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Preface

In this thesis, we consider problems of two different directions in extremal graph theory. In

the first part, we study orientation games, which are a variation of positional games. Two

players, referred to as OMaker and OBreaker, alternately direct edges of Kn, the complete

graph on n vertices. OMaker wins the game if the final complete digraph (a tournament) has

some predefined property P. Otherwise, OBreaker wins. Orientation games were studied by

several researchers, including Aigner, Alon, Beck, Ben-Eliezer, Bollobás, Krivelevich, Sudakov,

Szabó, Tuza and many others. For a given tournament Tk on k vertices, we consider the

orientation-tournament game Or(Tk) in which the property P OMaker tries to achieve is

that the final tournament contains a copy of Tk. We show that OMaker can win this game

whenever k 6 (2−o(1)) log2 n, whereas OBreaker has a winning strategy when k is roughly of

order 4 log2 n. For the lower bound, we work in a setting studied earlier by Beck and Gebauer

where OMaker wins if and only if the digraph consisting merely of her directed edges contains

the given tournament Tk. We improve the best known constant factor. Moreover, our lower

bound is tight for this setting, as is implied by the criterion of Erdős and Selfridge. The

second orientation game we consider is the oriented-cycle game, where OMaker wins if the

final tournament contains a directed cycle. As was recently shown by Ben-Eliezer, Krivelevich

and Sudakov, OMaker has a winning strategy in this game even when OBreaker is allowed

to direct up to roughly n/2 edges in each round. Let b be the number of edges OBreaker is

allowed to direct in one round. As was observed by Bollobás and Szabó, OBreaker can win

if b > n − 2. We improve this trivial upper bound and show that OBreaker has a winning

strategy when b > 5n/6 + 2. We adjust our strategy to the case when OBreaker is required to

direct exactly b edges and thus refute a conjecture by Bollobás and Szabó.

In the second part, we study minimal Ramsey graphs. A graph G is r-Ramsey for a graph

H, denoted by G→ (H)r if every r-colouring of the edges of G contains a monochromatic copy

of H. A graph G is r-Ramsey minimal for a graph H if it is r-Ramsey for H, but no proper
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subgraph of G is r-Ramsey for H. Let sr(H) be the smallest minimum degree an r-Ramsey

graph of H can have. The study of s2(H) was introduced by Burr, Erdős, and Lovász, who

showed that s2(Kk) = (k − 1)2. In this thesis, we settle a question by Szabó, Zumstein, and

Zürcher and prove that s2(Kk · K2) = k − 1, where Kk · K2 is the graph on k + 1 vertices

consisting of Kk with a pendant edge. This has the following interesting consequence. Two

graphs H and H ′ are Ramsey-equivalent if every graph G is 2-Ramsey for H if and only if it

is 2-Ramsey for H ′. A famous theorem of Nešetřil and Rödl implies that any graph H which

is Ramsey-equivalent to Kk must contain Kk. Our result implies therefore that any graph H

which is Ramsey-equivalent to Kk must be the disjoint union of Kk and a graph without a Kk.

Let µ(k, t) be the maximum m such that the graph H = Kk +mKt, consisting of Kk and m

disjoint copies of Kt, is Ramsey-equivalent to Kk. Szabó et al. gave a lower bound on µ(k, t).

We prove an upper bound on µ(k, t) which is roughly within a factor 2 of the lower bound.

Furthermore, we study the dependency of sr(Kk) on r and show that, under the condition

that k is constant, sr(Kk) has order of magnitude r2+o(1). We also give an upper bound on

sr(Kk) which is polynomial in both r and k, and we determine sr(K3) up to a factor of log r.

Organisation.

In Chapter 1, we introduce all necessary concepts for both parts and state our results precisely.

In Chapter 2, we study the orientation-tournament game and its aforementioned variant, the

tournament game. In Chapter 3, we give a winning strategy for OBreaker in the oriented-cycle

game. Chapter 4 and Chapter 5 are concerned with minimal Ramsey graphs. In Chapter 4,

we only consider the case when the number of colours is two. We show that Kk and Kk ·K2

are not Ramsey-equivalent, and we prove an upper bound on µ(k, t). Finally, in Chapter 5,

we consider how the parameter sr(Kk) changes when the number of colours r tends to infinity.

General notation.

For a natural number n, we write [n] := {1, . . . , n} for the first n integers. The expression

(n)k denotes the falling factorial, that is (n)k = n(n− 1) · · · (n− k + 1). The logarithm log x

is always in base 2, and lnn denotes the natural logarithm.

We use standard graph-theoretic notation and follow mainly the notation used in [3]. In

this thesis, a graph is a pair G = (V,E), where V is a finite set, and E ⊆
(
V
2

)
is a subset of

the pairs of elements of V . In particular, our graphs are always simple and do not have loops.

The elements in V are called vertices, and elements in E are called edges. We sometimes

identify a graph G with its edge set for convenience. We write v(G) := |V | for the number of

vertices, and e(G) := |E| for the number of edges. If E =
(
V
2

)
we call G a complete graph on
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n := v(G) vertices (or n-clique), and denote it by Kn. We say two vertices v, w are adjacent

if vw ∈ E, and we write N(v) = NG(v) for the set of all vertices adjacent to V , and denote

by deg(v) = degG(v) = |N(v)| the degree of v in G. Whenever the base graph G is clear from

the context we omit the subscript. By δ(G) we denote the minimum degree of G, the smallest

degree a vertex in G has. Further standard graph parameters we use are the independence

number α(G), the maximum size of a subset of the vertices without edges; the clique number

ω(G), the maximum size of a clique in G; and the chromatic number χ(G), the smallest

number k such that the vertices can be coloured with k colours so that no two vertices of the

same colour are adjacent.

More generally, we call H a hypergraph if H ⊆ 2V is a subset of the powerset of some

finite set V . The underlying set V of vertices is usually clear from the context. Elements in

H are then called hyperedges. The hypergraph H is called t-uniform, if all hyperedges have

cardinality t.

A directed graph D is a subset D ⊆ V × V for some finite set V , called the set of vertices

again. Elements in D are called arcs. We provide more notation about directed graphs at the

beginning of Chapter 3.

Our results are mostly of asymptotic nature and we use standard asymptotic notation, as

for example in [3]. That is, for two functions f, g : N→ R, we write f = O(g) if f(n) 6 cg(n)

for sufficiently large values of n, where c > 0 is an absolute constant. We write f = Ω(g) if

g ∈ O(f); and f = Θ(g) if f ∈ O(g) and f ∈ Ω(g). If the ratio f(n)/g(n) tends to zero as n

tends to infinity we write f = o(g).
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Introduction

1.1 Maker–Breaker games with orientations

Let X be a finite set and let F ⊆ 2X be a family of subsets. In the classical Maker–Breaker

game (X,F), two players, called Maker and Breaker, alternately claim elements of X, with

Maker going first. X is usually called the board, and F is referred to as the family of winning

sets. Maker wins the game if she claims all elements of some winning set; otherwise Breaker

wins. A well-studied class of Maker–Breaker games are graph games, where the board is

the edge set of a complete graph Kn, and Maker’s goal is to create a graph which possesses

some fixed (usually monotone) property P . A widely investigated example of such a game

is the k-clique game (sometimes abbreviated by clique game) where Maker wins if and only

if, by the end of the game, her graph contains a clique of size at least k. In [30], Erdős and

Selfridge considered the largest value kcl = kcl(n) such that Maker has a winning strategy in

the kcl-clique game. By applying their well-known Erdős-Selfridge criterion, they obtained

that kcl 6 (2− o(1)) log n (all logarithms are in base 2, unless stated otherwise). Later, Beck

[8] introduced the method of self-improving potentials and used his technique to determine

kcl exactly, namely

kcl = b2 log n− 2 log log n+ 2 log e− 3 + o(1)c , (1.1)

see Theorem 6.4 in [8].

1.1.1 On the random graph intuition for the tournament game

There is an interesting relation between kcl and the corresponding extremal value k∗cl for a game

where Maker and Breaker are replaced with “random players” which select their edge in each

1



2 1. INTRODUCTION

round uniformly at random from all previously unclaimed edges: In this game, RandomMaker

creates a random graph G(n,m) with m =
⌈
1
2

(
n
2

)⌉
edges chosen uniformly at random from

all
(
n
2

)
edges. It is well-known that the size of the largest clique of G(n,m) is (2− o(1)) log n

asymptotically almost surely, so the threshold where the random k-clique game turns from

a RandomMaker’s win to a RandomBreaker’s win is around (2 − o(1)) log n; just like in the

deterministic game, as shown by Theorem 1.1 .

For quite a few other games it has been found that the outcome of the random game is

essentially the same as the outcome of the deterministic game (see, e.g., [6, 10, 42, 44, 54]).

This phenomenon, known as the random graph intuition or the Erdős paradigm, was first

pointed out by Chvátal and Erdős [19], and later investigated further in many papers of Beck

[4, 5, 6, 7] and Bednarska and  Luczak [10].

A particular example that does not support the random graph intuition is the biased (1 : b)

non-planarity game. In that game, Maker claims one edge in each round and Breaker claims

b edges in each round. Maker wins if her final graph has no planar embedding. Note that

non-planarity is a monotone increasing property (every supergraph of a non-planar graph

is non-planar), so that if Maker wins the (1 : b) game for some Breaker bias b then Maker

also wins the (1 : b − 1) game. Therefore, the game has a natural threshold bias bnp where

the game turns from a Maker win to a Breaker win. Hefetz, Krivelevich, Stojaković and

Szabó [44] showed that in the deterministic game, the threshold bias bnp is asymptotically

n/2. Note that in the random analogue, when both players choose their edges uniformly at

random from all remaining edges, Makers final graph has the same distribution as G(n,m′),

where m′ =
⌈

1
b+1

(
n
2

)⌉
. But known results for random graphs imply that G(n,m′) is planar

a.a.s. for m′ 6 n/2 + o(n); and G(n,m′) is non-planar a.a.s. for m′ > n/2 + o(n). That is,

the threshold b∗np from a RandomMaker win to a RandomBreaker win is asymptotically n,

twice the threshold as for the deterministic game. It is largely open which suitable criteria

guarantee for a given game that the random graph intuition holds.

We want to consider a variant of the k-clique game and investigate whether that variant

supports the random graph intuition. A tournament is a directed graph where every pair

of vertices is connected by a single arc (directed edge). The k-tournament game T (k, n) is

played on Kn. At the beginning of the game Breaker fixes an arbitrary goal tournament Tk

on k vertices. In each round, Maker and Breaker then alternately claim one unclaimed edge

(as in classical graph games), and – additionally – select one of the two possible orientations

for their chosen edge. If, at the end of the game, Maker’s digraph contains a copy of the

goal tournament Tk, she wins; otherwise, Breaker is the winner. Note that for the outcome of
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this particular game, the orientations of Breaker’s edges are irrelevant. In the light of general

orientation games, which we shall introduce shortly, they become meaningful though.

Let kt = kt(n) denote the largest k such that Maker has a winning strategy in the game

T (k, n). To get an indication for the value of kt, Beck analyzed the random tournament game

in which RandomMaker and RandomBreaker each choose their edge and the corresponding

orientation uniformly at random. He remarks in [8] that the threshold where the random game

turns from a RandomMaker’s win to a RandomBreaker’s win is around (1 − o(1)) log n. We

verify this observation and show in Section 2.1 that for k 6 log n− 2 log log n RandomMaker

wins the random tournament game a.a.s., and for k > log n + 1 RandomBreaker wins the

random tournament game a.a.s. Motivated by the question whether the tournament game

supports the random graph intuition, Beck [8] asked to determine kt. Since a winning strategy

for Breaker in the k-clique game allows him to prevent Maker from achieving any tournament

on k vertices, we have

kt 6 kcl = (2− o(1)) log n. (1.2)

The second equation follows from (1.1). From the other side, Beck [8, p. 457] derived that

kt >

(
1

2
− o(1)

)
log n.

In fact, he proved the stronger statement that for k = (1/2− o(1)) log n, Maker has a strategy

to occupy a graph containing a copy of every tournament on k vertices. The lower bound on

kt was improved by Gebauer in [41] to kt > (1− o(1)) log n. We show that the upper bound

is tight. This means that kt is twice as large as the random graph intuition suggests.

Theorem 1.1.1 ([21]). kt > 2 log n− 2 log log n− 12 = (2− o(1)) log n.

This Theorem is joint work with Dennis Clemens and Heidi Gebauer, and we prove it in

Chapter 2. As a direct consequence of (1.1), (1.2) and Theorem 1.1.1, the asymptotics of kt

are determined:

kt = 2 log n− 2 log log n+ Θ(1) = (2− o(1)) log n.

Remarkably, the upper bound in the clique-game and the lower bound in the tournament

game differ only by an additive constant of 12 (for n large enough). Thus, the additional

constraint that the edges have to be oriented in a particular way makes it only a little harder

for Maker.

Our result seemingly refutes the random graph intuition described above. However, as a

first step towards the proof of Theorem 1.1.1 we will define a suitable, classical graph game
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G (with no edge-orientations involved), which has the property that every winning strategy

for Maker in G directly gives her a winning strategy for the tournament game. The idea is

as follows. Let Tk be the tournament on k vertices that Breaker chooses at the beginning,

with V (Tk) = {u1, . . . , uk}. First, Maker partitions the vertex set into k equally sized parts:

V (Kn) = V1∪̇ . . . ∪̇Vk. Then she identifies the class Vi with the vertex ui: Whenever Maker

claims an edge between Vi and Vj , she chooses the direction according to the direction of uiuj

in Tk. Therefore, her goal reduces to gaining a copy of a clique Kk, containing one vertex

from each class Vi. Let us consider the corresponding random game on this reduced board,

where in every round, each player claims a random unclaimed edge of the complete k-partite

graph with vertex classes V1, . . . , Vk, each Vi having size rougly n/k. We shortly sketch why

the threshold where this game turns from a RandomMaker’s win to a RandomBreaker’s win

is around (2− o(1)) log n: By standard techniques it can be shown that the expected number

of k-cliques in RandomMaker’s graph is

(1 + o(1))
(n
k

)k
2−(k2),

which jumps from below one to above one at k = 2 log n − 2 log log n − 1 + o(1). Analo-

gously to the proof of the concentration result for the largest clique size in the random graph

G(n,m) [14], it can be shown that if

{
k 6 (2− o(1)) log n
k > (2− o(1)) log n

}
then RandomMaker’s graph{

contains
does not contain

}
a k-clique a.a.s. Thus, from a more subtle point of view, the random

graph intuition can be considered valid.

1.1.2 Orientation games

The tournament game discussed previously constitutes a bridge between classical Maker–

Breaker games and orientation games. In the tournament game, the players do not merely

claim edges, but also orient them. Still, for the outcome of the game, only Maker’s arcs are

relevant. If we go one step further and take Breaker’s arcs into account for the outcome of

the game, we find ourselves in the realm of orientation games.

Orientation games were studied among others by Ben-Eliezer, Krivelevich and Sudakov

in [11], and we follow their notation. In orientation games, the board consists of the edges

of the complete graph Kn. In the (p : q) orientation game, the two players called OMaker

and OBreaker, orient previously undirected edges alternately. OMaker starts, and in each

round, OMaker directs between one and p edges, and then OBreaker directs between one and
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q edges. At the end of the game, the final graph is a tournament on n vertices. OMaker wins

the game if this tournament has some predefined property P. Otherwise, OBreaker wins.

We only consider the case when p = 1. We refer to the (1 : 1) game as the unbiased

orientation game, and the (1 : b)-game as the b-biased orientation game when b > 1. Increasing

b can only help OBreaker, so the game is bias monotone. Therefore, any such game has a

threshold t(n,P) such that OMaker wins the b-biased game when b 6 t(n,P) and OBreaker

wins the game when b > t(n,P).

In a variant, OBreaker is required to direct exactly b edges. We refer to this variant as

the strict b-biased orientation game, where the strict rules apply. Accordingly, we say the

monotone rules apply when OBreaker is free to direct between one and b edges. Playing

the exact bias in every round may be disadvantageous for OBreaker, so the existence of a

threshold as for the monotone rules is not guaranteed in general. We therefore define t+(n,P)

to be the largest value b such that OMaker has a strategy to win the strict b-biased orientation

game, and t−(n,P) to be the largest integer such that for every b 6 t−(n,P), OMaker has a

strategy to win the strict b-biased orientation game. Trivially, t(n,P) 6 t−(n,P) 6 t+(n,P).

The threshold bias t(n,P) was investigated in [11] for several orientation games. However,

the relation between all three parameters in question is still widely open. It is not even clear

whether t−(n,P) and t+(n,P) need to be distinct values.

We consider the following orientation-version of the tournament game. Let Tk be a given

tournament on k vertices. By Or(Tk) = Or(Tk, n) we denote the unbiased orientation game

in which OMaker aims to achieve that the final digraph contains a copy of Tk. In the spirit

of the k-clique game and the k-tournament game, it is quite natural to ask for the largest

integer ko = ko(n) such that OMaker has a winning strategy for the game Or(Tk) for every

tournament Tk on ko vertices.

Trivially, ko is at least as large as the corresponding extremal number kt for the ordinary

tournament game. We show that, asymptotically, ko is at most twice as large as kt.

Theorem 1.1.2 ([21]). Let n be large enough, let k > 4 log n+ 2 be an integer and let Tk be

a tournament on k vertices. Then OBreaker has a strategy to win the game Or(Tk, n).

This is joint work with Dennis Clemens and Heidi Gebauer and we prove it in Chapter 2.

Together with Theorem 1.1.1, since kt 6 ko as mentioned, we therefore get

2 log n(1− o(1)) 6 ko 6 4 log n(1 + o(1)).

The third game we consider here is the oriented-cycle game, which is an orientation game in

which OMaker wins if the final tournament contains a directed cycle. Equivalently, OBreaker



6 1. INTRODUCTION

wins if the final tournament is a transitive tournament. Let P be the property of containing

a directed cycle. It is easy to see that in the unbiased orientation game, OMaker wins on

Kn as soon as n > 4 (and OBreaker wins for n 6 3). Therefore, it is natural to provide

OBreaker with more power, i.e. to introduce the aforementioned bias. The strict version of

this game was studied by Alon (unpublished result) , and later by Bollobás and Szabó in

[16]. They show that t+(n,P) > b(2 −
√

3)nc. Moreover, they remark that the proof also

works for the monotone rules, which implies that t(n,P) > b(2−
√

3)nc. In [11], Ben-Eliezer,

Krivelevich and Sudakov improve the lower bound and show that for b 6 n/2 − 2, OMaker

has a strategy guaranteeing a cycle in the b-biased orientation game, i.e. t(n,P) > n/2 − 2.

For an upper bound, it is rather simple to see that OBreaker wins the b-biased oriented-cycle

game for b > n− 2. A short argument is given in [11] when the monotone rules apply, which

easily extends to the strict rules: During the game, let D denote the digraph of already

directed edges, and let A ⊆ [n] be the set of active vertices, i.e. the vertex set spanned by the

complement of D. Then, no matter which edge (v, w) OMaker directs, OBreaker can always

maintain the situation that D[A] forms a directed star (he reduces A by at least one vertex

in each round). We refer to this as the trivial strategy in Kb+2. Therefore, t+(n,P) 6 n− 3.

Bollobás and Szabó conjectured that this upper bound is tight for the strict b-biased oriented-

cycle game. We give a strategy for OBreaker when b > 5n/6 + 2 in the monotone b-biased

oriented-cycle game.

Theorem 1.1.3 ([22]). For b > 5n/6 + 2, OBreaker has a strategy to prevent OMaker from

closing a directed cycle in the b-biased orientation game played on Kn. In particular, t(n,P) 6

5n/6 + 1.

Furthermore, we adjust our strategy to the strict rules and show the following.

Theorem 1.1.4 ([22]). Let 0 < c < 1 be a constant. Then there exists n0 = n0(c) such

that for all n > n0 and b > n − c
√
n, OBreaker has a strategy to prevent OMaker from

closing a directed cycle in the strict b-biased orientation game played on Kn. In particular,

t+(n,P) 6 n− c√n− 1.

These two theorems are joint work with Dennis Clemens and we prove them in Chapter 3.

We want to remark that in the latter theorem, the only requirement needed for n0(c) is that

b
√
bc > n− b+ 1. So for c = 1

2 for example, this is true for all n > 10. Hence, Theorem 1.1.4

refutes the above conjecture of Bollobás and Szabó as soon as n− 1
2

√
n 6 n− 3, which holds

for n > 36.
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1.2 Ramsey-minimal graphs

A graph G is Ramsey for a graph H (or H-Ramsey), denoted by G→ H, if any two-colouring

of the edges of G contains a monochromatic copy of H. The fact that for every graph H

there is a graph G such that G is H-Ramsey was first proved by Ramsey [49] in 1930 and

rediscovered independently by Erdős and Szekeres a few years later [34]. Ramsey theory is

currently one of the most active areas of combinatorics with connections to number theory,

geometry, analysis, logic, and computer science.

1.2.1 What is Ramsey-eqivalent to the clique?

A fundamental problem in graph Ramsey theory is to understand the graphs G for which

G is Kk-Ramsey, where Kk denotes the complete graph on k vertices. The Ramsey number

r(H) is the minimum number of vertices of a graph G which is H-Ramsey. The most famous

question in this area is that of estimating the Ramsey number R(k) := r(Kk). Classical

results of Erdős [31] and Erdős and Szekeres [34] show that 2k/2 6 R(k) 6
(
2k−2
k−1

)
6 22k.

There have been several improvements on these bounds. A now standard application of

the Lovász Local Lemma (proven by Spencer [53]) gives the best known lower bound of
√
2
e k2k/2(1 + o(1)) 6 R(k). From the other side, Conlon [23] showed that for every s > 0,

there is a constant Cs such that R(k) 6 Cs
ks

(
2k−2
k−1

)
. Despite much attention, the constant

factors in the above exponents remain the same though. Given these difficulties, the field has

naturally stretched in different directions. Many foundational results were proved in the 1970s

which showed the depth and breadth of graph Ramsey theory. For instance, the size-Ramsey

number r̂(H), which is the minimum number of edges of a graph G which is H-Ramsey,

was introduced by Erdős, Faudree, Rousseau and Schelp [32], and studied by many others

extensively (see [35] for a survey). Another famous theorem of Nešetřil and Rödl [47] states

that for every graph H there is a graph G with the same clique number as H such that

G→ H.

Szabó, Zumstein, and Zürcher [55] defined two graphs H and H ′ to be Ramsey-equivalent

if for every graph G, G is H-Ramsey if and only if G is H ′-Ramsey. The result of Nešetřil

and Rödl [47] above implies that any graph H which is Ramsey-equivalent to the clique Kk

must contain a copy of Kk. We are interested in the problem of determining which graphs are

Ramsey-equivalent to Kk. In other words, knowing that G is Ramsey for Kk, what additional

monochromatic subgraphs must occur in any two-colouring of the edges of G?
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In [55] it was conjectured that for large enough k, the clique Kk is Ramsey-equivalent

to Kk · K2, the graph on k + 1 vertices consisting of Kk with a pendant edge. We settle

this conjecture in the negative, showing that, for all k, the graphs Kk and Kk · K2 are not

Ramsey-equivalent. Together with the above discussion, this implies the following theorem.

Theorem 1.2.1 ([39]). Any graph which is Ramsey-equivalent to the clique Kk must be the

disjoint union of Kk and a graph of smaller clique number.

It is therefore natural to study the following function. Let µ(k, t) be the maximum m such

that Kk and Kk+m ·Kt are Ramsey-equivalent, where Kk+m ·Kt denotes the disjoint union

of a Kk and m copies of Kt. It is easy to see [55] that µ(k, k) = 0 and µ(k, 1) = R(k) − k.

For t 6 k − 2 Szabó et al. [55] proved the lower bound

µ(k, t) >
R(k, k − t+ 1)− 2(k − t)

2t
, (1.3)

where R(k, s) is the asymmetric Ramsey number denoting the minimum n such that every

red-blue edge-colouring of Kn contains a monochromatic red copy of Kk or a monochromatic

blue copy of Ks. We prove the following theorem which, together with (1.3), determines

µ(k, t) up to roughly a factor 2.

Theorem 1.2.2 ([39]). For k > t > 3,

µ(k, t) 6
R(k, k − t+ 1)− 1

t
.

Our Theorem misses the case when t = 2. However, it is easy to see that µ(k, 2) 6
1
2(R(k) − k): If m > 1

2(R(k) − k), consider Kn where n = R(k). By definition, Kn → Kk,

however Kn has too few vertices to accommodate a Kk+m·K2. Note that R(k) 6 2R(k, k−1),

a consequence of the result of Erdős and Szekeres in [34]. So this trivial upper bound is roughly

a factor two apart from the upper bound in Theorem 1.2.2; and roughly a factor of four away

from the lower bound.

A graph G is Ramsey-minimal with respect to H (or H-minimal) if G is H-Ramsey but no

proper subgraph of G is H-Ramsey. We denote the class of all H-minimal graphs by M(H).

Note that G is H-Ramsey if and only if G contains an H-minimal graph, so determining the

H-Ramsey graphs reduces to determining the H-minimal graphs. Also, two graphs H and H ′

are Ramsey-equivalent if and only if M(H) =M(H ′).

Understanding the the class M(H) and properties of the graphs therein is an important

problem in graph Ramsey theory. For example, the minimum number of vertices of a graph in
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M(H) is precisely the Ramsey number r(H), and the minimum number of edges of a graph

in M(H) is precisely the size-Ramsey number r̂(H). In [18], Burr, Erdős and Lovász showed

that |M(Kk)| is infinite. This was strengthened in [17] by Burr, Nešetřil and Rödl who showed

that there are at least cn logn graphs on n vertices which are Ramsey-minimal for Kk, where

c = c(k) > 1 is a constant and n is large enough. Finally, Rödl and Siggers [50] showed that

the latter statement is true if we replace cn logn by cn
2
. Note that the order of magnitude of

the exponent is best possible since there are at most 2n
2

graphs on n vertices.

Another parameter of interest is s(H), the smallest minimum degree of an H-minimal

graph. That is,

s(H) := min
G∈M(H)

δ(G),

where δ(G) is the minimum degree of G. It is a simple exercise to show [40] that for every

graph H, we have 2δ(H) − 1 6 s(H) 6 r(H) − 1. Rather surprisingly, the upper bound

is far from optimal, at least for cliques. Indeed, Burr, Erdős, and Lovász [18] proved that

s(Kk) = (k − 1)2. This is quite notable, as the simple upper bound mentioned above is

exponential in k.

Szabó, Zumstein, and Zürcher [55] proved that the lower bound is tight for a large class

of bipartite graphs, including paths, even cycles and trees. On the other hand, the authors

proved in the same paper that s(Kk ·K2) > k − 1. We prove the following theorem, showing

that this lower bound is sharp.

Theorem 1.2.3 ([39]). For all k > 2, s(Kk ·K2) = k − 1.

Note that Theorem 1.2.3 implies that Kk and Kk ·K2 are not Ramsey-equivalent. Indeed,

for k = 2 this is trivial, and for k > 3 we have (k− 1)2 = s(Kk) > s(Kk ·K2) = k− 1. Hence,

Theorem 1.2.1 is a corollary of Theorem 1.2.3.

1.2.2 Ramsey-minimal graphs for r colours

An interesting direction of research in graph Ramsey theory is to generalize the above notions

to more than two colours and to obtain estimates on various parameters for the corresponding

graphs. A graph G is r-Ramsey for a graph H, denoted by G → (H)r, if any r-colouring of

the edges of G contains a monochromatic copy of H in some colour. It follows recursively

from the result for two colours that for every graph H there exists a graph G that is r-Ramsey

for H. Similarly as above, we denote by Rr(k) the r-Ramsey number of the clique Kk on

k vertices, the smallest natural number n such that any edge-colouring of the edges of Kn
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contains a monochromatic copy of Kk. If the known bounds for the case when r = 2 have been

already unsatisfactorily far apart, all we can hope for r > 3 is fishing in murky waters – or

excitement of how much depth there is left to discover. We list some of the developments here

and refer the reader to an updated survey by Radziszowski [48]. Even for k = 3, the triangle

case, the best known upper bound, proven by Wan [56], is of order Θ(r!) = exp[Θ(r ln r)],

whereas from the other side, Rr(3) > cr, for some fixed constant 3 < c < 3.2, is the best

known lower bound, see Xiadong et. al [58]. A general upper bound follows from a recursive

formula given by Greenwood and Gleason [43], who show that Rr(k) 6 2+rR(k, . . . , k, k−1),

where R(k, . . . , k, k − 1) denotes the smallest natural number n such that in any r-colouring

of the edges of Kn there exists either a monochromatic Kk in one of the colours 1, . . . , r − 1

or a monochromatic Kk−1 in colour r. The probabilistic method that Erdős used to prove the

lower bound 2k/2 6 R(k) generalizes to more than two colours and yields Rr(k) > rk/2, as

was observed by Chvátal and Harary in [20]. If k is constant the bound Rr(k) > c(k)(2k−3)r

by Abbott and Hanson [1] gives a better estimate.

Again, we can study the graphs which are minimal with respect to being r-Ramsey. We

call a graph G r-Ramsey-minimal for H (or r-minimal for H), if G→ (H)r, but G′ 9 (H)r

for any proper subgraph G′  G. Let then Mr(H) denote the class of all graphs G that

are r-Ramsey-minimal with respect to H. As noted above, the set Mr(H) is nonempty for

any H. Moreover, Rödl and Siggers [50] showed that for all k > 3 and r > 2 there exists a

constant c = c(r, k) > 1 such that for n large enough there are at least cn
2

graphs G on at

most n vertices that are r-Ramsey for the clique Kk. In particular, |Mr(Kk)| is infinite.

The following notion is a natural generalization of the smallest minimum degree of Ramsey-

minimal graphs s(H). Define sr(H) by

sr(H) := min
G∈Mr(H)

δ(G),

the minimal minimum degree of r-Ramsey-minimal graphs.

We are interested in this quantity when H is a clique of fixed size, and we study how the

behaviour of sr(Kk) changes as r grows. When H is the triangle, we determine the asymptotic

behaviour of sr(K3) up to a factor of roughly log r.

Theorem 1.2.4 ([38]). There exist constants c, C > 0 and r0 ∈ N such that for all r > r0,

cr2 ln r 6 sr(K3) 6 Cr2 ln2 r.

It is a fairly simple observation that sr(Kk) > sr−1(Kk), and it will follow from a stronger

statement (cf. Lemma 5.1.3). On the other hand, fixing r, it is not clear that sr(Kk) is
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increasing in k as well: Removing a vertex of minimum degree of some r-minimal graph G

leaves a graph G′ which is not r-Ramsey for Kk; however, G′ → (Kk−1)r and moreover, it is

far from being r-minimal for Kk−1. Therefore, the lower bound on sr(K3) does not necessarily

imply that also sr(Kk) = Ω
(
r2 log r

)
is true. We prove a lower bound on r which is super-

quadratic and show that, under the condition of k being a constant, sr(Kk) is at most a

polylog(r)-factor above the lower bound.

Theorem 1.2.5 ([38]). For all k > 4, there exist constants c = c(k), C = C(k) > 0 and

r0 ∈ N such that for all r > r0,

c r2
√

ln r

ln ln r
6 sr(Kk) 6 C r2 (2 ln r)8(k−1)

2
.

The proof of the upper bounds in Theorem 1.2.4 and Theorem 1.2.5 are of asymptotic

nature and require r to be rather large. Moreover, the exponent of the (log r)-factor in the

latter upper bound depends on the size of the clique. Therefore, we also prove a seemingly

weaker upper bound of sr(Kk) which is polynomial both in r and in k, but which is applicable

for small values of r and k.

Theorem 1.2.6 ([38]). For k, r > 3, sr(Kk) 6 8(k − 1)6r3.

The results of this Section are joint work with Jacob Fox, Andrey Grinshpun, Yury Person

and Tibor Szabó, we prove them in Chapter 5.
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Tournament games

In this chapter, we analyse the tournament game and the orientation tournament game intro-

duced in Section 1.1.1 and 1.1.2. Recall that both games, T (k, n) and Or(Tk, n) are played on

the edge set of Kn. In the tournament game T (k, n), Breaker fixes a goal tournament Tk on

k vertices at the beginning. In the orientation tournament game, the goal tournament Tk is

given. Then, in both games, the two players alternately claim and direct one undirected edge.

In T (k, n), Maker wins if her digraph contains a copy of Tk at the end of the game. Oth-

erwise, Breaker wins. In Or(Tk, n), OMaker wins if the tournament on n vertices (including

OBreaker’s arcs) contains a copy of Tk. Otherwise, OBreaker wins.

First, we study the random tournament game in which both players choose and direct their

edge in each round uniformly at random from all remaining edges. We show that the threshold

when the game turns from a RandomMaker win to a RandomBreaker win is asymptotically

equal to log n. In Section 2.2, we prove Theorem 1.1.1, and in Section 2.3, we prove Theorem

1.1.2. We close this chapter with a discussion on open problems related to both games.

2.1 The probabilistic analysis for the tournament game

In this section, we investigate the tournament game when the two intelligent players Maker

and Breaker are replaced by two random players RandomMaker and RandomBreaker. At

the beginning of the game, RandomBreaker chooses a goal tournament Tk on vertex set [k]

(the actual choice of Tk is irrelevant). Then, RandomMaker and RandomBreaker alternately

each choose their edge among the unclaimed edges on Kn and the corresponding orientation

uniformly at random. At the end of the game, RandomMaker’s graph is a random digraph on

m =
⌈
1
2

(
n
2

)⌉
edges, each having one of the two possible directions with probablitiy 1/2. Let us

13
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denote by D(n,m) the following random digraph model: A digraph D is drawn from D(n,m),

denoted by D ∼ D(n,m), if D is a digraph on vertex set [n] with m (undirected) edges

chosen uniformly at random from all
(
n
2

)
pairs, each edge given one of its two orientations

with probability 1/2. Intuitively, if we restrict our view to one particular edge, it belongs to

Maker’s graph with probability roughly 1/2, and with probability 1/2 it is directed “in the

right” direction. In the binomial random graph G(n, 1/4), in which every possible edge occurs

with probability 1/4, the size of the largest clique is roughly 2 log4 n = log n. This vague idea

is made precise in the following theorem.

Theorem 2.1.1. For k ∈ N, let Tk be a given tournament on k vertices. Let m =
⌈
1
2

(
n
2

)⌉
and let D ∼ D(n,m).

(i) If k 6 (1− o(1)) log n, then D contains a (labelled) copy of Tk a.a.s.

(ii) If k > log n+ 2, then D contains no copy of Tk a.a.s.

The proof of this theorem is a standard application of the first and second moment method.

Let n ∈ N, and let 1 6 k 6 n. Further, let Tk be the tournament on vertex set [k], and

let D ∼ D (n,m). A labelled copy of Tk in D is an injective function ϕ : [k] → [n] such that

for all i, j ∈ [k], i 6= j,

(i, j) ∈ E(Tk) if and only if (ϕ(i), ϕ(j)) ∈ E(D).

We count the number of labelled copies of Tk in D. For an injection ϕ : [k] → [n], let

Xϕ denote the indicator random variable of the event that ϕ is a copy of Tk in D, and let

X =
∑

ϕXϕ be the number of (labelled) copies of Tk in D, where the sum runs over all

injective maps [k]→ [n]. Let p := P(Xϕ) for some injection ϕ : [k]→ [n].

Claim 2.1.2. For k = o(n), (
1−O

(
k4

n2

))
4−(k2) 6 p 6 4−(k2)

Proof. Recall that m =
⌈
1
2

(
n
2

)⌉
. We assume that

(
n
2

)
is even and omit ceiling signs from now

on for clarity of presentation. The case when
(
n
2

)
is odd is analogous. Let ϕ = (n1, . . . , nk),

where ni = ϕ(i). Then p is the probability that D induces an ordered copy of Tk on vertices

n1, . . . , nk. For D to induce an ordered copy of Tk, all the (unordered) edges ninj need to be

chosen to belong to D, and all pairs need to be given the correct orientation, according to the
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orientation of the edge ij in Tk. Therefore,

p = 2−(k2) ·

((
n
2

)
−
(
k
2

)
m−

(
k
2

) )((
n
2

)
m

) = 2−(k2) ·
(m)(k2)(
n
2

)
(k2)

,

where (a)b denotes the falling factorial. Now,

(m)(k2)
=

(
1

2

(
n

2

))
(k2)

=
1

2

(
n

2

)
·
(

1

2

(
n

2

)
− 1

)
· . . . ·

(
1

2

(
n

2

)
−
(
k

2

)
+ 1

)
= 2−(k2) ·

(
n

2

)
·
((

n

2

)
− 2

)
· . . . ·

((
n

2

)
− 2

(
k

2

)
+ 2

)
.

For the upper bound, note that therefore

p = 4−(k2) ·
(
n
2

)
·
((
n
2

)
− 2
)
· . . . ·

((
n
2

)
− 2
(
k
2

)
+ 2
)

(
n
2

)
·
((
n
2

)
− 1
)
· . . . ·

((
n
2

)
−
(
k
2

)
+ 1
) 6 4−(k2).

For the lower bound, we estimate

p = 4−(k2) ·
(
n
2

)
·
((
n
2

)
− 2
)
· . . . ·

((
n
2

)
− 2
(
k
2

)
+ 2
)

(
n
2

)
·
((
n
2

)
− 1
)
· . . . ·

((
n
2

)
−
(
k
2

)
+ 1
)

> 4−(k2)

((
n
2

)
− 2
(
k
2

)
+ 2(

n
2

)
−
(
k
2

)
+ 1

)(k2)

= 4−(k2)

(
1−

(
k
2

)
− 1(

n
2

)
−
(
k
2

)
+ 1

)(k2)

.

Now, for k = o(n), x :=
(k2)−1

(n2)−(k2)+1
6 1 for n large enough, and so by Bernoulli’s inequality

(1− x)(
k
2) > 1− x

(
k
2

)
, i.e.

p > 4−(k2)

(
1−

(
k
2

)
− 1(

n
2

)
−
(
k
2

)
+ 1

)(k2)

> 4−(k2)

(
1−

(
k
2

)2(
n
2

)
−
(
k
2

)
+ 1

)

= 4−(k2)
(

1−O
(
k4

n2

))
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The following is immediate.

Corollary 2.1.3. For k2 = o(n), E(X) = p · (n)k = 4−(k2) · (n)k · (1− o(1)).

This observation enables us to prove part (ii) of the main theorem of the section.

Proof of Theorem 2.1.1 (ii). For k = log n+ 2, by the usual first moment argument,

P(D contains a (labelled) copy of Tk)

6 E(X) 6 nk4−(k2) = 2k(logn−(k−1)) = 2−k → 0,

for any predefined tournament Tk. That is, a.a.s. D does not contain Tk when k = log n+ 2,

and therefore, D does not contain any given tournament on more than k vertices almost

surely, which proves the claim.

Proof of Theorem 2.1.1 (i). For part (i) of the theorem we want to apply Chebyshev’s In-

equality. So we need to consider the variance

V(X) =
∑
ϕ,ψ

E(XϕXψ)−E(Xϕ)E(Xψ), (2.1)

where the sum runs over all injective maps ϕ,ψ : [k]→ [n]. To bound the sum, fix 0 6 i 6 k,

and fix two injections ϕ,ψ : [k] → [n] such that their images intersect in i vertices, that is

|ϕ([k]) ∩ ψ([k])| = i. Since Xϕ and Xψ are indicator random variables,

E(XϕXψ)−E(Xϕ)E(Xψ) = P(Xϕ ∧Xψ)−P(Xϕ)P(Xψ). (2.2)

We bound the terms P(Xϕ ∧Xψ) depending on the size of the intersection ϕ([k]) ∩ ψ([k]) of

the two potential copies in the following two auxiliary claims.

Claim 2.1.4. With the notation as above we have for |ϕ([k])∩ψ([k])| 6 1 that P(Xϕ∧Xψ) 6

2−4(
k
2).

Proof. Let ϕ and ψ be such that |ϕ([k]) ∩ ψ([k])| 6 1. Then the two vertex sets ϕ([k])

and ψ([k]) do not share a common edge. The events of inducing a copy of Tk each are not

independent though. However, they are “close enough” to being independent. In order for

both injections to induce a copy of Tk each, all of the 2
(
k
2

)
edges need to be in D, and need

to be given the correct orientation according to the orientation in Tk. We calculate

P(Xϕ ∧Xψ) = 2−2(
k
2)

((
n
2

)
− 2
(
k
2

)
m− 2

(
k
2

) )((
n
2

)
m

) = 2−2(
k
2)

(
m
)
2(k2)(

n
2

)
2(k2)

6 2−4(
k
2),
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since, similar as in the proof of Claim 2.1.2,

(m)
2(k2)

=

(
1

2

(
n

2

))
2(k2)

=
1

2

(
n

2

)
·
(

1

2

(
n

2

)
− 1

)
· . . . ·

(
1

2

(
n

2

)
− 2

(
k

2

)
+ 1

)
= 2−2(

k
2) ·
(
n

2

)
·
((

n

2

)
− 2

)
· . . . ·

((
n

2

)
− 4

(
k

2

)
+ 2

)
6 2−2(

k
2) ·
(
n

2

)
2(k2)

.

Claim 2.1.5. With the notation as above, for 2 6 i 6 k and for |ϕ([k])∩ψ([k])| = i, we have

that P(Xϕ ∧Xψ) 6 2−4(
k
2)+2(i2).

Proof. When |ϕ([k]) ∩ ψ([k])| > 2, then the orientations given by Tk do not need to agree on

ϕ([k])∩ψ([k]). In this case, P(Xϕ ∧Xψ) = 0 and the claim holds trivially. If the orientations

in the intersection agree, then

P(Xϕ ∧Xψ) = 2−(2(k2)−(i2))

((
n
2

)
− 2
(
k
2

)
+
(
i
2

)
m− 2

(
k
2

)
+
(
i
2

) )((
n
2

)
m

)

= 2−(2(k2)−(i2))

(
m
)
2(k2)−(i2)(

n
2

)
2(k2)−(i2)

6 2−4(
k
2)+2(i2),

similar to the proof of the previous claim.

Having Claim 2.1.4 and Claim 2.1.5 in the back of our mind, we set

q0 = q1 := 2−4(
k
2) and qi := 2−4(

k
2)+2(i2) for 2 6 i 6 k.

Turning back to the expression of the variance (2.1), we need to count the number of injections

ϕ,ψ : [k]→ [n]. Fix an injection ϕ : [k]→ [n], and fix 0 6 i 6 k. Suppose the (image of the)

second injection ψ meets the (image of the) first injection ϕ in i vertices, i.e. |ϕ([k])∩ψ([k])| =
i. Then there are

(
k
i

)
possibilities to choose the i intersection vertices in ϕ([k]). Call this set

of i vertices S. Now, there are (k)i possibilities to choose the preimage S−1 := ψ−1(S) ⊆ [k].

Finally, there are (n − k)k−i possibilities to choose the vertices ψ([k]) \ S−1 in the subset
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[n] \ ϕ([k]). Therefore, by (2.1), (2.2), Claim 2.1.4 and Claim 2.1.5,

V(X) =
∑
ϕ,ψ

E(XϕXψ)−E(Xϕ)E(Xψ)

6 (n)k

k∑
i=0

(
k

i

)
(k)i(n− k)k−i(qi − p2), (2.3)

where p = P(Xϕ) as before is independent of the actual choice of ϕ, and qi was defined above.

In order to apply Chebyshev’s Inequality, we need to show that V(X) = o(E(X)2). Recall

that by Corollary 2.1.3, E(X) = (n)k4
−(k2)(1 − o(1)). In the above sum, we first bound the

terms for i = 0, 1. By definition of q0 = q1 and by Claim 2.1.2,

q0 − p2 6 2−4(
k
2)

(
1−

(
1−O

(
k4

n2

))2
)

6 2−4(
k
2) ·O

(
k4

n2

)
.

Therefore,

(n)k
(
(n− k)k + k2(n− k)k−1

)
(q0 − p2)

E(X)2
6 k2 ·O

(
k4

n2

)
= o(1),

whenever k3 = o(n). That is, by (2.3), for k3 = o(n),

V(X)

E(X)2
6

(n)k
E(X)2

k∑
i=0

(
k

i

)
(k)i(n− k)k−i(qi − p2),

6 o(1) +
(n)k
E(X)2

k∑
i=2

(
k

i

)
(k)i(n− k)k−iqi

= o(1) + (1 + o(1))
k∑
i=2

(
k
i

)
(k)i(n− k)k−i

(n)k
22(

i
2), (2.4)

by definition of qi for 2 6 i 6 k and by Corollary 2.1.3. For 2 6 i 6 k, set

g(i) :=

(
k
i

)
(k)i(n− k)k−i

(n)k
4(i2).

We want to bound
∑k

i=2 g(i) by the boundary values of g, and therefore consider

f(i) :=
g(i+ 1)

g(i)
=

(k − i)24i
(i+ 1)(n− 2k + i+ 1)

for 2 6 i 6 k − 1. Considering the derivative f ′(x) of the function f with domain [2, k − 1],

we see that f is strictly increasing on [2, k − 2]:

f ′(x) =
4x(k − x)

(x+ 1)(n− 2k + x+ 1)

(
log 4− 2

k − x −
1

x+ 1
− 1

n− 2k + x+ 1

)
︸ ︷︷ ︸

60 for 26x6k−2 and n large enough

< 0.
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This implies that there is some 2 6 i0 6 k − 2 such that

for all 2 6 i 6 i0 : g(i+ 1) < g(i)

and for all i0 < i 6 k − 2 : g(i+ 1) > g(i).

It follows that
∑k

i=2 g(i) 6 k
(
g(2) + g(k − 1)

)
+ g(k). To finish the proof of Theorem 2.1.1

(i), we claim that for k 6 log n − 2 log log n, the upper bound in the previous line converges

to zero. We calculate

k g(2) =
4k
(
k
2

)
(k)2(n− k)k−2

(n)k
= O

(
k5

n2

)
= o(1)

for k5 = o(n2),

g(k) =
k!

(n)k
4(k2) 6 4(k2)

(
k

n

)k
= o(1)

for k 6 log n− 2 log log n,

k g(k − 1) =
k2k!(n− k)

(n)k
4(k−1

2 ) 6
2kk

(n− k)k−1
4(k−1

2 ) = o(1)

for k 6 log n− 2 log log n.

We just proved that for k 6 log n−2 log log n, V(X) = o
(
E(X)2

)
. It follows with Chebyshev’s

Inequality (see e.g. Theorem 4.3.1 in [3]) that X > 0 almost surely, i.e. there exists a (labelled)

copy of Tk in D with probability tending to one as n tends to infinity.

2.2 A strategy for Maker in the tournament game

In this section, we prove Theorem 1.1.1, i.e. we show that for n large enough and k 6

2 log n− 2 log log n− 12, Maker has a strategy to win the tournament game T (k, n).

Proof of Theorem 1.1.1. Let n ∈ N be large enough, and let k be the largest integer such that

n > k2(k+9)/2. Note that by definition, n < (k + 1)2(k+10)/2, so k > 2 log n− 2 log log n− 12.

For clarity of presentation, we assume from now on that n = k2(k+9)/2.

Let Tk be the tournament on k vertices that Breaker chooses at the beginning, with

V (Tk) = {u1, . . . , uk}. First, Maker partitions the vertex set into k equally sized parts:

V (Kn) = V1∪̇ . . . ∪̇Vk. Then she identifies the class Vi with the vertex ui: Whenever Maker

claims an edge between Vi and Vj , she chooses the direction according to the direction of

{ui, uj} in Tk. Therefore, her goal reduces to gaining a copy of a clique Kk, containing one

vertex from each class Vi. Hence, she plays on the reduced board

X :=
{
{vi, vj} : vi ∈ Vi, vj ∈ Vj , i 6= j

}
.
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Our goal is to prove that she wins the classical Maker–Breaker game (X,F) where F consists

of all edge sets of k-cliques in the reduced k-partite graph:

F :=

{(
S

2

)
: S ⊆ V1 ∪̇ . . . ∪̇Vk such that |S ∩ Vi| = 1, for every 1 6 i 6 k

}
.

To this end, we will use a general criterion for Maker’s win from [8]. Let us introduce the

necessary notation first. For p ∈ N, we define the set of p-clusters of F as

Fp2 :=

 ⋃
16i6p

Ei : {E1, . . . , Ep} ∈
(F
p

)
,
∣∣∣ ⋂
16i6p

Ei

∣∣∣ > 2

 .

That is, Fp2 is the family consisting of all those subsets of X which can be represented

as the union of p distinct winning sets sharing at least two elements of X. Furthermore,

for any family H of finite sets, we consider the well-known potential function used in the

Erdős-Selfridge criterion

T (H) :=
∑
H∈H

2−|H|.

According to Beck [8], we have the following sufficient condition for Maker’s win.

Theorem 2.2.1 (Advanced Weak Win Criterion, [8]). Maker has a winning strategy for the

Maker–Breaker game (X,F), if there exists an integer p > 2 such that

T (F)

|X| > p+ 4p
(
T (Fp2 )

)1/p
. (2.5)

In the remainder of the proof we will show that our choice of (X,F) satisfies (2.5) for

p = 4 and n large enough. First, we note that

T (F) =
∑
F∈F

2−|F | =
(n
k

)k
· 2−(k2) = 25k

and
|X|
T (F)

=

(
k
2

) (
n
k

)2
25k

6
k2 2k+9

25k
= o(1). (2.6)

As a first step towards the application of the Advanced Weak Win Criterion, we give an

estimate on T (F4
2 ). By definition,

F4
2 =

{ ⋃
16i64

Ei : {E1, . . . , E4} ∈
(F

4

)
,
∣∣∣ ⋂
16i64

Ei

∣∣∣ > 2

}
.

Note that any collection of cliques meets in two edges if and only if it meets in a triangle.

Recall that the elements of F4
2 are referred to as clusters. Following the standard notation,

we call a cluster a sunflower if there is a triangle such that any two of the four cliques meet
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Figure 2.1: An example of a sunflower for k = 8. A thick line indicates that the vertices of

the corresponding sets are pairwise connected.

in exactly this triangle. Figure 2.1 shows an illustration. We denote the subset of sunflowers

of F4
2 by S42 . By definition, a sunflower F ∈ S42 has exactly 4

(
k
2

)
− 9 edges. In F4

2 , there are

at most
(
k
3

) (
n
k

)3 · (nk )4(k−3) sunflowers. Therefore,

T (S42 ) 6

(
k

3

)(n
k

)4k−9
2−4(

k
2)+9 =: f(n, k).

It will turn out that f(n, k) dominates the sum T (F4
2 ).

For every E ∈ F , we let V (E) denote the set of vertices corresponding to E. Note that

|V (E)| = k for every E ∈ F . As a first step of our analysis we use the technique of Beck [8]

to assign to each cluster F =
⋃

16i64Ei some sequence S(F ) := (m1,m2,m3) such that

m1 = |V (E1) ∩ V (E2)| ,
m2 = |(V (E1) ∪ V (E2)) ∩ V (E3)| ,
m3 = |(V (E1) ∪ V (E2) ∪ V (E3)) ∩ V (E4)| .

Note that for a given cluster F we may have several choices to select S(F ) (depending

on the considered order of the Ei). Furthermore, we let F4
2 (m1,m2,m3) denote the subset of

clusters of F4
2 to which we assigned the sequence (m1,m2,m3). Then obviously,

T (F4
2 ) 6

k∑
m1=3

k∑
m2=3

k∑
m3=3

T (F4
2 (m1,m2,m3)). (2.7)

We now bound the cardinality of F4
2 (m1,m2,m3).

Proposition 2.2.2. For fixed 3 6 m1,m2,m3 6 k, we have that∣∣F4
2 (m1,m2,m3)

∣∣ 6 (k
3

) (n
k

)4k
·

3∏
j=1

(
jk

mj − 3

)(
k

n

)mj
.
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Furthermore, for any cluster F ∈ F4
2 (m1,m2,m3) we have |F | > 4

(
k
2

)
−
(
m1

2

)
−
(
m2

2

)
−
(
m3

2

)
.

Proof. We fix any m1,m2,m3 with 3 6 m1,m2,m3 6 k, and we also fix any triple v1, v2, v3 of

vertices from distinct classes. We now derive an upper bound on the number of those clusters

in F4
2 (m1,m2,m3) where all four cliques contain v1, v2, and v3. To this end we consider the

number of possibilities to select V (E1)\{v1, v2, v3}, V (E2)\{v1, v2, v3}, V (E3)\{v1, v2, v3},
V (E4)\{v1, v2, v3}. Note that we have

(
n
k

)k−3
possibilities to choose the k − 3 vertices of

V (E1)\{v1, v2, v3}.
Suppose that for some 1 6 i 6 3 we have already determined the sets V (E1)\{v1, v2, v3},

. . . ,V (Ei)\{v1, v2, v3}. Then V (E1), . . . , V (Ei) cover at most 3 + i(k− 3) vertices. Therefore,

we have at most
(
3+i(k−3)
mi−3

)
6
(

ik
mi−3

)
choices for those vertices of

(
V (E1)∪. . .∪V (Ei)

)
∩V (Ei+1)

which are different from v1, v2, v3. Finally, there are at most
(
n
k

)k−mi possibilities to select

V (Ei+1) \
(
V (E1) ∪ . . . ∪ V (Ei)

)
.

Therefore, for any given m1,m2,m3, every triple v1, v2, v3 of vertices contributes at most(n
k

)k−3
·

3∏
i=1

(
ik

mi − 3

)(n
k

)k−mi
to the number of clusters in F4

2 (m1,m2,m3). Hence,

∣∣F4
2 (m1,m2,m3)

∣∣ 6 (k
3

)(n
k

)3 (n
k

)k−3
·

3∏
i=1

(
ik

mi − 3

)(n
k

)k−mi
=

(
k

3

) (n
k

)4k
·

3∏
i=1

(
ik

mi − 3

)(
k

n

)mi
,

as claimed. For the second part of the proposition, note that |E1| =
(
k
2

)
and that every Ei+1

contributes at least
(
k
2

)
−
(
mi
2

)
new edges to the cluster.

We now show that f(n, k) dominates the sum T (F4
2 ).

Lemma 2.2.3. T (F4
2 ) < k3 f(n, k), provided k is large enough.

Proof. By definition of T (·) and Proposition 2.2.2 we have that

T
(
F4
2 (m1,m2,m3)

)
6

(
k

3

) (n
k

)4k
·

3∏
j=1

((
jk

mj − 3

)(
k

n

)mj)
× 2−4(

k
2)+(m1

2 )+(m2
2 )+(m3

2 )

=

(
k

3

)(n
k

)4k
2−4(

k
2) ·

3∏
j=1

(
jk

mj − 3

)(
k

n

)mj
2(mj

2
)

= f(n, k) ·
3∏
j=1

(
jk

mj − 3

)(
k

n

)mj−3
2(mj

2
)−3. (2.8)
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We set gj(m) :=
(
jk
m−3

) (
k
n

)m−3
2(m2 )−3. We will show that gj(m) 6 1 for all j ∈ {1, 2, 3} and

3 6 m 6 k, provided k is large enough. Indeed, for 3 6 m 6 15k
16 and k large enough, we have

gj(m) 6 (jk)m−3 · 2− k+9
2

(m−3) · 2
(m+2)(m−3)

2

=
(
jk · 2− k+9

2
+m+2

2

)m−3
6
(
jk · 2− k

32
− 7

2

)m−3
6 1. (2.9)

For 15k
16 6 m 6 k and k large enough, we obtain

gj(m) 6 2jk
(

2−
k+9

2
+m+2

2

)m−3
6 23k

(
2−

7
2

)m−3
6 23k

(
2−

7
2

) 15k
16
−3

6 1. (2.10)

Now, (2.8), (2.9) and (2.10) imply that T (F4
2 (m1,m2,m3)) 6 f(n, k) for any sequence

(m1,m2,m3), provided k is large enough. Due to (2.7), we conclude that T (F4
2 ) 6 k3f(n, k).

Finally, we show that the Advanced Weak Win Criterion (Theorem 2.2.1) applies with

p = 4.

Corollary 2.2.4. For n large enough, T (F) > 16|X|
( (
T (F4

2 )
)1/4

+ 1
4

)
.

Proof. By Lemma 2.2.3, the definition of f(n, k) and the fact that |X| 6 n2 we get that

16 |X| (T (F4
2 ))1/4

T (F)
6

16 |X| (k3 f(n, k))1/4

T (F)
6

16n2 k
3
4

(
k3
(
n
k

)4k−9
2−4(

k
2)+9

) 1
4

T (F)

6
16 · 2 9

4 n2 k
6
4

(
n
k

)k− 9
4 2−(k2)(

n
k

)k · 2−(k2)
6

100n2 k
6
4(

n
k

) 9
4

=
100k

15
4

n
1
4

< 100 · 2− k8+ 14
4

log(k) = o(1).

By (2.6),
1
4 · 16|X|
T (F)

= o(1),

and the claim follows.

We have shown that the Advanced Weak Win Criterion applies for p = 4. Therefore,

Maker has a winning strategy S in the Maker–Breaker game (X,F), where X is the complete

k-partite graph with vertex partition V1 ∪ · · · ∪ Vk and F is the family of all k-cliques in that

graph. In the tournament game, Maker now uses this winning strategy S: Whenever S tells

Maker to claim an edge {vi, vj} for vi ∈ Vi and vj ∈ Vj , i 6= j, she chooses the direction of

{vi, vj} according to the direction of {ui, uj} in Tk. Clearly, since S guarantees her a copy of

a k-clique on the k-partite graph, this strategy yields a copy of Tk at the end of the game.
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2.3 A strategy for OBreaker in the orientation tournament

game

In this section we prove Theorem 1.1.2. We first generalize the notation of biased Maker–

Breaker games, that we briefly touched in the introduction. In an (a : b) Maker–Breaker game

(X,F) Maker claims a elements and Breaker claims b elements in each round. A game is then

called biased if a 6= 1 or b 6= 1.

In order to provide OBreaker with a winning strategy for the game Or(Tk) we associate

with Or(Tk) an auxiliary biased Maker–Breaker game. In the first step of the proof we show

that Breaker has a strategy to win the auxiliary game, and in the second step we prove that

this strategy directly gives him a winning strategy for Or(Tk).

We will make use of the generalized Erdős-Selfridge-Criterion proven by Beck [8].

Theorem 2.3.1 (Generalized Erdős-Selfridge-Criterion). Let X be a finite set and let F ⊆ 2X .

If ∑
F∈F

(1 + b)−|F |/a <
1

1 + b
,

then Breaker has a winning strategy in the (a : b) Maker–Breaker game (X,F).

Let Tk be some tournament on k vertices. Consider the (2 : 1) Maker–Breaker game H(Tk) =

H(Tk, n) = (X,F(Tk)) where

X := {(u, v) : u, v ∈ V (Kn), u 6= v}

is the board of the game consisting of |X| = n(n− 1) elements, and

F(Tk) := {S ⊆ X : S is a copy of Tk}

is the family of winning sets.

Claim 2.3.2. For large enough n and k > 4 log n + 2, Breaker has a winning strategy in

H(Tk), for any tournament Tk on k vertices.

Proof. We check that Theorem 2.3.1 applies. By definition, |F(Tk)| < nk, and |F | =
(
k
2

)
for

every F ∈ F(Tk). Therefore, and since k > 4 log n+ 2,∑
F∈F

2−|F |/2 < nk · 2−k(k−1)/4 6 1

2
.

We conclude the proof of Theorem 1.1.2 with the following lemma.
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Lemma 2.3.3. Let Tk be a tournament on k vertices. Suppose that Breaker has a strategy to

win the game H(Tk). Then there is also a winning strategy for OBreaker in the game Or(Tk).

Proof. We first need some notation. By directing an edge (u, v) we mean that we direct the

edge spanned by u and v from u to v. We note that in each round of H(Tk), Maker is allowed

to choose either two, one, or zero elements. (Otherwise she can just claim additional, arbitrary

elements, and then follow her strategy. If this strategy calls for something she occupied before,

she takes an arbitrary element; no extra element is disadvantageous for her.)

Suppose, for a contradiction, that OMaker has a winning strategy S for Or(Tk). We now

describe a strategy S ′ for Maker in H(Tk). During the play, Maker simulates (in parallel) a

play of the game Or(Tk), and maintains the invariant that after each of her moves in H(Tk),

every pair u, v ∈ V has the property that

(i) in H(Tk), if Breaker owns the element (u, v) then Maker owns (v, u), and

(ii) in Or(Tk), there is a directed edge from u to v if and only if Maker has claimed the

element (u, v) in H(Tk).

Let (a, b) be the edge S tells OMaker to direct in her first move. Then Maker claims the

element (a, b) in the actual game H(Tk) (at this point she does not make use of the possibility

to occupy two elements), and directs (a, b) in the parallel game Or(Tk) as OMaker.

Suppose that i rounds have been played, and let (u, v) ∈ X denote the element Breaker

chose in his ith move. If Maker has already claimed (v, u) in a previous round then she does

not claim a single element. Otherwise, as her (i + 1)st move, she first occupies the element

(v, u). In the parallel game Or(Tk), she directs as OBreaker the edge (v, u). Then she identifies

the edge (x, y) the strategy S tells OMaker to direct. Finally, she directs (x, y) as OMaker in

Or(Tk), and claims the element (x, y) in H(Tk).

We note that the invariants (i) and (ii) remain satisfied after Maker’s (i + 1)st move.

So, by following S ′, Maker can guarantee that at the end of the game, these invariants still

hold. Since by assumption, S is a winning strategy, the final digraph in Or(Tk) contains a

copy of Tk. Together with invariant (ii) this yields that Maker possesses all elements of some

winning set in H(Tk). This contradicts the assumption that Breaker has a winning strategy

for H(Tk).

2.4 Concluding remarks

The strategy for Maker in Theorem 1.1.1 is independent of the actual tournament Tk Breaker

chooses. On the other hand, the upper bound in (1.2) is the upper bound from the k-clique

game. That means that for k > 2 log n− 2 log log n+ o(1), Breaker has a strategy to prevent
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Maker from building any given tournament on k vertices. So both, the lower and the upper

bound do not depend on the tournament chosen at the beginning. On the other hand, there

is a tournament on kcl vertices which Maker can build: Consider the transitive tournament on

the vertex set {u1, . . . , uk}, where, say, for all indices 1 6 i < j 6 k the edge between ui and

uj is directed from ui to uj . Now, let {v1, . . . , vn} be an arbitrary enumeration of the vertices

in Kn. Then Maker can just follow the strategy provided by the k-clique game. Whenever

this strategy tells her to claim the edge {vi, vj} for i < j, she chooses the direction (vi, vj).

It would be interesting to determine whether all tournaments are “equally hard” for Maker.

Therefore, we pose the following question.

Question 2.4.1. Does there exist a tournament Tk on k 6 kcl vertices such that in the

Tk-building game, Breaker has a strategy to prevent Maker from building Tk?

Note that a negative answer to this question, together with Theorem 1.1, would give us

the exact value of kt. But even if there exists a tournament on at most kcl vertices which

Breaker can prevent, it is of particular interest to get rid of the gap in the constant term.

Problem 2.4.2. Determine the exact value of kt.

One might wonder whether a more technical approach, applying the Advanced Weak Win

Criterion with some p tending to infinity (as done in the proof of (1.1)), would help to get

closer to this problem. Unfortunately, we were not even able to verify completely the original

argument. In Section 25 of [8], when bounding the sizes of clusters (and showing that they

are dominated by the sunflower terms), the collection of all p-clusters is divided into three

classes. However, the applied case distinction does not seem to cover all possible clusters, and

the set of uncovered clusters seems to be rather large. We were not able to fix this problem,

but of course it is quite possible that we overlook something.

A similar discussion arises for the orientation-tournament game. To find the strategy

for OBreaker in Theorem 1.1.2, we defined an auxiliary Maker–Breaker game G with the

property that a winning stratey for Breaker in G yields a winning strategy for OBreaker

in the orientation tournament game. Our strategy for the upper bound does not use the

actual structure of the chosen tournament Tk. That is, OBreaker wins the game Or(Tk)

for any fixed tournament Tk on at least 4 log n(1 + o(1)) vertices. Similarly, for the lower

bound strategy given by Theorem 1.1.1, OMaker wins Or(Tk) for any tournament on at most

2 log n(1 − o(1)) vertices. Analogously to the ordinary tournament game we therefore pose

the following question.
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Question 2.4.3. For k1 ∈ N, do there exist two (non-isomorphic) tournaments T and T ′

on k1 vertices such that OMaker has a winning strategy in the orientation game Or(T ), but

OBreaker has a winning strategy in the game Or(T ′)?

Furthermore, we determined ko(n) only up to a factor of 2. The probabilistic analysis

would suggest the breakpoint to be around 2 log n.

Problem 2.4.4. Determine the constant 2 6 c 6 4 such that ko(n) = (c+ o(1)) log n.

We finish this chapter with a short discussion about the universal tournament game. As

noted in Subsection 1.1.1, Maker has a strategy to occupy a copy of every tournament on k

vertices for k 6 (1/2− o(1)) log n. Beck conjectured that this result is not best possible and

posed the following problem.

Problem 2.4.5 ([8], p. 457). Determine the largest ku such that Maker has a strategy such

that at the end of the game, her digraph contains every tournament on ku vertices.

For the upper bound, we can show that ku 6 (1 + o(1)) log n: We note that the number

of non-isomorphic tournaments on k vertices is at least c(k) := 2(k2)/k! > 2(k2)−k log k. By

definition, Maker has a strategy to occupy a copy of every tournament on ku vertices. Hence,

at the end of the game, the underlying graph of Maker’s graph contains c(ku) (not necessarily

edge-disjoint) distinct cliques. However, a result of Bednarska and  Luczak (see Lemma 5 in

[9]) asserts that there is some k = (1+o(1)) log n such that in the ordinary graph game (where

no edge-orientations are involved), Breaker has a strategy to prevent Maker from claiming

more than c(k) distinct k-cliques. Thus, ku 6 (1 + o(1)) log n. To the best of our knowledge,

nothing better is known for the universal tournament game.



28 2. TOURNAMENT GAMES



3

On the threshold bias in the

oriented-cycle game

In this chapter, we examine the b-biased oriented-cycle game for both the monotone and

the strict rules. We will first introduce some terminology which is useful for dealing with

directed graphs and for this particular game. In Section 3.1, we introduce a certain structure

of digraphs which is helpful to control OMaker’s edges locally. We then prove Theorem 1.1.3

in Section 3.2; and Theorem 1.1.4 in Section Section 3.3.

Notation

Let V = [n] and let D ⊆ V × V be a digraph. We call elements (v, w) ∈ D arcs and the

underlying set {v, w} a pair or an edge. An arc (v, v) is called a loop and (v, w) is called the

reverse arc for (w, v). In this work we are only concerned with simple digraphs, without loops

and reverse arcs. For an arc e ∈ D, we write e+ for its tail and e− for its head, i.e. e = (e+, e−).

For a subdigraph S ⊆ D, we denote by S+ the set of all tails e+ for e ∈ S, and by S− the set

of all heads e− for e ∈ S. It will be convenient to denote by
←
D the set of all reverse arcs, that

is
←
D := {(v, w) ∈ V × V : (w, v) ∈ D}. Moreover, the set A(D) := (V × V ) \ (D ∪

←
D ∪ L)

denotes the set of all available arcs, where L = {(v, v) : v ∈ V } is the set of all loops. Note

that A(D) is symmetric, i.e. if (v, w) ∈ A(D) then also (w, v) ∈ A(D). Note also that for

D without loops and reverse arcs it holds that D ∩ (
←
D ∪ L) = ∅. We generalize the notation

of an arc and say the k-tuple (v1, . . . , vk) induces a transitive tournament in D, denoted by

(v1, . . . , vk) ∈ D, if for all 1 6 i < j 6 k we have that (vi, vj) ∈ D. Similarly, for two disjoint

sets A,B ⊆ V we write (A,B) ∈ D if for all v ∈ A, w ∈ B we have that (v, w) ∈ D. We

then call the pair (A,B) a uniformly directed biclique, or short a UDB. We say the sequence

29
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P = (e1, . . . , ek) is a directed path (or simply a path) in D if all ei ∈ D and for all 1 6 i < k

we have that e−i = e+i+1. In this case we also say that P is an e+1 -e−k -path. In our proofs we

are concerned how D behaves on certain subsets of the vertices. Following standard graph

theoretic notation, for a subset A ⊆ V we denote by D[A] the directed subgraph of D of arcs

spanned by A.

Recall that the oriented-cycle game is played on the edge set of Kn where we may assume

that V = V (Kn) = [n]. As in the orientation tournament game, we say a player directs (or

orients) the edge (v, w) if (s)he directs the pair {v, w} from v to w. That is, the player chooses

the arc (v, w) to belong to the final digraph, and dismisses the arc (w, v) from the board. At a

certain point in the game, we shall refer to D ⊆ V ×V as the sub-digraph of already directed

edges (arcs) by either player. We say a player closes a cycle in D (by directing some edge

(v, w)) if there exists a w-v-path in D. Note that if a player can close a cycle in D, then (s)he

can close a triangle (consider the shortest cycle a player can close, and consider any cord).

There are two essential concepts to our proof, the aforementioned UDB’s and α-structures.

A UDB is a complete bipartite digraph where all the edges are oriented in the same direction

(i.e. from A to B). Our goal is to create a UDB (A,B) such that both parts fulfil |A|, |B| 6 b

and A ∪ B = V . Suppose the following situation would be given to us for free. There is a

partition A∪̇B = V such that the pair (A,B) forms a UDB in D, both parts fulfil |A|, |B| 6 b

and both sets A and B are empty (i.e. D[A] = D[B] = ∅). OBreaker could then follow the

“trivial strategy” inside A and B respectively (as OBreaker wins on Kb+2), even when the

strict rules apply. However, while building such a UDB, OMaker will direct edges inside these

sets, and OBreaker needs to control those. Moreover, to optimise the bias, OBreaker should

be able to control those edges inside A and B with as few edges as possible.

To handle this obstacle, we introduce certain structures which we call α-structures and a

procedure α to incorporate new (i.e. OMaker’s) edges into an existing α-structure.

Before we move on to study these special structures let us mention that the idea of build-

ing a big UDB quickly will come up again in the proof of Theorem 1.1.4. However, the

requirement of directing exactly b edges in each move puts some serious restrictions on the

power of α-structures, so for the strict rules, we will consider only special α-structures, namely

tournaments.
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3.1 α-structures

The definition of an α-structure looks quite technical at first sight. So let us motivate the

idea behind it.

Suppose OMaker’s strategy is to build a long path first. (This indeed is the strategy

for OMaker in the so far best-known lower-bound proof in [11].) Let P = (e1, . . . , ek) be a

directed path of length k in D with arcs ei = (vi, vi+1), and suppose OMaker enlengthens

P by directing an edge (vk+1, w) for some w ∈ V . Then all the pairs {w, vi} for 1 6 i 6 k

constitute potential threats as directing any (w, vi) would close a cycle. So OBreaker better

directs all edges (vi, w) in his next move. This way, OBreaker fills up the missing arcs of an

evolving transitive tournament with spine e1, . . . , ek. Then formally, OBreaker sets vk+2 := w,

ek+1 := (vk+1, w) and directs all edges (e+i , w) for i 6 k. Clearly, as long as there are isolated

vertices, OMaker could follow this strategy and increase the number of threats that OBreaker

has to close immediately by one in each move.

By defining the α-structure we show that this is best possible in the following sense: No

matter how OMaker plays, OBreaker has a strategy such that in round k, he has to direct at

most k edges to close immediate threats that would close cycles.

Let V be a set of vertices, and let D ⊂ (V ×V )\L be a digraph without loops and reverse

arcs (formally, D ∩
←
D = ∅). Let S ⊆ D be a subdigraph. Then (D,S) is called an α-structure

of rank k if |S| = k and there exists a labelling {e1, . . . , ek} = S of the arcs in S such that

(α1) for every 1 6 i < j 6 k: (e+i , e
−
j ) ∈ D;

(α2) and no other arcs are present in D.

Later, in our strategy, the arcs e1, . . . , ek will be the arcs that were directed by OMaker

(though not necessarily in that order), and the arcs of “type” (α1) are the ones directed

by OBreaker. We will refer to S = {e1, . . . , ek} as the special arcs of an α-structure. All

other edges in D \ S are then arcs of type (α1). Let us capture some immediate facts about

α-structures.

Observation 3.1.1. Let (D,S) be an α-structure of rank k on vertex set V . Then the

following holds.

(i) For every directed path P = (ei1 , . . . , ei`) with eij ∈ S: i1 < . . . < i`.

(ii) For any subset V ′ ⊆ V , we have that (D[V ′], S[V ′]) is an α-structure of rank k′ 6 k.
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(iii) The arcs of type (α2) are uniquely determined once S and a labelling of the arcs in S

have been fixed. Moreover, D+ = S+ and D− = S−.

Furthermore, it is easy to verify that (α1)-(α2) imply the following property. Recall that

A(D) = (V × V ) \ (D ∪
←
D ∪ L) denotes the set of available arcs.

Proposition 3.1.2 (Property (α3)). If (D,S) is an α-structure, then for every available

e ∈ A(D) we have that D ∪ e is acyclic.

Proof. Suppose there is a path P = (f1, . . . , f`) in D and an edge e ∈ D∪A(D) such that P ∪e
forms a directed cycle. Moreover, let P be a shortest path with that property. Notice first

that we may assume that ` = 2. For if ` > 3, consider the pair {f+1 , f+` }. Either (f+1 , f
+
` ) ∈ D,

or (f+` , f
+
1 ) ∈ D, or both pairs are available. In all cases, there is a shorter path P ′ with the

property that one could close it to a cycle. So let P = (f1, f2) be a path of length two in D,

and let f1 = (v1, v2) and f2 = (v2, v3). Then by (α2), both edges f1 and f2 must be of type

(α1) or belong to S. Hence, there exist (not necessarily distinct) edges ei1 , ei2 , ei3 , ei4 ∈ S

such that v1 = e+i1 , v2 = e−i2 = e+i3 , v3 = e−i4 and i1 6 i2 and i3 6 i4. Furthermore, (ei2 , ei3) is

a directed path of special edges, so by Observation 3.1.1 (i), i2 < i3. It follows that i1 < i4,

so by (α1), (e+i1 , e
−
i4

) = (v1, v3) ∈ D, a contradiction.

In the light of our orientation game, we pin down the following important implication.

Corollary 3.1.3. For some subset V ′ ⊆ V , suppose that in the oriented-cycle game, OBreaker

maintains that (D[V ′], S) is an α-structure (of some rank k and for some S ⊆ D[V ′]). Then

there is no cycle in D[V ′] and OMaker cannot close a cycle inside V ′ in her next move.

In order for OBreaker to maintain an α-structure on some subset of the vertices we need

to know how to incorporate OMaker’s edge into such a structure. The following is one of the

key lemmas in OBreaker’s strategy.

Lemma 3.1.4. Let (D,S) be an α-structure of rank k on vertex set V , and let e ∈ A(D) be

an available arc. Then there exist at most min{k, |V |} available arcs {f1, . . . , ft} ⊆ A(D) such

that (D′, S′) is an α-structure of rank k+ 1, where S′ = S ∪ {e} and D′ = D ∪ {e, f1, . . . , ft}.

By adding e to the α-structure (D,S) we mean a strategy for OBreaker to direct the edges

{f1, . . . , ft} given by the previous lemma. Before we prove the lemma, we need one more

definition. Let (D,S) be an α-structure with special arcs S = {e1, . . . , ek}, and let x ∈ V .

We set

In(x) :=
{
ei : there exists a path P = (ei, ej1 , . . . , ejm) s.t. x = e−jm

}
,

Out(x) :=
{
ei : there exists a path P = (ej1 , . . . , ejm , ei) s.t. x = e+j1

}
,
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The following observation is rather simple.

Proposition 3.1.5. Let (D,S) be an α-structure on vertex set V with special arcs S =

{e1, . . . , ek}. Further, let x, y ∈ V be distinct vertices such that (x, y) ∈ A(D). Then

(i) for all ei ∈ In(x), ej ∈ Out(x): i < j, and

(ii) for all ei ∈ In(x), ej ∈ Out(y): i < j.

In particular, In(x) ∩Out(x) = ∅ and In(x) ∩Out(y) = ∅.

Proof. For (i), let ei ∈ In(x), ej ∈ Out(x) and let Pi be the corresponding e+i -x-path starting

with ei, and let Pj be the corresponding x-e−j -path ending with ej . Since there are no directed

cycles inside the structure (see property (α3)), the concatenation of Pi and Pj is a directed

path and (i) follows from Observation 3.1.1 (i). For (ii), let ei ∈ In(x), ej ∈ Out(y), let Pi be

the corresponding e+i -x-path starting with ei, let Pj be the corresponding y-e−j -path ending

with ej , and assume i > j. When i = j then ei = (y, x), a contradiction to (x, y) 6∈
←
D. If

i > j, then by property (α1), the edge (e+j , e
−
i ) is an arc in D. But then the concatenation

of (Pj − ej), (e+j , e
−
i ), (Pi − ei) and (x, y) would be a directed cycle, again a contradiction to

property (α3).

We are now ready to prove the above lemma.

Proof of Lemma 3.1.4. Let (D,S) be the α-structure of rank k on vertex set V , let S =

{e1, . . . , ek} be the enumeration of the special edges, and let e = (v, w) ∈ A(D) be an available

arc. Set ` := min{i : ei ∈ Out(w)} if Out(w) 6= ∅, and ` := k + 1 otherwise. For all i < `,

set fi := (e+i , w), and for all i > `, set fi := (v, e−i ). We claim that for all 1 6 i 6 k, either

fi ∈ D or fi ∈ A(D).

First, let i < ` and suppose for a contradiction that f := (w, e+i ) ∈ D. If f ∈ S, then by

definition ei ∈ Out(w), so i > `, a contradiction. So we may assume that f 6∈ S. But then by

property (α2), f must be of type (α1), that is by property (α1) there exist ej1 , ej2 ∈ S such

that f = (e+j1 , e
−
j2

) and j1 < j2. But then P := ej2ei is a path P consisting of special edges, so

by Observation 3.1.1 (i), j2 < i. Thirdly, since e+j1 = w, by definition ej1 ∈ Out(w), so ` 6 j1.

But this implies ` < i, again a contradiction.

Now let i > `. The only additional observation we need to make here is that by Proposition

3.1.5, ` > j for all ej ∈ In(v). The rest is completely analogous to the first case. So we can

assume that either (v, e−i ) ∈ A(D), or (v, e−i ) ∈ D.

We now check that the resulting structure (D′, S′) is an α-structure of rank k + 1, where
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S′ = {e′1, . . . , e′k+1} with

e′i =


ei if i < `

e if i = `

ei−1 if i > `,

and D′ = D ∪ {e, f1, . . . , fk}. Now, (α1) is obvious since (D,S) is an α-structure and we

preserved the relative order of S, and since the fi we added are exactly the arcs of type (α1)

that are missing in (D′, S′). Also, (α2) follows since previously there were no other arcs, and

all arcs fi are of type (α1) in (D′, S′).

Finally, for every existing arc ei ∈ S, we added at most one new arc fi. But also, for every

vertex z ∈ V at most one of the fi contains z. So |{f1, . . . , fk}| 6 min{k, |V |}.

3.2 OBreaker’s strategy for the monotone rules

Proof of Theorem 1.1.3. Recall that OMaker and OBreaker alternately direct edges of Kn,

where OMaker directs exactly one edge in each round, and OBreaker directs at least one and

at most b edges in each round, where b > 5n/6 + 2. OMaker’s goal is to close a directed cycle,

whereas OBreaker’s goal is to prevent this. First, we provide OBreaker with a strategy, then

we prove that he can follow that strategy and that it constitutes a winning strategy. At any

point during the game let D denote the digraph of already directed edges. By the rules of the

game, D has no loops and no reverse arcs. Let e1 = (v1, w1) be the very first edge OMaker

directs. Then OBreaker picks two disjoint subsets A,B ⊆ V such that v1 ∈ A, w1 ∈ B and

|A| = |B| = 2 6
√
b, and directs all edges (x, y) for x ∈ A, y ∈ B. The rest of the strategy is

divided into three stages.

In Stage I, OBreaker maintains a UDB (A,B) such that after each of his moves

(S1.1) (D[V \B], SA) is an α-structure of rank k, for some SA ⊆ A×A,

(S1.2) (D[V \A], SB) is an α-structure of rank `, for some SB ⊆ B ×B,

(S1.3) k + ` increases by one in each round, and

(S1.4) |A| − k and |B| − ` increase by one in each round.

(S1.3) and (S1.4) imply that k + ` = # rounds = |A| − k = |B| − `. OBreaker proceeds to

Stage II after round dn6 e, that is as soon as |A| − k = |B| − ` > n
6 . We want to remark at

this point that one could optimize OBreaker’s bias by requiring “at least one” in (S1.3) and

“at most one” in (S1.4). We comment on threshold optimization in the final section of this

chapter, but for clarity of presentation keep this simple requirement.

Now let e = (v, w) be the arc OMaker directs in a particular round of Stage I. Since (A,B)

is a UDB, either {v, w} ⊆ V \A or {v, w} ⊆ V \B. Assume first that {v, w} ⊆ V \B. Then

OBreaker adds e to the α-structure in V \B by directing the edges {f1, . . . , ft} ∈ A(D[V \B])
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given by Lemma 3.1.4. If v ∈ V \ (A ∪ B) then he directs all edges (v, y) for y ∈ B and

sets A := A ∪ {v}. Otherwise v ∈ A already, so OBreaker picks an arbitrary new vertex

v′ ∈ V \ (A ∪ B), directs all edges (v′, y) for y ∈ B and sets A := A ∪ {v′}. Similarly, if

w ∈ V \ (A ∪B) then he directs all edges (w, y) for y ∈ B and sets A := A ∪ {w}. Otherwise

w ∈ A already, so OBreaker picks an arbitrary new vertex w′ ∈ V \ (A ∪ B), directs all

edges (w′, y) for y ∈ B and sets A := A ∪ {w′}. Furthermore, he picks an arbitrary element

y′ ∈ V \ (A ∪B), directs all edges (x, y′) for x ∈ A, and sets B := B ∪ {y′}.
If {v, w} ⊆ V \A, he similarly adds (v, w) to the α-structure in V \A, and adds two vertices

to B and one to A, depending whether v, w ∈ B or not.

As soon as |A| − k, |B| − ` > n/6, OBreaker proceeds to Stage II.

In Stage II, OBreaker stops increasing the values |A| − k and |B| − `. He now maintains a

UDB (A,B) such that after each of his moves

(S2.1) (D[V \B], SA) is an α-structure of rank k, for some SA ⊆ D[V \B],

such that S+
A ⊆ A,

(S2.2) (D[V \A], SB) is an α-structure of rank `, for some SB ⊆ B ×B,

(S2.3) |A| − k and |B| − ` do not decrease, i.e. |A| − k, |B| − ` > n
6 > n− b.

Again, let e = (v, w) be the arc OMaker directed in her previous move and assume first that

{v, w} ⊆ V \ B. Then OBreaker adds e to the α-structure in V \ B using Lemma 3.1.4. If

v ∈ V \ (A ∪ B) then he directs all edges (v, y) for y ∈ B and sets A := A ∪ {v}. Otherwise

v ∈ A already, so OBreaker picks an arbitrary new vertex v′ ∈ V \ (A ∪ B), directs all edges

(v′, y) for y ∈ B and sets A := A ∪ {v′}.
Assume now that {v, w} 6⊆ V \ B. Then, since (A,B) is a UDB, {v, w} ⊆ V \ A and at

least one of the two vertices v, w is in B already. Assume v ∈ B (the case w ∈ B is analogous).

Then OBreaker adds e to the α-structure in V \A by procedure α. If w ∈ V \ (A ∪B), then

he directs all edges (x,w) for x ∈ A (unless already there) and sets B := B ∪ {w}. Otherwise

w ∈ A already, so OBreaker picks an arbitrary new vertex w′ ∈ V \ (A ∪B), directs all edges

(x,w′) for x ∈ A (unless already there) and sets B := B ∪ {w′}.
Stage II ends as soon as A ∪B = V .

In Stage III, OBreaker maintains a UDB (A,B) with A ∪B = V such that

(S3.1) (D[A], SA) forms an α-structure on A,

(S3.2) (D[B], SB) forms an α-structure on B, and

(S3.3) |A|, |B| 6 b.

Let again e = (v, w) be the arc OMaker directed in her previous move. Either {v, w} ⊆ A or

{v, w} ⊆ B. In the first case, OBreaker adds e to the α-structure in A using Lemma 3.1.4, in

the second case, OBreaker adds e to the α-structure in B, again by using Lemma 3.1.4.
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Let us first remark that if OBreaker can follow the proposed strategy and reestablish the

properties of the certain stage in each move, then OMaker can never close a cycle. Indeed,

throughout the whole game, OBreaker maintains a UDB (A,B) such that D forms an α-

structure on each, V \A and V \B (cf. (S ∗ .1) and (S ∗ .2) of each stage). Moreover, also by

(S ∗ .1) and (S ∗ .2) of each stage, at any point during the game we have for any (v, w) ∈ D
that either v ∈ A or w ∈ B (or both). Suppose at some point, OMaker could close a cycle

C by directing an edge e = (v, w). Since (A,B) is a UDB and by the previous comment, all

edges of C must lie either completely in V \A or completely in V \B. However, (D[V \B], SA)

is an α-structure on V \ B (and (D[V \ A], SB) on V \ A), so by Corollary 3.1.3, OMaker

cannot close a cycle in V \A (or V \B respectively).

It remains to prove that OBreaker can follow the proposed strategy, that in each round

he has to direct at most b edges, and that the properties of each stage are reestablished.

For the first move, it is clear that OBreaker can follow the strategy, and that it takes him

at most |A| · |B| 6 b edges to direct. It is also clear that this first move establishes properties

(S1.1)− (S1.4) for k = ` = 0.

Suppose now for Stage I that properties (S1.1)−(S1.4) hold. If |A|−k, |B|−` > n/6, then

OBreaker proceeds to Stage II, so we can assume |A| − k, |B| − ` < n/6. As said previously,

since (A,B) is a UDB, all the arcs (x, y) with x ∈ A and y ∈ B are present in D already,

so OMaker’s arc is either completely in V \ A or completely in V \ B. Assume first that for

OMaker’s arc e = (v, w) it holds that {v, w} ⊆ V \B before this round. Since (D[V \B], SA)

forms an α-structure by (S1.1), and by Lemma 3.1.4, OBreaker can add e to that α-structure.

By (S1.2) we have D[V \A] ⊆ B ×B. So for all z ∈ V \ (A ∪B) all y ∈ B none of the pairs

{z, y} has been directed so far. Similarly, by (S1.1) we have D[V \ B] ⊆ A × A. So for all

z ∈ V \ (A ∪B) all x ∈ A none of the pairs {z, x} has been directed so far. So OBreaker can

claim all edges (v, y), (w, y) (or (v′, y) and (w′, y) respectively) for y ∈ B, and all edges (x, y′)

for x ∈ A as requested by the strategy.

By Lemma 3.1.4, adding e to the α-structure in V \ B takes OBreaker at most k edges to

direct. Furthermore, since |A| − k, |B| − `, and k+ ` are bounded by n/6 (by assumption and

(S1.4)), the strategy asks OBreaker to direct at most

k + 2|B|+ |A|+ 2 = 2(|B| − `) + 2(k + `) + (|A| − k) + 2 6 5
⌊n

6

⌋
+ 2 6 b

edges in one round of Stage I. We need to show that the properties are restored. For ease of

notation, let us assume that v and w were in V \ (A∪B), so OBreaker added those to A. Let

f1, . . . , ft be the arcs OBreaker directed. Let S′A = SA ∪ {e} and D′ = D ∪ {e, f1, . . . , ft} be

the new digraph after OBreaker’s move. It is obvious from the strategy description that the

pair (A′, B′) forms a UDB again, where A′ = A ∪ {v, w} and B′ = B ∪ {y′}. Since both v

and w were added to A, and by Lemma 3.1.4, (D′[V \B′], S′A) is an α-structure of rank k+ 1
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in V \B′, and S′A ⊆ A′ ×A′. So (S1.1) holds again. Since OBreaker’s edges either belong to

the UDB (A′, B′) or live in A′ × A′, (S1.2) still holds trivially. For (S1.4) note that k, the

rank of the α-structure in V \B, increased by one. But OBreaker added two vertices to A, so

|A| − k increased by one. Also `, the rank of the α-structure in V \A, did not change, while

we increased |B| by one. Finally, for (S1.3) note that k + ` increases by exactly one in each

round.

The case {v, w} ⊆ V \A is analogous due to the symmetry of the properties.

For Stage II, it is clear that (S1.1) and (S1.2) imply (S2.1) and (S2.2). S(2.3) follows by

assumption of entering Stage II. So assume, the three properties hold before OMaker’s move

in this stage. Assume first that for OMaker’s arc e = (v, w) it holds that {v, w} ⊆ V \ B.

As in Stage I, OBreaker can add e to the α-structure in V \ B. Similarly as in Stage I, by

(S2.2), for all edges z ∈ V \ (A ∪ B) all y ∈ B none of the pairs {z, y} has been directed so

far. So OBreaker can direct all edges (v, y), or (v′, y) respectively for y ∈ B. Furthermore,

the strategy asks him to direct at most

|B|+ k = |V | − (|A| − k) 6 b

edges, by property (S2.3). Finally, the properties are restored. By Lemma 3.1.4, (D[V \B], SA)

is an α-structure in V \ B again. Also, e = (v, w) is added to the α-structure as an edge of

type (α1). Since v is added to A by directing all edges (v, b) for b ∈ B, (S2.1) follows. There

is nothing to prove for (S2.2). For (S2.3), note that only k increased, and OBreaker added

exactly one new vertex to A (v or v′), so |A| − k did not decrease and the claim follows.

Now assume that for OMaker’s arc e = (v, w) it holds that {v, w} 6⊆ V \B. As mentioned, at

least one of the two vertices must lie in B then, and we may assume without loss of generality

that v ∈ B, and also that w ∈ V \ (A ∪ B). As usual, by Lemma 3.1.4, OBreaker can add e

to the α-structure in V \ A. By (S2.1), for all x ∈ A, either the pair {x,w} is not directed

yet, or (x,w) ∈ D (in this case, w = e−i for some ei being a special edge of the α-structure in

V \B). So OBreaker can follow the proposed strategy. Similar to the first case, this takes him

at most |A|+ ` = |V | − (|B| − `) 6 b edges. It is also easy to see now that the properties are

restored. For (2.1), note that we may delete a vertex from the α-structure in V \B (if w = e−i
for some ei), and all incident arcs. But as we observed in 3.1.1 (i), deleting a vertex and all

incident arcs does not harm the α-structure. Property (S2.2) follows again by Lemma 3.1.4,

and since OBreaker added w to B. (S2.3) follows as before for |B| − ` (|A| − k might have

increased though if we deleted one or more special edges from the α-structure (D[V \B], SA).

Finally, it is straight-forward that OBreaker can follow the strategy proposed in Stage III.

Since OBreaker plays in Stage II until A∪B = V (and the sets indeed enlarge in each round),

and by (S2.3) it follows that |A|, |B| 6 b. He then plays either inside A or B according to the



38 3. ON THE THRESHOLD BIAS IN THE ORIENTED-CYCLE GAME

strategy given by Lemma 3.1.4 until all edges are claimed. Therefore, in one round, OBreaker

needs to direct at most |A| 6 b or |B| 6 b edges.

This finishes the proof of Theorem 1.1.3.

3.3 OBreaker’s strategy for the strict rules

In the proof of Theorem 1.1.3 in the previous section, OBreaker’s strategy was to build a UDB

(A,B) such that both parts have size at least n − b. Then, depending which edge OMaker

directs, OBreaker plays either inside V \ A or V \ B, both of size at most b. Inside these

sets, V \ A or V \ B, OBreaker then plays a variant of the trivial strategy. This particular

variant used the notion of α-structures, which are powerful to maintain certain properties by

directing only few edges. When OBreaker is asked to direct exactly b edges in every round,

he might have to direct edges which could harm him. We will again use the idea of building a

UDB of size at least n− b, so that OBreaker can play either inside V \A or V \B. However,

we abandon the idea of using α-structures.

Proof of Theorem 1.1.4. Let b > n− c√n for some constant c < 1. We first provide OBreaker

with a strategy, then we prove that he can follow that strategy, and that it constitutes a

winning strategy.

Let e1 = (v1, w1) be the very first edge OMaker directs. Then OBreaker picks two disjoint

subsets A,B ⊆ V such that v1 ∈ A, w1 ∈ B and |A| = |B| = b
√
bc. Note that for n = n(c)

large enough,

b
√
bc >

√
b− 1 > n− b+ 1.

He then directs all edges (x, y) for x ∈ A and y ∈ B. Let t = b − b
√
bc2 − 1 be the number

of edges OBreaker still needs to direct. He picks a vertex a ∈ A and t arbitrary vertices

v1, . . . , vt ∈ V \ (A ∪B) and directs all edges (a, vi) for 1 6 i 6 t.

After his first move, OBreaker maintains a UDB (A,B) and partitionsA = AD∪̇AAD∪̇AS∪̇A0

and B = BD∪̇BAD∪̇BS∪̇B0, where AD, AAD, etc. may be empty at any point during the

game, and AS and BS are sets of at most one vertex. The subscripts stand for Dead, Almost

Dead and Star. In a particular round of the game, before OMaker’s move, let k = |AAD| and

` = |BAD|. If AS 6= ∅ we refer to the distinct element in AS as vk+1. Similarly, w1 is the

distinct element in BS , if it exists. Furthermore, the following properties hold immediately

after OBreaker’s move.

(a) Dead vertices: The pairs (AD, V \ AD) and (V \ BD, BD) form UDB’s. Furthermore,

D[AD] and D[BD] form transitive tournaments each.
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(b) Almost-dead vertices: The pairs (AAD, V \A) and (V \B,BAD) form UDB’s.

(c) Structure of AAD ∪ AS and BAD ∪ BS: There are enumerations AAD = {v1, . . . , vk},
BAD = {w2, . . . , w`+1} such that

(i) (v1, . . . , vk, vk+1) and (w1, w`, . . . , w`+1) induce transitive tournaments in D.

(ii) For all 1 6 i < j 6 k + 1, all w ∈ A0: If (vj , w) ∈ D then (vi, w) ∈ D.

(iii) For all 1 6 i < j 6 `+ 1, all v ∈ B0: If (v, wi) ∈ D then (v, wj) ∈ D.

(d) Stars: If AS 6= ∅ then there exists at most one w ∈ A0 such that (vk+1, w) ∈ D. Similarly,

if BS 6= ∅ then there exists at most one v ∈ B0 such that (v, w1) ∈ D.

(e) For all edges (v, w) ∈ D, either v ∈ AD∪AAD∪AS or w ∈ BD∪BAD∪BS ; or (v, w) ∈ A×B.

(f) Sufficient sizes: |AD∪̇A0| > n− b and |B0∪̇BD| > n− b.

The local and the global structure that is maintained is illustrated in Figure 3.1 and 3.2. Note

that once the partitions are declared, the properties (a)-(f) determine exactly which arcs are

in D and which are not, except for the ones starting in AS , those ending in BS , (i.e. arcs

of the form (vk+1, w) and (v, w1) for v, w ∈ V \ (A ∪ B)) and except for possible arcs from

AAD ∪ AS to A0 and arcs from B0 to BAD ∪ BS . Before we give the explicit strategy how

to maintain the above properties, consider the dual structure
←
D of all reverse arcs, with sets

A′ := B, B′ := A and partitions

A′ = A′D∪̇A′AD∪̇A′S∪̇A′0 and B′ = B′D∪̇B′AD∪̇B′S∪̇B′0,
where A′∗ = B∗ and B′∗ = A∗. (3.1)

Then (A′, B′) is a UDB in
←
D, and properties (a)-(f) hold for the given partition (in (c),

reverse the order of v1, . . . , vk+1 and of w1, . . . , w`+1). This observation shortens our case

distinction by a significant amount. Finally, note also that (f) implies that

|A| > |A| − |AAD| > |AD∪̇A0| > n− b and

|B| > |B| − |BAD| > |B0∪̇BD| > n− b.

Before a move of OMaker, let a UDB (A,B) be given with partitionsA = AD∪̇AAD∪̇AS∪̇A0

and B = BD∪̇BAD∪̇BS∪̇B0 such that all properties (a)-(f) hold. Let (v, w) be OMakers next

edge. We first provide OBreaker with a base strategy to direct at most b edges to include (v, w)

into the structure and to restore properties (a)-(f). Let t be the number of edges OBreaker

directed in the base strategy. We then provide OBreaker with an add-edges strategy to direct

b− t further edges (and suitably update the sets) such that the properties hold again.
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AD

A0

AAD

AS

V \ (A ∪B)

A

B

B0

BS

BAD

BD

Figure 3.1: Global structure. A thick arrow indicates a UDB. A thin arrow indicates that

arcs in that direction could be there, but not necessarily.

AD
AAD AS A0

B0

BS BAD

BD

w1 w2 w`+1

v1 vk vk+1

Figure 3.2: Local structure. The thick arrow indicates a tournament. The thin arrow indicates

that arcs in that direction could be there, but not necessarily.
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Base strategy:

Let (v, w) be OMakers arc. Assume first that {v, w} ∈ V \B. We need to divide the strategy

into cases depending on whether v ∈ V \ (A ∪B) (whence we want to add it to A) or v ∈ A.

The division into subcases is necessary for precision and notation, though we want to stress

that the general philosophy is similar in all subcases in Case 1, and all subcases in Case 2.

Whenever the strategy asks OBreaker to direct an edge (x, y) such that (x, y) ∈ D already,

he ignores that command and continues. When the strategy asks OBreaker to direct an edge

(x, y) such that (y, x) ∈ D, then he forfeits the game.

Case 1: v ∈ V \ (A ∪B). Then by Property (a) and (b), w 6∈ AD ∪AAD.

1.1 If AS = ∅. Then OBreaker directs all edges (v, w′) for w′ ∈ V \A; and all edges (vi, w)

for 1 6 i 6 k. He updates AAD := AAD ∪ {v}.

1.2 If AS = {vk+1} 6= ∅ and w 6= vk+1. Note that then w ∈ A0 ∪ (V \ (A ∪ B)). Then, for

all w′ ∈ V \ (A ∪ B), OBreaker directs all (vk+1, w
′). Furthermore, he directs all (v, y)

for y ∈ B, and for all 1 6 i 6 k + 1, he directs (vi, w). He updates AAD := AAD ∪ AS
and AS := {v}.

1.3 If w = vk+1 is the unique element in AS . Then OBreaker directs all edges (v, w′)

for w′ ∈ V \ A. Furthermore, for all edges (w,w′), he directs (v, w′). He updates

AAD := AAD ∪ {v}.

Case 2: v ∈ A. By (a), v 6∈ AD.

2.1 If v = vi ∈ AAD. Then by (a), (b) and (c)(i), w ∈ A0. Then OBreaker directs all (vj , w)

for 1 6 j < i.

2.2 If v ∈ AS . Then by (a), and (c)(i), w ∈ A0∪(V \(A∪B)). Then for all w′ ∈ V \(A∪B),

OBreaker directs the edges (v, w′). And for all 1 6 i 6 k, he directs the edge (vi, w).

He then updates AAD := AAD ∪AS and AS := ∅.

2.3 If v ∈ A0. For a technical reason, we need to divide whether v is an endpoint of the

tournament in AAD∪AS , or not. Let u be the last vertex in the tournament in AAD∪AS .

That is, if AS = ∅ then u = vk, and otherwise u = vk+1 ∈ AS .

2.3.1 If AAD ∪ AS 6= ∅ and (u, v) ∈ D. Then by property (c)(ii) for all 1 6 j 6

k + 1: (vj , v) ∈ D. Then OBreaker directs all edges (u,w′) for w′ ∈ V \ (A ∪ B).

Furthermore, he directs all (vj , w) for all 1 6 j 6 k + 1. Finally, he directs all

(v1, a) for a ∈ A0. Note that since AAD ∪ AS 6= ∅, v1 exists. He then updates

AD := AD ∪ {v1}, A0 := A0 \ {v}, AAD := (AAD ∪AS) \ {v1} and AS := {v}.
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2.3.2 If AAD ∪ AS = ∅ or (u, v) 6∈ D. Set i := 1 if AAD ∪ AS = ∅ and otherwise

set i := min{j : (vj , v) 6∈ D}. That is, by property (c)(ii), for all 1 6 j < i:

(vj , v) ∈ D, and for all i 6 j 6 k+ 1: (vj , v) 6∈ D. Then OBreaker directs all edges

(v, w′) for w′ ∈ V \ (A ∪ B). Furthermore, he directs all (vj , w) for all j < i, and

all (v, vj) for j > i. For a ∈ A0, if (vi, a) ∈ D, then OBreaker directs the edge

(v, a). He now updates vj := vj−1 for all j > i and vi := v. He then directs all

(v1, a) for a ∈ A0. Finally, he updates AD := AD ∪ {v1}, A0 := A0 \ {vi}, and

AAD := (AAD ∪ {vi}) \ {v1}.

Assume now that {v, w} 6⊆ V \ B. Since (A,B) is a UDB we therefore have that {v, w} ⊆
V \ A. Consider now the dual

←
D with partitions given by (3.1), where (A′, B′) is the main

UDB. As mentioned, the properties (a)-(f) are fulfilled for that choice of sets and partitions.

Furthermore, {v, w} ⊆ V \B′. Let S be the strategy given above for inserting the reverse arc

(w, v) into the dual structure
←
D. That is, S gives OBreaker a set of arcs {f1, . . . , ft} ⊆ A(

←
D) =

A(D) to direct and some update rules. OBreaker now directs the reverse arcs
←
f1, . . . ,

←
ft, and

updates the sets and partitions according to the dualization.

Add-edges strategy:

In a particular round, let t be the number of edges OBreaker directed to follow the base

strategy. He then directs b− t further edges by repeatedly applying the following proposition.

Proposition 3.3.1. Let there be sets A,B with partitions

A = AD∪̇AAD∪̇AS∪̇A0 and B = BD∪̇BAD∪̇BS∪̇B0

with |A|, |B| > n − b + 1 such that (A,B) forms a UDB and such that the properties (a)-

(f) hold. Then, unless D is a transitive tournament on Kn, there exists an available arc

(x, y) ∈ A(D) such that for D ∪ (x, y) and suitably updated sets A and B, the properties

(a)-(f) hold again. Moreover, the update does not decrease |A| or |B|.

Note that after OBreaker’s first move, |A|, |B| > n − b + 1, and that the base strategy

described above never decreases |A| or |B|. Hence, under the assumption that the base strategy

yields properties (a)-(f) again, OBreaker can indeed apply this “add-edges” proposition. We

now need to check that

(1) OBreaker can follow the strategy in his first move and the properties (a)-(f) hold after

OBreakers first move;

(2) if the properties (a)-(f) hold, then there is no cycle in D, nor can OMaker close a cycle

in her next move;

(3) OBreaker can follow the proposed base strategy, and he needs to direct at most b edges;
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(4) after OBreaker’s move of the base strategy, the properties (a)-(f) are restored with the

updated sets;

(5) Proposition 3.3.1 is true.

For (1), it is clear that OBreaker can build a UDB (A,B) such that both sets have size

bbc > n − b + 1. Furthermore, |V \ (A ∪ B)| = n − 2bbc > b − bbc2 − 1, so OBreaker can

claim the remaining edges (a, vi) for vi ∈ V \ (A ∪ B), as requested. After the first move of

OBreaker, properties (a)-(f) hold with AD = AAD = BD = BAD = BS = ∅ and AS = {a}.
For (2), suppose properties (a)-(f) hold, and let P be a path in D and e ∈ D ∪ A(D) such

that P ∪ e is a directed cycle. Since (A,B) is a UDB in D, the critical edge e lies either in

V \A or in V \B. Now, by property (e), no edge enters A from outside A, and no edge leaves

B to the outside of B, so we have that V (P ) ⊆ A∪B (where V (P ) are the vertices contained

in P ). Since P ∪ e is a cycle, we therefore have that either V (P ∪ e) ⊆ A or V (P ∪ e) ⊆ B.

Suppose first that V (P ∪ e) ⊆ A. Since P ⊆ D and by property (e) again, we have that

P+ ⊆ AD ∪AAD ∪AS . But AD ∪AAD ∪AS induces a transitive tournament by (c)(i). Then

the only possibility to form a cycle is when e+ ∈ A0 and e− ∈ AD ∪AAD ∪AS . Let vi be the

last vertex in the order of that tournament in P , and let vj = e−. Then j < i by choice of

vi, and (vi, e
+) ∈ P ⊆ D. So by property (c)(ii), (e−, e+) = (vj , e

+) ∈ D, a contradiction to

e ∈ D ∪ A(D). The case when V (P ∪ e) ⊆ B is analogous.

Point (3) and (4), we prove case by case. Let e = (v, w) be the arc directed by OMaker

in her previous move. If {v, w} 6⊆ V \B, then we considered the dual
←
D with UDB (A′, B′),

where A′ = B and B′ = A, and inserted the reverse arc (w, v) into the dual structure, where

{v, w} ⊆ V \ B′. Therefore, we only need to consider the case when {v, w} ⊆ V \ B. For

the sake of completeness, we list all (sub)cases here. We want to mention though for the

impatient reader that all cases follow the same pattern. If v ∈ V \ (A∪B), the strategy adds

it to either AAD or AS . If v ∈ A, then some vertex (namely the top vertex in the tournament

of AAD) is added to AD, and therefore dead. We consider Case 2.3.1 to be the not-so-trivial

and maybe most interesting case.

Case 1: v ∈ V \ (A ∪B).

1.1 By property (e), all arcs of the form (w′, v) have w′ ∈ A. Also, all arcs of the form

(w,w′) have w′ ∈ B. So, OBreaker can follow the proposed strategy. Furthermore,

the strategy asks him to direct at most |V \ A| + |AAD| = |V | − (|A| − |AAD|) 6 b

edges by property (f). Finally, the properties are restored. Since AD, AS , A0 and B are

unchanged, there is nothing to prove for (a), (d) and (f). (b) and (e) follow immediately

from the strategy description. For (c), set vk+1 := v and note that since v ∈ V \ (A∪B)

before OBreaker’s move, all arcs (vi, v) are already edges in D, so (i) follows. Further,

for any (v, w′) ∈ D, either w′ ∈ B (whence the edges (vi, w
′) are already present by (b))
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or w′ = w in which case the edges (vi, w) are added by the strategy. So, (ii) follows.

(iii) concerns the structure in B and is irrelevant in this case.

1.2 By property (e), all edges of the form (w′, vk+1) or (w′, v) have w′ ∈ A. Also, all

edges of the form (w,w′) have w′ ∈ B. So, OBreaker can follow the proposed strategy.

Furthermore, the strategy asks him to direct at most |V \ (A∪B)|+ |B|+ |AAD ∪AS | =
|V | − |AD ∪ A0| 6 b edges by property (f). Finally, the properties are restored. Since

AD, A0 and B are unchanged, there is nothing to prove for (a) and (f). (b) and (e)

follow immediately from the strategy description. (A,B) is a UDB again since only

v was moved to A and was connected to all of B. (c) follows similarly as above: set

vk+2 := v. The arcs (vi, vk+2) are all present in D for 1 6 i 6 k by (b) and since

v ∈ V \(A∪B) before the update. The edge (vk+1, vk+2) is added by the strategy unless

it was there already. So (c)(i) follows. For (c)(ii), note that the only edges added of the

form (vk+1, w
′) have w′ ∈ V \ (A ∪ B), so each (vi, w

′) is in D already. Also, the only

edges of the form (vk+2, w
′) have w ∈ B ∪ {w}, so the arcs (vi, w

′) are either already

in D, or added by the strategy. (d) follows because the only arcs of the form (vk+2, w
′)

have w′ ∈ B ∪ {w}.

1.3 By property (e), all arcs of the form (w′, v) have w′ ∈ AD ∪ AAD. Also, all arcs of the

form (w,w′) = (vk+1, w
′) have w′ ∈ V \ (AD ∪ AAD) by (a) and (c)(i). So, OBreaker

can follow the proposed strategy. Moreover, by property (d), there is at most one

w′ ∈ A0 such that (vk+1, w
′) ∈ D. Therefore, the strategy asks him to direct at most

|V \ A| + 1 = |V \ A| + |AS | 6 |V | − |AD ∪ A0| 6 b edges by property (f). Finally,

the properties are restored. (a), (b), (d), (e) and (f) are straight-forward as in Case

1.1. For (c), since v is added to AAD, set vk+2 := vk+1 and then vk+1 := v. We

need to show that (v1, . . . , vk, vk+1, vk+2) induces a transitive tournament. All the arcs

(vi, vk+1), 1 6 i 6 k, are already present in D by (b). The arc (vk+1, vk+2) was directed

by OMaker. Since (v1, . . . , vk, vk+2) was a transitive tournament already, (c)(i) follows.

We need to show (c)(ii) only for j = k+ 1 and j = k+ 2. Any arc of the form (vk+1, w
′)

was either directed by OMaker or OBreaker in the very last move. Therefore, either

w′ ∈ V \ A or w′ = vk+2, or (vk+2, w
′) ∈ D as well. In each case, all arcs (vi, w

′) are

present in D since (b), (c)(i) and (c)(ii) hold before OMaker’s move by assumption.

Finally, for any arc of the form (vk+2, w
′), the arcs (vi, w

′) are present for 1 6 i 6 k by

assumption and (c)(ii), and for i = k + 1 by the strategy description.

Case 2: v ∈ A.

2.1 The only property that might be invalid after this move of OMaker is Property (c)(ii).

But this is exactly restored by the strategy description. By property (b), OBreaker can
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direct all those edges (vj , w), and he needs to direct at most k 6 |A| 6 |V \ B| 6 b

edges.

2.2 This case is also straight forward. The strategy is exactly property restoring; and it

takes at most |V \ (A ∪B)|+ |AAD| 6 b edges as before.

2.3.1 Recall that we set u = vk if AS = ∅ and u = vk+1 otherwise. Note that if AS is

empty, the label k + 1 does not have a host vertex, the following argument is still

valid though. By property (e), all arcs of the form (w′, u) have w′ ∈ A, so for w′ ∈
V \ (A ∪ B), either the arc (u,w′) is already present in D, or OBreaker can direct it.

Furthermore, all (vj , w) for 1 6 j 6 k + 1 are either in D already or in A(D). So

OBreaker can direct (vj , w). Finally, all arcs of the form (a, v1) have a ∈ AD, so for

a ∈ A0, OBreaker can direct (v1, a). In total, the strategy asks OBreaker to direct at

most |V \ (A ∪B)| + k + 1 + |A0| 6 |V \B| 6 b edges. Now, we show that all the

properties are restored. For (a), note that v1 is added to AD. Since D[AD] was a

transitive tournament before, and since (AD, V \AD) was a UDB (both by (a)), adding

v1 yields that AD ∪ {v1} also induces a transitive tournament. The arcs (v1, w
′) for

w′ ∈ V \ A are present in D since either v1 ∈ AAD before OMaker’s move and by

property (b); or v1 ∈ AS whence the edges (v1, w
′) for w′ ∈ V \ (A ∪B) were added by

the strategy. The arcs (v1, w
′) for w′ ∈ AAD ∪AS were present in D by property (c)(i).

Finally, the arcs (v1, w
′) for w′ ∈ A0 were either present before or they were added by

OBreaker in this round. So, (AD ∪ {v1}, V \ (AD ∪ {v1})) is a UDB again, as claimed.

For (b), we have to note that v1 was shifted from AAD to AD (and thus does not harm

property (b)) and u was shifted to AAD (unless AS = ∅ in which case there is nothing

to prove for (b)). However, by the strategy description, OBreaker directed all edges

(u,w′) for w′ ∈ V \ (A ∪ B); and all arcs (u,w′) for w′ ∈ B were already in D. Hence,

(b) holds again. For (c)(i), we need to check that (v2, . . . , u, v) induces a tournament.

Clearly, (v2, . . . , u) induces a tournament, since (c)(i) was true before OMaker’s move.

By assumption of this case, (u, v) ∈ D and v ∈ A0 before the update, so by (c)(ii) all

the arcs (vj , v) were in D before for 1 6 j 6 k+ 1. So (c)(i) follows. Now, for (c)(ii) set

vk+2 := v. We need to check (c)(ii) for 2 6 i < j 6 k+2. Clearly, the property holds for

2 6 i < j 6 k + 1, since this was true before. Now, the only arcs of the form (vk+2, w
′)

have w′ ∈ B ∪ {w} since vk+2 = v ∈ A0 before the update and by property (e). But

all arcs (vi, w
′) for 2 6 i < j 6 k + 1 and w′ ∈ B were present in D before, and all

arcs (vi, w) were either present already or added by OBreaker. So, (c)(ii) follows. For

(c)(iii), there is nothing to prove. For property (d), after the update we have AS = {v}.
But the only edges of the form (v, w′) have w′ ∈ B ∪ {w} by (e), so (d) holds again.

Now, (e) holds since we added v to AS and OBreaker only directed edges (v′, w′) with
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v′ ∈ AAD ∪AS . Finally, (f) follows since we deleted one vertex (namely v) from A0 and

added one vertex (namely v1) to AD.

2.3.2 Recall that we set i := 1 if AAD ∪ AS = ∅ and i := min{j : (vj , v) 6∈ G} 6 k + 1

otherwise. Again, the label k + 1 may have no host vertex. By property (e), all arcs of

the form (w′, v) have w′ ∈ A, so for w′ ∈ V \ (A ∪B), either the edge (v, w′) is already

present in D (which only happens if w′ = w ∈ V \ (A ∪B)), or OBreaker can direct it.

Furthermore, by definition of i and by property (c)(ii), for all 1 6 j < i, (vj , v) ∈ G
already, and for all i 6 j 6 k + 1, the arc (v, vj) is available before OMaker’s move

(w = vj of OMaker’s edge (v, w) is possible, in which case one of the pairs has direction

(v, vj)). Therefore, OBreaker can direct all arcs (v, vj) for i 6 j 6 k + 1, as requested

by the strategy. Moreover, either w = v` for some ` > i, or w ∈ A0 ∪ V \ (A ∪ B). In

both cases, for all 1 6 j < i, the arc (vj , w) is either already present in D or undirected,

by properties (c)(i) and (e). Hence, OBreaker can claim (vj , w) for 1 6 j < i as well.

Finally, by property (e), all arcs (v, a) for a ∈ A0 are available (unless a = w) since

v ∈ A0 and by property (e). Therefore, OBreaker can direct all these edges (v, a).

Similarly, he can direct all edges (v1, a) for a ∈ A0.

To see that OBreaker directs at most b edges, note that for each a ∈ A0, either (vi, a) ∈
D, or the arc is available. In the second case, the strategy asks OBreaker to direct (v1, a).

In the first case, the strategy asks OBreaker to direct (v, a) and (v1, a). However, by

property (c)(ii), the edge (v1, a) is already present in D. So, for all a ∈ A0, OBreaker

directs at most one edge. Furthermore, for all 1 6 j 6 k + 1, OBreaker directs at

most one edge (either (vj , w) or (v, vj)). Hence, in total, OBreaker directs at most

|V \ (A ∪B)|+ |AAD ∪AS ∪A0| 6 n− |B| 6 b edges by (f).

Now, we show that all the properties are restored. For (a), assume first that AAD 6= ∅.
Then the vertex v1 which we move to AD was in AAD before, and thus, similar to the

previous case, all arcs of the form (v1, w
′) for w′ ∈ AAD ∪ AS ∪ (V \ B) were already

present, and arcs (v1, w
′) with w′ ∈ A0 were added by OBreaker in this round. So

assume now for (a) that AAD = ∅. Then by assumption (u, v) 6∈ D (or AS = ∅ as well)

and thus i = 1. Hence, v = v1 (after the update) is the vertex moved to AD. We check

that all arcs (v, w′) for w′ ∈ V \ AD are there. For w′ ∈ B this is certainly true since

v ∈ A0 before the update and (A,B) was a UDB. Now, for w′ ∈ V \ (A ∪B) the edges

(v, w′) are added by OBreaker in this round. If AS = {u} 6= ∅, then (v, u) is directed

by OBreaker. Furthermore, all edges (v, w′) for w′ ∈ A0 are directed by OBreaker as

well. Property (a) follows. Property (b) follows similarly as in the previous case: v

is (potentially) added to AAD, and all necessary edges (v, w′) for w′ ∈ V \ (A ∪ B)

are directed by OBreaker or are already there. For (c), consider the following ordering
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(v′1, . . . , v
′
k+2) where

v′j :=


vj for 1 6 j < i

v for j = i

vj−1 for i < j 6 k + 2.

Now, (v1, . . . , u) induces a transitive tournament in D because property (c)(i) holds

before OMakers move. We claim that adding v between position i−1 and i forms again

a transitive tournament after OBreakers move. For all j < i, the edges (v′j , v
′
i) = (vj , v)

are already present in D as mentioned above. For all j > i, the pairs {v′i, v′j} = {v, vj−1}
are undirected before OBreakers move, as mentioned above, and OBreaker directs all

edges (v′i, v
′
j) by the strategy description. The claim follows. Now, (c)(ii) follows for the

same ordering exactly by the strategy description.

Since AS is unchanged, there is nothing to prove for (d). Property (e) holds, since the

only new start point of an edge v is moved to AD ∪ AAD ∪ AS . Finally, v is removed

from A0, but v1 is added to AD, so (f) follows.

It remains to show (5).

Proof of Proposition 3.3.1. Assume first that AAD 6= ∅. Then we may assume that there

exists a y ∈ A0 such that the pair {v1, y} is not directed, where v1 is the top vertex in the

tournament on AAD as before. Otherwise, we set AD := AD∪{v1} and AAD := AAD\{v1} and

reapply the Proposition. Then OBreaker directs (v1, y) and it is obvious that the properties

(a)-(f) hold again.

So assume from now on that AAD = ∅. If AS 6= ∅ let v1 be the unique element in AS (note

that since k = |AAD| = 0 this is consistent with our notation of vk+1 above). We similarly

may assume that there exists a y ∈ V \ (A ∪B) such that the pair {v1, y} is not directed, for

otherwise we reapply the proposition with AAD := AS and AS := ∅. OBreaker then directs

(v1, y) and it is obvious that the properties (a)-(f) hold again.

So assume from now on that AAD = AS = ∅. If A0 6= ∅ and V \ (A ∪ B) 6= ∅, then pick

some x ∈ A0, y ∈ V \ (A ∪ B), direct (x, y) and set AS := {x} and A0 := A0 \ {x}. It is

easy to see that all the structural properties (a)-(e) hold again. For (f), since by assumption

|A| > n− b+ 1 and A = AD ∪A0, it follows that after moving x to AS (f) still holds.

If |A0| > 2 and V \ (A ∪ B) = ∅, then pick x, y ∈ A0, direct (x, y) and set AAD := {x} and

A0 := A0 \ {x}. The properties follow as in the previous case. If A0 = {x} is a singleton and

V \ (A ∪B) = ∅, set AD := AD ∪A0 and A0 = ∅ and reapply the lemma.

So we may assume that AAD = AS = A0 = ∅, that is, A = AD and thus D[A] is a transitive

tournament and (A, V \A) is a UDB.

Now, by a similar analysis, we can either direct an edge in V \ A or deduce that B = BD,
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that is, D[B] forms a transitive tournament and (V \ B,B) is a UDB. By assumption, D

is not a transitive tournament on Kn, hence there must be an undirected pair {x, y}. Since

A = AD and B = BD, both x, y must lie in V \ (A ∪ B). Then OBreaker directs (x, y) and

sets AS := {x} and updates A := A∪{x}. Note that since (V \B,B) is a UDB, all the edges

(x, z) for z ∈ B are present. It is easy to see that (a)-(f) hold for the updated sets.

This finishes the proof of Theorem 1.1.4

3.4 Concluding remarks

Before we comment on how good the upper bounds in Theorem 1.1.3 and 1.1.4 are let us first

take a look at the strategy for OMaker given in [11] which gives the so far best known lower

bound. Here, the idea is that OMaker first builds a long directed path (of length n− 1) in at

most n− 1 rounds. When b 6 n/2− 2, OBreaker cannot have directed all “backward” edges

of this path, so OMaker can direct one of those and close a cycle.

From the perspective of OBreaker, it is indeed most harmful if OMaker builds a long

path, as we have seen at the beginning of Section 3.1. Indeed, if OMaker builds a long path

throughout the game, then in the kth round she can create potentially k immediate threats.

On the other hand, using the procedure α, OBreaker can ensure that he needs to orient at

most k edges to answer every threat, even if OMaker plays another strategy than building a

long path (cf. Lemma 3.1.4).

Even though the use of α-structures (and Lemma 3.1.4) suggests that building a long path

is essentially the best OMaker can do, the lower bound of roughly n/2 and our upper bound

of roughly 5n/6 do not match at all. In the following, let us describe briefly why n/
√

2 is a

lower bound to our strategy.

Suppose OBreaker managed to build a UDB (A,B) of size n − b − 1, and observe that

then at least (n − b − 1)2/(b + 1) rounds (in Stage I) were played. Suppose that we are in

the case, that OMaker always claimed edges in V \B such that the size k of the α-structure

increased in each round. Assume further that OBreaker only wants to increase one of the

values |A|−k and |B|− ` (in order to decrease the number of edges to direct in one particular

round). Without loss of generality let this be |A| − k. Then, in order to follow procedure

α and to increase |A| − k (by adding two vertices to A), OBreaker needs to direct at least

k+ 2|B| > (n− b− 1)2/(b+ 1) + 2(n− b− 1) edges, which is only possible if b > n/
√

2 + o(n).

Optimizing the constant of 5n/6 in that direction seems to be rather technical, and since

the best we could hope for is n/
√

2 which is still far from the lower bound of n/2, we rather



3.4. CONCLUDING REMARKS 49

kept the proof simple. We conjecture that the correct threshold is asymptotically at least

n/
√

2.

Conjecture 3.4.1. For n large enough and b 6 n/
√

2− o(n), OMaker has a strategy to close

a directed cycle in the monotone b-biased orientation game.

Concerning the strict rules, OBreaker has to be a lot more careful where to direct remaining

edges, since any additional arc can be used by OMaker to her advantage. So far, we have

proven that for every 0 < c < 1 and every large enough n, t+(n,P) 6 n− c√n−1, where P is

the property of containing an oriented cycle. The bound essentially comes from the first round

in which OBreaker claims a UDB (A,B) with both parts having size at least n − b. With

a smaller bias, OBreaker needs more rounds to build such a UDB (that was Stage I in the

monotone-rules strategy). Building up a UDB and maintaining certain invariant properties

in the strict rules seem possible, though very technical. We conjecture that there is a constant

ε > 0 such that t+(n,P) 6 (1− ε)n, i.e. that for b > (1− ε)n and n large enough, OBreaker

has a strategy to prevent directed cycles in the strict b-biased orientation game. Moreover,

we wonder whether t+(n,P) and t(n,P) are (asymptically) equal.
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4

What is Ramsey-equivalent to the

clique?

In this chapter we study the questions which graphs are Ramsey-equivalent to the clique,

and prove the results of Subsection 1.2.1. Recall that we say two graphs H and H ′ are

Ramsey-equivalent if for every graph G, G is Ramsey for H if and only if it is Ramsey for H ′.

Throughout this chapter, all colourings are red-blue-colourings, and we omit the subscript

r = 2 in our notation. As mentioned in the introduction, any graph H which is Ramsey-

equivalent to the clique Kk must contain a copy of Kk. Here, we are concerned with the

question of how much “bigger” than Kk such a graph H can be. In the first section of this

chapter we study the clique with a hanging edge, denoted by Kk ·K2. We show that for any

k > 3, there exists a graph G which is Ramsey for Kk, but not Ramsey for Kk · K2. We

will extend this result and prove a stronger statement about the minimum degree of minimal

Ramsey graphs for Kk ·K2, namely s(Kk ·K2) 6 k − 1. It follows that if some graph H is

Ramsey-equivalent to Kk it needs to be the disjoint union of a Kk and some graphs on fewer

vertices. In Section 4.2, we will then study the question of how many disjoint (smaller) cliques

we can add to Kk so that the resulting graph is still Ramsey-equivalent to Kk.

4.1 Hanging edges

In this section, we study the minimum degrees of graphs that are Kk ·K2-minimal. Our plan

is to construct a graph G that contains a vertex v of degree k − 1 which is “crucial” for G

to be Ramsey for Kk ·K2. That is, G → Kk ·K2, but G − v 9 Kk ·K2. This implies that

any minimal Kk ·K2-Ramsey subgraph G′ ⊆ G (and certainly there is one!) has to contain v

51
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and hence has to have minimum degree at most k− 1. We therefore obtain the missing upper

bound in Theorem 1.2.3.

We now proceed to develop tools useful for proving Theorem 1.2.3. The following theorem

of Nešetřil and Rödl [47] states that there is a Kk-free graph F so that any two-colouring of

the edges of F has a monochromatic Kk−1.

Theorem 4.1.1. For every k > 2 there is some graph F so that F is Kk-free and F → Kk−1.

By a circuit of length s in a hypergraphH = (V, E) we mean a sequence e1, v1, e2, v2, . . . , es, vs

of distinct edges e1, . . . , es ∈ E and distinct vertices v1, . . . , vs ∈ V such that vj ∈ ej ∩ ej+1

for all 1 6 j < s, and vs ∈ es ∩ e1. In particular, if two distinct hyperedges intersect in two

or more vertices, we consider this as a circuit of length 2. By the girth of a hypergraph H
we denote the length of the shortest circuit in H. The following lemma is proved in [33] by a

now standard application of the probabilistic method [3].

Lemma 4.1.2. For all integers k,m > 2 and every ε > 0 there is a k-uniform hypergraph of

girth at least m and independence number at most εn, where n is the number of vertices in

the hypergraph.

We will need a strengthening of Theorem 4.1.1 which states that there is a Kk-free graph

F so that any two-colouring of the edges of F has a monochromatic Kk−1 inside of every

ε-fraction of the vertices.

Definition 4.1.3. We write F
ε→ Kk−1 to mean that for every S ⊆ V (F ), |S| > εv(F )

implies F [S]→ Kk−1.

Lemma 4.1.4. For every ε > 0 and k > 2 there exists a graph F which is Kk-free and

F
ε→ Kk−1.

Proof. The case where k = 2 is trivial, so we will assume that k > 3. Take F0 to be as in

Theorem 4.1.1. By Lemma 4.1.2 there is some v(F0)-uniform hypergraph H = (V, E) of girth

at least 4 and independence number less than ε |V |. We construct a graph F on vertex set V .

The edges of F are created by placing a copy of F0 inside of each hyperedge in E .

Since H has girth at least 4, any triangle of F must be contained in a single hyperedge of

H. Therefore, the vertex set of any copy of Kk in F must be contained in a single hyperedge

of H as well. However, a single hyperedge forms just a copy of F0 in F and F0 has no copy

of Kk, so F has no copy of Kk.

Since H has independence number less than ε |V |, any set S of at least ε |V | vertices must

contain some hyperedge. Hence, F [S] contains a copy of F0. As F0 → Kk−1, we also have

F [S]→ Kk−1.
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F1

F2

F3

F4

Figure 4.1: The gadget graph G0 in Lemma 4.1.5 for k = 6. A thick line indicates that the

vertices of the corresponding sets are pairwise connected.

From this F we construct a gadget graph G0 with a useful property, namely that a particular

copy of Kk is forced to be monochromatic.

Lemma 4.1.5. There exists a graph G0 with a subgraph H isomorphic to Kk contained in

G0 such that

1. there is a colouring of G0 without a red Kk ·K2 and without a blue Kk,

2. and every colouring of G0 without a monochromatic copy of Kk ·K2 results in H being

monochromatic.

Proof. If k = 2 then taking G0 to be a single edge suffices. We will henceforth assume k > 3.

Take ε = 2−k
2

and let F1, . . . , Fk−2 be copies of the graph F from Lemma 4.1.4. Add complete

bipartite graphs between any two of these copies. Add a copy H of Kk and connect it to every

vertex in every Fi. The resulting graph is G0 (see Figure 4.1). To show G0 9 Kk ·K2, colour

all edges inside every Fi and inside H red, and all the remaining edges blue. The largest red

clique is H, with only blue edges leaving H. The Fi are Kk-free, and any edge leaving Fi is

blue as well. Since the graph of blue edges is (k− 1)-chromatic (F1, . . . , Fk−2, H is a partition

into independent sets), the largest blue clique has order k − 1. This verifies (1).

For (2), assume χ is a red-blue colouring of the edges of G0 without a monochromatic

Kk ·K2. We show that this forces H to be monochromatic. Define for a vertex v in G0 and

for a subset S ⊆ NG0(v) the colour pattern cv of v with respect to S to be the function with

domain S that maps a vertex w ∈ S to the colour of the edge {v, w}. We will now use a

procedure of pruning vertices by their colour patterns; we refer to it as colour focusing, and

will use it again later.
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For a vertex v ∈ V (F1), consider the colour pattern cv with respect to V (H). There are

at most 2k such patterns, so at least a 2−k-fraction of the vertices of F1 has the same colour

pattern. Fix an arbitrary subset S1 ⊆ V (F1) such that |S1| > 2−kv(F ) and cv1 = cv2 for every

v1, v2 ∈ S1 (see Figure 4.2a). Then |S1| > εv(F ), hence F1[S1]→ Kk−1. Fix a monochromatic

copy H1 of Kk−1 contained in S1, and assume without loss of generality that H1 is red. We

claim that all edges between V (H) and S1 (and in particular to V (H1)) are blue. Indeed,

since all vertices v ∈ S1 have the same colour pattern to V (H), say c, all the edges {i, v} with

v ∈ S1 have the same colour for any fixed vertex i ∈ V (H), namely c(i). If one vertex i of H

were red to S1, then i along with H1 and one (arbitrary) other vertex v of S1 would contain

a red copy of Kk ·K2, a contradiction to our assumption on the colouring χ.

We now iterate this argument. Assume we have found red cliques

H1, . . . ,Ht−1 in F1, . . . , Ft−1 with vertex sets V1, . . . , Vt−1, respectively, and that all the edges

between these cliques as well as to H are blue. In Ft there is some, at least 2−tk-fraction large

subset St ⊆ V (Ft) of the vertices, which all have the same colour pattern with respect to

V (H)∪ V1 ∪ V2 ∪ · · · ∪ Vt−1. Since |St| > εv(Ft), we get Ft[St]→ Kk−1. We find a monochro-

matic copy of Kk−1 in St and call it Ht. Assume for contradiction that Ht is blue. In this

case as before, all the edges between Ht and H as well as between Ht and H1, . . . ,Ht−1 would

have to be red, otherwise there would be a blue Kk ·K2. But if all these edges are red, any

two vertices of Ht together with H1 form a red Kk ·K2 (see Figure 4.2b). Hence, Ht must be

red, and as before all edges between Ht and H as well as between Ht and H1, . . . ,Ht−1 must

be blue.

After applying this argument to Fk−2, we have a collection H1, . . . ,Hk−2 of red (k − 1)-

cliques and complete bipartite blue graphs between any two of H,H1, . . . ,Hk−2. Now, if some

edge in H were blue, this edge along with one vertex from each of H1, . . . ,Hk−2 and any

(arbitrary) other vertex from H1 would create a blue Kk · K2. Therefore, every edge of H

must be red, as desired.

F2

F3

F4

F1[S1]

(a) Colour-focusing between H = K6 and F1.

F3

F4

F2[S2]

(b) There cannot be a blue K5 in F2[S2].

Figure 4.2: Illustrating the proof of Lemma 4.1.5.
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G1

G2

G3G4

G5

v1

v2

v6

v3v4

v5

v

Figure 4.3: An example of the graph G in Lemma 4.1.6 for k = 6.

The following lemma completes the proof of Theorem 1.2.3.

Lemma 4.1.6. For every k > 3 there is a graph G which contains a vertex v of degree k − 1

so that G→ Kk ·K2 but G− v 9 Kk ·K2.

Proof. Take k − 1 copies G1, . . . , Gk−1 of the gadget graph G0 from Lemma 4.1.5, and let

H1, . . . ,Hk−1 be the copies of Kk guaranteed to be monochromatic in any colouring without

a monochromatic Kk · K2. Pick one vertex vi in each Hi, and insert all edges between the

vi’s. That is, we pick a vertex from each Kk and connect them to form a Kk−1. In addition,

pick an arbitrary vertex vk 6= v2 from V (H2) and insert an edge between it and v1. Finally,

add a vertex v to the graph, and connect it to v1, . . . , vk−1. This completes the construction

of G (see Figure 4.3). Clearly, deg(v) = k−1. To see that G−v 9 Kk ·K2, colour each Gi so

it has no red Kk ·K2 and no blue Kk. By property (2) of the gadget G0 this also means that

every Hi is monochromatic red. Colour the edges between {v1, . . . , vk−1} and the additional

edge {v1, vk} blue. Since none of the Gi had a red Kk ·K2 and we did not add any red edges,

this colouring has no red Kk ·K2. The Gi have no blue Kk, and for i = 1, . . . , k−1 the vertex

vi has no blue edges leaving Gi except those to the other vj . But the edge {v2, vk} is red,

therefore there is no blue Kk and in particular no blue Kk ·K2.

Finally, we show that G → Kk ·K2. Let any colouring of G be given, and suppose none

of the copies of G0 contains a monochromatic copy of Kk ·K2. Then all of H1, . . . ,Hk−1 are

monochromatic. We claim they have the same colour. Indeed, if Hi and Hj had different

colours, then the edge vivj would induce a monochromatic Kk · K2 with whichever copy of

Kk had the same colour as its own.

So all of the Hi have the same colour; without loss of generality, let this colour be red. If

any of the edges vivj , for 1 6 i 6 j 6 k− 1 or for i = 1, j = k were red, then along with Hi it

would form a red Kk ·K2. Similarly, if any of the edges vvi were red, then along with Hi it

would induce a red Kk ·K2. Otherwise, all these edges are blue and then v, v1, . . . , vk−1 and

vk form a blue Kk ·K2, as desired.
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4.2 Clique with some disjoint smaller cliques

Recall that Kk +m ·Kt denotes the disjoint union of a Kk and m copies of Kt. Also, µ(k, t) is

the largest number m so that Kk and Kk +m ·Kt are Ramsey-equivalent. In this section, we

prove Theorem 1.2.2, which gives an upper bound on µ(k, t) and determines it up to roughly

a factor of 2.

Proof of Theorem 1.2.2. Let m =
⌊
R(k,k−t+1)−1

t

⌋
+ 1. We will construct a graph G with the

following two properties.

(G1) G→ Kk and

(G2) G9 Kk +m ·Kt.

Construction of G.

Set h := R(k, k − t + 1) + k − 1 and ε0 := 2−h−1. Let G0 be a graph given by Lemma 4.1.4

such that

Kk−1 6⊆ G0 and G0
ε0−→ Kk−2. (4.1)

Now, set n0 := v(G0) and assume without loss of generality that V (G0) = [n0]. For every

1 6 j 6 n0, we define the building blocks Fj of our graphG iteratively. First, let ε1 := 2−(h+n0)

and let F1 be a graph given by Lemma 4.1.4 such that Kt 6⊆ F1 and F1
ε1−→ Kt−1. For

2 6 j 6 n0, assume we have defined ε1, . . . , εj−1 and F1, . . . , Fj−1. We then set

εj := 2−(h+n0−j+
∑j−1
i=1 v(Fi)) (4.2)

and let Fj be a graph given by Lemma 4.1.4 such that

Kt 6⊆ Fj and Fj
εj−→ Kt−1. (4.3)

We are now ready to define the graph G = G(V,E). Define pairwise disjoint sets VH and

Vj , 1 6 j 6 n0, such that VH = {v1, . . . , vh} and |Vj | = |V (Fj)|. Now set V := VH ∪
⋃n0
j=1 Vj .

The edge set E is defined as follows.

• H := G[VH ] ∼= Kh,

• G[Vj ] ∼= Fj for all 1 6 j 6 n0,

• viw ∈ E(G) for all 1 6 i 6 h, and all w ∈ ⋃n0
j=1 Vj ,
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Kh

F1

F4

F3

F2

G0 =

Figure 4.4: An illustration of the gadget graph G when G0 = C4. A thick line indicates that

the vertices of the corresponding sets are pairwise connected.

• for all u ∈ Vi, w ∈ Vj , uw ∈ E(G) if and only if ij ∈ E(G0)

That is, our gadget graph consists of one copy of each Fj together with a copy H of a complete

graph on h = R(k, k−t+1)+k−1 vertices. Furthermore, we place a complete bipartite graph

between Fi and Fj whenever ij is an edge in G0, and a complete bipartite graph between H

and
⋃n0
j=1 Fj (see Figure 4.4). We now show that the graph G fulfills the two conditions (G1)

and (G2) above.

The graph G has property (G2).

To see that G9 Kk+m ·Kt, colour all edges inside H and inside the copy of each Fj red, and

all edges between H and any Fj , and between any Fi and Fj (i 6= j) blue. Then the largest

blue clique has size k− 1 (since G0 is Kk−1-free). So any monochromatic copy of Kk +m ·Kt

would need to be red. Since all the Fj ’s are Kt-free, the red copy of Kk +m ·Kt needs to lie

inside H. However, v(Kk +m ·Kt) = k+mt > R(k, k− t+ 1) + k > v(H). So H cannot host

a copy of Kk +m ·Kt.

The graph G has property (G1).

Let χ : E → {red, blue} be a 2-colouring of G. We apply a similar “colour-focusing” procedure

as in the proof of Lemma 4.1.5. This technique is used to obtain Lemma 4.2.1, which shows

that there is a vertex subset for which the colouring is highly structured. From this lemma,

it is not difficult to prove that there must be a monochromatic Kk.

Lemma 4.2.1. There exist a subset J ⊆ [n0] and subsets Wj ⊆ Vj for each j ∈ J such that

the following holds.



58 4. WHAT IS RAMSEY-EQUIVALENT TO THE CLIQUE?

Kh

F1

G0[J ]

W2

W3

W4

Figure 4.5: The colour patterns we find with Lemma 4.2.1.

(a) |J | > n0/2
h = 2ε0n0,

(b) for all j ∈ J , Wj is the vertex set of a monochromatic Kt−1 under χ,

(c) for all i, j ∈ J , if ij ∈ E(G0) then there exists cij ∈ {red, blue} such that for all

u ∈Wi, w ∈Wj, χ(uw) = cij.

(d) for all vi ∈ VH , there exists ci ∈ {red, blue} such that for all u ∈ ⋃j∈JWj, χ(viu) = ci.

The structure of the sets J and Wj in Lemma 4.2.1 is depicted in Figure 4.5. Before

proving the lemma, we first show how it implies that there is a monochromatic Kk in G,

which implies (G1).

Proof of (G1) assuming Lemma 4.2.1. Let J ′ ⊆ J with |J ′| > |J |/2 be such that all Wj with

j ∈ J ′ are monochromatic of the same colour. Consider the induced subgraph G′0 := G0[J
′] of

G0. Let χ′ be the edge-colouring of G′0 where each edge ij ∈ E(G′0) has colour χ′(ij) := cij .

Since |J ′| > |J |/2 > ε0n0 by property (a), and since G0
ε0−→ Kk−2 by definition of G0, there

exists a monochromatic copy of Kk−2 in G′0 under χ′. Let I ⊆ J ′ denote the vertex set of

this monochromatic copy, and assume without loss of generality that it is blue. Then for all

i, j ∈ I, i 6= j, the sets Wi and Wj are connected by complete bipartite graphs, all edges being

blue under χ. The monochromatic Wj with j ∈ I are all the same colour, and we may assume

that they are all red. Indeed, otherwise the union of the Wj with j ∈ I form a monochromatic

blue clique of order (k − 2)(t − 1) > k (since t > 3), and thus there is a monochromatic Kk.

So we may assume from now on that each Wj , j ∈ I, is a red Kt−1.

Consider now the vertices in VH . Any such vertex has either only red edges or only blue

edges to
⋃
j∈J ′Wj , by property (d). We call vi ∈ VH red if ci = red, and blue otherwise.

Suppose there exist two vertices, vi, vj ∈ VH which are both blue, such that χ(vivj) = blue.
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Then they form a blue Kk with one vertex from each Wj , j ∈ I. So we can assume that for

two blue vertices vi, vj ∈ VH we have χ(vivj) = red. But then we can also assume that there

are at most k − 1 blue vertices inside H, since otherwise they form a red Kk inside H. So,

there are at least v(H)− (k − 1) = R(k, k − t+ 1) red vertices Vred ⊆ VH in H. By definition

of R(k, k − t+ 1), Vred contains either a red Kk−t+1 or a blue Kk. In the second case, we are

done. In the first case, the vertex set Vred ∪Wj contains a red Kk for any j ∈ I, so we are

done as well.

To finish the proof of Theorem 1.2.2 it remains to prove Lemma 4.2.1.

Proof of Lemma 4.2.1. We prove the lemma in two steps. First, we “colour-focus” each vi ∈
VH ensuring property (d). We then restrict further down to sets inside V (Fj) ensuring property

(c) of monochromatic bipartite graphs between the vertex sets. These two steps are made

precise in Claim 4.2.2 and Claim 4.2.3, and are illustrated in Figure 4.6 and 4.7.

Kh

F1

G0[J ]

F2

F3

V ′
2

V ′
3

F4

V ′
4

Figure 4.6: Applying Claim 4.2.2 to G and χ: Every v ∈ VH has only red or only blue edges

going to the active sets V ′2 , V ′3 and V ′4 .

Claim 4.2.2. For every 2-colouring χ : E → {red, blue} of the edge set of G, there exists an

index set J ⊆ [n0] and subsets V ′j ⊆ Vj for each j ∈ J such that the following properties hold.

(a) |J | > n0/2
h,

(b′) for all j ∈ J , |V ′j | > v(Fj)/2
h, and

(d′) for all vi ∈ VH , there exists ci ∈ {red blue} such that for all u ∈ ⋃j∈J V
′
j , χ(viu) = ci.

Claim 4.2.3. Let χ : E → {red, blue} be a 2-colouring of the edge set of G, and let subsets J

and V ′j (for j ∈ J) be given by Claim 4.2.2. Then there exist subsets V ′′j ⊆ V ′j for each j ∈ J
such that the following holds.
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(b′′) For all j ∈ J , |V ′′j | > v(Fj) · 2−(h+n0−j+
∑
i<j v(Fi)) = εj · v(Fj), and

(c′) for all i, j ∈ J , if ij ∈ E(G0) then there exists cij ∈ {red, blue} such that for all

u ∈ V ′′i , w ∈ V ′′j , χ(uw) = cij.

Kh

F1

F2

F3

V ′′2

V ′′3

F4

V ′′4

G0[J ]

Figure 4.7: Applying Claim 4.2.3 to G and χ: The complete bipartite graph between any two

sets V ′′i and V ′′j is monochromatic if ij ∈ E(G0).

It is now straightforward to see that Lemma 4.2.1 follows: since each Fj
εj−→ Kt−1 and by

property (b′′), (b) follows, where the Wj ⊆ V ′′j are the host vertices for the monochromatic

Kt−1. Now, since Wj ⊆ V ′′i , (c) and (d) follow trivially from (c′) and (d′).

Proof of Claim 4.2.2. For each j ∈ [n0], of the 2h colour patterns to VH , there is a most

common colour pattern, from the vertices in Fj to VH . Call this colour pattern cj. Take c to

be the colour pattern that occurs most frequently among the cj’s. Let J be the set of j for

which cj = c. For all vi ∈ VH , we have ci is the colour of vi in colour pattern c.

By the pigeonhole principle, the set V ′j of vertices in Vj with colour pattern cj to VH has

|V ′j | > |Vj |/2h. Again by the pigeonhole principle, at least a 2−h fraction of the j ∈ [n0] are

in J .

Proof of Claim 4.2.3. Let J ⊆ [n0] and V ′j ⊂ Vj for j ∈ J be the sets found in Claim 4.2.2

that fulfill the properties (a), (b′) and (d′). We want to find subsets V ′′j ⊆ V ′j inside the active

sets {Vj : j ∈ J} such that the induced bipartite graphs G[V ′′i , V
′′
j ] are monochromatic (if

ij ∈ E(G0)) and the V ′′j are not too small, i.e. |V ′′j | > εjv(Fj). For ease of notation we will

assume without loss of generality that J = [`]. Now, for every 1 6 j 6 `, we will define a

sequence of subsets

V ′j ⊇ V (j)
j ⊇ V (j+1)

j ⊇ . . . ⊇ V (`)
j =: V ′′j
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such that the collection
{
V ′′j : 1 6 j 6 `

}
fulfills (b′′) and (c′).

For 1 6 k 6 `, we will iteratively maintain the following two properties.

(C1(k)) For all 1 6 j 6 k, we have that
∣∣∣V (k)
j

∣∣∣ > v(Fj) · 2−(h+k−j+
∑
i<j v(Fi)).

(C2(k)) For all 1 6 i < j 6 k, if ij ∈ E(G0) then the induced bipartite graph G[V
(k)
i , V

(k)
j ] is

monochromatic, i.e. there exists cij such that for all u ∈ V (k)
i , all w ∈ V (k)

j it holds that

χ(uw) = cij .

First, note that for V
(1)
1 := V ′1 , (C1(1)) holds by (b′), and that (C2(1)) is trivially satisfied.

Note also, that (C1(`)) and (C2(`)) imply (b′′) and (c′).

Suppose now that for 1 6 k < ` the properties (C1(k)) and (C2(k)) hold. We will colour-focus

backwards from V
(k)
k+1 := V ′k+1 and define subsets V

(k+1)
i ⊆ V (k)

i for all 1 6 i 6 k+ 1 such that

(C1(k + 1)) and (C2(k + 1)) are satisfied.

Consider the vertices w ∈ V
(k)
k+1 and let c(w) be the colour pattern of w with respect to

V
(k)
1 ∪ . . . ∪ V (k)

k

There are at most

2

∣∣∣V (k)
1

∣∣∣+...+∣∣∣V (k)
k

∣∣∣ 6 2
∑
i6k v(Fi)

distinct colour patterns, so at least∣∣∣V (k)
k+1

∣∣∣
2
∑
i6k v(Fi)

>
v(Fk+1)

2h+
∑
i6k v(Fi)

vertices in V
(k)
k+1 must have the same colour pattern, say ck+1. Set

V
(k+1)
k+1 :=

{
w ∈ V (k)

k+1 : c(w) = ck+1

}
.

Then by definition ∣∣∣V (k+1)
k+1

∣∣∣ > v(Fk+1)

2h+
∑
i6k v(Fi)

. (4.4)

Now, for all u ∈ V (k)
1 ∪ . . . ∪ V (k)

k and all w1, w2 ∈ V (k+1)
k+1 we have

χ(uw1) = (c(w1))u = (ck+1)u = (c(w2))u = χ(uw2).

That is, all u ∈ V (k)
1 ∪ . . . ∪ V (k)

k see the vertex set V
(k+1)
k+1 either only via red edges or only

via blue edges. For 1 6 i 6 k, let ci,k+1 be the colour which is more common between V
(k)
i

and V
(k+1)
k+1 , i.e.

ci,k+1 =

red if
∣∣∣{u ∈ V (k)

i : (ck+1)u = red}
∣∣∣ > |V (k)

i |/2
blue otherwise.



62 4. WHAT IS RAMSEY-EQUIVALENT TO THE CLIQUE?

We then restrict our attention to those vertices u ∈ V
(k)
i which “see” V

(k+1)
k+1 in the more

common colour and thus set

V
(k+1)
i :=

{
u ∈ V (k)

i : χ(uw) = ci,k+1 for some w ∈ V (k+1)
k+1

}
.

Then it follows immediately and by (C1(k)) that

∣∣∣V (k+1)
i

∣∣∣ > |V (k)
i |
2

>
v(Fi)

2h+
∑
i′<i v(Fi′ )+(k+1)−i .

Together with (4.4), this implies (C1(k + 1)) holds. Also, by construction of V
(k+1)
i for

1 6 i 6 k + 1 and by (C2(k)) it follows that (C2(k + 1)) holds.

We have shown that the iterative colour focusing ensures (C1(`)) and (C2(`)). Set now V ′′j :=

V
(`)
j for all j ∈ J . Then (C1(`)) and (C2(`) translate to (b′′) and (c′), which finishes the

proof.

As noted earlier, Claim 4.2.2 and 4.2.3 imply Lemma 4.2.1. This finishes the proof of

Theorem 1.2.2.

4.3 Concluding remarks

Recall that µ(k, t) is the maximum m such that Kk and Kk +m ·Kt are Ramsey-equivalent.

We determined µ(k, t) up to roughly a factor 2 for k − 1 > t > 2. It would be of interest to

close the gap between the lower and upper bounds.

Problem 4.3.1. Determine µ(k, t).

A special case of this problem already asked in [55] is the following. Note that we have

shown that µ(k, k − 1) 6 1. That is, if Kk and Kk + Kk−1 are Ramsey-equivalent, then

µ(k, k − 1) = 1 and otherwise µ(k, k − 1) = 0.

Question 4.3.2. Are Kk and Kk +Kk−1 Ramsey-equivalent?

We proved that every graph (other than Kk) that is Ramsey-equivalent to Kk is not

connected. This naturally leads to the following question.

Question 4.3.3. Is there a pair of non-isomorphic connected graphs H1, H2 that are Ramsey-

equivalent?

We say H ′ is formed by adding a pendant edge to H if H ′ has a vertex v of degree 1 so

that H ′ − v is isomorphic to H. A related question is the following.
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Question 4.3.4. Is there a connected graph H and some graph H ′ formed by adding a pendant

edge to H so that H and H ′ are Ramsey-equivalent?

We have recently shown [37] that Kt,t and Kt,t ·K2, the graph formed by adding a pendant

edge to Kt,t, are not Ramsey-equivalent. Furthermore, we proved s(Kt,t ·K2) = 1 while it was

shown in [40] that s(Kt,t) = 2t− 1.

We do not have a good understanding of how large a connected subgraph can be added

to Kk and such that the resulting graph is Ramsey-equivalent to Kk. For example, we have

the following problem.

Problem 4.3.5. Let g(k) be the maximum g such that Kk is Ramsey-equivalent to Kk+K1,g,

the disjoint union of Kk and the star K1,g with g leaves. Determine g(k).

We know that g(k) is at most exponential in k.
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5

On minimal r-Ramsey graphs for

the clique

In this chapter, we generalize the notion of being Ramsey, denoted by G→ H, to an arbitrary

number of colours. Recall that we say a graph G is r-Ramsey for a graph H, denoted by

G → (H)r, if in any r-colouring of the edges of G there exists a monochromatic copy of H.

Such a graph G is minimal r-Ramsey for H if no proper subgraph of G has this property.

Here, we want to investigate the minimal minimum degree of minimal r-Ramsey graphs for the

clique, denoted by sr(Kk). It was shown by Burr, Erdős and Lovász [18] that s2(Kk) = (k−1)2.

We are interested how the quantity of sr(Kk) changes when r →∞, and mostly assume that

k is constant. We will prove lower bounds on sr(Kk) as stated in Theorems 1.2.5 and 1.2.4.

We shall do that in the next section. To prove upper bounds on sr(Kk), we need to introduce

two special graph classes. We do so in Section 5.2 and show how the existence of these graphs

implies upper bounds in Theorem 1.2.5, Theorem 1.2.6 and Theorem 1.2.4. In Section 5.3 and

5.4 we prove the existence of those special graphs. We close this chapter with some concluding

remarks.

5.1 Lower bounds on sr(Kk)

Our approach is to use induction on r to show lower bounds of order Θ∗(r2), that is of order

r2 up to a factor that is polynomial in log r. The induction step though works only for large

values of r. Therefore, we first give a simple lower bound which is linear in r and which will

be helpful in the induction step.

Lemma 5.1.1. For all r > 2, k > 3 and all graphs H, we have that sr(H) > r (δ(H)− 1).

65
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In particular, sr(Kk) > r(k − 2). In the special case when r = 2, the proof of this lemma

is included in [40].

Proof. Assume sr(H) 6 r (δ(H) − 1). Then there exists a graph G ∈ Mr(H) such that

δ(G) 6 r (δ(H) − 1). Let v be a vertex in G of degree at most r(δ(H) − 1). By minimality,

there is an r-colouring χ of G − v without a monochromatic copy of H. Now extend χ to

the incident edges of v by colouring at most δ(H) − 1 edges in colour i, for each colour

i. This extended colouring also does not contain a monochromatic copy of H, since any

monochromatic copy of H would contain v by assumption on χ, but in any colour, v has too

little degree to be contained in such a copy of H. This contradicts the fact that G is r-Ramsey

for H.

Next, we pin down a simple observation which we use frequently for both, lower and upper

bounds.

Observation 5.1.2. Let r > 2, let H and G be graphs, and let v be a vertex in G. Further,

assume that G→ (H)r and G− v 9 (H)r. Then sr(H) 6 deg(v).

Proof. By assumption, any subgraph G′ of G that is r-Ramsey-minimal for H (which exists)

needs to contain v. Therefore, sr(H) 6 δ(G′) 6 degG′(v) 6 degG(v).

The next lemma captures the main idea for our quadratic lower bounds. For a graph F ,

let αk(F ) denote the k-independence number of the graph F , that is, the largest cardinality

of a subset I ⊆ V (F ) without a copy of Kk in F . For k = 2, this is the usual independence

number α(F ).

Lemma 5.1.3. Let k, r > 3 and let G be a graph such that G→ (Kk)r. Let v be a vertex in

G such that G− v 9 (Kk)r. Let χ be an r-colouring of G− v without a monochromatic copy

of Kk, and let G1, . . . , Gr be the colour classes of χ in N(v). Then degG(v) > sr−1(Kk) +

maxi αk−1(Gi). In particular, sr(Kk) > sr−1(Kk) + maxi αk−1(Gi).

An illustration of the proof idea can be found in Figure 5.1.

Proof. Fix a colour i ∈ [r], and let Ii ⊆ N(v) be a (k − 1)-independent set of size αk−1(Gi)

in the graph Gi. Our plan is to remove a Kk-free subgraph F from G. Let F be the set

of all edges of colour i under χ in G − v, and all edges from v to the set Ii. Now, F is

Kk-free. Indeed, v cannot be contained in a copy of Kk in F , since Ii contains no copy of

Kk−1 in colour i by assumption. Moreover, χ does not contain a monochromatic copy of Kk

in colour i, hence F − v is also Kk-free. Call the resulting graph G′ = G \ F . Then since F

is Kk-free and G→ (Kk)r by assumption, we have that G′ → (Kk)r−1 (we could use colour r
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v N(v)

no red Kk−1
Ired

Figure 5.1: An illustration of Lemma 5.1.3 for r = 4.

for all edges in F without creating a monochromatic copy of Kk). Moreover, χ restricted to

G′−v = (G\F )−v yields an (r−1)-colouring of the edges of G′−v without a monochromatic

copy of Kk. Therefore, by Observation 5.1.2 applied to r − 1, Kk and G′,

sr−1(Kk) 6 degG′(v) = degG(v)− degF (v) = degG(v)− αk−1(Gi).

Since colour i was arbitrary, the first claim follows. Now, if G attains the minimum of sr(Kk)

and if v is a vertex of minimum degree in G, then the second claim follows.

Lemma 5.1.3 reveals the main idea of our proofs for lower bounds: We want to use induc-

tion on r and find a large (k − 1)-independent set in at least one of the graphs Gi. Since the

graphs Gi are colour classes in a colouring χ without a monochromatic copy of Kk, the Gi

are naturally Kk-free graphs on n = degG(v) vertices. Consider the function fs,k(n) which

is defined to be the minimum of αs(F ), where the minimum is taken over all Kk-free graphs

F on n vertices. This function was first studied by Erdős and Gallai [28], and then formally

defined by Erdős and Rogers [29]. In the literature, it is nowadays called the Erdős-Rogers

function, see for example [27] for a recent survey. Then all our graphs Gi on n vertices satisfy

αk−1(Gi) > fk−1,k(n). The following is therefore an immediate consequence of the previous

lemma.

Corollary 5.1.4. For all r, k > 3 we have that sr(Kk) satisfies the following recursion:

sr(Kk) > sr−1(Kk) + fk−1,k(sr(Kk)).

Therefore, we are interested in good lower bounds on the Erdős-Rogers function fs,k(n) in

the special case when s = k−1. In the case when k = 3, it is easy to see that every triangle-free

graph F on n vertices contains an independent set of size at least b√nc: If ∆ := ∆(F ) > b√nc
then there exists a vertex v of degree at least b√nc, andN(v) is an independent set. Otherwise,

∆ 6 b√nc − 1 and we use the well known fact that α(F ) > n/(∆(F ) + 1) (cf. [3]) to deduce
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that α(F ) > b√nc. Therefore, f2,3(n) = min {α2(F ) : |V (F )| = n and K3 6⊆ F} > b
√
nc. A

result of Shearer ([51] and Theorem 5.1.6 below) implies that f2,3(n) > (1/2− o(1))
√
n lnn,

which is the best known lower bound on f2,3(n) until this day. In [15], Bollobás and Hind

proved that f3,4(n) >
√

2n and for more general k > 5, fk−1,k(n) >
√
n. This lower bound

was subsequently improved by Krivelevich [46] for k > 4. Recently, Dudek and Mubayi [24]

noted that the result in [46] can be strengthened to fk−1,k(n) = Ω
(√

n logn
log logn

)
, using a result

of Shearer [52]. Using standard analytic tools it is easy to check that for x > ee, the function

x lnx
ln lnx is increasing. Therefore, the previous lower bound implies the following.

Theorem 5.1.5 ([24],[46] and [52]). For every k > 4, there exists a constant cf = cf (k) > 0

such that for n > 27 we have that

fk−1,k(n) > cf ·
√
n lnn

ln lnn
.

We are ready to prove our lower bound on sr(Kk) for k > 4.

Proof of lower bound in Theorem 1.2.5. Let k > 4 be given, and let cf = cf (k) be the con-

stant from Theorem 5.1.5. Now fix a constant c = c(k) > 0 such that

(1) s28(Kk) > c · (28)2
√

ln 28
ln ln 28 and

(2) 100c < (cf )2.

Since s28(Kk) > 0, such a constant certainly exists. We show that

sr(Kk) > cr2
√

ln r

ln ln r
(5.1)

by induction on r. For brevity, set sr := sr(Kk). For r0 := 28, the claim follows from

condition (1) on the constant c. Now for r > r0, note that by the simple lower bound in

Lemma 5.1.1, sr > r > 27, so we can apply Theorem 5.1.5. By Corollary 5.1.4 it follows that

sr > sr−1 + fk−1,k(sr), and with Theorem 5.1.5 we therefore get that,

sr > sr−1 + cf ·
√
sr ln sr
ln ln sr

. (5.2)

To bound the terms under the root, we use again that sr > r > 27 and that lnx
ln lnx is increasing

for x > 27. Also note that sr > sr−1 + fk−1,k(sr) trivially implies that sr > sr−1. Therefore,

using the induction hypothesis on sr−1 we get that sr > c · (r − 1)2 > c
2r

2 since r > 4. Thus,
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from (5.2) we obtain, using the induction hypothesis again,

sr > sr−1 + cf ·
√
sr ln sr
ln ln sr

> c · (r − 1)2

√
ln(r − 1)

ln ln(r − 1)
+ cf ·

√
cr2 ln(r − 1)

2 ln ln(r − 1)

> c r2
√

ln r

ln ln r
− c r2

(√
ln r

ln ln r
−
√

ln(r − 1)

ln ln(r − 1)

)

+

(
cfr

√
c

2
− 2cr

)√
ln(r − 1)

ln ln(r − 1)
. (5.3)

For g(x) :=
√

lnx
ln lnx it is straight-forward to check that for x > 28 (and hence ln lnx > 1)

(i) g′(x) =
(
1− 1

ln lnx

)
· 1
2x
√
lnx·ln lnx

> 0 and

(ii) g′′(x) = −2 lnx(ln lnx−1)(ln lnx)+(ln lnx)2−3
4x2(lnx)3/2(ln lnx)5/2

< 0.

Therefore, for x > 28, g(x) is increasing and concave. It follows that g(x+ 1)− g(x) 6 g′(x).

Now for ln lnx > 1,

g′(x) =

(
1− 1

ln lnx

)
· 1

2x
√

lnx · ln lnx
6

1

x+ 1
.

It follows that √
ln r

ln ln r
−
√

ln(r − 1)

ln ln(r − 1)
6

1

r
.

Thus, (5.3) implies that sr > c r2
√

ln r
ln ln r if(
cfr

√
c

2
− 3cr

)
> 0,

which is true by condition (2) on the constant c. So, (5.1) follows for r.

We want to remark at this point that a similar argument works for k = 3. However, using

the bound f2,3(n) > (1/2− o(1))
√
n lnn mentioned above and similar calculations as in the

previous proof would give a lower bound of cr2
√

ln r on sr(K3). To obtain the extra factor

of
√

ln r desired for Theorem 1.2.4 we need to work more. Recall that for k > 4 we used

lower bounds on the Erdős-Rogers function fk−1,k(n) which gives a universal lower bound

on αk−1(Gi) for all colour classes Gi in the neighbourhood of our critical vertex v in our

r-minimal graph G. However, when we want to use Lemma 5.1.3, we require a good lower
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bound on αk−1(Gi) only for one of the colour classes Gi in N(v). When k = 3, we use the

fact that one of the colour classes in N(v) has particularly few edges, and hence small average

degree. This then forces the independence number to be larger. The following well-known

result about the independence number in triangle-free graphs is due to Shearer.

Theorem 5.1.6. [51, Theorem 1] Let F be a triangle-free graph on n vertices with average

degree d. Let g(d) = (d ln d− d+ 1)/(d− 1)2, g(0) = 1, g(1) = 1/2. Then α(F ) > ng(d).

Note first that g is continuous for 0 6 d <∞, and that for 0 < d <∞, 0 < g(d) < 1 and

g′(d) < 0. In particular, g(d) is decreasing on (0,∞). Furthermore, it is straightforward to

check that g(d) > ln d
2d for all d > 1. The following recursion is a straight-forward application

of the simple observation in Lemma 5.1.3 and Shearer’s Inequality.

Corollary 5.1.7. For r > 3, let G be an r-Ramsey graph for K3, and let v be a vertex in G of

degree dv = deg(v) such that G−v 9 (K3)r. Then dv > sr−1(K3)+dv ·g
(
dv−1
r

)
. In particular,

if G has minimum degree sr := sr(K3) and deg(v) = sr, then sr > sr−1(K3) + sr · g
(
sr−1
r

)
.

Proof. Let χ be a colouring of G− v without a monochromatic copy of K3, and let the Gi’s

be defined as above, i.e. Gi is the subgraph of colour i in N(v). By the pigeonhole principle,

there exists a colour, say colour i, of density at most 1/r in N(v). That is, the subgraph Gi

has at most (dv2 )/r edges in N(v). Therefore, Gi has average degree d 6 (dv−1)/r. Since Gi

is triangle-free by assumption, we can apply Shearer’s Inequality. Since g is decreasing, it

therefore follows that α(Gi) > dv · g
(
dv−1
r

)
. The claim follows then with Lemma 5.1.3.

Again, we want to use induction on r. In the proof of of the lower bound in Theorem 1.2.5

we used the simple lower bound sr(Kk) > r from Lemma 5.1.1 in the induction step. This

linear lower bound will not be enough, so we first prove the following.

Lemma 5.1.8. For all r > 2 we have that sr(K3) >
r2

16 .

Proof by induction on r. Note that for 2 6 r 6 16, it holds that r > r2

16 , so the claim follows

by Lemma 5.1.1. Let now r > 16 and assume that for r − 1 it holds that sr−1(K3) >
(r−1)2

16 .

Again, we use that sr(K3) > sr−1(K3). Recall that f2,3(n) > b√nc. By Corollary 5.1.4 and

since r > 16, we therefore get that

sr(K3) > sr−1(K3) + f2,3(sr(K3)) >
1

16
(r − 1)2 +

⌊√
(r − 1)2

16

⌋
>
r2

16
.

We are ready to prove the lower bound in Theorem 1.2.4.
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Proof of lower bound in Theorem 1.2.4. Induction on r. Set sr := sr(K3) for brevity and fix

c = 1/100. First let 2 6 r 6 e6. Then sr > r2

16 > cr2 ln r by Lemma 5.1.8, by choice of

c and since ln r 6 6. Now assume that r > e6, and assume that for r − 1 it holds that

sr−1 > c(r − 1)2 ln(r − 1). By Corollary 5.1.7,

sr > sr−1 + sr · g
(
sr − 1

r

)
.

Now, (sr − 1)/r > 1 by the simple bound in Lemma 5.1.1. Therefore, we can use that

g(x) > lnx
2x for x > 1. It follows that

sr > sr−1 + sr ·
r ln

(
sr−1
r

)
2(sr − 1)

> c(r − 1)2 ln(r − 1) +
r

2
ln
( r

20

)
= cr2 ln r − cr2 ln

(
r

r − 1

)
− 2cr ln(r − 1) + c ln(r − 1)

+
r

2
ln r − r

2
ln 20,

where the second inequality follows from the induction hypothesis and since sr−1
r > r

16− 1
r > r

20

by Lemma 5.1.8 and since r > 9. Therefore, we get that sr > cr2 ln r if

r

2
ln r > cr2 ln

(
r

r − 1

)
+ 2cr ln(r − 1) +

r

2
ln 20. (5.4)

But

cr2 ln

(
r

r − 1

)
6

cr2

r − 1
6 2cr 6 2cr ln r,

since ln(1 + x) 6 x and ln r > 1. Also, ln 20 6 3, so

cr2 ln

(
r

r − 1

)
+ 2cr ln(r − 1) +

r

2
ln 20 6 4cr ln r +

3

2
r.

Hence, (5.4) follows if

4c <
1

4
and

3

2
6

1

4
ln r,

which is true by choice of c and since r > e6.

5.2 Upper bounds on sr(Kk)

Let us first motivate the idea to our proofs, and introduce necessary concepts. This will

be common to all three upper bounds in Theorem 1.2.4, 1.2.5, and 1.2.6. Recall that by

Observation 5.1.2, we need to construct a graph G with a vertex v of degree at most u such

that G→ (Kk)r, but G− v 9 (Kk)r to prove an upper bound of u on sr(Kk).
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The graph H := G[N(v)] needs to have special properties. Suppose we constructed a

graph G such that G− v 9 (Kk)r, and let an r-colouring of G− v without a monochromatic

copy of Kk be given. Then we want to ensure that no matter how we colour the edges incident

to v, we find a monochromatic copy of Kk in some colour. By the pigeonhole principle, no

matter how the edges incident to v are coloured, at least one colour, say red, appears at least

n/r times, where n = |N(v)|. Let S ⊆ N(v) be the subset of neighbours of v such that vs is

red for all s ∈ S. Then we would like to deduce that the red subgraph Gred of G contains

a copy of Kk−1 in Gred[S]. Since we do not know which colour appears n/r times at vertex

v, and on which edges, we therefore crave for a statement like the following. For a colouring

χ of G − v let Gi(χ) be the subgraph of G[N(v)] in colour i. Then for every colouring χ of

G− v without a monochromatic copy of Kk, every Gi(χ) as defined contains a copy of Kk−1

in every subset of size at least n/r.

But rather than defining the graphs Gi(χ) depending on the colouring, we fix graphs Gi on

vertex set [n] at the beginning, and equip them with certain sender graphs that “send” colour

i to Gi. With this in mind, we use the following notation. We call a collection G1, . . . , Gr

of graphs a colour pattern if V (G1) = . . . = V (Gr) and for all 1 6 i < j 6 r we have that

E(Gi) ∩ E(Gj) = ∅. Each graph Gi is then called a colour class.

Before making the idea of “sending colours” precise, let us dwell on the structure of the

graphs Gi. Certainly, when Gi is the witness graph of colour i in N(v) (in our big graph G)

and we want that G − v 9 (Kk)r, then we better make sure that Kk 6⊆ Gi. On the other

hand, we want that in any subset S of the vertices of Gi of size at least n/r, we have that

Kk−1 ⊆ Gi[S]. Since we will refer to such graphs frequently, we call a graph F on n vertices

(n, r, k)-critical if Kk 6⊆ F and αk−1(F ) < n/r. Note that the definition is meaningful even

for general real-valued r; however, for us, r denotes the number of colours, and therefore we

always assume it is an integer.

Recall from the previous section that the Erdős-Rogers function was defined as fk−1,k(n) =

min{αk−1(F )}, where the minimum is taken over all Kk-free graphs F on n vertices. By

definition we have for all u ∈ R that

fk−1,k(n) < u ⇐⇒ there exists an (n, n/u, k)-critical graph F . (5.5)

So the question whether (n, r, k)-critical graphs exist is equivalent to the question whether

fk−1,k(n) < n/r. We want to construct a colour pattern G1, . . . , Gr on vertex set [n] such that

each Gi is (n, r, k)-critical. Since n = |N(v)| = deg(v), for a good upper bound on sr(Kk),

one would like to have (n, r, k)-critical graphs where n = n(r, k) is as small as possible.
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When k = 3, the problem of finding an (n, r, 3)-critical graph translates to finding a

triangle-free graph with independence number less than n/r. This is related to the Ramsey

number R(3, k) in the following way. There exists an (n, r, 3)-critical graph G if and only

if n < R (3, n/r). It is known1 that R(3, k) is of the order Θ
(

k2

log k

)
. Therefore, if G is an

(n, r, 3)-critical graph then n > c · r2 log r for some constant c > 0; and (n, r, 3)-critical graphs

do exist for n = C · r2 log r for some constant C > 0.

For our purpose, we need to pack r copies of (n, r, 3)-critical graphs edge-disjointly in Kn.

The next Lemma states that we can do so on the expense of a factor of log r .

Lemma 5.2.1. Let r be an integer. Then there exists a colour pattern G1, . . . , Gr on vertex

set [n], where n = O(r2 log2 r), such that each Gi is (n, r, 3)-critical.

We will prove this lemma in Section 5.3. For k > 4, Dudek, Retter and Rödl [25] recently

showed that fk−1,k(n) < O
(

(log n)4(k−1)
2√
n
)

. That is, they constructed a Kk-free graph

F on n vertices (where n is large enough) such that every subset of c(log n)4(k−1)
2√
n ver-

tices contains a copy of Kk−1, that is an (n, r, k)-critical graph F where n = c2
(
2 log r(1 +

o(1))
)8(k−1)2

r2. Again, we would like to pack r of those graphs into Kn. But rather than

taking a fixed (n, r, k)-critical graph F and pack it into Kn, we construct r (edge-disjoint)

(n, r, k)-critical graphs G1, . . . , Gr simultaneously as subgraphs of Kn. As it turns out, this

simultaneous construction is only little harder than the construction itself in [25]. We prove

the following in Section 5.3.

Lemma 5.2.2. For all integers k > 3 there exist a constant C = C(k) > 0 and r0 ∈ N such

that for all r > r0 the following holds. There exists a colour pattern G1, . . . , Gr on vertex set

[n], where n 6 C (2 ln r)8(k−1)
2

r2, such that each Gi is (n, r, k)-critical.

This Lemma will be used to prove Theorem 1.2.5. For the upper bound in Theorem 1.2.6,

we resort to graphs constructed by Dudek and Rödl in [26]. The graph F on n vertices

constructed in [26] is (n, r, k)-critical with n = O(k6r3). Here, it is not so straight-forward

anymore that we can do a “simultaneous” construction. So we will start the construction

from scratch and provide all the details needed.

Lemma 5.2.3. Let k, r > 3. Then there exists a colour pattern G1, . . . , Gr on vertex set [n],

where n 6 8(k − 1)6r3, such that each Gi is (n, r, k)-critical.

1An upper bound of order Θ
(

k2

log k

)
was first proven by Ajtai, Komlos and Szemerédi in [2]. The constant

factor was later improved to 1 + o(1) by Shearer [51]. A lower bound of the same order of magnitude was first

proven by Kim in [45]; and then improved by a constant factor by Fiz-Pontiveros, Griffiths and Morris [36] and

independently by Bohman and Keevash [13]. These recent results differ by a factor of 4 + o(1) from Shearer’s

upper bound.
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We now turn to the concept of “sending colour i to the graph Gi” for a given colour pattern

G1, . . . , Gr. The idea of certain sender graphs was first introduced by Burr, Erdős and Lovász

[18].

Definition 5.2.4. Let H be a graph. A negative signal sender S = S−(r,H, e, f) is a graph

S with two distinct edges e, f ∈ E(S) such that

(a) S 9 (H)r, and

(b) in every r-colouring of E(S) without a monochromatic copy of H, the edges e and f

have different colours.

Similarly, a positive signal sender S = S+(r,H, e, f) is a graph S with two distinct edges

e, f ∈ E(S) such that

(a) S 9 (H)r, and

(b) in every r-colouring of E(S) without a monochromatic copy of H, the edges e and f

have the same colour.

The reason for the word “sender” is clear: In every critical colouring (without monochromatic

H), the edge e sends either the same or a different colour to the edge f . We call e and f the

signal edges of the sender graph.

Signal senders are useful to construct certain minimal r-Ramsey graphs and control the

colour patterns in them. As mentioned, they were introduced in [18] where Burr, Erdős and

Lovász showed that positive and negative signal senders S−(2,Kk, e, f) and S+(2,Kk, e, f)

exist, i.e. in the special case when the number of colours is two, and the graph H is a clique

on at least three vertices. Moreover, they proved the existence of such senders in which the

two signal edges are either adjacent or arbitrarily far apart. These senders were crucial for

proving the upper bound s2(Kk) 6 (k − 1)2.

Later, Burr, Nešetřil and Rödl [17] extended these results and showed that positive and

negative signal senders S−(2, H, e, f) and S+(2, H, e, f) exist whenever H is 3-connected.

Again, it was shown that the signal edges may be either adjacent or arbitrarily far away.

Finally, in 2008, Rödl and Siggers [50] extended the study of signal senders to more

than two colours. They showed that positive and negative signal senders S−(r,H, e, f) and

S+(r,H, e, f) exist for any r > 3 as long as H is 3-connected. Their argument easily extends

to H being the triangle, though they do not explicitely mention it. Since we need signal

senders specifically for H = K3 and H = K4 for r > 2 colours, we include the proof of the

existence of such graphs in Section 5.4. Moreover, since it is only little harder to prove for
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general 4-connected H, we do so. Our proof is based on the original proofs in [17] and [18],

and is therefore also similar to the proof in [50].

Once we established the existence of signal senders in which the signal edges may be

arbitrarily far apart, we can join them together and create almost any colour pattern which

we desire. The following graphs play a key role in our proofs of upper bounds on sr(Kk).

Note that the acronym BEL refers to Burr, Erdős, and Lovász.

Definition 5.2.5. Let r > 2 and let H be a graph. Further, let G1, . . . , Gr be a given colour

pattern, and let F :=
⋃r
i=1Gi denote the edge-union of the colour classes. Then a graph

B = B(r,H,G1, . . . , Gr) is called an H-BEL gadget (or short BEL gadget) if

(a) B 9 (H)r, and

(b) B contains F as an induced subgraph such that in every r-colouring of the edges of B

without a monochromatic copy of H, the edges of each Gi, 1 6 i 6 r, are monochromatic,

no two Gi 6= Gj having the same colour.

Note that for a BEL-gadget B = B(r,H,G1, . . . , Gr) to exist the Gi trivially need to be

H-free. However, assuming that H is well-connected enough, this is the only requirement we

need. Let Γ4 denote the class of all 4-connected graphs together with K3 and K4.

Lemma 5.2.6. Let r > 2 be an integer, let H ∈ Γ4 be a graph, and let G1, . . . , Gr be a given

colour pattern such that all colour classes satisfy H 6⊆ Gi. Then there exists a BEL-gadget

graph B(r,H,G1, . . . , Gr).

In Section 5.4, we will prove the existence of negative and positive signal senders S(r,H, e, f)

in which the two edges are either adjacent or arbitrarily far apart. We will then use those

“building bricks” to show Lemma 5.2.6.

Before we prove the Lemmas 5.2.1, 5.2.2 and 5.2.3, and the existence of BEL-gadgets in

Lemma 5.2.6, we show precisely how they imply our upper bounds on sr(Kk).

Proof of upper bound in Theorem 1.2.5. Let k > 3 and let r > 2 be integers. To give an upper

bound u on sr(Kk) we need to find a graph G with a vertex v ∈ V (G) of degree deg(v) 6 u

such that G→ (Kk)r and G− v 9 (Kk)r.

Let G1, . . . , Gr be the colour pattern on vertex set [n] given by Lemma 5.2.2. Then

n 6 C (2 ln r)8(k−1)
2

r2 and each colour class Gi is an (n, r, k)-critical graph. Again, let

F :=
⋃̇r

i=1Gi be the edge-disjoint union of these graphs, and let B = B(r,Kk, G1, . . . , Gr)

be a Kk-BEL-gadget. Since the Gi are (n, r, k)-critical, they are Kk-free, and therefore, by

Lemma 5.2.6, B exists. That is, B contains F as an induced subgraph, B 9 (Kk)r, and in



76 5. ON MINIMAL R-RAMSEY GRAPHS FOR THE CLIQUE

B

G1 ∪ . . . ∪Gr

v

Figure 5.2: An illustration of the graph G.

any r-colouring of the edges of B without a monochromatic Kk all Gi are monochromatic,

all Gi having distinct colours. Now, we add a vertex v to the graph B, and add all edges

vi for i ∈ [n]. Call the resulting graph G. An illustration is shown in Figure 5.2. By

construction and Lemma 5.2.2, degG(v) = n 6 C (2 ln r)8(k−1)
2

r2. By definition of a BEL-

gadget G−v 9 (Kk)r. We claim that G→ (Kk)r. To that end, suppose χ was an r-colouring

of E(G) without a monochromatic copy of Kk. By the definition of a BEL-gadget, all Gi

are monochromatic, no two having the same colour. Assume without loss of generality that

Gi has colour i. By pigeonhole, there exists a colour i such that v is incident to at least

n/r edges in colour i. Let U ⊆ [n] be the set of vertices adjacent to v via edges in colour i.

Then |U | > n/r, so U contains a copy of Kk−1 in Gi since Gi is (n, r, k)-critical, and thus

αk−1(Gi) < n/r. That is we find a copy of Kk in colour i.

Proof of upper bound in Theorem 1.2.6. Use Lemma 5.2.3 instead of Lemma 5.2.2 in the above

proof.

Proof of upper bound in Theorem 1.2.4. Use Lemma 5.2.1 instead of Lemma 5.2.2 in the above

proof.

5.3 Packing (n, r, k)-critical graphs

In this section, we prove the lemmas 5.2.1, 5.2.2 and 5.2.3, each concerned with packing (edge-

disjointly) r graphs G1, . . . , Gr which are all (n, r, k)-critical. Recall that we said a graph F

is (n, r, k)-critical if it is Kk-free and αk−1(F ) < n/r, that is, every subset of size n/r contains

a copy of Kk−1.

Packing many K3-free graphs with small independence number

Here, we prove Lemma 5.2.1. To that end, we will show the existence of a graph F on
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n := Cr2 ln2 r vertices, where C = 1000, which can be written as a union of edge-disjoint

graphs G1, . . . , Gr, which are all K3-free and without independent sets of size n/r. We will

find the graphs Gi successively as subgraphs of Kn, using the Local Lemma (see [3, Lemma

5.1.1]). Given r, set m := n/r = Cr ln2 r and q :=
(
m
2

)
/(2r). For a graph H on n vertices, we

define emin(m,H) (emax(m,H)) to be the smallest (largest) number of edges that appear in

any subset S ⊆ V (H) of size |S| = m. The following inductive lemma is the crucial step to

find the graphs Gi.

Lemma 5.3.1. Let H = (V,E) be a graph on n vertices, where n > n0 is large enough, and

assume emin(m,H) >
(
m
2

)
/2. Then there is some subgraph H ′ ⊆ H on the same vertex set such

that H ′ = (V,E′) is triangle free, has no independent set on m vertices, and emax(m,H ′) 6 q.

Proof. Let c1, c2 be constants such that

(i) c31 < c2/e and

(ii) c1 >
4√
C

+ 2c2.

These two conditions are fulfilled e.g. for c1 = 1/4 and c2 = 1/20. Now choose H ′ by taking

each edge of H with probability p := c1n
−1/2, all choices being independent. For a subset

S ⊆ V , let e(S) and e′(S) denote the number of edges in H[S] and H ′[S], respectively. We

want to show that H ′ is triangle-free, emin(m,H ′) > 1 and emax(m,H ′) 6 q with positive

probability. To that end, we want to apply the asymmetric version of the Lovász Local

Lemma, and therefore, we define the set of bad events in the natural way. Namely, for every

S ∈
(
V
3

)
that forms a triangle in H, we set TS to be the event that H ′[S] is a triangle as

well. Clearly, the probability of such an event is pT := p3. Further, for every S ∈
(
V
m

)
, we set

IS to be the event that either S is an independent set in H ′ or satisfies e′(S) > q. That is,

IS = {e′(S) = 0 or e′(S) > q} and

P(IS) 6 P(e′(S) = 0) +P(e′(S) > q)

6 (1− p)e(S) +

(
e(S)

q

)
pq

6 (1− p)(m2 )/2 +

((
m
2

)
ep

q

)q
= (1− p)(m2 )/2 + (2epr)q.

Note that (1−p)(m2 )/2 = exp
[
−p
(
m
2

)
/2 (1 + o(1))

]
= e−pqr(1+o(1)) and (2epr)q = o(e−pqr(1+o(1))),

since pr → 0, so that for n large enough

P(IS) 6 2(1− p)(m2 )/2 =: pI .
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Let E be the collection of bad events. That is, E = {TS : H[S] ∼= K3} ∪ {IS : S ∈
(
V
m

)
}. In

the auxiliary dependency graph D, we connect two of the events AS , AS′ ∈ E if |S ∩ S′| > 2.

Then AS ∈ E is mutually independent from the family of all AS′ for which ASAS′ is not an

edge in this dependency graph. To apply the Lovász Local Lemma, we now bound the degrees

in D. If |S| = 3 we have∣∣d(TS) ∩ {TS′ :
∣∣S′∣∣ = 3}

∣∣ 6 3n and∣∣d(TS) ∩ {IS′ :
∣∣S′∣∣ = m}

∣∣ 6 (n
m

)
.

If |S| = m we have∣∣d(IS) ∩ {TS′ :
∣∣S′∣∣ = 3}

∣∣ 6 (m
2

)
(n− 2) <

(
m

2

)
n, and

∣∣d(IS) ∩ {IS′ :
∣∣S′∣∣ = m}

∣∣ 6 (n
m

)
.

Therefore, by the general Local Lemma, see Lemma 5.1.1 in [3], if there exist real numbers

x, y ∈ [0, 1) s.t.

pT 6 x(1− x)3n(1− y)(
n
m) (5.6)

pI 6 y(1− x)(
m
2 )n(1− y)(

n
m), (5.7)

then there exists a graph H ′ such that none of the events in E occurs. We show that these

two conditions are fulfilled for x = c2n
−3/2 and y =

(
n
m

)−1
. First note that for n large enough

x(1− x)3n(1− y)(
n
m) = c2n

−3/2e−1(1 + o(1)) > p3,

since c31 <
c2
e , so inequality (5.6) holds. Now (5.7) is equivalent to

22/(
m
2 )(1− p) 6 y2/(

m
2 )(1− x)2n(1− y)2(

n
m)/(m2 ).

We use 1− p 6 e−p and 1− z > e−z−z
2

for z 6 0.6 to claim (5.7) holds if

exp

[
2 ln 2(
m
2

) − p] 6 exp

[
2 ln y(
m
2

) − 2n(x+ x2)− 2
(
n
m

)(
m
2

) (y + y2)

]
.

Now, 2 ln y

(m2 )
> − 4√

C
n−1/2(1 + o(1)) and 1/m2 = o

(
n−1/2

)
. So (5.7) holds if

exp
[
−c1n−1/2(1 + o(1))

]
6 exp

[
−(4/

√
C + 2c2)n

−1/2(1 + o(1))
]
,

which is satisfied by condition (ii) on the constants. Applying the Local Lemma yields the

existence of a subgraph H ′ such that none of the events in E hold, i.e. H ′ has the desired

properties.
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Proof of Lemma 5.2.1. Let r large enough be given, and set m := n/r = Cr ln2 r and q :=(
m
2

)
/(2r) as before. Define H1 := Kn. We choose our graphs inductively as subgraphs of H1;

given Hi for i 6 r such that emin(m,Hi) >
(
m
2

)
− (i− 1)q, we have since i 6 r that

emin(m,Hi) >

(
m

2

)
− rq =

1

2

(
m

2

)
.

So by Lemma 5.3.1, we may find Gi as a subgraph of Hi with emax(m,Gi) 6 q such that Gi

is triangle-free and has no independent set on n/r vertices. Then take Hi+1 = Hi − Gi. The

graph Hi+1 will be edge-disjoint from Gi (and, inductively, from G1, . . . , Gi−1), and

emin(m,Hi+1) > emin(m,Hi)− emax(m,Gi) >

(
m

2

)
− (i− 1)q − q =

(
m

2

)
− iq

as desired.

An upper bound quadratic in r

Here, we prove Lemma 5.2.2. As mentioned in the Section 5.2, we will rely heavily on the

graphs constructed in [25] and use a big part of their construction as a black box.

Proof (sketch) of Lemma 5.2.2. Fix k > 3 and let r be large enough. For simplicity in nota-

tion we switch to index s = k − 1. We need to construct r graphs on n = O(r2 polylog(r))

vertices that are Ks+1-free, but every subset of size n/r contains a Ks. Let q be the smallest

prime power such that

q > 64s(log q)4s
2
r.

By Bertrand’s postulate, q 6 128s(log q)4s
2
r, and therefore, q 6 128s(2 log r)4s

2
r since r is

large enough compared to s. Consider the affine plane of order q. It has n := q2 points and

q2 + q lines such that any two points lie on a unique line, every line contains q points, and

every point lies on q + 1 lines. It is a well-known fact that affine planes exist whenever q is a

prime power. We call two lines L and L′ in the affine plane parallel if L∩L′ = ∅. In the affine

plane of order q, there exist q+ 1 sets of q pairwise disjoint lines. Let (V,L) be a hypergraph

where the vertex set V is the point set of the affine plane of order q, and the hyperedges are

lines of the affine plane, with one set of parallel lines removed. Then (V,L) is a q-uniform

hypergraph on q2 vertices such that any two hyperedges meet in at most one vertex.

In [25], Dudek et al. consider a random subhypergraph (V,L′) of (V,L) and show that

they can embed the required graph G “along the hyperedges” of (V,L′). For our purposes,

let us call a hypergraph (V,H) good if there exists a graph G on vertex set V such that

• Ks+1 6⊆ G,

• every subset of size 64s(log q)4s
2
q of V contains a Ks in G, and
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• any edge of G lies inside a hyperedge of H, i.e. for every e ∈ E(G) there is some h ∈ H
such that e ⊆ h.

Clearly, by choice of q and n, any such graph G is (n, r, s + 1)-critical. Though it is not

explicitely stated as a lemma, the following is proven in Lemma 2.2 in [25].

Lemma 5.3.2 ([25] Lemma 2.2∗). Let (V,L′) be the (random) hypergraph obtained by picking

each hyperedge of (V,L) with probability log2 q
q . Then (V,L′) is good with probability at least

1/2− o(1).

For our purpose, it would be enough to find r hypergraphs L1, . . . ,Lr which are good, and

such that the hyperedges of different hypergraphs intersect in at most one vertex. Let Gi be

the graph associated with hypergraph Li. Then as mentioned above, all the graphs Gi are

(n, r, s+ 1)-critical. Furthermore, they are edge-disjoint, since for i 6= j, the edges of Gi (Gj)

lie inside hyperedges of Li (Lj), and hyperedges of Li and Lj intersect in at most one vertex.

To find the r hypergraphs L1, . . . ,Lr which are good, choose a c-edge-colouring of (V,L)

at random, where c := q
log2 q

. Note that since s > 2 and by choice of q, c satisfies c > 4r.

Let Li be the sub-hypergraph in colour i (1 6 i 6 c). Clearly, no two hypergraphs Li and

Lj contain the same hyperedge. Moreover, since hyperedges are lines in the affine plane, no

two hyperedges intersect in more than one vertex. The probability that a line ` ∈ L is in Li
is log2 q

q . So Li has the same distribution as the random hypergraph (V,L′) in Lemma 5.3.2.

Therefore, Li is good with probability at least 1/4, provided q is large enough. Hence, the

expected number of good hypergraphs Li is at least c/4 > r. So, there exists a c-colouring

of (V,L) such that at least r sub-hypergraphs are good. This finishes the proof (sketch) of

Lemma 5.2.2.

An upper bound polynomial in both k and r

Here, we prove Lemma 5.2.3. Let r, k > 3. For n 6 8(k−1)6r3 we need to construct r (n, r, k)-

critical graphs Gi on n vertices which are edge-disjoint. We will define incidence structures

Ii = (P,Li) on the same set of points such that the families of lines Li are disjoint for distinct

i. Further, any three lines within one Li do not form a triangle. We will then enrich the lines

in Li randomly as done by Dudek and Rödl in the proof of Theorem 1.1 in [26], and show

that the resulting graphs have the desired property with (constant) non-zero probability. For

simplicity in notation let us switch to s = k − 1 as in the previous proof. So, we are looking

for Ks+1-free, edge-disjoint graphs such that any subset of the vertices of size n/r contains a

Ks, i.e. αs(Gi) < n/r.

Proof of Lemma 5.2.3. First, let us define the incidence structures I. Let q be the smallest

prime power such that s2r 6 q, and let Fq be the finite field of order q. The common vertex
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set of our graphs is V := F3
q , i.e. n = |V | 6 8s6r3. For every λ ∈ Fq \ {0}, we will define an

incidence structure Iλ = (V,Lλ) where Lλ is a family of lines in F3
q . For λ ∈ Fq \ {0} set

Mλ :=
{

(1, λα, λα2) : α ∈ Fq \ {0}
}
.

We callMλ the λ-moment curve. In [57], Wenger used the usual moment curveM1 to construct

dense C6-free graphs. Note that for non-zero λ1 6= λ2 the two curves Mλ1 and Mλ2 do not

intersect. An important and crucial property is that for any λ 6= 0 any three vectors from Mλ

are linearly independent, that is for distinct α1, α2, α3,

det

 1 λα1 λα2
1

1 λα2 λα2
2

1 λα3 λα2
3

 = λ2(α3 − α1)(α3 − α2)(α2 − α1) 6= 0.

In general, a line in F3
q is a set of the form `s,v = {βs + v : β ∈ Fq}, where s ∈ F3

q \ {0}
is called the slope. We define

Lλ := {`s,v : s ∈Mλ,v ∈ F3
q},

that is in the incidence structure Iλ = (F3
q ,Lλ) we only allow lines with slope vectors from

the λ-moment curve. Clearly, |Lλ| = |Mλ| q
3

q = q2(q − 1) since each line contains q points.

We establish the following properties about each structure Iλ, λ 6= 0.

(1) Every point v ∈ V is contained in q − 1 lines from Lλ, every line ` ∈ Lλ contains q

points.

(2) Any two points lie in at most one line.

(3) No three lines in Lλ intersect pairwise in three distinct points (i.e. form a triangle).

Further, we have for λ1 6= λ2,

(4) Lλ1 ∩ Lλ2 = ∅.

For (1), note that every slope vector in Mλ gives rise to exactly one line through a given

point v ∈ V . The second part of (1) follows from the definition of a line. Property (2) holds

because lines are affine subspaces of dimension 1 in the vector space F3
q . For (3), suppose

three lines in Lλ intersect pairwise in three distinct points. Then their three slope vectors

would be linearly dependent, a contradiction to the linear independence of any three vectors

in Lλ we established above. Property (4) simply follows from Mλ1 ∩Mλ2 = ∅ for λ1 6= λ2.

Now, we are ready to define our graphs G1, . . . , Gq−1. Let λ ∈ Fq \{0}. We partition every

line ` ∈ Lλ randomly into s sets L
(`)
1 , . . . , L

(`)
s each of cardinality l1 :=

⌊ q
s

⌋
or l2 :=

⌊ q
s

⌋
+ 1.

Note that l1, l2 > rs, since rs is an integer. To be precise, between all partitions of a line
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` =
⋃̇s

j=1L
(`)
j where

∣∣∣L(`)
1

∣∣∣ = · · · =
∣∣∣L(`)
s′

∣∣∣ = l1 and
∣∣∣L(`)
s′

∣∣∣ = · · · =
∣∣∣L(`)
s

∣∣∣ = l2 we choose one

uniformly at random, choices for distinct lines in Lλ being independent. The graph Gλ on

the vertex set V = F
3
q is defined as follows. For every ` ∈ Lλ and any i 6= j, we introduce a

complete bipartite graph between the vertex sets L
(`)
i and L

(`)
j on `. That is, the graph Gλ

consists of a collection of Turán graphs on q vertices with s parts. Each Turán part “lives”

along one of the lines ` ∈ Lλ. By property (2), these parts are edge-disjoint. Further, by

property (3), Gλ is Ks+1-free. Also, for distinct λ ∈ F3
q , by property (4), the graphs Gλ are

edge disjoint. To finish the proof, we show that αs(Gλ) < n/r with probability at least 1/2

(and in fact with probability tending to one as q tends to infinity).

These calculations are almost identical to those in [26], so we just briefly sketch them. Let

U ⊂ V (G) of size |U | =
⌊
n
r

⌋
, and let A(U) denote the event that Gλ[U ] contains no copy of

Ks. Then, since by property (3) any Ks can only appear within a line ` ∈ Lλ,

A(U) ⊆
⋂
`∈Lλ
A(U ∩ `),

and therefore, since all the events A(U ∩ `) are independent,

P(A(U)) 6
∏
`∈Lλ

P(A(U ∩ `)).

Now, for an individual line ` ∈ Lλ, set u` := |U ∩ `|, and let ` =
⋃s
j=1 L

(`)
j be the partition

we chose at random. Then the event A(U ∩ `) is equivalent to the existence of a j ∈ [s] such

that U ∩ L(`)
j = ∅. But for fixed j ∈ [s],

P

(
U ∩ L(`)

j = ∅
)

=

(q−u`∣∣∣L(`)
j

∣∣∣)( q∣∣∣L(`)
j

∣∣∣) 6

(
1− u`

q

)∣∣∣L(`)
j

∣∣∣
6 exp

(
− l1u`

q

)
.

Therefore,

P(A(U)) 6
∏
`∈Lλ

P

(
∃ j ∈ [s] : U ∩ L(`)

j = ∅
)

6 s|Lλ| exp

−∑
`∈Lλ

l1u`
q


= s|Lλ| exp

(
−q − 1

q
l1|U |

)
,

since every point in U belongs to exactly q− 1 lines (property (1)), and therefore
∑

`∈Lλ u` =
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∑
`∈Lλ |U ∩ `| = (q − 1)|U |. We obtain,

P

(
∃U ∈

(
V⌊
n
r

⌋) : A(U)

)
6

(
n⌊
n
r

⌋) s|Lλ| exp

(
−q − 1

q
l1

⌊n
r

⌋)
6 (re)n/r sq

2(q−1) exp

(
−q − 1

q
(rs)

⌊n
r

⌋)
6 exp

[
q3
(

ln r

r
+

1

r
+ ln s− 3

4
s

)]
<

1

2

for s > 2 and r > 3. Therefore, there exists an instance of Gλ such that every subset U of

size at least
⌊
n
r

⌋
contains a copy of Ks in Gλ.

5.4 Signal senders and BEL-gadgets

Throughout this section, let H be a fixed graph. All colourings are r-colourings, for r > 2.

We prove the existence of negative and positive signal senders in a series of lemmas where the

first ones are the building blocks like basic lego bricks, followed by lemmas which say that we

can combine the basic lego bricks to build more elaborate structures, culminating in the last

lemma which says, that we can combine all those elaborate structures to a lego castle (the

BEL gadget). Though we can show existence of such castle only when H ∈ Γ4, we state in

each lemma explicitely what is needed from H.

The following definitions will prove to be useful in constructing negative and positive signal

senders. Let Gmax = Gmax(r,H) be an edge-maximal graph on rr(H) vertices subject to the

following constraints: Gmax is a clique on rr(H) − 1 vertices along with some other vertex v

and Gmax 9 (H)r.

For a graph G, we call a colouring of E(G) critical if it does not contain a monochromatic

copy of H. By definition of Gmax, such a critical colouring of E(Gmax) exists. We want to

study the possible colour patterns that occur on edges incident to v in a critical colouring in

Gmax. Given the graph Gmax and the vertex v, for a given colouring χ : E(Gmax) → [r], we

say that it has colour pattern a = (a1, . . . , ar) ∈ Nr if v is incident to ai edges of colour i. We

say a colour pattern a ∈ Nr is admissible if there exists a critical colouring χ : E(Gmax)→ [r]

with colour pattern a. Throughout this section, let A(H) = {a1, . . . ,aq} be the collection of

all admissible colour patterns .

The first simple lemma puts a restriction on the form of an admissible colour pattern when

δ(H) > 2. It is a version of which appeared in [17].
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Lemma 5.4.1. If δ(H) > 2, then in any colouring of Gmax without a monochromatic copy of

H, v is incident to edges of colour C, for every C ∈ [r].

Proof. First note that by definition of rr(H) and since Gmax 9 (H)r, Gmax cannot be com-

plete. Pick a vertex w that is not adjacent to v and let χ be an r-colouring of the edge set of

Gmax without a monochromatic copy of H. Suppose for a contradiction that v is not incident

to any edge in colour C, for some C ∈ [r]. Now add the edge vw to Gmax and extend χ by

colouring this edge with colour C. Since Gmax was edge-maximal, there must be a monochro-

matic copy H1 of H in Gmax + vw. Since G did not contain a monochromatic copy of H, H1

must use the edge vw and be of colour C. However, v is incident to only one edge of colour

C, namely vw, contradicting that δ(H) > 2.

Given an edge-colouring of Gmax, it induces a vertex-colouring of the neighbours of v by

colouring a neighbour w with the colour of the edge vw. With this in mind, the following

definition and lemma will prove useful in constructing negative and positive signal senders.

Definition 5.4.2. For a hypergraph H, an r-colouring of V (H), and an edge h ∈ H, we say

h has colour pattern a = (a1, . . . , ar) ∈ Nr if it has ai vertices of colour i.

Recall, that by a1, . . . ,aq we denoted the collection of admissible colour patterns, that is

colour patterns that appear when Gmax is coloured without a monochromatic copy of H. For

a hypergraph H, we say an r-colouring of the vertices V (H) is H-critical if each edge h ∈ H
has one of the colour patterns ak, 1 6 k 6 q. We call two vertices x and y in a hypergraph H
adjacent if there exists a hyperedge h ∈ H such that x, y ∈ h. Otherwise, we say x and y are

non-adjacent.

Lemma 5.4.3. Let t be the degree of v in Gmax. If δ(H) > 2, then there exists a t-uniform

hypergraph H and two non-adjacent vertices x, y in V (H) such that

(i) there exists an H-critical r-colouring of the vertices of H;

(ii) for every H-critical r-colouring of V (H), x and y have different colours;

(iii) H contains no circuits of length |V (H)| or less.

Proof. For a t-uniform hypergraph H̃ define Property (∗): For every r-colouring of V (H̃) there

exists a hyperedge in H̃ with colour pattern different from all of a1, . . . ,aq.

Let H′ be a t-uniform hypergraph which contains no circuits of |V (H)| or shorter, and which

is (r + 1)-chromatic. Such a hypergraph exists as was shown in [33] by a now standard

application of the probabilistic method [3].
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The hypergraph H′ has property (∗); given an r-colouring of the vertices of H, since H′
has chromatic number at least r+ 1, there must exist an edge h ∈ H′ so that all of its vertices

have colour i for some i. But such an edge cannot have any of the patterns a1, . . . ,aq by

Lemma 5.4.1.

Now, let H′′ ⊆ H′ be edge-minimal with respect to property (∗), and let h = {x1, . . . , xt}
be an arbitrary edge in H′′ (since there is at least one colour pattern a1, H′′ must contain an

edge). Add t new vertices y1, . . . , yt and call this new hypergraphH0. SetHi := H0−{h}+{hi}
where hi = {y1, . . . , yi, xi+1, . . . , xt} for 1 6 i 6 t. Clearly, H0 has property (∗), while Ht has

not, since H′′ was edge-minimal with respect to (∗) and ht is independent of all the edges of

H′′. Therefore, there must exist an index 1 6 i 6 t such that Hi−1 has (∗), whereas Hi has

not. Then taking H := Hi, x := xi and y := yi fulfills the conditions of the lemma. First,

note that by construction, x and y are non-adjacent (the only edge containing y is hi, and

x 6∈ hi). Now, (i) simply follows because H does not have property (∗).
For (ii), suppose there was an r-colouring χ of V (H) in which every edge has one of the

colour patterns a1, . . . ,aq and xi and yi have the same colour. Then one could take the same

colouring for Hi−1 to see that Hi−1 does not have property (∗), a contradiction.

To see that (iii) holds, note that any circuit of H corresponds to a circuit of H′′ by

replacing any use of the hyperedge hi by h0. Then, since H′′ is a subgraph of H′ and H′ has

no circuits of length |V (H)| or less, we get that H has has no circuits of length |V (H)| or

less.

We now prove the existence of a negative (r,H, e, f)-signal sender when H is either a

triangle or 3-connected, in which the two signal edges are adjacent.

Lemma 5.4.4. If H ∈ Γ3 then there exists a negative (r,H, e, f)-signal sender Gad in which

the two signal edges e and f form an induced path of length 2. That is, e and f are adjacent,

though they do not form a K3.

Proof. Take Gmax and v as defined at the beginning of this section. Recall that Gmax− v is a

clique, that Gmax 9 (H)r, and that any r-colouring of Gmax without a monochromatic copy

of H has v incident to edges of at least two different colours.

As before, let a1, . . . ,aq be the admissible colour patterns, i. e. the possible colour patterns

that appear in an r-colouring of Gmax without a monochromatic H and take t to be the degree

of v in G.

Take H to be the t-uniform hypergraph with distinguished (non-adjacent) vertices x, y as

in the previous lemma.

Gad is constructed as follows. It has vertex set equal to the vertex set of H along with

rr(H)−t−1 new vertices for each hyperedge of H and a new distinguished vertex w. Formally,

we may take its vertex set to be V (H) ∪ (E(H)× [r(H)r − t− 1]) ∪ {w}. Connect w to all
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H

w

Vh

h

Vh

KRr(H)−t−1

Kt

Figure 5.3: An illustration of the graph Gad in Lemma 5.4.4. A thick line indicates that the

vertices of the corresponding sets are pairwise connected.

vertices of V (H). For every edge h of H, we put in Gad a clique on vertex set Vh :=

h∪ ({h} × [rr(H)− t− 1]). That is, we put a clique on the rr(H)−1 vertices that correspond

to h. The construction of Gad is illustrated in Figure 5.3. Set e and f to be e := {wx} and

f := {wy}. Note that since x and y are non-adjacent in H, e and f form an induced path of

length two in Gmax. We say an edge g ∈ Gad corresponds to a hyperedge h if g ⊆ Vh. Note

that since the shortest circuit in H has length greater than |V (H)| > 2, any edge in Gad −w
corresponds to exactly one edge in H. Furthermore, w along with Vh for any hyperedge h

induces a copy of Gmax.

We claim that any copy of H has to be contained in Vh ∪ {w} for some hyperedge h ∈ H.

To see this, assume first that H 6= K3. Assume for a contradiction that there is a copy of

some H ′ contained in V (Gad) − w but not contained in Vh for any h, where H ′ is obtained

from H by removing a vertex. Note that since H is 3-connected, H ′ must be 2-connected

and use at most |V (H)| vertices in Gad − w. Therefore, there must be some pair of edges

f1 = {v1, v2}, f2 = {v2, v3} of Gad contained in that copy of H ′ so that v1 ∈ Vh, v2 ∈ Vh∩Vh′ ,
v3 ∈ Vh′ with h 6= h′. Then there must be a path in H ′ between v1 and v3, say with edges

e1, . . . , ej , that does not use v2. Any such path in H ′ contains at most |V (H ′)|−2 6 |V (H)|−2

edges; thus, considering the sequence of hyperedges containing the respective ei along with

f1, f2, this induces a circuit in H of length at most |V (H)|, contradicting choice of H.

Assume now that H = K3. Then either a copy of H uses the vertex w. But deleting a vertex

in H leaves an edge, which must belong to a single hyperedge h as said above. Hence, this

copy of H lies in V∪{w}. Or a copy of H does not use w. But then the claim follows as before

since H ′ = H = K3 is 2-connected on at most |V (H)| vertices.

For property (a) of negative signal senders, we need to show that Gad 9 (H)r. To

that end, colour the vertices of H with r colours such that in every hyperedge h ∈ H one

of the colour patterns a1, . . . ,aq appears. We define an r-colouring on E(Gad) as follows.

Colour each edge {w, z} with the colour of z assigned by the hypergraph colouring. For every

hyperedge h ∈ H, extend this colouring to an r-colouring of Gad[{w} ∪ Vh] ∼= G without



5.4. SIGNAL SENDERS AND BEL-GADGETS 87

creating a monochromatic H. This is possible because h has one of the colour patterns

a1, . . . ,aq. Further, there will not be any conflicts, since any two of the Vh intersect in at

most one vertex (and so don’t share edges). This defines a colouring of E(Gad) without a

monochromatic H, as any copy of H must be contained in Gad[{w} ∪ Vh] for some h. In

a similar fashion, any r-colouring of E(G) without any monochromatic H induces a vertex

colouring of V (H) in which every edge h ∈ H has one of the colour patterns a1, . . . ,aq. So, x

and y have different colours by (ii) of the previous lemma, and thus {w, x} and {w, y} have

different colours in the edge-colouring.

We now know of the existence of negative signal senders, with the limitation that the two

signal edges need to be adjacent. However, now that we have it, proving the existence of the

various other gadgets is straightforward. We first create a version which is easier to apply; it

says we can combine the signal senders from Lemma 5.4.4 with little restrictions and without

concerns about creating monochromatic copies of H. Recall that we call a colouring of any

given graph G critical if it does not contain a monochromatic copy of H.

Lemma 5.4.5. Let G0 be a graph with a collection C of pairs of edges, C = {(e1, f1), . . . , (ek, fk)}
where each pair (ei, fi) is an induced path of length two in G0. If H ∈ Γ4, then there is a

graph G with an induced copy of G0 so that:

1. Any critical colouring of G0 which colours every ei with a different colour than fi extends

to a critical colouring of G.

2. Any critical colouring of G must satisfy that for every pair of edges (ei, fi), ei and fi

have different colours.

Proof. Consider the graph obtained by taking G0 and, for each pair of edges (ei, fi) ∈ C,
insert a copy Gi of the negative (r,H, e, f)-signal sender Gad from Lemma 5.4.4 and identify

the two signal edges e and f of Gad with ei and fi. This is the graph G. Note that the copy

of G0 in G is an induced one since e and f form an induced path of length two in Gad. By

construction of Gad, property (2) must hold; any colouring of G without a monochromatic

copy of H must satisfy that every pair of edges (ei, fi) have different colours.

To show property (1), let any colouring of G0 without a monochromatic copy of H sat-

isfying that every pair of edges (ei, fi) have different colours be given. By property (b) of

negative signalers, there is a critical colouring of Gad so that the two signal edges e andf

have different colours. By symmetry of colours, given any pair of different colours for the

signal edges of Gad, it can be extended to a colouring of Gad without a monochromatic copy

of H. Therefore, for any Gi ∼= Gad in G, there is some colouring of it without a monochro-

matic copy of H that extends the given colouring of ei and fi. Taking for each Gi a colouring
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without a monochromatic copy of H gives a colouring of G; we claim this colouring has no

monochromatic copy of H. To see this, assume the opposite and let H ′ be a monochromatic

copy of H in G. Then H ′ must use some edge of Gi \Gj and some edge of Gj \Gi, for some

i 6= j. Since for 1 6 i < j 6 k, Gi and Gj intersect in at most one edge, and since the

pairs (ei, fi) and (ej , fj) form induced P2 in G0 and in Gi (Gj) (and hence in G), Gi and Gj

intersect in at most 2 vertices. Since H = K3 or H is 3-connected, we may therefore assume

that Gj = G0. Again, since (ei, fi) forms an induced P2 in G, there exists w0 ∈ V (G0)\V (Gi)

and wi ∈ V (Gi) \ V (G0) such that both vertices are contained in H ′, the copy of H in G.

Therefore, w0wi 6∈ E(G), which is a contradiction when H = K3 or H = K4. Otherwise,

since H ∈ Γ4, H is 4-connected. A contradiction again, since removing the three vertices in

V (G0) ∩ V (Gi) = ei ∪ fi disconnects w0 from wi. So G contains no monochromatic copy of

H, as desired.

We are now ready to prove the existence of positive signal senders.

Lemma 5.4.6. If H ∈ Γ4, then positive (r,H, e, f)-signal senders exist, where e and f are

independent.

Proof. We will construct a K3-free graph G0 with two distinguished independent edges e and

f . We then choose a collection C of adjacent edges of G0 so that there is a critical colouring of

G0 (i.e. without a monochromatic copy of H) in which every pair of edges in C has different

colours, and in any r-colouring of G0 in which each pair of edges in C has different colours, e

and f must have the same colour. Applying Lemma 5.4.5 to G0 will complete the proof.

To construct G0, take two stars K1,r. Label the centers by x and y, and the leaves by

x1, . . . , xr and by y1, . . . , yr respectively. Add the edge xy to G0. Set e := xx1 and f := yy1.

Now add the following pairs of adjacent edges of G0 to C: For all 1 6 i < j 6 r, add the pairs

(xxi, xxj) and (yyi, yyj). For all 2 6 i 6 r add the pairs (xy, xxi) and (xy, yyi). If we are

given a colouring of G0 so that every pair of edges in C has different colours, then we claim

e and f must have the same colour. Note that all of the edges of the first star have different

colours and use all r colours. Therefore, since xy has a colour different from all of the edges

of the first star except e, we must have that xy and e have the same colour. By symmetry, xy

and f have the same colour. Therefore, e and f have the same colour, as desired. Note further

that there is a colouring in which every pair of edges in C has different colours, namely the

colouring that assigns to e, f, and xy colour 1 and assigns to each edge xxi (yyi) the colour

i. Note that G0 is a tree and contains no copy of H (and therefore, no colouring contains

a monochromatic copy of H). Furthermore, for the same reason, each pair (ei, fi) forms an

induced path of length two, and we can apply Lemma 5.4.5.

Remark 5.4.7. Note that the proof also gives easily the existence of positive signal senders
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in which the two signal edges are adjacent. However, this is not crucial for the remaining

lemmas.

Signal senders are not by themselves particularly useful due to concerns about creating

monochromatic copies of H. By stringing together positive signal senders, however, we can

alleviate these concerns by creating an (r,H, e, f)-signal sender in which e and f are far apart.

Let us say that two edges e and f have distance at least k in G, denoted by dist(e, f) > k, if

any path P in G containing both e and f has length at least k.

Lemma 5.4.8. If H ∈ Γ3 and there exists a positive (r,H, e, f)-signal sender with indepen-

dent edges e, f , then for any k > 1 there is a positive (r,H, e, f)-signal sender G such that

dist(e, f) > k.

Proof. Induction on k. For k = 3, take G3 to be a positive (r,H, e, f)-signal sender with

independent signal edges e and f , which exists by assumption. Then any path containing

both e and f has length at least 3. For k > 3, let Gk be a positive (r,H, ek, fk)-signal sender

such that dist(ek, fk) > k in Gk, and let G3 be as before. We construct Gk+1 by taking the

disjoint union of Gk and G, and identify e with fk. Set now ek+1 := ek and fk+1 := f . Clearly,

any colouring of Gk+1 without a monochromatic copy of H must have that ek+1 and fk+1

have the same colour. Also, any path containing both ek+1 and fk+1 must have length at

least k+ 1. Note that removing the two vertices of e disconnects Gk from G3, so any copy of

H in Gk+1 is either in Gk or in G3. To see that Gk+1 9 H, take any colouring of Gk without

a monochromatic copy of H. This only colours one of the edges in the copy of G3 (namely

e), so by symmetry of the colours and the assumption that G3 9 H, this may be extended

to a colouring of Gk+1 without a monochromatic copy of H.

Combining the previous two lemmas gives the existence of a useful version of positive

signal senders.

Corollary 5.4.9. If H ∈ Γ4, then there is a positive (r,H, e, f)-signal sender G so that

dist(e, f) > |V (H)|+ 3.

This Corollary also easily gives the existence of a useful version of negative signal senders.

Corollary 5.4.10. If H ∈ Γ4, then there is a negative (r,H, e, f)-signal sender G so that

dist(e, f) > |V (H)|+ 3.

Proof. Let G0 be a positive (r,H, e0, f0)-signal sender given by Corollary 5.4.9. Let G1 be a

negative (r,H, e1, f1)-signal sender given by Lemma 5.4.4. Let G be the union of G0 and G1

and identify e1 with f0. Set e := e0, f := f1. As in the previous lemma, since H is 3-connected
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or H = K3, G 9 (H)r. Furthermore, since in G0 any path containing e0 and f0 had length

at least |V (H)| + 3, in G any path containing e = e0 and f = f1 must have length at least

|V (H)|+ 3. Finally, in any colouring of G without a monochromatic copy of H, we must have

that e0 and f0 have the same colour, and e1 and f1 have different colours. Since f0 and e1

are the same edge, e0 and e1 have the same colour and so e = e0 and f = f1 have different

colours, as desired.

These two corollaries allow us to prove a version of Lemma 5.4.5 where the edges on which

we impose restrictions may be independent.

Lemma 5.4.11. Let G0 be a graph with collections C, C′ of pairs of independent edges of G0,

C = {(e1, f1), . . . , (ek, fk)} and C′ = {(e′1, f ′1), . . . , (e′k′ , f ′k′)}. If H ∈ Γ4, then there is a graph

G with an induced copy of G0 so that:

1. Any critical colouring of G0 that colours each pair of edges ei, fi with the same colour

and every pair of edges e′i, f
′
i with different colours extends to a critical colouring of G.

2. Any critical colouring of G must satisfy that for every pair of edges (ei, fi), ei and fi

have the same colour, and every pair of edges (e′i, f
′
i), e

′
i and f ′i have different colours.

Proof. Let G′ be a positive (r,H, e, f)-signal sender given by Corollary 5.4.9, and let G′′ be

a negative (r,H, e′, f ′)-signal sender given by Corollary 5.4.10. Construct the graph G as

follows. Take G0 and, for each pair of edges (ei, fi) ∈ C, insert a copy Gi ∼= G′ and identify

the two signal edges e and f with ei and fi; and for each pair of edges (e′i, f
′
i) ∈ C′, insert a

copy G′i ∼= G′′ and identify the two signal edges e′ and f ′ with e′i and f ′i . Note that no Gi

(G′i) adds edges between ei and fi (e′i and f ′i) since distGi(ei, fi) > 3 (distG′i(e
′
i, f
′
i) > 3), so

G0 is an unduced subgraph of G. By constructions of G′, G′′, property (2) must hold.

To show property (1), let any colouring of G0 without a monochromatic copy of H be given

such that for every pair of edges (ei, fi), ei and fi have the same colour, and such that for every

pair of edges (e′i, f
′
i), e

′
i and f ′i have different colours. Note that since G′ (G′′) is a positive

(negative) signal sender, there is some colouring of G′ (G′′) without a monochromatic copy of

H so that the signal edges have the same (a different) colour. By symmetry of colours, given

any pair of same (different) colours for the signal edges, it can be extended to a colouring

of G′ (G′′) without a monochromatic copy of H. Therefore, for any copy Gi of G′ (G′i of

G′′) there is some colouring of it without a monochromatic copy of H that extends the given

colouring of ei and fi (e′i and f ′i). Taking for each Gi (G′i) such a colouring gives a colouring

of G. We claim this has no monochromatic copy of H. In fact, any copy H ′ of H in G is

either a subgraph of Gi for i > 0 or of G′i for i > 1. To see this, assume some copy H ′ of H

is given so that it is not a subgraph of G0 and not a subgraph of any of the Gi or G′i. Then,

since H is connected, H ′ must use some pair of adjacent edges g, g′ so that g is contained in
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some Gi or G′i but not in G0, and g′ is not contained in that Gi (or G′i). Assume without loss

of generality that g is contained in Gi. By construction, ei and fi are the signal edges of Gi,

and since g is adjacent to the edge g′ 6∈ Gi, we may assume without loss of generality that g

and ei are adjacent (though not equal since ei ∈ G0 and we assumed g is not). Let v be the

vertex of g not contained in ei, and let w be the vertex of g′ not contained in ei. Assume first

that H 6= K3. We claim that removing the vertices of ei disconnects this copy of H, which

contradicts that H is 3-connected. If removing these vertices does not disconnect H ′, then

there must be some path from v to w in H ′. Thus, this path has length at most |V (H)| − 1.

Furthermore, since v ∈ V (Gi) \ V (G0), it must use a vertex of fi. Taking the path from v

to the first time it intersects fi and then adding ei, g, and fi to it forms a path of length at

most |V (H)| + 2 inside Gi, contradicting that distGi(ei, fi) > |V (H)| + 3. When H = K3,

the claim follows similarly. Indeed, assume the edge vw was present in G, then since v is in

V (Gi) solely, vw ∈ Gi. Moreover, since g′ 6∈ Gi, we have that w ∈ V (Gi) ∩ V (G0), that is, w

is one of the vertices of fi. Then the path fi, vw, g, ei is again a path in Gi of length less than

|V (H)|+ 3, a contradiction.

The above lemma will easily give the existence of BEL-gadgets in the case that H is

4-connected or H = K3 or H = K4; and the Gi are H-free.

Proof of Lemma 5.2.6. Let G1, . . . , Gr be a given colour pattern (that is they are pairwise

edge-disjoint and V (G1) = . . . = V (Gr)) so that none of G1, . . . , Gr contains a copy of H. We

construct G0 (to apply Lemma 5.4.11) in the following way. Take the edge-union of G1, . . . , Gr

and add to this 2r new vertices. On the 2r vertices, add r independent edges e1, . . . , er. This

will be our graph G0. Add every pair (ei, ej) to a collection C′ (the collection of negative

pairs). For every 1 6 i 6 r, and every f ∈ Gi add the pair (ei, f) to a collection C (the

collection of positive pairs). Applying Lemma 5.4.11 to G0 with collections C and C′ gives us

some graph G. We claim that G 9 (H)r. To show this, it is sufficient to give a colouring

of G0 that satisfies all the conditions imposed by C and C′ and contains no monochromatic

copy of H. We achieve this by colouring edge ei and every edge of Gi with colour i. Any

two edges ei, ej have different colours, so the conditions imposed by C′ are satisfied, and any

edge f of Gi has the same colour as ei, namely i, so the conditions imposed by C are satisfied.

Note that G0 has no monochromatic copy of H in this colouring, as such a copy cannot use

any of the isolated edges ei and therefore must be contained in some Gi. But H 6⊆ Gi for

all i, so G 9 (H)r. To complete the proof, it is sufficient to show that given any colouring

satisfying the conditions imposed by C and C′, it satisfies that each Gi is monochromatic and

no two Gi, Gj share a colour. Note that any edge of Gi must have the same colour as ei by

the conditions of C, so indeed each Gi is monochromatic. Furthermore, no two ei, ej may have

the same colour by the conditions of C′, so no two Gi, Gj have the same colour, as desired.
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5.5 Concluding remarks

We have seen in Lemma 5.1.3, that it is fairly simple to show that sr(Kk) > sr−1(Kk).

However, as mentioned in the introduction, it is not that clear that sr(Kk) is also increasing

in k. It would be surprising though if that was not the case.

Question 5.5.1. Is it true that for all r > 2, k > 3 we have that sr(Kk) > sr(Kk−1)?

We also saw that the Erdős-Rogers function defined as fs,k(n) = min{αs(F ) : |V (F )| =

n and Kk 6⊆ F} is tightly connected to the study of sr(Kk). For our lower bounds in Sec-

tion 5.1, we heavily used the recursion sr > sr−1 + maxi αk−1(Gi), and the fact that the

Gi are Kk-free and thus all have (k − 1)-independence number at least fk−1,k(n). On the

other hand, we saw in Section 5.3 that the known constructions for Kk-free graphs with small

independence number can be modified to constructions of r edge-disjoint such graphs on the

same vertex set. Therefore, we believe that tightening the known bounds on fk−1,k(n) will

directly contribute to tightening the bounds on sr(Kk). The currently best known bounds on

the Erdős-Rogers function are

Ω

(√
n log n

log log n

)
= fk−1,k(n) = O

(
(log n)4(k−1)

2√
n
)
,

see Theorem 5.1.5 and [25]. That is fk−1,k(n) is of the order of n1/2+o(1). We wonder whether

the upper bound can be strengthened in the following way.

Question 5.5.2. Does there exist a universal constant C (independent of k) such that fk−1,k(n) =

O
(
(log n)C

√
n
)
? And does the construction of such a Kk-free graph on n vertices with (k−1)-

independence number less than O
(
(log n)C

√
n
)

generalize to a packing of such graphs?

The affirmative of both questions would then imply that there is a universal constant

C > 0 such that sr(Kk) = O
(
r2(log r)C

)
.

In the special case when k = 3, recall that we used the Lovász Local Lemma iteratively to

successively find (edge-disjoint) triangle-free subgraphs Gi ⊆ Kn with independence number

less than Θ(
√
n(log n)2). This way (and using the power of BEL-gadgets) we proved the upper

bound of order Θ
(
r2(log r)2

)
in Theorem 1.2.4. Indeed, this well-known application of the

Local Lemma which first appeared in [53] by Spencer simplified an earlier proof of Erdős of

the lower bound R(3, k) > c (k/ log k)2 on the off-diagonal Ramsey numbers (applying the

Local Lemma only once gives a triangle-free graph on n vertices with independence number

less than Θ(
√
n log n), but we needed the extra log-factor to show that we can actually pack
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these graphs we find with the Local Lemma). In 1990, Erdős and Bollobás suggested the

triangle-free process as a strategy to find better lower bounds on R(3, k), or reversly, triangle-

free graphs on n vertices with an even smaller independence number. In [45], Kim proved

the existence of a triangle-free graph G on n vertices with independence number at most

O
(√
n log n

)
, showing that R(3, k) > Ω

(
k2/ log k

)
. Later Bohman [12], reproved this result,

using the triangle-free process. Very recently, Fiz Pontiveros, Griffiths and Morris [36], and

independently Bohman and Keevash [13], improved the constant factor and showed, using the

triangle-free process again, that R(3, k) > (1/4−o(1))k2/ ln k. We are optimistic that one can

apply the triangle-free process iteratively, with some modifications, as we did with the Local

Lemma, and thus find a packing of graphs G1, . . . , Gr on n vertices, all being triangle-free and

having smaller independence number than Θ(
√
n(log n)2). However, we are not sure which

power in the exponent of the log-factor is needed, since some freedom in packing the graphs

Gi seems to be necessary. We therefore pose the following problem.

Problem 5.5.3. Determine the constant c such that sr(K3) = Θ
(
r2(log r)c

)
.

Our bounds on sr(K3) imply that 1 6 c 6 2, and we strongly believe that the latter should

be a strict inequality for the aforementioned reasons.
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Zusammenfassung

Die Dissertation besteht im Wesentlichen aus zwei Teilen, die unabhängig voneinander sind.

Im ersten Teil befassen wir uns mit Orientierungsspielen, die unter anderem bereits von

Aigner, Alon, Beck, Ben-Shimon, Bollobás, Krivelevich, Sudakov, Szabó und Tuza studiert

wurden. Zwei Spieler, genannt OMaker und OBreaker, richten abwechselnd bisher ungerichtete

Kanten des Kn, dem vollständigen Graphen auf n Knoten. OMaker gewinnt, wenn der resul-

tierende Digraph (ein Turnier) eine gewisse, vorher bestimmte, Eigenschaft P besitzt. Andern-

falls gewinnt OBreaker. Für ein gegebenes Turnier Tk auf k Knoten betrachten wir das Orien-

tierungsturnierspiel Or(Tk), bei dem OMaker gewinnt, wenn das finale Turnier eine Kopie von

Tk enthällt. Wir zeigen, dass OMaker dieses Spiel gewinnen kann, solange k 6 (2−o(1)) log2 n,

während OBreaker eine Gewinnstrategie hat, sobald k ungefähr die Größenordnung 4 log2 n

besitzt. Für die untere Schranke betrachten wir die Spielvariante, in der OMaker gewinnt,

wenn der Digraph, der nur aus ihren gerichteten Kanten besteht, eine Kopie von Tk enthällt.

Dieses Turnierspiel wurde bereits von Beck und Gebauer studiert, und unsere untere Schranke

verbessert bisherige Ergebnisse um einen konstanten Faktor. Darüberhinaus ist sie für das

Turnierspiel scharf, wie das Kriterium von Erdős und Selfridge impliziert. Das zweite Orien-

tierungsspiel, das wir betrachten ist das “Oriented-cycle game”, in dem OMaker gewinnt, falls

das finale Turnier einen gerichteten Kreis enthällt. Kürzlich zeigten Ben-Shimon, Krivelevich

und Sudakov, dass OMaker gewinnt, selbst wenn OBreaker bis zu n/2 Kanten in jeder Runde

richten darf. Sei b die Anzahl der Kanten, die OBreaker in einer Runde richten darf. Wie schon

Bollobás und Szabó beobachteten, gewinnt OBreaker sobald b > n − 2. Wir verbessern die

triviale obere Schranke und zeigen, dass OBreaker eine Gewinnstrategie hat, wenn b > 5n/6+2.

Weiterhin passen wir die Strategie an für den Fall, dass OBreaker genau b Kanten in jeder

Runde richten muss und widerlegen somit eine Vermutung von Bollobás und Szabó.

Im zweiten Teil studieren wir minimale Ramseygraphen. Dabei ist ein Graph G Ramsey

für einen Graphen H, falls jede Zweifärbung der Kanten von G eine einfarbige Kopie von H

enthällt. Der Graph G wird dann Ramsey-minimal genannt, falls er Ramsey für H ist, aber

95



96 ZUSAMMENFASSUNG

kein echter Untergraph von G diese Eigenschaft besitzt. Sei s(H) der kleinste Minimalgrad,

den ein Graph G haben kann, der Ramsey-minimal für H ist. Dieser Parameter wurde

erstmals von Burr, Erdős, und Lovász studiert, die zeigten, dass s(Kk) = (k − 1)2. In

dieser Arbeit beantworten wir eine Frage von Szabó, Zumstein, und Zürcher und zeigen,

dass s(Kk · K2) = k − 1, wobei Kk · K2 der Graph auf k + 1 Knoten ist, bestehend aus

einem Kk und einer angehängten Kante. Dieses Resultat impliziert interessanterweise, im

Zusammenspiel mit einem bekannten Resultat von Nešetřil und Rödl, dass jeder Graph, der

Ramsey-äquivalent zu Kk ist, die disjunkte Vereinigung von Kk und einem Graph ohne Kk

sein muss. Wir studieren die maximale Anzahl an Cliquen Kt, die zu Kk hinzugefügt werden

können, sodass der resultierende Graph Ramsey-äquivalent zu Kk ist. Eine obere Schranke,

die wir erhalten, ist ungefähr um einen Faktor zwei größer als eine untere Schranke von Szabó

et al. Weiterhin verallgemeinern wir die Konzepte für r Farben und betrachten das Verhalten

des entsprechenden Paramenters sr(Kk) in Abhängigkeit von r. Unsere Schranken sind scharf

bis auf einen Faktor, der polylogarithmisch in r ist.
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