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Abstract Long non-coding RNAs (lncRNAs) have emerged as fundamental regulators in various 
biological processes, including embryonic development and cellular differentiation. Despite much 
progress over the past decade, the genome-wide annotation of lncRNAs remains incomplete and 
many known non-coding loci are still poorly characterized. Here, we report the discovery of a previ-
ously unannotated lncRNA that is transcribed 230 kb upstream of the SOX17 gene and located 
within the same topologically associating domain. We termed it T-REX17 (Transcript Regulating 
Endoderm and activated by soX17) and show that it is induced following SOX17 activation but its 
expression is more tightly restricted to early definitive endoderm. Loss of T-REX17 affects crucial 
functions independent of SOX17 and leads to an aberrant endodermal transcriptome, signaling 
pathway deregulation and epithelial to mesenchymal transition defects. Consequently, cells lacking 
the lncRNA cannot further differentiate into more mature endodermal cell types. Taken together, 
our study identified and characterized T-REX17 as a transiently expressed and essential non-coding 
regulator in early human endoderm differentiation.
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Editor's evaluation
Supported by a large set of complementary experiments, the authors convincingly show that the 
lncRNA T-REX17 is required for human definitive endoderm differentiation. T-REX17 function is 
not related to the adjacent SOX17 gene that lies in the same topological domain (TAD), implying a 
trans-acting role. The study is important because it sheds light on the stage-specific role of lncRNAs 
in cell lineage induction.

Introduction
To date, nearly 28,000 long non-coding RNAs (lncRNAs) have been reported in the human genome, 
but less than 1% (~150) has been functionally characterized (Ransohoff et  al., 2018; Hon et  al., 
2017; Quek et al., 2015; Jiang et al., 2016). Several of those have been shown to influence cellular 
physiology in developmental, adult and disease contexts (Sarropoulos et al., 2019; James, 2015; 
Prensner et  al., 2011; Castellanos-Rubio et  al., 2016; Perry and Ulitsky, 2016; Lorenzi et  al., 
2021). Depending on their genomic location, lncRNAs can be classified into genic lncRNAs (overlap-
ping with a protein-coding gene) or intergenic lncRNAs (lincRNAs; no overlap with a protein-coding 
gene) (Ransohoff et al., 2018). Together with transcription factors and epigenetic regulators (Hung 
et al., 2011; Jeon and Lee, 2011; Boque-Sastre et al., 2015), lncRNAs participate in complex gene-
regulatory networks by fine-tuning gene expression in a precise and controlled manner (Grote and 
Herrmann, 2015). In particular, lncRNAs have been shown to modulate gene expression at multiple 
levels, including chromatin structure and folding (Gupta et al., 2010), activating neighboring (Engreitz 
et al., 2013) and distal (Hacisuleyman et al., 2014) genes, affecting RNA splicing (Pisignano and 
Ladomery, 2021), or influencing nuclear compartmentalization (Caudron-Herger and Rippe, 2012; 
Rinn and Guttman, 2014; Quinodoz and Guttman, 2014).

More specifically, long non-coding RNAs have also been shown to fine-tune the activation and 
function of developmental regulators, including transcription factors responsible for maintenance of 
pluripotency (Sheik Mohamed et al., 2010; Ulitsky et al., 2011; Ng et al., 2012), mesoderm spec-
ification (Frank et al., 2019) and neuronal differentiation (Xi et al., 2022). Recent studies have also 
attributed critical roles for lncRNAs in the early stages of human development, in particular during 
definitive endoderm specification through cis-regulatory activity on nearby genes (Jiang et al., 2015; 
Yang et al., 2020). For instance, LNC00261 facilitates the activation of the proximal FOXA2 gene via 
association with SMAD2/3 (Jiang et al., 2015). A mechanistically similar cis-regulation of GATA6 has 
been attributed to lncRNA GATA6-AS1 (Yang et al., 2020), while the lncRNA DIGIT has been reported 
to control GSC in trans-, via the formation of BRD3-dependent phase-separated condensates (Dane-
shvar et al., 2016; Daneshvar et al., 2020). The majority of lncRNAs exhibit highly tissue-specific 
expression, often more restricted than observed for protein-coding genes (Cabili et  al., 2011). 
Signaling molecules, including TGF-β, WNT and the JUN/JNK/AP-pathway represent critical cascades 
necessary for endoderm formation, inducing the expression of endodermal factors such as SOX17, 
GATA6 and C-X-C chemokine receptor 4 (CXCR4) (Li et al., 2019; Chia et al., 2019; Fisher et al., 
2017). SOX17 is a member of the SOX-F group of transcription factors and its expression is necessary 
for the specification of definitive endoderm in vitro (Séguin et al., 2008) and in vivo (Kanai-Azuma 
et  al., 2002). Despite being an essential and well-studied gene, much remains to be understood 
about the regulatory elements and nuclear organization of the larger SOX17 domain and how it func-
tions in early endoderm development.

Results
Discovery of an unannotated non-coding transcript within the SOX17 
topological domain
So far, SOX17 is the only annotated gene located within the 336 kb SOX17 loop-domain insulated 
by strong CTCF-boundaries (Figure 1A, top). However, upon closer inspection of multiple epigenetic 
modifications in pluripotent stem cells (hESCs and hiPSCs) and early definitive endoderm we observed 
a potential unannotated gene locus. In particular, the combination of histone H3 lysine 4 trimethylation 
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(H3K4me3) and histone H3 lysine 36 trimethylation (H3K36me3) in ESC-derived endoderm suggested 
the presence of an RNA Polymerase-II-driven transcript (Guttman et al., 2009; Bilodeau et al., 2009). 
Further supporting this, matched RNA sequencing data showed a 22  kb long transcribed region 
approximately 230 kb upstream of SOX17 (Figure 1A, bottom). These results combined with a strong 
UCSC PhyloCSF sequence conservation points to an intergenic lncRNA (lincRNA) that we subse-
quently termed T-REX17 (Transcript Regulating Endoderm and activated by soX17) (Figure 1A and B). 
Although the sequence conservation to the mouse is only modest (Figure 1—figure supplement 1), 
we detect the presence of a distal SOX17 transcript in a number of vertebrates based on stage- and 
tissue-matched embryonic data (Figure 1—figure supplement 1A).
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Figure 1. Identification of T-REX17 at the human SOX17 locus. (A) Normalized capture Hi-C (cHi-C) contact map of the human SOX17 locus in endoderm 
cells (top panel) and chromatin immunoprecipitation sequencing (ChIP-seq) tracks of CTCF, H3K36me3 and H3K4me3 as well as whole genome bisulfite 
sequencing (WGBS) (Supplementary file 1) and RNA-seq profiles in PSCs and EN (bottom panel). T-REX17 locus (hg19, chr8:55117776–55140806) is 
highlighted in grey. (B) Zoomed in view of the SOX17 distal regulatory element in EN cells comprising Assay for Transposase-Accessible Chromatin 
with high-throughput sequencing (ATAC-seq) profile and H3K27ac, FOXA2, GATA4 and GATA6 ChIP-seq (Supplementary file 1) profiles. Chrom-HMM 
(Ernst and Kellis, 2015; The ENCODE Project Consortium, 2012) 25-state profile is shown below the phylo100 (Murphy et al., 2001; Pollard et al., 
2010) UCSC conservation track. Dashed lines indicate the two distinct regulatory elements, characterized by enriched transcription factors occupancy 
(eSOX17 and pT-REX17). (C) Firefly luciferase assay from either eSOX17.1 (hg19, chr8:55136923–55137557), eSOX17.2 (hg19, chr8:55137558–55138192) or 
both together at days 2, 3, or 5 of EN differentiation. Values are calculated as luciferase activity ratio (LAR) between firefly and renilla signal, normalized 
on empty vector background and day 0 baseline signal. Bars indicate mean values, error bars show standard deviation (SD) across three independent 
experiments. Individual data points are displayed. Raw measurements are reported in Supplementary file 1. (D) 4Cseq of PSC (black) and EN (blue) 
at the SOX17-locus. Normalized interaction-scores displayed as arcs and histogram-profiles utilizing the SOX17 promoter as viewpoint (VP). (E) 4Cseq 
interactions as a zoomed in view at the SOX17 regulatory element and corresponding quantification. In the zoomed in tracks, the line represents 
the median and the shaded areas depict 95% CI; in the quantification, the central line represents the median and error bars show SD across three 
independent experiments.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. Functional characterization of the SOX17 distal regulatory elements.

Figure supplement 1—source data 1. Source data for the genotyping gel in Figure 1—figure supplement 1E.

https://doi.org/10.7554/eLife.83077
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We began to explore the locus in more detail by investigating the overlapping distal regulatory 
element that appears to be a putative SOX17 enhancer (Tsankov et al., 2015). We found two distinct 
sites with notable transcription factor (TF) occupancy within a region of open chromatin specifically 
in definitive endoderm (Figure 1B). Although both sites show enriched UCSC PhyloCSF sequence 
conservation, they are also characterized by a distinguishable promoter and enhancer signature 
(ChromHMM state 22 and ChromHMM state 13, respectively) (Figure 1B; Ernst and Kellis, 2012; 
Ernst and Kellis, 2017).

We next assessed the activity of the putative promoter region of T-REX17 (pT-REX17) in a luciferase 
assay and found it to be endoderm-specific (Figure 1—figure supplement 1B). We similarly tested 
the activity of the putative enhancer, which was further separated into two parts based on its TF 
occupancy profile (eSOX17.1 and eSOX17.2) (Figure 1B and C). The entire region but also eSOX17.2 
alone showed strong enhancer activity during endoderm differentiation (Figure 1C, Figure 1—figure 
supplement 1C).

We then further evaluated eSOX17.2 function using Cas9-induced homozygous deletions and 
assessed the effect of the mutation during directed endoderm differentiation (Figure  1—figure 
supplement 1D and E). Interestingly, we observed a delayed activation of SOX17 and overall reduced 
expression of the transmembrane C-X-C chemokine receptor 4 (CXCR4) (Figure 1—figure supple-
ment 1F and G). To investigate the physical interactions at the locus, we performed Circularized 
Chromosome Conformation Capture sequencing (4C-seq) on pluripotent cells and early endoderm 
and found an enriched interaction between the SOX17 promoter and its distal enhancer (eSOX17) 
(Figure 1D and E; Figure 1—figure supplement 1H). Therefore, we can conclude that the topolog-
ically isolated domain of SOX17 encompasses a distal, transcribed region driven by a promoter in 
close proximity but otherwise independent from a functional enhancer that interacts with the SOX17 
gene.

T-REX17 is a definitive endoderm-specific lncRNA 

We next investigated the expression of the non-coding transcript during endoderm differentiation with 
time-resolved qRT-PCR and found that T-REX17 expression follows SOX17 kinetics but with an approx-
imate 24 hour delay (Figure 2A). To explore possible regulatory links between SOX17 and T-REX17, 
we compared their expression across a wide range of cell and tissue types (n=44) (Figure 2B). T-REX17 
appears tightly restricted to early human definitive endoderm and, importantly, uncoupled from the 
much broader expression of SOX17 in many other endoderm-derived tissues (Mathias et al., 2015, 
Thul et al., 2017; Figure 2B; Figure 2—figure supplement 1A–C). Moreover, we utilized RNA-seq 
data from the three pluripotent stem cell-derived germ layers to show that T-REX17 is not expressed 
during mesoderm and ectoderm formation (Figure 2—figure supplement 1D). scRNAseq data in 
the early human gastrulating embryo (Tyser et al., 2021) confirms T-REX17’s tissue specificity in vivo 
(Figure 2—figure supplement 1E).

We also investigated T-REX17 localization by single-molecule RNA fluorescence in situ hybridiza-
tion (smRNA-FISH) and found it highly enriched at foci within the nuclear compartment, a character-
istic feature of non-coding transcripts (median of 40 foci/cell, Figure 2C and D). Nuclear localization 
and association with chromatin were further confirmed by cell-fractionation experiments (Figure 2—
figure supplement 1F). Next, we wanted to more closely inspect the coding potential of T-REX17 and 
used PhyloCSF to show that 37 of 40 predicted open reading frames (ORFs) would likely result in no 
functional protein (Figure 2E). This is comparable to other short ORFs (sORFs) in the human lncRNA 
catalog (Figure 2E; Lin et al., 2011). Notably, even the coding potential of the remaining three sORFs 
is about two orders of magnitude lower than for the SOX17 coding sequence (Figure 2E).

To explore the structure and splicing variants of T-REX17, we used long-read Nanopore sequencing 
of definitive endoderm cDNA. The two most prevalent isoforms account for 23.3% of the split-
reads, while 76.7% appear inconsistently spliced, a feature which is frequently observed in lncRNAs 
(Mukherjee et al., 2017; Lagarde et al., 2017; Schlackow et al., 2017; Struhl, 2007; Beck et al., 
2016) (termed ‘sloppy’ splicing, Figure 2F; Figure 2—figure supplement 1G). Additionally, we used 
5’ and 3’ rapid amplification of cDNA end (RACE) to determine the exact transcriptional start and end 
sites as well as the corresponding polyadenylation signal (Figure 2F; Figure 2—figure supplement 
1H).

https://doi.org/10.7554/eLife.83077
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Taken together, our results show that T-REX17 is specifically and transiently expressed in early 
definitive endoderm and creates a ‘sloppy spliced’ nuclear transcript.

T-REX17 does not regulate SOX17
To investigate the functional role of T-REX17 during endoderm formation, we first generated a cell 
line carrying a constitutive transcriptional repressor (dCas9-KRAB-MeCP2, Yeo et al., 2018). We 
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Figure 2. T-REX17 cellular and molecular characterization. (A) Time resolved qRT-PCR profiling SOX17 (green) and T-REX17 (orange) transcript levels 
during endoderm differentiation (normalized to the housekeeping gene 18s). Symbols indicate the mean and error bars indicate SD across three 
independent experiments. (B) Lineage tree heatmap showing SOX17 (green) and T-REX17 (orange) expression across EN derived embryonic and adult 
tissues as measured by RNA-seq, extracted from a curated data set of the Roadmap Epigenome Project (Roadmap Epigenomics Consortium et al., 
2015; Supplementary file 1). TPM, transcripts per million. aPS, anterior primitive streak; AFE, anterior foregut endoderm; PFE, posterior foregut 
endoderm; MHG; mid-hindgut; PPT, Peyer’s patch tissue; S, sigmoid; T, transverse. (C) smRNA-FISH of T-REX17 in PSCs (left) and EN cells (right) counter-
stained with Hoechst. Red arrowheads indicate two brighter and bigger foci present in each cell, potentially representing sites of nascent transcription. 
Scale bars, 10 µm. (D) Frequencies of T-REX17 smRNA-FISH foci in the nuclear (grey) or the cytoplasmic (white) compartments. n=79, number of 
analyzed cells. Lines of the violin plot indicate interquartile range around the median value. In the stacked barplot, error bars indicate SD around the 
mean value. (E) Barplots showing coding potential scores of randomly sampled LNCRNA ORFs (n=257,992) (grey) versus T-REX17 ORFs (n=40) (orange). 
Scores are shown on the x-axis while ORF-density is plotted on the y-axis. Both conditions area is equal and compared to SOX17 ORFs as coding gene 
control. n, number of analyzed ORFs. (F) Schematic of T-REX17 isoform structure derived from MinION-seq reads of endoderm cDNA. Exons are shown 
in orange while the poly(A) is shown in white. The arrow indicates the transcriptional start site (TSS). Pie chart shows isoform reads (Ex1+2 black n=16, 
Ex1+3 grey n=11) and ‘sloppy spliced’ (white n=89) transcript distribution as measured by MinIONseq (Supplementary file 1).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Figure supplement 1. T-REX17 tissue distribution and structural characterization.

Figure supplement 1—source data 1. Source data for the cell fractionation assay in Figure 2—figure supplement 1F.

Figure supplement 1—source data 2. Sanger sequencing files for the 5’ and 3’ RACE experiment in Figure 2—figure supplement 1H.

https://doi.org/10.7554/eLife.83077
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the housekeeping gene 18s). Symbols indicate the mean and error bars indicate SD across three independent experiments. Individual data points are 
displayed. (F) Heatmap showing SOX17 binding distribution genome-wide in sgCtrl and sgT-REX17 EN. The displayed peaks represent the union of the 
identified peaks in the two conditions (n=61.153). (G) SOX17 ChIP-seq and RNA-seq tracks at the T-REX17 locus showing SOX17 binding at the SOX17 
enhancer (eSOX17) and T-REX17 promoter (pT-REX17). SOX17 binding on pT-REX17 results in T-REX17 activation, if pT-REX17 is not targeted by dCas9-
KRAB-MeCP2.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Figure supplement 1. SOX17 and T-REX17 reciprocal gene expression regulation.

Figure supplement 1—source data 1. Source data for the genotyping gels and blot in Figure 3—figure supplement 1G, I, M.

Figure supplement 2. T-REX17 interacts with HNRNPU.

Figure supplement 2—source data 1. Source data for the blot in Figure 3—figure supplement 2E.

https://doi.org/10.7554/eLife.83077
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then derived two cell lines from it, one harboring a control sgRNA (sgCtrl) designed by a random-
ization approach of human TSS regions (Gilbert et al., 2014) and the other specifically targeting 
the T-REX17 promoter (sgT-REX17; see Materials and methods) (Figure  3A). Immunofluorescent 
staining for dCas9-KRAB-MeCP2 demonstrated its homogeneous expression in the parental cell line 
(Figure 3—figure supplement 1A). The dCas9-mediated silencing resulted in a strong repression 
of T-REX17 RNA compared to the control, which we further validated by smRNA-FISH (Figure 3B 
and C; Figure 3—figure supplement 1B). We furthermore detected H3K9me3 enrichment around 
the T-REX17 promoter in sgT-REX17 cells, with a certain degree of spreading toward the enhancer 
eSOX17 but no apparent consequence on SOX17 regulation (Figure 3—figure supplement 1C). To 
assess possible effects of the T-REX17 depletion on SOX17, we performed Capture Hi-C (cHi-C) in 
both cell lines, but could not observe any significant interaction differences (Log2FC = 0.02 p=0.049) 
within the SOX17-loop domain in definitive endoderm (Figure 3—figure supplement 1D). Never-
theless, virtual 4C analysis revealed a marginal decrease in the SOX17 enhancer-promoter inter-
action in the absence of T-REX17 (Figure 3D). Despite this limited topological difference, loss of 
T-REX17 does not appear to affect SOX17 transcriptional activation and expression levels, indi-
cating preserved enhancer functionality (Figure 3D and E). We also confirmed that unrelated genes 
present in neighboring domains were unaffected by the perturbation (Figure 3—figure supple-
ment 1E).

Next, we performed SOX17 Chromatin Immunoprecipitation sequencing (ChIP-seq) and show 
that SOX17 occupancy at the SOX17 locus (including at its induced heterochromatic distal enhancer 
(eSOX17)) as well as genome-wide is largely unaffected by the loss of T-REX17 (Figure 3D and F; 
Figure  3—figure supplement 1F). Interestingly, we found SOX17 enrichment at the T-REX17 
promoter (pT-REX17), potentially contributing to its activation and consistent with the timing relative 
to SOX17 (Figures 3D, G , and 2A). To further explore this relationship we generated heterozygous 
(SOX17WT/∆) and homozygous (SOX17∆/∆) SOX17 knock-out cell lines (Figure 3—figure supplement 
1G–I). Notably, homozygous knock-out cells fail to induce the expression of the endoderm master 
regulator GATA4, and show no activation of T-REX17 (Figure 3—figure supplement 1J).

In order to distinguish between the function of T-REX17 active transcription and its actual transcript 
(Allou and Balzano, 2021; Daneshvar et al., 2016), we generated an additional cell line by intro-
ducing a strong transcriptional termination signal downstream of an mRuby cassette into the first exon 
of T-REX17, hereafter T-REX17p(A)/p(A) (Figure 3—figure supplement 1K–M). qRT-PCR demonstrated 
that the expression of T-REX17 is abolished in T-REX17p(A)/p(A) EN cells, while the mRuby cassette is 
actively transcribed, indicating ongoing transcription at the locus in an endoderm-specific manner 
(Figure 3—figure supplement 1N). In line with our depletion experiments, SOX17 expression levels 
are not affected in T-REX17p(A)/p(A) EN cells (Figure 3—figure supplement 1N).

These results demonstrate that T-REX17 induction is dependent on SOX17, whereas the T-REX17 
transcript and the act of transcription are dispensable for SOX17 activation as well as its genome-wide 
localization.

T-REX17 interacts with HNRNPU
To explore how T-REX17 is involved in endoderm regulation, we investigated whether it was associ-
ated with RNA binding proteins, a common way lncRNAs exert their functions (Hudson et al., 2014; 
Xue et al., 2016; Duszczyk et al., 2011; Brown et al., 2014; Chillón and Pyle, 2016). To this end, 
we performed RNA-pulldown followed by mass spectrometry (Figure 3—figure supplement 2A–B). 
Among the putative T-REX17 interactors, we identified several heterogenous nuclear ribonucleop-
rotein (hnRNP) family members, including HNRNPU (Figure 3—figure supplement 2C). HNRNPU 
waspreviously reported to interact with lncRNAs to regulate various functions during development 
including nuclear matrix organization (Hacisuleyman et al., 2014; Alvarez-Dominguez et al., 2017), 
X chromosome inactivation (Hasegawa et al., 2010), RNA splicing (Xiao et al., 2012; Huelga et al., 
2012), and epigenetic control of gene expression (Khyzha et al., 2019; Song et al., 2020; Puvvula 
et al., 2014). To validate HNRNPU-T-REX17 interaction, we performed HNRNPU RNA immunopre-
cipitation (RIP) (Figure 3—figure supplement 2D and E) and found T-REX17 to be enriched to levels 
comparable to known RNA interactors such as XIST or NEAT1 (Figure 3—figure supplement 2F).

Although more work is required, our preliminary analysis identified known lncRNA-interacting ribo-
nucleoproteins that may help resolve the molecular function of T-REX17.

https://doi.org/10.7554/eLife.83077
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T-REX17 is required for the differentiation toward definitive endoderm
To investigate the cellular role of T-REX17, we performed immunofluorescent staining and fluorescent 
activated cell sorting (FACS) for CXCR4 in control and T-REX17-depleted cells. The latter showed 
a substantial reduction in the CXCR4+ cell population during differentiation, suggesting hampered 
differentiation potential toward endoderm (Figure 4A). However, consistent with the transcriptional 
data, SOX17 protein levels were not affected (Figure 4A). Both phenotypes were recapitulated in the 
T-REX17p(A)/p(A) EN cells (Figure 4—figure supplement 1A). As expected, based on its highly restricted 
expression, differentiation toward the other two germ layers (mesoderm and ectoderm) was not 
affected (Figure 2—figure supplement 1D; Figure 4—figure supplement 1B,D).

Next, we performed time-resolved RNA-seq in T-REX17 depleted and control cell lines on days 0, 
3, and 5 of endoderm differentiation. Principal Component Analysis (PCA) revealed only marginal vari-
ance by day 3, while a more substantial transcriptional divergence was observed on day 5 (Figure 4—
figure supplement 1D). Differential gene expression analysis identified 584 significantly down- and 
590 significantly upregulated genes in T-REX17-depleted cells at day 5 (Figure 4B). In particular, we 
found pluripotency genes (e.g. POU5F1, NANOG) and endoderm/WNT-related genes (e.g. EOMES, 
GATA3, CXCR4, FZD5, FZD7, FZD8, DKK1, NOTUM, ROR1, CXXC4, SFRP5) to be significantly up- 
and downregulated, respectively (Figure 4B; Figure 4—figure supplement 1E). Time resolved qPCR 
analysis over 5 days confirmed, a lack of key endoderm markers activation and expression in T-REX17-
depleted cells (including CXCR4, GATA3, GATA4, KLF5, CPE, GPR, HHEX, EPSTI1, FOXA3), an aber-
rant transcriptional signature we also observe in T-REX17p(A)/p(A) EN cells (Martinez Barbera et al., 
2000; Grapin-Botton and Constam, 2007; McLean et al., 2007; Séguin et al., 2008; Teo et al., 
2011; Aksoy et al., 2014; Dettmer et al., 2020; Figure 4—figure supplement 1F–H). Interestingly, 
among the significantly, upregulated genes in T-REX17-depleted cells, we found an enrichment of 
JUN (AP-1) pathway target genes (including EGR1, ATF3, PVR, DAB2, NOTCH2, MFHAS1, SPARC) 
(Briggs et al., 2002; Schummer et al., 2016; Florin et al., 2004; van Dam and Castellazzi, 2001; 
Hoffmann et al., 2008; Kockel et al., 2001), which has recently been described to act as a barrier for 
the exit from pluripotency toward endoderm formation (Figure 4B; Figure 4—figure supplement 1E; 
Li et al., 2019). Phosphorylation levels of JUN-activating upstream kinase JNK are a strong indicator 
of JUN pathway activation (Raivich and Behrens, 2006; Muniyappa and Das, 2008; Li et al., 2019), 
which we observed by increased relative amounts of pJNK in T-REX17-depleted cells (Figure 4C; 
Figure  4—figure supplement 2A). Inhibition of JNK hyperactivity (JNK Inhibitor XVI) from day 3 
of definitive endoderm differentiation partially rescued the specification defect in T-REX17-depleted 
cells (Figure 4—figure supplement 2B and C).

Furthermore, immunofluorescent staining for ECAD, NCAD, and VIM revealed retention of 
an epithelial signature in T-REX17 depleted endoderm cells (Figure  4D and E; Figure  4—figure 
supplement 1E; Figure 4—figure supplement 2D and E). Moreover, VIM-signal distribution within 
T-REX17-depleted cells was also altered, indicating a potential cellular polarization defect (Figure 4E; 
Figure 4—figure supplement 2E).

Finally, we evaluated if T-REX17-depleted cells have lost the potential to further differentiate into 
pancreatic progenitor (PP) cells (Alvarez-Dominguez et al., 2020). Immunofluorescent staining iden-
tified a very distinct PDX1+ population in the control cell population after 9 days of directed differ-
entiation, which is notably reduced in T-REX17-depleted cells (Figure 4F and G; Figure 4—figure 
supplement 2F). In addition, transcriptomic analysis of differentiated control and T-REX17-depleted 
cells indicates a substantial gene expression difference, including the specific downregulation of 
pancreatic progenitor marker genes (Alvarez-Dominguez et al., 2020; Figure 4H; Figure 4—figure 
supplement 2G).

Our data therefore highlight the importance of T-REX17 for the induction of definitive endoderm, 
which directly impacts the subsequent differentiation potential.

Discussion
Here, we describe the discovery and characterization of T-REX17 as a functionally essential lncRNA 
in human definitive endoderm. Most lncRNAs act locally, regulating the chromatin architecture 
and the expression of neighboring genes in cis- (Tan et al., 2017; Wang et al., 2011; Goff et al., 
2015; Engreitz et al., 2016), especially when overlapping with enhancer elements. In particular, the 

https://doi.org/10.7554/eLife.83077
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Figure 4. Endodermal defects in cells depleted of T-REX17. (A) Immunofluorescent (IF) staining of SOX17 and CXCR4 in EN cells expressing either 
sgCtrl or sgT-REX17 counter-stained with DAPI (left panel). Line plot showing percentage of FACS-derived CXCR4+ cell population at given time 
points during endoderm differentiation (right panel). Symbols indicate mean values, while error bars show SD across three independent experiments. 
Individual data points are displayed. Scale bars, 10 µm. (B) Scatter plot highlighting differentially expressed genes between sgT-REX17 and sgCtrl EN 
cells. Significantly (Log2FC ≥1, p-value <0.05) upregulated genes (n=590) upon T-REX17 repression are shown in red while significantly (Log2FC ≤ –1, 
p-value <0.05) down-regulated genes (n=584) are shown in blue. Three independent replicates have been performed. The complete lists of TPMs and 
differentially expressed genes are provided in Supplementary file 2. (C) JNK and pJNK western blots of sgCtrl and sgT-REX17 EN cells (left panel). 
GAPDH signals are used as loading controls above the corresponding JNK/pJNK signals. Boxplot showing relative pJNK levels during endoderm 
differentiation. Quantification is depicted as Log2FC of sgT-REX17 over sgCtrl (right panel) and provided in Supplementary file 1. Central line indicates 
the mean, error bars indicate the SD across two independent experiments. Differentiation time-course blots are shown in Figure 4—figure supplement 
2A. (D) IF staining of ECAD and NCAD in EN cells expressing either sgCtrl or sgT-REX17 counter-stained with DAPI. Scale bars, 10 µm. (E) IF staining of 
VIM in EN cells expressing either sgCtrl or sgT-REX17 counter-stained with DAPI. Scale bars, 5 µm. (F) Bright field images of PP differentiation cultures 
(upper panel) followed by IF staining for PDX1 (lower panel) of either sgCtrl or sgT-REX17 cells. Scale bars, 10 µm. (G) IF staining quantification of overall 
(sgCtrl, n=17.657, sgT-REX17, n=5.279 analyzed cells) PDX1+ population percentages (left) or PDX1 mean fluorescence intensity distribution in PDX1+ 
cells (right). Bar plot error bars indicate SD around the mean value and white dots represent mean values for the individual replicates (N=10). Lines of 
the violin plot indicate interquartile range around the median value and white dots represent median values for the individual replicates (N=10). List 

Figure 4 continued on next page
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fine-tuned expression of several developmental transcription factors has been shown to rely on the 
activity of lncRNAs present within the same topological domain (Wang et al., 2011; Frank et al., 
2019; Messemaker et al., 2018). Interestingly, T-REX17 appears distinct from these and other endo-
dermal specific lncRNAs (Jiang et al., 2015; Liao et al., 2019; Daneshvar et al., 2016) as it does not 
appear to regulate the adjacent SOX17 gene. The use of two orthogonal loss of function approaches 
in our work (suppression of T-REX17 activation and early termination) showed that T-REX17 transcrip-
tion is dispensable for proper SOX17 regulation. It remains to be determined what the targets and 
regulatory mechanism of T-REX17 are. One may speculate that these could be distant and unrelated 
loci to the SOX17 loop-domain, as we find many T-REX17 distinct puncta in the nuclear compartment 
of endodermal cells. Typically, local cis-acting lncRNAs mainly show accumulation at the two sites of 
nascent transcription (Jiang et al., 2015; Lewandowski et al., 2019; Daneshvar et al., 2016; Dane-
shvar et al., 2020). The observed interaction with the HNRNP complex may link it to various nuclear-
related functions needed for endoderm specification. It will be interesting to see how this compares to 
other endodermal lncRNAs, which mainly exert their functions together with endoderm-specific tran-
scription factors (Jiang et al., 2015; Daneshvar et al., 2020; Chen et al., 2020; Yang et al., 2020).

SOX genes are fundamental transcription factors that have a variety of functions including the spec-
ification of cell types and tissues during embryonic development. They are evolutionary conserved 
and evolved as a result of a series of ancient genomic duplication events (Bowles et  al., 2000). 
Interestingly, at other SOX gene loci, the presence of one or multiple lncRNAs have been reported, 
but these lncRNAs, in contrast to T-REX17, appear involved in the modulation of the associated SOX 
gene expression in cis- (Tariq et al., 2020; Barter et al., 2017; Amaral et al., 2009; Ahmad et al., 
2017). This suggests that lncRNAs near paralogous genes may evolve distinct role and regulatory 
mechanisms.

At a functional level, our results show that T-REX17 is essential for definitive endoderm specifica-
tion and its loss limits further downstream differentiation, as demonstrated by the pancreatic progen-
itor differentiation. How the different phenotypic changes associated with the loss of T-REX17 arise, 
such as an aberrant endodermal transcriptome, EMT-failure, JNK-hyperactivity and lack of pancreatic 
progeny, remains unclear. Advanced biochemical assays to simultaneously profile RNA-RNA, RNA-
DNA, and RNA-protein interactions (Chu et al., 2012; Quinodoz et al., 2018; Engreitz et al., 2015) 
might help elucidating the mechanism of action by which T-REX17 controls endodermal transition. 
From the developmental perspective, T-REX17 and its transient, highly stage-specific nature make it 
an intriguing regulator compared to most of the protein-coding genes, including endodermal tran-
scription factors, for example SOX17, FOXA2, and GATA4, which are expressed longer and in a variety 
of somatic tissues. In this context, it is worth noting that the development of definitive endoderm 
during human gastrulation in vivo takes place within hours and the gene regulatory network (GRN) 
governing this transition has to be tightly controlled (Tsankov et al., 2015; Gifford et al., 2013; Chia 
et al., 2019), which could also involve lncRNAs such as T-REX17.

As such, our study contributes toward a more complete understanding of the multi-layered regu-
lation of human cellular differentiation and connects it to a previously unannotated non-coding RNA.

of values for each cell and corresponding statistics are shown in Supplementary file 4. (H) Heatmap showing row-normalized z-scores of PP specific 
marker genes (Alvarez-Dominguez et al., 2020) in sgCtrl and sgT-REX17 EN cells as measured by RNA-seq at day 9 of differentiation. Columns were 
ordered by hierarchical clustering (represented as tree above the heatmap). Note the reduced expression of PP master transcription factor PDX1 in sgT-
REX17 as compared to sgCtrl. The complete lists of TPMs and differentially expressed genes are provided in Supplementary file 2.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Source data for the blot in Figure 4C.

Figure supplement 1. Molecular phenotypes associated with the loss of T-REX17.

Figure supplement 2. Cellular phenotypes associated with the loss of T-REX17.

Figure supplement 2—source data 1. Source data for the blots in Figure 4—figure supplement 2A, B.

Figure 4 continued

https://doi.org/10.7554/eLife.83077
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Materials and methods
Default parameters were used, if not otherwise specified, for all software and pipelines utilized in this 
study.

Molecular cloning of SOX17 and eSOX17.2 knock-out constructs
For CRISPR/Cas9 mediated targeting of either SOX17 (Addgene plasmid #195494) or eSOX17.2 
(Addgene plasmid #195495) we utilized our previously generated two small guide RNAs (sgRNAs) 
at once expression system 2 X_pX458_pSpCas9(BB)–2A-GFP (Addgene plasmid #172221). sgRNA-
cloning was performed with NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs, 
E2621S) according to manufacturer’s instructions using BbsI-linearization of 2 X_pX458 for the first 
sgRNA and SapI linearization of 2 X_pX458 for the second sgRNA as backbone, combined with single 
stranded oligonucleotides containing the sgRNA sequences as inserts (1:3 molar ratio; find sequence 
in Supplementary file 3). Bacterial transformation and Sanger sequencing were performed to verify 
successful cloning.

Molecular cloning of Luciferase reporter constructs
pGL4.27[luc2P/minP/Hygro] (Promega, E8451) containing a minimal CMV-promoter for enhancer-
assays or pGL4.15[luc2P/Hygro] (Promega, E6701) w/o any promoter for promoter-assays were 
first digested using EcoRV (New England Biolabs, R3195S). Next, full eSOX17 (Addgene plasmid 
# 195498), eSOX17.1 or eSOX17.2 (Addgene plasmid # 195499) for enhancer-assays and pSOX17 
(Addgene plasmid # 195496) or pT-REX17 (Addgene plasmid # 195497) genomic regions were PCR 
amplified with primers containing homology overhangs to the plasmid. PCR products were purified 
and cloned into the linearized plasmid utilizing the NEBuilder HiFi DNA Assembly Master Mix (1:3 
molar ratio) according to the manufacturer’s instructions. Bacterial transformation followed by Sanger 
sequencing verified the successful cloning. Cloning primers are listed in Supplementary file 3.

Molecular cloning of lentiviral sgRNA constructs
pU6-sgRNA EF1Alpha-puro-T2A-BFP (Gilbert et al., 2014) was digested with BstXI (New England 
Biolabs, R0113S) and BlpI (New England Biolabs, R0585S) and the linearized plasmid was gel extracted 
with the QIAquick Gel Extraction Kit (Quiagen, 28704). Subsequently sgRNA containing oligonu-
cleotides (sgT-REX17 or sgCtrl) (s. Supplementary file 3) were cloned in the linearized backbone 
using NEBuilder HiFi DNA Assembly Master Mix (1:3 molar ratio) according to the manufacturer’s 
instructions to finally obtain pU6-sgT-REX17_EF1a-Puro-T2A-BFP (Addgene plasmid #195501) and 
pU6-sgCtrl_EF1a-Puro-T2A-BFP (Addgene plasmid #195500). Bacterial transformation and sanger 
sequencing confirmed the successful cloning. pU6-sgRNA EF1Alpha-puro-T2A-BFP (Gilbert et al., 
2014) was a gift from Jonathan Weissman (Addgene plasmid # 60955; http://n2t.net/addgene:60955; 
RRID:Addgene_60955).

Molecular cloning of SOX17 reporter knock-in constructs
pUC19 plasmid was digested with SmaI (New England Biolabs, R0141S) and the linearized plasmid 
was gel extracted with the QIAquick Gel Extraction Kit (Quiagen, 28704). Next, SOX17 homology arm 
genomic regions were PCR amplified with primers containing homology overhangs to the plasmid and 
to a T2A-H2B-mCitrine-loxP-hPGK-BSD-loxP selection cassette.

The left homology arm overlapped with the end of the SOX17 coding sequence, and the T2A-
H2B-mCitrine cassette which was cloned in frame with the last SOX17 aminoacid. PCR products and 
selection cassette were purified and cloned into the linearized pUC19 to finally generate pUC19_T2A-
H2B-mCitrine_loxP-hPGK-BSD-loxP (Addgene plasmid #195503) utilizing the NEBuilder HiFi DNA 
Assembly Master Mix according to the manufacturer’s instructions. Bacterial transformation followed 
by Sanger sequencing verified the successful cloning.

sgRNA targeting the genomic region of integration (SOX17 C-terminus) was cloned in BbsI 
linearized pX335-U6-Chimeric_BB-CBh-hSpCas9n(D10A) (Cong et  al., 2013) plasmid (Addgene 
plasmid #42335) to finally generate pX335_U6-Chimeric_BB-CBh-hSpCas9n(D10A)_SOX17_C-term_
KI (Addgene plasmid #195502) using NEBuilder HiFi DNA Assembly Master Mix (1:3 molar ratio) 
according to the manufacturer’s instructions. pX335-U6-Chimeric_BB-CBh-hSpCas9n(D10A) was a gift 
from Feng Zhang (Addgene plasmid # 42335; http://n2t.net/addgene:42335; RRID:Addgene_42335). 

https://doi.org/10.7554/eLife.83077
http://n2t.net/addgene:60955
https://identifiers.org/RRID/RRID:Addgene_60955
http://n2t.net/addgene:42335
https://identifiers.org/RRID/RRID:Addgene_42335
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Bacterial transformation and sanger sequencing confirmed the successful cloning. Cloning primers are 
listed in Supplementary file 3.

Molecular cloning of T-REX17-promoter-KI constructs
pUC19 plasmid was digested with SmaI (New England Biolabs, R0141S) and the linearized plasmid 
was gel extracted with the QIAquick Gel Extraction Kit (Quiagen, 28704). Next, T-REX17 homology 
arm genomic regions were PCR amplified with primers containing homology overhangs to the plasmid 
and to a mRuby-3xFLAG-NLS-3xSV40-poly(A)_loxP-mPGK-PuroR-loxP selection cassette to finally 
generate pUC19_mRuby-3xFLAG-NLS-3xSV40-poly(A)_loxP-mPGK-PuroR-loxP (Addgene plasmid 
#195505).

The left homology arm overlapped with the T-REX17 promoter including 30 bp of T-REX17 Exon 
1, and a mRuby-3xFLAG-NLS-3xSV40-poly(A) cassette which was cloned +30 bp after T-REX17-TSS 
into Exon 1. The right homology arm overlapped with T-REX17 Exon 1–30 bp TSS, and a loxP-mPGK-
PuroR-loxP cassette, which was cloned following the mRuby-3xFLAG-NLS-3xSV40-poly(A) cassette, 
originating from a synthetic oligonucleotide (GenScript Biotech). Both the mRuby-3xFLAG-NLS-
3xSV40-poly(A) and the loxP-mPGK-PuroR-loxP cassette also shared homology. All PCR products were 
purified and cloned into the linearized plasmid utilizing the NEBuilder HiFi DNA Assembly Master Mix 
according to the manufacturer’s instructions. Bacterial transformation and Sanger sequencing verified 
the successful cloning.

For Cas9 mediated targeting of the T-REX17 promoter we utilized pSpCas9(BB)–2A-Puro (PX459) 
V2.0 (Ran et al., 2013), which was a gift from Feng Zhang (Addgene plasmid # 62988; http://n2t.​
net/addgene:62988; RRID:Addgene_62988) (Ran et al., 2013). sgRNA-cloning was performed with 
NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs, E2621S) according to manufactur-
er’s instructions using BbsI-linearization of PX459, combined with single stranded oligonucleotides 
containing the sgRNA sequences as inserts (1:3 molar ratio) (find sequence in Supplementary file 
3) to finally obtain pX459_V2.0_pSpCas9(BB)–2A-Puro_T-REX17_Ex1_KI (Addgene plasmid #195504). 
Bacterial transformation and Sanger sequencing were performed to verify successful cloning.

hiPS cell culture
ZIP13K2 (Tandon et al., 2018) hiPSCs were maintained in mTeSR1 (Stemcell Technologies, 85850) 
on pre-coated culture ware (1:100 diluted Matrigel (Corning, 354234) in KnockOut DMEM (Thermo 
Fisher Scientific, 10829–018)). Clump-based cell splitting was performed by incubating the cells in 
final 5 mM EDTA pH 8,0 (Thermo Fisher Scientific, 15575–038) in DPBS (Thermo Fisher Scientific, 
14190250) 5 min at 37 °C, 5% CO2. Single-cell splitting was performed by incubating the cells with 
Accutase (Sigma-Aldrich, A6964) supplemented with 10 µM Y-27632 (Tocris, 1254) for 15 min at 37 °C, 
5% CO2. Cell counting was performed using a 1:1 diluted single-cell suspensions in 0,4% Trypan 
Blue staining-solution (Thermo Fisher Scientific, 15250061) on the Countess II automated cell-counter 
(Thermo Fisher Scientific). Wash-steps were performed by spinning cell-suspensions at 300 x g 5 min 
at room temperature (RT).

Definitive endoderm (EN) differentiation
To guarantee high reproducibility, constant media-quality, and mTeSR1 compatibility, definitive endo-
derm differentiations were exclusively performed utilizing the STEMdiff Trilineage Endoderm Differen-
tiation media (Stemcell Technologies, 05230). Single-cell suspensions of mTeSR1 maintained ZIP13K2 
hiPSCs were seeded into the respective culture formats according to the required cell-number as 
recommended by the manufacturer’s instructions. Media change using the STEMdiff Trilineage 
Endoderm Differentiation media was performed on a daily bases according to the manufacturer’s 
instructions. Cells were then collected at required timepoints by washing the plate with DPBS before 
single-cell dissociation was performed with Accutase for 15 min at 37 °C, 5% CO2. Single-cell suspen-
sions of definitive endoderm (EN) differentiated cells were utilized for further downstream analysis 
(qPCR, western blot, FACS etc.).

https://doi.org/10.7554/eLife.83077
http://n2t.net/addgene:62988
http://n2t.net/addgene:62988
https://identifiers.org/RRID/RRID:Addgene_62988
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Embryoid body (EB) formation followed by ScoreCard Assay
ZIP13K2 hiPSC single cell suspensions were prepared and counted as previously described (s. hiPS 
cell culture). Next, 1x103 cells/well of either sgCtrl or sgT-REX17 hiPSCs were seeded on a 96-well 
ultra-low attachment U-bottom plate (Corning, 7007) in respective cell culture media.

Random EB differentiation
Cells were seeded in 200 µl /well of hES-media (Final DMEM-F12 (Thermo Fisher Scientific, 11320074), 
20% KSR (Thermo Fisher Scientific, 10828028), 1% Penicillin /Streptomycin, 1% NEAA (Thermo 
Fisher Scientific, 11140050), 0,5% GlutaMAX, HEPES (Thermo Fisher Scientific, 31330038)), supple-
mented with final 10 µM Y-27632. Single-cell suspensions were spun at 100 x g for 1 min at RT and 
further cultured for 16 hr at 37 °C, 5% CO2. The following day 150 µl media supernatant was carefully 
exchanged by 150 µl fresh hES-media (without Y-27632). Cells were further cultured for additional 
48 hr at 37 °C, 5% CO2. The very same media was replaced every 48 hr until day 9. At day 9, EBs were 
collected, washed once in DPBS and RNA isolated (s. RNA isolation and cDNA synthesis).

Undifferentiated control EBs
Cells were seeded in 200 µl /well of mTeSR1, supplemented with final 10 µM Y-27632. Single-cell 
suspensions were spun at 100 x g for 1 min at RT and further cultured for 16 hr at 37 °C, 5% CO2. 
The following day 150 µl media supernatant was carefully exchanged by 150 µl fresh mTeSR1 media 
(without Y-27632). Cells were further cultured for additional 48 hr 37 °C, 5% CO2. At day 3, EBs were 
collected, washed once in DPBS and RNA isolated (s. RNA isolation and cDNA synthesis).

cDNA-conversion and ScoreCard assay (Thermo Fisher Scientific, A15870) has been performed 
according to the manufacturer’s instructions.

JNK inhibition experiments
For the JNK-inhibition experiments, 1 µM JNK inhibitor XVI (Sellekchem, S4901) final was supple-
mented to the media from day 3 of EN differentiation onward. The corresponding volume of DMSO 
was supplemented to the media of the control samples.

Pancreatic progenitor (PP) differentiation
Pancreatic progenitor (PP) differentiation was performed as previously described (Alvarez-Dominguez 
et al., 2020) with minor changes. Briefly, single-cell suspensions of ZIP13K2 hiPSCs (s. hiPS cell culture) 
were seeded at a density of 5x105 cells /cm2 in mTeSR1 supplemented with 10 µM Y-27632. After 24 hr, 
culture medium was replaced with S1-media (Final 11.6 g/L MCDB131, Sigma Aldrich, M8537-1L; 
2 mM D-+-Glucose, Sigma Aldrich, G7528-250G; 2.46 g/L NaHCO3, Sigma Aldrich, S5761-500G; 2% 
FAF-BSA, Proliant Biologicals, 68700–1; 1:50,000 of 100 x ITS-X, Thermo Fisher Scientific, 51500056; 
1 x GlutaMAX, Thermo Fisher Scientific, 35050–038; 0.25 mM ViatminC, Sigma-Aldrich, A4544-100G; 
1% Pen-Strep, Thermo Fisher Scientific, 15140122) supplemented with final 100 ng/ml Activin-A (R&D 
Systems, 338-AC-01M) and 1.4 µg/ml CHIR99021 (Stemgent, 04-0004-10). The following 2 days, cells 
were cultured in S1-media supplemented with final 100 ng/ml Activin-A. Next, cells were cultured in 
S2-media (Final 11.6 g/L MCDB131; 2 mM D-+-Glucose; 1.23 g/L NaHCO3; 2% FAF-BSA; 1:50,000 of 
100 x ITS-X; 1 x GlutaMAX; 0,25 mM ViatminC; 1% Pen-Strep) supplemented with final 50 ng/ml KGF 
(Peprotech, 100-19-1MG) for 48 hr. After these 48 hr, cells were cultured in S3-media (Final 11.6 g/L 
MCDB131; 2 mM D-+-Glucose; 1.23 g/L NaHCO3; 2% FAF-BSA; 1:200 of 100 x ITS-X; 1 x GlutaMAX; 
0.25 mM ViatminC; 1% Pen-Strep) supplemented with final 50 ng/ml KGF (Peprotech, 100-19-1MG), 
200 nM LDN193189 (Sigma Aldrich, SML0559-5MG), 0.25 µM Sant-1 (Sigma Aldrich, S4572-5MG), 
2 µM Retinoic Acid (Sigma Aldrich, R2625-50MG), 500 nM PDBU (Merck Millipore, 524390–5 MG) 
and 10 µM Y-27632 for 24 hr. Finally, cells were cultured in the previous S3-media composition w/o 
supplementation of LDN193189 for 24 hr. Between daily media changes, cells were washed once with 
1 x DPBS. Throughout the entire differentiation process, cells were cultured at 37 °C, 5% CO2 in 100 µl 
media /cm2.

Luciferase reporter assays
ZIP13K2 hiPSCs (s. hiPS cell culture) were treated with Accutase containing 10 µM Y-27632 for 15 min, 
37 °C, 5% CO2 to obtain a single cell suspension. Cell suspensions were counted and seeded at a 
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density of 105 cells /cm2 in mTeSR1 supplemented with final 10 µM Y-27632. Sixteen hours later, cells 
were co-transfected with 15 fmol pRL-TK (Promega, E2241) and 150 fmol of either pGL4.27[luc2P/
minP/Hygro] empty vector or pGL4.27[luc2P/minP/Hygro] containing either eSOX17, eSOX17.1 or 
eSOX17.2 utilizing Lipofectamin Stem Transfection Reagent (Thermo Fisher Scientific, STEM00003) 
following the manufacturer’s instructions. Transfection was performed in mTeSR1 containing 10 µM 
Y-27632 for 16 hr at 37 °C, 5% CO2. Subsequently, endoderm differentiation was initiated (day 0) using 
the STEMdiff Trilineage Endoderm Differentiation media. At days 0, 2, 3, or 5 of endoderm differentia-
tion, cells were lysed and Renilla as well as Firefly Luciferase activity was measured using the Dual-Glo 
Luciferase Assay System (Promega, E2920) according to the manufacturer’s instructions. Raw values 
(Supplementary file 1) were measured on the GloMax-Multi Detection System (Promega).

Generation of SOX17 and eSOX17.2 CRISPR/Cas9 knock-out hiPSC 
lines
ZIP13K2 hiPSCs (s. hiPS cell culture) were treated with Accutase containing final 10 µM Y-27632 for 
15 min at 37 °C, 5% CO2 to obtain a single cell suspension. Cell suspensions were counted and seeded 
at a density of 1–2 x 105 cells /cm2 in mTeSR1 supplemented with final 10 µM Y-27632. Cells were pre-
cultured for 16 hr at 37 °C, 5% CO2 prior to transfection.

Cells were then transfected with 6  µg /6-well of P2X458 using Lipofectamin Stem Transfection 
Reagent according to the manufacturer’s instructions. GFP+ cells were FACS-sorted 16–24 hr post-
transection with the FACSAria II or the FACSAria Fusion (Beckton Dickinson) and seeded at a density 
of 0,5–1 x 103 cells /cm2 in mTeSR1 supplemented with 10 µM Y-27632 to derive isogenic clones. 
Single-cell derived colonies were manually picked, and split half for maintenance in a well of a 96-well 
plate and half used for genotyping using the Phire Animal Tissue Direct PCR Kit (Thermo Fisher Scien-
tific, F140WH) following manufacturer’s instructions. Genotyping primer are listed in Supplementary 
file 3. Edited alleles were verified by cloning PCR-products into the pJET1.2 backbone (Thermo Fisher 
Scientific, K1232) according to the manufacturer’s instructions, followed by bacterial transformation 
and sanger sequencing.

Generation of SOX17-reporter hiPS cell line
ZIP13K2 hiPSCs (s. hiPS cell culture) were treated with Accutase containing final 10 µM Y-27632 for 
15 min at 37 °C, 5% CO2 to obtain a single cell suspension. Cell suspensions were counted and seeded 
at a density of 1–2 x 105 cells /cm2 in mTeSR1 supplemented with final 10 µM Y-27632. Cells were pre-
cultured for 16 hr at 37 °C, 5% CO2 prior to transfection.

The following day, cells were transfected using Lipofectamin Stem Transfection Reagent in fresh 
mTeSR1 supplemented with final 10 µM Y-27632 for 24 hr at 37 °C, 5% CO2. Transfection mixtures 
contained 3 µg of T2A-H2B-mCitrine-loxP-hPGK-BSD-loxP donor plasmid and 3 µg of PX335-SOX17 
(1:1 molar ratio) per 6-well.

Two days post transfection, cells were selected with final 2 µg/ml Blasticidin-S-HCl (Thermo Fisher 
Scientific, A1113903) for 14 days at 37 °C, 5% CO2. For the derivation of isogenic reporter cell lines, 
single-cell derived colonies were manually picked and expanded. Differentiation into EN followed by 
FACS analysis was used to confirm clones that were activating the reporter.

Generation of T-REX17-promoter-KI hiPS cell line
ZIP13K2 SOX17-reporter (s. Generation of SOX17-reporter hiPS cell line) hiPSCs (s. hiPS cell culture) 
were treated with Accutase containing final 10 µM Y-27632 for 15 min at 37 °C, 5% CO2 to obtain a 
single cell suspension. Cell suspensions were counted and seeded at a density of 1–2 x 105 cells /cm2 
in mTeSR1 supplemented with final 10 µM Y-27632. Cells were pre-cultured for 16 hr at 37 °C, 5% CO2 
prior to transfection.

The following day, cells were transfected using Lipofectamin Stem Transfection Reagent in fresh 
mTeSR1 supplemented with final 10 µM Y-27632 for 24 hr at 37 °C, 5% CO2. Transfection mixtures 
contained 3  µg of mRuby-3xFLAG-NLS-3xSV40-poly(A)-loxP-mPGK-PuroR-loxP donor plasmid and 
3 µg of PX458-T-REX17-promoter (1:1 molar ratio) per 6-well.

Two days post transfection, cells were selected with final 2  µg/ml Puromycin-Dihydrochloride 
(Thermo Fisher Scientific, A1113803) for 14 days at 37 °C, 5% CO2. For the derivation of isogenic 
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reporter cell lines, single-cell derived colonies were manually picked and expanded. Differentiation 
into EN followed by qRT-PCR analysis was used to confirm clones that were activating the reporter.

Generation of dCas9-KRAB-MeCP2 hiPS cell line
ZIP13K2 hiPSCs (s. hiPS cell culture) were treated with Accutase containing final 10 µM Y-27632 for 
15 min at 37 °C, 5% CO2 to obtain a single cell suspension. Cell suspensions were counted and seeded 
at a density of 1–2 x 105 cells /cm2 in mTeSR1 supplemented with final 10 µM Y-27632. Cells were pre-
cultured for 16 hr at 37 °C, 5% CO2 prior to transfection.

The following day, cells were transfected using Lipofectamin Stem Transfection Reagent in fresh 
mTeSR1 supplemented with final 10 µM Y-27632 for 24 hr at 37 °C, 5% CO2. Transfection mixtures 
contained 2 µg of Super PiggyBac transposase expression vector (SBI, PB210PA-1) and 4 µg dCas9-
KRAB-MeCP2 (Yeo et al., 2018) (1:1 molar ratio) per 6-well. dCas9-KRAB-MeCP2 was a gift from 
Alejandro Chavez & George Church (Addgene plasmid # 110821; http://n2t.net/addgene:110821; 
RRID:Addgene_110821).

Two days post transfection, cells were selected with final 2 µg/ml Blasticidin-S-HCl (Thermo Fisher 
Scientific, A1113903) for 14 days at 37 °C, 5% CO2. For the derivation of isogenic CRISPRi cell lines, 
single-cell derived colonies were manually picked and expanded. IF stainings for Cas9 confirmed 
homogenous dCas9-KRAB-MeCP2 expression in the selected clones (s. Immunofluorescence staining 
for detailed experimental procedure).

Production of lentiviral particles carrying sgRNAs
Lentiviral particles of specific sgRNA constructs have been produced in HEK-293T cells by co-trans-
fection of 1:1:1 molar ratios pCMV-VSV-G plasmid (addgene, #8454 Stewart et al., 2003, 3,5 µg), 
psPAX2 plasmid (addgene, #12260, 7  µg) in combination with sgRNA-specific variants of pU6-
sgRNA EF1Alpha-puro-T2A-BFP (Gilbert et  al., 2014) plasmid (addgene, #60955, 14  µg). pCMV-
VSV-G was a gift from Bob Weinberg (Addgene plasmid # 8454; http://n2t.net/addgene:8454; 
RRID: Addgene_8454). Prior to transfection, HEK-293T cells were grown on a 10  cm dish up to 
70–80% confluency in HEK-media (KO-DMEM (Themro Fisher Scientific, 10829018), 10% fetal bovine 
serum (FBS, PAN Biotech, P30-2602), 1 x GlutaMAX Supplement, 100 U/ml Penicillin-Streptomycin 
(Thermo Fisher Scientific, 15140122) and final 1 x, 5,5 µM ß-Mercaptoethanol (Thermo Fisher Scien-
tific, 21985023)). For each sgRNA construct, plasmid DNA mixtures and 50 µl of LipoD293 transfec-
tion reagent (SignaGen Laboratories, SL100668) were mixed in 250 µl KO-DMEM at RT. After pipette 
mixing, transfection particles were incubated at RT for 15  min. Each sgRNA-specific mixture was 
added drop-wise onto HEK-293T cultures in 10 ml HEK-media and incubated for 16 hr at 37 °C, 5% 
CO2. Cell culture media was exchanged by 10 ml fresh HEK-media the next day and culture superna-
tants (S/N) of the two subsequent days were then filtered (0.22 µm), collected and stored at 4 °C. After 
the second harvesting day, S/N were supplemented with 1 x PEG-it virus precipitation solution (SBI, 
LV810A-1) for 24 h at 4 °C. Viral particles were finally precipitated by centrifugation at 3234 x g, 4 °C. 
Viral precipitates were resuspended in 200 µl mTeSR1 and either frozen at –80 °C or immediately used 
for lentiviral transduction of CRISPRi hiPSCs. The entire lentivirus preparation and storage was carried 
out under S2-safety conditions and precautions.

Lentiviral transduction of dCas9-KRAB-MeCP2 hiPSCs
Lentiviral particles were either thawed on ice (if frozen) or directly used fresh on the day of produc-
tion. For hiPS cells transduction, clump-based hiPSCs splitting was performed (s. hiPS cell culture for 
detailed experimental procedure) and dissociated clumps were supplemented with 10 µM Y-27632, 
10  µg/ml Polybrene infection reagent (MerckMillipore, TR-1003-G) and 100  µl lentiviral particles 
preparation. Cells were then plated and cultured for 16 hr at 37 °C, 5% CO2. The following day, cells 
were washed 10 times with DPBS and given fresh mTeSR1 supplemented with 10 µM Y-27632 for 24 hr 
at 37 °C, 5% CO2.

Successfully infected cells were then selected with 2 µg/ml Puromycin Dihydrochloride (Thermo 
Fisher Scientific, A1113803) for 14 days at 37 °C, 5% CO2. dCas9-KRAB-MeCP2 cell lines expressing 
sgRNAs (sgT-REX17 and sgCtrl), were grown as bulk cultures, and Tag-BFP was used as a proxy for 
sgRNA expression prior to differentiation into the respective endodermal derivate.

https://doi.org/10.7554/eLife.83077
http://n2t.net/addgene:110821
https://identifiers.org/RRID/RRID:Addgene_110821
http://n2t.net/addgene:8454
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RNA isolation and cDNA synthesis
For RNA extraction, cells were lysed in 500 μl Qiazol from the miRNeasy Mini Kit (Quiagen, 217004), 
followed by vortexing. RNA was then extracted using the miRNeasy Mini Kit (Quiagen, 217004) 
and RNA concentration was measured. cDNA synthesis was performed using 1  μg total RNA for 
each sample using the RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientifc, K1622), 
following the manufacturer’s instructions Random hexamers have been used as primers for first strand 
cDNA synthesis.

Quantitative PCR (qPCR)
Quantitative PCR (qPCR) was carried out on a StepOnePlus 96-well or a QuantStudio 7 Flex 384-well 
Real-Time PCR System (Thermo Fisher Scientific) loading 20–25 ng cDNA /well and using TaqMan Fast 
Advanced Master-Mix (Thermo Fisher Scirentific, 4444557) with TaqMan validated probes (Supple-
mentary file 3) (Thermo Fisher Scientific) following the manufacturer’s instructions.

5’/3’ RACE PCR experiments
5’/3’ rapid amplification of cDNA ends (RACE) PCR reactions where performed utilizing the 5′/3′ RACE 
Kit, second generation (Sigma-Aldrich, 3353621001) according to the manufacturer’s instructions. 
Corresponding gene specific (SP) primers are listed in Supplementary file 3.

RACE-PCR products were cloned into pJET1.2 backbone followed by bacterial transformation and 
sanger sequencing.

Extraction of polyA RNA for Nanopore sequencing
Isolation of poly(A)-enriched mRNA was performed using the Dynabeads mRNA DIRECT purification 
kit (Thermo Fisher Scientific, 61011) according to the manufacturer’s instruction with minor modifi-
cations. ZIP13K2-derived EN cells were washed once with DPBS and dissociated with Accutase for 
15 min at 37 °C, 5% CO2. Enzymatic reaction was quenched by adding mTeSR1 and cells were counted 
using the Countess II automated cell-counter. A total of 4x106 viable cells were centrifuged for 5 min 
at 4 °C, 300 x g. The supernatant was discarded and cells were washed with 1 ml of ice-cold DPBS 
and centrifuged as described above. The supernatant was completely removed and the cell pellet 
was carefully resuspended in 1.25 ml Lysis/Binding buffer. In order to reduce viscosity resulting from 
released genomic DNA, the samples were passed through a 21 gauge needle (Becton Dickinson, 
304432) for five times and subsequently added to the pre-washed Oligo(dT)25 beads. Hybridization 
of the beads/mRNA complex was carried out for 10 min on a Mini Rotator (Grant-bio) and vials were 
placed on a DynaMag2 magnet (Thermo Fisher Scientific, 12321D) until the beads were fully immo-
bilized. The DNA containing supernatant was removed and the beads were resuspended twice with 
2 ml of Buffer A following a second wash step with two times 1 ml of Buffer B. Purified RNA was eluted 
with 10 µl of pre-heated Elution Buffer (10 mM Tris-HCl pH 7,5) for 5 min at 80 °C and quantified with 
a Qubit Fluorometer (Thermo Fisher Scientific) using the RNA HS Assay Kit (Thermo Fisher Scien-
tific, Q32852). Eluted RNA samples were immediately used for preparation of Nanopore sequencing 
libraries or kept at –80 °C.

Preparation of Nanopore sequencing libraries
Preparation of RNA sequencing libraries was performed following the manufacturer’s instructions 
(ONT, SQK-PCS109) with minor modifications. Briefly, 50  ng of freshly prepared poly(A)-enriched 
mRNA was subjected to reverse transcription and strand-switching reaction. A total of four PCR reac-
tions, each containing 5 µl of reverse transcribed cDNA, was used for the attachment of rapid primers 
(cPRM). Sufficient amplification of long cDNA molecules was enabled by setting the PCR extension 
time to 19 min and a total of 12 x cycles were used for amplification. Samples were treated with 1 µl 
of Exonuclease I (New England Biolabs, M0293S) and subsequently pooled for SPRI bead cleanup. 
Wash steps were performed using 80% ethanol solution and beads were eluted in 60 µl of 50 °C pre-
heated nuclease-free water. Samples were then incubated for additional 20 min at 50 °C. Eluted DNA 
was combined with 5 µl adapter mix (AMX), 25 µl ligation buffer (LNB) from ONTs ligation sequencing 
kit (ONT, SQK-LSK109) and 10 µl of NEBNext Quick T4 DNA Ligase (New England Biolabs, E6056S). 
Ligation mix was incubated at RT for 30  min. Removal of short DNA fragments was achieved by 
adding 40 µl of Agencourt AMPure XP beads (Beckmann Coulter, A63881) combined with two wash 
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steps with 250 µl of long fragment buffer (LFB) included in ONTs ligation sequencing kit. The final 
library was eluted in 13 µl elution buffer (EB) for 20 min at 48 °C and DNA concentration was quan-
tified using the Qubit dsDNA BR assay kit (Thermo Fisher Scientific, Q32850). A total of 400 ng was 
carefully mixed with 37.5 µl sequencing buffer (SQB), 25.5 µl of loading beads (LB) and loaded onto a 
primed MinION flow cell (ONT, R9.4.1 FLO-MIN106).

RNA sequencing
ZIP13K2 hiPSCs and their derived EN cultures were treated with Accutase for 15 min at 37 °C, 5% 
CO2 to obtain a single cell suspension. Cells were then collected, washed with ice cold DPBS and 
centrifuged at 4 °C, 300 x g for 5 min. Subsequently, 350 µl of RLT Plus buffer containing 1% β-mer-
captoethanol (Thermo) was added to the cell pellets for cell lysis. After dissociation by trituration 
and vortexing, RNA was extracted using RNeasy Plus Micro Kit (Qiagen) and RNA concentration and 
quality was measured using the Agilent RNA 6000 Pico Kit (Agilent Technologies, 5067–1513) on an 
Agilent 2100 Bioanalyzer. All samples analyzed had a RINe value higher than 8.0, and were subse-
quently used for library preparation. mRNA libraries were prepared using KAPA Stranded RNA-Seq 
Kit (KapaBiosystem) according to the manufacturer’s instructions. A total of 500 ng of total RNA was 
used for each sample to enter the library preparation protocol. For adapter ligation dual indexes were 
used (NEXTFLEX Unique Dual Index Barcodes NOVA-514150) at a working concentration of 71 nM 
(5 µl of 1 uM stock in each 70 µl ligation reaction). Quality and concentration of the obtained libraries 
were measured using Agilent High Sensitivity D5000 ScreenTape (Agilent-Technologies, 5067–5592) 
on an Agilent 4150 TapeStation. All libraries were sequenced using 100 bp paired-end sequencing 
(200 cycles kit) on a NovaSeq platform at a minimum of 25 million fragments /sample.

4C sequencing
Triplicates of either undifferentiated ZIP13K2 or ZIP13K2-derived EN cultures were collected as 
described previously. ZIP13K2-derived EN cultures were further quenched with MACS-buffer (Final 
DPBS, 2 mM EDTA (ThermoFisher Scientific), 0.5% BSA (Sigma-Aldrich)) to obtain a single cell suspen-
sion. CXCR4+ cell populations, were enriched using MicroBead Kit (Miltenyi Biotec) following the 
manufacturer’s instructions. Pre- and post-MACS enriched cell fractions of differentiated cultures were 
measured for CXCR4-APC signal on the FACS Aria II (Beckton Dickinson) to confirm the cell popula-
tion purity. Circularized Chromosome Conformation Capture (4 C) library preparation of undifferenti-
ated, or differentiated CXCR4+ enriched cell populations was performed according to the Weintraub 
A.S. et al. protocol (Weintraub et al., 2017). Briefly, NlaIII (New England Biolabs, R0125) was used as 
the primary cutter and DpnII (New England Biolabs, R0543) as a secondary cutter. Touchdown PCR on 
4 C libraries was performed using specific primer-pairs (s. primer list in Supplementary file 3) for the 
respective view-points. Illumina sequencing libraries were then prepared and sequenced using 150 
paired-end sequencing (300 cycles kit) on a HiSeq4000 platform at a minimum of 10 M fragments/ 
sample.

Capture Hi-C sequencing
cHi-C libraries were prepared from CRISPRi sgCtrl or sgT-REX17 EN cells. 5x106 ZIP13K2-derived 
EN cells were harvested and washed with ice cold DPBS. Cell lysis, NlaIII (NEB, R0125) digestion 
and proximity-ligation was performed according to the Franke et al. protocol (Franke et al., 2016) 
with minor changes. Adaptors were added to DNA fragments and amplified according to Agilent 
Technologies instructions for Illumina sequencing. The library was hybridized to the custom-designed 
SureSelect probes (Agilent Technologies, 5190–4806/3253271) (s. probe list in Supplementary file 3) 
and indexed for sequencing of 200 M fragments /sample (100  bp paired-end) following the Agilent 
instructions. Capture Hi-C experiments were performed as biological duplicates.

SOX17 chromatin immunoprecipitation (ChIP) sequencing
ZIP13K2-derived EN cells (5x106 / IP) were harvested and cross-linked in 1% formaldehyde (Thermo 
Fisher Scientific, 28908) in DPBS for 10 min at RT, followed by quenching with final 125 mM Glycine 
(Sigma-Aldrich, 50046) for 5 min at RT. Cross-linked cells were then centrifuged at 500 x g at 4 °C and 
washed twice with ice cold DPBS. Cell lysis was performed by resuspending the pellet in 500 μl Cell 
Lysis Buffer (Final 10 mM Tris-HCl, pH 8,0 (Sigma Aldrich, T2694); 85 mM KCl (Sigma Aldrich, P9541); 
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0,5%  NP40 (Sigma Aldrich, 56741); 1  x cOmplete, EDTA-free Protease Inhibitor Cocktail (Sigma 
Aldrich, 11873580001)) followed by 10 min incubation on ice. After the incubation, lysed cells were 
centrifuged at 2500 x g for 5 min at 4 °C. Supernatant was carefully removed and the extracted nuclei 
were then resuspended in 230 μl Nuclei Lysis Buffer (Final 10 mM Tris-HCl, pH 7,5 Sigma Aldrich, 
T2319); 1% NP40; 0.5% sodium deoxycholate (Sigma Aldrich, D6750); 0,1% SDS (Thermo Fisher Scien-
tific, AM9820); 1 x cOmplete, EDTA-free Protease Inhibitor Cocktail. Following 10 min incubation on 
ice, each 260 μl sample was split into two microTUBEs (Covaris, 520045) and chromatin was sonicated 
using a Covaris E220 Evolution with the following settings: Temperature → 4 °C; Peak power → 140; 
Duty factor → 5,0; Cycles/Burst → 200; Duration → 750  sec. After sonication, sheared chromatin 
(ranging from 200 to 600 bp) was transferred in a new 1.5 ml tube and centrifuged at max speed 
for 10 min at 4 °C. Supernatant was then transferred into a new tube and volume was increased to 
1 ml /sample with ChIP Dilution Buffer (Final 16.7 mM Tris-HCl, pH 8.0; 1.2 mM EDTA Sigma Aldrich, 
03690); 167 mM NaCl (Sigma Aldrich); 1,1% Triton-X (Sigma Aldrich); 0.01% SDS; 1 x Protease Inhib-
itor. Fifty μl (5%) was then transferred into a new tube and frozen at –20 °C as INPUT. One μg of SOX17 
antibody /106 initial cells was added to the 950 μl left, and immunoprecipitation was carried out at 
4 °C o/n on a rotator (Supplementary file 3). The next day, 50 μl of Dynabeads Protein G (Thermo 
Fisher Scientific, 10004D) /IP were washed twice with ice cold ChIP Dilution Buffer and then added to 
each IPs. IP/bead mixes were incubated for 4 hr at 4 °C on a rotor. Next, bead/chromatin complexes 
were washed twice with Low Salt Wash Buffer at 4 °C (Final 20 mM Tris-HCl, pH 8,0; 2 mM EDTA; 
150 mM NaCl (Sigma-Aldrich, S6546); 1% Triton-X; 0,1% SDS), twice with High Salt Wash Buffer at 
4 °C (Final 20 mM Tris-HCl, pH 8.0; 2 mM EDTA; 500 mM NaCl; 1% Triton-X; 0.1% SDS), twice with LiCl 
Wash Buffer at 4 °C (Final 10 mM Tris-HCl, pH 8.0; 1 mM EDTA; 250 mM LiCl (Sigma Aldrich, L9650); 
1% sodium deoxycholate (Sigma Aldrich); 1% NP40), twice with TE pH 8.0 (Sigma Aldrich, 8890) at 
room temperature and finally eluted twice in 50 μl freshly prepared ChIP Elution Buffer (Final 0,5% 
SDS; 100 mM NaHCO3 (Sigma Aldrich, S5761)) at 65 °C for 15 min (total 100 μl final eluent). Thawed 
INPUTS and eluted IPs were next reverse cross-linked at 65 °C o/n after the addition of 16 μl freshly 
prepared Reverse Crosslinking Salt Mixture (Final 250 mM Tris-HCl, pH 6,5 (Sigma Aldrich, 20–160); 
62.5 mM EDTA; 1,25 M NaCl; 5 mg/ml Proteinase K (Thermo Fisher Scientific, AM2548)). The following 
day, phenol:chloroform (Thermo Fisher Scientific, 15593031) extraction followed by precipitation was 
performed to isolate DNA. IPs and INPUTS were then quantified and NGS libraries were prepared 
using NEBNext Ultra II DNA Library Prep Kit for Illumina (New England Biolabs, #E7645) following 
the manufacturer’s instructions. Library quality and size distribution was verified using a TapeStation 
D5000 HS kit (Agilent Technologies, 5067–5592). Samples were sequenced with a coverage of 50 M 
paired end reads (2x100 bp) /sample on a NovaSeq (Illumina).

GATA4/GATA6 chromatin immunoprecipitation (ChIP) sequencing
GATA4/6 ChIPs were perfored in duplicates as previously described (Genga et  al., 2019). Briefly, 
approximately 5x106 cells were used for each IP. Cells were cross-linked with 1% formaldehyde for 
10 min followed by quenching with 125 mM glycine for 4–5 min at room temperature. The cell pellet 
was lysed in cell lysis buffer (20 mM Tris-HCl pH 8, 85 mM KCl, 0.5% NP-40) supplemented with 1 X 
protease inhibitors (Roche, 11836170001) on ice for 20 min then spun at 5000 rpm for 10 min. The 
nuclear pellet was resuspended in sonication buffer (10 mM Tris pH 7.5, 1% NP-40, 0.5% sodium 
deoxycholate, 0.1% SDS, and 1 X protease inhibitors) and incubated for 10 minutes at 4 °C. In order 
to achieve a 200–700 bp DNA fragmentation range, nuclei were sonicated using a Bronson sonifier 
(model 250) with the following conditions: amplitude = 15%, time interval = 3 min (total of 8–12 min) 
and pulse ON/OFF = 0.7 s/1.3 s. Chromatin was pre-cleared with Dynabeads Protein A (Invitrogen, 
10002D) for 1 hr and incubated with antibody on a rotating wheel overnight at 4 °C. On the following 
day, 30–40 μl of Dynabeads Protein A was added to chromatin for 2–3 hr. The captured immuno-
complexes were washed as follows – 1 x in low-salt buffer, 1 x in high-salt buffer, 1 x in LiCl salt buffer, 
and 1 x in TE. The immuno-complexes were eluted in ChIP-DNA elution buffer (10 mM Tris-HCl pH 
8, 100 mM NaCl, 20 mM EDTA, and 1% SDS) for 20 min. The eluted ChIP-DNA was reverse cross-
linked overnight at 65 °C, followed by proteinase K (Thermo, 25530049) treatment, RNase A (Thermo, 
ENO531) treatment, and Phenol:Chloroform:Isoamyl alcohol extraction. The Illumina library construc-
tion steps were carried out with 5–10 ng of purified DNA. During library construction, purification 
was performed after every step using QIAquick PCR purification kit (QIAGEN, 28104) or QIAquick 
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gel extraction kit (QIAGEN, 28706). The library reaction steps were as follows: end-repair, 3′ end 
A-base addition, adaptor ligation, and PCR amplification. The amplified libraries were size-selected 
for 200–450  bp on a 2% agarose E-gel (Thermo, G402002) and sequenced (single-end, 75) on a 
NextSeq500 or Hi-Seq2000 platform.

H3K9me3 chromatin immunoprecipitation (ChIP) qPCR
ZIP13K2-derived EN cells (2x106 / IP) were harvested, cross-linked, washed, lysed, and sonicated 
as described previously (s. SOX17 ChIP sequencing). ChIP for H3K9me3 was performed in tripli-
cates utilizing the High-Sensitivity ChIP Kit (abcam, ab185913) in combination with the ChIP-grade 
H3K9me3 antibody (ab8898, abcam) according to the manufacturer’s instructions with slight modifica-
tions. Instead of DNA column purification, phenol:chloroform extraction followed by precipitation was 
performed to isolate DNA (s. SOX17 ChIP sequencing). Precipitated DNA was dissolved in 200 µl H2O.

qPCR reactions were set up utilizing the 2 x PowerUp SYBR Green Master Mix (Thermo Fisher 
Scientific, A25777) containing final 250 nM forward /reverse primer (s. Supplementary file 3). All 
samples have been measured in technical triplicates using 4 µl diluted input or IP sample from above 
/reaction /replicate. qPCRs were set-up on 96-well plates (Thermo Fisher Scientific, N8010560), spun 
down for 1 min at 2500 x g, RT and ran on a StepOnePlus 96-well Real-Time PCR System (Thermo 
Fisher Scientific).

T-REX17 RNA-pulldown followed by mass spectrometry
RNA-pulldown protocol to discover T-REX17 protein interaction partners has been performed 
combining (Engreitz et al., 2014; Chu et al., 2012) protocols with some modifications. ZIP13K2-
derived EN cells (60x106) were harvested and cross-linked in 1% formaldehyde (Thermo Fisher 
Scientific, 28908) in DPBS for 5 min at RT, followed by quenching with final 125 mM Glycine (Sigma-
Aldrich, 50046) for 5 min at RT. Cross-linked cells were then centrifuged at 500 x g at 4  °C and 
washed three times with ice cold DPBS. Cells are then resuspended in 10 ml Sucrose/Glycerol buffer 
(1:1) (Sucrose Buffer: 0.3 M Sucrose; 1% Triton-X (Sigma Aldrich); 10 mM HEPES (Thermo Fisher 
Scientific, 31330038); 100 mM KOAc; 0.1 mM EGTA (Sigma Aldrich); 0.5 mM Spermidine; 0.15 mM 
Spermine; 1 mM DTT; 1 X proteinase inhibitor (Roche, 11836170001); 10 U/ml SUPER-asIN (Thermo 
Fisher Scientific, AM2694)) (Glycerol Buffer: 25% Glycerol; 10 mM HEPES; 100 mM KOAc; 0.1 mM 
EGTA; 1 mM EDTA (Sigma Aldrich, 03690); 0.5 mM Spermidine; 0.15 mM Spermine; 1 mM DTT; 
1 X proteinase inhibitor; 10 U/ml SUPER-asIN) and dounced 20 times in a glass tight pestle (Sigma 
Aldrich, D9938-1SET). After douncing, lysed cells are incubated for 10 min on ice inside the pestle. 
Cells are then transferred on a cushion of 10 ml Glycerol Buffer in a 50 ml falcon tube and centri-
fuged at 1000 x g for 15 min at 4 °C to recover nuclei. Supernatant is discarded by pipetting first, 
and residual volume is decanted on a clean paper towel. Extracted nuclei are then resuspended 
in 5 ml 3% formaldehyde and fixed again for 30 min at RT, followed by three DPBS washes. Next, 
nuclei are resuspended in 5  ml Nuclei Extraction Buffer (Final 50  mM HEPES, pH 7,5; 250  mM 
NaCl; 0,1% sodium deoxycholate (Sigma Aldrich, D6750); 0,1 mM EGTA; 0,5% N-lauroylsarcosine; 
5 mM DTT; 100 U/ml SUPER-asIN) and incubated for 10 min on ice. Nuclei are then centrifuged 
at 400 x g for 5 min at 4 °C, and resuspended in 530 μl Nuclei Resuspension Buffer (Final 50 mM 
HEPES, pH 7.5; 75 mM NaCl; 0.1% sodium deoxycholate; 0.1 mM EGTA; 0.5% N-lauroylsarcosine; 
5 mM DTT; 100 U/ml SUPER-asIN) and sonicated using a Covaris E220 Evolution with the following 
settings: Temperature → 4 °C; Peak power → 140; Duty factor → 5,0; Cycles/Burst → 200; Duration 
→ 15 min. After sonication, sheared chromatin is split into 3 samples (Even/Odd/LacZ, 120 μl each) 
and incubated with the corresponding biotinylated probes set (36 pmols of probes are added; see 
Supplementary file 3 for probes sequences) together with 240 μ. Hybridization Buffer (Final 33 mM 
HEPES, pH 7.5; 808 mM NaCl; 0,33% SDS; 5 mM EDTA; 0.17% N-lauroylsarcosine; 2.5 mM DTT; 
5 X Denhardt’s solution; 1 X proteinase inhibitor; 100 U/ml SUPER-asIN) overnight at RT on a rotor. 
5% sonicated sample was frozen as INPUT. The next day, 240 μl of MyOne Streptavidin C1 beads 
(Thermo Fisher Scientific, 65001) were added to each pulldown after washing and resuspension in 
Hybridization Buffer, and incubated for 3 hr at RT on a rotor. Next, bead complexes were washed 
once with Wash Buffer 1 (Final 30 mM HEPES, pH 7.5; 1.5 mM EDTA; 240 mM NaCl; 0.75% N-lauroyl-
sarcosine; 0.65% SDS; 0,7 mM EGTA; 2 M Urea), four times with Wash Buffer 2 (Final 10 mM HEPES, 
pH 7.5; 2 mM EDTA; 240 mM NaCl; 0,1% N-lauroylsarcosine; 0.2% SDS; 1 mM EGTA) and once with 
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RNase H elution Buffer (Final 50 mM HEPES, pH 7.5; 1.5 mM EDTA; 75 mM NaCl; 0.125% N-lau-
roylsarcosine; 0.5% Triton-X; 10 mM DTT; 0.5 M Urea). In this last step, 10% of the beads from each 
pulldown is transferred to a new tube for RNA isolation. The remaining 90% (protein sample frac-
tion) is eluted in RNase H elution Buffer containing 10% RNase H, 10% RNase A and 10% DNase for 
30 min at RT. The RNase fraction is de-crosslinked together with the INPUT samples with Proteinase 
K (Thermo Fisher Scientific, AM2548) treatment and RNA is extracted following Trizol purification. 
RNA and INPUT samples were reverse transcribed and used for qPCR to validate T-REX17 enrich-
ment. Protein samples were run on a NuPAGE 4–12%, Bis-Tris, 1.0 mm, Mini Protein Gel, Silver 
stained using SilverQuest (Thermo Fisher Scientific; LC6070) following manufacturer instructions. 
The mass spectrometry compatible SilverQuest Silver Staining Kit was used for de-staining. Gel 
pieces were then washed twice with 300 µL of 25 mM ammonium bicarbonate in 50% acetonitrile, 
shaking at 500 rpm for 10 min, followed by centrifugation at 16,000 x g for 30 s. Gel pieces were 
completely dried in a vacuum concentrator. In-gel digestion with trypsin and extraction of peptides 
was done as previously described (Kaiser et al., 2008). Dried peptides were reconstituted in 5% 
acetonitrile and 2% formic acid in water, briefly vortexed, and sonicated in a water bath for 30 s 
before injection to nano-LC-MS. LC-MS/MS was carried out by nanoflow reverse-phase liquid chro-
matography (Dionex Ultimate 3000, Thermo Scientific) coupled online to a Q-Exactive HF Orbitrap 
mass spectrometer (Thermo Scientific), as reported previously (Gielisch and Meierhofer, 2015). 
Briefly, the LC separation was performed using a PicoFrit analytical column (75 μm ID ×50 cm long, 
15 µm Tip ID; New Objectives, Woburn, MA) in-house packed with 3 µm C18 resin (Reprosil-AQ Pur, 
Dr. Maisch, Ammerbuch, Germany). Peptides were eluted using a gradient from 3.8 to 38% solvent 
B in solvent A over 120 min at a 266 nL/min flow rate. Solvent A was 0.1% formic acid and solvent 
B was 79.9% acetonitrile, 20% H2O, and 0.1% formic acid. For the IP samples, a 1-hr gradient was 
used. Nanoelectrospray was generated by applying 3.5kV. A cycle of one full Fourier transformation 
scan mass spectrum (300–1750 m/z, resolution of 60,000 at m/z 200, automatic gain control (AGC) 
target 1×106) was followed by 12 data-dependent MS/MS scans (resolution of 30,000, AGC target 
5×105) with a normalized collision energy of 25 eV.

HNRNPU RNA immunoprecipitation (RIP) followed by qRT-PCR or 
western blot
ZIP13K2-derived EN cells (10x106) were harvested and cross-linked according to the manufactur-
er’s instructions in 0.3% formaldehyde in DPBS for 10 min at RT, followed by quenching with final 
1 x Glycine solution for 5 min at RT utilizing the Magna Nuclear RIP (Cross-Linked) Nuclear RNA-
Binding Protein Immunoprecipitation Kit (Merck millipore, 17–10520). Cross-linked cells were then 
centrifuged at 800 x g at 4  °C and washed three times with ice cold DPBS. Supernatant free cell 
pellets were conducted to cell lysis according to the Kit manufacturer’s instructions. Sonication has 
been performed in Kit provided RIP Cross-linked Lysis Buffer using the Covaris E220 Evolution with 
the following settings: Temperature → 4 °C; Peak power → 140; Duty factor → 5,0; Cycles/Burst → 
200; Duration → 6 min. to obtain a DNA smear of 200–1000 bp. Sonicated lysates were centrifuged 
at 1000 x g for 10 min at 4 °C and supernatants aliquoted and stored at –80 °C. DNase I treatment 
following Immunoprecipitation has been performed according to the Kit manufacturer’s instructions, 
combining lysates corresponding to 106 cells with 5 µg antibody per sample (Supplementary file 3 
for antibodies). After DNase I treatment 10% input material for qRT-PCR has been kept and stored 
at –80 °C. Initial supernatants (unbound fraction w/o beads) after o/n immunoprecipitation and 10% 
material of the last wash step (IP including beads) has been kept for Western Blot and stored at 
–20 °C. Inputs and IP were further conducted to reverse crosslinking and RNA purification according 
to the Kit manufacturer’s instructions. cDNA synthesis has been carried out as mentioned earlier (s. 
RNA isolation and cDNA synthesis).

Quantitative PCR (qPCR) reactions were set up utilizing the 2 x PowerUp SYBR Green Master Mix 
(Thermo Fisher Scientific, A25777) containing final 250 nM forward /reverse primer (s. Supplementary 
file 3 for primer & oligos) and 20–25 ng cDNA /well. Reactions were set up in 384-well plates (Thermo 
Fisher Scientific, AB2384B) following centrifugation for 2 min at 2500 x g, RT. Reactions were carried 
out on a QuantStudio 7 Flex 384-well Real-Time PCR System (Thermo Fisher Scientific).

Western Blot samples of unbound fractions and IP were boiled in final 1 x Laemmli Buffer (BioRad, 
1610747) containing 10% 2-Mercaptoethanol (M6250, Sigma-Aldrich) for 10 min at 95 °C, followed by 
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cooling on ice for 5 min. Western blots have finally been carried out as described below (s. Western 
Blot) utilizing respective antibody dilutions (s. Supplementary file 3 for antibodies).

Immunofluorescence staining
For immunofluorescent stainings, cells were grown in Ibidi eight-well glass-bottom plates (Ibidi, 
80827) (initial seeding, 104 cells /well). On the day of analysis, cells were washed twice with DPBS and 
then fixed in 4% Paraformaldehyde (PFA) solution (Sigma-Aldrich, P6148-500G) for 30 min at 4 °C, 
and then washed three more times with DPBS. Subsequently, cells were permeabilized for 30 min in 
DPBS-T solution (Final 0.5% Triton-X (Sigma-Aldrich, T8787-50 ML) in DPBS) and blocked for 30 min 
in Blocking solution (Final 10% fetal bovine serum in DPBS-T) at RT. Primary antibody incubation was 
performed in blocking solution for 1 hr and 45 min at RT, after which cells were washed three times 
with Blocking solution. After the last washing step, samples were incubated with secondary antibodies 
diluted in Blocking solution for 30 min at RT. Afterwards, cells were washed three times with DPBS-T. 
The last DPBS-T washing step after secondary antibody incubation contained 0.02% DAPI (Roche 
Diagnostics, 10236276001). DAPI was incubated for 10 min at RT and washed off once with DPBS. 
All primary and secondary antibodies and their working concentrations are listed in Supplementary 
file 3.

Cell clearing
Prior to imaging, cells were cleared with RIMS (Refractive Index Matching Solution) in order to increase 
light penetrability. To this end, samples were first washed three times with 0.1 M phosphate buffer 
(0.025 M NaH2PO4, 0.075 M Na2HPO4, pH 7.4). Clearing was then performed by incubation in RIMS 
solution (133% w/v Histodenz (Sigma-Aldrich, D2158) in 0.02 M phosphate buffer) at 4 °C o/n.

Immunofluorescence imaging
Cells stained with antibodies were imaged with the Zeiss Celldiscoverer7 (wide-field), Zeiss LSM880 
(laser-scanning microscope with Airyscan), Zeiss Observer (wide-field) or Nikon Eclipse TS2 (bench-top 
microscope) with appropriate filters for DAPI, Alexa Fluor 488, Alexa Fluor 568, Alexa Fluor 647, and 
combinations thereof.

Quantitative fluorescence microscopy
For each staining tested, a total of 49 individual positions were acquired in 3 fluorescence channels 
/replicate /well, with a 20 x /NA = 0.95 objective, an afocal magnification changer 1 x, 3x3 camera 
binning, a consequential pixel size of 0.46 µm2, and in constant focus stabilization mode. Analysis was 
then performed using the Image Analysis module running in ZEN 3.2. On average 6928 single cells 
were analyzed per replicate. Cells were identified on smoothed nuclear counterstaining (DAPI) using 
fixed intensity thresholds, nearby objects were separated by mild water shedding. The consequential 
primary objects were filtered (area 45–175 µm2) and expanded by 8 pixels (=5.44 µm2); the consecutive 
ring, surrogated a cytoplasm compartment. Fluorescence intensities (mean and standard deviation) 
were quantified for each nucleus and expanded object, depending on the staining pattern profiled.

Single-molecule RNA fluorescent in situ hybridization
For single-molecule RNA fluorescent in situ hybridization (smRNA-FISH), cells were grown in Ibidi 
eight-well glass-bottom plates (Ibidi 80827) (initial seeding, 104 cells /well). On the day of analysis, 
cells were washed twice with DPBS, fixed in 4% PFA for 10 min at RT, and washed again twice with 
DPBS. Cells were then incubated in 70% ethanol at 4 °C for at least 1 hr and then washed with 1 ml 
of Wash Buffer A (LGC Biosearch Technologies) at room temperature for 5 min. Cells were subse-
quently hybridized with 100 μl of Hybridization Buffer (LGC Biosearch Technologies) containing the 
smRNA-FISH probes at a 1:100 dilution in a humid chamber at 37 °C o/n (not more than 16 h). The 
next day, cells were washed with 1 ml of Wash Buffer A at 37 °C for 30 min and stained with Wash 
Buffer A containing 10 μg/ml Hoechst 33342 at 37 °C for 30 min. Cells were then washed with 1 ml of 
Wash Buffer B (LGC Biosearch Technologies) at RT for 5 min, mounted with ProLong Gold (Thermo, 
P10144), and left to curate at 4  °C o/n before proceeding to image acquisition. Oligonucleotides 
probes were designed with the Stellaris smRNA-FISH probe designer (LGC Biosearch Technologies, 
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version 4.2), labeled with Quasar 570 and produced by LGC Biosearch Technologies. smRNA-FISH 
probes sequences are listed in Supplementary file 3.

smRNA-FISH imaging
Image acquisition was performed using a DeltaVision Elite widefield microscope with an Olympus 
UPlanSApo 100  x /1.40-numerical aperture oil objective lens and a PCO Edge sCMOS camera. 
Z-stacks of 200 nm step size capturing the entire cell were acquired. Images were deconvolved with 
the built-in DeltaVision SoftWoRx Imaging software and maximum intensity projections were created. 
RNA-FISH foci were then quantified manually considering the overlap with Hoechst (nuclear frac-
tion) and calculating T-REX17 background staining (cytoplasmic fraction) using ImageJ (Rueden et al., 
2017) and Fiji (Schindelin et al., 2012).

Cell fractionation followed by RT-PCR and agarose gel band 
quantification
hiPSCs WT cells were differentiated to definitive endoderm cells (s. Definitive endoderm (EN) differ-
entiation) and cytoplasmatic, nucleoplasmatic and chromatin fractions subsequently isolated utilizing 
the Subcellular Protein Fractionation Kit for Cultured Cells (Thermo Fisher Scientific, 78840) according 
to the manufactures protocol. Kit-provided buffers were substituted with 1 U/µl SUPERaseIn RNase 
Inhibitor (ThermoFisher Scientific, AM2694). RNA of respective cell fraction was isolated subsequently 
followed by cDNA synthesis (s. RNA isolation and cDNA synthesis). Relative PCR-product band 
intensity was obtained from agarose gel purified PCR-products utilizing the BioRad ChemiDoc XRS 
+ imaging system. Band intensities of each fraction were normalized on the cytoplasmatic fraction 
(Cyt). Relative fracions per replicate were summed up to 100% before representing them as relative 
percentage fraction Supplementary file 1. PCR-primer sequences are listed in Supplementary file 3. 

Staining for FACS analysis
Undifferentiated or differentiated ZIP13K2 cultures were treated with Accutase for 15 min, 37  °C, 
5% CO2 to obtain a single-cell suspension. To quench the dissociation reaction and to wash the 
cells, FACS-buffer was added (Final DPBS, 5 mM EDTA (Thermo Fisher Scientific, 15575020), 10% 
Fetal bovine serum (FBS, PAN Biotech, P30-2602)). Next, cells were spun down at 300 x g, 5 min at 
4 °C. Cells were then resuspended in FACS-buffer containing surface marker antibodies (s. Supple-
mentary file 3) and incubated for 15 min at 4 °C in the dark. For extracellular stainings (ECS) only, 
cells were further washed once with FACS-buffer and spun down at 300 x g before FACS analysis 
was performed. If additional intracellular stainings (ECS +ICS) were performed, cells were washed 
once with FACS-buffer, supernatants were removed and cells fixed according to the manufacturer’s 
instructions utilizing the True-Nuclear Transcription Factor Buffer Set (Biolegend, 424401). Intracellular 
staining was performed according to manufacturer’s instructions before FACS analysis was carried out. 
ICS antibody dilutions are listed in Supplementary file 3. FACS analysis was performed on the FACS-
Celesta Flow Cytometer (Beckton Dickinson). Raw data were analyzed using FlowJo (LLC) V10.6.2.

Western blot and band quantification
Undifferentiated or differentiated ZIP13K2 cultures were treated with Accutase for 15 min, 37 °C, 5% 
CO2 to obtain a single suspension. Single cell suspensions were washed once with ice cold DPBS and 
spun down at 300 x g, 5 min at 4 °C. Supernatants were removed and cell lysates generated by treat-
ment for 30 min on ice with RIPA buffer (Thermo Fisher Scientific, 89900) supplemented with 1 x HALT 
protease inhibitor (Thermo Fisher Scientific, 87786). Lysates were spun down at 12,000 x g, 10 min at 
4 °C and supernatants quantified for protein content using the Pierce BCA Protein Assay Kit (Thermo 
Fisher Scientific, 23227) according to the manufacturer’s instructions.

For western blot, 20 µg total protein extract per sample were boiled in final 1 x Laemmli Buffer 
(BioRad, 1610747) containing 10% 2-Mercaptoethanol (M6250, Sigma-Aldrich) for 10 min at 95 °C, 
followed by cooling on ice for 5 min. Samples were then loaded on a NuPAGE 4–12%, Bis-Tris, 1.0 mm, 
Mini Protein Gel (Thermo Fisher Scientific, NP0322BOX) and ran at 200 V for 30 min in 1 x NuPAGE 
MOPS SDS Running Buffer (Thermo Fisher Scientific, NP0001) containing 1:400 NuPAGE Antioxidant 
(Thermo Fisher Scientific, NP0005). Protein transfer has been performed utilizing the iBlot 2 Starter 
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Kit, PVDF (Thermo Fisher Scientific, IB21002S) following the manufacturer’s instructions for the P0 
program.

PVDF membranes containing transferred proteins were incubated in blocking buffer (1 x TBS-T 
(Thermo Fisher Scientific, 28360), 5% Blotting-Grade Blocker (BioRad, 1706404)) for 1 hr at RT. Incu-
bation with primary antibody dilution (s. Supplementary file 3) was performed in blocking buffer at 
4 °C overnight. The following day, membranes were washed three times 10 min at RT with 1 x TBS-T 
and incubated for 2 hr at RT in secondary antibody dilution in blocking buffer (Supplementary file 
3). Next, membranes were washed three times for 10 min at RT with 1 x TBS-T and developed using 
the SuperSignal West Dura Extended Duration Substrate (Thermo Fisher Scientific, 34075) according 
to the manufacturer’s instructions and imaged on the BioRad ChemiDoc XRS+imaging system to 
finally obtain relative band-intensities. JNK or pJNK band-intensities were then normalized on their 
respective GAPDH levels before calculating relative pJNK levels (pJNK/JNK). Relative pJNK levels of 
EN time-course differentiations (Figure 4C, left panel; Figure 4—figure supplement 2A) were finally 
calculated and depicted as Log2FC(sgT-REX/sgCtrl) (Figure 4C, right panel). Raw data and calulca-
tions are provided in Supplementary file 1.

Computational analysis
Command-line processing of BAM, BED and bigwig files was done using SAMtools (v1.10) (Li et al., 
2009), BEDtools (v2.25.0) (Quinlan and Hall, 2010) and UCSCtools (v4) (Kuhn et al., 2013). If not 
stated otherwise: All statistics and plots are generated using R version 3.6.0 and 3.6.1. In all boxplots, 
the centerline is median; boxes, first and third quartiles; whiskers, 1.5  x inter-quartile range; data 
beyond the end of the whiskers are displayed as points.

Human vs. mouse T-REX17 conservation analysis
Local alignment was performed with EMBOSS Water (Madeira et  al., 2022). Visualizations were 
created with Matplotlib (Hunter, 2007). Alignment sequences were read into python using the Biopy-
thon library (Cock et al., 2009). The full sequence of the human T-REX17 locus was aligned to the full 
sequence of the mouse T-rex17 locus using Water. Aligned subsequences of 20 base pairs or more in 
length, including substitutions but excluding indels were used to calculate conservation. Additionally, 
individual exons and the enhancer sequence were also aligned with Water. Conserved stretches were 
connected from the human sequence box to the mouse sequence box and visualized as lines.

4Cseq data analysis
The raw sequencing reads were trimmed by using cutadapt (Martin, 2011) (--discard-untrimmed -e 
0.05 m 25) to remove primer sequences and restriction enzyme sequences. The reads not matching 
those sequences, were removed from further analysis. The remaining reads were then mapped to 
the reference sequences GRCh37/hg19 by bowtie2 (Langmead and Salzberg, 2012) (default param-
eters). An iterative mapping procedure was performed. Specifically, the full-length reads were first 
mapped to the genome. The unmapped reads were then cut by 5-nt from the 3-prime end each time 
until they were successfully mapped to the genome or until they were shorter than 25 bp. The final 
mapped reads were assigned to valid fragments. The fragment counts were then normalized by RPM 
(reads per million) and smoothed by averaging the counts of the closest five fragments.

Coding potential calculation
Whole genome multiple species alignments of 46 vertebrate species with human (assembly hg19, 
October 2009) as a reference have been retrieved from the UCSC genome browser (Kent et  al., 
2002). Human lincRNA annotation was obtained from Gencode (Frankish et al., 2019) (​gencode.​
v33lift37.​long_​noncoding_​RNAs.​gtf, December 2019). All ORFs in each transcript were identified 
and the corresponding multiple species alignment was scored by the omega method of PhyloCSF 
(Lin et  al., 2011; Figure  2C, left panel) shows 95% (2.5–97.5percentile) of the 271,572 sORFs 
from the (Kent et  al., 2002) analyzed human lincRNAs (randomly sampled from chromosomes 
16,21,18,11,17,5,10,19,22,2,7,X,12,6,Y). The SOX17 CDS and all identified sORFs in T-REX17 were 
scored by omega phyloCSF as shown in Figure 2C, right panel.

https://doi.org/10.7554/eLife.83077
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RNA-seq
All RNAseq samples were pre-processed using cutadapt (Martin, 2011) to remove adapter and trim 
low quality bases. Reads were subsequently aligned against the human reference genome hg19 using 
STAR (Dobin et  al., 2013) (parameter: outSAMtype BAM SortedByCoordinate --outSAMattri-
butes Standard --outSAMstrandField intronMotif --outSAMunmapped Within --quant-
Mode GeneCounts). Finally, Stringtie (Pertea et al., 2015) was used for calculation of strand-specific 
TPMs.

Differential gene expression was calculated using DESeq2 (Love et al., 2014). Genes with an abso-
lute log2 fold change >1 and an adjusted P-value <0.05 were termed differentially expressed. Lowly 
expressed genes (all sample have a TPM <1) were excluded from the analysis.

Capture Hi-C
Raw sequence reads of capture Hi-C (cHi-C) were mapped to the hg19 version of the human genome 
using BWA (v0.7.17-r1188) (Li and Durbin, 2009) with parameters (mem -A 1 -B 4 -E 50 L 0). Mapped 
reads were further processed by HiCExplorer (v3.6) (Ramírez et  al., 2018) to remove duplicated 
reads and reads from dangling ends, self-circle, self-ligation and same fragments. The replicates were 
merged to construct contact matrices of 1  kb resolution. Normalization was performed to ensure 
that all samples have the same number of total contacts, followed by KR correction. The relative 
contact difference between two cHi-C maps was calculated by subtracting one from the other using 
the corrected matrices.

SOX17 chromatin immunoprecipitation
The ChIP-seq sequencing data as well as the control input sequencing were aligned to the human refer-
ence genome (hg19) using BWA mem (Heng, 2013) using the default parameter. GATK (McKenna 
et al., 2010) was used to obtain alignment metrics and remove duplicates. Peaks were called using 
the MACS2 (2.1.2_dev) (Zhang et al., 2008) peakcall function using default parameters. After vali-
dation of replicate comparability and quality, replicates were merged on read level and reprocessed 
together with input samples. Background subtracted coverage files were obtained using MACS2 
bdgcomp with -m FE. Peaks were removed from the analysis if overlapping with ENCODE blacklisted 
(​hg19-​blacklist.​v2.​bed) regions.

GATA4/6 chromatin immunoprecipitation
The ChIP-seq sequencing data as well as the Fastqs for GATA4/6 ChiP-seq experiments were 
processed using the ENCODE ChIP-seq pipeline version 1.6.1 (https://github.com/ENCODE-DCC/​
chip-seq-pipeline2, copy archived at swh:1:rev:ec4295c8ac68be25b25357038d82ec942ac0bf8d; Jin, 
2022) using default settings with the hg19 genome. Standard ENCODE ChIP-seq reference files were 
used as found in https://storage.googleapis.com/encode-pipeline-genome-data/genome_tsv/v1/​
hg19_caper.tsv. Pooled fold-change bigWigs were used.

Single-cell RNAseq pipeline
Publicly available single-cell RNAseq raw data of already filtered 1195 cells from a gastrulating human 
embryo (Tyser et al., 2021) was downloaded from ArrayExpress (Athar et al., 2019) under accession 
code E-MTAB-9388. The GENCODE (Frankish et al., 2021) human transcriptome (GRCh37.p13) and 
its annotation were downloaded and added with the T-REX17 entry. After building the transcrip-
tome index, the transcripts abundance was quantified via Salmon v1.6.0 (Patro et al., 2017) in quasi-
mapping-based mode using the –seqBias and the –gcBias flags. Data was loaded as a scanpy v1.4.4 
(Wolf et al., 2018) object, reproducing clustering as reported by Tyser, R. C. v. et al. (Tyser et al., 
2021). The resulting clusters were visualized via the scanpy UMAP representation in two dimensions, 
using default parameters (​tl.​umap). UMAPs are displayed in Figure 2—figure supplement 1E (upper 
panel).

Bulk measurements from scRNAseq pipeline
To measure T-REX17 read counts in endoderm cells fastq files were combined in one bulk raw file. 
The file went through a bulk RNAseq pipeline comprising a pre-alignment quality control via fastQC 
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v0.11.9, adaptor and low-quality bases trimming using cutadapt (Martin, 2011), post-QC and reads 
alignment against the human genome (GRCh37.p13) by means of STAR (Dobin et al., 2013) (parame-
ters: --outSAMtype BAM SortedByCoordinate, --chimSegmentMin 20, --outSAMstrandField 
intronMotif, --quantMode GeneCounts). Finally, the BAM file was visualized using the Integrative 
Genomic Viewer (IGV) (Robinson et al., 2011). IGV tracks are displayed in Figure 2—figure supple-
ment 1E (lower panel).

Oxford Nanopore RNA analysis
All Oxford Nanopore Technologies derived runs were processed using the Nanopype pipeline (v1.1.0) 
(Giesselmann et al., 2019). The basecaller Guppy (v4.0.11) was used with the r9.4.1 high-accuracy 
configuration. Quality filtering was disabled for any base calling. Base-called reads were aligned 
against the human reference genome hg19 using minimap2 (v2.10) (Li and Birol, 2018) with the 
Oxford Nanopore Technologies parameter preset for spliced alignments (-ax splice -uf -k14). Only 
unique alignments (-F 2304) are reported.

Oxford Nanopore RNA split-read analysis
Nanopore post processed split read data (s. Oxford Nanopore RNA analysis) from wild-type endoderm 
mRNA (s. Extraction of polyA RNA for Nanopore sequencing; s. Preparation of Nanopore sequencing 
libraries) were extracted from the junctions-track of BAM files visualized using the Integrative Genomic 
Viewer (IGV) (Robinson et al., 2011) utilizing the coordinates hg19, chr8:55115873–55141447. Split 
reads between hg19, chr8:55140806 (5’-sequence of Exon 1, s. 5’/3’ RACE PCR experiments) and 
hg19, chr8: 55125601 (3’-sequence of Exon 3, s. 5’/3’ RACE PCR experiments) were accounted for 
isoform Ex1 +2 (s. Figure 1—figure supplement 1C). Full isoform Ex1 +2 sequence (~2,8 kb long) can 
be found in Supplementary file 1.

Split reads between hg19, chr8:55140806 (5’-sequence of Exon 1, s. 5’/3’ RACE PCR experiments) 
and hg19, chr8:55123254 (3’-sequence of Exon 3, s. 5’/3’ RACE PCR experiments) were accounted 
for isoform Ex1 +3 (s. Figure 1—figure supplement 1C). All other reads were accounted as “sloppy 
spliced” reads and together with both isoforms calculated in relative terms (s. Figure  1—figure 
supplement 1C). Full isoform Ex1 +3 sequence (~3 kb long) can be found in Supplementary file 1. 
Summary of the relative isoform quantification is displayed in Figure 2F.

Mass spectrometry analysis and ranking of T-REX17 protein partners
Raw MS data were processed with MaxQuant software (v 1.6.10.43) and searched against the 
human proteome database UniProtKB with 75,074 entries, released in May 2020. Parameters of 
MaxQuant database searching were a false discovery rate (FDR) of 0.01 for proteins and peptides, 
cysteine carbamidomethylation was set as fixed modification, while N-terminal acetylation and 
methionine oxidation were set as variable modifications. Protein abundance in each of the three 
samples has been quantified by calculating Label free quantitation (LFQ) values for each detected 
protein. Protein targets have then been ranked based on the Log2[(EvenLFQ  +OddLFQ)/2/LacZLFQ] 
extrapolated values.

Plotting
Plots were generated with GraphPad Prism 8, R 3.6.0 and R 3.6.1.
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