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A B S T R A C T   

Deep brain stimulation (DBS) has been successfully applied in various neurodegenerative diseases as an effective 
symptomatic treatment. However, its mechanisms of action within the brain network are still poorly understood. 
Many virtual DBS models analyze a subnetwork around the basal ganglia and its dynamics as a spiking network 
with their details validated by experimental data. However, connectomic evidence shows widespread effects of 
DBS affecting many different cortical and subcortical areas. From a clinical perspective, various effects of DBS 
besides the motoric impact have been demonstrated. The neuroinformatics platform The Virtual Brain (TVB) 
offers a modeling framework allowing us to virtually perform stimulation, including DBS, and forecast the 
outcome from a dynamic systems perspective prior to invasive surgery with DBS lead placement. For an accurate 
prediction of the effects of DBS, we implement a detailed spiking model of the basal ganglia, which we combine 
with TVB via our previously developed co-simulation environment. This multiscale co-simulation approach 
builds on the extensive previous literature of spiking models of the basal ganglia while simultaneously offering a 
whole-brain perspective on widespread effects of the stimulation going beyond the motor circuit. In the first 
demonstration of our model, we show that virtual DBS can move the firing rates of a Parkinson’s disease patient’s 
thalamus - basal ganglia network towards the healthy regime while, at the same time, altering the activity in 
distributed cortical regions with a pronounced effect in frontal regions. Thus, we provide proof of concept for 
virtual DBS in a co-simulation environment with TVB. The developed modeling approach has the potential to 
optimize DBS lead placement and configuration and forecast the success of DBS treatment for individual patients.   

1. Introduction 

Deep brain stimulation (DBS) is a neuromodulation technique that 
has shown beneficial effects for patients suffering from many different 
neurological disorders (Horn, 2019; Horn and Fox, 2020). DBS is an 
essential element in the therapeutic regime for movement disorders like 
Parkinson’s disease (PD) (Deuschl et al., 2006; Vitek et al., 2020), dys
tonia (Kupsch et al., 2006) and essential tremor (Koller et al., 1997). It 
provides a treatment option for selected cases of medication-refractory 

epilepsy (Salanova et al., 2015) and obsessive-compulsive disorder 
(OCD) (Anderson and Ahmed, 2003; Franzini et al., 2010; Nuttin et al., 
2008). For major depression (Mayberg et al., 2005), Tourette’s syn
drome (Ackermans et al., 2011), Huntington’s disease (Gruber et al., 
2014) and alcohol addiction (U. J. Müller et al., 2009), DBS has shown 
first treatment successes and is clinically applied on an experimental 
basis. Despite the benefits of DBS for many diseases, underlying mech
anisms are so far poorly understood. At various scales of the brain, at
tempts have been made to model the outcome of DBS, from single- 
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neuron to whole-brain models (Humphries et al., 2018). However, a 
multiscale model to bridge these different scales in a single DBS model 
has yet to be developed. 

The most extensive research for DBS has been performed in move
ment disorders, which share pathology of the interactions between basal 
ganglia (BG), thalamus and cortex (Plotkin and Goldberg, 2019). The BG 
are anatomically defined by the striatum and the pallidum, which can be 
further separated in globus pallidus internus (GPi) and externus (GPe). 
Functionally, the regions of the subthalamic nucleus (STN) and the 
substantia nigra, whose degeneration is a key factor in the pathogenesis 
of PD (Damier et al., 1999; Fearnley and Lees, 1991), are often included 
in the BG because of their strong interactions with it (Albin et al., 1989). 
In the following, the term BG refers to “basal ganglia and related nuclei” 
(Lanciego et al., 2012) according to the widely used understanding as a 
functional unit of the extrapyramidal system (Heimer, 1983). 

The hypothesis that PD patients often suffer from a decreased activity 
level in the thalamic region causing the motor function to be impaired, 
resulting in bradykinesia or akinesia, has a long history (DeLong, 1990; 
Humphries et al., 2018; Jahanshahi et al., 2015). This decreased activity 
in the thalamus is probably caused by pathological hyperactivity of the 
globus pallidus as a failure symptom of the dopaminergic system (Dos
trovsky et al., 2002), a theory first formulated by the classical rate model 
of the BG (Albin et al., 1989). The clinically most relevant stimulation 
targets for PD are the GPi and STN (Horn and Fox, 2020). It is a common 
approach to model the neurons of these key regions for DBS as a 
network, employing mathematical descriptions of neuronal behavior 
and interactions (Yu et al., 2020). An extensive amount of previous 
literature exists modeling the connection from STN to GPe, the striatal 
microcircuit and different subparts of the cortico-basal-ganglia-thalamo- 
cortical loop as spiking networks (Yu et al., 2020). These subnetwork 
studies suggest that STN-DBS changes the efferences of the BG to the 
thalamus by suppressing the burst firing of the GPi (Guo et al., 2008; 
Rubin and Terman, 2004). 

Most previously established models are based on a priori assump
tions about dynamic changes in PD, i.e., assuming differences between 
PD and healthy subjects with regard to their functional connectivity 
strengths or their activity levels of striatal projection neurons 
(Humphries et al., 2018). Though these assumptions are well justified by 
empirical findings, they critically influence the model outcomes. In 
contrast, Hamker and colleagues proposed a data-driven spiking model 
of the BG (Baladron et al., 2019; Maith et al., 2021), that is a generic BG 
model has been fit to the individual subject data by optimizing its pa
rameters such that features of the simulated activity correlated with the 
same features of the measurements. Recently, Maith et al. (2021) fitted 
this BG model for 20 PD patients after DBS implantation and 15 healthy 
controls with individual resting-state functional magnetic resonance 
imaging (fMRI) data. However, the whole cortex was so far modeled as a 
single spiking network node, lacking a whole-brain perspective. 

The single-neuron and subnetwork models of the BG successfully 
suggest underlying mechanisms for the improvement of PD hypokinesia 
symptoms during DBS. However, they are not sufficient in describing the 
multitude of other effects that DBS potentially has on PD patients, e.g., 
rigidity, tremor and cognitive or behavioral changes (Irmen et al., 
2019). Therefore, extending local DBS effects of the cortex-BG-thalamus 
loop towards a large-scale network should be the next goal in under
standing DBS effects. 

Previous studies explored mean-field approaches simulating the 
whole-brain perspective for virtual DBS (Saenger et al., 2017; van 
Hartevelt et al., 2014). Mean-field models make use of a physical 
simplification to enable simulating the average or so-called mean-field 
behavior of large populations. Simulating the whole brain with mean- 
field modeling has shown that DBS brought the patients’ dynamical 
regime closer to a healthy one (Saenger et al., 2017; van Hartevelt et al., 
2014). With respect to whole-brain mean-field simulations, The Virtual 
Brain (TVB, thevirtualbrain.org) (Ritter et al., 2013; Sanz Leon et al., 
2013) offers a neuroinformatics platform to simulate the effects of a 

virtual DBS. This in silico computation of the whole-brain effects of DBS 
requires only the MRI data of an individual patient as an input. Simu
lated brain activity with TVB reproduces empirical phenomena accu
rately over different modalities (Schirner et al., 2018). Applying TVB in 
combination with simulated stimulation has shown resemblance with 
functional resting-state networks (Spiegler et al., 2016, 2020) and with 
electroencephalography (EEG) patterns after transcranial direct current 
stimulation (Kunze et al., 2016). However, virtual DBS has not yet been 
investigated with TVB. 

The different computational studies demonstrating the effects of PD 
and/or DBS on the BG network, from single-neuron studies to whole- 
brain networks, exemplify the multiscale nature of this research field 
(Humphries et al., 2018). So far, the whole-brain DBS modeling litera
ture stands isolated from the extensive literature on spiking neural 
networks of the BG. Only region-wise properties have been compared. 
None of the dynamical insights from the spiking network literature have 
been incorporated into the mean-field modeling approaches of DBS. 
Therefore, in this study, we aim to demonstrate the framework for a 
multiscale co-simulation approach of virtual DBS. Our goal is to bridge 
the microscale of single neurons towards the recorded whole-brain 
signals in one simulation framework, which permits a holistic and 
comprehensive integration of existing findings. To run whole-brain 
mean-field simulations and additionally simulate any region’s fine- 
scale neuronal dynamics, including spikes generated by inhibitory and 
excitatory neurons inside the region, we can use the recently developed 
TVB-multiscale co-simulation toolbox (Schirner et al., 2022). TVB- 
multiscale extends TVB to perform multiscale co-simulations, whereby 
most of the nodes are simulated with TVB as mean-field models, and a 
few selected nodes are modeled as spiking networks by another suitable 
simulator. 

In this study, we combine the detailed spiking network model by 
Maith et al. (2021) for the BG with mean-field simulations in TVB for all 
cortical regions. We interface the spiking network software ANNarchy 
with TVB to build the TVB-ANNarchy co-simulation framework 
(Schirner et al., 2022). As an underlying connection between BG and 
cortical regions, we utilize a recently published normative connectivity 
atlas of these tracts (Petersen et al., 2019) and combine it with indi
vidually - that is subject-specific - fitted probabilities and weights from 
Maith et al. (2021) for the connections among the BG regions. As a first 
proof of concept, we simulate resting-state conditions for an exemplary 
control and PD patient network and perform virtual DBS targeting STN 
and GPi in the patient network. Next, we validate our model by 
comparing the effects of virtual DBS against results from literature. Our 
study addresses the following limitations of previous whole-brain DBS 
modeling studies:  

1) We incorporate a previously validated spiking network model of the 
subnetwork of the BG within our whole-brain modeling.  

2) We use an underlying (normative) connectome, which includes the 
STN, and combine it with individually fitted connectivity data to 
create an individual patient and control multiscale network. 

In this way, we offer a computational model that holds the potential 
to be easily translated towards the individual patient level and used as a 
‘sandbox’ model before future DBS surgeries. 

2. Materials and methods 

2.1. Spiking network model for the basal ganglia 

The spiking network model and its dynamics (including parameters) 
were taken from a previous publication (Maith et al., 2021) (Fig. 1). 
Eight neuronal populations were included, each with different proper
ties. The cortex consisted of 600 excitatory neurons coupled with 150 
inhibitory neurons (possessing a self-inhibitory connection). From the 
excitatory population of the cortex, spikes were transmitted to the STN, 
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as well as the striatum. The striatum was modeled with two different 
inhibitory neuronal populations, the direct (dSN) and the indirect (iSN) 
striatal spiny projection neurons, each with a self-inhibitory connection. 
The GPe and GPi were each represented by inhibitory neurons with a 
self-inhibitory connection. The thalamus was also modeled as a spiking 
network node. 

Each spiking network population was modeled by an enhanced 
version of the Izhikevich model (Izhikevich, 2004). For details of this 
previously published model, we refer to the Supplementary Material. 
Maith et al. (2021) optimized the connection probabilities and weights 
between the nodes to fit empirical fMRI blood‑oxygen-level-dependent 
(BOLD) signal correlation data for each individual and each hemisphere 
separately. We used this optimized data from one of the controls and one 
of the patients (left hemisphere only). We selected these subjects as 
representatives of their groups because their regional firing rates were 
close to the respective mean values. This computational model was 
implemented with the software Artificial Neural Network architect 
(ANNarchy), used for spike and rate coding of neuronal populations, as 
well as a combination of both in a single network (Vitay et al., 2015). 
Network models in ANNarchy are defined through equations written in 
“natural language”. ANNarchy has been used to implement models of 
the BG pathways (Baladron et al., 2019; Baladron and Hamker, 2020; 
Gönner et al., 2020; Villagrasa et al., 2018), spatial attention and vision 
(Bergelt and Hamker, 2019; Jamalian et al., 2017; Larisch et al., 2021) 
and learning and memory (Gönner et al., 2017; J. Müller et al., 2018; 

Schmid et al., 2019). 

2.2. Multiscale co-simulation of TVB and ANNarchy 

Every node in the TVB network represents a brain region and its 
dynamics are simulated with a mean-field approximation. The nodes are 
connected with weights and delays (computed from tract lengths given a 
transmission speed) that can be determined for individual subjects 
employing DTI. As a mean-field model for the cortical regions, we chose 
the reduced Wong-Wang-model (Deco et al., 2013), which is often used 
to replicate fMRI data (Aerts et al., 2018; Klein et al., 2021; Schirner 
et al., 2018) and based on the Wong-Wang model (Wong and Wang, 
2006) (details in the Supplementary Material). We used the version of 
this model that represents each TVB region as one excitatory population. 
Given the fact that the inhibitory population in the Maith et al. (2021) 
network neither projects to other regions nor receives any such pro
jections, the inhibitory population could be omitted from explicit 
modeling, without affecting otherwise our network dynamics. For an 
overview of all variables used in this study, we refer to Supplementary 
Table 1. In the TVB-multiscale framework (Schirner et al., 2022), co- 
simulation is based on the concept of TVB “proxy” nodes that are 
created inside the spiking network (Fig. 2). TVB “proxy” nodes are either 
stimulating devices, thereby mimicking TVB cortex node dynamics (i.e., 
mean-field spiking rates) and coupling to the spiking nodes, or output (e. 
g., recording) devices, thereby extracting spiking dynamics to be 
transmitted to TVB. Thus, TVB and the spiking network simulator 
communicate on the level of neuronal populations’ mean-field activities. 
TVB-multiscale, which is continuously expanding, is freely available on 
github (github.com/the-virtual-brain/tvb-multiscale) and interfaces 
TVB with different spiking network simulators (currently Neural Simu
lation Technology (NEST) (Eppler et al., 2008) and ANNarchy). 

Since the previous BG model implementation was fitted with 
empirical data using ANNarchy (Maith et al., 2021), we built an inter
face between ANNarchy and TVB. We developed python code to incor
porate the ANNarchy simulator into TVB-multiscale (details in the 
Supplementary Material). We validated our implementation of the 
spiking network by Maith et al. (2021) against the authors’ original 
ANNarchy code by performing short simulations without noise for the 
two selected subjects (Supplementary Table 3). 

Each TVB cortex mean-field node n′ (prime notation for nodes 
modeled only as mean-fields nodes in TVB) couples to a node n modeled 
in ANNarchy (notation without prime for the spiking regions) via the 
instantaneous spike rate variable Rn′(t), which drives a population of 
Nneurons = 600 neurons (same size as for the excitatory cortex node of the 
spiking network by Maith et al. (2021)) generating correlated spike 
trains 

wn′n
{

δ
(
t −

(
τn′n + tjk

) ) }tjk∈[t,t+dt]
j∈{1,…,Nneurons}

where tjk stands for the spike time tk of the neuron with index j in the 
population of the “proxy” node n′ and δ is the Kronecker delta. The 
generated spikes were weighted by wn′n and delayed by τn′n based on the 
TVB connectome and the optimized weights for each subject (see 
below). For details of the spike trains’ generation, we refer to the Sup
plementary Material. 

In the other direction, each node n modeled in ANNarchy updates the 
state of the corresponding TVB mean-field node n since it is still repre
sented in the TVB model and couples to TVB nodesn′. The update utilizes 
an ANNarchy monitor that records spikes for each TVB time step. The 
recorded spikes are converted to an instantaneous population mean rate 
that overwrites an auxiliary TVB state variable, called the input rate 
Rinn(t). The latter drives a linear integration equation of another auxil
iary TVB state variable, named integrated rate Rintn(t), which, in its turn, 
acts as a smoothing low pass filter 

Fig. 1. Structure of the basal ganglia spiking model. Previously published 
detailed basal ganglia (BG) model by (Maith et al., 2021). We implemented this 
model inside our TVB-ANNarchy framework with the underlying previously 
optimized connection weights and probabilities for the data of one control and 
one PD patient (taken from (Maith et al., 2021)). The direct pathway is shown 
here as the path from the excitatory cortical neurons over the direct striatal 
projection neurons to the GPi. Similarly, the indirect pathway goes from the 
cortex, over the indirect spinal projection neurons and the GPe towards the GPi. 
The third pathway through the BG is the cortex-STN-GPi pathway, which is also 
called the hyperdirect pathway. CxExcit: excitatory population of the cortex; 
CxInh: inhibitory population of the cortex; GPi: internal globus pallidus; GPe: 
external globus pallidus; STN: subthalamic nucleus; dSN: striatum, direct 
striatal spiny projection neurons; iSN: striatum, indirect striatal spiny projec
tion neurons; Thal: thalamus; excit.: excitatory; inhib.: inhibitory; 
conn.: connection. 
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Ṙintn = −
1

τint
(Rintn (t) − Rinn (t) )

to have time series similar to the TVB mean-field ones, where τint =

100ms is the time constant of the integration and 

Rinn (t) =

∑Nneurons
j=1

∑
tjk∈[t− dt,t]δ

(
t − tjk

)

Nneurons⋅dt/1000  

provides the number of spikes per second. Finally, the integrated rate 
Rintn(t) overwrites the state variable Rn(t) of the TVB model. All the rest 
of the TVB mean-field nodes n′ follow the equations of the mean-field 
model described in the Supplementary Material. We simulated two 
ANNarchy time steps (of 0.05ms) for every TVB time step (dt = 0.1ms). 

2.3. Underlying connectivity 

To connect the TVB nodes and the spiking network simulator, we 
needed to assign connectivity weights for the paths between the BG 
regions and the cortex. Acquiring accurate data for those tracts is 
challenging because structural MRI data inherits many limitations 
(Jones et al., 2013; Thomas et al., 2014). Recently, Petersen et al. (2019) 
published a state-of-the-art axonal pathway atlas for the human brain 
that combines previous results from histological and imaging data 
literature with expert knowledge of neuroanatomists and brain-imaging 
scientists who collaborated on defining those tracts applying a holo
graphic visualization technique (Petersen et al., 2019) (details to be 
found in the Supplementary Material). We used this normative tract data 
by Petersen et al. (2019) to include a fine-grained parcellation for the BG 
and the thalamus (based on CIT-168 brain atlas (Pauli et al., 2018)) and 
detailed data of their pathways to and from the cortical regions because 
of its current use for clinical DBS planning (Noecker et al., 2021). 
Whereas Maith et al. (2021) used the motoric parts of the BG regions 
only in their parcellation, we used the complete BG regions as a first 
approach. This difference implies that the connectivity of Maith et al. 
(2021) was more limited than ours regarding the outside connections of 
the BG to the cortex. For the cortex, the automated anatomical labeling 
(AAL) atlas parcellation was applied (Rolls et al., 2015; Tzourio- 
Mazoyer et al., 2002). The tract data files of Petersen et al. (2019) were 

extracted from Lead-DBS software (www.lead-dbs.org; (Horn and Kühn, 
2015)) in the DBS Intrinsic Template Atlas (DISTAL) space (Oxenford 
et al., 2021) and the number of streamlines between each region pair 
was counted. This procedure resulted in a whole-brain matrix for the 
pathways between the cortex and the BG structures. 

Some additional preparation steps have been performed on the 
connectome. As a first demonstration and because Maith et al. (2021) 
also treated the hemispheres in isolation, we focused on the left hemi
sphere only. Thus, all regions belonging to the right hemisphere and the 
vermis have been deleted from the connectome together with all their 
connections. Additionally, the connections from the inhibitory neuronal 
populations in the BG (GPe, GPi and striatum) to any cortical regions 
have been set to zero as it is currently not much known about how these 
projections contribute to movement regulation (Abecassis et al., 2020; 
Chen et al., 2015; Cui et al., 2021; Saunders et al., 2015), leaving in this 
direction only the connections from the thalamus and the STN to the 
cortex. In the other direction, we only allowed cortical input projections 
towards the STN and the striatum into the spiking network similar to the 
Maith et al. (2021) network. Forcing such a prior on the model is 
necessary for keeping the spiking dynamics as close as possible to the 
previously optimized network by Maith et al. (2021). The resulting 
connectome included 57 regions (for a list of all included regions: 
Supplementary Table 4). Its weights were normalized first by the 
maximum sum of all the incoming connection weights over all regions 
and then again by the 99th percentile of all weights to scale all 
connection weights in a smaller range. After these steps to generate the 
connectome, we obtained the connectivity weights among all 57 regions 
(Supplementary Figs. 5–6). We discovered that 30 regions were 
disconnected from the rest, meaning that these regions had no tracts 
based on the Petersen et al. (2019) data. We call these regions isolated or 
disconnected regions. The reason for that lies in the used normative atlas 
of Petersen et al. (2019), which focuses on the connections between the 
cortex and the basal ganglia and does not include cortico-cortical con
nectivity. The resulting connected regions in the connectome are the 
motor regions, the frontal lobe and orbital and cingulate gyri as well as 
the insula. Only the activity of the connected regions influences the rest 
of the network and therefore our simulation results. 

The previous work of Maith et al. (2021) optimized the connection 

Fig. 2. Implementation of the interface for the multiscale 
model. (A) TVB to ANNarchy coupling is channeled via TVB 
“proxy” nodes in the ANNarchy network, implemented as 
neuronal populations generating correlated spike trains. Thus, 
the instantaneous mean-field spike rate is transformed into 
individual neurons’ spike trains for the respective time inter
val. (B) ANNarchy to TVB state update via the ANNarchy 
monitors, which record the spikes for each time interval [t −
dt, t] to compute the population’s spike rate. This spike rate 
then overwrites the respective TVB state variable.   
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probabilities and weights among BG regions per individual to best fit the 
empirical fMRI data. To personalize the normative connectome, we 
replaced the network among the BG and thalamus regions with the 
optimized weights computed by Maith et al. (2021) for the control 
subject and the PD patient, respectively (Fig. 3). This ‘hybrid’ con
nectome constituted normative connectome weights among the cortex 
regions and between cortex and BG (which will also be multiplied with 

the interface factors, see next section) but included individually fitted 
connection weights and probabilities for the spiking network of the BG. 
The connectome used for the patient and the control simulations 
differed only in the BG spiking network connections. We visualized the 
BG spiking network connection weights from the PD patient and the 
control in the upper row of Fig. 3. The biggest differences in connectivity 
weights between the patient and the control were in the inhibitory 

Fig. 3. Underlying connectome. The optimally fitted connectivity data from Maith et al. (2021) for the left hemisphere of the analyzed control and patient (upper 
panels) overrode the within-BG connection weights inside the connectome (upper left corner of the larger matrices) based on (Petersen et al., 2019). Note that the 
connectivity in the BG network is unidirectional whereas the connectivity among the cortical regions is bidirectional. Each entry in any of the matrices represents the 
normalized number of streamlines that start in the region marked on the horizontal axis and end in the region marked on the vertical axis. The brain network in the 
middle shows all connections taken from the individually fitted weights and the BG regions in red and the other regions in blue with the connections taken from the 
normative connectome of the atlas by Petersen et al. (2019) represented in black. The lower two matrices represent the matrices used for the control (left) and the 
patient (right) simulations, respectively. For visualization purposes, all isolated nodes have been disregarded and the normalized Petersen et al. (2019) connections 
have been brought to the same range as the optimally fitted connectivity weights from Maith et al. (2021). GPi: internal globus pallidus; GPe: external globus 
pallidus; STN: subthalamic nucleus; Thal: thalamus; dSN: striatum, direct striatal spiny projection neurons; iSN: striatum, indirect striatal spiny projection neurons. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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connection weight from GPe to itself and to GPi. In the patient param
eters, this connection weight from GPe to GPi was only 78% of the 
weight in the control parameters, meaning that the patient had a lower 
connection weight from GPe to GPi than the control. The self-inhibition 
weight of GPe was much higher in the patient than in the control, i.e. 
125% of the control’s connection weight, whereas the self-inhibition 
connection weight of the dSN was smaller in the patient than in the 
control (85% of the control’s weight). In the other connection weights, 
the patient value was between 97% and 105% of the control value. If we 
also consider the fitted connection probabilities from Maith et al. 
(2021), then we find differences between the patient and control in all 
connections inside the spiking network, except for the excitatory con
nections from the STN towards the pallidum, from the thalamus towards 
the iSN and the self-inhibition of the GPi. However, the focus of the 
current work were not these cross-sectional connectivity differences but 
rather how the different control and patient networks that were previ
ously fitted affect the rest of the cortical regions and how DBS coun
teracts this difference. For detailed comparisons between patients’ and 
controls’ connectivity, we refer to Maith et al. (2021). For the presen
tation and for determining the couplings between the two scales, we 
adjusted the normative weights to be in the same range of values as the 
optimized connection weights by scaling them with the ratio Cnorm be
tween the 95th percentiles of both weight distributions. The global 
coupling G of the TVB mean-field model was set for each subject to G =
15/Cnorm, i.e., we are canceling the above normalization for the weights 
among the TVB nodes (see next section for the exact procedure of 
selecting the value of 15). The conduction speed was set to 4m/s, thus, 
determining the time delay of couplings among all nodes of the multi
scale model. The tract lengths among all regions were approximated by 

the Euclidean distance between their center coordinates (Supplemen
tary Fig. 2). 

2.4. Fitting the co-simulation model to individual dynamics 

We implemented the previous BG model by Maith et al. (2021) inside 
our TVB-ANNarchy framework (Fig. 4). For the multiscale model (“TVB- 
cortex model”), we replaced the spiking node “cortex” with the whole 
brain connectomic model in TVB (Fig. 5). However, the input from the 
multitude of the TVB mean-field nodes leads to different driving dy
namics of the spiking network than in Maith et al. (2021). The previous 
BG model represented the cortex by an excitatory and an inhibitory 
population, whereas the chosen version of the reduced Wong-Wang 
mean-field model represents each cortical region only as an excitatory 
population. We aimed for TVB driving dynamics that would exhibit (a) a 
mean firing rate across all TVB nodes of 10 − 15 Hz similar to motor 
cortex neurons at rest (Velliste et al., 2014), where the variation over 
TVB regions in rate values is determined by the structural connectome; 
(b) low amplitude random fluctuations of the rate around the equilib
rium point of the above mean rate, resembling the rate dynamics of the 
cortex node in Maith et al. (2021) (c) a correlation of 0.3 among the 
neurons’ spiking to resemble Maith et al. (2021), which in Maith et al. 
(2021) is due to the internal connectivity of the spiking cortex node 
populations (more details in the Supplementary Material). We set the 
operation point of the TVB mean-field network by progressively 
increasing global coupling G until an equilibrium point was reached 
with a mean firing rate across the whole TVB brain approaching 15 Hz 
(for G = 15/Cnorm) from below via a few “trial and error” simulations. 
Further precision in the final G value would not change our results since 

Fig. 4. Schematic overview of our study design. The basal ganglia (BG) model of one control and one Parkinson’s disease patient were taken from the previous study 
(Maith et al., 2021). Next, we implemented the previous model inside our TVB-ANNarchy framework, not yet activating TVB, the so-called “spiking-cortex model”. 
We confirmed that this implementation reaches similar firing rates as the one from the previous study (step “confirm”). As a second step, we replaced the spiking- 
cortex node with mean-field simulations using TVB to obtain the so-called “TVB-cortex model. To stay in the range of the previously confirmed firing rates for the BG 
regions, we fine-tuned the connection weights from TVB to ANNarchy for the TVB-cortex models of the control and the patient. So far, all of the described modeling 
steps were taken in resting-state conditions. As a third step, we stimulated the STN and the GPi as two frequently targeted regions virtually (virtual DBS) and analyzed 
the effects for the BG spiking network as well as for the cortical regions. We analyzed whether virtual DBS could bring the patient’s brain dynamics closer to the 
healthy one. Whenever there is a brain next to the model (even when it is grayed out), the simulation took place inside the TVB-ANNarchy environment. 

J.M. Meier et al.                                                                                                                                                                                                                                



Experimental Neurology 354 (2022) 114111

7

any small difference in that value would be counteracted by corre
sponding small differences in the scaling of the coupling from the TVB 
cortex to the spiking basal ganglia network (see below). After the 
equilibrium point was approximated, we increased the additive white 
noise to a standard deviation of 10− 4 allowing small fluctuations around 
the equilibrium point without changing the pattern of nodes with higher 
firing rates (Supplementary Fig. 3 displays a characteristic TVB time 
series during co-simulation). 

For the multiscale TVB-cortex model, the three connections from 
cortex to STN, dSN and iSN were substituted by the respective set of 
connections from each of the corresponding TVB nodes (Fig. 5). For 
scaling these connections, we created a “spiking-cortex model” by 
substituting the cortex node of the network from Maith et al. (2021) with 
an ANNarchy spike generator identical to the one used as TVB “proxy” 
nodes (Supplementary Material). The spiking-cortex model acted as the 
“bridge” between the noisy TVB cortex driving the multiscale model and 
the Izhikevich population spiking cortex of Maith et al. (2021). With this 
model, we performed resting-state simulations for both subjects. Then, 
we tuned - again via a few “trial and error” co-simulations - three 
interface factors wnormn, n ∈ {iSN,dSN,STN}, scaling all TVB connections 
to STN, dSN and iSN, respectively, to approximate the mean population 
rates of the spiking-cortex model (Fig. 5, Supplementary Table 1). These 
interface factors multiply the TVB connectome weights Cn′n resulting in 
the interface weights wn′n = wnormn ⋅ Cn′n (Fig. 2A). This step was also 
taken to ensure that dSN and iSN can receive different input while the 
striatum connectivity is equally strong for them. This way, the sum 
across all TVB nodes n′ is the resulting total weight of the cortex input to 
the BG spiking populations, which then has an effect close to the one of 
the optimized weights in Maith et al. (2021). The differences between 
the patient and the control in the interface factors were very small 
(Supplementary Table 1, maximally 0.022 difference in the factor 
value). The final mean firing rates were within 1 Hz for all spiking 
populations except for the thalamus of the control network, which was 
within 2 Hz (Supplementary Table 5, Supplementary Fig. 4). The 

spiking-cortex model is only an intermediate development step for 
validation purposes and the TVB-cortex model is the final model. 

For the results of the TVB-cortex simulations, we simulated each 
condition 10 times, randomly selecting initial conditions for the TVB 
state from a normal distribution with mean equal to the initial condi
tions used originally for fitting the resting-state simulations and stan
dard deviation 0.1 (Supplementary Material). The simulation length for 
all of our simulations was 1500ms. After each simulation, we computed 
the mean firing rate over the last 1000ms. 

2.5. Implementation of the DBS stimulus 

Besides the resting-state co-simulations, we applied a stimulus to our 
multiscale model (starting at 400ms and lasting till the end) inside either 
GPi or STN as possible target regions (Fig. 5). We simulated the propa
gation of these stimuli and the whole-brain response to them to provide 
a first proof of concept of the possibilities of this kind of multiscale 
modeling. We tested the virtual DBS stimuli within the spiking-cortex 
model and the TVB-cortex model. 

To the GPi, we applied a continuous constant inhibitory current 
stimulus of an amplitude of − 10pA aiming at reducing its firing rate and 
therefore disinhibiting the thalamus. This simple continuous inhibitory 
stimulus was chosen for the GPi since the effect of GPi-DBS on the firing 
rate of the GPi is well known to be inhibitory and we thus opted to 
directly implement this inhibitory effect. For the other DBS simulations, 
we applied two realistic stimuli to STN, a monophasic and biphasic 
pulse-like current because the former is the most commonly imple
mented stimulus in previous DBS simulation studies (Yu et al., 2020) and 
the latter is used in clinical practice (Krauss et al., 2021) (Fig. 6). The 
monophasic stimulus is adapted from (Michmizos and Nikita, 2011) and 
the biphasic stimulus is similar to the one used in (Liu et al., 2020) 
(details in the Supplementary Material). We chose stimulus frequencies 
of 120 Hz for the monophasic and 130 Hz for the biphasic stimulus to be 
close to the ones used in clinical practice (Supplementary Table 1). 

Fig. 5. Structure of the co-simulation model. The cortex node was replaced by a whole-brain network simulated with The Virtual Brain. The interactions among the 
cortical regions were simulated with a mean-field model and The Virtual Brain (TVB). The computational spiking model was simulated with ANNarchy. Together, 
these two models form the multiscale model, the so-called TVB-cortex model. Interactions between the mean-field and the spiking model were defined by the 
connection weights of the underlying connectome between all involved region pairs. Connections from cortical regions towards the spiking network (i.e., in our case 
towards dSN, iSN and STN) were bundled together for each of the regions receiving input from the cortex. In addition, the bundled connections were weighted with 
the interface weights wnormn, n ∈ {dSN, iSN,STN} to regulate the incoming driving activity of the network. CxExcit: excitatory populations of the cortex; GPi: internal 
globus pallidus; GPe: external globus pallidus; STN: subthalamic nucleus; dSN: striatum, direct striatal spiny projection neurons; iSN: striatum, indirect striatal spiny 
projection neurons; Thal: thalamus; excit.: excitatory; inhib.: inhibitory; conn.: connection. 
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2.6. Effects of the stimuli on cortical regions 

To investigate the effects of the different stimuli on the cortex, we 
compared our resting-state TVB-cortex simulations with the simulations 
including the stimuli for the patient network. We also investigated 
cortical differences between the resting-state condition of the control 
and the patient. For these comparisons, we calculated the region-wise 

difference of cortical firing rates between simulations. Firing rates 
were averaged over the last 1000ms of a simulation. In the resting-state 
case of comparing the patient and the control, we subtracted the average 
firing rates of the control’s resting-state simulation from the ones ob
tained with the patient network, following this formula for the 
normalized difference in average firing rate Drs

n between the patient and 
the control for any region n 

Fig. 6. STN-DBS stimulus patterns. The first three cycles of the (A) biphasic and (B) monophasic stimuli applied for the virtual DBS targeting the STN region.  

Fig. 7. Resting-state and DBS simulation results of the full co-simulation model implemented in TVB-ANNarchy for the patient network. The cortex is represented by 
the full-scale TVB model with a neural-mass model for each region, i.e., the TVB-cortex model results are displayed. The raster plots of the regions simulated with 
ANNarchy are shown here. On the y axis, the 200 neurons are listed in the respective region. Each dot in the raster plot represents a spike time of an individual 
neuron. Vertical black bars in the raster plot, thus, represent synchronous firing activity of all neurons. Mean firing rates are calculated based on the last 1000 ms of 
each simulation. (A) Results of the resting-state simulation for the patient’s network. (B) Results of a virtual DBS simulation targeting the GPi with an inhibitory 
continuous constant current stimulus for the entire remaining duration of the simulation. The disinhibiting effect of the GPi stimulation (from 400 ms onwards) 
towards the thalamic activity can be observed in the visualized raster plots. (C) Results of a virtual DBS simulation targeting the STN with a biphasic stimulus. (D) 
Results of a virtual DBS simulation targeting the STN with a monophasic stimulus. The red vertical lines in the plots represent the start of the respective stimulus. Red 
(green) arrows visualize inhibitory (excitatory) connections among the regions. Region names written in red (green) color-code an inhibitory (excitatory) population. 
GPi: internal globus pallidus; GPe: external globus pallidus; STN: subthalamic nucleus; dSN: striatum, direct striatal spiny projection neurons; iSN: striatum, indirect 
striatal spiny projection neurons; Thal: thalamus. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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Drs
n =

Rpatient
nrs

− Rcontrol
nrs

1
N

∑
m=1,…,N

⃒
⃒
⃒Rpatient

mrs
− Rcontrol

mrs

⃒
⃒
⃒

where N = 57 is the total number of regions, Rpatient
nrs 

and Rcontrol
nrs 

are the 
average firing rate of region n for the resting-state simulation of the 
patient and control, respectively. For evaluating the cortical effects of 
the different stimuli, we subtracted the resting-state average firing rates 
Rpatient

nrs 
from the ones of the stimulus-induced time series Rpatient

nstim
. The 

following equation Dstim
n describes the normalized difference in average 

firing rate between resting and stimulated states for the patient. In 
addition, the resulting regional differences were normalized by the 
mean over the absolute value of the obtained regional differences, for 
each subtraction separately (denominators in the above equations). 

Dstim
n =

Rpatient
nstim

− Rpatient
nrs

1
N

∑
m=1,…,N

⃒
⃒
⃒Rpatient

mstim
− Rpatient

mrs

⃒
⃒
⃒

All of our code is publicly available (https://github.com/the-virtual 
-brain/tvb-multiscale/tree/Meier_etal_ExpNeur2021). 

3. Results 

For the multiscale TVB-cortex model, we visualized the raster plots of 
the spiking-network regions for the four conditions, resting-state, GPi- 
DBS, STN-DBS with a monophasic and STN-DBS with a biphasic stimulus 
(Fig. 7). Comparing the resting-state firing rates, the largest difference 
between the patient and the control can be found in the thalamus (Fig. 8 
and Supplementary Table 4). The stimuli applied in the patient network 
caused the biggest changes in firing rate in the stimulated regions 
themselves (STN or GPi, respectively) and also in the thalamus (Fig. 8 
and Supplementary Table 4). The GPi-DBS simulation induced disinhi
bition of the thalamus from the GPi, allowing the thalamus to fire more 
than in the resting-state condition. Both STN-DBS simulations, however, 

also showed increased thalamic activity compared to the resting state 
but together with an increased firing in the GPi (Fig. 8). Compared with 
the resting-state firing of the control, the patient seems to come closer to 
the rates of the control in multiple regions of the BG during all DBS 
scenarios (Fig. 8). The common mechanism over all three stimulation 
protocols was the increase in thalamic activity. Thus, the thalamus firing 
rate seems to “normalize” towards the healthy regime during virtual 
DBS. 

Comparing the resting-state activities of the cortical regions between 
patient and control showed an increased average firing rate in the 
frontal regions and a decreased firing rate in the postcentral gyrus for 
the patient (Fig. 9A). Regarding the cortical effects of stimulation for the 
TVB-cortex model, we plotted the differences measured by the average 

Fig. 8. Average firing rates obtained by different simulations of the TVB-cortex 
model. For each of the six spiking regions, the first and second bar represent the 
resting-state condition for the control and the patient, respectively. The latter 
three bars correspond to the three virtual DBS simulations in the patient 
network, i.e., GPi-DBS, STN-DBS applying a biphasic and a monophasic stim
ulus. The height of the bar represents the firing rate (in Hz) averaged over the 
last 1000 ms of the respective simulation and over the 10 simulation repeti
tions. The error bars have the length of twice the standard deviation over the 
average firing rates obtained over these 10 repetitions. For the thalamic firing 
rate, we observe a lower firing rate for the resting-state simulation of the pa
tient compared to the control. During stimulation, the firing rate of the thal
amus increased. GPi: internal globus pallidus; GPe: external globus pallidus; 
STN: subthalamic nucleus; dSN: striatum, direct striatal spiny projection neu
rons; iSN: striatum, indirect striatal spiny projection neurons; Thal: thalamus. 

Fig. 9. Effects of the stimuli on cortical regions. We plotted the differences in 
averaged firing rate over the last 1000 ms of the simulation time on the tem
plate brain, subtracting the average rate obtained from one condition from the 
other. In addition, the resulting regional differences were normalized by the 
mean difference over the obtained regional differences for each subtraction 
separately. (A) The normalized difference in average firing rates is shown when 
subtracting the resting-state simulation results of the control from the ones of 
the patient. (B) The normalized difference in average firing rates is shown when 
subtracting the GPi stimulus simulation results from the resting-state simulation 
results of the patient. (C) The normalized difference in average firing rates is 
shown when subtracting the STN monophasic stimulus simulation results from 
the resting-state simulation results of the patient. (D) The normalized difference 
in average firing rates is shown when subtracting the STN biphasic stimulus 
simulation results from the resting-state simulation results of the patient. Thus, 
red (blue) colors indicate an increased (decreased) average firing rate of that 
specific region compared with the resting-state condition of the control (A) or 
the resting-state condition of the patient (B–D). Since our simulations are 
limited to the left hemisphere, we visualized the differences only for the left 
hemisphere. Gray regions represent disconnected regions. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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firing rate between the resting-state and each stimulus simulation per 
cortical region on the template brain in Fig. 9B-D. In all three virtual DBS 
simulations, the largest induced changes among the cortical regions 
were found in the frontal lobe and additionally in the postcentral gyrus 
for the monophasic STN stimulus. Altered levels of firing rates induced 
in the GPi and STN by the stimuli appear to be conveyed towards these 
cortical regions, altering their activity with respect to the resting state. 
Concerning the specific regions, the middle frontal gyrus and insula 
were for all three stimuli among the top five regions regarding the most 
increased firing rates induced by the stimulus. Interestingly, only the 
STN monophasic stimulus created a slight reduction of firing rate in the 
supplementary motor area (Fig. 9, bottom left, medial view). The dif
ferences in cortical activity are observed in motor, frontal, orbital and 
cingulate regions and in the insula because the other regions were 
disconnected in our connectome (Fig. 3, Supplementary Figs. 5–6). 

4. Discussion 

In this study, we introduced a multiscale modeling strategy for the 
brain network, which allows us to model the spiking network dynamics 
of the BG subnetwork in detail while simultaneously offering a whole- 
brain perspective of the evolving dynamics. We showed a first proof of 
concept that this new resulting TVB-multiscale model generates bio
logically plausible activity in resting state and during virtual DBS. This 
model has the potential to forecast DBS effects for different locations and 
different configurations on an individual patient level. 

Our presented results show that the DBS stimulus introduced on our 
patient network causes disinhibition of the thalamus, leading to an 
increased firing rate during stimulation compared to resting state. 
Empirically, (Stefurak et al., 2003) and (Jech et al., 2001) found a BOLD 
signal increase in the thalamus by DBS. Additionally, (Horn et al., 2019) 
and (Mueller et al., 2018) showed an increase in coupling between the 
thalamus and the motor cortex by DBS using fMRI data. In (Saenger 
et al., 2017), the thalamus shows one of the largest changes in bifur
cation parameters between DBS ON and OFF status based on fitted fMRI 
data. Electrophysiological studies in rats confirm the observed disinhi
bition of the thalamus during STN stimulation (Benazzouz et al., 1995, 
2000). Even though our results are in line with the hypotheses formu
lated by the classical rate model (Albin et al., 1989), conflicting evidence 
from clinical studies suggests a broader perspective as reduced thalamic 
activity alone neither explains all symptoms of PD nor all existing 
therapeutic effects (Eisinger et al., 2019; Marsden and Obeso, 1994; 
Rodriguez-Oroz et al., 2009). As for the direct effect of the stimulus on 
the target region, the recent theory of short-term depression states that 
STN-DBS blocks the transfer of low-frequency oscillations downstream, 
e.g., towards GPe and GPi, and brings the thalamic activity back to 
healthy functioning (Humphries et al., 2018). Other theories exist about 
the effects of the DBS stimulus being of excitatory, inhibitory or 
disruptive nature on its neighboring areas and a consensus has yet to be 
reached in this research field (Chiken and Nambu, 2016). Still, our re
sults show that the thalamic activity was brought back to healthy 
functioning by DBS, which is in line with the general mechanism of DBS 
(Humphries et al., 2018). Since the effect of the DBS stimulus on the STN 
is not yet completely clarified, we chose to test out two different stimuli, 
one increasing (biphasic) and one decreasing (monophasic) the firing 
rate of the STN. The difference in effects was probably largely caused by 
the maximum amplitude of the stimuli being positive (biphasic stimulus 
with strong excitatory current peak) or negative (monophasic stimulus 
contains only inhibitory current). The biphasic stimulus leads to a strong 
increase in firing activity in the STN, which is probably due to the 
depolarizing effect of the excitatory current leading to more spikes. A 
thorough grid-like exploration of different amplitudes would be out-of- 
scope for this first proof-of-concept study but will be included in future 
work using High Performance Clusters and parallel simulation design. 
Furthermore, the strong increase in STN firing rate during biphasic 
stimulation is in comparison only causing weak increases in the firing 

rates of the pallidum. This diminished transfer of the stimulus from the 
STN towards the pallidum can be explained by the high excitatory 
baseline current in GPi and GPe (which is necessary for the constant high 
firing rate, besides inhibition from striatum and lateral-inhibition). The 
added excitatory current in GPi and GPe due to the higher STN firing 
rate is probably relatively small compared to this baseline excitatory 
current. 

The increased firing rates of the thalamus during our STN-DBS sim
ulations are not caused by decreased GPi activity, which cannot be 
explained by the classical direct/indirect pathway model of BG. 
Empirical evidence supports the observed increased firing rates of GPi 
during STN stimulation (Reese et al., 2011), which were assumed to 
overwrite pathological activity patterns. One recent computational 
modeling study with optogenetic data of rodents has shown that 
increased GPi activity, when synchronized, is able to drive excitatory 
thalamic responses despite the inhibitory nature of the connection (Liu 
et al., unpublished results). The proposed underlying mechanism is that 
bursts of inhibition from GPi to thalamus can cause hyperpolarization 
and then post-inhibitory rebound firings of thalamus neurons. Post- 
inhibition spikes or bursts are characteristic behavior of the Izhikevich 
neuronal model used in this study (Izhikevich, 2004). Taking this un
clear mechanism of pacing into account, our model provides computa
tional evidence supporting a network effect leading to thalamic 
activation. 

There have not been previous studies of multiscale co-simulation of 
DBS. PD is a multiscale disease (Kerr et al., 2013) with pathological 
mechanisms at many different scales, from deterioration observed in 
single neurons up to large-scale brain dynamics. Thus, in the attempt of 
modeling the broad perspective of potential treatment effects, one 
should also no longer focus on a single scale. One previous study 
embedded a spiking network for BG regions inside a neural field model 
for the cortex (Kerr et al., 2013). However, this previous modeling 
strategy did not subdivide the cortex mean-field model further into 
separate regions nor did the authors simulate DBS. 

Compared to spiking models that encompass the BG regions only, our 
presented model can show whole-brain effects of stimulation going 
beyond the motor cortex. The presented results show an increase in 
overall activity in cortical regions for all of the three applied stimuli. 
This result is in line with the theory that PD patients have lower thalamic 
activity and, thus, a weaker driving activity from the thalamus towards 
the cortex. Subsequently, the cortex reacts with an increase of activity to 
the DBS-induced disinhibition of the thalamus. The frontal regions and 
the insula seem to be most impacted by all three different stimuli, 
measured by an increase in firing rate. The insula is linked strongly with 
non-motor symptoms in PD (Christopher et al., 2014) and a previous 
study reported a BOLD signal increase in the insula during STN-DBS 
(Kahan et al., 2012). The middle and inferior frontal gyrus also 
demonstrated one of the biggest shifts between DBS-OFF and DBS-ON 
condition measuring fMRI (Saenger et al., 2017). Interestingly, the 
monophasic stimulus applied on STN provoked a slight decrease of ac
tivity in the supplementary motor area in our results. This finding is in 
line with experimental results showing that DBS weakens excessive 
phase-locking interactions in the motor areas of PD patients (de 
Hemptinne et al., 2015). Supplementary motor areas, which are located 
at the transition between primary motor areas and prefrontal cortex, are 
involved in intentional movement initiation (Goldberg, 1985) and their 
impaired function is supposed to contribute to PD symptoms (Jacobs 
et al., 2009). Direct stimulation of supplementary motor areas with 
transcranial magnetic stimulation leads to improved freezing of gait 
symptoms in PD (Kim et al., 2018; Shirota et al., 2013), while dopami
nergic medication can be related to improved supplementary motor area 
activation and improved motoric functions (Jenkins et al., 1992; Rascol 
et al., 1994). STN DBS in PD has been shown in fMRI (Stefurak et al., 
2003) and positron emission tomography (Ceballos-Baumann et al., 
1999) studies to activate motor as well as premotor areas, concordant 
with the simulated patterns in this work. 
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Our spiking network relies on a high level of biological realism with 
regards to spatio-temporal dynamics. Space refers to the fact that the 
spiking network receives input from different brain regions of TVB, 
which is closer to the reality regarding the multitude of different white 
matter connections between the cortex and the BG (Lenglet et al., 2012). 
More realistic time modeling implies the specific mean-field model dy
namics that are chosen, as opposed to other studies, in which spiking 
networks are driven by Poisson spike trains, white noise or harmonic 
oscillations (Humphries et al., 2006; Park et al., 2011; Terman et al., 
2002). The former approach of driving these spiking networks with 
noise seems to be an abstract view of the biologically underlying phe
nomena (Kerr et al., 2013). 

There are still several open challenges in the field of DBS research 
that a virtual testing environment could potentially address. First, the 
exact placement of the electrodes seems crucial for the clinical outcome 
for patients. For PD and OCD, recent studies have shown that the con
nectivity profile of the brain area encompassing the inserted electrode 
predicts clinical outcome measures for patients (Baldermann et al., 
2019; Horn et al., 2017, 2019; Joutsa et al., 2018). This phenomenon 
was validated for dystonia (Corp et al., 2019; Okromelidze et al., 2020), 
essential tremor (Al-Fatly et al., 2019) and epilepsy (Middlebrooks et al., 
2018). Testing the effects of different placement strategies before sur
gery could provide simulation-based advice for neurosurgeons. In this 
first co-simulation approach for DBS, we modeled stimuli targeting the 
GPi or STN area directly and completely. The clinical reality looks more 
complex (Krauss et al., 2021) with different effects on the different 
neurons inside the target area. Although many complex mechanisms of 
DBS are known, most computational studies stay with highly simplified 
implementations (e.g., (Frank et al., 2007; Kumar et al., 2011; Neumann 
et al., 2018; Rubin and Terman, 2004). Moreover, the different sub-areas 
within the STN, for example, are involved in different pathways, i.e., the 
sensorimotor, associative and limbic loop. As most DBS systems provide 
several lead contacts to choose from, the precise stimulus location is a 
common problem in clinical fine-tuning of DBS. With the upcoming of 
more detailed brain atlases, one could easily extend our used parcella
tion towards a finer grid inside the BG and model these subparts sepa
rately. Here, we presented the scaffold model that can be fine-tuned 
towards a more realistic model in a straight-forward manner. Second, so 
far, little individual information is considered for each patient and often 
the electrodes are placed based on normative data (Horn and Fox, 2020). 
Fitting an individual TVB model for patients provides a more person
alized approach based on individual structural and functional imaging 
or electrophysiological data. TVB has previously been applied to help 
with predictions of clinical features for individual patients. Using indi
vidual positron emission tomography images, EEG slowing in patients 
with AD could be inferred from Abeta accumulation with the help of TVB 
(Stefanovski et al., 2019). Recently, a study has shown that the TVB 
feature of simulated mean local field potential frequency per brain re
gion significantly improves the classification of individuals as AD pa
tients, mild cognitive impairment patients or healthy controls using 
machine learning (Triebkorn et al., 2021). For epilepsy patients, TVB 
has successfully been applied to optimize the determination of the 
resection and epileptic zone per individual before surgery (An et al., 
2019). 

A personalized virtual brain including structural data and dynamics 
based on MRI data is flexible in exploring other neuromodulation 
techniques with little extra effort. The hypothesis is that neuro
modulation techniques can move the brain network dynamics between 
the diseased and healthy state (Fig. 10). With the current study, we have 
made a first attempt to “control” brain network dynamics by modeling 
stimulation in the brain of a PD patient. There is evidence that PD pa
tients could also benefit from other neuromodulation techniques (Brit
tain and Cagnan, 2018). For example, a first study found that 
transcranial magnetic stimulation (TMS) of the supplementary motor 
area helps to improve the motoric symptoms of PD patients (Shirota 
et al., 2013). With our co-simulation framework, we can potentially 

analyze the impact of such a stimulation originating on the surface and 
follow the complete loop of cortico-basal-ganglia-thalamic-cortex con
nectivity. The flexibility of the presented virtual model could help with 
finding the best therapy for each individual patient. 

The applied data-driven model from Maith et al. (2021) does not 
make use of any prior assumptions regarding the pathological PD ac
tivity within the BG network, which stands in contrast to many previous 
models (Leblois et al., 2006; Lindahl and Hellgren Kotaleski, 2016). 
Fitting the outcomes of a model with empirical data from patients and 
controls offers an alternative approach to determining BG and whole- 
brain model dynamics. With this primarily data-driven approach, 
Maith et al. (2021) found many similarities of the obtained personal 
models of individual PD patients with physiological findings of PD, such 
as lower firing rates in the thalamus. 

Our study inherits some limitations. In this proof-of-concept study, 
we modeled the TVB input that drives the spiking BG network with the 
reduced Wong-Wang mean-field model (Deco et al., 2013). In an 
improved version of this model, we could adjust the TVB mean-field 
dynamics to qualitatively correspond better with the original spiking 
network of Izhikevich neurons (Maith et al., 2021) by taking advantage 
of existing mean-field approximations of such networks (Nicola and 
Campbell, 2013; Visser and Van Gils, 2014). In the same manner, the 
reduced Wong-Wang model is derived from Leaky Integrate-and-Fire 
(LIF) neurons and one could also choose to use the LIF neuronal 
model for the spiking dynamics to better correspond with the reduced 
Wong-Wang mean-field model. The current difference between the 
cortical input represented by an excitatory and an inhibitory population 
in the only-spiking network and by excitatory populations in the mean- 
field model could also probably be improved by a more concurrent 
modeling choice between the two scales. Such choices would allow a 
more accurate analytical and computational determination of the large- 
scale brain dynamics (e.g., involved bifurcations) and inform the 
interface modeling between the two scales accordingly (e.g., in terms of 
scaling or more complex transformations). Further, alternatives to 
correlated spike trains’ generators for converting the TVB mean-field 
nodes’ rates into spike trains of TVB “proxy” nodes could be more 
effective in mimicking the Izhikevich spiking cortex node dynamics. All 
of the above options can be better explored by an upcoming computa
tionally optimized version of the TVB-multiscale toolbox, implementing 
parallel co-simulation, allowing for a systematic exploration of the 
parameter space of the multiscale model to better fit individual neuro
imaging data. So far, we fitted the virtual co-simulation brains to two 
individuals, which can be easily extended to larger cohorts with the only 

Fig. 10. Schematic overview of “controlling” brain dynamics from one state to 
another using The Virtual Brain. Different interventions, e.g., deep brain 
stimulation (DBS), transcranial magnetic stimulation (TMS) or pharmacological 
interventions, can shift the brain dynamics from one state to another. These 
neuromodulation techniques hold the potential to alter the brain dynamics from 
a diseased brain towards a healthy target brain. Using The Virtual Brain, we aim 
to explore the different pathways leading to healthy functioning in a virtual 
environment for individual patients. 
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necessary data being DTI and either fMRI or electrophysiological data to 
fit the model dynamics accurately. Using the Petersen et al. (2019) atlas 
for the connectivity between the BG and the cortex provided us with a 
high resolution for these connections but lacked cortico-cortical con
nectivity (represented by disconnected regions in the used connectome), 
which is important for further propagating the stimulus effects towards 
other cortical areas. Future work should also include high-resolution 
cortico-cortical connectivity and merge it with the Petersen et al. 
(2019) data. Moreover, the currently used parcellation of the AAL for the 
cortical regions should be updated by a more detailed one, e.g. by the 
Glasser parcellation (Glasser et al., 2016). We ran our simulations 
including the isolated regions, which cost us unnecessary computational 
power. In future studies with larger cohorts, these isolated regions 
should be left out of the simulation. The regional firing rates are highly 
influenced by the degree in our current implementation and therefore 
vary quite strongly among regions (Supplementary Fig. 3). Future work 
should include an implementation of feedback inhibition control to 
counteract this (Deco et al., 2014; Schirner et al., 2018). The well-known 
characteristic of PD patients to demonstrate hyper-synchronization in 
the beta band (8 − 35 Hz) in the sensorimotor network and the STN 
(Cruz et al., 2011; Whitmer et al., 2012) is reversed by DBS (Kühn et al., 
2008; Wingeier et al., 2006). Our approach did not yet incorporate 
modeling the electrophysiological signatures of virtual DBS. However, 
one strength of the current model is the necessary data availability since 
it only requires fMRI data. It would be clearly more efficient to directly 
use electrophysiological data, e.g. EEG or local field potentials, to tune 
such models, but the corresponding data is often not available, espe
cially in humans. In addition, the influence of neurovascular coupling on 
the forward model to derive BOLD signals is still unclear (Maith et al., 
2022). Therefore, we plan to include LFP recordings of DBS electrodes 
during optimization, which are often available in PD patients. 
Combining all available data will certainly be the goal of future research 
applying these models. Short-term plasticity probably plays an essential 
role in DBS effects (Milosevic et al., 2018), which has not yet been 
implemented in our model. Similarly, long-term plasticity effects due to 
DBS probably exist in structural and functional networks (van Hartevelt 
et al., 2014). With the spiking model allowing for an implementation of 
plasticity rules, we could explore its effects on the whole-brain dynamics 
with our model in future work. Moreover, our BG network misses the 
substantia nigra region as a crucial factor influencing PD dynamics and 
so far, we limited our analyses to a single (left) hemisphere. 

5. Conclusions 

In this study, we presented a co-simulation model for the BG as a 
spiking network together with TVB mean-field simulations for the whole 
brain. Our results show biologically plausible effects of virtual DBS 
performed in this multiscale modeling framework, bringing the patient’s 
network dynamics of the BG closer to the healthy regime. The presented 
model offers a bridge between the different scales affected by DBS in the 
brain. It has the potential to be used as a ‘sandbox’ model for individual 
patients suffering from different neurological disorders prior to surgical 
interventions. Different strategies for DBS lead placements and config
urations can be tested and evaluated. Future work needs to validate this 
model in larger patient cohorts and establish its link with clinical post- 
surgery improvement. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

PR acknowledges support by EU H2020 Virtual Brain Cloud 826421, 

Human Brain Project SGA2 785907; Human Brain Project SGA3 945539, 
ERC Consolidator 683049; German Research Foundation SFB 1436 
(project ID 425899996); SFB 1315 (project ID 327654276); SFB 936 
(project ID 178316478); SFB-TRR 295 (project ID 424778381); SPP 
Computational Connectomics RI 2073/6-1, RI 2073/10-2, RI 2073/9-1; 
Berlin Institute of Health & Foundation Charité, Johanna Quandt 
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Daniels, C., Deutschländer, A., Dillmann, U., Eisner, W., Gruber, D., Hamel, W., 
Herzog, J., Hilker, R., Klebe, S., Kloß, M., Koy, J., Krause, M., Kupsch, A., Voges, J., 
2006. A randomized trial of deep-brain stimulation for Parkinson’s Disease. N. Engl. 
J. Med. 355 (9), 896–908. https://doi.org/10.1056/nejmoa060281. 

Dostrovsky, J.O., Hutchison, W.D., Lozano, A.M., 2002. The globus pallidus, deep brain 
stimulation, and Parkinson’s disease. Neuroscientist 8 (3), 284–290. https://doi.org/ 
10.1177/1073858402008003014. 

Eisinger, R.S., Cernera, S., Gittis, A., Gunduz, A., Okun, M.S., 2019. A review of basal 
ganglia circuits and physiology: application to deep brain stimulation. Parkinsonism 
Relat. Disord. 59, 9. https://doi.org/10.1016/j.parkreldis.2019.01.009. 

Eppler, J.M., Helias, M., Muller, E., Diesmann, M., Gewaltig, M.-O., 2008. PyNEST: a 
convenient Interface to the NEST simulator. Front. Neuroinforma. 2, 12. https://doi. 
org/10.3389/neuro.11.012.2008. 

Fearnley, J.M., Lees, A.J., 1991. Ageing and Parkinson’s disease: substantia nigra 
regional selectivity. Brain 114 (5), 2283–2301. https://doi.org/10.1093/brain/ 
114.5.2283. 

Frank, M.J., Samanta, J., Moustafa, A.A., Sherman, S.J., 2007. Hold your horses: 
impulsivity, deep brain stimulation, and medication in parkinsonism. Science 318 
(5854), 1309–1312. https://doi.org/10.1126/science.1146157. 

Franzini, A., Messina, G., Gambini, O., Muffatti, R., Scarone, S., Cordella, R., Broggi, G., 
2010. Deep-brain stimulation of the nucleus accumbens in obsessive compulsive 
disorder: clinical, surgical and electrophysiological considerations in two 
consecutive patients. Neurol. Sci. 31 (3), 353–359. https://doi.org/10.1007/s10072- 
009-0214-8. 

Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., 
Ugurbil, K., Andersson, J., Beckmann, C.F., Jenkinson, M., Smith, S.M., Van Essen, D. 
C., 2016. A multi-modal parcellation of human cerebral cortex. Nature 536 (7615), 
171–178. https://doi.org/10.1038/nature18933. 

Goldberg, G., 1985. Supplementary motor area structure and function: review and 
hypotheses. Behav. Brain Sci. 8 (4), 567–588. https://doi.org/10.1017/ 
s0140525x00045167. 

Gönner, L., Vitay, J., Hamker, F.H., 2017. Predictive place-cell sequences for goal-finding 
emerge from goal memory and the cognitive map: a computational model. Front. 
Comput. Neurosci. 11, 84. https://doi.org/10.3389/fncom.2017.00084. 

Gönner, L., Maith, O., Koulouri, I., Baladron, J., Hamker, F.H., 2020. A spiking model of 
basal ganglia dynamics in stopping behavior supported by arkypallidal neurons. Eur. 
J. Neurosci. https://doi.org/10.1111/ejn.15082. 

Gruber, D., Kuhn, A.A., Schoenecker, T., Kopp, U.A., Kivi, A., Huebl, J., Lobsien, E., 
Mueller, B., Schneider, G.-H., Kupsch, A., 2014. Quadruple deep brain stimulation in 
Huntington’s disease, targeting pallidum and subthalamic nucleus: case report and 
review of the literature. J. Neural Transm. 121 (10), 1303–1312. https://doi.org/ 
10.1007/s00702-014-1201-7. 

Guo, Y., Rubin, J.E., McIntyre, C.C., Vitek, J.L., Terman, D., 2008. Thalamocortical relay 
fidelity varies across subthalamic nucleus deep brain stimulation protocols in a data- 

driven computational model. J. Neurophysiol. 99 (3), 1477–1492. https://doi.org/ 
10.1152/jn.01080.2007. 

Heimer, L., 1983. Basal Ganglia. In: The Human Brain and Spinal Cord. Springer, New 
York, NY, pp. 199–209. https://doi.org/10.1007/978-1-4684-0150-9_15. 

Horn, A., 2019. The impact of modern-day neuroimaging on the field of deep brain 
stimulation. Curr. Opin. Neurol. 32 (4), 511–520. https://doi.org/10.1097/ 
WCO.0000000000000679. 

Horn, A., Fox, M.D., 2020. Opportunities of connectomic neuromodulation. NeuroImage 
221, 117180. https://doi.org/10.1016/j.neuroimage.2020.117180. 

Horn, A., Kühn, A.A., 2015. Lead-DBS: a toolbox for deep brain stimulation electrode 
localizations and visualizations. NeuroImage 107, 127–135. https://doi.org/ 
10.1016/j.neuroimage.2014.12.002. 

Horn, A., Reich, M., Vorwerk, J., Li, N., Wenzel, G., Fang, Q., Schmitz-Hübsch, T., 
Nickl, R., Kupsch, A., Volkmann, J., Kühn, A.A., Fox, M.D., 2017. Connectivity 
predicts deep brain stimulation outcome in Parkinson disease. Ann. Neurol. 82 (1), 
67–78. https://doi.org/10.1002/ana.24974. 

Horn, A., Wenzel, G., Irmen, F., Huebl, J., Li, N., Neumann, W.-J., Krause, P., Bohner, G., 
Scheel, M., Kühn, A.A., 2019. Deep brain stimulation induced normalization of the 
human functional connectome in Parkinson’s disease. Brain 142 (10), 3129–3143. 
https://doi.org/10.1093/brain/awz239. 

Humphries, M.D., Stewart, R.D., Gurney, K.N., 2006. A physiologically plausible model 
of action selection and oscillatory activity in the basal ganglia. J. Neurosci. 26 (50), 
12921–12942. https://doi.org/10.1523/JNEUROSCI.3486-06.2006. 

Humphries, M.D., Obeso, J.A., Dreyer, J.K., 2018. Insights into Parkinson’s disease from 
computational models of the basal ganglia. J. Neurol. Neurosurg. Psychiatry 89 (11), 
1181–1188. https://doi.org/10.1136/jnnp-2017-315922. 

Irmen, F., Horn, A., Meder, D., Neumann, W.-J., Plettig, P., Schneider, G.-H., Siebner, H. 
R., Kühn, A.A., 2019. Sensorimotor subthalamic stimulation restores risk-reward 
trade-off in Parkinson’s disease. Movement Disorders 34 (3), 366–376. https://doi. 
org/10.1002/mds.27576. 

Izhikevich, E.M., 2004. Which model to use for cortical spiking neurons? IEEE Trans. 
Neural Networks Publ. IEEE Neural Networks Council 15 (5), 1063–1070. https:// 
doi.org/10.1109/TNN.2004.832719. 

Jacobs, J.V., Lou, J.S., Kraakevik, J.A., Horak, F.B., 2009. The supplementary motor area 
contributes to the timing of the anticipatory postural adjustment during step 
initiation in participants with and without Parkinson’s disease. Neuroscience 164 
(2), 877–885. https://doi.org/10.1016/j.neuroscience.2009.08.002. 

Jahanshahi, M., Obeso, I., Baunez, C., Alegre, M., Krack, P., 2015. Parkinson’s disease, 
the subthalamic nucleus, inhibition, and impulsivity. Movement Disorders 30 (2), 
128–140. https://doi.org/10.1002/mds.26049. 

Jamalian, A., Bergelt, J., Dinkelbach, H.Ü., Hamker, F.H., 2017. Spatial attention 
improves object localization: a biologically plausible neuro-computational model for 
use in virtual reality. IEEE Int. Conf. Computer Vision Workshops (ICCVW) 2017, 
2724–2729. https://doi.org/10.1109/ICCVW.2017.320. 

Jech, R., Urgosík, D., Tintera, J., Nebuzelský, A., Krásenský, J., Liscák, R., Roth, J., 
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Details of the spiking network model 

For an overview of all variables used in this study, we refer to Supplementary Table 1. For 

every neuron in a region node modeled as a spiking network, the membrane potential V was 

assumed to follow the equation 

 

 

 

(1) 

 (2) 

where , , ,  and  are region-specific parameters that were taken from literature as in 

(Maith et al., 2021) (Supplementary Table 2). Specifically, parameters for GPe, GPi, STN 

were taken from (Thibeault & Srinivasa, 2013), for striatum from (Humphries et al., 2009) 

and for thalamus taken from the phasic bursting model of (Izhikevich, 2004). If the 

membrane potential exceeds a certain threshold value , i.e., , a spike is emitted, 

 is set to a value  and  is incremented by a fixed amount . The conductance follows the 

equation 

 

 
(3) 

where  and  is the Kronecker delta. The last term of this previous 

equation is the increase of the conductance by a fixed amount after each incoming spike  at 

spike time . The equations were taken from (Baladron et al., 2019), only  was added.  

 

https://paperpile.com/c/bSQ9Cg/mezM
https://paperpile.com/c/bSQ9Cg/G9UrN
https://paperpile.com/c/bSQ9Cg/E2Sk4
https://paperpile.com/c/bSQ9Cg/mWcjO
https://paperpile.com/c/bSQ9Cg/OzTyK


Similar to previous publications (Baladron et al., 2019; Maith et al., 2021), we simulated the 

above model in ANNarchy (Vitay et al., 2015) and applied the Euler method to solve the 

differential equations (Equations (1)-(3)) with a time step of . 

 

Supplementary Table 1: Glossary table of all the used variables of our multiscale model. We 

list all used variables with a short description, possibly their assigned values and respective unit. 

variable assigned value unit description 

 -   time 

   TVB integration time step 

Spiking network 

 -  membrane potential 

 -  

 

recovery variable 

 region-specific, 
Table 1  

membrane capacity 

 
region-specific, 
Table 1 

 region-specific external current 

 
GPi stimulus: -10 
monophasic STN: -280 
biphasic STN: 160 

 DBS current 

 region-specific, 
Table 1 

- rate of recovery of U 

 region-specific, 
Table 1 

- sensitivity of recovery to subthreshold 
fluctuations of membrane potential 

 region-specific, 
Table 1 

 after-spike reset value of V 

 region-specific, 
Table 1  

after-spike increment of U 

 
region-specific, 
Table 1 

- neuron-type specific parameter 

 
region-specific, 
Table 1 

- neuron-type specific parameter 

 
region-specific, 
Table 1 

- neuron-type specific parameter 

 
striatum: 40 
all others: 30 

 spike threshold membrane potential 

 
-  AMPA synaptic conductance 

 
-  GABA synaptic conductance 

https://paperpile.com/c/bSQ9Cg/mezM+OzTyK
https://paperpile.com/c/bSQ9Cg/KBpAu


   AMPA reversal potential 

   GABA reversal potential 

   AMPA synapse time constant 

   GABA synapse time constant 

Mean-field model  

 
- - proportion of open synaptic ion channels 

 
-  instantaneous spike rate 

   synaptic time scale 

   excitatory kinetic parameter 

   excitatory sigmoidal function parameter 

   excitatory sigmoidal function parameter 

   excitatory sigmoidal function parameter 

’ -  presynaptic current 

   overall effective external input current 

  - local excitatory recurrence 

   excitatory synaptic coupling 

  - linear coupling parameter 

  - linear coupling parameter 

  
- global coupling constant 

 
- - connection weight from node  to node 

 

 
-  delay from node  to node  

Interface and connectivity 

 
- - interface weight / spike weight from 

proxy node  to spiking node 

 

 
-  spike delay from proxy node  to spiking 

node  

 
-  spike time of neuron  



 
- - number of neurons in a population 

 
- - number of spikes 

 
- 

 

input rate 

 
- 

 

integrated input rate 

   integration time constant 

 
control: 

 
patient: 

 

- connectivity weight ratio 

 
control: 0.0382668 
patient: 0.0380754 

- interface factor for iSN  

 
control: 0.0321123 
patient: 0.0338178 

- interface factor for dSN  

 
control: 0.311472  
patient: 0.2894958 

- interface factor for STN 

DBS stimulus 

 
monophasic: -35 
biphasic: 20 

 stimulus amplitude 

   scaling factor 

 monophasic: 120 
biphasic: 130 

  stimulus frequency 

 
0.3  pulse width (of the first, short and high-

amplitude phase for the biphasic 
stimulus) 

STN: subthalamic nucleus; dSN: striatum, direct striatal spiny projection neurons; iSN: striatum, 

indirect striatal spiny projection neurons; DBS: deep brain stimulation. 

 

Supplementary Table 2: Spiking network parameters. Set parameter values for each of the 

neuronal populations modeled as a spiking network (values taken from (Maith et al., 2021)). 

Population a b c (mV) d C Ie n0 n1 n2 

Striatum 0.05  −20  −55 377  50  0  61.65  2.59  0.02 

GPi 0.005 0.585 -65 4 1 30 140 5 0.04 

GPe 0.005 0.585 -65 4 1 12 140 5 0.04 

STN 0.005 0.265 -65 2 1 3 140 5 0.04 

Thalamus 0.02 0.25 -65 0.05 1 3.5 140 5 0.04 

https://paperpile.com/c/bSQ9Cg/mezM


CxExcit 0.02 0.2 -72 6 1 50 140 5 0.04 

CxInh 0.02 0.2 -72 6 1 0 140 5 0.04 

CxExcit: excitatory population of the cortex; CxInh: inhibitory population of the cortex; GPi: internal 

globus pallidus; GPe: external globus pallidus; STN: subthalamic nucleus. 

Details of the underlying connectivity 

 

The generation of the atlas from Petersen and colleagues (2019) started from co-registering 

histological data (Gallay et al., 2008; Morel, 2007) and normative MRI-based CIT-168 atlas 

(Pauli et al., 2018) from the Human Connectome Project (Van Essen et al., 2013). As the 

used histological atlas is focused on the thalamus and BG, additional tracts were 

approximated by information from non-human studies. The resulting streamlines were 

manually curated by the neuroanatomists in a holographic augmented-reality interface to 

correct their three-dimensional approximation interactively and further validated with the 

underlying histological data. As a result, the connectome by Petersen et al. provides a 

precise three-dimensional representation of fiber tracts in the human brain and can be used 

with any existing parcellation to calculate structural connectivity, similar to the calculation 

from DTI.  

 

Details about ANNarchy 

 

Based on the code written by the user, ANNarchy automatically generates optimized C++ 

code, which can be run on different types of parallel hardware (e.g., on a multi-core system 

or graphical processing unit). Together with the simulation in automatically generated C++ 

code and the use of parallel computing, ANNarchy possesses a unique combination of 

properties, enabling detailed simulations at low computational costs. ANNarchy runs on 

GNU/Linux and OSX and is open source with freely available documentation and source 

code at http://annarchy.readthedocs.org and http://bitbucket.org/annarchy/annarchy. An 

overview of the functions and objects of ANNarchy that were integrated in the TVB-

ANNarchy simulation framework is shown in Supplementary Figure 1. 

 

 

Supplementary Figure 1: Architecture of the TVB-ANNarchy co-simulation interface. The 

different existing objects in ANNarchy are represented by gray boxes. The smallest defined objects 

https://paperpile.com/c/bSQ9Cg/xLk4e+qKJAM
https://paperpile.com/c/bSQ9Cg/IAPty
https://paperpile.com/c/bSQ9Cg/t2RM6
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are called devices and populations. A device ("ANNarchy Device") can be either an input or output 

device. Input devices contain special ANNarchy populations that can generate stimuli which can be 

used as inputs to other spiking populations. Output devices wrap around one or several ANNarchy 

monitors for recording spikes and state variables. A population object called "ANNarchy Population" 

wraps around a Population or Population View object from ANNarchy and also manages the 

projections between populations. In our use case, an ANNarchy Population can be an inhibitory 

population for example. A Region Node is one level above that in the hierarchy. It can contain several 

ANNarchy Populations and holds their labels. In our case, the thalamus is represented as a Region 

Node with one population. The ANNarchy Brain is on the next organisational level. It holds all Region 

Nodes and a mapping to their labels. The ANNarchy Network is the highest-level object. It holds an 

ANNarchy Brain as well as all Input Device and Output Device objects.Objects that exist in the 

ANNarchy library are colored in green, in blue are wrappers around them. Gray arrows indicate that 

several objects of the same type are typically held inside an object higher in the hierarchy, e.g., a 

Region Node can contain many ANNarchy Populations. 

 

Supplementary Table 3: Firing rate validation between the ANNarchy model implementation by 

(Maith et al., 2021) and our TVB-ANNarchy implementation of the spiking-cortex model. We 

compared the two spiking network implementations. For this validation, we performed a shorter 

simulation without noise on the control and patient network data. 

mean firing rate ANNarchy 

model from 

(Maith et al., 

2021) - control 

spiking-cortex 

model inside 

TVB-ANNarchy 

- control 

ANNarchy 

model from 

(Maith et al., 

2021) - patient 

spiking-cortex 

model inside 

TVB-ANNarchy 

- patient 

Cx-E 16.0 16.0 16.0 16.0 

Cx-I 32.0 32.0 32.0 32.0 

dSN 16.4 16.6 19.2 18.9 

iSN 15.8 15.8 15.4 15.9 

STN 31.4 31.3 31.9 32.0 

GPe 34.4 34.4 35.5 35.3 

GPi 35.7 35.6 36.1 36.1 

Thal 22.7 23.1 19.9 20.3 

Cx-E: excitatory population of the cortex node; Cx-I: inhibitory population of the cortex node; GPi: 

internal globus pallidus; GPe: external globus pallidus; STN: subthalamic nucleus; dSN: striatum, 



direct striatal spiny projection neurons; iSN: striatum, indirect striatal spiny projection neurons; Thal: 

thalamus. 

 

 

 

 

Mean-field model for the cortical regions 

 

For every region node  (we use the prime notation for nodes modeled only as mean-fields 

nodes in TVB), the (post-)synaptic gating dynamics  (i.e.,  is the proportion of synapse 

channels open at any given time) are defined as 

 

where  is the time scale of the synapse and  is the postsynaptic firing 

rate given by  

 , 

which is a sigmoidal activation function of the presynaptic input current . The total 

presynaptic current is given by  

 

The variables  and  define the weight and delay for the connection from region 

node  to region node , respectively, whereby the sum runs over all pairwise 

combinations. The connectivity weights were additionally scaled by the global coupling 

constant  and the parameter  of TVB’s linear coupling function (of the form , in 

which we set the default parameters  and ). The parameters were 

determined as in (Deco et al., 2013) (Supplementary Table 1).  

 

Details of the spike train generation for the coupling from TVB to ANNarchy 

 

For the correlated spike trains’ generation, TVB “proxy” nodes are modeled in ANNarchy, as 

populations Poisson-like spiking neurons whose population rate x varies following a 

stochastic differential equation   

 

where  is a random variable. Thus, the population rate  randomly varies around  over 

time, with an amplitude determined by  and a speed determined by . To avoid that  

becomes negative, the values of  and  are computed from a rectified Gaussian 

distribution, parameterized by the desired population rate , the desired correlation 

strength corr = 0.3, and the time constant . In our case, the rate was determined 

by TVB input at each TVB time step and  and  were automatically recomputed by the 

ANNarchy class HomogeneousCorrelatedSpikeTrains (Brette, 2009). The correlation 

parameter of the HomogeneousCorrelatedSpikeTrains ANNarchy spike generator was set to 

 in all cases and models, after visual inspection and comparison of the generated 

spike trains to the spike trains of the noisy Izhikevich excitatory spiking cortex population 

https://www.codecogs.com/eqnedit.php?latex=G#0
https://www.codecogs.com/eqnedit.php?latex=G#0
https://www.codecogs.com/eqnedit.php?latex=G#0
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used in Maith et al. (2021), which was the driver of the spiking network in that study (Maith et 

al., 2021).  

 

For the “trial and error” simulations for determining the value of , we started with setting 

initial conditions of all  and . For every subsequent simulation, we were 

using the mean state variables’ values of the last 100 ms of the previous simulation as initial 

conditions. The mean firing rate that we were trying to approximate was also computed for 

those last 100 ms. Once the equilibrium was approximated and the mean firing rate was in 

the interval [15, 18] Hz, we set the  value accordingly and stored the initial conditions. For 

the 10 repetitive co-simulations for the results of Supplementary Table 4, we selected initial 

conditions randomly in the neighborhood of the above original vector of initial conditions as it 

is explained in the main text.  

 

Small differences in the rates obtained for multiscale model’s co-simulations are to be 

expected, especially for the firing rate of the thalamus, which depends a lot on the spikes’ 

correlations among neurons of the populations that couple to it directly and indirectly. In that 

respect, please note that (a) the weighted superposition of the activity of many TVB “proxy” 

nodes results in an effective driving dynamics of a quite different autocorrelation profile than 

that of a single noisy spiking cortex node, and (b) we have set the same, undifferentiated, 

value for the correlation of the driving spike generators for both subjects, as explained 

above.  

 

Details of the applied STN stimuli 

 

The monophasic stimulus  

 

is adapted from (Michmizos & Nikita, 2011), where  is the Heaviside function,  is the 

frequency in ,  is the amplitude of the stimulus in V,  is a scaling factor,  is 

the pulse width and  is the time in seconds. The biphasic stimulus was defined as  

  

            

similar to (Liu et al., 2020). Here, the pulse width  is the pulse width of the first, short 

and high-amplitude phase. The second phase of the biphasic stimulus is designed to be 10 

times as long and has 1/10th of the amplitude (Figure 6A). The parameters of the 

monophasic and the biphasic stimuli are listed in Supplementary Table 1. 

 

Supplementary Table 4: Regions of the left hemisphere included in the connectome used for 
simulations. The regions 1-5 are the regions of the basal ganglia network. The other regions are 
regions from the AAL atlas. 

Region number Abbreviation of the region Full region name 

1 GPe Globus pallidus externus 

https://paperpile.com/c/bSQ9Cg/mezM
https://paperpile.com/c/bSQ9Cg/mezM
https://www.codecogs.com/eqnedit.php?latex=%20R_%7Bn%5Cprime%7D%20%3D%200.0%20#0
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2 GPi Globus pallidus internus 

3 STN Subthalamic nucleus 

4 Striatum Striatum 

5 Thal Thalamus 

6 Precentral Precentral gyrus 

7 Frontal_Sup_2 Superior frontal gyrus 

8 Frontal_Mid_2 Middle frontal gyrus 

9 Frontal_Inf_Oper Inferior frontal gyrus, opercular part 

10 Frontal_Inf_Tri Inferior frontal gyrus, triangular part 

11 Frontal_Inf_Orb_2 Inferior frontal gyrus, orbital part 

12 Rolandic_Oper Rolandic operculum 

13 Supp_Motor_Area Supplementary motor area 

14 Olfactory Olfactory cortex 

15 Frontal_Sup_Medial Superior frontal gyrus, medial 

16 Frontal_Med_Orb Superior frontal gyrus, medial 

17 Rectus Gyrus rectus 

18 OFCmed Medial orbital gyrus 

19 OFCant Anterior orbital gyrus 

20 OFCpost Posterior orbital gyrus 

21 OFClat Lateral orbital gyrus 

22 Insula Insula 



23 Cingulate_Ant Anterior cingulate & paracingulate gyri 

24 Cingulate_Mid Middle cingulate & paracingulate gyri 

25 Cingulate_Post Posterior cingulate gyrus 

26 Hippocampus Hippocampus 

27 ParaHippocampal Parahippocampal gyrus 

28 Amygdala Amygdala 

29 Calcarine 
Calcarine fissure and 

surrounding cortex 

30 Cuneus Cuneus 

31 Lingual Lingual gyrus 

32 Occipital_Sup Superior occipital gyrus 

33 Occipital_Mid Middle occipital gyrus 

34 Occipital_Inf Inferior occipital gyrus 

35 Fusiform Fusiform gyrus 

36 Postcentral Postcentral gyrus 

37 Parietal_Sup Superior parietal gyrus 

38 Parietal_Inf 
Inferior parietal gyrus, excluding 
supramarginal and angular gyri 

39 SupraMarginal Supramarginal gyrus 

40 Angular Angular gyrus 

41 Precuneus Precuneus 

42 Paracentral_Lobule Paracentral lobule 



43 Heschl Heschl gyrus 

44 Temporal_Sup Superior temporal gyrus 

45 Temporal_Pole_Sup 
Temporal pole: superior 

temporal gyrus 

46 Temporal_Mid Middle temporal gyrus 

47 Temporal_Pole_Mid 
Temporal pole: middle temporal 

gyrus 

48 Temporal_Inf Inferior temporal gyrus 

49 Cerebelum_Crus1 Crus I of cerebellar hemisphere 

50 Cerebelum_Crus2 Crus II of cerebellar hemisphere 

51 Cerebelum_3 Lobule III of cerebellar hemisphere 

52 Cerebelum_4_5 Lobule IV, V of cerebellar hemisphere 

53 Cerebelum_6 Lobule VI of cerebellar hemisphere 

54 Cerebelum_7b Lobule VIIB of cerebellar hemisphere 

55 Cerebelum_8 Lobule VIII of cerebellar hemisphere 

56 Cerebelum_9 Lobule IX of cerebellar hemisphere 

57 Cerebelum_10 Lobule X of cerebellar hemisphere 

 

 

 

 

 



 
Supplementary Figure 2: Tract length matrix used for simulations. We approximated the tract 

lengths among regions by the Euclidean distance between the three-dimensional anatomical center 

coordinates of each region. 

 



 

Supplementary Figure 3: Characteristic time series of the rate state variable  of all TVB nodes 

from a co-simulation. Each colored time series represents the time series of the state variable R, the 

firing rate, of one of the TVB nodes. The dynamics consists of random fluctuations (due to additive 

white noise of standard deviation 10-4) around an equilibrium point, which is determined by the 

couplings among the nodes on the basis of the structural connectome (weights and delays) and the 

global coupling scaling . The mean firing rate across the whole TVB brain was on average 15 Hz. 

Despite not visually looking like it, this was the case because we had very low frequencies in multiple 

regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Supplementary Table 5: Table of obtained firing rates for the spiking-cortex model for patient 

and control network, in both resting-state and stimulus condition. Mean firing rates averaged 

over the last 1000ms of each simulation and averaged over the 10 repetition simulations in case of 

the TVB-cortex model (standard deviation of these mean firing rates over the 10 repetition simulations 

in case of the TVB-cortex model). 

mean 

firing 

rate 

resting-state 

control 

resting-state 

patient 

GPi-DBS 

patient 

STN-DBS 

biphasic 

patient 

STN-DBS 

monophasic 

patient 

 spiking

-cortex 

model 

TVB- 

cortex 

model 

spiking

-cortex 

model 

TVB- 

cortex 

model 

spiking

-cortex 

model 

TVB- 

cortex 

model 

spiking

-cortex 

model 

TVB- 

cortex 

model 

spiking

-cortex 

model 

TVB- 

cortex 

model 

Cx-E 14.1 - 14.1 - 14.1 - 14.1 - 14.1 - 

dSN 16.2 16.2 

(0.1) 

19.9 20.7 

(0.2) 

22.8 23.4 
(0.3) 

22.8 22.3 

(0.4) 

21.5 22.7 

(0.2) 

iSN 10.8 10.3 

(0.1) 

9.5 8.9 

(0.1) 

11.4 11.0 
(0.2) 

10.9 10.3 

(0.3) 

10.5 10.6 

(0.1) 

STN 26.9 27.4 

(0.1) 

29.4 30.2 

(0.1) 

29.5 30.4 
(0.1) 

42.9 45.9 

(0.2) 

28.0 27.9 

(0.2) 

GPe 35.3 34.8 

(0.3) 

35.7 35.5 

(0.1) 

35.6 35.4 
(0.2) 

40.3 40.7 

(0.5) 

36.3 35.8 

(0.2) 

GPi 34.2 34.5 

(0.1) 

34.6 34.6 

(0.1) 

30.3 30.5 
(0.1) 

38.9 39.6 

(0.3) 

35.2 35.9 

(0.1) 

Thal 17.4 19.4 

(0.2) 

12.8 12.6 

(0.3) 

20.4 19.3 
(0.5) 

17.9 16.5 

(0.9) 

16.9 17.2 

(0.3) 

Cx-E: excitatory population of the cortex node; GPi: internal globus pallidus; GPe: external globus 

pallidus; STN: subthalamic nucleus; dSN: striatum, direct striatal spiny projection neurons; iSN: 

striatum, indirect striatal spiny projection neurons; Thal: thalamus. 



 
Supplementary Figure 4: Average firing rates obtained by different simulations of the TVB-

cortex and the spiking-cortex model. For each of the six spiking regions, each bar represents 

either the resting-state condition for the control, the patient or one of the three virtual DBS 

simulations, i.e., GPi-DBS, STN-DBS applying a biphasic and a monophasic stimulus. For each 

region, the first, third, fifth, seventh and ninth bars represent the average firing rate of the spiking-

cortex model, the second, fourth, sixth, eighth and tenth bars (with red outline) represent the average 

firing rate of the TVB-cortex simulations. The heights of the bars represent the firing rate (in Hz) 

averaged over the last 1000 ms of the respective simulation and over the 10 simulation repetitions for 

the TVB-cortex simulations. GPi: internal globus pallidus; GPe: external globus pallidus; STN: 

subthalamic nucleus; dSN: striatum, direct striatal spiny projection neurons; iSN: striatum, indirect 

striatal spiny projection neurons; Thal: thalamus. 



 
Supplementary Figure 5: Patient connectivity weight matrix used for multiscale simulations. 

This connectivity matrix was used for the patient simulations. It does also include the disconnected 

nodes. Zero entries of the matrix are colored in gray. For visualization purposes, the normalized 

Petersen et al. (2019) connections have been brought to the same range as the optimally fitted 

connectivity weights from Maith et al. (2021). 

 

 



 
Supplementary Figure 6: Control connectivity weight matrix used for multiscale simulations. 

This connectivity matrix was used for the control simulations. It does also include the disconnected 

nodes. Zero entries of the matrix are colored in gray. For visualization purposes, the normalized 

Petersen et al. (2019) connections have been brought to the same range as the optimally fitted 

connectivity weights from Maith et al. (2021). 

 

 

 
Supplementary Figure 7: Matrices visualizing the differences in connectivity weights, 

probabilities and strengths between patient and control BG spiking networks. We obtained 

these matrices by dividing the parameter of the patient in the BG spiking network by the control 

parameter. Thus, an entry of 0.95 means that the patient has 95% of the control parameter value. 

Gray entries represent that there exists no connection between the pair of regions in our model. The 

analyzed parameters are (A) connection weights, (B) connection probabilities and (C) connection 

strengths. The connection strength is the product of the connection weight and probability similar as in 

Maith et al. (2021). 
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