable across patients with a standard deviation (SD)
for all SV types < 2.00%. There are, however, some exceptions e.g.
the increased proportion of Inversions for the LM11 patient.

To assess the contribution of the technologies to the merged call set,
we computed the proportion of variants identified by a single or both
technologies (Figure 5.8b), the corresponding size distributions (Fig-
ure 5.8d), caller support (Figure 5.8f) and the proportion of SVs iden-
tified by a short- or long-read caller also detected by callers of the
other technology (Figure 5.8e). Since no short-read data was avail-
able for the LM02 sample, we limit the analysis to the remaining 20

patients.

In our first analysis of this merged call set, we grouped the callers
by technology and measured the proportion of variants supported
by short-read and long-read sequencing. We observe that the major-
ity of SVs are uniquely supported by long-read sequencing (57.41%).
In contrast, only 18.15% of the SVs are only detected by short-read
callers and 24.43% by callers of both technologies. These proportions
remain robust across patients (SDs: 2.30, 3.00, and 1.59 for long-
read, short-read, and calls supported by both technologies, respec-
tively) but vary depending on the SV type (Figure A.4): We observe
41.64% shared Deletions, 18.25% shared Insertions, 6.1% Inversions
and 0.67% Translocations. While long-read callers identify a large
proportion of unique Deletions (42.53%), Insertions (77.00%), and In-
versions (59.97%), short-read callers detect a total of 50, 920 ( 90.41%)
unique Translocations. This increased number of short-read specific
Translocations is likely a direct consequence of the read length: The
SR evidence from short-read sequencing allows to detect breakpoints
of SVs larger than individual reads but especially for Insertions these
signatures can not be classified as a specific SV type leading to an
inflated number of unresolved Breakends. Since there is no clear dif-
ferentiation between Translocations and potential Insertions which
would allow us to merge across the two SV types, we retain all the
unique Breakends for further filtering in downstream analysis.

In the second part of our analysis, we focused on the size distribu-
tion of the initial merged call set stratified by technology support.
The combined set of SVs spans a total of 2, 429mb. A major contribu-
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(a) Variant Count. (b) Technology Support.

(c) Size Distribution. (d) Size Distribution by Technology.

(e) Technology Support of Callers. (f) Caller Support.

Figure 5.8: Comparison Between the short- and long-read SV Call-Sets.
This figure shows the results of our analysis comparing callers
and technologies: a) SV counts of the merged call-set grouped
by SV type for each patient on the X-Axis. b) The proportion of
SVs supported by either PacBio, Illumina, or both technologies
for each patient. c) The size distribution for each SV type of the
merged-call set. d) The technology support for SVs binned by
size. e) The proportion of SVs detected by a caller that is unique
to the corresponding sequencing platform. f) The merged-call
set of each patient stratified by caller support.

tion (1, 750mb) to the cumulative length stems from a small propor-
tion (0.80%) of large SVs (⩾ 100kb). The majority of SVs, however,
is ⩽ 500bp (75.47%). We observe that even though calls unique to
PacBio sequencing are more abundant, their cumulative size (905mb)
is considerably smaller than the combined length of short-read spe-
cific calls (1, 345 mb). This is largely due to the increased number of
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large SVs (⩾ 100kb) detected by Delly and Lumpy not supported by
any of the long-read callers with a combined length of 1, 076mb. No-
tably, there is no shared variation ⩾ 500kb in the entire merged call
set indicating a potentially increased proportion of false-positive SV
calls beyond this size threshold.

We further investigate the agreement between technologies for each
individual caller. Long-read callers identify on average a large pro-
portion of unique SVs (64.59%) - especially in comparison with short-
read callers (44.14%) reflecting our previous results. The number of
detected SVs unique to the corresponding sequencing technology re-
mains stable across long-read callers (SD = 2.022) which is not the
case for short-read callers (SD = 9.27): Manta detects the highest pro-
portion of SVs shared with long-read callers (71.54%) in comparison
to Delly (55.58%) and Lumpy (49.49%). A large contribution to this
set are Insertions of which 87.03% are variants shared across tech-
nologies. In comparison, only 42.90% and 39.50% of the Insertions
detected by Delly and Lumpy, respectively, are detected by a long-
read caller.

Finally, we stratify the call set depending on the number of support-
ing callers. We observe a major proportion of SVs that are uniquely
detected by a single caller (34.72%). Across all patients, the number
of SVs tends to decrease with an increasing number of supporting
callers. However, there is a spike in the SVs supported by three callers
(28.93%). This spike is caused by the increased overlap between the
approaches of the same sequencing technology - especially the long-
read SV callers.

With our analyses, we are able to reveal significant differences be-
tween the call sets of short- and long-read SV callers: First we confirm
the expected significantly increased SV detection sensitivity through
the addition of long-read sequencing data. Interestingly, short-read
sequencing also provides a non-negligible proportion of unique SVs
indicating the benefit of an approach leveraging both short- and long-
read data. These sequencing technology-specific call sets follow con-
siderably different size distributions as indicated by our second anal-
ysis. This is likely due to the type of read evidence available for each
sequencing technology. PE evidence specifically allows to detect dis-
cordant read pairs across large distances which are potentially not
identified by SR evidence derived from long-read sequencing data.
The third analysis shows that the differences between technologies
are also caller dependent. Manta, for instance, produces a call set
much more similar to the PacBio callers with a higher proportion of
Insertions and SVs ⩽ 500bp as well as a reduced proportion of large
(⩾ 1mb) SVs. Delly, in contrast, focuses predominately on PE evi-
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dence limiting its potential to identify SR signatures also present in
long-read sequencing data. Overall, our pipeline allows detecting SVs
with high sensitivity through the combination of short- and long data
and multiple SV callers. While this is desirable for clinical diagnostic
pipelines, since it increased the probability to include all potentially
disease-causing variants, it also requires more rigorous filtering ap-
proaches to distinguish not only pathogenic from benign but false-
from true-positive variant calls.

5.4 allele frequency filtering

Many of the 25, 808 SVs we detect in each patient are common i.e.
appear in multiple individuals in a population. Given the rare phe-
notype of our patient, it is likely that the disease-causing SVs we aim
to identify are not among them. To distinguish between the common
and therefore likely benign and rare, potentially disease-causing vari-
ants we need to determine their allele frequency (AF). While for SNVs
and InDels extensive collections of variants annotated with their allele
frequency computed in multiple populations are available for com-
parison, catalogs of common SVs are much less abundant - especially
concerning SVs detected through long-read sequencing. Rather than
just comparing our call sets with public databases we, therefore, use
a two-step approach: First, we collect catalogs of SVs including infor-
mation on their AF determined in previous studies of large cohorts.
Second, we make use of the information contained in our own co-
hort, computing the AFs of SVs across all 21 patients.e Using this
approach we aim to significantly reduce the total amount of variants
and identify a set of singletons i.e. rare SVs present in a single patient.
Given the patient-specific phenotypes in our cohort, we reason, that
the disease-causing variation is among this set of unique variation.
However, even patients with similar but not identical symptoms can
share the same disease-causing SVs. We therefore also conduct a sep-
arate investigation using SVs detected in more than one individual in
our downstream analysis.

To determine known common SVs in the call sets of the limb malfor-
mation patients, we first combined SVs from four catalogs of common
variation [44, 45, 86, 96]. We filtered each dataset based on SV size
and AF, if available, or a corresponding metric to discard all rare SVs.
Then we formatted the filtered call set according to the same stan-
dard used for the short- and long-read variants detected with our
own pipeline. The final set of combined common SVs included a to-
tal of 190, 205 variants. We then merged this set with the SVs of each
patient and excluded any cluster containing common variation (see
Methods for details of the filtering, formatting and merging process).
The filtered i.e. rare call-set is shown in Figure 5.9a. We retain a total
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of 126, 538 rare SVs with a mean of 6, 026 per patient. The majority
of remaining SVs are Translocations (43.59%) followed by Insertions
(28.89%), Deletions (20.93%), and Inversions (6.58%).

(a) Variant Count.

(b) Technology Support.

Figure 5.9: Call-Set After Comparison and Filtering using Common Vari-
ation. a) shows the variant count grouped by SV type for each
patient. b) shows the technology support of the remaining vari-
ants. c) shows the caller support.

The comparison with public SV catalogs of common variation re-
sulted on average in a 76.65% reduction of SVs per patient. How-
ever, the number of filtered variants highly depends on the SV type.
Deletions and Insertions are abundant in the public data sets and
therefore likely represent a high proportion of common variation in
the human population. Inversions on the other hand are much less
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frequent with a total of 480 variants in the combined set of common
variation. Unresolved Breakends are not represented at all in any of
the common SV catalogs and even though the GnomAD call set con-
tains Translocations, none pass the AF threshold of 0.01. Thus, the
number of Translocations in our cohort after filtering remains entirely
unchanged and the number of Inversions is only slightly reduced (987
filtered out of 9, 302). The initially high proportion of Breakends de-
tected by short-read SV callers is therefore also reflected in the overall
number of remaining variants supported by the individual sequenc-
ing technologies with 57.07% unique to short-read sequencing (Fig-
ure 5.9b). The contribution of short-read specific calls to the filtered
call set is especially apparent when comparing the cohort-wide av-
erage with the number of remaining SVs in the patient LM02. As
previously mentioned no WGS data was available for this patient lim-
iting the merged call set to PacBio SVs. Of the initial 19, 511 variants
merged across the three long-read SV callers 2, 632 rare SVs remained.

We, therefore, required an additional assessment of AF including
Translocations and Inversions. Given the considerable number of
samples in our own cohort especially in comparison with the current
publicly available PacBio cohorts, we reasoned that we can employ
the AF or alelle count (AC) in our cohort as additional evidence for the
identification of common and likely benign variation. To compute the
cohort-AC we employ the same merging approach previously used
for the comparison with public databases. However, in this analy-
sis, we retain sample-specific information in the process, such that
we are able to back-trace SV clusters to individual patients. Based
on this information we generate a cohort-wide call set that consists
of 52, 211 SV cluster representatives annotated with their correspond-
ing AC, sample IDs, and genotypes. We then stratify SVs based on
AC: Shared SVs are detected in all patients, Major SVs are detected in
⩾ 50% of the samples, Poly SVs are detected in < 50% but more than
one sample and Singletons are detected in a single individual. An
overview of the cohort call set grouped by these AC criteria is shown
in Figure 5.10.

Across all SV types, we observe on average 75.43% Singleton, 15.61%
Poly, 8.48% Major, and 0.48% Shared variants. For Translocations,
we observe the highest proportion of SVs detected in two or more
individuals (40.53%) which is to be expected as the previous AF fil-
ter could not be applied to this variant type. However, for Inver-
sions, which were also under-represented in the public call sets of
common variation, the proportion of Singletons in our cohort is still
high (93.36%). 30.87% and 20.25% of the filtered Deletions and In-
sertions are present in more than one individual, respectively. This
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Figure 5.10: Filtered SVs Stratified by Cohort Allele Count. The figure
shows the proportion of variants stratified by SV type and co-
hort allele count.

indicates that the cohort-specific AC provides additional information
on common SVs that are not listed in any of the publicly available SV
catalogs. It should be noted, that this shared variation in our call set
is not only includes SV common in the population but are also highly
influenced by biases in the SV callers and alignment process. Re-
gardless, the common variants are unlikely to include any potentially
disease-causing candidates. We, therefore, set a strict filter, retaining
only singleton SVs for further analysis. The resulting final call-set is
shown in Figure 5.11.

The call set included 39, 354 Singletons with an average of 1, 874 per
patient. The majority of Singletons are Insertions (38.40%). We ob-
serve a high proportion of Translocations (28.51%) followed by Dele-
tions (19.75%) and Inversions (13.34%). As in the unfiltered call set,
most Translocations are short-read specific i.e. are not detected by
any Pacbio Caller (76.71%). A marginal proportion of variants is sup-
ported by both short- and long-read callers (3%) while most SVs are
derived from long-read sequencing (62.06%). Finally, we observe an
overwhelming majority of SVs supported by a single caller (86.83%).
This indicates a potentially high rate of false-positives.

In comparison to the initial SV call set merged across callers and tech-
nologies, we achieved a reduction of 92.73% per patient using public
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databases and AF information derived from our own cohort. Com-
parable pipelines frequently include, as previously discussed, addi-
tional thresholds on caller or technology support. Given the high
proportion of calls supported by a single caller in our final call set, ap-
plying similar filters would therefore reduce the number of variants
considerably. This would also reduce the amount of manual investi-
gation needed in any further prioritization. However, while we agree
that such a threshold would decrease the number of false-positive, we
argue that strict thresholds set without further inspection of the calls
would potentially exclude disease-causing variation as well. Thus, we
retain all SVs of this final call set for the second part of our pipeline -
the prioritization of potentially pathogenic variation using functional
annotation.
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(a) Variant Count.

(b) Caller Support.

Figure 5.11: Final Call-set after Cohort AC Filtering. a) Variant Count
grouped by SV type for each patient. b) Variants stratified by
caller support.
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P R I O R I T I Z AT I O N

The fundamental aim of variant prioritization is the assisted iden-
tification of disease-causing variation and ultimately reducing the
amount of required experimental validation while increasing the num-
ber of successful clinical diagnoses. Even though the majority of
methods have been developed for the prioritization of SNPs and
InDels, a growing number of prioritization approaches have been
published in recent years designed specifically for SVs. These SV
prioritization methods can be approximately grouped into two cat-
egories depending on their underlying framework: Automated and
Semi-Automated approaches. Automation in this context means that
the method is capable of reducing an initial set of variants to a num-
ber of candidates without supervision to be then inspected by a clini-
cian or geneticist. Current methods achieve this by supplying a sum-
mary pathogenicity score produced by machine-learning (ML) mod-
els that allows to rank SVs by their pathogenic potential. The ranking
can then serve as a recommendation system for the clinician. Auto-
mated methods are agnostic to the disease or tissue context and pro-
vide a more general recommendation. The semi-automated approaches
on the other hand largely focus on annotation and visualization of
SVs using disease-specific information often including phenotype de-
scriptions of a patient. While these approaches can be used in combi-
nation with user-defined thresholds to reduce the number of variants,
their application involves in most cases a more extensive manual anal-
ysis.

In this chapter, we summarize the current state of SV prioritization
separated into automated and semi-automated methods. For each
group of approaches, we then present the related work as developed
in this thesis. First, we discuss the previously developed CNV pri-
oritization approach TADA which we evaluated as part of this Ph.D.
work. Secondly, we present an adaption of TADA to include all SVs
and limb-malformation-specific prioritization. This includes the con-
struction of a Limb Regulome - a combination of functionally relevant
genomics annotations including the patient-specific RNAseq and Hi-
C analysis.

6.1 automated prioritization of svs

Several machine learning models have been introduced in recent years
for the prioritization of disease-causing SVs. The models can be sepa-
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rated depending on the origin of their training data. Most approaches
rely on call sets of known pathogenic SVs [116–118]. These models
are trained to distinguish between pathogenic and benign SVs in rare
disease patients and are exclusively designed to assess the effect of
SVs on coding regions. This is primarily due to the lack of known
pathogenic SVs that act through non-coding related mechanisms lim-
iting the potential to train any type of machine learning model to pri-
oritize non-coding SVs. Other approaches that include non-coding
annotation, therefore need to rely on alternative call sets of SVs. The
supervised machine learning framework SVFX, for instance, employs so-
matic SVs as a proxy of pathogenicity [119]. In addition, it provides
a model for common disease in humans for which an increased num-
ber of associated non-coding yet not necessarily pathogenic SVs is
available.

Another alternative to the use of annotated pathogenic SVs is the use
of conserved variation across species. This allows training models
that identify deleterious rather than pathogenic SVs [120, 121]. These
evolutionary models are applicable to all types of SVs, assigning a
score that indicates the selective pressure on individual variants. This
score can be understood as a general assessment independent of the
patient’s phenotype and affected cell type as well as inheritance pat-
tern. In contrast, the majority of models trained on known pathogenic
coding SVs are also able to include patient-specific information e.g.
their symptoms encoded as Human-Phenotype-Ontoloy (HPO) terms.
Their computed summary pathogenicity scores then reflect not only
the functional effect of an SV on a gene but also its significance to
the patient’s disease. This application is potentially more in line with
a typical clinical scenario where the phenotype and a selection of as-
sociated genes are in many cases known. However, disease-causing
variations in genes not yet associated with the phenotype are more
challenging to detect with these approaches. Evolutionary models
are in this case more suited to detect disease-causing SVs among the
high-ranked deleterious SVs since their summary score does not rely
on phenotype-specific knowledge. The selection of an automated pri-
oritization approach, therefore, should be chosen depending on the
suspected molecular mechanisms.

6.1.1 Evaluation and Performance Comparison of TADA

TADA is an example of an automated prioritization approach focused
exclusively on CNVs. The concept of TADA was initially developed
during the master thesis preceding this dissertation. We provide a
summary of the method in Chapter 4. Briefly, TADA consists of two
random forest classifiers trained to distinguish between pathogenic
and benign Deletions and Duplications based on a set of features
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quantifying the changes to the affected regulatory environment. Al-
though the models were trained during the master thesis, we con-
ducted a rigorous comparison of TADA with current prioritization
approaches as part of the Ph.D. work. The method itself and the com-
parisons were published in a single manuscript [89]. In the following
section, we describe the in total four analyses performed to evaluate
TADA’s predictive performance in comparison with other prioritiza-
tion methods:

• A ROC-AUC score-based analysis across three call sets to assess
the classifiers’ general classification ability

• A F1-Score analysis including methods without continuous pathogenic-
ity metrics

• A Ranking analysis to investigate the methods’ ability to identify
a single pathogenic variant from a large background of benign
CNVs

• A developmental-disease analysis based on two patients with known
pathogenic Duplications.

ROC-AUC Analysis

For the initial analysis, we assessed TADA’s predictive performance
for multiple thresholds set on its summary pathogenicity across three
call sets: First, a 5-fold cross-validation (CV) split of the original train-
ing set. Second, the test-set split. Third, a set of pathogenic and
benign ClinVar CNVs. We first computed ROC-AUC values for the
Duplication and Deletion model and each data set. The evaluation
of the Deletion model results in ROC-AUC scores of 0.8379 (5-CV),
0.8059 (Test-Split), and 0.8865 (ClinVar). The ROC-AUC values for the
Duplication model are 0.8069 (5-CV), 0.7868 (Test-Split) and 0.8424
(ClinVar). We then compare our predictive performance to SVFX and
SVScore [119, 120]. The results are shown in Figure 6.1.

The SVFX framework allows training classifiers on individual vari-
ant sets to identify pathogenic CNVs based on functionally relevant
annotations. The annotation and prioritization are therefore concep-
tually similar to the TADA framework. However, TADA is trained
on size-matched data, while SVFX employs a normalization method
to account for the size bias between pathogenic and non-pathogenic
variants. There are several practical limitations to this method leading
to overestimated performance metrics mainly driven by data leakage
between the training and test set. To reduce this bias and allow for
a sensible performance comparison, we trained an SVFX model on
our own size-matched training data. We then compute ROC-AUC
scores for all three test data sets: 0.7836 (5-CV), 0.7613 (Test-Split) and
0.8311 (ClinVar) for the SVFX Deletion model. For the Duplications
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the ROC-AUC scores are 0.7613(5-CV), 0.7575 (Test-Split) and 0.7384
(ClinVar). Thus, TADA outperforms SVFX across all three test sets.

The second comparable method, SVScore calculates the mean of the
ten highest Combined Annotation Dependent Depletion (CADD) scores
[122] in the interval affected by a CNV. It, therefore, does not allow
for retraining on our data which excludes a performance comparison
based on the 5 − CV data. Instead, we applied the method to the
Test-Split and ClinVar CNVs with default parameters. Then we nor-
malized the scores for each set of variants to a range between 0 and 1.
This allows for a direct comparison to the pathogenicity scores com-
puted by TADA and SVFX. The resulting SVScore ROC-AUC value
for the Deletion model are 0.6909 (Test-Split) and 0.8771 (ClinVar). For
Duplications, the ROC-AUC scores are 0.7079 (Test-Split) and 0.8582
(ClinVar). While TADA outperforms SVScore on the Test-Split data,
the difference of ROC-AUC scores for the ClinVar variants is less pro-
nounced. SVScore performs marginally better than TADA on ClinVar
Duplications.

We reason that this increased performance for ClinVar Duplications
is likely caused by the underlying size bias between pathogenic and
non-pathogenic ClinVar variants. All CNVs larger than 1 Mb are
given a score of 100 by SVScore. Thus, it effectively labels all large
CNVs as pathogenic. In data sets with a high number of large pathogenic
CNVs and with many benign CNVs < 1mb, such as ClinVar, the
method, therefore, performs particularly well. We argue, that this
likely leads to an underestimation of small yet pathogenic CNVs. To
investigate this further, we conducted an additional analysis stratify-
ing the Deletions contained in the test sets i.e. Test-Split and ClinVar
by size into three groups: Small (< 50kb), Medium (< 100kb), Medium-
Large (< 1mb) and >= 1mb. We used Deletions rather than Duplica-
tions in this comparison due to the increased number of pathogenic
variants. We measure the performance of TADA, SVFX and SVScore
for all size groups using ROC-AUC values. The results are shown
in supplementary Figure A.5. TADA outperforms both SVFX and
SVScore across all size groups with the exception of Large Deletions,
indicating that TADA’s is less reliant on the size difference between
pathogenic and non-pathogenic variants.

In an additional ROC-AUC-based analysis we compared TADA to
CADD-SV [121]. CADD-SV is a recent adaptation of the original
CADD method aimed at the prioritization of deleterious SVs. It,
therefore, is not a direct competitor of TADA but provides a sim-
ilar although more evolutionary centered prediction. We used the
pre-trained CADD-SV classifier on the Test-Split and ClinVar variants.
To allow a comparison with TADA’s pathogenicity score we used the
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Figure 6.1: Classification Performance of TADA, SVFX and SVScore. The
figure shows the ROCs for Test-Split and ClinVar variants and the
corresponding ROC-AUC scores.

maximum of span and flank raw scores and additionally employed a
min-max-normalization for each variant set. We then compute ROCs
for both test sets. The results are shown in supplementary Figure A.6.
While TADA outperforms CADD-SV for both ClinVar and Test-Split
CNVs, the difference in performance, especially for the Test-Split Du-
plications, is marginal (0.0012).

F1-Score Analysis

In the second analysis, we compared TADA to the Ensembl Variant
Effect Predictor (VEP) [123]. VEP is a method preferentially used
for the annotation and prioritization of SNPs and InDels as it al-
lows assess individual changes in amino-acid sequences. However, it
also allows to annotate CNVs with regulatory annotation and returns
an IMPACT rating reflecting the potential pathogenicity of a variant.
The IMPACT rating is categorical and therefore not directly compara-
ble to the continuous summary score of TADA. Briefly, VEP groups
variants in four categories: (HIGH, MODERATE, LOW and MODI-
FIER). To allow for a comparison with TADA, we defined HIGH or
MODERATE CNVs as pathogenic and LOW as well as MODIFIER
variants as non-pathogenic. We then computed F1-Scores, a macro-
averaged metric of precision and recall for the Test-Split and ClinVar
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DUP Test Set DEL Test Set ClinVar DEL ClinVar DUP ClinVar DEL (<1Mb) ClinVar DUP (<1Mb)

TADA 0.73 0.74 0.73 0.53 0.69 0.42

SVScore 0.43 0.46 0.67 0.83 0.66 0.54

VEP 0.47 0.42 0.69 0.59 0.63 0.43

Table 1: Classification Comparision of TADA, SVScore and VEP. The per-
formance is measured in macro averaged F1 scores on Deletions and
Duplications of the test split as well as ClinVar variants. F1-scores in
bold indicate the best-performing method for the individual variant
set.

CNVs. To account for the unbalanced size distribution of ClinVar
variants we also computed a separate F1-Score for CNVs < 1mb. We
then compared the results to F1-Scores based on TADA and SVScore
predictions. In order to transform the continuous scores into two cat-
egories, we classified all variants with a TADA pathogenicity score
higher than 0.5 as pathogenic. For SVScore we used the 90th per-
centile of the scores in an individual call-set to distinguish between
pathogenic and non-pathogenic CNVs following the recommended
threshold with the highest reported performance [120]. The results
of the comparison are shown in 1. TADA outperforms SVScore and
VEP for both Deletions and Duplications of our Test-Split variants
and ClinVar deletions. For ClinVar Duplications SVScore classifies
84% of the variants correctly which is the best macro-averaged F1

score amongst all three tools. However, as previously discussed, the
high performance can be explained by the dependency on the size
difference between pathogenic and non-pathogenic ClinVar variants.

Ranking Analysis

The ROC-AUC and F1 score comparison rely on distinct thresholds
separating pathogenic from non-pathogenic CNVs. While this pro-
vides a generalized indication of the predictive performance it does
directly reflect the application in clinical practice. In a typical sce-
nario, the clinician ultimately has to identify a single pathogenic
variant from a large background of non-pathogenic CNVs. A clas-
sifier designed to assist in the molecular diagnosis of rare disease pa-
tients should therefore be able to assign a well-calibrated pathogenic-
ity score. This score would allow ranking all CNVs detected in the
patient such that the true pathogenic variant is placed as high as
possible reducing the number of manual inspections. To test the cal-
ibration of our classifiers, we compute the fraction of true positives
and the mean predicted value. With a perfectly calibrated pathogenicity
score these values would be equal. We visualized the calibration of
TADA’s random forest classifiers in supplementary Figure A.7. The
results indicate that the TADA’s summary pathogenicity scores are
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well-calibrated.

To test the calibration of TADA’s pathogenicity score in comparison
with alternative prioritization methods we conducted an additional
ranking analysis (see Methods for details). Briefly, we generated test
batches of 100 CNVs containing a single pathogenic variant and com-
puted its rank based on the pathogenicity scores. This allowed us to
determine the method-specific proportion of true pathogenic CNVs
and the corresponding standard deviation for all ranks between 1 to
100. The resulting performance is shown in Figure 6.2. The TADA
deletion classifier outperforms both SVFX and SVScore. In 35.9% of
the batches, the true pathogenic variant is placed the top 5 ranks
compared to 20.9% (SVFX) and 33.9% (SVScore). However, SVScore
places more pathogenic CNVs in the ranks below the 10th rank. In the
duplication ranking analysis, TADA outperforms SVFX and SVScore
with respect to all ranks. 28.66%, 11.7% and 11.06% of true pathogenic
Duplications from 415 batches are placed among the first 5 ranks by
TADA, SVFX and SVScore, respectively.

In an additional analysis, we assessed TADA’s rankings ability with
respect to rare variants. Typically in pipelines such as the one we de-
veloped for the limb malformation cohort, initial filtering is included
to discard any common variation. The remaining rare variants are
then further investigated using prioritization methods e.g. TADA. To
simulate this scenario we generate again batches of 100 CNVs includ-
ing a single true pathogenic ClinVar variant and 99 rare variants with
AF < 0.01 [86]. In this ranking analysis, SVscore performs marginally
better than TADA placing the true pathogenic variants in 4.6% of the
batches among the first 5 ranks. In a manual inspection of the true
pathogenic variants, we observed that SVScore assigns low scores
to all CNVs not affecting coding regions while TADA also consid-
ers non-coding variants as potentially pathogenic. To test the effect
of non-coding features on the ranking ability with rare variants, we
trained a separate model using only coding features and performed
the ranking analysis again. With the coding model TADA outper-
formed SVScore across all ranks. The difference in performance is
likely due to the investigator bias in the ClinVar CNV set since it al-
most exclusively includes pathogenic coding variants. However, we
reason current prioritization methods need to be able to assess non-
coding variation as well given the growing evidence for pathogenic
CNVs acting through non-coding related mechanisms [57]. The cur-
rent trained TADA models therefore also include features accounting
for the non-coding regulatory environment.



68 prioritization

(a) Ranking Performance for Deletions.

(b) Ranking Performance for Duplications.

Figure 6.2: Ranking Performance Comparison of TADA’s Deletion and
Duplication Classifiers. For each bin we computed the percent-
age of variants placed among the corresponding rank or ranks.
Black bars indicate the standard variation based on 30 random
sampling runs.



6.1 automated prioritization of svs 69

Developmental Disease Patient Analysis

In a final evaluation, we measured TADA’s performance on two in-
dividuals with developmental disease (DD). Both patients were part
of a previous in-depth analysis exploring the potential of Hi-C to
resolve disease-causing Duplications [124]. To simulate the appli-
cation of TADA on the two patients (DD1 and DD2) in a scenario
where the pathogenic Duplications are not yet known, we spiked in
the two known pathogenic Duplications into the initially detected
set of CNVs of DD1 and computed summary pathogenicity scores.
The results are visualized in Figure 6.3. TADA is able to identify
both disease-causing Duplications as pathogenic and assigned higher
pathogenicity scores than the 90th percentile (0.4336). The DD2 Dupli-
cation was placed on rank 2 (0.7986) of all detected CNVs. However,
the DD1 Duplications was ranked considerably lower (0.5865).

To identify the driving factor behind TADA’s classification process
we investigated the regulatory environment of the pathogenic Du-
plications. Both Duplications are located in proximity to the SOX9

locus overlapping TAD boundaries, multiple genes, and FANTOM5

enhancers. However, while the DD2 Duplication directly affects the
SOX9 gene locus, the DD1 Duplication is located outside its coding
region. The direct overlap with SOX9, a highly haploinsufficient gene
(0.9981 p(HI)), likely drives TADA’s classification process for the DD2

Duplication given previous indications on TADA’s reliance on cod-
ing information. Since the DD2 Duplication is likely acting through
increased gene dosage effects the prediction accurately reflects poten-
tial pathogenic effects. The suggested disease-causing mechanism for
the DD1 by Melo et al. is the formation of a novel chromatin do-
main (Neo-TAD) including copies of KCNJ2, KCNJ16 as well as SOX9

enhancers leading to misexpression of KCNJ2 [124]. While we can ob-
serve an increased pathogenicity score for the DD1 Duplication, we
suspect that it is driven by the proximity to SOX9 alone rather than re-
flecting the complex rearrangements causing the patient’s phenotype.

This analysis of DD patients indicates that TADA is able to identify
pathogenic CNVs from a background of benign variation but largely
depends on coding information. We performed a permutation-based
test of feature importance to investigate the extent of TADA’s reliance
on coding information. We measured the decrease in performance on
the 5-CV set after permuting clusters of features determined through
partial correlation analysis (see Hertzberg et al. for details [89]). The
six most important features i.e. those with the highest decrease in
accuracy after permutation are all coding-related. Similar to the pre-
vious ranking ability comparison of TADA and SVScore this is largely
due to the investigator bias in currently available data sets of validat-
ed/known pathogenic variation. Limited by the lack of knowledge
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Figure 6.3: Pathogenicity of Duplications in DD-Patients. The figures
shows the computed summary pathogenicity scores of TADA
for all Duplications detected in the DD-Patients. The true
pathogenic variants are marked in red. The dotted line indi-
cates a threshold of 0.5 distinguishing pathogenic from non-
pathogenic CNVs.
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about the regulatory function of non-coding regions, the majority of
case studies that have been conducted so far were focused on varia-
tion affecting genes. Thus, validated pathogenic variants are almost
exclusively coding. While we expect that with the growing number of
case studies revealing pathogenic non-coding variation, TADA’s auto-
mated classification process becomes more reliable for such variants,
the application of its current models should be restricted to coding
variation. This also applies to all other machine learning-based prior-
itization methods trained on known pathogenic variation.

The previous analysis of the patients in our limb malformation cohort
included an investigation of large SVs hitting genes of interest with-
out resulting in any identified disease-causing candidates. It is there-
fore likely that the true pathogenic SVs are acting through non-coding
regulatory mechanisms. This should also be reflected in our priori-
tization approach. Since the machine learning classifiers of TADA
and comparable automated approaches underestimate non-coding ef-
fects, we therefore instead focus on a semi-automated approach that
allows leveraging all available information including relevant non-
coding regulatory annotations.

6.2 semi-automated prioritization of svs

Semi-automated prioritization methods do not employ machine learn-
ing models for direct classification and therefore are not restricted by
the lack of known non-coding pathogenic SVs. They focus on the
assisted inspection of individual variants rather than the assignment
of summary pathogenicity scores. However, some of the methods we
assign to this category provide features that reduce the number of
SVs to a set associated with the patient’s phenotype or relevant reg-
ulatory elements. Thus, we chose to describe the category as semi-
automated rather than manual. Current tools include visualization-
based methods that allow inspecting the regulatory environment of
SVs [125, 126], annotation frameworks leveraging phenotype and
hereditary information for larger cohorts [127], predictive approaches
for the potential perturbation of regulatory interactions [128] and
disease-specific models aimed predominantly at TAD-boundary hit-
ting CNVs and Inversions [129].

For our purpose i.e the identification of disease-causing SVs in limb-
malformation patients we require a method that combines multiple
aspects of these approaches: An annotation for all types of SVs in-
corporating limb-specific regulatory elements, a corresponding set of
filters that allow reducing the number of SVs to functionally relevant
candidates and a visualization approach for a final manual inspec-
tion. While each of the currently available tools could prove to be
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Figure 6.4: Functional Annotation based Prioritization of SVs. We center
our annotation process around an extended version of TADA
capable of annotating all types of SVs. As input, we collect a
comprehensive collection of disease-context-specific regulatory
elements including the annotations derived from our RNA-seq
and Hi-C analysis.

beneficial for this process, they would require extensive adaptions -
especially when applied in an ensemble approach. Thus, we set out
to develop a novel prioritization method i.e. TADA 2.0 fitted to the
limb malformation cohort that allows us to tune filtering steps during
prioritization and include it in our snakemake pipeline (Figure 6.4). As
the basis for this prioritization method, we use the TADA annotation
framework. It is therefore an approach that directly depends on the
information contained in collections of regulatory annotations.

6.2.1 Limb Regulome

To reflect the regulatory environment impacted by SV as accurately as
possible, we set out to collect a comprehensive set of limb-development-
specific annotations i.e. a Limb Regulome. We include regulatory ele-
ments from publicly available data sources as well as patient-specific
annotations derived from our Hi-C and RNA-seq analyses. In the
following paragraphs, we describe each set of annotations split into
coding and non-coding, their origin, and the corresponding experi-
mental analyses.

Coding Annotations

We first collected gene annotations from ENSEMBL (v.104). Then we
discarded any duplicated entries based on gene symbols and anno-
tated them with metrics describing their haploinsufficiency and Loss-
of-Function intolerance if the gene was present in the corresponding
databases [85, 86]. We also collected Exon annotations as well as
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5’ and 3’-prime UTRs, Start- and Stop-Codons from the ENSEMBL
resource. For exons we reduced the initially available information
to the genomic loci and corresponding gene symbols, discarding any
duplicated entries. We also retained the list of developmental-disease-
associated genes i.e. DDG2P-genes used in the initial TADA annota-
tion set [85]. In addition, we collected four sets of genes specific
to the disease context of our cohort: 1) genes correlated with limb
development based on a separate scRNA study (citation needed) 2)
genes known to be associated with limb development derived from
previous work by the Mundlos AG at the Max-Planck-Institute for
molecular genetics [130] 3) phenotype associated genes and 4) differ-
ently expressed genes (DEGs). To generate a list of genes associated
with phenotypes for each patient we first matched the original de-
scriptions provided by the investigating clinicians to individual HPO
terms [131]. Using a mapping from HPO terms to phenotypes we
then extracted the corresponding genes (http://purl.obolibrary.
org/obo/hp/hpoa/genes_to_phenotype.txt). The DEGs are the re-
sults of our pipeline to process the patient-specific RNA-seq data. We
provide a detailed description of the process in Chapter 4.

Non-Coding Annotations

We collected cell-type specific active enhancers determined using cap
analysis gene expression (CAGE) from FANTOM5 [63]. Given the lack
of limb-specific enhancers in this specific resource, we used the entire
collection during annotation. We annotate all FANTOM5 enhancers
with aggregated base-wise conservation scores calculated across 100

species [91]. Similarly, we downloaded the entire set of human candi-
date regulatory elements (cRE) from ENCODE [132]. While many regu-
latory elements contained in this set are likely not relevant to limb
development they could indicate regions of potential interest that
would warrant further investigation. We also collected a set of exper-
imentally validated enhancers from VISTA [64]. To reflect the limb-
development associated regulatory landscape we collected a set of
cREs identified in mouse embryonic limb tissue (14.5 days - ENCODE
ID: ENCFF890IPV), lifted the coordinates over to GRCh38 (188, 109 el-
ements remaining) and split them into Promoter-Like-Signatures (PLS),
distal Enhancer-Like-Signatures (dELS) and proximal Enhancer-Like-Signatures
(pELS). Given the lack of publicly available limb-specific CTCF sites
in humans, we collected ENCODE ChIP-seq derived CTCF narrow
peaks from fibroblast samples (ENCFF882YMD). To associate enhancers
to potential gene targets in a limb-development-specific context we
included the data from a recent PLAC-seq experiment performed us-
ing embryonic mouse tissues [103] (see Methods for details). Finally,
we included TAD boundaries derived from our Hi-C analysis both
as proxies for windows of increased regulatory interactions and as
individual annotations (see Methods for details).

http://purl.obolibrary.org/obo/hp/hpoa/genes_to_phenotype.txt
http://purl.obolibrary.org/obo/hp/hpoa/genes_to_phenotype.txt
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6.2.2 Adaption of TADA for the Limb Malformation Cohort

With the collected Limb Regulome we then set out to update and ex-
tend TADA’s annotation framework. Briefly, we first adjusted the ini-
tial variant processing to include all types of SVs and implemented
customs scripts that allow realigning the inserted sequence of Inser-
tion calls revealing the original location in the reference (see Methods
for details). This allowed us to include not only the position of Inser-
tions in the annotation process but also the regulatory environment
of the inserted sequence. We then adjusted the original TADA fea-
tures for a limb malformation-specific analysis as described in the
following paragraph.

The Limb Regulome provides several new opportunities to extend the
original TADA features. For each set of novel (and original) annota-
tions, we include two SV features: The distance to the closest element
inside the same TAD environment and the bp-overlap aggregated
over all overlapping elements. In addition, we compute the distance
to the two sets of TAD boundaries called by TopDom for the cohort
Hi-C map with window-sizes 5 and 10. We also return the total num-
ber of genes and enhancers overlapping with an SV and several met-
rics quantifying the regulatory importance of the impacted elements:
Minimum Loss-of-Function intolerance and maximum predicted hap-
loinsufficiency either of all overlapping genes or the closest gene if
no overlap was found. Similarly, we report the maximum conserva-
tion of all overlapping or the closest FANTOM5 enhancer. To account
for SVs overlapping multiple haploinsufficient genes we compute the
compound Haploinsufficiency Log-Odds Score as introduced by Huang
et al. [90]. Finally, we compute the exon overlap as the proportion
of overlapping exonic base pairs vs. total exonic base pairs of each
overlapping gene and report the highest proportion. The features and
their definition are summarized in table 2.

6.2.3 Annotation of the Rare SVs

The call sets returned by the first part of our pipeline include up to
3, 143 variants per patient and still likely include a high number of
false-positives indicated by the rate of variants uniquely detected by a
single caller. Avoiding the application of a hard threshold on caller
support, we first want to determine which SVs are functionally rele-
vant with respect to the patients’ phenotypes and the more general
context of limb development. Given the Limb Regulome and updated
TADA framework, we are now able to annotate SVs with features
corresponding to the affected limb-development-specific regulatory
environment. For the annotation process, we first generate config-
uration files for each patient which include the locations of the set
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Feature Description Distance (bp) Overlap (bp)

Human PLS Promoter-like signatures in human tissues and cell-
types

Yes Yes

Human dELS Distal enhancer-like signatures in human tissues and
cell-types

Yes Yes

Human pELS Proximal enhancer-like signatures in human tissues
and cell-types

Yes Yes

Fibroblast
CTCF

CTCF peaks in all human tissues and cell-types Yes Yes

Mouse Limb
PLS

Promoter-like signatures in mice embryonic limb Yes Yes

Mouse Limb
dELS

Distal enhancer-like signatures in mice embryonic limb Yes Yes

Mouse Limb
pELS

Proximal enhancer-like signatures in mice embryonic
limb

Yes Yes

Fibroblast
CTCF

CTCF peaks in fibroblast Yes Yes

Stop Codon ENSEMBL stop codon annotations Yes Yes

Start Codon ENSEMBL start codon annotations Yes Yes

5_UTR ENSEMBL 5’-UTRs codon annotations Yes Yes

3_UTR ENSEMBL 3’-UTRs codon annotations Yes Yes

Gene ENSEMBL gene annotations Yes Yes

FANTOM5 CAGE-based enhancers in human tissues Yes Yes

VISTA Experimentally validated enhancers in human tissues Yes Yes

DDG2P Genes associated with developmental-disease Yes Yes

Limb Gene Genes associated with limb-development Yes Yes

scRNA Gene Genes correlated with limb-development based on
scRNA-seq analysis

Yes Yes

Phenotype
Gene

Gene associates with the patient’s phenotype Yes Yes

DEG Differentially expressed gene derived from RNA-seq
analysis

Yes Yes

TAD Bound-
ary (10w)

TopDom TAD boundaries called for the cohort with
windows-size 10

Yes No

TAD Bound-
ary (5w)

TopDom TAD boundaries called for the cohort with
windows-size 5

Yes No

scRNA Gene
Correlation

Correlation with limb-development of the closest
scRNA gene

n/a n/a

Min. Gene
LOEUF

Min. LoF intolerance score of overlapping genes or the
closest gene.

n/a n/a

Number of af-
fected Genes

The total number of affected genes n/a n/a

Number
of affected
Enhancers

The total number of affected enhancers n/a n/a

Max. Gene
HI

Min. haploinsufficiency score of overlapping genes or
the closest gene.

n/a n/a

HI Log Odds Compound score describing the combined haploinsuf-
ficiency for all overlapping genes

n/a n/a

Max. Exon
Overlap

Max. Proportion of exons hit among overlapping genes n/a n/a

Max. En-
hancer con-
servation

Max. conservation of overlapping or closest FANTOM5

enhancer
n/a n/a

Table 2: Updated TADA Features for a Limb-development specific Anno-
tation. This table shows the identifier we use for each feature, a
more detailed description and if annotation elements are used for
overlap/distance computations.
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Figure 6.5: Limb-Development Specific Annotation using TADA. The illus-
tration depicts the workflow of the extended TADA annotation
framework. We updated the process to include all types of SVs
and collected a comprehensive set of regulatory annotations in-
cluding disease-specific sets of genes and enhancers. This ver-
sion of TADA returns annotated SVs without further automated
prioritization.

of previously presented regulatory elements. We then perform the
annotation with respect to TAD boundaries determined by TopDom
with window-size 10 derived from the cohort Hi-C map. An overview
of this process is shown in Figure 6.5. The annotation process pro-
vides detailed information of overlap and distance to limb develop-
ment and phenotype-associated regulatory elements. To determine
which SVs are functionally relevant, we implemented a filtering ap-
proach centered around four sets of genes: 1) Phenotype associated
genes derived from HPO terms (Phenotype-Genes), 2) Genes associated
with limb development identified in previous studies (Limb-Genes), 3)
Genes correlated with limb-development based on a scRNA analysis
((scRAN-Genes)) and 4) Top 50 DEGs determined using the patient-
specific RNA-seq analysis (DEGs). The cohort-wide sets contain 658

(Limb-Genes) and 1, 401 (scRNA-Genes). Since the symptoms and
therefore the HPO terms are unique to almost all patients the num-
ber of genes contained in the Phenotype-Genes set varies considerably
across the cohort (between 21 and 1, 325 Genes). An exception is pa-
tient LM21 for which no phenotype descriptions are available.

For each group of genes, we identify TADs (TopDom window-size 10)
containing at least one gene of interest. We then combine the gene-
set-specific TADs (Limb-TADs)and discard any duplicates. To reduce
the initial set of rare variants to those of potential function relevance
we filter for SVs overlapping with any of Limb-TADs. For each of the
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(a) SV Counts Stratified by Type. (b) Supporting Number of Callers.

Figure 6.6: Call-Set of Functionally Relevant SVs. a) shows the number
of SV stratified by type for each patient (X-Axis). b) shows the
proportion of SVs supported by a single up to all 6 callers.

remaining SVs, we assess the overlap with coding and non-coding an-
notations located in the affected TAD environments. We filter for SVs
overlapping with enhancer annotations (FANTOM5, VISTA, cREs),
Gene-bodies (Phenotype-, Limb-, scRNA- or DEGs), Start/Stop Codons,
UTRs or TAD boundaries to retain only variants for which poten-
tial disease-causing mechanism are interpretable given our Limb Reg-
ulome.

The set of functionally relevant SVs contains a total of 3, 518 vari-
ants with a mean of 188.38 SVs per patient. The number of SVs per
patient stratified by type and the caller support are shown in Fig-
ure 6.6. Of the remaining SVs the majority are Insertions (44.27%)
followed by Deletions (22.51%), Inversions (17.22%), and Transloca-
tions (11.13%). 70.88% of the functionally relevant SVs are uniquely
detected based on PacBio long-read evidence and 85.16% supported
by a single caller. Only a marginal proportion of variants is supported
by both short-read and long-read callers (< 2%). Overall, there are
several notable differences to the singleton call-set of our detection
pipeline: the proportion of Translocations has dropped considerably
(17.38%), there is a higher percentage of PacBio-specific calls (8.82%),
and the proportion of small SVs (⩽ 500bp) has decreased by 4.51%.

6.2.4 Sequence-based Validation of Annotated SVs

Each SV in the remaining set of functionally relevant calls represents
a potential candidate variant. However, the call sets still exceed a man-
ageable number of variants expected by genetics for a detailed man-
ual inspection. Many of the remaining SVs are supported by a single
caller and haven’t undergone any further quality-based filtering after
the initial SV calling. To investigate the number of false-positive SVs
among the set of functionally relevant calls, we conduct a sequence-
based manual inspection (see Methods for details). Briefly, we gen-
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erated visualizations of all Deletions, Duplications, and Inversions
using samplot [106]. For Translocations and Insertions, we employed
an in-house method developed by Nico Alavi at the MPIMG. Exam-
ples of the visualization are shown in Figure 6.7. Using a custom
web application we then inspected the functionally relevant SVs of
all patients discarding any potential false positives. Through manual
inspection, we reduced the set of SVs for the entire cohort to 400 with
an average of 19 variants per patient. With this, we have achieved
a reduction of > 99% in comparison to the initially merged call-set
as shown in Figure 6.8. 45.95% of the remaining SVs or candidates
are Deletions, 37.21% Insertions , 11.45% Translocationss and 0.84%
Inversions. The majority of the SVs were detected by PacBio callers
(64.25%), 19.74% by Illumina callers, and 16.00% by both technolo-
gies. Of the PacBio callers, SVIM supported the highest number of
final candidates (255), followed by Sniffles (228) and PBSV (206). Il-
lumina callers supported on average (177) fewer variants than PacBio
callers ranging from 100 (LUMPY) to 157 SVs (MANTA). While the
proportion of calls supported by single callers has decreased consid-
erably in comparison to the set of functionally relevant calls 35.52%
of the true-positive SVs have still been uniquely detected by one caller.
In stark contrast to the set of functionally relevant SVs, 70.25% of the
candidates are ⩽ 500bp with 4 candidate SVs ⩾ 100kb across the en-
tire cohort indicating a high rate of false-positive calls among medium
and large variants.

6.3 candidate svs in the limb regulome

With the reduced set of candidate SVs, we set out to investigate
which functional annotations are affected. First, we conducted an
exploratory analysis, computing the variant counts across functional
annotations stratified by the four gene sets. We grouped several of the
annotations into a total of 8 categories: TADs (domains containing at
least one gene of the corresponding gene-set), TAD boundaries (both
window-size 10 and 5), Gene (gene bodies of the four gene-sets), Exon
(exons of the gene-sets), cREs (human and mice cREs in limb and
other tissues), CTCF (fibroblast CTCF binding sites), UTR (3’ and 5’-
UTRs) and S Codon (Start- and Stop Codons). The results are shown
in Figure 6.9. It should be noted that the variant counts in the figure
do not reflect the unique number of SVs overlapping with individual
categories since the gene set are not mutually exclusive.

We observe the highest number of candidate SVs in TADs contain-
ing scRNA-Genes. This is to be expected as this set also includes the
highest number of genes. Of these SVs many overlap with function-
ally relevant annotations i.e. scRNA-genes and cREs. Notably, we
also observe a smaller proportion of coding SVs variants located in
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(a) Deletion detected in the LM01 patient. Samplot visualization of a heterozygous
Deletion with clear support in both PacBio and Illumina data.

(b) Insertion detected in the LM04 patient. Visualization using the CIGAR strings
of overlapping PacBio reads showing concordant support of the SV call.

(c) Translocation detected in the LM05 patient. CIGAR-based visualization of the
first and the mate breakend of the Translocation indicating the presence of the
variant.

Figure 6.7: Examples of Visualizations for True-Positive SVs. a shows an
example for the Samplot visualizations to inspect RD, SR, and
PR evidence for Deletions, Duplications and Inversions. b and
c are examples of the custom CIGAR-string-based visualization
for translocations and Insertions. Each row represents a single
overlapping read. The CIGAR abbreviations are color-coded: M
(Match), I (Insertion), D (Deletion), N (Alignment Gap), S (Soft-
clipped), H (Hard-clipped), X (Alignment Difference). Sequences
with a MAPQ < 5 are indicated with hatched and split-read
alignments with standard rectangles.
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Figure 6.8: SV Count through Filtering Steps. The Figure shows the num-
ber of SVs across all patients after the comparison with public
databases, cohort frequency computation, annotation and man-
ual inspection.

exonic regions of scRNA genes. A similar number of SVs is overlap-
ping directly with TAD boundaries and CTCF sites potentially per-
turbing regulatory environments of scRNA genes. For known limb-
development-associated genes and their corresponding TADs we ob-
serve a similar distribution and the second-highest number of over-
lapping SVs. The majority of these variants are non-coding overlap-
ping with cREs, introns of genes and UTRs. However, a small pro-
portion is also directly affecting the coding sequence of limb genes.
For phenotype-associates genes and DEGs we observe a considerably
lower number of overlapping SVs. All of these are affecting non-
coding annotations including cREs, gene bodies, and TAD bound-
aries. We can observe a peak i.e. a notably high variant count for a
single patient in TADs containing phenotype-associated genes, also
reflected in the number of SVs overlapping with gene bodies and
cREs. This is due to the high number of phenotype-associated genes
of the LM12 patient (1, 325) - a consequence of the more general
phenotypic description. In comparison, the average of phenotype-
associated genes is 172. None of the SVs located in TADs containing
a phenotype-associated gene are coding variants.

The exploratory analysis of candidate SVs reveals several variants of
interest overlapping coding and non-coding annotations with poten-
tially disease-causing implications. Through the extensive filtering
process, the remaining variant set can now be analyzed manually
with respect to the affected regulatory environment.

6.3.1 Prioritization of Shared Variation

With the exception of two patients (LM17 and LM18) in our cohort,
all phenotypes descriptions are unique. This suggests the presence of
disease-causing variants that are not shared across individuals. How-
ever, even in patients with similar albeit not identical phenotypes the
same variant can be pathogenic depending on the penetrance and
variable expressivity of the corresponding disorder. A disorder is said
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Figure 6.9: Functionally Relevant SVs stratified by overlapping Annota-
tions. The Figure shows the number of SVs for each patient
overlapping with functional annotations grouped by gene cate-
gory. Boxes are limited by the 25th and 75th percentile. Median
variant counts are indicated in red.

to have a reduced or incomplete penetrance if certain symptoms are
not present in a patient but observed in others with the same genetic
variant. While penetrance mainly refers to the absolute proportion
of patients with a specific set of symptoms, variable expressivity de-
scribes the overall variability in the range of symptoms associated
with a disorder. If a disorder, therefore, has increased variable expres-
sivity/reduced penetrance, patients can share the pathogenic variants
while exhibiting different or no symptoms at all.

To investigate the potential of such shared pathogenic SVs in our
cohort we conducted an additional SV prioritization focused on vari-
ation detected in 2 or 3 individuals. While it is unlikely that any
variant shared between 3 individuals causes divergent phenotypes,
we aimed to increase the sensitivity of the analysis with the more
conservative threshold. For the prioritization of shared SVs, we used
a modified version of our previous prioritization pipeline: First, we
selected all SVs in the rare call set detected in 2 and 3 individuals
(6, 972 SVs). We then converted Insertions back to Duplications, if all
initial calls supported the Duplication SV type assignment. For the re-
maining Insertions, we aligned the inserted sequences to the reference
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genome, as previously described, retrieving their respective genomic
origin, if possible. In the singleton analysis, we collected patient-
specific gene sets derived from HPO terms and the RNA-seq analysis.
To include a similar set of annotations during the prioritization of
shared variation, we generated two gene sets: Phenotype-associated
and differentially expressed genes shared by 2 or more individuals.
Combining the shared gene sets and the remaining annotations of the
Limb Regulome we again employed TADA for the SV annotation. We
then selected any SV located in TADs (TopDom window-size 10) con-
taining a gene of interest as described in the patient-specific analysis.
The set of functionally relevant shared variation included a total of
569 SVs.

To ensure that we only consider true-positive variants in further analy-
sis, we applied adapted versions of the two visualization approaches
allowing us to manually inspect the sequencing evidence of individ-
ual SVs: We generated Samplot figures including Illumina and PacBio
reads from all samples in which the SVs were detected for Deletions,
Duplications, and Inversions. For Translocations and Insertions, we
employed the previously described approach visualizing the aligned
PacBio reads and corresponding CIGAR strings at break-point loci
adapted to include data from multiple samples. We then manually
assessed the support of each functionally relevant variation using the
web application. Given the detection of the SVs in several samples,
we would expect a comparably high proportion of true-positives. How-
ever, the majority of SVs we visually inspected were ambiguous vari-
ant calls likely due to the highly repetitive content of the genomic
regions (an Example is shown in Figure 6.10). In addition, we also
labeled any variant calls as false-positives if insufficient read support
was present in individual samples. The remaining call set included
a total of 45 true-positive shared SVs supported by read evidence in
each associated sample.
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Figure 6.10: Likely False-Positive Shared Deletion. This Figure shows
the Samplot visualization for a large Deletion detected in
two samples (LM01 and LM04). While both short- and long-
technologies support the presence of a smaller Deletion as in-
dicated by SR and RD evidence at this locus, only Illumina in-
cludes PR evidence supporting the large 65.92kb Deletion. Read
pairs located at the same position also indicate a Duplication.
Thus, the Deletion call is likely a false-positive.
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C A N D I D AT E S

The remaining patient-specific and shared variants are validated through
manual inspection and affect regulatory elements in the Limb Regu-
lome. While this indicates a potential involvement in disease-causing
mechanisms, further inspection by geneticists is required to identify
strong candidates and speculate on the biological relevance of the
overlapping regulatory annotations. However, there are specific chal-
lenges to this part of the prioritization for non-coding variants. When
inspecting coding variants, the SV type, gene, and affected exon could
provide sufficient evidence to speculate on the disease-causing mech-
anism. Non-coding SVs require a more extensive visualization as the
interpretation is not solely dependent on the directly affected reg-
ulatory element but on the potentially disrupted interactions with
any associated genes. Any non-coding SV, therefore, needs to be
analyzed with respect to their entire surrounding regulatory environ-
ment. For example, SVs disrupting TAD boundaries can potentially
rewire several gene-enhancer interactions. Any gene located in the
affected TAD environment and the gene-enhancer interactions, there-
fore, have to be considered in the manual inspection. This raises the
need for methods to visualize SVs and their entire regulatory envi-
ronment, including annotations relevant to the patient’s disease.

There are several methods currently available that address this need
with varying degrees of flexibility: the integrative genomics viewer
(IGV) is a dynamic framework allowing the combination of a wide
variety of bioinformatic file formats such as BAM-, BED- and bigWig
files [133]. While IGV is a powerful method suitable to visualize any
type of genomic data, its application is mainly limited to an interac-
tive interface which would require separate instances for each patient-
specific set of regulatory annotations and SVs. In addition, IGV is not
able to visualize Hi-C data as a heatmap which is a frequently used
representation to investigate TAD structures and potential effects on
interaction frequencies at variant loci.

An alternative is the UCSC Genome Browser, a web-based application
including a comprehensive collection of genomic annotations, a va-
riety of metrics quantifying mutational constraint or conservation,
and catalogs of pathogenic and common variation [134]. While it
is possible to create user-specific track-hubs for the UCSC Browser, a
subgroup of our Limb Regulome is patient-specific and the visualiza-
tion should therefore be generated using an application running on
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a local server. This is possible with an adapted version of the UCSC
browser i.e. the Genome Browser in a Box. However, similar to IGV this
would require several instances of an interactive interface to generate
visualization for each patient which is challenging to include in our
dynamic snakemake framework.

To allow for a dynamic and local visualization process of the patients’
SVs in their regulatory environment, we, therefore, implemented a
custom script that relies on a hub of patient-specific annotations and
returns individual images for each SV without an interactive interface.
In this chapter, we briefly describe this approach and present the gen-
erated visualizations. The method is part of our overall pipeline and
can potentially be modified to any disease context if sufficient func-
tionally relevant annotations are available. To illustrate the potential
manual investigation using our visualizations, we present examples
of candidate SVs identified in the limb malformation cohort and the
affected regulatory environments. Similarly, we apply the visualiza-
tion method to the filtered shared variation and present the resulting
candidates.

7.0.1 Targeted Visualization Approach

Our approach is based on coolbox, a python package that allows vi-
sualizing genomic data as tracks at genomic loci (see Methods for
details). We use in our visualization the Limb Regulome i.e. cod-
ing non-coding annotations described in Table 2 including the gene
sets associated with the patients’ phenotypes or limb development.
Based on the annotations we construct a browser with the following
features/tracks for each variant loci:

• Hi-C heatmaps derived from the high-resolution cohort and the
patient-specific data

• TAD boundaries (TopDom) called with window-sizes 5 and 10

• Ensemble gene annotations and transcripts color-coded with re-
spect to the phenotype and limb-associated genes

• Tracks of overlapping cREs, Enhancers, UTRs, Stop- and Start-
Codons or CTCF sites

• True-positive and functionally relevant SV calls in the patient

Examples of these visualizations with potentially disease-causing vari-
ations are shown in the next section.
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7.0.2 Final Candidates

The primary function of the visualization is to assist geneticists dur-
ing the manual inspection of candidate variants. In this section, we
therefore only present candidate variants and affected regulatory re-
gions without further speculation on the disease-causing mechanisms.
We also passed these candidates on to geneticists familiar with limb
malformations. To focus on potentially interpretable candidates in
this section, we limit the initial set of candidate variants to a sub-
group of examples excluding SVs affecting intronic regions of scRNA,
phenotype or Limb genes not overlapping additional regulatory ele-
ments.

LM01

The patient was presented with a mirror image polydactyly. In our
analysis, we detected a total of 39 true-positive SVs overlapping with
relevant annotations in the Limb regulome. Among these candidates,
we identified a 19.56kb Deletion hitting a TAD boundary (window
size 5 and 10), multiple FANTOM5 enhancers, and dELS derived
from limb tissue in Mice (Figure 7.1). The affected regulatory region
includes the PKDCC gene which enables on-membrane spanning pro-
tein tyrosine kinase activity and is associated with several limb abnor-
malities (HP:0100491, HP:0002813, HP:0002814, HP:0002817). While
no non-coding pathogenic SVs are known, multiple pathogenic non-
sense and splice-donor SNPs have been previously observed in pa-
tients with rhizomelic limb shortening and dysmorphic features. The
variant was detected by Illumina SV callers but was not discussed
in any previous analysis of this patient. Notably, the Deletion is not
part of any PacBio call-set even though there is clear visual support
as shown in Figure 6.7a. The variant also has not been filtered out
during the post-processing steps of our pipeline given that there is
no similar reported SV in the initial call sets of any PacBio caller.

LM02

In this patient with a triphalangeal thumb on the right and thumb
hypoplasia on both hands, we identified 15 candidate variants. The
results are based on PacBio sequencing alone as no short-read WGS
data was available for this patient. We detected a small 51bp Deletion
affecting a UTR of the PDX1 gene. While PDX1 is not associated with
the patient’s phenotype or limb development it is located in the same
TAD environment as limb-gene CDX2. The affected UTR is linked
to the CDX2 via a significant interaction derived from the PLAC-seq
data.
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Figure 7.1: Candidate Deletion detected in LM01. The variant overlaps a
TAD boundary and several regulatory elements in close proxim-
ity to a limb-development-associated gene.

LM03

Among the 43 true-positive and functionally relevant SVs in this syn-
dactyly patient, we identified several interesting candidates: a 612bp
Deletion detected in the intronic region of a DEG which is in the
proximity of the phenotype associated gene ZNF81. Interestingly, the
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Hi-C data at this locus indicates a much larger homozygous Deletion,
which was not accurately detected by any of the callers likely due
to low coverage at the breakpoint positions. The affected regulatory
environment is shown in Figure 7.2. The smaller 612bp Deletion was
initially detected by PBSV and Sniffles i.e. it was unique to the PacBio
call set. In addition, we identified a coding SV (51bp Deletion) located
in the exonic region of a scRNA gene UNC5B and a 86bp Insertion
overlapping with a significant PLAC-interaction associated with the
phenotype gene IFT81.

LM04

In this patient with oligodactyly of both hands and syndactyly of toes
4 and 5 on both feet we detected 22 candidate SVs. An example is a
51bp Insertion only detected by Sniffles which affects a cREs linked
through the PLAC-seq data to the limb-development associated gene
C2CD3. The gene is involved in centriolar distal appendage assembly.
Coding SNPs have been identified in patients with orofaciodigital
Syndrome XIV.

LM05

In the LM05 patient, we detected 31 true-positive SVs overlapping
with functionally relevant annotations. An example is a homozy-
gous Translocation between chr8 and chr12 identified by all three
PacBio callers. The Translocation is located in the coding region of
scRNA gene UHRF2 which is involved in cell cycle regulation. An-
other prominent SV is an 11kb Duplication detected by all callers
with the exception of Lumpy. The Duplication directly overlaps sev-
eral cREs, UTRs a CTCF site, and a Stop Codon. The affected TAD
also includes the limb development associated gene DUSP3.

LM06

The 17-1946 patient presented a wide range of limb malformations in-
cluding cutaneous finger syndactyly, aplasia/hypoplasia of the mid-
dle phalanges of the hand, and tibial deviation of the 2nd toe. Among
the 23 candidate SVs, we detected 3 variants that affect multiple rele-
vant regulatory elements: a 55kb Deletion initially called by Illumina
SV callers but with visual support in PacBio data. The heterozygous
Deletion overlaps several regulatory elements including a CTCF site,
FANTOM5 enhancer, and multiple cREs. It also is in close proximity
to the limb development associated gene SNX10. Pathogenic small
variants in the SNX10 gene which is involved in intracellular traffick-
ing have so far only been linked to osteoporosis. We also identified
a PacBio-specific 333bp Insertion located in the same TAD environ-
ment as the limb development gene PHOSPHO1 and DEG ABI3 over-
lapping with a UTR and cREs. Finally, Sniffles detected a 51bp Inser-
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Figure 7.2: Candidate Deletion detected in LM03. While the actually re-
ported variant is located in the intronic region of a DEG (ZNF630)
it does not overlap with any other annotations. The Hi-C data,
however, indicates a larger homozygous deletion at the same lo-
cus.

tion affecting multiple regulatory elements in the same TAD as the
phenotype-associated gene (SCN1B) and the limb gene LGI4.

LM07

In this patient with radius and thumb aplasia in both hands, we de-
tected 16 candidate SVs. Among them is an 81bp Deletion detected by
5 callers and therefore supported by both technologies. The Deletion
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overlaps with a cRE and a 3’ UTR of the limb gene WNK1. However,
so far no pathogenic SNPs or SVs have been identified in limb malfor-
mation patients that affect WNK1 which is suspected to be controlling
the transport of sodium and chloride ions. In addition, we 4 callers
detected a 15.85kb Duplication upstream of the scRNA gene ANK2 af-
fecting multiple FANTOM5 enhancers including two with increased
conservation scores of 0.493 and 0.450 and cREs.

LM08

We detected a comparatively low number of 12 candidate SVs in
the 18-5002 patient which was presented with a preaxial hand poly-
dactyly. One of the candidate SVs is a 176bp Insertion detected by
Sniffles that is located in the intronic region of the limb development
gene SULF2 and also directly affects a cRE. SULF2 encodes for an en-
dosulfatase acting on heparan sulfate. However, no pathogenic SNPs
or SVs are known that directly linking it to limb malformations.

LM09

The patient was presented with a radius and thumb aplasia. We de-
tected a total of 14 candidate SVs. Among them, a 2.1kb Deletion was
detected by both PacBio and Illumina callers. The Deletion is hitting
the intronic region of the limb gene RARB which encodes for a mem-
ber of the thyroid-steroid hormone receptor superfamily of nuclear
transcriptional regulators. It also directly overlaps with a cRE and
interestingly with a ribosomal pseudogene (RNA5SP126) which we
can be seen in the transcript track of our visualization (Figure A.8).

LM10

In this patient with syndactyly in toes 1− 3 in the right foot and 2− 3

in the left foot, we identified 23 candidate variants. Delly and Manta
detected a 328bp Deletion that is visually supported in the PacBio
data as well. The Deletion overlaps with a TAD boundary (window
size 5 and 10) of the TAD environment containing ARCN1 and DDX6,
both phenotype associated-genes.

LM11

The LM11 is one of the two patients that have been previously solved
in the WGS analysis. The patient was presented with cutaneous
syndactyly of the fingers III-IV and the toes II-III. During the anal-
ysis of SNPs and InDels a paternally inherited frameshift variant in
ALDH1A2 was identified which is a direct target of HOXD13 and in-
volved in vertebrate digit development. Regardless, we included the
patient in our analysis and also identified 16 SVs that affect function-
ally relevant annotations and passed our manual inspection. The SVs
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include a 23.09kb heterozygous Duplication detected by PacBio and Il-
lumina Callers overlapping several FANTOM5 enhancers, CTCF sites,
and cREs. The Duplication is located in the same window-size 5

TAD annotation derived from the cohort Hi-C map as the phenotype-
associated gene BCOR. However, in this visualization, the Hi-C heatmap
also indicates several substructures between the Duplication and the
phenotype gene (Figure 7.3).

LM12

The phenotypic description of this patient included a cleft Lip/Palate,
skeletal muscle atrophy, and lissencephaly. The more general set of
corresponding HPO terms resulted in the highest number of phenotype-
associated genes across all patients. Thus, there is also a compara-
bly higher number of SVs overlapping TADs containing a phenotype-
associated gene (Figure 6.9). Among the 35 candidate SVs, we iden-
tified a potentially disease-causing 121 bp Deletion and a 57bp Inser-
tion. The Deletion is located in the intronic region of the phenotype-
associated COL5A1 gene which encodes an alpha chain for the low
abundance fibrillar collagens. In addition, the Deletion directly over-
laps with a cRE. The SV call is uniquely supported by PacBio and
therefore has not been part of any previous analysis. This is also
the case for the 57bp Insertion which overlaps a cRE located in the
intronic region of the phenotype-associated gene TGFA encoding a
growth factor involved in cell proliferation, differentiation, and devel-
opment.

LM13

In this patient with radius aplasia and thumb hypoplasia, we detected
24 candidate SVs. Among them is a 1kb Deletion located in a TAD
environment containing the limb development-associated gene IHH
which encodes a preproprotein that plays a role in bone growth and
differentiation. Variations in IHH have been previously determined to
be the cause of brachydactyly type A1. The Deletion overlaps with a
TAD boundary identified in the patient Hi-C data and a cRE. Another
candidate variant, a 2kb Insertion is hitting an exon of the limb-gene
IFT88.

LM14

This patient was presented with forearm reduction defects. Through
our singleton analysis, we detected 16 candidate SVs including two
Deletions located in the TAD environment of scRNA-gene CDC37L10(Figure 7.4).
The larger 180kb Deletion overlaps with the entire gene also affecting
several CTCF sites, UTRs, FANTOM5 enhancers, and cREs. Notably,
the variant is supported by 5 callers and called as homozygous Dele-
tion while the patient’s Hi-C does not reflect this.
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Figure 7.3: Candidate Deletion detected in LM11. The 20.09kb Duplication
is supported by 5 callers and overlaps several relevant regulatory
elements in the same TAD annotation as a phenotype-associated
gene.

LM15

This patient was presented with several limb malformations includ-
ing hypoplasia of the proximal phalanx of the 2nd and 3rd toe and
radial deviation of the 4th and 5th finger. We identified a total of 28
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candidate SVs including a 10kb Deletion located in proximity to the
phenotype-associated gene PTPN11. The Deletion overlaps with sev-
eral cREs and a CTCF site derived from fibroblast. While the initial
call was unique to the Illumina callers there is clear evidence in the
long-read sequencing data for this variant

LM16

For the LM16 patient with partial syndactyly in fingers 3 and 4 of
both hands, we detected 12 potentially disease-causing variants. Among
them is a 3.75kb heterozygous Deletion supported by both short- and
long-read callers. The Deletion directly overlaps with the limb-gene
SGLP1 involved in the apoptotic signaling pathway. While it does
overlap with a cRE there is no direct overlap with any coding se-
quence.

LM17 & LM18

Both LM17 and LM18 were initially described as patients of a subco-
hort with a shared limb malformation i.e. absent radius. We detected
25 (LM17) and 15 (LM18) candidate variants in our singleton anal-
ysis. However, we did not detect any shared functionally relevant
variation that passed the manual inspection. Among the candidate
variants from our singleton analysis for LM17 is a 50bp Insertion hit-
ting a TAD boundary and cRE of the TAD environment containing
limb-gene RPL26. The same TAD also contains the differentially ex-
pressed RNF222. For LM18 we identified among other candidates a
Translocation affecting a cRE derived from embryonic limb tissue in
mice in the same TAD environment as limb-gene PKDCC. We also
detected two Deletions hitting an exon of scRNA-gene PHF20 and
limb-gene CSF1, respectively.

LM19

In this brachydactyly patient we detected 21 candidate SVs includ-
ing a 52 bp Insertion affecting a cRE upstream of the phenotype-
associated gene GJA. The gene is a member of the connexin family
and is involved during embryonic development. Pathogenic coding
SNPs have mainly been detected in patients with oculodentodigital
dysplasia. The reported Insertion is uniquely identified by SVIM.
However, it has passed the manual inspection suggesting it is a true-
positive variant call.

LM20

For the oligodactyly patient LM20, we identified 22 true-positive and
functionally relevant SVs. Among them is a Translocation supported
by all PacBio callers located in a TAD environment containing the
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limb-gene PLK4. The Translocation affects a cRE element - specifically,
a PLS derived from embryonic mice limb tissue. Interestingly, the PLS
is linked through a significant PLAC-seq interaction to the limb-gene
INTU which is located in the upstream TAD environment.

LM21

For this patient no phenotypic information was available. We, there-
fore, conducted the prioritization solely based on the known limb
development associated with and scRNA gene as well as the DEGs
identified for this patient. In total, we detected 28 true-positive and
functionally relevant SVs. Interestingly, among them, there are three
large heterozygous Deletions spanning 488kb and 250kb. Both passed
our manual inspection and are supported by short-read and long-
reads (Figure 7.5).

7.0.3 Shared Candidates

We initially identified 45 true-positive shared candidate SVs. Of these
variants, 15 SVs are located in TADs containing a limb development-
associated gene affecting cREs and TAD boundaries. A similar pro-
portion (16 SVs) are detected in TADs with scRNA genes again in-
cluding a single coding variant. Several SVs are also hitting TADs
containing shared phenotype-associated genes. However, these vari-
ants would only be relevant for further inspection if the genes are
also associated with the phenotypes of the patients in which the vari-
ants were detected. This is not the case for any of the candidate SVs.
We also do not observe any variants located in TADs containing a
shared DEG. Among the detected shared variation in functionally rel-
evant regulatory environments is an Insertion found in patients LM4

and LM6. The 2.4kb Insertion hits the 3’-UTR of the limb develop-
ment gene ENPP1. We also detect a larger 6kb Deletion affecting
multiple cREs in the TAD environment of scRNA gene PRTG. Most
of the identified candidate SVs (41 out of45) are smaller (< 500bp)
than these examples.
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Figure 7.4: Candidate Deletions detected in LM14. The larger Deletion di-
rectly affects the scRNA and several non-coding annotations de-
rived from humans and embryonic limb tissue from mice.
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(a)

(b)

Figure 7.5: Samplots of Large Deletions in the LM21 Patient. a) shows the
visualization of the 488kb Deletion detected by initially 4 callers
including SVIM and all three Illumina methods. b) shows the
250kb Deletion called by Illumina callers but supported in the
visualization by PacBio reads.
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D I S C U S S I O N

The investigation of genetic alterations is a fundamental part of clin-
ical diagnostics. Standard experimental procedures used to iden-
tify pathogenic variation and reach a molecular diagnosis commonly
include microarrays, gene panel sequencing, and WES. These ap-
proaches and the corresponding downstream analysis are limited in
two significant aspects: 1) they predominantly focus on small ge-
netic variation i.e. SNVs/InDels due to the underlying experimen-
tal technologies. Short-read sequencing specifically has been shown
to under-perform with respect to the detection of SVs since they are
abundant in highly repetitive regions. The majority of SVs are there-
fore not routinely investigated even though they have been shown
to be a significant contributor to human disease. 2) They mainly as-
sess the pathogenic potential of the detected variation with respect
to coding sequence which only accounts for approximately 2% of the
genome. In recent years a growing number of non-coding pathogenic
variants including SVs have been identified indicating the need to ex-
pand the standard clinical procedures to the entire genome. However,
the quantification of the functional impact in non-coding regions re-
quires extensive knowledge of the involved regulatory elements. Sev-
eral efforts have been made to curate large-scale catalogs of predicted
and validated regulatory elements [59, 63, 64]. In addition, Hi-C and
comparable technologies have allowed exploring tissue- and cell-type-
specific chromatin conformations which can be disrupted by SVs po-
tentially leading to disease [57, 61, 62]. These resources offer the
potential to quantify the functional impact of non-coding variation
with respect to a specific disease context and affected tissue i.e. a
functional annotation-based prioritization.

In this thesis, we discuss the detection and prioritization of SVs on
the example of a patient cohort with limb malformations. The pa-
tients have been previously analyzed with standard genetic testing
and short-read sequencing but remain without a molecular diagno-
sis. Thus, we set out to further identify potentially pathogenic SVs
in an extensive analysis. We performed PacBio long-read sequencing
for all patients and additionally conducted RNA-seq and Hi-C ex-
periments to investigate the patients’ transcriptomes and chromatin
conformations. To process the data we implemented a novel pipeline
that combines short- and long-read sequencing detecting SVs using a
total of six callers, and prioritizes them based on a disease-specific set
of functional annotations. With our pipeline, we were able to reduce
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the overall set of detected SVs by ⩾ 99% identifying sets of candi-
dates for each patient that affect regulatory environments relevant to
the patients’ phenotypes.

Further, we conducted an elaborate evaluation of TADA - a machine
learning approach for the prioritization of disease-causing CNVs -
illustrating the potential of an automated prioritization method ag-
nostic to the disease context. The evaluation showed superior per-
formance of TADA in comparison to multiple current prioritization
methods based on ROC-AUC and F1-scores as well as a ranking anal-
ysis with respect to the majority of test sets. The underlying training
data of TADA includes, however, almost exclusively pathogenic cod-
ing variants. Any application is therefore currently limited to vari-
ants affecting genes. With an increasing number of validated disease-
causing non-coding variants, we aim to expand the classifiers to reli-
ably quantify the functional impact in all genomic regions.

Through a rigorous comparison of SV callers and technologies, we
investigated the capabilities and limitations of long- and short-read
SV callers. As expected short-read callers are able to detect fewer vari-
ants than their long-read counterparts. They also detect a higher rate
of likely false-positives as indicated by the minor proportion of shared
variation between callers and large ⩾ 100kb variants that could not
be confirmed in a manual inspection. The majority of false-positive
SVs ⩾ 100kb were called by Delly and Lumpy. The Manta call set,
however, is more similar to PacBio callers and includes the highest
number of candidate SVs among all short-read callers. This suggests
a more robust performance of this specific approach likely due to the
assembly of breakpoint supporting reads that increases the number
of identified Insertions and reduces the number of unresolved Break-
ends. The long-read SV callers shared a significantly higher propor-
tion of variants with similar SV type and size distributions. This
is likely due to the shared focus on SR evidence while short-read
callers include several types of read evidence. However, the number
of manually inspected true-positive functionally relevant SVs still dif-
fers with SVIM outperforming the other two callers. The choice of SV
caller, therefore, influences the call set and the determined candidate
SVs significantly, especially with respect to short-read SV callers. En-
sembl approaches involving multiple callers account for this variabil-
ity increasing the sensitivity during SV detection but also potentially
decreasing precision. Therefore they should be used in combination
with rigorous quality assessment and filtering of false-positives.

Following the comparison, we assessed the allele frequency of the
detected SVs with respect to public catalogs of common variation.
While discarding clusters containing common SVs allowed us to re-
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duce the number of Deletions and Insertions significantly, all Translo-
cation and a high proportion of Inversion remained. Only through
a second filtering step employing the allele count quantified in our
own cohort, we were able to identify shared instances of Transloca-
tions. Such an analysis is however only possible with a sufficient
number of samples. While Translocations are less frequent than Dele-
tions or Insertions in the population, they still represent potentially
disease-causing variation that should be included in clinical diagnos-
tic frameworks. Especially in analyses based on short-read experi-
ments i.e. the majority of current genetic testing, callers detect an
overwhelming amount of unresolved Breakends. Without public re-
sources to determine common and likely benign Breakends/Translo-
cations and reduce the set of candidate SVs, the prioritization of SVs
will likely remain limited to other SV types or needs to rely on hard
caller/technology support thresholds. In our analysis we avoided
these thresholds, suspecting that they also exclude true-positives and
potentially disease-causing variation. This was confirmed in our man-
ual inspection of functionally relevant SV. The majority of the remain-
ing true-positive calls were supported by a single caller and would
have been discarded purely based on caller support. In addition, for
many SVs that were initially detected by callers of a single technol-
ogy we were able to determine supporting reads of both sequencing
technologies in the manual analysis. While this illustrates the limi-
tations of hard thresholds on caller/technology support, the manual
inspection is not feasible for larger cohorts. In addition, most patients
are not currently investigated using both short- and long-read data.
Any manual analysis would therefore rely on short-read data alone
which likely limits its capabilities to determine true-positive SV - es-
pecially for Insertions and Translocations. This highlights the need
for automated methods that potentially learn from multiple sequenc-
ing technologies to determine false-positive SV calls in short-read data.

We collected multiple sets of relevant coding and non-coding regula-
tory elements associated with limb development for a semi-automated
functional annotation-based prioritization approach. Among them,
we used the TAD boundaries derived from the patient-specific Hi-C
experiments and DEGs from a one vs. all comparison of the RNA-seq
data. We modified TADA to include all types of SVs and developed
a new set of features corresponding to the disease context of our co-
hort. The annotation and subsequent filtering allowed us to reduce
the SVs to those affecting regulatory environments relevant to limb
development including several candidate SVs for each patient. This
part of the pipeline can potentially be adapted to other disease con-
texts if TAD boundaries and sets of associated regulatory elements
are available. Finally, we included visualization approaches in our
pipeline that allow for the inspection of individual candidate vari-
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ants. For each patient, we report multiple examples of potentially
disease-causing candidates.

The successful identification of disease-causing SVs in the limb mal-
formation cohort suggests the potential of our pipeline and specifi-
cally long-read sequencing for assisting in clinical diagnostics. There
are however several limitations that should be addressed: The cur-
rent high cost of long-read sequencing limits the application of the
pipeline to research projects with the necessary resources. Any appli-
cation in a clinical setting will require modifications toward a short-
read-specific analysis. While we are able to determine sets of candi-
date SVs that are both confirmed in a manual inspection and affect-
ing relevant regulatory elements, we did not perform any additional
validation of the variants. Any presented candidates should there-
fore be tested in further analysis. This is particularly evident by the
fact that we identify several candidate variants for the patients LM11

and LM15. For both patients, disease-causing small variants were al-
ready identified in the WGS analysis conducted by Elsner et al. [83].
The candidate SVs should therefore be considered with care and cer-
tainly require further investigation by geneticists familiar with the
patient’s disease. In our analysis, we have not compared the perfor-
mance of our pipeline to any other approaches. This is due to the lack
of methods that allow for a disease-context-specific prioritization of
SVs. Still, a comparison could be performed with similar automated
and semi-automated approaches. Even though several instances of
disease-causing complex SVs are known we have not analyzed any
in our analysis since not all callers are able to detect them. Also, our
annotation framework is not currently able to process complex SVs.
This could be considered in potential extensions of our pipeline.

Our in-depth analysis can serve as an example for future studies
focused on the prioritization of SVs specifically those affecting non-
coding sequences in genetic research and clinical diagnostics. With a
continuously growing number of investigations on the tissue-specific
function of non-coding elements, our functional annotation-based pri-
oritization can be extended to a wide range of human diseases and
could prove to be a valuable approach potentially increasing the num-
ber of successful diagnoses.
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AC Allele Count

AER Apical Ectodermal Ridge

AF Allele Frequency

AP Anterior-Posterior

ALU Arthrobacter luteus

AUC Area Under the Curve

BAM Binary Alignment and Map

BND Translocation / Breakend

bp/kb/mb Base-pairs/Kilobase-pairs/ Megabase-pairs

BWA Burrows Wheeler Aligner

CADD Combined Annotation Dependent Depletion

CAGE-Seq Cap Analysis Gene Expression Sequencing

CCR Continous Consensus Read

cDNA Complementary DNA

ChIP-seq Chromatin Immunoprecipitation Sequencing

CLR Continous Long Read

CNV Copy Number Variant

cRE Candidate Regulatory Element

CTCF CCCTC-binding factor

CV Cross Validation

DD Developmental Disease

DDG2P Development Disorder Genotype - Phenotype Database

ddNTP Dideoxynucleotide

DECIPHER Database of Genomic Variation and Phenotype in
Humans using Ensembl Resources

DEG Differentially Expressed Genes
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DEL Deletion

dELS Distal Enhancer like Signature

DUP Duplication

DV Dorsal-Ventral

ECDF Emperical Distribution Function

ELS Enhancer like Signature

ENCODE Encyclopedia of DNA Elements

FANTOM Functional Annotation of the Mouse/Mammalian Genome

FC Fold Change

FGF8/FGF10 Fibroblast Growth Factor

FISH Fluorescence in Situ Hybridization

GIAB Genome In A Bottle

GnomAD Genome Aggregation Database

GRCh37/GRCh38 Genome Reference Consortium Human Build 37/38

GWAS Genome Wide Association Study

hESC Human Embryonic Stem Cells

HI Haploinsufficiency

Hi-C High-throughput Chromosome Conformation Capture

HMW High Molecular Weight

HOX Homeobox

HPO Human Phenotype Ontology

InDel Insertion/Deletion up to 50bp

INS Insertion

INV Inversion

KCNJ2/KCNJ16 Potassium Inwardly Rectifying Channel Subfamily J
Member 2/16

LD Linkage Disequilibrium

LINE Long Interspersed Nuclear Elements

LOUEF Loss-of-Function Observed/Expected Upper Bound Fraction
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LM01-LM21 Limb Malformation Patient 1-21

ML Machine Learning

MPIMG Max Planck Institute for Molecular Genetics

NCBI National Center for Biotechnology Information

NCLS Nested Containment List

NGS Next Generation Sequencing

ONT Oxford Nanopore Technologies

PacBio Pacific Biosciences

PBSV PacBio Structural Variant Calling Tools

PCR Polymerase-Chain-Reaction

PD Proximal-Distal

pELS Proximal Enhancer like Signature

PLS Promotor like Signature

PR Paired Read

QC Quality Control

RD Read Depth

ROC Receiver Operator Curve

scRNA Single Cell RNA

SD Standard Deviation

SHH Sonice Hedgehog Gene

SOX9 SRY-Box Transcription Factor 9

SMRT Single Molecule Real Time

SNV Single Nucleotide Variants

SR Split Read

SV Structural Variant

SVIM Structural Variant Indentification Method

TAD Topologically Associating Domain

TADA TAD Annotation

TBX4/TBX5 T-box transcription factor 4/5
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T2T Telomere to Telomere

UCSC University of California Santa Cruz

UTR Untranslated Region

VCF Variant Call Format

VEP Variant Effect Predictor

WGBS Whole Genome Bisulfite Sequencing

WES Whole Exome Sequencing

WGS Whole Genome Sequencing

WNT7A Wingless-Type MMTV Integration Site Family, Member 7A

ZMW Zero Mode Waveguide

ZPA Zone of Polarized Activity
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S U P P L E M E N TA RY F I G U R E S

Figure A.1: DAG of the snakemake pipeline. The figure shows the rules
involved in the snakemake pipeline starting from the alignment
of short- and long-read sequencing data to the visualization of
functionally relevant SVs with respect to the disease-context for
manual inspection.
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(a) Within Read Alignability. (b) Number of aligned Reads.

(c) The Fraction of Aligned Reads.

Figure A.2: Additional Alignment Statistics of the PacBio data. a shows
the fraction of aligned reads for each patient. b shows the within
read align ability and c the number of aligned reads.



supplementary figures 109

(a) DELLY calls. (b) DELLY calls size distribution.

(c) Lumpy calls. (d) Lumpy calls size distribution.

Figure A.3: Illumina SV Calls and Size Distributions of Unfiltered Delly
and Lumpy calls. The figures on the left side show the number
of SV calls grouped by SV type for DELLY and Lumpy, respec-
tively. X-axes show the sample IDs and the Y-Axis the number
of SVs with the total number indicated on the top of each bar.
The right side figures show the corresponding size distribution.
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(a) All SV Types. (b) Deletions.

(c) Insertion. (d) Inversions.

(e) Breakends / Translocations.

Figure A.4: Technology Support stratified by SV Type. The total number
of SVs for each type is shown on top of the corresponding Venn
diagram. The individual circles are scaled by the number of
variants.
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Figure A.5: Performance Comparison of TADA, SVScore and SVFX on
Size-Stratified ClinVar Deletions. The figure shows the ROC-
Curves of all three tools computed for ClinVar variants stratified
by size intro four categories: Small (< 50kb), Medium (< 100kb),
Medium-Large (< 1mb), Large (>= 1mb).
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Figure A.6: Performance Comparision of TADA with CADD-SV. The fig-
ure shows the ROC-Curves of TADA and CADD-SV for the Test-
split and ClinVar data.
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Figure A.7: Calibration of the Predicted Class Probabilities for the Dele-
tion and Duplication Model. A shows the fraction of positives
vs the mean predicted value. B shows the absolute count of vari-
ants predicted over mean predictive values. The dotted line in
the upper plot indicates perfect calibration.
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Figure A.8: Candidate Deletion detected in LM08. The 2.1kb Deletion is
supported by 3 callers and overlaps cREs as well as a ribosomal
pseudogene.
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S U P P L E M E N TA RY TA B L E S

Database
Refer-
ence

Download Link
Down-
load Date

Num-
ber of
SVs

GnomAD
GRCh38

https://ftp.ncbi.nlm.

nih.gov/pub/dbVar/
data/Homo_
sapiens/by_study/
vcf/nstd166.
GRCh38.variant_call.
vcf.gz

18.05.2021 308858

Audano
et al. 2019 GRCh38

http://ftp.1000genomes.

ebi.ac.uk/vol1/
ftp/data_collections/
hgsv_sv_discovery/
working/
20181025_EEE_SV-Pop_1/
VariantCalls_EEE_SV-Pop_1/

18.05.2021 96585

Ebert et al.
2021 GRCh38

http://ftp.1000genomes

.ebi.ac.uk/vol1/
ftp/data_collections/
HGSVC2/release/
v2.0/integrated_callset/
variants_freeze4

_sv_insdel_alt.vcf.gz

05.10.2021 111331

Ebert et al.
2021 (In-
versions)

GRCh38

http://ftp.1000genomes

.ebi.ac.uk/vol1
/ftp/data_collections/
HGSVC2/release/
v2.0/integrated_callset/
variants_freeze4_sv_inv.tsv.gz

05.10.2021 417

NCBI
Common GRCh38

https://ftp.ncbi.nlm.nih.gov

/pub/dbVar/
data/Homo_sapiens/by_study
/vcf/nstd186.GRCh38.
variant_call.vcf.gz

18.06.2021 82288

Table 3: Data sources of common SVs.
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A B S T R A C T

Current genetic testing of patients performed to identify the molec-
ular cause and potentially drive therapy decisions is predominately
focused on small variation affecting coding regions due to the limi-
tations of the underlying experimental methods. Long-read sequenc-
ing approaches have been shown to overcome these limitations allow-
ing the detection of the entire spectrum of larger genomic alterations
i.e. structural variants (SVs) with an unprecedented resolution poten-
tially revealing previously undetected disease-causing mechanisms.
In this thesis, we discuss the potential of long-read sequencing in
combination with a functional annotation-based framework to iden-
tify non-coding pathogenic SVs in a cohort of limb malformation pa-
tients. In the process, we developed a pipeline that combines short-
and long-read sequencing data, filters the detected SVs based on al-
lele frequency, and applies an extensive functional annotation-based
prioritization resulting in sets of candidate SVs for all involved pa-
tients. We also conduct a comprehensive comparison of callers and
technologies highlighting the superior performance of long-read se-
quencing for SV detection and an evaluation of an automated prior-
itization method indicating superior performance to comparable ap-
proaches. The results of this thesis suggest the potential of perform-
ing an extended analysis of SVs as part of clinical diagnostics work-
flows and the relevance of non-coding functional annotation during
variant prioritization.

117





D
Z U S A M M E N FA S S U N G

Der Standard der Detektion von potentiell krankheitsversachenden
Mutationen in klinischen Untersuchungen ist momentan beschränkt
durch die angewandten Sequenziermethoden (Illumina Sequenzierung)
auf Varianten kleiner als 50bp, die direkt codierende Elemente im
Genom beeinflussen. Größere Mutationen auch Strukturvarianten
(SVs) genannt, werden in den meisten Analysen nicht betrachtet. Die
Sequenziertechnologien der dritten Generation (PacBio, Nanopore)
ermöglichen eine akkurate Bestimmten von SVs und haben das Po-
tential vorher unerforschte pathogene Mutationen zu entdecken. Wir
untersuchen dieses Potential anhand einer Patientenkohorte mit En-
twicklungsstörungen, die sich durch Veränderungen der Extremitäten
äußern. Für diese Analyse haben wir eine Pipeline entwickelt, die es
erlaubt, sowohl Illumina als auch PacBio Daten zu verarbeiten, zu
filtern und mit relevanten nicht codieren regulatorischen Elementen
zu annotieren. Mithilfe der Pipeline identifizieren für jeden betrof-
fenen Patienten mehrere seltene Mutationen, die regulatorische El-
emente betreffen, welche mit dem Krankheitsbild der Patienten as-
soziiert sind. Wir demonstrieren außerdem die Vorteile von PacBio
in einem ausführlichen Vergleich mit Illumina Daten im Bezug auf
die Detektion von SVs und evaluieren eine Methode für die automa-
tisierte Klassifizierung von pathogenen Variationen. Die Ergebnisse
dieser Arbeit zeigen, dass die dezidierte Analyse von nicht codieren-
den SVs zur Entdeckung von vorher nicht erkannten und potentiell
krankheitsverursachenden Mutationen führen kann. Die Analyse und
die damit zusammenhängende Pipeline können dadurch als Grund-
lage für zukünftige genetische Untersuchungen verwendet werden.
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