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Abstract: Systemic Sclerosis (SSc) is a clinically heterogeneous disease that includes an upregulation
of type I interferons (IFNs). The aim of this observational study was to investigate the IFN-regulated
protein Sialic Acid–Binding Ig-like Lectin 1 (SIGLEC-1) as a biomarker for disease phenotype, ther-
apeutic response, and differential diagnosis in SSc. Levels of SIGLEC-1 expression on monocytes
of 203 SSc patients were determined in a cross-sectional and longitudinal analysis using multi-
color flow cytometry, then compared to 119 patients with other rheumatic diseases and 13 healthy
controls. SSc patients higher SIGLEC-1 expression on monocytes (2097.94 ± 2134.39) than HCs
(1167.45 ± 380.93; p = 0.49), but significantly lower levels than SLE (8761.66 ± 8325.74; p < 0.001) and
MCTD (6414.50 ± 1846.55; p < 0.001) patients. A positive SIGELC-1 signature was associated with
reduced forced expiratory volume (p = 0.007); however, we were unable to find an association with
fibrotic or vascular disease manifestations. SIGLEC-1 remained stable over time and was independent
of changes in immunosuppressive therapy. However, SIGLEC-1 is suitable for differentiating SSc
from other connective tissue diseases. SIGLEC-1 expression on monocytes can be useful in the differ-
ential diagnosis of connective tissue disease but not as a biomarker for SSc disease manifestations
or activity.

Keywords: Systemic Sclerosis; SIGLEC-1; biomarker; interferon; treatment; cytokines

1. Introduction

Systemic Sclerosis (SSc) is a rare connective tissue disease that is characterized by the
triad of microangiopathy, fibrotic complications and immunological abnormalities that
include both innate and adaptive immunity [1–3]. One of the autoimmune phenomena is
the production of characteristic and distinct serum autoantibodies detected in most patients
as well as the presence of inflammatory cells with a prominent type I interferon (IFN)
signature in circulating and tissue-infiltrating immune cells [4–13].

Activation of the type I IFN pathway is present in several rheumatic diseases including
systemic lupus erythematosus (SLE), primary Sjögren syndrome (pSS), rheumatoid arthritis
(RA), and others. While the direct detection of IFNs in plasma using ELISA is problematic
and unreliable, several previous studies have attempted to establish indirect interferon
markers, such as IFN regulated proteins, as biomarkers indirect IFN-markers in rheumatic
diseases [8–13]. As sialic acid binding Ig like lectin 1 (SIGLEC-1), an IFN-induced adhesion
molecule on monocytes [14], is one of the most prominent type I IFN-regulated genes, it
has been the most promising marker so far. In pSS, SIGLEC-1 expression on peripheral
blood monocytes could characterize patients with extraglandular involvement and high
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disease activity [15]. For myositis, SIGLEC-1 was found to be a candidate biomarker to
assess type I IFN activity. It proved useful for monitoring disease activity and response
to treatment in juvenile and adult dermatomyositis [16,17]. In addition, SIGLEC-1 has
been shown to be elevated in RA [18], autoimmune thyroiditis [19], and primary biliary
cholangitis (PBC) [20].

The most extensive data on the robustness of SIGLEC-1 as a biomarker for disease
activity so far exists for SLE [21]. Biesen et al. were able to show that the frequency
of SIGLEC-1-expressing monocytes correlates with disease activity and was inversely
correlated with levels of complement factors. Moreover, glucocorticoid treatment resulted
in a reduction in SIGLEC-1 expression in cells from adult patients with active SLE [22]. In
addition, SIGLEC-1 expression was found to be a sensitive biomarker for adjusting disease
activity in childhood SLE [23], and it has prognostic value for identifying SLE patients at
risk for developing renal complications [13].

For SSc, the data is less clear. York et al. showed that IFN could induce SIGLEC-1
expression in SSc monocytes [10], and Farina et al. were able to show that SIGLEC-1
RNA expression in skin biopsies taken from fibrotic skin correlates with modified Rodnan
skin score (mRSS) [24]. Moreover, Eloranta et al. found an association for IFNa and the
interferon-inducible protein-10 (IP-10) in sera of SSc patients with cardiac involvement,
signs of PAH, and a history of digital ulcers [25]. However, York et al. [10] and others were
previously unable to demonstrate any differences with regard to skin involvement or organ
complications in SSc patients for SIGLEC-1 expression on monocytes or soluble SIGLEC-1
in patient serum, respectively [13,26].

A further complication in SSc is that activity scores are poorly validated or can only be
applied to specific subgroups, e.g., dcSSc [27]. Accordingly, it has been notoriously difficult
to find appropriate biomarkers. Ideally, biomarkers that indicate general disease activity or
specific organ manifestations, or that predict therapeutic response, would also be of great
use in clinical practice.

The objective of the present study was to assess whether the expression of SIGLEC-1 on
CD14+ cells via flow cytometry could serve as a useful biomarker for disease manifestation,
including pulmonary or vascular complications and therapeutic response in SSc.

2. Results
2.1. Patients

203 SSc patients, 32 SLE, 16 pSS, 8 MCTD, 26 IIM, 14 UCTD, 23 RA, and 13 HCs
were included in this study. Demographic data are shown in Table 1. Our SSc cohort was
representative of the skewed proportion between females and males (84%/16%), as well
as the proportions of patients with limited or diffuse cutaneous SSc and the age profile
(46.67 ± 14.80 years at diagnosis) typical for Caucasian SSc patients (Table 2) [28]. A total of
115 SSc patients (56.7%) received immunosuppression, while 88 SSc patients were without
immunosuppressive therapy. In addition, 28.9% of SSc patients on immunosuppressive
therapy received hydroxychloroquine (in combination or alone). Comprehensive laboratory
results were available for 97% of all SSc patients, pulmonary function test results were
available for 83%, and echocardiography results for 60%.

As expected, SLE patients were slightly younger and pSS patients slightly older, which
is in accordance with the expected age at disease onset for these conditions. Similarly,
disease duration for UCTD patients is short, as many of them will later develop a distinct
connective tissue disease.
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Table 1. Demographic characteristics.

SSc SLE pSS MCTD UCTD IIM RA HC

n = 203 n = 32 n = 16 n = 8 n = 14 n = 26 n = 23 n = 13

Sex
No. (%) female 171 (84.2) 28 (87.5) 15 (93.8) 8 (100.0) 9 (64.3) 16 (61.5) 17 (73.9) 10 (76.9)
No. (%) male 32 (15.8) 4 (12.5) 1 (6.2) 0 (0.0) 5 (35.7) 10 (38.5) 6 (26.1) 3 (23.1)

Age (mean ± SD; yrs) 57.84± 14.31 41.45± 12.70 66.00 ± 9.69 56.63± 19.15 58.93± 11.57 61.85± 14.42 62.44± 14.69 55.95± 15.49
At diagnosis 46.67± 14.80 31.56± 12.31 56.75± 11.96 41.60± 23.36 58.00 ± 8.91 59.14± 15.29 51.83± 17.33 N/A

Disease duration
(mean ± SD; yrs) 10.15 ± 8.81 8.83 ± 8.58 8.17 ± 6.45 9.80 ± 9.42 0.50 ± 0.58 3.00 ± 2.77 10.72± 12.02 N/A

Antinuclear antibody
positive, no. (%) 186 (92.1%) 31 (96.9%) 15 (93.7) 8 (100%) 12 (85.5) 15 (57.7) 8 (34.8%) 2 (15.3)

HC = healthy control; IIM = idiopathic inflammatory myositis; MCTD = mixed connective tissue disease; pSS = pri-
mary Sjögren’s Syndrome; RA = rheumatoid arthritis; SD = standard deviation; SLE = Systemic lupus erythemato-
sus; SSc = Systemic Sclerosis; UCTD = undifferentiated connective tissue disease; yrs = years; disease duration
refers to the time since first non-Raynaud symptom in SSc.

Table 2. Clinical and serologic characteristics of SSc patients.

All SSc Patients
(n = 203)

Negative
SIGELC-1
Signature
(n = 158)

Positive
SIGLEC-1
Signature

(n = 45)

p Value

Cutaneous subset—n (%)
diffuse (dcSSc) 64 (31.5) 47 (29.7) 17 (37.8) 0.306
limited (lcSSc) 122 (60.1) 99 (62.7) 23 (51.1) 0.163
sine scleroderma
(ssSSc) 17 (8.4) 12 (7.6) 5 (11.1) 0.453

Immunological findings
ANA 186 (94.4) 147 (93.0) 39 (86.7) 0.825
ACA 71 (35.0) 58 (36.7) 13 (18.3) 0.332
Topo-1 76 (37.4) 58 (36.7) 18 (28.9) 0.687
RP3 16 (7.9) 11 (7.0) 5 (11.1) 0.339

SSc organ manifestations, n (%)
Raynaud’s
phenomenon 181 (89.2) 144 (91.1) 37 (82.2) 0.090

ILD 91 (44.8) 70 (44.3) 21 (46.7) 0.779
PAH 19 (9.4) 15 (9.5) 4 (8.9) 0.902
DU 97 (47.8) 76 (48.1) 21 (46.7) 0.865
Cardiac
involvement 12 (5.9) 7 (4.4) 5 (11.1) 0.094

SRC 8 (3.9) 5 (3.2) 3 (6.7) 0.287
Myositis 10 (4.9) 8 (5.1) 2 (4.4) 0.866

Laboratory values (mean ± SD)
NT-pro-BNP—
ng/L 451.09 ± 1174.33 392.14 ± 947.07 646.29 ± 1726.65 0.204

CRP—mg/dl 4.36 ± 9.70 4.00 ± 9.72 5.78 ± 9.60 0.279
Hb—mg/dl 13.10 ± 1.62 13.10 ± 1.62 13.15 ± 166 0.815
Neutrophil
granulocytes 5.54 ± 2.63 5.66 ± 2.67 5.15 ± 2.46 0.275

Cardiopulmonary parameters (mean ± SD)
FVC—%/exp. 89.27 ± 20.16 91.34 ± 20.10 81.40 ± 18.70 0.007
FEV1—%/exp. 86.30 ± 20.78 87.20 ± 21.53 83.00 ± 17.66 0.283
DLCO—%/exp. 57.29 ± 18.91 58.29 ± 19.49 53.49 ± 16.19 0.195
LVEF—%/exp. 62.27 ± 9.63 63.03 ± 9.08 59.44 ± 11.22 0.098

CRP, C-reactive protein; DLCO, diffusing capacity for carbon monoxide; FEV1, forced expiratory volume per
second; FVC, forced vital capacity; Hb, hemoglobin; ILD, interstitial lung disease; L, liter; LVEF, left ventricular
ejection fraction; n, number; NT-proBNP, N-terminal-pro-brain natriuretic peptide; PAH, pulmonary arterial
hypertension; SRC, scleroderma renal crisis; %/exp, percent expected.
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2.2. SIGLEC-1 Expression in SSc and Control Groups

Comparing SIGLEC-1 expression on CD14+ monocytes in the peripheral blood of SSc
patients to HCs, nearly half of SSc patients (47.8%) had monocyte SIGLEC-1 expression
which was barely above the level of the HCs. Statistically, the expression of SIGLEC-1
(molecules/monocyte) was not significantly increased in SSc patients compared with HCs
(2097.94 ± 2134.39 vs. 1167.45 ± 380.93, p = 0.49; Figure 1A).
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Figure 1. Expression analysis of sialic acid-binding immunoglobulin-like lectin 1 (CD169/SIGLEC-1)
on circulating monocytes. (A): In patients with SSc, SLE, SS, MCTD, UCTD, IIM, RA, and HDs; (B): SSc
disease manifestations, including limited (lcSSc) and diffuse (dcSSc) skin involvment, interstitial lung
disease (ILD), pulmonary arterial hypertension (PAH), vascular manifestations (referring to PAH,
digital ulcera, and scleroderma renal crisis), digital ulcera (DU), and SSc-associated myositis; (C): SSc
specific antibodies, including anti-centromer antibodies (ACA), anti-topoisomerase-1 antibodies
(Topo-1), RNA-polymerase 3 antibodies (RP3), PM/Scl and U1RNP antibodies. (D): Correlation of
modified Rodnan Skin Score (mRSS) and SIGELC-1. The dashed line indicates the lower detection
limit of 1200 molecules/monocyte. Values below the limit of detection (LOD) are shown as LOD/

√
2.

The dotted line indicates the reference range for SIGELC-1 expression.

In SSc patients, there was no difference between those who were receiving immuno-
suppression and those who were not (2164.94 ± 2385.49 vs. 1962.54 ± 1417.75, p = 0.47).
In patients receiving hydroxychloroquine, there were also no differences when compared
with those taking other immunosuppressive medications or with all SSc patients (with
and without immunosuppression) (1510.60 ± 1157.08 vs. 2466.24 ± 2754.94, p = 0.34 and
1510.60 ± 1157.08 vs. 2358.18 ± 2406.02, p = 0.24).

When compared to other connective tissue diseases (CTDs) SIGLEC-1 expression
was highest in SLE (8761.66 ± 8325.74), followed by MCTD (6414.50 ± 1846.55) and pSS
(4371.69± 4227.89). RA (1425.22± 1312.69) and UCTD (1826.00± 1051.36) patients showed
no elevated SIGLEC-1 expression when compared to HCs (1167.45 ± 380.93). Defining
positive SIGLEC-1 expression as more than 2400 SIGLEC-1 molecules/monocyte, 45/203
(21.0%) SSc patients, 19/32 (59.4%) SLE, 8/16 (50.0%) pSS, 8/8 (100%) MCTD, 7/26 (26.9%)
IIM, 4/14 (28.6%) UCTD, 1/23 (7.7%) RA, and 0/13 (0.0%) HCs had increased SIGLEC-1



Pharmaceuticals 2022, 15, 1198 5 of 13

levels. There was no correlation with either disease duration or age (r 0.007, r2 0.00 and r
0.11, r2 0.01) in SSc patients.

2.3. SIGLEC-1 Expression and SSc Manifestations

When comparing SIGLEC-1 expression of SSc patients according to the different
organ manifestations, SIGLEC-1 positive SSc patients showed significantly impaired forced
vital capacity (FVC) (81.39 ± 18.67 vs. 91.34 ± 20.09; p = 0.007); however, no differences
were found regarding the prevalence of ILD (46.7% vs. 44.3%; p = 0.779), and there was
no difference in absolute SIGLEC-1 expression between patients with and without ILD
(2068.89 ± 1963.12 vs. 2129.13 ± 2266.90; p = 0.427) (Tab 2 and Figure 1B). When analyzing
the different SSc manifestations according to SIGLEC-1 positivity, it could be found in
23/122 (18.9%) lcSSc patients; 17/64 (25.0%) dcSSc patients; 21/91 (19.8%) patients with ILD;
4/19 (21.1%) PAH patients; 26/111 (22.5%) patients with vascular complications including
PAH, DU, and SRC, 21/97 (20.6%); and 2/10 (20.0%) patients with myositis (Table 2).
SILGEC-1 positive patients tended to a higher prevalence of cardiac involvement (11.1% vs.
4.4%; p = 0.094) and a reduced left ventricular ejection fraction (LVEF) (59.44 ± 11.22 vs.
63.03 ± 9.08; p = 0.098).

2.4. SIGLEC-1 Expression and SSc-Specific Autoantibodies

In U1RNP positive SSc patients, SIGLEC-1 expression was strongly increased (9055.04
± 6862.59) compared to other SSc autoantibodies (p = 0.003). Moreover, compared to
all SSc patients, RP3 positive patients tended to have increased SIGLEC-1 expression
(3376.94 ± 3821.81 vs. 1984.86 ± 1899.83, p = 0.136) (Figure 1C). Interestingly, this group
showed a significantly higher mRSS compared to other SSc patients (13.38 ± 8.35 vs.
5.86 ± 6.70, p = 0.003).

2.5. Association of SIGLEC-1 Expression and mRSS

When investigating all SSc patients included in our study, no correlation was detected
between the level of SIGLEC-1 expression and skin involvement quantified by mRSS using
a linear regression model (r2 0.01 and r 0.09; Figure 1D). As mentioned above, there was no
significant difference in SIGLEC-1 expression between dcSSc patients and lcSSc patients
(2430.48 ± 2384.46 vs. 1959.05 ± 2089.78, p = 0.16).

2.6. Longitudinal SIGLEC-1 Expression in Treated and Untreated SSc Patients

For 62 SSc patients, follow-up SIGLEC-1 measurements were available after an average
of 281 days (±175 days). The median change in SIGLEC-1 expression was 0.00 (interquartile
range [IQR] 962.00). The vast majority (n = 49; 79.0%) of individuals with available
longitudinal samples remained in their respective SIGLEC-1 high or low category over
that follow-up period (Figure 2). Of the remaining patients, three increased from negative
SIGLEC-1 to positive and ten patients changed vice versa. There were no significant
changes in SIGLEC-1 expression over the follow-up period. This was also true for patients
with constant immunosuppression and for patients without immunosuppression during
follow-up (paired t-test p = 0.30 and p = 0.05; Figure 2A,B). Similarly, there was no effect of
the change in therapy on SIGLEC-1 expression. Thus, no significant changes were found in
either the case of escalation or de-escalation of immunosuppressive therapy (paired t-test
p = 0.48 and p = 0.57; Figure 2C,D).
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Figure 2. Longitudinal analysis of SIGELC-1 expression of Systemic Sclerosis (SSc) patients without
receiving immunosuppression (A), with unchanged immunosuppression (B), and with escalated
(C) or deescalated (D) immunosuppressive therapy. The red dashed line represents the trend of all
patients in the respective SSc group.

2.7. SIGLEC-1 as Biomarker in Differential Diagnosis of SSc

SIGLEC-1 expression was significantly increased in SLE and MCTD patients when com-
pared with SSc (8761.66 ± 8325.74 vs. 2097.94 ± 2134.39; p < 0.0001 and 6414.50 ± 1846.55
vs. 2097.94 ± 2134.39; p = 0.0003). ROC analysis revealed a SIGLEC-1 expression of 4806
molecules/monocyte as optimal median cut point to differentiate SSc from SLE (sensi-
tivity 93.1%, specificity 50.0%, area under the curve [AUC] = 0.76, Youden’s index 0.43;
Figure 3A), 3303 molecules/monocyte as optimal cut point to differentiate SSc from MCTD
(sensitivity 85.71%, specificity 100%, AUC = 0.95, Youden’s index 0.86; Figure 3B), and
3768 molecules/monocyte as optimal cut point to differentiate SSc from SLE or MCTD
(sensitivity 87.68%, specificity 62.5%, AUC = 0.80, Youden’s index 0.50; Figure 3C). Using
our previously established cut-off value of more than 2400 SIGLEC-1 molecules/monocyte
to distinguish between positive and negative SIGELC-1 expression, the sensitivity to distin-
guish SSc from SLE is 78.33% and the specificity is 59.38% (AUC = 0.76, Youden’s index
0.38); to distinguish SSc from MCTD, the sensitivity is 78.33% and the specificity is 100%
(AUC = 0.95, Youden’s index 0.78); and to distinguish SSc from SLE or MCTD, the sensitivity
is 78.33% and the specificity is 67.5% (AUC = 0.80, Youden’s index 0.46).
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3. Discussion

Over the last few decades, growing evidence suggesting activation of type I IFNs and their
pathways in the pathogenesis of SSc has emerged [5,29–32]. Specifically, it was shown that
SIGLEC-1 is upregulated both on SSc monocytes and on tissue macrophages [10,22]. Indeed,
we could find a trend for elevated SIGLEC-1 expression on monocytes in SSc patients when
compared to healthy controls, although we could not find statistical significance. However,
this elevation was markedly lower than the one seen in other CTDs. In our study, a positive
SIGELC-1 signature was associated with a reduced FVC; however, we did not observe an
association with ILD. In addition, patients with a positive SIGELC-1 signature tended to
have a higher prevalence of cardiac involvement alongside with a reduced LVEF. Our data
regarding cardiac involvement fit previous results by Eloranta et al. [25]. However, we
were unable to identify further associations. Moreover, we were unable to detect major
changes in expression levels over time. A lack of association between SIGLEC-1 level and
clinical phenotype has previously been reported by others within smaller cohorts [10,13].
Notably, unlike in dermatomyositis, we were also unable to detect any type-I IFN signature
in muscle biopsies of SSc patients [33].

Evaluating the use of SIGLEC-1 as a marker of response to therapy, we found that
SIGLEC-1 expression is largely independent of changes in immunosuppression in SSc
patients. This is in contrast with previous findings in SLE or pSS, where an effect of im-
munosuppressive therapy on SIGLEC-1 expression could be seen [15,22]. We did not see
any difference regarding SIGLEC-1 levels between patients receiving immunosuppressive
treatment and patients who did not, including patients receiving hydroxychloroquine.
In fact, hydroxychloroquine blocks Toll-like receptors (TLR) 7 and 9, and was shown to
inhibit type I IFN production in SLE [34]. In addition, it was shown in pSS that hydrox-
ychloroquine significantly reduces SIGLEC-1 expression [15]. In our cohort, SIGLEC-1
expression remained largely constant over time in SSc patients, even with increases or
decreases in immunosuppressive therapy, including hydroxychloroquine or other drugs
such as glucocorticoids, methotrexate, and rituximab which are known to decrease type-I
IFN production.

Despite the fact that SIGLEC-1 expression on monocytes might not be a good biomarker
in SSc, there are several reports that have demonstrated an upregulation of IFN-regulated
proteins, including SIGLEC-1, in SSc skin and other organs affected by fibrotic complica-
tions. In biopsy studies, tissue expression of SIGLEC-1 correlated with mRSS [24]. Moreover,
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microarray analysis of lung tissues derived from SSc patients revealed that expression of
IRGs correlated with progressive ILD [35].

This finding is particularly relevant, as there are now several immunosuppressive
medications that target IFN pathways, such as anifrolumab [36,37] and JAK inhibitors [38].
These new medications have shown great potential in the therapy of RA and SLE, and it
has been shown that the baseline type I IFN signature predicts the response to anifrolumab
therapy in SLE [36]. Interestingly, JAK inhibitors are effective in RA despite relatively low
SIGLEC-1 expression [39]. Similarly, there are initial reports suggesting that JAK inhibitors
and anifrolumab might have beneficial effects on both vascular and fibrotic manifestations
of SSc [40–42].

Our negative findings might reflect the fact that we used a rather insensitive method
to determine type-1 IFN activation. Firstly, the determination of several IRGs might be
a more sensitive approach. Secondly, quantitative PCR might be more sensitive than the
quantitative assessment of a single protein by immunohistochemistry, ELISA, or flow
cytometry. Lastly, there might be a discrepancy between local, tissue-specific findings and
systemic findings on peripheral blood cells. In line with this, Hesselstrand et al. showed in
SSc that the plasma IFN signature remains relatively constant during paquinimod therapy,
while the IFN signature in the skin decreases [43].

Limitations of this study include the fact that disease activity in SSc was not assessed by
score, and thus there was a lack of correlation between disease activity in SSc and SIGLEC-1
expression. As mentioned earlier, reliable assessment of disease activity in SSc is a major
challenge due to the lack of good established tools and scores. We therefore used disease
complications as a parameter for disease severity. Nevertheless, even these complications
show a great heterogeneity, and the significance must be interpreted with caution. In our
cohort, we could not find any effect of immunosuppressive therapy. However, these data
were collected in routine clinical practice and were not prospectively evaluated according
to a fixed protocol. Another limitation is the small number of patients who were analyzed
with newly diagnosed SSc. In these patients with very short disease duration, the benefits of
SIGLEC-1 would be interesting and should be investigated in future studies. Nevertheless,
we could not find a correlation between SIGLEC-1 and disease duration in the present
data. Finally, it should be noted that our results refer to the systemic measurement of
SIGELC-1 in peripheral blood. Other data suggest that IFN markers in tissue may indeed
have prognostic value.

Another potential role for SIGLEC-1 expression on monocytes is that of facilitating
differential diagnoses. There is sometimes a challenge as to whether a patient with a
suspected connective tissue disease has or develops SSc or SLE [44]. In this scenario, the
fact that patients with SLE or MCTD showed significantly increased SIGLEC-1 expressions
compared with patients with SSc can be used in combination with patients’ clinical presen-
tation, as well as the autoantibody profile, to guide early differential diagnosis. As ROC
analysis showed, markedly increased SIGLEC-1 expression makes the diagnosis of SLE or
MCTD much more likely. Moreover, clinical characteristics of CTD patients may evolve
over time, which may result in a “clinical shift” from MCTD to another CTD such as SLE
or SSc [45]. We demonstrated that MCTD and SLE patients showed significantly higher
SIGLEC-1 expression than SSc patients. These findings fit with previous descriptions of
the IFN signature in MCTD patients [4]. Hence, SIGLEC-1 expression could be a useful
biomarker to attribute a patient with early and unspecific disease manifestations to a certain
phenotype, and then base treatment decisions on this immunological information. Recently,
Zorn-Pauly et al. investigated SIGLEC-1 in patients with suspected SLE and revealed that a
negative test result for SIGLEC-1 is able to exclude SLE in suspected cases [46]. These data
support our approach of using SIGLEC-1 expression to distinguish SSc from other CTDs
such as SLE and MCTD.

The key findings of our study are that SIGLEC-1 expression on monocytes is mildly,
but not significantly, elevated compared to healthy controls. We were also unable to find
clear associations with clinical manifestations or with changes in immunosuppressive
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therapy. However, SIGLEC-1 expression may be valuable in differentiating SSc from MCTD
or SLE, and showed a clear association with anti-U1RNP antibodies.

4. Material and Methods
4.1. Study Design

For this observational longitudinal study, patients and healthy controls from our center
at the Department of Rheumatology, Charité—Universitätsmedizin Berlin, Germany were
recruited. The study protocol was approved by the Charité—Universitätsmedizin Berlin
Ethics Committee (EA1/179/17). Written informed consent was obtained from each patient.
The study was conducted in accordance with the principles of the Declaration of Helsinki.

4.2. Patients

Patients were included in the study if they agreed to participate and were affected
by one of the following rheumatic conditions: SSc, SLE, pSS, mixed connective tissue
disease (MCTD), idiopathic inflammatory myositis (IIM), undifferentiated connective
tissue disease (UCTD), or RA, and met the respective diagnostic or classification criteria for
their rheumatic disease, or if they were healthy without any evidence of acute infection or
chronic disease (HC = healthy controls). Diagnostic and classification criteria used were
2013 ACR/EULAR classification criteria for SSc [47], 2019 EULAR/ACR Classification
Criteria for SLE [48], and 2016 ACR-EULAR classification criteria for pSS [49]. MCTD was
diagnosed according to Alarcon-Segovia et al. [50], 2017 EULAR/ACR for IMM [51] and
2010 ACR/EULAR criteria for RA [52].

Demographic, clinical, and serological data were collected according to standardized
procedures. For SSc patients, this included cutaneous subsets, age at onset of Raynaud’s
phenomenon, age at onset of first non-Raynaud’s phenomenon symptom, disease duration,
organ involvement, and immunosuppressive therapy at the time the blood samples were
taken. Other variables collected included smoking history, digital ulcers (DU), calcinosis,
highest mRSS, systemic hypertension, hyperlipidemia, diabetes mellitus, myocardial in-
farction, angina pectoris, stroke, transitory ischemic attack (TIA), periphery arterial disease
(PAD), PAH, interstitial lung disease (ILD), scleroderma renal crisis (SRC), heart involve-
ment, and myositis. Laboratory parameters (C-reactive protein [CRP], neutrophile count,
hemoglobin, and N-terminal pro-B-type natriuretic peptide [NT-proBNP]) were quantified
from peripheral blood during clinical routines. Lung function was assessed via spirometry.
Diffusing capacity for carbon monoxide (DLCO) was measured using the single-breath
method. Spirometry and echocardiography were performed on all patients as part of the
annual examinations. If the presence of ILD or PAH was clinically suspected or indicated by
these examinations, high-resolution computed tomography (HRCT) or a right-sided heart
catheterization was performed. PAH was defined as a mean pulmonary artery pressure
of ≥ 25 mmHg and a pulmonary capillary wedge pressure of ≤ 15 mmHg on right-sided
heart catheterization. ILD was defined as the presence of pulmonary fibrosis on a high-
resolution computed tomography scan evaluated by experienced radiologists. For patients
who presented to our centre several times, these data were collected again as part of a
follow-up visit.

4.3. Multi-Color Flow Cytometry for SIGLEC-1 Validation

SIGLEC-1 on CD14-positive monocytes was measured as described previously [39]. In
brief, EDTA-anticoagulated whole blood was incubated with 10 mL of mouse-anti-human
antibody cocktail containing phycoerythrin (PE)-labeled anti-CD169 monoclonal antibody
(mAb) (labeled with a fluorochrome/protein ratio of 1:1), allophycocyanine (APC)-labeled
anti-CD14 mAb and Krome Orange-labeled anti-CD45 mAb (all antibodies from Beckman
Coulter, Krefeld, Germany). Red blood cells were then lysed by addition of 500 mL of
Versa-Lysis solution (Beckman Coulter) to each reaction tube. After incubation, samples
were centrifuged. Samples were then washed, acquired on a 10-color flow cytometer,
and centrifuged again. They were then stained (Navios, Beckman Coulter) and analyzed
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using the Navios software. During each analytical run, QuantiBRITE TM PE tubes (BD
Biosciences) were used to convert the fluorescent channel 2 (FL2) mean fluorescent intensity
(MFI) signals on CD14+ monocytes to monoclonal antibodies bound per cell (mAb/cell)
values. FL2 MFI values and absolute values of PE molecules (as given by the manufacturer)
for each QuantiBRITE TM bead population were used to perform linear least square
regression analysis in order to determine the best calibration value. This was then used
to convert the FL2 MFI values of monocytes in the analytical sample into the amount
of PE-labeled CD169 mAb bound per monocyte (mAb/monocyte). The reference range
for the expression of SIGLEC-1 in healthy controls was determined to be less than 2400
SIGLEC1 molecules/monocyte. SIGLEC-1 expression was assessed via flow cytometry
with a detection limit of 1200 molecules/monocyte. Values below the limit of detection
(LOD) are shown as LOD/

√
2.

4.4. Statistical Analysis

Statistical analysis was performed by using Jamovi version 2.3 1.6 for Mac (the jamovi
project, 2021), retrieved from https://www.jamovi.org (accessed on 6 September 2022) and
GraphPad Prism version 8.4.3 for Mac (GraphPad Software, San Diego, CA, USA). Data are
presented as mean± standard deviation (SD) of mean if not otherwise indicated. Data were
tested for normal distribution using the Shapiro-Wilk test. The Mann–Whitney U test (non-
parametric) or the unpaired t-test (parametric) was performed for continuously distributed
variables for the purpose of comparison between the two groups. For the follow-up data,
the paired t-test was used, as well as the Wilcoxon rank test for validation. For comparison
of more than two groups, data were analyzed by one-way ANOVA (parametric) followed
by Dunnett’s multiple comparisons test or Kruskal–Wallis test (non-parametric) followed
by Dunn’s multiple comparisons test. For categorical variables, either the chi-square test or
Fisher’s exact test was performed. A p-value of <0.05 was considered statistically significant.
Receiver operating characteristic (ROC) analysis was performed to define cut off values.

5. Conclusions

We demonstrated in a large cohort that patients with SSc show a slightly elevated
SIGLEC-1 expression on monocytes compared to healthy controls, but SIGLEC-1 expression
was much lower compared to other CTDs, such as SLE and MCTD. Our data on the
use of SIGLEC-1 expression on monocytes as a marker for organ manifestations remain
ambiguous, as we did not find any evidence supporting the use of SIGLEC-1 as a biomarker
for disease activity or response to therapy in SSc. SIGLEC-1 expression levels remained
largely constant during disease progression and were not significantly affected by changes
in therapy. On the other hand, we found that SIGLEC-1 is valuable for the early differential
diagnosis of SSc and may be helpful in distinguishing SSc from SLE or MCTD.
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