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Abstract
For any two nef line bundles L+ := OX (�+) and L− := OX (�−) on a toric variety X
represented by lattice polyhedra �+ respectively �−, we present the universal equivariant
extension ofL− byL+ under use of the connected components of the set theoretic difference
�− \ �+.

1 Introduction

1.1 Spotting cohomology

Consider a projective toric variety X = P(�) corresponding to a lattice polytope � ⊆ MR,
MR = M ⊗Z R for a lattice M , over C. A torus invariant Cartier divisor D on X can
be represented by a pair (�+,�−) of lattice polytopes, where both polytopes encode nef
divisors D�+ and D�− on X and D = D�+ − D�− . Denote the associated line bundle by
OX (D) =: OX (�+ − �−).

It is well-known that the cohomology groups Hi
(
X ,OX (D)

)
of the line bundle OX (D)

of a torus invariant Cartier divisor D are M-graded (compare for example [3, Sect. 9.1] or
[7, Section 3.5]):

Hi (X ,OX (D)
) =

⊕

m∈M
Hi (X ,OX (D)

)
m . (1.1)

By [1, Thm. III.6] or [2] we can describe their homogeneous component of degree m ∈ M
by

Hi (X , OX (�+ − �−)
)
m = H̃

i−1(
�− \ (�+ − m), C

)
, (1.2)
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where H̃
i−1

(Z , C) on the right hand side denotes the reduced singular cohomology of a
topological space Z with complex coefficients, (�+ − m) denotes the polytope �+ shifted
by the lattice point −m ∈ M and �− \ (�+ −m) denotes the set-theoretic difference of the
two polytopes. Recall the (−1)-st reduced singular cohomology:

H̃
−1

(Z , C) =
{

C, if Z = ∅,

0, otherwise.
(1.3)

The 0-th reduced cohomology is the quotient H̃
0
(Z , C) = H0(Z , C)

/
H0({·}, C), and thus,

its dimension is the number of connected components of Z minus 1.

1.2 The example F1

We look at the first Hirzebruch surface F1 as a first example. Consider the projections
p1 : F1 → P

1 as a ruled surface and p2 : F1 → P
2 as a blow-up. We use OF1(1, 0) :=

p∗
1 OP1(1) and OF1(0, 1) := p∗

2 OP2(1) as a basis for PicF1 = Z
2. For i, j ≥ 0 the sheaves

OF1(i, j) correspond to lattice polytopes�(i, j) inR
2. For example, forOF1(0, 0),OF1(1, 0),

OF1(0, 1), OF1(0, 2), and the ample OF1(1, 1), the lattice polytopes look as follows:

The red dot indicates the position of the origin in each figure, fixing the exact position
of each polytope within the plane. We see an example of the result quoted in Sect. (1.1).
Consider the polytope�(0,2) shaded in yellow and the polytope�(1,0) +(0, 1), that is,�(1,0)
shifted by (0, 1) ∈ Z

2, depicted in orange:

The two connected components of the set-theoretic difference �(0,2) \ (�(1,0) + (0, 1)
)

provide a one-dimensional 0-th reduced singular cohomology

H̃
0(

�(0,2) \ (�(1,0) + (0, 1))
)
, (1.4)

and so by [1, 2] a one-dimensional piece (in fact, the only one) of

H1 (
F1, OF1(�(1,0) − �(0,2))

) = H1 (
F1, OF1(1,−2)

)
, (1.5)

sitting in degree m = −(0, 1) ∈ Z
2.

In this paper we will take another point of view. The partition of�(0,2) into two connected
components induces the following “exact sequences of polytopes”:

(1.6)
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The two polytopes in the middle cover the polytope �(0,2) − (0, 1) and intersect in the
polytope �(1,0), hence they give an inclusion/exclusion sequence of polytopes. In Sect. 3
we show that this corresponds to an exact sequence of sheaves

0 → OF1(1, 0) → OF1(0, 1) ⊕ OF1(1, 1) → OF1(0, 2) → 0. (1.7)

We obtain an extension of OF1(0, 2) by OF1(1, 0), that is, an element of the group

Ext1(OF1(0, 2),OF1(1, 0)) = H1 (
F1, OF1(1,−2)

)
(1.8)

= H1 (
F1, OF1(�(1,0) − �(0,2)

)
, (1.9)

which we know to be one-dimensional by [1, 2]. We will show that the short exact extension
sequence (1.7) induced by the “exact sequences of polytopes” (1.6) represents this one-
dimensional vector space Ext1

(
OF1(0, 2),OF1(1, 0)

)
and, moreover, that this concept works

in general.

2 Toric geometry

We introduce some basics of toric geometry central to this paper. Readers not familiar with
toric geometry can take a look at one of the numerous introductory texts, for example [3, 4,
7], or [5].

Let M ∼= Z
r be a lattice and N = HomZ(M, Z) ∼= Z

r its dual lattice. There is a
natural pairing 〈·, ·〉 : M × N → Z. We consider the algebraic torus T = SpecC[M]. The
isomorphismM ∼= Z

r induces an isomorphism T ∼= (C∗)r . The latticeM can be recovered as
the character lattice Hom(T , C

∗). We denote the character of M 
 m �→ (a1, . . . , ar ) ∈ Z
r

by χm : T → C
∗, (t1, . . . , tr ) �→ ta11 · · · tarr . The dual lattice N corresponds to the group

of 1-parameter subgroups Hom(C∗, T ). Here N 
 n �→ (b1, . . . , br ) ∈ Z
r corresponds to

λn : C
∗ → T , t �→ (tb1 , . . . , tbr ). A toric variety is an irreducible variety containing an

algebraic torus T ∼= (C∗)r as an open dense subset, such that the action of the torus on itself
by multiplication extends to an algebraic action on the whole variety [3, Def. 3.1.1]. We
sketch how normal toric varieties can be constructed from cones and fans in NR = N ⊗Z R.

By a cone in NRwemean a convex subset σ = cone(S) = {∑k
i=1 λivi | λi ≥ 0} generated

by a finite set S = {v1, . . . , vk} ⊆ N . The dual cone to σ in MR is σ∨ = {u ∈ MR | 〈u, v〉 ≥
0 for all v ∈ σ }.A cone σ is pointed if σ ∩(−σ) = {0}. We write τ � σ whenever τ is a face
of σ . A pointed cone σ ⊆ NR leads to an affine toric varietyTV(σ ) := SpecC[σ∨∩M]. The
inclusion of a face τ � σ induces an open embedding TV(τ ) ↪→ TV(σ ). In particular, the
inclusion of the origin induces an open embedding of the torus T = SpecC[M] ↪→ TV(σ ).

A fan � in NR is a finite collection of pointed cones that is closed under taking faces and
such that the intersection of two cones is a face of each. The affine toric varietiesUσ := TV(σ )

associated to the cones σ in a fan � glue together to a normal separated toric variety TV(�)

with open affine charts the Uσ [3, Thm. 3.1.5].
A polyhedron � in MR is the intersection of finitely many closed half spaces

� = {m ∈ MR | 〈m, vi 〉 ≥ −λi , i = 1, . . . , s} =
s⋂

i=1

H+
i , (2.1)

where H+
i = {m ∈ MR | 〈m, vi 〉 ≥ −λi } for some inward pointing normal vector vi ∈ NR

and some scalar λi ∈ R for i ∈ {1, . . . , s}. A compact polyhedron is called a polytope. A
polyhedron � can be written as the Minkowski sum � = ∇ + δ of a polytope ∇ and its tail
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cone δ = tail(�) = {m ∈ MR | u + m ∈ � for all u ∈ �} ⊆ MR. To a full-dimensional
lattice polyhedron � we associate its inner normal fan

N (�) := {τ | τ � σm, m ∈ vert(�)} with |N (�)| = tail(�)∨, (2.2)

whose maximal cones σm are given by σm := (cone(� − m))∨ = R≥0 · (� − m)∨ ⊆ NR.

This yields a semiprojective toric variety P(�) := TV(N (�)). Wewill assume all polyhedra
to have at least one vertex. The normal fan of such a polyhedron will have convex support of
full dimension.

2.1 Divisors on toric varieties

Let � be a fan in NR with convex support of full dimension r = dim NR, for example, the
normal fan of a full-dimensional lattice polyhedron in MR. Let X := TV(�) be the toric
variety given by �.

Every lattice polyhedron � ⊆ MR with tail cone |�|∨ and whose normal fan N (�) is
refined by � gives rise to a nef Cartier divisor D� on X by the following construction: if �

refines N (�) then the function |�| → R, v �→ min〈�, v〉 is linear on the cones of �. So
for each σ ∈ � there is some mσ ∈ � ∩ M such that min〈�, v〉 = 〈mσ , v〉 for each v ∈ σ .
The lattice pointmσ is a vertex of � and if σ ∈ �(r) is a maximal cone, thenmσ is uniquely
determined. Note that � + σ∨ = mσ + σ∨. Let D� be the Cartier divisor with Cartier data
{mσ }σ∈� , that is, locally onUσ ⊆ X given by D|Uσ = ÷(χ−mσ )|Uσ . Then for the associated
line bundle OX (�) := OX (D�):


(Uσ ,OX (�)) =
⊕

m∈(�+σ∨)∩M

C · χm = χmσ · C[σ∨ ∩ M] = C[mσ + (σ∨ ∩ M)],

(2.3)

so the vertex mσ of � encodes the local sections of the line bundle OX (�) over the affine
open Uσ . The line bundle OX (�) is ample if and only if N (�) = �.

We denote the set of lattice polyhedra with prescribed tail cone δ by Pol+δ and the set
of lattice polyhedra compatible with �, that is, with tail cone |�|∨ and whose normal fan
is refined by �, by Pol+(�). The set Pol+δ forms a semigroup with respect to Minkowski
addition. For a fan � the set Pol+(�) forms a finitely generated subsemigroup. The union
over the Pol+(�) with |�|∨ = δ is the semigroup Pol+δ . These semigroups are cancellative,
which is caused by the presence of the prescribed common tail cone δ: it makes sure that
a polyhedron � ∈ Pol+δ is uniquely determined by the values of min〈�, v〉 with v running
through δ∨. Hence, these semigroups embed into their respective Grothendieck groups of
formal differences:

Pol+δ ↪→ Polδ = {�+ − �− | �+,�− ∈ Pol+δ }, (2.4)

Pol+(�) ↪→ Pol(�) = {�+ − �− | �+,�− ∈ Pol+(�)}. (2.5)

On a quasiprojective toric variety X = TV(�), every Cartier divisor D can be written (non-
uniquely) as a difference D = D+ − D− with both D+ and D− nef Cartier divisors [3,
Thm. 6.3.22]. In particular every Cartier divisor on X can be represented by a pair of lattice
polyhedra (�+,�−) compatible with the fan �, that is, an element of the Grothendieck
group Pol(�).
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3 From complexes of polyhedra to complexes of sheaves

3.1 The Koszul complex of polyhedra

In this section, we construct “exact sequences of polyhedra” that induce exact sequences of
split vector bundles on a toric variety X = TV(�) over C. We start out on the polyhedral
side and let � be a fan in NR with convex support of full dimension. Let Pol+(�) denote the
set of lattice polyhedra in MR compatible with �. Also include the empty set in Pol+(�).

Definition 1 A �-family of polyhedra is a finite set S = {∇i | i ∈ I } of lattice polyhedra
∇i ∈ Pol+(�) satisfying the following conditions:

(1)
⋃

i∈I ∇i =: ∇ ∈ Pol+(�) is a lattice polyhedron compatible with �;
(2) all intersections ∇I ′ := ⋂

i∈I ′ ∇i with ∅ �= I ′ ⊆ I are either empty or compatible with
�, that is, ∇I ′ ∈ Pol+(�). Furthermore, set ∇∅ := ∇.

We consider two categories and a functor associated to a �-family between them.

Definition 2 Let 2I be the poset category associated to the power set of the finite set I , that is,
objects are subsets of I and there exists a unique morphism from I ′ to I ′′ whenever I ′ ⊆ I ′′.
Let Pol+(�) also denote the category of lattice polyhedra compatible with the fan �, that
is, objects are compatible lattice polyhedra as defined above or the empty set and for two
polyhedra �1 and �2 in Pol+(�) we define

HomPol+(�)(�1,�2) =
{

{inclusion} if �1 ⊆ �2,

∅ if �1 � �2.
(3.1)

Given an �-family of polyhedra S we can define a contravariant functor

FS : 2I → Pol+(�) I ′ �→ ∇I ′ =
⋂

i∈I ′
∇i , (I ′ ⊆ I ′′) �→ (∇I ′′ ↪→ ∇I ′). (3.2)

In general, given any contravariant functor F : 2I → Pol+(�), we define a subcomplex of
the Koszul complex

∧•
C

I as follows.

Definition 3 For a contravariant functor F : 2I → Pol+(�) and p ∈ N let

CF
p := span{eI ′ | #I ′ = p and F(I ′) �= ∅} ⊆

p∧
C

I . (3.3)

Here eI ′ := ∧

i∈I ′
ei , where {ei | i ∈ I }, denotes the canonical basis of C

I .

The map d : CF
p+1 → CF

p is defined as for the Koszul complex
∧•

C
I . For a fixed total

order on I , say I = {1 < · · · < #I }, and I ′ = {i0 < · · · < i p} ⊆ I , we have

d(eI ′) =
p∑

j=0

(−1) j eI ′\{i j } =
∑

i∈I ′
(−1)|i |eI ′\{i}, (3.4)

where |i | refers to the index j of i = i j in I ′.
Recall that the polyhedra F(I ′) ∈ Pol+(�) are contained in MR. For each m ∈ MR we

define the evaluation subcomplex (“at m”) as

CF
p (m) := span{eI ′ | #I ′ = p and m ∈ F(I ′)} ⊆ CF

p ⊆
p∧

C
I (3.5)

with the restrictions d|CF
p+1(m) : CF

p+1(m) → CF
p (m) as boundary maps.
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3 Page 6 of 26 K. Altmann et bal.

Lemma 4 For a �-family S set F := FS.

(i) If m ∈ MR \ ∇, then CF
p (m) = 0 for all p ≥ 0. In particular, CF

• (m) is exact.

(ii) If m ∈ ∇ ⊆ MR, then CF
• (m) is still exact.

(iii) The complex CF
• =∑m∈M CF

• (m) is exact.

Proof Statement (i) is clear because F(I ′) ⊆ ∇ for all I ′ ⊆ I .
For statement (ii) set Im := {i ∈ I | m ∈ F(i) := F({i}) = ∇i }. Then for I ′ ⊆ I we have

I ′ ⊆ Im if and only if m ∈⋂i∈I ′ F(i) = F(I ′).
Therefore CF

• (m) equals
∧•

C
Im , which is exact [14, Cor. 4.5.5].

For statement (iii) first note that we have CF
• = ∑m∈MR

CF
• (m) = ∑m∈∇∩M CF

• (m). By

(i) and (ii) each of the summands CF
• (m) is exact. For any subset M ′ ⊆ MR the intersection

of the evaluation subcomplexes for m ∈ M ′ is
⋂

m∈M ′ CF
• (m) = ∧•

C
IM ′ , where IM ′ :=

{i ∈ I | M ′ ⊆ F(i) = ∇i }. Furthermore, we have for m1,m2,m3 ∈ MR:

(CF
• (m1) + CF

• (m2)) ∩ CF
• (m3) = (CF

• (m1) ∩ CF
• (m3)) + (CF

• (m2) ∩ CF
• (m3)),

because the CF
p (mi ) are all subspaces of CF

p spanned by a subset of the prescribed basis

{eI ′ | I ′ ⊆ I , #I ′ = p, F(I ′) �= ∅} of CF
p .

Now, we switch to a slightly more general setup. Assume that Ci• ⊆ CF
• (i = 1, . . . , k) are

complexes such that all their mutual intersections are exact and
(
∑

i∈I
Ci•

)

∩ C j
• =

∑

i∈I
(Ci• ∩ C j

• )

for any j and I ⊆ {1, . . . , k}. Then∑i=1,...,k Ci• is exact, too. The proof uses induction by k
and exploits the short exact sequence

0 →
⎛

⎝
∑

i=1,...,k−1

Ci•

⎞

⎠ ∩ Ck• →
⎛

⎝
∑

i=1,...,k−1

Ci•

⎞

⎠⊕ Ck• →
∑

i=1,...,k

Ci• → 0.

The generalization of the setup is needed to ensure that the induction hypothesis implies that,
besides the central term, the left most complex is exact, too.

Finally, we apply the previous claim to the complexes Ci• := CF
• (m) where m ∈ ∇ ∩ M

replaces i = 1, . . . , k. Note that even though the set ∇ ∩ M may be infinite, the induction
ends after finitely many steps since the Koszul complex

∧•
C

I is finite-dimensional and all
CF

• (m) ⊆ CF
• ⊆∧•

C
I . ��

Example 5 We revisit an example already encountered in the Introduction (1.2).
Let � be the fan of the first Hirzebruch surface F1 = P(�) = TV(�).

The fan is complete, so compatible polyhedra will be polytopes. Define the �-family
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The complex CF
• is 0 → C · (e0 ∧ e1) → C · e0 ⊕ C · e1 → C · e∅ → 0. The evaluation

subcomplex CF
• (m) for m ∈ MR is the subcomplex indicating whether m ∈ ∇ for CF

0 (m),

m ∈ ∇0 respectively m ∈ ∇1 for CF
1 (m), and m ∈ ∇0 ∩ ∇1 = for CF

2 (m).

There is a particularly nice case in which exactness of the evaluation subcomplexes for
all lattice points m ∈ M is equivalent to exactness for all m ∈ MR.

Lemma 6 Assume that � consists of a single cone σ and its faces, with σ∨ smooth and full-
dimensional. Then for any contravariant functor F : 2I → Pol+(�), the complexes CF

• (m)

are exact for all m ∈ M if and only they are exact for all m ∈ MR.

Remark 7 This situation occurs naturally when we consider smooth affine toric varieties
TV(σ ) or an affine open subset Uσ ⊆ TV(�) for a cone σ ∈ �. In the latter case the
polyhedra F(I ′) are changed to F(I ′) + σ∨ when considering the affine open Uσ (see Sect.
(3.2)). In the case of a functor FS associated to a �-family S the ∇i become ∇i + σ ∨ and the
∇I ′ for I ′ ⊆ I become ∇I ′ + σ ∨.

Proof of the Lemma Because σ∨ is smooth, we may choose coordinates such that M = Z
r

and σ∨ = R
r≥0. For F(I ′) ∈ Pol+(�) we either have F(I ′) = ∅, in which case m ∈

F(I ′) ⇐⇒ �m� ∈ F(I ′) is clear, or F(I ′) has only one vertex and can be written as
F(I ′) = rI ′ + R

r≥0 for some rI ′ ∈ Z
r . We obtain for every m ∈ R

r that

m ∈ F(I ′) ⇐⇒ m ≥ rI ′ ⇐⇒ �m� ≥ rI ′ ⇐⇒ �m� ∈ F(I ′),

where �m� and the relation≥ aremeant componentwise. Hence, CF
• (m) = CF

• (�m�), proving
the claim. ��
Example 8 We give a counterexample for the global situation, that is, for � consisting of
more than a cone σ . Let � = N (�) be the fan of P

1 = P(�) = TV(�):

Δ = in MR = R, (Δ) = in NR = R.

Let I := {0, 1} and define the functor F : 2I → Pol+(�) as follows

The only non-trivial evaluation subcomplexes at lattice points are at m = 0, m = 1:

CF
• (0) : 0 → C · e{0}

∼=−→ C · e∅ → 0

CF
• (1) : 0 → C · e{1}

∼=−→ C · e∅ → 0

These are exact. But at m = 1
2 ∈ MR we have the non-exact evaluation subcomplex

CF
•

(
1

2

)
: 0 → 0 → C · e∅ → 0.

3.2 Localization of the Koszul complex

We use the notation of Sect. (3.1). In Sect. (4), we will think about the polyhedra ∇I ′ as
representing some nef line bundles on some toric variety P(�) = TV(N (�)) over C. Then
the complexes constructed in Sect. (3.1) describe maps between the global sections of them,
and thus among the sheaves themselves. To understand the local behavior of these complexes,
we will look at the affine charts TV(σ ) ⊆ P(�) for cones σ ∈ N (�).
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3 Page 8 of 26 K. Altmann et bal.

Definition 9 For a contravariant functor F : 2I → Pol+(�), where |�| is cov and full-
dimensional in NR, and a cone σ ∈ � define the functor

Fσ : 2I → Pol+(σ ), I ′ �→ F(I ′) + σ ∨. (3.6)

Because F(I ′) ∈ Pol+(�) has tail cone |�|∨ or is empty and σ ∈ � implies |�|∨ ⊆ σ ∨, the
image F(I ′) + σ ∨ has tail cone |�|∨ + σ ∨ = σ ∨ or is empty. If σ ∨ is full-dimensional in
MR, then the normal fan of F(I ′)+σ ∨ consists of just σ with its faces, that is, F(I ′)+σ ∨ ∈
Pol+(σ ).

Proposition 10 For a polyhedron � and a finite set I , let F : 2I → Pol+(N (�)) be a
contravariant functor satisfying the conclusions (i)–(iii) of Lemma 4. Then the complexes
CFσ

• (m) are exact for all m ∈ MR and for all σ ∈ N (�).

Remark 11 Moreover, this claim remains true ifwe consider any polyedra compatiblewith the
fan N (�), not just lattice polyhedra. This generalization will be important for the induction
performed in the upcoming proof.

Proof Step 1. Assume that r = rk M = 1. Then � ⊆ R is a subset of the real line and its
normal fanN (�) can contain the origin σ = {0}, the rays σ = R≥0 and σ = R≤0 and the real
line σ = R as cones. For σ = R and σ = {0} the claim is clear from the assumptions.We deal
with the case σ∨ = R≥0 (the case σ∨ = R≤0 is analogous). A polyhedron F(I ′) compatible
with N (�) is either empty or an interval of the form [a, b] with −∞ < a ≤ b ≤ ∞. For
F(I ′) �= ∅, let a(I ′) ∈ R denote the start point of the interval F(I ′) and b(I ′) ∈ R ∪ {∞}
the end point. Let A(F) := {a(I ′) | F(I ′) �= ∅} and B(F) := {b(I ′) | F(I ′) �= ∅} be the
sets of start and end points, respectively. Since I is finite, A(F) ⊆ R and B(F) ⊆ R ∪ {∞}
are finite.

We understand the local complex CFσ

• in terms of global evaluation subcomplexes:

CFσ

p (m) = span{eI ′ | #I ′ = p and m ∈ F(I ′) + R≥0}
= span{eI ′ | #I ′ = p and a(I ′) ≤ m}
=
∑

m′≤m

CF
p (m′) ⊆ CF

p .

We make three observations:

(1) For m ∈ R satisfying m < b for all b ∈ B(F):

CFσ

p (m) = span{eI ′ | #I ′ = p and a(I ′) ≤ m}
= span{eI ′ | #I ′ = p and a(I ′) ≤ m ≤ b(I ′)} = CF

p (m).

So form � 0 the local complexes CFσ

• (m) stabilize to the exact sequence CF
• (m). Recall

that B(F) is finite, so m can be chosen small enough.
(2) For m′ ≤ m we have embeddings CFσ

• (m′) ↪→ CFσ

• (m) of complexes.
(3) A non-trivial jump from CFσ

• (< m) := ∑
m′<m CFσ

• (m′) to CFσ

• (m) can only occur at a
starting point m = a(I ′) ∈ A(F) for some I ′ ⊆ I .

We inductively show exactness of CFσ

• (m) for all m ∈ MR by investigating these non-trivial
jumps. Let m := a(I ′) ∈ A(F). Because I is finite we can choose an ε > 0 such that any
a ∈ A(F) and any b ∈ B(F) is either equal to m or has distance |a − m| > ε respectively
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Extensions of toric line bundles Page 9 of 26 3

|b − m| > ε. Consider the non-trivial embedding CFσ

• (m − ε) ↪→ CFσ

• (m) and denote its
cokernel by C•. This yields an exact sequence

0 → CFσ

• (m − ε) → CFσ

• (m) → C• → 0. (3.7)

Because b(F) ∩ [m − ε,m) = ∅, there is also an embedding CF
• (m − ε) ↪→ CF

• (m) for the
original functor F , also with cokernel C•. This gives the short exact sequence

0 → CF
• (m − ε) → CF

• (m) → C• → 0 (3.8)

in which the first two compexes are exact by assumption, so C• is also exact.
By observation (1) abovewe can start from the exact complexCFσ

• (m) = CF
• (m) form < b

for all b ∈ B(F) and then inductively use the exact sequence (3.7) with exact complexes
CFσ

• (m − ε) and C• to obtain that CFσ

• (m) is exact for all m ∈ MR.
Step 2.Consider a general latticeM of rank r ∈ N≥1 and letC ⊆ MR be any ray. Replacing

the polyhedra F(I ′) by theMinkowski sums F(I ′)+C yields the functor FC : 2I → Pol+,R
δ+C ,

where δ = |N (�)|∨ is the tail cone of �. Now, for m ∈ MR we restrict the complexes CF
•

and CF+C
• to the affine line m + (C − C), that is, consider F(I ′) ∩ (m + (C − C)) and

(F(I ′) + C) ∩ (m + (C − C)). By assumption, the complex CF∩(m+(C−C))
• leads to exact

evaluation subcomplexes CF∩(m+(C−C))
• (m′) = CF

• (m′) for all m′ ∈ m + (C − C) because
in this case

CF∩(m+(C−C))
p (m′) = span{eI ′ | #I ′ = p and m′ ∈ F(I ′) ∩ (m + (C − C))}

= span{eI ′ | #I ′ = p and m′ ∈ F(I ′)} = CF
p (m′).

The complex C(F+C)∩(m+(C−C))
• inherits this property by step1 and we obtain exactness of

CF+C
• (m′) for all m′ ∈ MR.
Step 3. If σ∨ ∈ N (�) is an arbitrary (non-trivial) polyhedral cone, then we may apply

step 2 successively to all its fundamental rays. ��

3.3 Exactness of the sequence associated to a 6-family

Theorem 12 Let � be a full-dimensional lattice polyhedron in MR with normal fan � :=
N (�) and X := P(�) the toric variety given by �. For S = {∇i | i ∈ I } a �-family with
#I = n, let FS : 2I → Pol+(�) be the functor introduced in Definition 2. The complex CFS•
with its exact evaluation subcomplexes CFS• (m) for m ∈ MR induces a T -equivariant exact
sequence of direct sums of nef line bundles on X

0 → OX (∇I ) → ⊕
#I ′=n−1

OX (∇I ′) → · · · → ⊕
i∈I

OX (∇i ) → OX (∇) → 0. (3.9)

Proof The evaluation subcomplex CFS• (m) includesC·eI ′ if and only ifm ∈ ∇I ′ . Form ∈ M ,
this in turn is equivalent to χm ∈ 
(X ,OX (D∇I ′ )). Hence, the evaluation subcomplex
CFS• (m) corresponds to a complex of global sections in degree m ∈ M :

CFS
p (m) ∼= ⊕

#I ′=p

(X ,OX (∇I ′))m . (3.10)

Summing the CFS• (m) for lattice points m ∈ M yields a sequence of global sections:

0 → 
(X ,OX (∇I )) → · · · → 
(X , ⊕
i∈I

OX (∇i )) → 
(X ,OX (∇)) → 0. (3.11)
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The sheavesOX (∇I ),OX (∇i ), i ∈ I , andOX (∇) are globally generated. By T -equivariance,
they are subsheaves of j∗OT for j : T ↪→ X the inclusion of the torus. Hence, the sequence
of global Sect. (3.11) determines a sequence of sheaves:

0 → OX (∇I ) → · · · → ⊕
i∈I

OX (∇i ) → OX (∇) → 0. (3.12)

For a cone σ ∈ � and a lattice point m ∈ M , the evaluation subcomplex CFσ
S• (m) includes

eI ′ for I ′ ⊆ I if and only if χm ∈ 
(Uσ ,OX (∇I ′)). The sequence of sections over Uσ ⊆ X

therefore corresponds to the direct sum of the evaluation subcomplexes CFσ
S• (m) for m ∈ M .

By Proposition 10 this sequence is exact for each σ ∈ �. Hence, the restriction of the
sequence of sheaves to each affine chart of the covering {Uσ }σ∈� is exact and consequently
the constructed sequence is exact. ��

4 Displaying Ext1

Throughout this section, let X := P(�) be the toric variety over C associated to the lattice
polyhedron � ⊆ MR, whose normal fan � := N (�) has convex support of full dimension.
The (possibly trivial) tail cone of � is δ := tail(�) = |�|∨. Let �+,�− ∈ Pol+(�)

be lattice polyhedra compatible with �, that is, their normal fans are refined by �. These
polyhedra correspond to T -invariant nef Cartier divisors D+ = D�+ and D− = D�− on X .
We study the space of extensions

Ext(�−,�+) ∼= Ext1(�−,�+) := Ext1(OX (�−),OX (�+)), (4.1)

that is, extensions of the line bundleOX (�−) by the line bundleOX (�+). More specifically,
we study T -equivariant extension sequences. These are elements in Ext(�−,�+)0. To under-
stand this space we start with specific extension sequences induced by inclusion/exclusion
sequences of polyhedra, such as the sequence considered in the Introduction (1.2). For an
n-dimensional Ext

(
�−,�+)

0 all extensions are encoded in a single sequence of the form
0 → OX (�+)n → H → OX (�−) → 0. We will show that this is the universal exten-
sion sequence for Ext

(
�−,�+)

0. First, we show that it can be constructed from the exact
sequence of sheaves associated to a �-family (Theorem 12). We then trace the sequence
along the identifications:

Ext
(
�−, (�+)n

) (1)∼= Ext
(
OX ,OX (�+ − �−)n

)

(2)= H1 (X ,OX (�+ − �−)
)n

(3)∼= (⊕m∈M H̃
0
(�− \ (�+ − m))

)n
.

Note that all of the above groups are M-graded and all identifications respect these M-
gradings. Since we consider equivariant extensions, we will obtain an n-tuple of elements in
H1(X ,OX (�+ − �−))0 ∼= H̃

0
(�− \ �+), without an integral shift.

4.1 Inclusion of polyhedra

Since we are relating Ext
(
OX (�−),OX (�+)

)
0 to the reduced singular cohomology group

H̃
0
(�−\�+), the easiest case is to assume�+ to be contained in�−. The inclusion/exclusion
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sequence of polyhedra is obtained by covering �− by certain polyhedra ∇i that intersect
(pairwise) in �+. These ∇i are obtained by taking the unions of the connected components
C0, . . . ,Cn of the set-theoretic difference �− \ �+ with �+, that is, ∇i := Ci ∪ �+, i =
0, . . . , n.

Proposition 13 For two lattice polyhedra �+ ⊆ �− ∈ Pol+(�) and each connected com-
ponent C = Ci of �− \ �+, the union ∇ = C ∪ �+ is again a lattice polyhedron.

Proof It is easy to see that ∇ is closed. We first show that ∇ is convex. Assume that x, y ∈
∇. We know that xy ⊆ �−, and this line segment might touch �+ or not. If not, then
xy ⊆ (�− \ �+). Since xy is connected, it then has to be contained in a single connected
component of �− \ �+. Since x ∈ ∇ = C ∪ �+, we know that x ∈ C . Hence, xy ⊆ C . If
xy ∩ �+ �= ∅, then this set is a closed subsegment x ′y′ ⊆ xy. In particular, the half open
ends xx ′ and y′y (excluding x ′ and y′) belong to �− \ �+, and the same argument as in the
first case applies again: since x, y ∈ ∇ = C ∪ �+, both of these half open ends xx ′ and y′y
lie in C . The segment xy thus lies in ∇ = C ∪ �+.

Next we realize that vertices of ∇ are vertices of �+ or of �−. We start with the case of
�+ and �− being compact. Choose a generic regular triangulation induced from some map
ω : vert(�+) → R and then extend it generically to vert(�−) \ vert(�+) with sufficiently
independent heights. This yields a triangulation�− =⋃i∈I �i that restricts to a triangulation
�+ =⋃ j∈J⊆I � j that uses only the vertices of �− and �+. In particular all �i are lattice
simplices. The union ∇ = C ∪ �+ is a union of lattice simplices in I . In particular all of its
vertices are lattice points.

If �+ and �− are not compact but have the same tail cone δ we choose a half-space H
such that all vertices of �+ and �− are contained in the interior of H . Then we can write
�+ = P+ + δ and �− = P− + δ with P+ := �+ ∩ H , P− := �− ∩ H . The previous
discussion applied to the polytopes P+ and P−, all of whose relevant vertices are integral
(not necessarily those lying on the boundary of H , but they do not yield vertices of C ∪�+),
yields that all vertices of ∇ = C ∪ �+ are integral. ��
Corollary 14 For �+ ⊆ �− ∈ Pol+(�), the set S := {∇i | i ∈ {0, . . . , n} =: I } with
∇i := Ci ∪ �+ for the connected components C0, . . . ,Cn of �− \ �+ yields a �′-family in
the sense of Definition 1 for some refinement �′ ≤ �.

Proof By the previous Proposition 13, the ∇i are lattice polyhedra. The tail cone of each
∇i is |�|∨. Hence, each normal fan N (∇i ) has the same support as �. Since we are only
dealing with finitely many ∇i there is a common refinement �′ of � and all N (∇i ). Then
∇i ∈ Pol+(�′). The conditions for a �′-family follow from the assumptions on �′ and
∇I ′ = �+ ∈ Pol+(�′) for any I ′ ⊆ I with #I ′ ≥ 2. ��

4.1.1 Refining the fan

In many cases the lattice polyhedra ∇i built from the components of �− \ �+ will already
be compatible with the fan � we started with. We believe that if �+ and �− are sufficiently
ample, this will always be the case. However, in general, if the ∇i are not compatible with
�, we can refine � to a fan �′ with the same support such that all ∇i are compatible with
�′, as in Corollary 14. This induces a proper birational toric morphism π : X ′ = TV(�′) →
TV(�) = X . This morphism satisfies that π∗OX ′ = OX and Rνπ∗OX ′ = 0 for all ν > 0.
The projection formula implies that π∗π∗F = F for a locally free sheaf F on X . For a short
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exact sequence of sheaves on X ′ of the form

0 → π∗F1 → E → π∗F2 → 0, (4.2)

derived pushforward Rπ∗ yields a long exact sequence of sheaves on X :

0 → π∗π∗F1︸ ︷︷ ︸
=F1

→ π∗E → π∗π∗F2︸ ︷︷ ︸
=F2

→ R1π∗π∗F1︸ ︷︷ ︸
=F1⊗R1π∗OX ′=0

→ . . . , (4.3)

which turns out to be a short exact sequence by the derived version of the projection formula.
In particular, the vanishing Rνπ∗π∗F j = 0 for ν ≥ 1 implies Rνπ∗E = 0, too. Hence, using
both vanishings, we have for all i ≥ 0 and for j = 1, 2 the isomorphisms

Hi (X ′, E) ∼= Hi (X , π∗E) and Hi (X ′, π∗F j ) ∼= Hi (X , π∗π∗F j ) = Hi (X ,F j ). (4.4)

In the study of Ext(�−,�+) ∼= H1(X ,OX (�+ − �−)) ∼= H1(X ′,OX ′(�+ − �−)) we can
therefore pull back and push foward along π without impacting the extension or cohomology
classes and groups. In the following, we will assume for simplicity that the fan � is already
refined enough so that all ∇i are compatible with it.

4.1.2 Two components

We dive into Theorem 12 in the case where �− \ �+ consists of two components C0 and
C1 and we assume ∇0 = C0 ∪ �+ and ∇1 = C1 ∪ �+ to be compatible with the fan �. The
complex CFS• associated to S = {∇0,∇1} is

0 → C · eI

(−1
1

)

−−−−→ C · e0 ⊕ C · e1
(
1 1

)

−−−→ C · e∅ → 0. (4.5)

By Theorem 12, the CFS• (m) for m ∈ M induce a T -equivariant exact sequence

0 → OX (�+) −→ OX (∇0) ⊕ OX (∇1) −→ OX (�−) → 0. (4.6)

Theorem 15 Via the identification Ext
(
OX (�−),OX (�+)

)
0 = H̃

0(
�− \ �+), the exact

extension sequence (4.6) corresponds to the reduced singular 0-th cohomology class [C1] ∈
H̃
0(

�− \ �+), which is equal to the class −[C0] ∈ H̃
0(

�− \ �+).

Proof We follow the steps mentioned at the start of Sect. 4. We first tensor the sequence (4.6)
withOX (�−)−1 and setL := OX (�+ −�−) and Ei := OX (∇i −�−) for i = 0, 1 to obtain
an extension sequence

0 → L −→ E0 ⊕ E1 −→ OX → 0 (4.7)

in Ext(OX ,L)0. Consider the associated long exact sequence in cohomology:

0 → 
(X ,L) → 
(X , E0) ⊕ 
(X , E1) → 
(X ,OX )
d−−−→

1 �→η
H1(X ,L) → . . . (4.8)

The image of the extension sequence (4.6) in H1(X ,L) under identification (2) is the image
η of 1 ∈ 
(X ,OX ) under d . Note that η ∈ H1(X ,L)0 is of degree 0.

To understand identification (3) we translate η ∈ H1(X ,L) to an element in the Čech

cohomology group Ȟ
1
(U,L) for U = {Uσi }σi∈�max withUσi = SpecC[σ ∨

i ∩M] the standard
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toric affine open covering of X . The long exact sequence in cohomology (4.8) corresponds
to a long exact sequence of Čech cohomology groups

0 → Ȟ
0
(U,L) → Ȟ

0
(U, E0) ⊕ Ȟ

0
(U, E1) → Ȟ

0
(U,OX )

d−−−→
1 �→η

Ȟ
1
(U,L) → . . . (4.9)

Order the maximal cones σ ∈ �max so that 1 ∈ E0(Ui ) for i ∈ {0, . . . , l} and 1 ∈ E1(Ui )

for i ∈ {l + 1, . . . ,m}. This is possible because the map of sheaves E0 ⊕ E1 −→ OX is
surjective, each Ui := Uσi is affine, and everything is T -equivariant. Note that this is not a
dichotomy; itmight happen that 1 ∈ E0(Ui )∩E1(Ui ) for some i .Using this order, the boundary

homomorphism d the element (1, . . . , 1) ∈∏i OX (Ui ) maps to the class η ∈ Ȟ
1
(U,L) of

(0, . . . , 0︸ ︷︷ ︸
i< j≤l

, 1, . . . , 1︸ ︷︷ ︸
i≤l< j

, 0, . . . , 0︸ ︷︷ ︸
l<i< j

) ∈
∏

i< j

L(Ui j ). (4.10)

Understanding η in terms of Čech cohomology is convenient because by [2] the degree 0 part
of the Čech complex C•(U,L) giving Ȟ

•
(U,L) is the same as a Čech complex C•(�−,S)

defined in [2, (3.4)] giving the relative singular cohomology H•(�−,�− \�+). It is defined
as C p(�−,S) := ∏

i0<···<i p H
0(�−, S(σi0 ∩ · · · ∩ σi p )) for S(σ ) := �− \ (�+ + σ∨).

Investigating the groups H0(Uσ ,L)0 = H0(�−, S(σ )) and H0(Uσ , Ei )0, i = 0, 1, as in [2,
(3.2)], one realizes that for σ ∈ �max with S(σ ) �= ∅, 1 ∈ E0(Uσ ) implies S(σ ) ⊆ C0 and
1 ∈ E1(Uσ ) implies S(σ ) ⊆ C1. Here C0 and C1 denote the two connected components of
�− \ �+.

The element η ∈ Ȟ
1
(U,L)0 ∼= H1(�−,�− \ �+) can be lifted to H0(�− \ �+) by

considering the long exact sequence of the pair (�−,�− \�+). In terms of Čech complexes

the boundary morphism H0(�− \ �+)
d−→ H1(�−,�− \ �+) is given by the snake lemma.

One shows that η can be lifted to the cocycle which is 1 on the component C1 of �− \ �+
and 0 on the component C0. It can also be lifted to the cocycle which is 0 on the component
C1 and −1 on the component C0. Modulo H0(�−) these cocycles are equivalent and we
have found the image of sequence (4.6) to be [C1] = −[C0] ∈ H̃

0
(�− \ �+). ��

4.1.3 More than two components

Wenowdealwith the casewhere�−\�+ consists ofn+1 connected componentsC0, . . . ,Cn

for some n ≥ 2. Set ∇i := Ci ∪ �+ for i = 0, . . . , n and note that
⋃n

i=0 ∇i = �− and
∇I ′ = ⋂i∈I ′ ∇i = �+ for I ′ ⊆ I of cardinality k with 2 ≤ k ≤ n + 1. By Sect. (4.1.1) we
may assume that the set S := {∇i | i ∈ {0, . . . , n}} forms a �-family. The exact sequence of
sheaves induced from this �-family as in Theorem 12 looks as follows:

0 → OX (�+) → · · · → OX (�+)(
n+1
2 ) → ⊕n

i=0 OX (∇i ) → OX (�−) → 0. (4.11)

We will replace this sequence (4.11) by a quasi-isomorphic short exact sequence. To this end,
consider the exact Koszul complex

∧•
C
n+1 ⊗ OX (�+):

0 → OX (�+)
d̄n+1−−→ . . .

d̄3−→ OX (�+)(
n+1
2 ) d̄2−→ OX (�+)n+1 d̄1−→ OX (�+) → 0, (4.12)
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where d̄i = di ⊗ idOX (�+) for di the i-th differential in
∧•

C
n+1. The green part is identical

to part of sequence (4.11). We obtain a quasi-isomorphism from sequence (4.11):

0 OX (�+) . . . OX (�+)(
n+1
2 ) ⊕n

i=0 OX (∇i ) OX (�−) 0

0 0 . . . ker(d̄1) ⊕n
i=0 OX (∇i ) OX (�−) 0.

Denoting K := ker(d̄1) = ker(d1) ⊗ OX (�+), we obtain a short exact sequence

0 → K → ⊕n
i=0 OX (∇i ) → OX (�−) → 0. (4.13)

We now choose the set {ei−e0 | i ∈ {1, . . . , n}}with respect to the standard basis {e0, . . . , en}
for C

n+1 as a basis for ker(d1). This induces an isomorphism K ∼= OX (�+)n under which
sequence (4.13) corresponds to the short exact sequence

0 → OX (�+)n → ⊕n
i=0 OX (∇i ) → OX (�−) → 0, (4.14)

where the maps can be thought of as

OX (�+)n

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

−1 −1 . . . −1
1 0 . . . 0
0 1 . . . 0
...

. . .
. . .

...

0 . . . 0 1

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

−−−−−−−−−−−−−−−→ ⊕n
i=0 OX (∇i ), (4.15)

⊕n
i=0 OX (∇i )

(
1 1 . . . 1

)

−−−−−−−−−−−→ OX (�−). (4.16)

Theorem 16 Via the identification Ext
(
OX (�−),OX (�+)n

)
0 = H̃

0(
�− \�+)n, the exten-

sion sequence (4.14) corresponds to the n-tuple ([C1], . . . , [Cn]) ∈ H̃
0(

�−\�+)n of reduced
singular 0-th cohomology classes.

Proof The steps in this case are very similar to the case of two components. The extension
sequence

0 → Ln → ⊕n
i=0Ei → OX → 0

corresponds to the image η of 1 ∈ 
(X ,OX ) in H1(X ,Ln) = H1(X ,L)n under the long
exact sequence in cohomology associated to the short exact extension sequence. In our case
L = OX (�+ − �−) and Ei = OX (∇i − �−). Again, this image is understood using the
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sequence of Čech complexes, only looking at degree 0:

0 0 0

0
∏

i L(Ui )
n ∏

i (⊕n
s=0Es(Ui ))

∏
i OX (Ui ) 0

0
∏

i< j L(Ui j )
n ∏

i< j (⊕n
s=0Es(Ui j ))

∏
i< j OX (Ui j ) 0

0
∏

i< j<k L(Ui jk)
n ∏

i< j<k(⊕n
s=0Es(Ui jk))

∏
i< j<k OX (Ui jk) 0

...
...

...

We lift the element (1, . . . , 1) ∈ ∏
i OX (Ui ) to

∏
i (⊕n

s=0Es(Ui )), then map it to∏
i< j (⊕n

s=0Es(Ui j)) via the Čech differential and lift it to
∏

i< j L(Ui j )
n . The resulting ele-

ment (ηi j )i< j ∈∏i< j L(Ui j )
n can be viewed as an element of

∏
i< j H

0(�−, S(σi ∩ σ j ))
n .

The preimage of [η] under the map dn in the long exact sequence

0 → H0(�−,�− \ �+)n → H0(�−)n → H0(�− \ �+)n
dn−→ H1(�−,�− \ �+)n → 0.

is the desired element ([C1], . . . , [Cn]) ∈ H̃
0(

�− \ �+)n . ��

Recall that Ext1(OX (�−),−) is a covariant functor, where a map of extensions is induced
by a pushout.

Corollary 17 Given the extension sequence (4.14) in Ext
(
OX (�−),OX (�+)n

)
0, we obtain

n extensions in Ext
(
OX (�−),OX (�+)

)
0, one for each i = 1, . . . , n:

0 OX (�+)n

pri

⊕n
i=0O(∇i ) OX (�−) 0

0 OX (�+) Hi OX (�−) 0,

where Hi is the pushout of the left square.

Via the identification Ext
(
OX (�−),OX (�+)

)
0 = H̃

0(
�− \ �+), the i-th extension

0 → OX (�+) → Hi → OX (�−) → 0 (4.17)

corresponds to the class [Ci ] ∈ H̃
0(

�− \ �+). In particular, the n extensions for i ∈
{1, . . . , n} form a basis of Ext

(
OX (�−),OX (�+)

)
0.

Proof This follows from functoriality ofExt(OX (�−),−) andnaturality of the isomorphisms
we identify along. The i-th projection OX (�+)n → OX (�+) induces the i-th projection
Ext
(
OX (�−),OX (�+)

)n
0 → Ext

(
OX (�−),OX (�+)

)
0. By the previous Theorem 16, this

yields [Ci ] ∈ H̃
0
(�− \ �+). ��

Remark 18 To obtain [C0] one has to replace pri by (−1, . . . ,−1).
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4.1.4 The universal extension

For two OX -modules F and G and their (finite-dimensional) space of extensions E :=
Ext(F,G), a universal extension is a short exact sequence of the form 0 → G → H →
F ⊗ E → 0 such that for any t ∈ E the induced pullback sequence is t ∈ E = Ext(F,G).
Equivalently, it is a short exact sequence 0 → G ⊗ E∨ → H′ → F → 0, where E∨ =
HomC(E, C), such that for any t ∈ E the sequence induced by the pushout along t ∈ E ∼=
HomC(E∨, C) is t ∈ E = Ext(F,G). Analogously one defines a universal T -equivariant
extension 0 → G → H → F ⊗ E0 → 0 or 0 → G ⊗ E∨

0 → H′ → F → 0 for
E0 := Ext(F,G)0.

Theorem 19 The extension sequence (4.13) in Ext
(
OX (�−), K

)
0 is a universal extension

for Ext
(
OX (�−),OX (�+)

)
0.

Proof The C-vector space Ext(OX (�−),OX (�+))0 ∼= H̃
0
(�− \ �+) is the cokernel of the

homomorphism H0({·}) → H0(�− \ �+). The components C0, . . . ,Cn provide a natural
basis for H0(�− \�+)with dual basisC∨

0 , . . . ,C∨
n of H0(�− \�+)∨. The quotient H̃

0
(�− \

�+) = H0(�−\�+)

H0({·}) is generated by [C0], . . . , [Cn] and subject to the relation [C0] + · · · +
[Cn] = 0. We choose {C∨

1 −C∨
0 , . . . ,C∨

n −C∨
0 } as a basis for the dual vector space H̃0

(�− \
�+)∨ = ker(H0(�− \ �+)∨ → H0({·})∨). This basis is dual to the basis {[C1], . . . , [Cn]}
of H̃

0
(�− \ �+). The isomorphism H̃

0
(�− \ �+)∨ ∼=−→ ker(d1) maps the i-th basis element

C∨
i − C∨

0 to the i-th basis element ei − e0. Recall that K = ker(d1) ⊗ OX (�+).

We now check the universal property on the basis {[C1], . . . , [Cn]} of H̃0
(�− \ �+). By

definition of the dual and double dual, [Ci ] ∈ H̃
0
(�− \ �+) ∼= HomC(H̃

0
(�− \ �+)∨, C)

corresponds to the projection to the i-th coordinate pri : H̃0
(�− \ �+)∨ ∼= C

n → C. By
Corollary 17, the pushout along the i-th projection homomorphism gives an extension in
Ext
(
OX (�−),OX (�+)

)
0

∼= H̃
0
(�−\�+)which corresponds precisely to the basis element

[Ci ] ∈ H̃
0
(�− \ �+). ��

4.1.5 The cremona example

Let X be the graph of the Cremona transformation P
2− → P

2. In toric language, X =
P(H) = TV(�), where � = N (H):

Here, the ray ρi of the inner normal fan � corresponds to the facet Fi of H . Let Di :=
orb(ρi ). The Minkowski summands A and B of H correspond to the divisors DA = D2 +
D3 + D4 and DB = D1 + D5 + D6. The interesting line bundle on X arises from �+ = A
and�− = 2B+ (1,−1)with D�− = D1+D2+2D3+D4+D5. The figure below displays
the set-theoretic difference (2B + (1,−1)) \ A. It shows that H1(X ,OX (�+ − �−)) ∼=
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⊕m∈M H̃
0
(�− \ (�+ +m)) is 2-dimensional in degreem = 0, because dim H̃

0
(�− \�+) =

dim H̃
0
((2B + (1,−1)) \ A) = 2.

There is no other shift m such that (2B −m) \ A, or equivalently 2B \ (A+m), has non-
trivial reduced 0-th cohomology. Hence, H1(X ,OX (�+ − �−)) is 2-dimensional, sitting
completely in degree m = 0.

Denote the connected components of �− \ �+ by C0, C1, C2 and set ∇i := Ci ∪ �+.

From the facet presentations of ∇0, ∇1 and ∇2 we can read off the associated divisors
D∇0 = D1 + D2 + D3 + D4, D∇1 = D2 + 2D3 + D4, D∇2 = D2 + D3 + D4 + D5. In this
case, sequence (4.14) in Sect. (4.1.3) is the sequence

0 → OX (�+)2

⎛

⎜
⎜
⎝

−1 −1
1 0
0 1

⎞

⎟
⎟
⎠

−−−−−−−→ ⊕2
i=0OX (∇i )

(
1 1 1

)

−−−−−→ OX (�−) → 0 (4.18)

in Ext
(
OX (�−),OX (�+)2

)
0. It corresponds to ([C1], [C2]) ∈ H̃

0
(�− \ �+)2.

The pushout construction described in Corollary 17 yields two extension sequences 0 →
OX (�+) → G1 → OX (�−) → 0 and 0 → OX (�+) → G2 → OX (�−) → 0 in
Ext
(
OX (�−),OX (�+)

)
0. The first is represented by [C1] ∈ H̃

0
(�− \ �+) and the second

by [C2] ∈ H̃
0
(�− \ �+). The class of the constant cocycle on �− \ �+ is trivial, so

[C0] = −[C1]−[C2] ∈ H̃
0
(�− \�+) and the negative of the Baer sum of the two sequences

above is represented by [C0] ∈ H̃
0
(�− \ �+).

4.2 General position of polyhedra

In the previous section, we dealt with the special case of one polyhedron�+ being contained
in the other polyhedron �−. In this section, we deal with �+ and �− lying in general
position.

4.2.1 Observing two problems

To illustrate the problem for the general case, we start with an example. Let �0 be the
2-dimensional, singular fan made from the rays spanned by (1, 0), (0, 1), (−2,−1), and
(0,−1), respectively (displayed in black below). Adding the rays spanned by (−1, 0) and
(−1,−1) (displayed in blue below), we obtain the smooth subdivision �.

123



3 Page 18 of 26 K. Altmann et bal.

Denote X := TV(�) and f : X → X0 := TV(�0), the birational contraction. The Picard
group Pic(X0) is freely generated by (the sheaves represented by) the polytopes C and D
displayed below. Pic(X) = Cl(X) has {A, B,C, D} as a basis:

Define �− := D and �+ := C . The difference �− \ �+ splits into two components:

However, since�+ is not contained in�−, there is nomap fromOX (�+) into the sheaves
of the two components, which are subsheaves ofOX (�−). The solution to this problem is to
replace �+ by (�+ ∩ �−), then proceed as in Sect. (4.1), and, finally, to use functoriality
of Ext along the embedding OX (�+ ∩ �−) ↪→ OX (�+).

But here one can spot the second problem. As in the example, the intersection�+ ∩�− is
not necessarily a lattice polyhedron. This will be overcome by refining the lattice. We replace
the lattice M by a larger lattice M̃ ⊇ M such that �+ ∩ �− is a lattice polyhedron with
respect to M̃ . Dually, this means to consider some sublattice Ñ ⊆ N of finite index and the
induced finite covering p : TV(�, Ñ ) → TV(�, N ).

4.2.2 The intersection is a lattice polyhedron

We start with the case where the intersection �+ ∩ �− is a lattice polyhedron with respect
to the lattice M . Suppose that �− \ �+ = �− \ (�+ ∩ �−) consists of n + 1 connected
components C0, . . . ,Cn . Set ∇i := Ci ∪ (�+ ∩ �−) for i ∈ {0, . . . , n}. As before, we
can assume without loss of generality that the fan � is refined enough so that �+, �−,
�+ ∩ �− and ∇i for i ∈ {0, . . . , n} are compatible with � and define nef Cartier divisors
on X = TV(�).
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Consider the following pushout diagram:

0 OX (�+ ∩ �−)n

hn

⊕n
i=0OX (∇i ) OX (�−) 0

0 OX (�+)n H OX (�−) 0.

(4.19)

Here the upper exact sequence is constructed as in Sect. (4.1.3). It is an extension
sequence in Ext

(
OX (�−),OX (�+∩�−)n

)
0. ByTheorem16, this corresponds to the n-tuple

([C1], . . . , [Cn]) ∈ H̃
0
(�− \ (�+ ∩�−))n = H̃

0
(�− \�+)n . The inclusion of lattice poly-

hedra �+ ∩ �− ↪→ �+ induces the embedding of sheaves h : OX (�+ ∩ �−) ↪→ OX (�+)

and its n-th power hn : OX (�+ ∩ �−)n ↪→ OX (�+)n . The sheaf H is the pushout of the
left square and the universal property of the pushout induces a map H → OX (�−), that
makes the lower sequence exact and the right square commutative. All together we obtain
a map of complexes from the upper to the lower exact sequence. This is functoriality of
Ext(OX (�−),−).

Proposition 20 Via the identificationExt
(
OX (�−),OX (�+)n

)
0 = H̃

0(
�−\�+)n the short

exact extension sequence

0 → OX (�+)n → H → OX (�−) → 0 (4.20)

corresponds to the n-tuple ([C1], . . . , [Cn]) ∈ H̃
0(

�− \ �+)n .

Proof Tensoring both sequences in diagram (4.19) with OX (�−)−1 yields

0 OX ((�+ ∩ �−) − �−)n

(h′)n

⊕n
i=0OX (∇i − �−) OX 0

0 OX (�+ − �−)n H′ OX 0,

(4.21)

where H′ = H ⊗ OX (�−)−1 is also the pushout of the left square. The map of complexes
between the short exact sequences induces a map of complexes between the long exact
sequences in cohomology. In particular we obtain a commuting square


(OX )
d

H1
(
X ,OX (�+ − �−)

)n

H1((h′)n)∼=


 μ


(OX )
d

H1
(
X ,OX ((�+ ∩ �−) − �−)

)n 
 η,

(4.22)

where η and μ denote the images of 1 ∈ 

(
X ,OX

)
0 under the differential d . By Theorem

16, the isomorphism from H1
(
X ,OX (�+ − �−)

)n to reduced singular cohomology maps

η to ([C1], . . . , [Cn]) ∈ H̃
0(

�− \ (�+ ∩ �−)
)n = H̃

0(
�− \ �+)n . It is easy to see that

μ = H1((h′)n)−1(η) is also mapped to ([C1], . . . , [Cn]) ∈ H̃
0(

�− \ �+)n . ��
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4.2.3 The intersection is not a lattice polyhedron

We now deal with the case where �+ ∩ �− ⊆ MR is not a lattice polyhedron with respect
to the lattice M . Take any refinement M̃ ⊇ M such that M is a sublattice of finite index in
M̃ and �+ ∩ �− ⊆ M̃R = MR

∼= R
r is a lattice polyhedron with respect to M̃ . Dually,

Ñ ⊆ N ∼= Z
r is a sublattice of finite index. Let G := N/Ñ be the finite quotient group.

For a toric variety X = TV(�, N ) we can consider the fan � in NR = ÑR with respect to
the lattice Ñ and obtain a second toric variety X̃ = TV(�, Ñ ) realizing X as the geometric
quotient X = X̃/G. The lattice inclusion ι : Ñ ↪→ N induces the toric covering morphism
p : X̃ → X [3, Prop. 3.3.7]. We pull the sheavesOX (�+) andOX (�−) back to X̃ via p and
use the results from Sect. (4.2.2).

Example 21 For M = Z
r and its dual N = Z

r take M̃ to be ( 1d Z)r and correspondingly
Ñ = (dZ)r . Then each ray generator ṽρ ∈ Ñ of a ray ρ ∈ �(1) is the d-multiple of the
corresponding ray generator vρ ∈ N . The coefficients of the pullback p∗D of a Weil divisor
D on X will be d-multiples of the coefficients of D.

Construction 22 Back to our general case, the refinement M̃ ⊇ M was chosen so that
�+ ∩ �− is a lattice polyhedron with respect to M̃ and we are in the case of Sect. (4.2.2),
however on the space X̃ . We have the short exact extension sequence

0 → OX̃ (�+ ∩ �−)n → ⊕n
i=0OX̃ (∇i ) → OX̃ (�−) → 0 (4.23)

and the short exact extension sequence

0 → OX̃ (�+)n → H̃ → OX̃ (�−) → 0 (4.24)

induced by the embedding OX̃ (�+ ∩ �−)n ↪→ OX̃ (�+)n. Under the identification with

H̃
0
(�− \ �+)n, both correspond to the n-tuple ([C1], . . . , [Cn]) ∈ H̃

0
(�− \ �+)n by The-

orem 16 and Proposition 20. Since p : X̃ → X is affine, the pushfoward p∗ is exact and we
obtain a short exact extension sequence of sheaves on X:

0 → p∗OX̃ (�+)n → p∗H̃ → p∗OX̃ (�−) → 0. (4.25)

Recall that in the first step of the identification of Ext
(
OX̃ (�−),OX̃ (�+)n

)
0 with H̃

0(
�− \

�+)n we tensor sequence (4.24) with OX̃ (�−)−1. Its pushforward is

0 → p∗(OX̃ (�+ − �−))n → p∗(H̃′) → p∗OX̃ → 0. (4.26)

By the projection formula, this is equal to sequence (4.25) tensored withOX (�−)−1. For an
affine morphism p : X̃ → X of noetherian separated schemes and a short exact sequence
0 → F → G → H → 0 of quasi-coherent sheaves on X̃ there is a commuting diagram in
which all vertical morphisms are isomorphisms:


(X̃ ,F)

∼=


(X̃ ,G)

∼=


(X̃ ,H)
∂

∼=

H1(X̃ ,F)

∼=

H1(X̃ ,G)

∼=

. . .


(X , p∗F) 
(X , p∗G) 
(X , p∗H)
∂

H1(X , p∗F) H1(X , p∗G) . . . .

In particular, H1
(
X , p∗OX̃ (�+ − �−)

)n = H1
(
X̃ ,OX̃ (�+ − �−)

)n
and the image of

1 ∈ 
(X , p∗OX̃ ) under ∂ is the desired n-tuple ([C1], . . . , [Cn]).
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While p∗OX̃ (�+) = p∗ p∗OX (�+) and p∗OX̃ (�−) = p∗ p∗OX (�−) are in general not
equal to OX (�+) and OX (�−), respectively, the latter are a direct summand:

OX (�±) =
⊕

m∈M
OX (�±)m =

⊕

m∈M
(p∗ p∗OX (�±))m ⊆

⊕

m̃∈M̃
(p∗ p∗OX (�±))m̃ . (4.27)

Furthermore, OX (�±) corresponds precisely to the G-invariants of p∗ p∗OX (�±).

Example 23 For OX (�±) and the pullback p∗OX (�±) = OX̃ (�±) we have

OX (�±)(Uσ ) = χm±
σ · C[σ∨ ∩ M] ⊆ χm±

σ · C[σ∨ ∩ M̃] = p∗OX̃ (�+)(Uσ ), (4.28)

where {m±
σ }σ∈� is the Cartier data of D�± . All m±

σ are contained in M ⊆ M̃ . Via C[σ∨ ∩
M] ↪→ C[σ∨ ∩ M̃] we can view the above as an inclusion of C[σ∨ ∩ M]-modules. Any
M-graded module obtains an M̃-grading by adding zeros in degrees m̃ ∈ M̃ \ M .

For the sheaves in the short exact sequence (4.25)we have the M̃-graded subsheavesOX (�+)

of p∗OX̃ (�+) andOX (�−) of p∗OX̃ (�−). The inclusions are isomorphismswhen restricted
to M ⊆ M̃ . Because the morphisms in sequence (4.25) are homogeneous of degree 0, taking
the M-graded part of p∗H̃ yields a subsheaf H := ⊕m∈M (p∗H̃)m ⊆ p∗H̃ that fits into a
commuting diagram of exact sequences

0 OX (�+)n H OX (�−) 0

0 p∗OX̃ (�+)n p∗H̃ p∗OX̃ (�−) 0.

(4.29)

Proposition 24 Given the commuting diagram (4.29), the upper sequence

0 → OX (�+)n → H → OX (�−) → 0 (4.30)

corresponds to the n-tuple ([C1], . . . , [Cn]) ∈ H̃
0
(�− \ �+)n under the identification

Ext
(
OX (�−),OX (�+)n

)
0 = H̃

0
(�− \ �+)n .

Proof Tensoring diagram (4.29) with OX (�−)−1 yields the commutative diagram

0 OX (�+ − �−)n H ⊗OX OX (�−)−1 OX 0

0 p∗(OX̃ (�+ − �−))n p∗H̃′ p∗OX̃ 0,

(4.31)

the lower sequence inducing the desired n-tuple byConstruction 22.We obtain a commutative
diagram of long exact sequences

· · · 
(X ,OX )

(1)

H1
(
X ,OX (�+ − �−)

)n

(2)

· · ·

· · · 
(X , p∗OX̃ ) H1
(
X , p∗(OX̃ (�+ − �−))

)n · · ·
(4.32)
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The homomorphisms (1) and (2) restrict to isomorphisms in degree 0 ∈ M , so 1 ∈

(X ,OX )0 = 
(X , p∗OX̃ )0 also maps to ([C1], . . . , [Cn]) ∈ H̃

0
(�− \ �+)n . ��

Corollary 25 Sequence (4.30) induces n extensions inExt
(
OX (�−),OX (�+)

)
0, one for each

i = 1, . . . , n:

0 OX (�+)n

pri

H OX (�−) 0

0 OX (�+) Hi OX (�−) 0.

(4.33)

Via the identification Ext
(
OX (�−),OX (�+)

)
0 = H̃

0(
�− \ �+), the i-th extension corre-

sponds to the class [Ci ] ∈ H̃
0(

�− \ �+). In particular, the n extensions for i ∈ {1, . . . , n}
form a basis of Ext

(
OX (�−),OX (�+)

)
0.

Furthermore, sequence (4.30) is a universal extension for Ext
(
OX (�−),OX (�+)

)
0.

5 Using Klyachko’s description of toric reflexive sheaves

Webriefly showhow to construct the universal extension sequence in the casewhere�+∩�−
is not a lattice polyhedron in terms of Klyachko’s description of toric reflexive sheaves (see
[9, 10]; a short summary can be found in [13]; see [6, 11] for more recent approaches).

5.1 Describing sheaves via filtrations

Consider a toric variety X = TV(�) given by a fan � in NR. Let 1 ∈ T ⊆ X denote the
neutral element. EachOX -module E gives rise to aC-vector space E := E(1) := E1/mX ,1E1,
where E1 denotes the stalk of E at 1 ∈ X and mX ,1 the maximal ideal of 1. If E is a T -
equivariant, torsion free sheaf on X , the sections of E on the open, affine, T -invariant subsets
TV(σ ) ⊆ X with σ ∈ � are M-graded subsets of E ⊗C C[M]. If, in addition, E is reflexive,
then E is already determined by its restriction to open subsets whose complements are of
codimension equal or greater than two. Via Klyachko’s description [9], a toric reflexive sheaf
E corresponds to a set of decreasing Z-filtrations

F(E)•
ρ = [. . . ⊇ E�−1

ρ ⊇ E�
ρ ⊇ E�+1

ρ ⊇ . . .] (� ∈ Z) (5.1)

of the vector space E which are parametrized by the rays ρ ∈ �(1). Let vρ denote the
primitive generator of the ray ρ. The filtrations encode the sections of E on the T -invariant
open subsets Uρ = TV(ρ) ⊆ X defined by ρ. Namely, for u ∈ M ,

e ⊗ χu ∈ 
(Uρ, E) ⇐⇒ e ∈ E
−〈u,vρ 〉
ρ = F(E)

−〈u,vρ 〉
ρ . (5.2)

Remark 26 The reflexive sheaf E defines a toric vector bundle if it is subject to Kly-
achko’s compatibility condition [9]: For each cone σ ∈ � there exists a decomposition
E =⊕[u]∈M/M∩σ⊥ E[u] so that El

ρ =∑〈u,vρ 〉≥l E[u] for each ρ ∈ σ(1).
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5.2 Line and tangent bundles

Line bundles and the tangent are examples of toric bundleswith filtrations as follows (compare
[9, Example 2.3]).

Example 27 Let Dρ = orb(ρ) be the closure of the orbit defined by ρ ∈ �(1). For D =∑
ρ∈�(1) λρ Dρ, λρ ∈ Z, the invertible sheaf OX (D) is encoded by

E�
ρ :=

{
C if � ≤ λρ

0 if � ≥ λρ + 1

}
⊆ C =: E . (5.3)

Example 28 The tangent sheaf TX corresponds to the filtration

T �
ρ :=

⎧
⎨

⎩

NC = N ⊗Z C if � ≤ 0
span(ρ) if � = 1
0 if � ≥ 2.

⎫
⎬

⎭
⊆ NC =: E . (5.4)

Remark 29 Projective n-space P
n is the toric variety associated to the normal fan N (�n) of

the standard n-simplex �n . The fan N (�n) has n + 1 rays ρ0, . . . , ρn . The direct sum of
invertible sheaves ⊕n

j=0OPn (orb(ρ j )) corresponds to the filtrations

E�
ρi

:=
⎧
⎨

⎩

E if � ≤ 0
C · eρi if � = 1
0 if � ≥ 2

⎫
⎬

⎭
⊆ E := ⊕n

j=0C · eρ j . (5.5)

The canonical surjection π : E � NC, eρi �→ vρi , where vρi generates the ray ρi , induces
the filtrations of NC corresponding to TPn . On ker(π) ∼= C the induced filtrations are those
of the structure sheaf OPn . This yields the Euler sequence

0 → OPn → ⊕n
j=0OPn (orb(ρ j )) → TPn → 0. (5.6)

5.3 Pullbacks under toric morphisms

Let E be a toric reflexive sheaf on X := TV(�, N ). Similarly to Sect. (4.2.3), let Ñ ⊆ N be
a sublattice of finite index and X̃ := TV(�, Ñ ). Let vρ ∈ N denote the primitive generator
of the ray ρ ∈ �(1) in N and let vρ be its image in the quotient group G := N/Ñ . For
dρ := min{d ≥ 1 | d · vρ = 0 in G} the order of vρ in G, the multiple ṽρ := dρ · vρ ∈ Ñ is
the primitive generator of ρ in Ñ . Let p : X̃ → X be the toric covering morphism.

Analogously to [12, Prop. 4.9] one can give the following description of the filtrations of
a pullback of a toric reflexive sheaf on X along p.

Proposition 30 Suppose the toric reflexive sheaf E corresponds to the vector space E = E(1)
with filtrations (El

ρ)l∈Z for ρ ∈ �(1). Then the pullback F := p∗E of E is a toric reflexive

sheaf on X̃ . It corresponds to the same vector space F = E and the filtration for ρ ∈ �(1)

is given by Fl
ρ = E

# l
dρ

$
ρ , l ∈ Z, where #·$ denotes the ceiling function, giving the smallest

integer equal to or larger than the argument.

This filtration (Fl
ρ)l∈Z of F = E can be thought of as the filtration (El

ρ)l∈Z stretched by the
factor dρ and we will refer to it as the the dρ-th stretching of the filtration.
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5.4 Constructing the universal extension using Klyachko’s description

We are in the setting of Sect. (4.2.3). Consider the two line bundles OX (�+) and OX (�−)

on X . In Klyachko’s description, let them be given by the C-vector spaces with decreasing
Z-filtrations (E+, E•+,ρ)ρ∈�(1) and (E−, E•−,ρ)ρ∈�(1), respectively. By Proposition 30 the
pullback line bundlesOX̃ (�+) = p∗OX (�+) andOX̃ (�−) = p∗OX (�−) on X̃ correspond
to the C-vector spaces and decreasing Z-filtrations (F+, F •+,ρ)ρ∈�(1) and (F−, F •−,ρ)ρ∈�(1)

with F± = E± and Fl±,ρ = E
# l
dρ

$
±,ρ . The filtration F •

ρ for a ray ρ corresponding to a pullback
sheaf F = p∗E of E on X is a dρ-th stretching in the sense that a proper inclusion can only
occur every dρ steps in the filtration:

· · · = F
dρk
ρ︸︷︷︸

=Ek
ρ

⊇ F
dρk+1
ρ︸ ︷︷ ︸

=Ek+1
ρ

= · · · = F
dρ(k+1)
ρ︸ ︷︷ ︸
=Ek+1

ρ

⊇ F
dρ(k+1)+1
ρ︸ ︷︷ ︸
=Ek+2

ρ

= . . . (5.7)

In sequence (4.24) the outer two sheaves are the pullbacks of line bundles on X .

Lemma 31 The sheaf H̃ in sequence (4.24) is a reflexive sheaf on X̃ and corresponds to a
C-vector space with filtrations (H̃ , H̃ •

ρ)
ρ∈�(1)

, where the filtration H̃ •
ρ for the ray ρ ∈ �(1)

is a dρ-th stretching in the sense introduced above.

Proof Applying the contravariant functor Hom (−,OX̃ ) : Coh(X̃) → Coh(X̃) to the
sequence (4.24) twice yields a short exact sequence of double duals (using that the outer
two sheaves are locally free) with a canonical homomorphism from the original sequence.
Reflexivity of the outer two sheaves and the five lemma give reflexivity of the sheaf H̃. Let
H̃ •

ρ , F
•+,ρ and F •−,ρ , ρ ∈ �(1), denote the filtrations corresponding to the reflexive sheaves

H̃, OX̃ (�+) and OX̃ (�−), respectively. Since sequence (4.24) is T -equivariant, it induces
a short exact sequence of filtrations 0 → F •+,ρ → H̃ •

ρ → F •−,ρ → 0 for each ρ ∈ �(1).
Hence, the filtration H •

ρ of H is determined by the filtrations F •+,ρ and F •−,ρ and is thus also
dρ-th stretching. ��
Remark 32 A filtration of a vector space that is a d-th stretching can also be squished back:
for a vector space F with filtration

· · · = Fdk ⊇ Fdk+1 = · · · = Fd(k+1) ⊇ Fd(k+1)+1 = · · · (5.8)

the d-th squishing of (F, F •) is the vector space F with filtration

· · · ⊇ Fd(k−1) ⊇ Fdk ⊇ Fd(k+1) ⊇ · · · (5.9)

Corollary 33 The reflexive sheafH on X corresponding to (H , H •
ρ), where H := H̃ and the

filtration H •
ρ given by Hl

ρ := H̃
dρ l
ρ

( = H̃
dρ l−1
ρ = · · · = H̃

dρ l−(dρ−1)
ρ

)
, l ∈ Z, is the dρ-th

squishing of H̃ •
ρ , ρ ∈ �(1), fits into a short exact sequence

0 → OX (�+)n → H → OX (�−) → 0 (5.10)

that pulls back to the short exact sequence (4.24) under p : X̃ → X.
Sequence (5.10) is precisely the universal extension sequence (4.30).

Example 34 We continue with the example introduced in Sect. (4.2.1) using Klyachko’s
language. Let M = Z ⊕ Z, N = Z ⊕ Z and recall the smooth fan � in NR

∼= R
2 and the

lattice polytopes �+ and �− with respect to M = Z ⊕ Z:

123



Extensions of toric line bundles Page 25 of 26 3

with �+ not contained in �−. The intersection �+ ∩ �− is not a lattice polytope with
respect to Z ⊕ Z. Consider the sublattice Ñ = 2Z ⊕ Z ↪→ Z ⊕ Z = N and dually M =
Z ⊕ Z ↪→ ( 12Z) ⊕ Z = M̃ , so that �+ ∩ �− is a lattice polytope with respect to M̃ . Denote
the unions of the components of �− \ (�+ ∩ �−) with �+ ∩ �− by

Set X̃ := TV(�, Ñ ) and denote the covering morphism by p : X̃ → X . The minimal ray
generators ṽρi , i = 1, . . . , 6, in the lattice Ñ are ṽρ1 = (2, 0), ṽρ2 = (0, 1), ṽρ3 = (−2, 0),
ṽρ4 = (−2,−1), ṽρ5 = (−2,−2), and ṽρ6 = (0,−1). From thesewedetermine thefiltrations
of the divisors D̃�+∩�− , D̃�+ , D̃�− , D̃∇0 and D̃∇1 on X̃ . Taking pushouts allows us to
calculate the filtrations for H̃ on X̃ . In order to obtain the filtrations for the sheafH we need
to take the dρ-squishings of the filtrations for H̃, whenever dρ �= 1. This is the case for ρ1, ρ3
and ρ5, with dρ = 2 in each case. The following table depicts the resulting filtrations forH.

Note that the vector bundle H (and even the vector bundle H̃ on X̃ ) does not split. This
can be seen using a criterion from Klyachko, that a vector bundle splits if and only if the
vector spaces in the filtrations of all the rays form a distributive lattice, or, equivalently are
given by coordinate subspaces (compare [8, Cor. 2.2.3]).1

H 0 1 2 3

ρ1 ⊇ (C+ ⊕ C0 ⊕ C1)/C ⊇ 0 ⊇ 0 ⊇ 0 ⊇
ρ2 ⊇ (C+ ⊕ C0 ⊕ C1)/C ⊇ C1 ⊇ 0 ⊇ 0 ⊇
ρ3 ⊇ (C+ ⊕ C0 ⊕ C1)/C ⊇ (C+ ⊕ C0 ⊕ C1)/C ⊇ 0 ⊇ 0 ⊇
ρ4 ⊇ (C+ ⊕ C0 ⊕ C1)/C ⊇ (C+ ⊕ C0 ⊕ C1)/C ⊇ C+ ⊇ 0 ⊇
ρ5 ⊇ (C+ ⊕ C0 ⊕ C1)/C ⊇ (C+ ⊕ C0 ⊕ C1)/C ⊇ 0 ⊇ 0 ⊇
ρ6 ⊇ (C+ ⊕ C0 ⊕ C1)/C ⊇ C0 ⊇ 0 ⊇ 0 ⊇
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