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2 Abstract

Group sequential design and adaptive design are flexible designs that are
frequently applied in clinical trials. Unlike fixed designs, flexible designs allow for
statistical inferences on trial endpoints prior to complete data collection. Such early
inferences on a trial may lead to different decisions regarding trial continuation after
the interim analyses. If the treatment effect can already be shown, the trial may be
stopped early for efficacy. On the contrary, if the interim inference indicates a small
treatment effect, the trial may be stopped early for futility. Various options for
efficacy and futility stopping boundaries have been proposed in the statistical
literature. However, futility boundaries are often chosen without the thorough
planning of operational characteristics and evaluation of design performance. In
this research work, performance criteria in flexible designs with early futility stops
are evaluated. Moreover, previous work from Schuler [28] is further developed to
select the so-called "optimal futility boundaries” [17]. The optimization approach is
developed for trials with continuous or binary endpoints. Application examples of
real clinical trials demonstrate the advantages of the new optimal approach and
have evaluated the performance criteria in various flexible designs. The results
indicate that the optimal futility stopping boundaries simultaneously minimize the
probability of wrongly stopping for futility and power loss. Additionally, boundaries
from the optimal approach improve the probability of correctly stopping for futility
early. In conclusion, it is recommended to investigate and optimize futility
boundaries thoroughly at the planning stage of a clinical trial to achieve greater

design efficiency.



3 Zusammenfassung

Gruppensequenzielles Design und adaptives Design sind flexible Designs, die
haufig in klinischen Studien angewendet werden. Anders als bei festen Designs,
ermoglichen flexible Designs vor der vollstdndigen Datenerfassung statistische
Inferenzen auf Studienendpunkte zu ziehen. Eine solche friihe Inferenz kann zum
Zeitpunkt der Zwischenanalysen zu unterschiedlichen Entscheidungen uber die
Fortsetzung der Studie fihren. Bei validiertem Behandlungseffekt kann die Studie
wegen Wirksamkeit vorzeitig abgeschlossen werden. Im Gegenteil kann die Studie
vorzeitig wegen Aussichtslosigkeit abgebrochen werden, wenn die vorlaufige
Schlussfolgerung auf einen geringen Behandlungseffekt hinweist. In der
statistischen Literatur finden sich bereits diverse Optionen fur das Stoppen
aufgrund der Wirksamkeit und Aussichtslosigkeit. Die Wahl der Grenzen flr das
Stoppen aufgrund der Aussichtslosigkeit erfolgt allerdings oft ohne grindliche
Planung der operativen Eigenschaften und Evaluation der Gite von Designs. In
dieser Forschungsarbeit werden Leistungskriterien in flexiblen Designs mit frihem
Stoppen aufgrund der Aussichtslosigkeit evaluiert und frUhere Arbeiten von Schuler
[28] weiterentwickelt, um sogenannte "optimale Grenzen fur das Stoppen aufgrund
der Aussichtslosigkeit” [17] auszuwahlen. Der Optimierungsansatz wurde fur
Studien mit kontinuierlichen oder binaren Endpunkten entwickelt. Echte klinische
Studien werden als Anwendungsbeispiele verwendet, um die Vorteile des neuen
optimalen Ansatzes zu demonstrieren und die Leistungskriterien in verschiedenen
flexiblen Designs zu bewerten. Die Ergebnisse zeigen, dass die optimalen
Grenzen fur das Stoppen aus Aussichtslosigkeit sowohl die Wahrscheinlichkeit
eines falschen Stoppens aus Aussichtslosigkeit als auch den Verlust der
Trennscharfe gleichzeitig minimieren. Zusatzlich verbessert der optimale Ansatz
die Wahrscheinlichkeit, frihzeitig korrekt wegen Aussichtslosigkeit aufzuhéren.
SchlieRlich wird empfohlen, die Grenzen in der Planungsphase einer klinischen
Studie grundlich zu wuntersuchen und zu optimieren, um eine hohere

Designeffizienz zu erreichen.



4 Synopsis

4.1 Introduction

Designing a clinical trial that balances resources and scientific impact can be
challenging. There are constant changes due to new research from scientific
communities and new guidelines from regulatory agencies. Critical attention should
be given to the protection of the rights, safety, and well-being of trial participants.
When attempting to reduce the time and financial resources required for research,
clinical trials based on traditional fixed designs are less favorable. For example,
major adjustments to an ongoing trial require a trial protocol amendment. On the
contrary, trials with flexible designs allow prospectively planned modifications
based on accumulated data without changing the protocol.

Although contributing to only 2.6% of the trials on PubMed, phase Il and lll trials
planned with flexible designs are more likely to be completed than those with fixed
designs [32]. Such flexible designs allow for trial modification, including early trial
termination for efficacy and futility or the adaptation of sample size. The application
of early stopping can reduce the cost and patient risk if a trial may already achieve
the research objectives at the interim analysis or terminate early for futility.

A multiple testing problem is caused by such prospectively planned interim
analyses and trial modifications. Initial methods for controlling type-l error via
alpha-spending methods were developed exclusively for group sequential designs
by Pocock [23] and O’Brien and Fleming [20]. The key ideas of the alpha-spending
method were later extended to diverse flexible applications in terms of the timing
and actual information acquired up to the interim analysis [4, 13| |33]. For adaptive
designs with sample size re-estimation, the Fisher's method [1] and inverse normal
method [15] are commonly used to control overall type-l error by combining the
data from each stage.

Although there is an increasing interest in flexible designs, in practice, common
applications often only contain the option of early stopping for efficacy. Notably, the
method of an early stop for futility is less commonly researched. Between the two

purposes of early trial termination at an interim stage, efficacy is considered a
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positive event because it leads to the successful conclusion of treatment benefits.
On the contrary, terminating a trial due to futility is a difficult decision to make. The
trial sponsors and investigators must accept such an early stop as a sunk cost of
their spent resources. Moreover, a futility stop decreases the possibility of positive
secondary findings from a negatively terminated trial [27]. Despite the negative
consequences, early stopping for futility is an important trial design feature used to
safeguard resources and ethics. Additionally, incorrectly stopping for futility is also
a waste of resources and puts patients at risk without scientific impact. A proper
boundary for futility stopping should increase the efficiency of a trial design.
Therefore, the current research on futility stopping boundaries can be observed in
both large phase Il trials and small non-controlled phase Il trials [30], while the
futility boundaries are often different from the efficacy boundaries by being
non-binding. For binding futility boundaries, once the result from the interim
analysis crosses the boundary, stopping the trial for futility becomes mandatory.
When combined with an early stopping for efficacy, the binding futility boundaries
may also contribute to the choice of efficacy boundaries if desired, so that the
efficacy boundaries can fully exhaust the global significance level [2]. While the
non-binding futility boundaries do not have the same features as the binding
boundaries, they offer more flexibility. The non-binding boundaries are treated as
an optional recommendation, while the decision to stop for futility is weighted
alongside other factors (e.g., the secondary analysis and external information).
Typically, a data monitoring committee is established to independently evaluate the
safety data. This type of committee may also independently evaluate the interim
analysis of efficacy data and check the crossing of a futility stopping boundary.
Since a data monitoring committee only makes recommendations based on the
boundaries, with the trial sponsor takes the final decision, non-binding boundaries
are better suited for this process. Therefore, the non-binding type plays a more
important role in clinical research practices and deserves greater attention for

methodology development.

Methodologies for futility stopping rules were proposed in the literature decades

ago. The first group of methods is beta-spending functions, which is classified as
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a frequentist approach. Beta-spending functions are similar to the alpha-spending
functions initially designed for early stopping for efficacy in group sequential designs,
except they control for type-Il error at g and the stopping boundaries are expressed
in probabilities [4, |3, 21, 25]. The second type of approaches is called stochastic
curtailment [14) 12]. In these approaches, the boundaries are prospectively chosen
based on conditional power (CP), which is defined as the probability of rejecting the
null hypothesis at the final analysis based on the observed interim data and certain
treatment effect assumptions. Apart from frequentist approaches, there is also a

similar Bayesian approach based on predictive power [26, (16, 9].

The performance and operational characteristics of trial designs are further
evaluated after the inclusion of futility stopping boundaries at the interim analysis.
Some examples of operational characteristics can include the maximum and
expected sample size due to time and financial limitation [8, 22]. The boundaries
are optimized based on a combination of operational characteristics of
investigators’ preferences. For example, an investigator might be interested in the
actual benefit of stopping a trial early if there is no treatment effect. Alternatively,
the overall probability of success for a trial or the expected sample size could be
the main focus. However, it remains unclear how these different criteria can be
weighted against each other. Liu et al. [19] proposed a performance score of trial
designs based on the combination of final sample size and power for adaptive
designs. However, the criterion of sample size may not be applicable to all designs
and is not specific to early stopping for futility. Different from a single performance
score, several performance criteria, including the probability of wrongly stopping,
power loss, and probability of correctly stopping, are jointly considered in my
project. These criteria are chosen to cover performance at both interim stages
locally (namely the probabilities of wrongly and correctly stopping) and the power
loss due to futility at global level. Notably, these criteria can easily be understood
and communicated between statisticians and physicians. Schiler [28] proposed
futility stopping boundaries optimized by such characteristics in a special two-stage
group sequential design where the type of primary endpoints is time-to-event and

the boundaries are restricted in the scale of probabilities. The approach from
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Schiler is extended in this project to continuous endpoints [17] and binary
endpoints. Additionally, this project investigates the performance based on various
scales of futility boundaries and for several group sequential and adaptive designs.

My research aims to quantify the performance criteria in group sequential and
adaptive designs with futility stopping boundaries. Individual criteria can be
customized to emphasize different aspects of trial performance. Subsequently,
another aim of the project is to provide an algorithm for futility stopping boundary
optimization for various designs and endpoint types. Under the framework, open
and proactive dialogue is encouraged between statisticians and clinicians in the
initial trial design phase so that different designs with optimal futility boundaries can
be prospectively compared to achieve maximum trial efficiency.

The dissertation first defines the performance criteria and optimization algorithm
in the Methods section. The Methods section is further divided into two parts for
continuous data and binary data, respectively. For each type of endpoint, several
methods are developed to cover different flexible designs, including a design for
non-controlled trials with binary data. Next, the algorithm is applied to hypothetical
settings and real clinical trials, as presented in the Results section. The benefits of
the optimal approach are also demonstrated. Finally, the conclusions of my research

are given in the Discussion section.



4.2 Methods

Continuous data

Consider a randomized controlled trial that compares two treatment groups. T
denotes the treatment group and C denotes the control group.

For normally distributed continuous data, the observations are denoted as

X'~ N o?),i=1...n" and XE ~ N (p, 0%),i=1...n° (1)

As is often the case in practice, the allocation of two groups is balanced so that
nT = n% = n. Additionally, a known common standard deviation ¢ is often assumed

in practice. The trial hypothesis can be written as
Hy: pym' —p® <oversus Hy : pF —pu >0 (2)

The direction of the aforementioned hypothesis indicates an effective treatment
group compared to the control group if the endpoint of interest has a higher numeric
value. The hypothesis is constructed for superiority testing. If the objective of a trial
is to establish non-inferiority, 0 should be replaced by a non-inferiority margin.

Assuming a large enough sample size n, a Z-test based on normal distribution
can be used for hypothesis testing. The test statistic Z with » and sample means X7

and X ¢ can be expressed as

XT _XC XT_XC
7 = = * \/E (3)
SETT
If o is unknown, it can be estimated by the pooled sample standard deviation

Spooled = \/w based on the observed data. It is shown that the estimation has

a minimal impact on the overall « [24].

After trial completion, the hypothesis H, shall be rejected and a treatment benefit
is demonstrated if Z > z;_,. The one-sided significance level o and the power Pow

can be formulated in terms of probabilities as

o= Py, (Z >2z_4)and Pow=1— 0= Py, (Z > z1_,) 4)
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The sample size n is determined for a pre-specified level of a and Pow (e.g.,

a = 0.025 and Pow = 0.8) with an assumed standardized treatment effect of g > 0.

2(21—a + 21-p)° 5
BE ©

Compared to the standard one-stage fixed design, group sequential designs

n =

offer more flexibility by allowing multiple stages with interim analyses before the
final analysis. Different from the fixed design, test statistics from a multi-stage
design are based on the data from each stage only or all data cumulatively
collected until the final analysis. In this work, the number of stages j is set to 2 for
illustration. Let X7 and X¢ denote the sample means observed at the stage
j = 1,2 for the treatment and control groups, based on the data exclusively
collected during the stage j. Given a balanced design an = n¢ = n;, the stage j

J
test statistics from can similarly be expressed as

XT - x¢ ,
Zj:%*\/% (6)

For the final stage test statistics, X{,, and X, , denote the sample means based

on all data cumulatively collected at the final stage. The test statistic extends the
function (3) to

Therefore, Z;,, can be expressed as a combination of the stage-wise test
statistics Z;. Consequently, the covariance between the final stage and the first
stage is fully specified by the information acquired in terms of the sample size n;

and n so that

OOU(Zl, Z1+2) = - (8)
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Stopping for futility

Considering a two-stage trial allowing an early stop for futility, a futility stopping

boundary o is defined as when
Z1 < 210y (9)

and the trial may be stopped early for futility.

There are two types of a;: binding and non-binding. If a futility boundary is
binding, the efficacy boundary « of the final stage in may be adjusted by
incorporating the futility boundary o from the first stage to improve efficiency if
desired. However, if data monitoring committees and trial sponsors do not strictly
follow the binding rules, the type-I error is inflated above the predefined «. On the
contrary, a non-binding futility stopping boundary only works as a guiding signal so
that the decision to stop a trial early due to futility can be made based on the interim
result and other information. For example, other secondary endpoints from the trial
may suggest a medical and scientific benefit to continuing the trial to the end, even
after a non-binding futility boundary is crossed. Even reviewers at the U.S. Food
and Drug Administration suggest that trial investigators consider the non-binding
type [18]. Therefore, in this work, non-binding futility boundaries are constructed
independently, after the sample size being determined. Two-stage designs only
allowing early stopping for non-binding futility do not inflate type-I error, but rather
reduce it. However, the performance evaluation of a design can only be performed
if futility stopping boundaries are considered mandatory. The same critical value
z1_o Of the fixed design remains valid and the final stage test statistics reject Hj if
AR > 21— The protection of type-l error is feasible because
Pry(Z1 > 21-0; N Z142 > 21-a) < @.

However, the type-Il error can be inflated above (5 due to the additional stop for
futility and the power loss Pow,,s;. Moreover, a futility stop can affect several other
trial operational characteristics (e.g., the probability of wrongly stopping for futility
Twrong)- 1he€ trial statistician is responsible for making the clinicians aware of such
impacts before calculating the sample size and defining the stopping boundaries in

the trial protocol. A futility boundary that is not optimally chosen can lead to undesired
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trial performance.

In my publication [17], various criteria to optimize operational characteristics
were analyzed as an extension of Schuler's work [28]. One of the key criteria
focuses on the prevention of mistakenly terminate a trial for futility. Many
investigators are particularly concerned about wrongly stopping for futility and
thereby leading to an unsuccessful trial. An evaluation of the other secondary
endpoints (apart from the primary endpoint) is also affected by premature
termination because trials are generally not powered for their secondary endpoints
even with complete data collection. However, a small a; = 0.10 makes a correct
stop for futility more difficult, especially for a small treatment effect. On the other
hand, a generous boundary oy = 0.80 greatly inflates the probability of wrongly
stopping for futility and decreases the overall power. Multiple futility boundaries
satisfy the conditions for both losses of power and the probability of wrongly
stopping for futility. Therefore, other operational characteristics (e.g., the expected
sample size) are proposed to derive the optimal futility boundaries among all
possible boundaries in the previous research [31]. In the optimal approach, the
probability of correctly stopping is chosen as the third performance criteria for
optimization. It is motivated by the main objective of futility assessment to correctly
save resources when the true treatment effect is not clinically beneficial.

To quantify performance based on the futility stopping boundary, the performance
metrics should first be characterized. In an extension of Schiiler’'s work [28], where
both early stops for efficacy and futility were allowed at the interim analysis, the first
design in my research only considers an early stop for futility. The first two conditions
based on the concepts of 7,..,, and Pow,,,s are characterized as

Condition 1

7Twrong Z PH1 (Zl S Zlfaf) (10)
Condition 2
POU)[OSS > 1-— 5 — PH1 (Zl > Zlfaf N Z1+2 > Zlfa) (1 1)

As previously discussed, many «; fulfill both conditions, while the probability of

correctly stopping for futility is included in the next step for optimization. Any
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smaller treatment effect ¢, < [0,0) can be chosen for evaluation. Some
investigators may wish to set a minimum level of probability of correctly stopping for
futility as a safety net against the continuation of trials involving an ineffective
treatment. More generally, the investigators can simply rely on the achievable
maximum probability of correctly stopping. Thus, condition 3 for the optimization is
characterized as the probability.

Condition 3

T correct,01 > PHgl (Zl < Zl—af) (12)

Let Ar,.....Pow... D€ the set of all o that fulfill conditions 1 and 2. «;,,; denotes
the optimal element from the set and constraint of condition 3. The optimal futility

boundary a; ,, is found when

Qf opt = ased max T correct,01 (13)

rwrong Powloss
In my publication [17], the conditions are specified for continuous endpoints to
search for the optimal boundary o ,,; based on all three conditions iteratively. In first
step, the functions (10) and (11) are transcribed into the standard normal cumulative
distribution ¢ and the multivariate normal cumulative distribution MV, 5, as

Condition 1
Twrong = P(21-a; — - =) (14)

Condition 2
Powioss > MVys(21-a;521-a) — B (15)

The mean p and standard deviation ¥ matrices of the multivariate normal

cumulative distribution are

Q>

—_
3B sm'
SN—

(16)

3
o

(17)
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The iterative search finds the boundary o, by increasing or decreasing o so
that conditions 1 and 2 are both fulfilled. The search stops at the smallest o ,,, that
gives the largest to condition 3 or any pre-specified desired level of 7 orect0,- This
concludes the core of the optimal approach in this research, starting with a simple
two-stage design with a stop for futility only.

In the trial planning phase, both m,,.,, and Pow,,ss should be predefined with
a maximum limit deemed acceptable by the investigators. The higher probability
of correctly stopping m.orect,0, COrresponds to smaller oy because it is more difficult
to cross a smaller boundary for futility. Therefore, the oy, is optimized according

to condition 3 in by finding the minimum in the set Ap,,,,... It is in the

interest of the trial investigators to know the probability of correctly stopping during
the planning at least. They may also opt to set a minimum acceptable value for
Teorrect,0,- O €Xample, if conditions 1 and 2 are planned as overly optimistic, the
desired condition 3 7.yree,0, > 0.6 might yield an ay,, that is not necessarily the
minimum of the set. On the other hand, if 7.o,¢c,6, iS to0 small, the addition of futility
stopping to the trial does not provide any benefit and complicates the trial operation.

The optimal futility boundaries «y,, are probabilities, as presented in the
publication [17]. However, there are other popular scales for futility boundaries. In
my research, the optimal approach is further extended to show that the method can
still be applied if other scales are chosen by the investigators. Since ay . is
derived based on Z-score, 21 g ot is an obvious alternative scale. Another
commonly applied boundary is based on CP, which is defined as the probability of
rejecting H, at the final analysis given the observed interim data [10]. The main
advantage of CP over ay,, or z_,,, scale is the intuitive interpretation of the
futility boundary for decisions at the interim stage since «;,,, and 2oy, are more
abstract concepts for clinicians. Assuming normality and future data after the
interim stage to follow the initial standardized treatment effect g the CP is derived

as

n [ n n
“Aat AoV o/ )

_m
1 n

CP = ®]

} (18)

Notably, different treatment effect assumptions could be made for (18). For
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example, instead of using 6 directly, observed data at the interim analysis can be
incorporated to estimate 6 for future data. Also, ¢ alone or both ¢ and ¢ can be
updated given the observed data. The differences in CP caused by the
assumptions are not discussed further in this work because my research focuses
on the benefits of the optimal approach and shows that the method remains viable
regardless of the chosen scale. Since the test statistics Z; can be found in the
functions of o ,, and CP scales @] @ and directly compared with 2, ,, ., the

scales are interchangeable.

Stopping for futility and efficacy

If a two-stage design allows an early stop for efficacy, the rejection of H, can occur
at either stage 1 if Z, > z,_,, or the final stage if 7, » > z,_,, ,. Instead of only a
single boundary « for efficacy at the final stage, there are two efficacy boundaries «;
and «a;.o with data cumulative collected at stage 1 and the final stage, respectively.

The type-I error should be controlled while considering both stages as follows
Puy(Zy 2 210y U(Z1 < 210y N 2142 2 21-any,)) = @ (19)

To derive a; and a;4» from (19), the alpha-spending function method is often
applied, with several variations. A function with constant local levels for each
interim stage was proposed by Pocock [23]. Another popular function from
O’Brien-Fleming [20] tends to spend less local significance at early stages and
more at the later stages. Other functions are also available in the literature. For
example, Lan and DeMets proposed for more flexibility in the timing of the interim
stages [13]. Since methods of efficacy boundaries are not the focus of this
research, Pocock’s boundaries (where a; = «1,) are selected for simplicity.

The method developed in this section allows an early stop for either futility or
efficacy. Similar to the design with futility only in the previous section, the type-|

error is still controlled after the inclusion of a; to so that
PHO(ZI > Zl—ay U (Zl—af < Z1 < Zl— N Zl+2 > Zl—a1+2)> <« (20)

A similar trial design was assumed in the previous work by Schuler for time-to-

event endpoints [28] and this is extended to continuous endpoints in the publication
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presented in this dissertation [17]. In my work, the three conditions for the optimal
approach of (10, and are further expanded to incorporate the boundaries o,
and o, instead of a alone. Since condition 1 in and 3in are only affected
by ay, they remain valid regardless of the addition of an early stop for efficacy. Only
condition 2 in (T5)), as a global criterion, should be adjusted to reflect both stages so
that

Condition 2

0 In
1—®(z1-0, — p 71) + MVH,E(Zlfale*aHQ)

- M‘/;L,E(zl—af’ 21—a1+2) Z 1— 5 - Powloss

(21)

Stopping for futility and sample size re-estimation

Apart from early termination, other trial features may be altered during the trial
under an adaptive design (e.g. sample size re-estimation). The optimal approach
from my work not only applies to group sequential designs but also adaptive
designs with sample size re-estimation. An adequate sample size is vital to
increase the power of the final analysis after the interim analysis, and there are two
major categories for methods of sample size adaptation. The first type of method
relies on non-comparative results. However, the sample size can also be
calculated based on comparative data (e.g., using the observed 6 or o directly or by
a certain CP [11]), which is also used by the optimal approach for trials with two
groups. The optimal approach further improves the performance of the adaptive
design, which is evaluated based on the same three conditions. Since the focus of
this work is the futility stopping boundaries, the method focuses on a trial design
that combines sample size re-estimation and an early stop for futility, without any
early stops for efficacy.

To illustrate the benefit of the optimal approach of futility boundaries in adaptive
designs, a sample size of the stage 2 n, is recalculated based on the observed interim
0 in this work. In a two-stage design, the recalculated incremental sample size n;
after the interim analysis is associated with 2(%)2(@% +21_5)* — ny. Combined with

ay o from the optimal approach for early futility stopping, the rule for adaptation is

17



. 0 if Z1 S Zl*af,opt
ny = (22)

2(%)2(21_a +apg)?—m 21>z .,

If the optimal boundary o ., is crossed, the recruitment may completely stop at
the interim stage so that n = 0. Otherwise, it continues with an adapted sample size.
Moreover, to avoid recruiting too many patients beyond the capacity of investigators,
the pre-specified maximum is set to be n} < 2n,.

To derive the oy, in an adaptive design, the same three conditions are applied.
Conditions 1 and 3 are based solely on the information and assumptions up to the
interim analysis and remain unchanged. Due to the change in sample size, the
function based on the fixed » is no longer valid for Z; 5. For this purpose, the
inverse normal approach [15] is used in this work to combine stage-wise test statistics
Z;. The overall Z,,, and covariance from (7)) and (8) as part of the Pow,ss can be

explicitly expressed with weights w, and w; as

w14y + Wl
Jiig = ————=Z% (23)
e Vw? 4+ w3
w
COU(Zl, Zl+2) = B (24)

2 2
VWi + w;

In an adaptive design, the weights are defined a priori. One intuitive choice of w;
is made according to the initially planned sample size at the interim and final stages
[111.

Lastly, since the sample size of stage 2 can now vary, based on the result of
stage 1, an additional iterative step for each n} over the range of possible 7, is

implemented as part of the Pow;,,, from condition 2 to search for the optimal o ;.

Binary data

Binary response variables can also be the primary endpoint of a trial (e.g., whether
a patient is a responder (yes or no) to the treatment within 1 month). The research
demonstrated in this section characterizes the optimal approach for the design with

two variations. The first part of the methods is dedicated to a typical controlled trial

18



similar to the continuous data section. The second part illustrates the optimal
approach for a non-controlled one-group trial, which is often applied in phase Il with

limited finical resources.

Two groups with stopping for futility

If the comparison between the two groups T and C are based on response data,
the same notations can be adopted as described for the continuous data from the
previous sections. Assuming that the responses follow a Bernoulli distribution, the

observed responses are denoted as

XTI ~ Bernoulli(p™),i=1...n" and X& ~ Bernoulli(p®),i =1...n° (25)

with p” and p© representing the proportion of population responses expected in the
balanced treatment and control groups, respectively.

The hypothesis in the form of risk difference between the two groups is
Hy:p" —p® <0versus H, : pf —p® >0 (26)

The main difference compared to the continuous variable is that response
proportions are found in both the treatment effect in form of risk difference p” — p©

and the standard deviation o. In this work, the standard deviation is chosen based

nT4+nC :

on pooled variance p(1 — p) with p =

The test statistic Z for the observed ﬁ and 1/95 can be simplified as

T _ . C T _C — T4 C
7= _P P, E,whereﬁz p(l—ﬁ)andp:p +p (27)
~ /1 1 o 2 2
g T + nC
Trials that intend to compare two groups are more often found in phase Ill. Phase
1l trials typically recruit a large number of patients. Therefore, the test statistics can
be based on normal approximation. Similar to the continuous data with the normality
assumption, H, is rejected if Z7 > z;_, for a fixed design, while the probabilities
associated with o and Pow can be expressed in the same fashion as in (). The

balanced sample size n” = n® = n is derived as
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_ 2(z1-a 21-5)°p(1 — P)
(pT — p©)?

For a two-stage design, function (27)) should be extended to include stage j = 1,2

(28)

and observed proportions ];jT\ and ];Ja. Test statistics Z; for each stage and 7, for

the final stage with all data are expressed as

— —

()

e pT
I _ (¢ - — — . -+ v

7, =" B where 6 = \Jp(1 - 5y and 5 = P (2)
J

T C

g Pl ” Py " Where 65 = +/i—3(1 — p=) and

142 = O'T * 5 , Where o2 = p1+2( - pl-i-?) an
142

S (30)
— p1T+2 +p?+2
P42 = ———
2
It is shown that Cov(Z, Z142) = /™ of equation (8) holds approximately if p” — p©
is small [10].

The non-binding futility stopping boundary «; is defined as per (9). Thus, the trial
may stop early for futility if interim analysis Z; < 2;_,,. The performance criteria
and optimization process remain the same. However, the three conditions require
adaptation for binary variables to accommodate that both the treatment effect and
standard deviation contain p” and p®. The iterative search for the optimal approach
should be characterized with some minor adjustment to functions and as

follows
Condition 1
T O
— n
Twrong 2 CI)(Zl—af - % ?1) (31)
Pl(l - p1)
Condition 2

Powloss Z MVM,ZJ(Zl—ozfa Zl—oc) - B (32)

The mean p and standard deviation ¥ matrices of the multivariate normal

cumulative distribution are
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— P —p ni p —p Q

- \/p 1-p) V. 27 /p(1-p) \/; (33)
VE 1
> = n (34)
1 yE
The search finds the boundary a; ., in the exact same manner as the method
for continuous data, given a smaller proportion of responders in the treatment group
p™ e [pY, p") and m ppeq i for condition 3.

Regarding other scales of futility boundaries, Z-score is still 2, ,,,, and the CP
function requires only replacing 6 and o with the mean and standard deviation

based on an approximation [6], as follows

n T _p© n n
~Z1-at Aag o/ T Va0
1 — 2

n

CP = ®]

One group with stopping for futility

Different than the approach for the two-group trials, the method for one-group trials
is typically applied in phase Il with a limited total number of patients. The normal
approximation utilized for sample size and test statistics is no longer appropriate for
a small n. The exact method should be considered and the optimal approach in this
research is formulated accordingly.

Without the control group, the hypothesis for the response variable X7,

formulated with pre-specified null and alternative response proportions p, and p,, is

Hy:p <poversus H, :p>p, (36)

X XT

n

where p =

Let » denotes the number of responders » = p x n. r follows a binomial
distribution with probability function b(r,n,p), namely P_, = (%)p'(1 — p)**
Additionally, B(r,n,p) = > . ,(%)p'(1 — p)"~' denotes the cumulative binomial
distribution. Test statistics are also based on the exact binomial test and depend on
the exact ratio of » and n, which is evaluated for the decision to reject H,.

Therefore, unlike the methods designed for two-group comparison, the probabilities
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for testing are directly computed and compared to the decision boundaries a. H,
shall be rejected whenever 1 — B(r,n,py) < « (i.e., if 7 or more responses are
observed).

Given predefined « and 3, the sample size for a fixed design with only one stage

is determined by finding the exact n together with » under
a>1—B(r,n,py) and Pow=1—-5<1— B(r,n,p,) (37)

For a two-stage design with stage j = 1,2, the hypothesis testing is extended
to the stage 1 observed 7, and stage 2 observed i1, based on all data. If 1 —
B(r1,n1,p0) > ay then the trial may stop early for futility at the interim analysis.
For the final stage, the testing problem relies on the probability conditional on not-
terminated stage 1 after atleast r; = B~'(1 — ay, ni,po) is observed. The probability

of rejecting H, is quantified as

min(ny,r)

1 — [B(r1,n1,po) Z b(i,n1,p0) BT —i,n2,p0)] < (38)

i=r1+1

In fact, with the parameters py, p., @, and  (or Pow) as design parameters, the
optimal approach is similar to Simon’s two-stage designs [30]. Nevertheless,
Simon’s designs adjust not only r; and n; but also » and n at the final stage.
Moreover, they allow any n; < n, which often leads to an extreme proportion of the
n being distributed to n, for stage 1. Therefore, the optimal approach here sets an
additional constraint on n; < wn. 0 < w < 1 represents the desired stage 1 sample
size proportion and improves the balance between the stage 1 and stage 2 sample
sizes when compared to Simon’s designs. The most important benefit of the
optimal approach over Simon’s designs is the flexibility offered by non-binding
futility stopping boundaries. If the trial is not stopped accordingly under Simon’s
designs, the type-l error is inflated. Following the general method of the optimal
approach, the three conditions should be characterized first in relation to the first
stage of early stopping for futility

Condition 1

7Twrong 2 B(?”l, nlvpa) (39)
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Condition 2

min(ni,r)

Powloss Z 1— 6 - [B(Tla nlapa) + Z b(fla nlapa)B(?_ ia n27pa))] (40)

i=r1+1

Similar to the two-group situations, many o with their corresponding r fulfill both
conditions. Moreover, Simon showed that there are many possible combinations due
to r; and n; being allowed to vary. The probability of correctly stopping for futility is
also a crucial criterion for optimization in the optimal approach and is labeled as
"PETO0” in Simon’s designs for performance evaluation under Hy. Thus, meorrect p,
from is characterized with the cumulative binomial distribution as

Condition 3

7Tcm“7'ect,p0 Z B<T17 ni, pO) (41 )

The optimal «y,, remains as in (T3) by solving the iterative search. Since
typical Simon’s designs define the decisions for hypothesis testing based on the
corresponding 71, ny, , and n only, the optimal approach for one-group design also
provides a; ,,, and the set of optimal 1, n,, r, and n for the trial investigators. Other
scales of futility boundaries are not investigated further since the main benefit of
CP (i.e., for easier interpretation than «ay) is already fulfilled by the exact numbers

of responses and the sample size, while the Z-score is not applicable.
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4.3 Results

In this section, the optimal approach is first demonstrated by various operational
characteristic combinations and an evaluation of futility stopping boundaries for
both continuous and binary endpoints. Furthermore, combined with either efficacy
or sample size re-estimation, applications on real clinical trials are presented to
demonstrate the benefit of the optimal approach.

Considering a clinical trial with a continuous endpoint, an interim analysis allowing
for early termination due to futility is planned to occur after 50% of the total patients
enrolled. Given a = 0.025 and Pow =1 — 8 = 0.9, the futility boundaries o derived

according to the optimal approach are displayed in Table[1]

Table 1: Implementation of a two-stage design with futility stopping only on
continuous endpoints, with n; = 0.5n, a = 0.025, and 5 = 0.1. The optimal approach

is evaluated for the operational characteristics.

Optimal conditions Optimal boundary Other scales Achieved operational characteristics
Twrong  POWioss  Teorrect 61050 Qf opt Z-ag; CP global Pow  Tyrong Teorrect,01=0
0.01 0.01 0.12 0.51 -0.03 0.30 0.90 0.01 0.49
0.03 0.01 0.23 0.34 0.41 047 0.89 0.03 0.66
0.05  0.01 0.23 0.34 0.41 047 0.89 0.03 0.66
0.10  0.01 0.23 0.34 0.41 047 0.89 0.03 0.66
0.01 0.03 0.12 0.51 -0.03 0.30 0.90 0.01 0.49
0.03 0.03 0.23 0.34 0.41 047 0.89 0.03 0.66
0.05 0.03 0.31 0.26 0.64 0.57 0.88 0.05 0.74
0.10 0.03 0.36 0.22 0.77 0.62 0.87 0.07 0.78
0.01 0.05 0.12 0.51 -0.03 0.30 0.90 0.01 0.49
0.03  0.05 0.23 0.34 041 047 0.89 0.03 0.66
0.05 0.05 0.31 0.26 0.64 0.57 0.88 0.05 0.74
0.10 0.05 0.44 0.16 0.99 0.69 0.85 0.10 0.84

The first two columns describe the maximum values of conditions 1 and 2,
which are allowed and prospectively planned for the trial protocol. The third column
displays condition 3, which is searched for the maximum value according to (13). In
Table [1, half of the original treatment effect is deemed not clinically beneficial.
Thus, the probability of correctly stopping in condition 3 is calculated for such

underlying treatment effect 9, = 0.50. Although it may seem reasonable to aim for a
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higher 7....ec: > 0.60, the combination of the highest Pow,,, = 0.05 and
Twrong = 0.10 only achieves the correct stopping of 44% of the trials if repeated

many times.

The fourth column is the most important one, which gives the optimal futility
stopping boundary «y,, for the stopping decision at the interim analysis. The last
three columns show the operational characteristics achieved as a performance
evaluation. The actual probability of wrongly stopping under 6 can only reach a
value up to the maximum allowed 7,,,,, in the first column. The actual global
power is reduced due to the inclusion of a futility stop and limited by condition 2,
maximum allowed Pow,,. If there is truly no treatment benefit, the probability of
early stopping is listed in the last column. Other quantities of performance could be
added to the group of achieved operational characteristics. For example,
probabilities of correctly stopping assuming another #,, not among those listed in
the Table [1] (0, 6 or 0.50), may be further investigated. These are all relevant
assessments for the investigators during the planning phase due to the uncertainty

associated with the true treatment effect.

The maximum values of conditions 1 and 2 are bounded by small values of
Twrong < 0.01 and Pow;,ss < 0.01 in the first row. The achieved optimal oy = 0.51
guarantees a global power rounded up to 0.90, with nearly no loss compared to the
planned power. The actual 7,,.,, fully exhausts the maximum allowed value.
However, it has only a small probability of 0.12, which allows a correct early futility
stop for condition 3. Despite oy = 0.51 being optimal and safeguarding the trial, it is
questionable whether such interim analysis is necessary when compared to a
traditional fixed design. By allowing a higher maximum 7.4, the actual Pow,
quickly reaches the maximum allowed 0.01 set by condition 2 in both rows 2 and 3.
The benefit of 11% increase in chance to correctly stop given half of ¢ is gained,
only at a minimal cost of actual Pow;,ss = 0.01 and 7,0,y = 0.03. A more extreme
case can be observed in the last row. Having an optimal oy, = 0.16 fully utilizes the
allowed risks, with the actual 7,,,,, and Pow,,s being the same as the maximum

allowed values for conditions 1 and 2. Condition 3 achieved a high probability of

0.44 to correctly end the trial early because smaller boundaries o, allow easier
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crossing over of the boundary if the treatment effect is not large. However, the
investigators should consider whether the trade-off between higher 7,,,,, and
Pow,,ss is truly desired. For example, rows 3 and 7 have the same values of
condition 1 yet different values of condition 2. Moreover, they give distinct futility
boundaries. ., Plays a more restrictive role in the choice of futility boundary
when compared to Pow,, at the same magnitude. Since the actual m,,4,, = 0.05 in
rows 7 and 11 reach the allowed value of condition 1, the choice of maximum
Pow,,s; does not make any difference on the choice of the optimal boundary.
Lastly, the corresponding Z-score and CP for o, = 0.26 are 0.64 and 0.57 in the
second last row. Some can argue that the Z-score is much greater than 0 and the
CP indicates an already good power for success at the final stage. The optimal
approach for the performance evaluation indicates that no matter what scales the
futility boundaries have, the conditions should be pre-selected and boundaries

should not be chosen arbitrarily.

Table 2: Implementation of a two-stage design with futility stopping only on
continuous endpoints, with n; = 0.5n, o = 0.025, and 5 = 0.2. The optimal approach

is evaluated for the operational characteristics.

Optimal conditions Optimal boundary Other scales Achieved operational characteristics
Twrong  POWioss  Teorrect,9,=0.50 Qfopt 21 ape CP global Pow Turong — Teorrect,01=0
0.01 0.01 0.09 0.63 -0.33 0.13 0.80 0.01 0.37
0.03 0.01 0.19 0.46 0.10 0.25 0.80 0.03 0.54
0.05 0.01 0.25 0.37 0.33 0.32 0.79 0.05 0.63
0.10 0.01 0.25 0.37 0.33 0.32 0.79 0.05 0.63
0.01 0.03 0.09 0.63 -0.33  0.13 0.80 0.01 0.37
0.03 0.03 0.19 0.46 0.10 0.25 0.80 0.03 0.54
0.05 0.03 0.25 0.37 0.33 0.32 0.79 0.05 0.63
0.10 0.03 0.38 0.24 0.71 0.46 0.77 0.10 0.76
0.01 0.05 0.09 0.63 -0.33 0.13 0.80 0.01 0.37
0.03 0.05 0.19 0.46 0.10 0.25 0.80 0.03 0.54
0.05 0.05 0.26 0.37 0.33 0.32 0.79 0.05 0.63
0.10  0.05 0.39 0.24 0.71 047 0.77 0.10 0.76

In Table [2| 5 is set to 0.2. Notably, same trend is observed as in Table [1]
Furthermore, the choice of futility boundary is even more constrained by

Twrong < 0.05 and less sensitive to the condition 1 Pow,,s; when compared to a trial
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with a smaller j.

The timing of a futility stopping boundary could also play a role in the choice of
arg.opt, @S shown in Figure[1] The optimal approach takes the timing of the first stage
based on the fraction of patients “ as a pre-specified design parameter because
they are often decided for the convenience of trial management and conduct.
Nevertheless, the timing would still have an impact on the boundary itself. If more
patients with available data can already be included in the first stage, the variability
of the interim analysis is decreased. Additionally, it means that fewer patients per
no need to be recruited for the second stage. Moreover, the results of the final
stage tend to be more consistent with the treatment effect observed in the first
stage. With fixed conditions 7,,..,, and Pow;,ss and achieving the most favorable

Teorrect,0,=0, th€ a5 o, DECOMES Stricter with more n; acquired.

1.00 1
Thyrong
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Figure 1: Impact of the timing of the first stage on a; ,,;, given maximum Pow,ss =

0.05.

Similar to Table [1] and [2 Table [3] presents the operational characteristics of
trials for a binary endpoint with an optimal futility stopping boundary. The trade-off

between the three conditions resembles the result from Table [T, which are also
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Table 3: Implementation of a two-stage design with futility stopping only on binary

endpoints, with n; = 0.5n, a = 0.025, and g = 0.1. Assuming pr = 0.6 and pc = 0.4.

Optimal conditions Optimal boundary Other scales Achieved operational characteristics
Twrong  POWioss  Teorrect,pr1=0.55 Qf opt Z—aso CP global Pow  Tuyrong  Teorrectpry—0.4
0.01 0.01 0.04 0.51 -0.03 0.30 0.90 0.01 0.49
0.03 0.01 0.09 0.34 0.41 047 0.89 0.03 0.66
0.05 0.01 0.09 0.34 0.41 047 0.89 0.03 0.66
0.10 0.01 0.09 0.34 0.41 047 0.89 0.03 0.66
0.01 0.03 0.04 0.51 -0.03 0.30 0.90 0.01 0.49
0.03 0.03 0.10 0.34 0.41 047 0.89 0.03 0.66
0.05 0.03 0.14 0.26 0.64 0.57 0.88 0.05 0.74
0.10 0.03 0.17 0.22 0.77 0.62 0.87 0.07 0.78
0.01 0.05 0.04 0.51 -0.03 0.30 0.90 0.01 0.49
0.03 0.05 0.10 0.34 0.41 047 0.89 0.03 0.66
0.05 0.05 0.14 0.26 0.64 0.57 0.88 0.05 0.74
0.10 0.05 0.23 0.16 0.99 0.69 0.85 0.10 0.84

based on a scenario with a = 0.025 and § = 0.1. The minimum probability of
correctly stopping is relatively low because it is based on a small 5% decrease in
pr-

Lastly, to demonstrate the benefit of the optimal approach for binary endpoints
with only one group, Tables |4/ and [5| are created. Simon’s designs have two
variations: minimax and optimal designs. Both variations do not optimize for 7,4
and Pow,,ss as performed in the optimal approach. Instead, they optimize for the
maximum and expected sample size. Additionally, as explained in the Methods
section, Simon’s designs require binding futility boundaries, which also adjust the
total sample size n and number of responses r to fully spend « and 5. On the other
hand, the optimal approach cannot optimize the choices of n and r and is only able
to derive n; and r, from the boundary o;,,. This difference is shown in Tables
and [5 where n and r from Simon’s minimax design are smaller than the fixed »n and
r in the optimal approach designs, ignoring the rounding of values. To highlight the
advantage of the optimal approach, non-optimal «; from Simon’s designs are also
displayed in Table[d] Furthermore, due to the exact nature of the binomial test, it is
not always possible to control type-l and type-ll errors exactly at the maximum

levels of a and 5. Therefore, Pow,,;s can even become negative. The advantage of
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the optimal approach is identified for condition 2 with Pow;,,s, which allows type-I|
error to be slightly higher than the predefined § instead of an increase of n as
compensation to losses of power. Consequently, with minimal loss, some of the
unused [ could also be spent by setting Pow,,ss < 0.01. Regarding condition 1, let
Twrong < 0.10 since it is in the range seen in Simon’s designs. Condition 3 .oy rect p,
does not have a pre-specified desired level and is thus used for finding the
maximum value. An additional operational characteristic £ N,, the expected sample
size assuming py, is a basic part of Simon’s designs and included in the tables.
Depending on p, and p,, the designs using the optimal approach generally do not
greatly increase F' N, but have either better control over 7., and Pow;,s, Or even

higher T oprect p -

Table 4: Comparison of optimal approach designs and Simon’s optimal and minimax

designs, given a = 0.1, 8 = 0.1, Tyrong = 0.10 @and Pow;ess = 0.01.

Design Do Pa T1L M1 T M ay Twrong  POWioss  Teorrect,po «a I EN,
Simon’s optimal 0.5 065 18 35 47 84 0.37 0.0682 -0.0004 0.6321 0.0952 0.0996 53.0
Simon’s minimax 0.5 065 19 40 41 72 0.56 0.0173 -0.0001 0.4373 0.0956 0.0999 58.0
Optimal approach w = } 05 065 13 29 41 72 0.64* 0.0206 0.0041 0.3555 0.0944 0.1041 56.7
Optimal approach w = 2 0.5 065 22 44 41 72 044~ 0.0289 0.0029 0.5598 0.0942 0.1029 56.3
Simon’s optimal 0.7 085 14 20 45 59 042 0.0673 -0.0010 0.5836 0.0954 0.0990 36.2
Simon’s minimax 0.7 085 15 22 40 52 049 0.0368 -0.0029 0.5058 0.0980 0.0971 36.8

0.7 085 8 13 41 53 0.65" 0.0342 0.0098 0.3457 0.0853 0.1098 39.2
0.7 085 25 34 41 53 0.26" 0.0587 0.0093 0.7323 0.0825 0.1093 39.1

Optimal approach w = }
Optimal approach w = 2

*
Qfopt

In row 3 of Table , where w = % it is noticeable that no feasible design based
on the optimal approach is available. Since the optimal approach has similar » and
n to Simon’s minimayx, it is obvious that in this case, when the proportion ™ reaches
as high as & = 97%, it is difficult to constrain w below 50%. Even with 67%, the
conditions Tyrong, PoWiess, @aNd Teorrect p, @ré comparable to Simon’s designs, while
ENy = 51.6 is far below Simon’s minimax design FN, = 66.1. Similar settings are
displayed in the second block. The optimal approach allows the boundary oy, and
the corresponding 7, and n,; vary, especially with a small o ,,» = 0.21 design, while

maintaining the £V, around 34.4 as per Simon’s minimax design.
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Table 5: Comparison of optimal approach designs and Simon’s optimal and minimax

designs, given o = 0.05, 3 = 0.2, Tyrong = 0.10 @and Pow;ess = 0.01.

Design Po Pa i M1 T M ay Twrong  POWioss  Meorrect,po a B EN,
Simon’s optimal 05 065 15 28 48 83 0.29 0.1428 -0.0015 0.7142 0.0470 0.1985 43.7
Simon’s minimax 05 0.65 39 66 40 68 0.05 0.1893 -0.0013 0.9456 0.0488 0.1987 66.1

Optimal approach w = % 0.5 0.65 notfeasible

Optimal approach w = 2 0.5 065 24 45 41 69 0.28 0.0708 0.0073 0.7243 0.0439 0.2073 51.6
Simon’s optimal 0.7 085 14 19 46 59 0.28 0.1444 -0.0067 0.7178 0.0494 0.1933 30.3
Simon’s minimax 0.7 085 16 23 39 49 044 0.0463 -0.0008 0.5601 0.0466 0.1992 34.4
Optimal approach w = } 0.7 0.85 17 24 39 49 049 0.0572 0.0020 0.6114 0.0461 0.2020 33.7

Optimal approach w = 2 0.7 085 24 32 39 49 0.21* 0.0958 0.0065 0.7882 0.0451 0.2065 35.6

N
O f opt

Real trial application 1

The first application of the optimal approach on a real clinical trial allow both the
futility and efficacy stopping. The ChroPac Trial [5] was a randomized controlled
trial with an interim analysis. The objective was to investigate the efficacy of an
intervention surgical procedure compared to a standard surgical procedure treating
patients with chronic pancreatitis. The efficacy endpoint, tested for superiority, is
the quality of life score from the EORTC QLQ-C30 questionnaire. The total scores
of EORTC QLQ-C30 are between 0 and 100. Higher total scores indicate a high
level of functioning and quality of life. Although it is a scoring system, the actual
calculation is generally performed through a linear transformation. Thus, the data
should be treated as a continuous endpoint. During the planning of the ChroPac
Trial, the standardized treatment effect g was assumed to be 0.5 and the hypothesis
of treatment efficacy was tested at one-sided with an a = 0.025. In the original
trial, a fixed design was also planned for g = 0.1, which set a total sample size of 86
patients for the single final analysis. To illustrate the optimal choice of futility stopping
boundaries together with the option to stop early for efficacy, a two-stage design is
chosen with 50% of patients enrolled for the interim analysis. Global powers of both
0.9 and 0.8 are commonly applied in clinical research and their corresponding g = 0.1
and 0.2 are presented in this application. Since the futility stopping boundaries of
the optimal approach are non-binding, they are derived after the efficacy stopping

boundaries are chosen first. When applying Pocock’s alpha-spending function to
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the overall « = 0.025, the local significance levels are a; = a;,, = 0.0147 at the
interim and final analysis for efficacy. Figure [2] shows the set Apou,., xy0n, IN the
two situations. Reasonable conditions of Pow;,, <= 0.05, Tyrong <= 0.05, and
Teorrect,tr=0.50 >= 0.30 are predefined. The boundaries «;,,, are found at 0.33 and
0.22. Both values of a;,, show good performance if the true effect size is only half
of the initially assumed effect. It is shown that j affects the overall potential choices
of ay, with higher o at lower 3, thereby making an early futility stop and type-II error

less likely.

Additionally, both optimal o/, are much lower than an arbitrary futility stopping
boundary of 0.50 and, equivalently, a CP of 0.31. Although oy = 0.50 still protects
both Pow;,ss = 0.0013 and m,,.,,, = 0.018, allowing early termination due to futility at
the interim stage would be rather unnecessary since the probability of a correct to

early stop is only 0.15.

Qo= 0.33
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Figure 2: ChroPac Trial application with 5 = 0.1 and 0.2. The figure was originally
created for the publication [17].
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Real trial application 2

In the second trial application, a showcase of the optimal approach is created for an
adaptive design with sample size re-estimation at the interim stage. The sample size
is recalculated based on the scheme of (22). The PDY6797 trial was a randomized
placebo-controlled trial that aimed to test the efficacy of a new treatment on patients
with type 2 diabetes [29]. The change in plasma glucose area under the curve from
baseline was chosen as the primary efficacy endpoint. This endpoint is often used in
linear models without log-transformation due to its approximately normal distribution.
Furthermore, values of change from baseline might be negative. The initial sample
size per group n = 11 is derived based on (22), assuming a 3 = 0.1 and one-sided
a = 0.025 with an expected treatment effect of 6 = 300 and standard deviation of
o = 250. Table[6]shows that adding an option for futility reduces the expected sample
size n.,, and the smallest n,,, is achieved when the optimal approach is applied.
Between the two designs with an arbitrarily chosen o, = 0.50 and the optimal a4,
futility boundaries, the optimal approach controls the three conditions and achieves
a desired higher probability of correctly stopping with the pre-specified cost of power

loss and probability of wrongly stopping.

Table 6: Comparison of different designs at « = 0.025 and 5 = 0.1. For the optimal
approach, the operational characteristics are predefined as Pow;oss < 0.05, Tyrong <

0.10 and T correct,01=0.50 > 0.30.

Design Tnaz  Mavg global Pow Tyrong Teorrect,01=0.50 Teorrect,01=0
Adaptive only 33 15.0 0.91 - - -
Adaptive + futility with oy = 0.50 33 116 0.90 0.02 0.15 0.50
Adaptive + futility with o ,,x = 0.27 33 10.0 0.86 0.08 0.35 0.73
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4.4 Discussion

The choice of futility boundaries in flexible designs affects various operational
characteristics. Conveniently choosing a futility boundary is not equivalent to
having a numerically optimal boundary. Even with a relatively small treatment
effect that favors the null hypothesis, an early stopping for futility is not guaranteed.
Any futility boundary has an impact on the overall power loss and probability of
correctly and wrongly stopping under various treatment effect assumptions. Thus,

the optimization should not be overlooked.

Previous research has proposed optimization strategies for different designs,
including futility stopping boundaries in either group sequential or adaptive designs
[8, 7,122, 130]. A focus on futility stopping optimization alone is carefully investigated
in my research. The optimal approach proposed by Schiler on time-to-event
endpoints in a two-stage group sequential design [28] is further developed to
continuous [17] and binary endpoints in both group sequential and adaptive
designs. In the optimal approach, three operational characteristics are jointly
evaluated and optimized to derive the appropriate futility boundary. With the
optimal approach, trial investigators can fully specify the trade-offs between the
desired operational characteristics to increase performance efficiency. For one
trial, a 5% probability of wrongly stopping for futility might already be unacceptable
due to the importance of the newly developed treatment since the investigators
would favor a continuation to the end of the trial whenever possible. Whereas for
another trial, a high power loss may not favorable because the trial sponsors have
only one chance to run the trial for their innovative treatment and hope for a good
chance of success. Also, if the new treatment started with a less promising outlook,
a predefined high probability of correctly stopping should be seen as more
important than the other characteristics. Thus, the optimal choice of a futility
stopping boundary reflects the cautiousness or aggression of the research

objectives of trial investigators.

One of the operational characteristics presented in this work is the power loss,
which cannot be avoided with non-binding futility boundaries. Some methods of

futility stopping design suggest increasing the total sample size to compensate for
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such losses of power. In comparison, the optimal approach only plans to simply
accept a power loss since the power loss comes from the probability of the trial
actually being stopped early. An increase in the initial sample size planning
automatically treats the futility stopping boundaries as binding, as shown in Simon’s
designs. This method is quite restrictive if investigators would utilize early futility
stopping boundaries merely as a suggestion. Nevertheless, the other performance
scores can be evaluated in future research. Real-world situations can be
investigated in future work to account for the extra data collected due to
overrunning, to apply to other types of adaptation other than the sample size, and
to optimize oy, n; and n simultaneously. Additionally, the optimization assumes a
balanced allocation between treatment groups, which is not always the case in real
trials.

This research aims to create a quantified approach for optimizing futility
stopping boundaries based on the evaluation of performance criteria. The criteria
are straightforward and can be communicated among trial investigators. With
engaging communication and a greater understanding of the operational
characteristics, optimal futility stopping boundaries should be applied more often to

further increase trial efficiency and drive innovative clinical research.
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Background

Conducting clinical trials which fulfil both economical as
well as ethical aspects requires extensive efforts in plan-
ning. This can be challenging in fixed design clinical trials,
as there is no option to react to misspecified planning
assumptions during the ongoing trial. Group sequential
designs allow for an early stop for either efficacy or futil-
ity, thereby, allowing to reduce costs and ethical issues
when interim results are either sufficiently convincing or
do not justify a further investigation. Group sequential
designs are characterized by one or several unblinded
interim analyses, thus implying a multiple test problem.
Popular methods for alpha adjustment were proposed
by Pocock [1] and O’Brien and Fleming [2]. Later, more
flexible methods were developed with the idea to define
alpha spending functions [3-5]. Following these develop-
ments, in the past decades, an increasing number of trials
adopted such flexible designs.

Whereas the option for an early efficacy stop is a key
feature of group sequential designs, futility stops are not
routinely implemented. Stopping a trial early for efficacy
implies a successful trial with reduced costs. The proba-
bility to stop for efficacy although there is no treatment
benefit is naturally controlled by the significance level. In
comparison, stopping a trial early for futility means to
give up hope for a successful trial based on an interim
effect which might have low precision due to small sample
sizes at interim. Thereby, the futility stopping boundary
is usually defined as a boundary for the interim p-value.
Valid stopping for futility bounds could reduce costs and
avoid involving more patients under unnecessary risks,
whereas wrong stopping for futility corresponds to a waste
of resources.

Among futility stopping methods of group sequential
designs, two main rules are discussed in the literature.
Futility stopping rules can either be binding or non-
binding, where binding means that stopping is mandatory
if the criterion is met and non-binding means that the
investigator can freely decide if he or she really wants to
stop. Type I error control is guaranteed for both types but
there is a decrease in the actual power. In clinical practice,
non-binding rules are much more common, as usually it
is not only the interim data that affects a decision but
also new external data or safety information. When con-
centrating on binding rules, it is possible to choose larger
local significance levels in order to fully exhaust the global
significance level [6]. However, this option is usually not
applied in practice and more attention should be given to
the non-binding option.

There exist sound and broad theoretical methodolo-
gies on group sequential designs. In particular, theo-
retically justified choices of futility stopping boundaries
were discussed already decades ago [7, 8]. Several authors
[9-12] addressed this issue more generally by defining
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beta-spending functions in analogy to the well-known
alpha-spending functions where the latter take account
of the multiplicity issue in group sequential designs. The
beta-spending function allows to monitor and control
the stage-wise and the global power loss induced by the
futility stop.

As additional performance measures for futility bound-
aries, He et al. [13] referred to the conditional and the pre-
dictive power. Gallo et al. [14] more generally discussed
performance indicators for choosing futility boundaries
including the global power loss, the conditional power,
the predictive power, and the probability of correctly stop-
ping for futility under the null hypothesis. In another
work of Xi et al. [15], an optimal tuple of the futility
boundary and the time point for the interim analysis is
determined. This tuple is chosen as a solution of an opti-
mization problem given by an objective function with
constraints, where a bound for the power loss defines
the constraint and the average sample size defines the
performance function. Optimization functions with con-
straints in the context of adaptive designs have also been
recently discussed by Pilz et al. [16]. Instead of formu-
lating constraints, Ondra et al. [17] discuss several adap-
tive designs by means of optimizing prespecified utility
functions. Schiiler et al. [18] defined “optimal” futility
stopping boundaries under predefined optimality criteria,
however for the very special case of (multiple) time-to-
event endpoints. Thereby, they rely on the performance
measures given by power loss, probability of wrongly
stopping for futility and probability of correctly stopping
for futility. Whereas approaches based on optimization
problems with constraints or maximizing utility functions
can be seen as more elegant mathematical solutions, the
approach by Schiiler et al. [18] might have advantages in
the communication to clinical researchers as their basic
idea for “optimal” futility boundaries is simply under-
stood: For a given sample size and effect under the alter-
native, the futility bound which preserves a predefined
level of a wrong futility classification is determined. This
value serves as a starting value for the “optimal” futility
boundary. It is enlarged until the power loss is decreased
to an acceptable limit. This defines the “optimal” futility
boundary.

Despite these important works, the above reported per-
formance indicators are often not investigated when set-
ting the futility boundary in clinical applications. In par-
ticular in investigator initiated trials, futility boundaries
are often chosen rather arbitrarily. A common choice in a
superiority test setting is a futility boundary of 0.5, where
the study is stopped whenever the one-sided interim p-
value lays above this boundary. This corresponds to the
situation of the treatment effect pointing in the wrong
direction. For example, the software ADDPLAN which
implements sample size recalculation for group sequential
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designs, sets a default value of 0.5 when a futility stop
is included [19]. Moreover, within the R-Package rpact
short examples with this futility boundary of 0.5 are pro-
vided for illustration [20]. However, this choice of the
futility boundary is usually not justified by design perfor-
mance characteristics. Note however that other sample
size calculation software such as nQuery or Pass imple-
ment beta-spending functions as a default, so there is no
unique standard [21, 22].

In this work, we aim to adopt the approach by Schiiler
et al. [18] for the more common case of a controlled
trial comparing two groups with a continuous endpoint.
Whereas for multiple correlated time-to-event endpoints,
the findings of optimal futility boundaries can only be
realized by simulations, this more simple case allows a
straight forward analytical derivation. Using this common
and simple design, we aim to contribute to a more pro-
found discussion on futility boundaries in practice and
aim to provide an easy understandable and easily applica-
ble tool to overcome the potential gap between developed
theory and clinical practice.

This work is structured as follows: In the Methods
Section, we introduce the underlying test problem and the
group sequential design. Subsequently, we introduce the
definition of “optimal” futility boundaries by Schiiler et
al. [18] adapted to the situation of a continuous primary
endpoint. In the Results Section, we first illustrate the
concept of the investigated optimality conditions for futil-
ity boundaries for the setting of an exemplary clinical trial.
Secondly, we compare the performance characteristics of
a study with optimally chosen futility boundaries to those
with non-optimal boundaries for various design scenarios,
where the expression “optimal” in the following refers to
the investigated performance criteria. Finally we discuss
our results and provide conclusions and implications for
future clinical trials.

Method

Throughout this work, we consider a randomized con-
trolled trial with a continuous primary endpoint which is
compared between a new intervention (I) and a control
treatment (C)

X{NN(ﬂllaz)JXiCNN(MCv ‘72)1 i=1...n

For the sake of simplicity, we consider equal standard
deviations ¢ and group sizes n. The test hypotheses are
given in terms of a superiority test

Hg:ul—p.cj()versusl-{] :ul—,uc>0. (1)

Thereby, without loss of generality, a larger value of the
endpoint is assumed to be favorable.
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Group sequential design
We consider a group sequential design with two
sequences, that is with one interim analysis. The total
maximal sample size is N = 2 - i, the total interim sample
size is denoted by N1 = 2 - n;. The interim test statistic
can be formulated as

vzl YC

Ty = M ; ﬂ, )
Spooled,l 2

with observed interim means X’{, )-(IC and a pooled stan-
dard deviation at interim S),5o/¢q,1- This test statistic corre-
sponds to the normal approximation test for continuous
endpoints.

The study is stopped for efficacy at the interim stage
in case the one-sided interim p-value p; is smaller than
or equal to the adjusted local one-sided significance level
p =ar.

The study is stopped for futility if p; > &g, where «g is
the futility boundary.

If the trial is not stopped within the interim analysis,
then additional Ny = N — N patients are recruited. The
test statistic for the final analysis is then given by

wi-T1+wy-To

,/w%+w%

where T5 is the independent incremental test statistic
including exclusively the data of the second stage and
w1, wy are predefined weights which must be fixed at
the planning stage. This is also known as the inverse
normal combination test [23] as the stage-wise test
statistics can be written as the inverse of the nor-
mal distribution function applied to the stage-wise
p-values T; = ® (p;), i=1,2. The combination of
p-values provided by the inverse normal method is just
one option among others to combine the stage-wise
p-values. Another famous approach would be the use of
the Fisher combination test [24]. The idea presented in
here is also transferable when using another combination
function.

A common way to choose the above weights in
the inverse normal combination function is to define
wy = J/nrand wy = /n3.

The null hypothesis H is rejected at the final analysis if
the corresponding p-value is smaller than or equal to the
adjusted local one-sided significance level pj12 < aj49.
The key idea of the inverse normal approach is that by
constructing the final test statistic 774 from the indepen-
dent stage-wise test statistics 71 and T, the covariance of
the joint distribution of 77 and 77, is

ny
Cov(Ty, Ti42) = 7,

and thus the joint distribution is fully specified.

3

Tt =
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The local significance levels for the interim analysis and
the final analysis can be specified such that the overall
type I error is controlled, that is

Py <o Ul <p1Npipa <)) =a. (4)

If binding futility stopping boundaries are applied, the
futility boundary o can be incorporated in the above
equation to obtain larger optimized local significance lev-
els o) and a43. We will not consider this option, as even
if a fixed futility stopping rule is incorporated in the trial
protocol, there are often external reasons to make excep-
tions from this binding rule, which is not a problem as
long as the local significance levels are chosen according
to Eq. (4).

The local significance levels a1 and o142 can be derived
using various existing methods, such as constant levels
as proposed by Pocock [1], increasing levels as given by
O’Brien-Flemming [2], or flexible alpha spending func-
tions as e.g. described by Lan and DeMets [4]. In our
work, for the sake of simplicity, we rely on Pocock bound-
aries that is &y = a142. The remaining question is how
to choose an adequate value of ¢ already at the planning
stage.

Optimality criteria for futility boundaries

The idea of “optimal” futility boundaries proposed by
Schiiler et al. [18] is to assure a high probability to stop
correctly for futility. This means stopping when there is
only no or a non-relevant treatment effect, while simulta-
neously controlling the loss in power and the probability
of correctly stopping for futility when in fact, the under-
lying treatment effect is relevant. In the following, we will
use the term “optimal” with respect to these criteria. As
discussed in the introduction, there are however various
other performance indicators and different approaches
to quantify the total performance. Therefore, optimality
is not a unique perspective and we do not intend to
present the “best” solution. In the following, assume
that the trial is powered to detect a standardized effect

A= "I;“C with power 1 — 8 at a global one-sided sig-
nificance level of a. To introduce the concept of optimal
futility boundaries, some additional parameters are
required: Let Powss < 1 — 8 denote the admissible over-
all power loss caused by applying a binding futility
boundary. Moreover, the probability to wrongly stop for
futility when in fact the underlying standardized treat-
ment effect is given by the relevant effect A should be
limited by 7yrong €[ 0, 1]. Using these notations, a futility
boundary fulfils the so called admissible conditions [18]
if the following requirements are satisfied:

1. Pa(p1 > @0) = Twrong:
2. Pa(pr 2onU(ap <p1 <ogNpiyz < a142) >
1= B — Powgss.
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Note that the concept of the optimality parameter Powygs
is similar to the beta-spending approach proposed by sev-
eral authors [9-12]. The beta-spending approach allows
to control the stage-wise power loss induced by futility
stopping boundaries. In contrast, we exclusively focus on
the global power loss. Note that both approaches guaran-
tee a limited (stage-wise) power loss only for the assumed
effect A. For smaller effects the power loss can become
unacceptably high. Therefore, we strongly recommend to
choose A as the minimal clinically relevant effect and not
as the expected effect.

In the following, any futility boundary fulfilling the
admissible conditions will be denoted as &g 4. Note that
for a clinical trial with a continuous endpoint and the
design specifications given above, the first admissible con-
dition can be translated into

ny
0ad = 1 — P Zryp, + A 2 )

where ® (x) denotes the distribution function of the stan-
dard normal distribution and z(,) denotes the correspond-
ing quantile of the standard normal distribution. The
second admissible condition is equivalent to

m
1-0 (210 — A /5

+MVi,s (21-a1) 21-a12)
MV, (Zlfﬂo,ad'zlfﬂuz)
>1- /5 — Powioss,

where MV, 5 (%) is the distribution function of the multi-
variate normal distribution with expectation

N LN b
n= 27072
and variance-covariance matrix

ny
w1

1oVE

For predefined parameters Powioss and mwrong, there exists
a whole set of admissible futility boundaries fulfilling the
above conditions. Only the probability of correctly stop-
ping for futility is left to further optimize an admissible
futility stopping boundary. As the probability to correctly
stop for futility increases with decreasing futility bound-
ary, this implies that the optimal futility boundary cp,opt
is the minimum over the set of all admissible futility
boundaries agad. With this definition, we can compute
the optimal futility boundary at the planning stage of a
clinical trial analytically. However, it can happen that the
actual achievable probability to correctly stop for futility
is still considered as too small. In this case, it might be
reasonable to choose slightly larger values of Pow),ss and

Y=

TTwrong:
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Results

Given predefined design parameters, the optimal futility
boundaries can be analytically computed at the planning
stage. An R-function which calculates the “optimal” futil-
ity boundary for arbitrary design parameters is provided
as online supplementary material (see Additional File 1).

A clinical trial example

In the following, we will illustrate the benefit of using an
optimal futility boundary compared to an arbitrary choice
of a futility boundary by means of a real clinical trial
example.

The ChroPac-Trial [25] is a blinded, randomized, con-
trolled clinical trial. The primary endpoint is the quality of
life of patients with chronic pancreatitis 24 months after
surgical interventions. The intervention group receives
a duodenum-preserving pancreatic head resection and
is compared to a control group receiving pancreatoduo-
denectomy. The aim is to show superiority of the inter-
vention. The primary endpoint is measured by the quality
of life questionnaire EORTC QLQ-C30, which provides a
score for physical functioning. The score ranges from 0
to 100 with a higher score indicating a better quality of
life. Although a score is generally seen as an ordinal end-
point, it is a common approach to treat a score with a
large range as a continuous endpoint. A score difference
of 10 is considered as a clinically relevant treatment dif-
ference and 20 is assumed to be the common standard
deviation.

The trial was planned to detect a standardized treat-
ment effect A = % = 0.5 at a one-sided global signi-
ficance level « = 0.025 with power 1 — g = 0.90. This
results in a total sample size of 172 patients (86 per group)
when the null hypothesis is tested with a standard t-test
for independent groups. Note that the original trial was
planned with a fixed design. For illustrative purposes, we
will now apply a group sequential design to illustrate the
new concept.

Applying a two-stage group sequential design with an
interim look after 50% of the patients being fully observed
and local adjusted significance levels according to Pocock
with o) = aj42 = 0.0147, the above sample size yields a
power of 0.88. In order to apply the concept of an optimal
futility boundary now, we need specifications of Pow|qss
and Tyrong. A power loss caused by futility stopping of
Powyess = 0.05 is considered reasonable. The probabil-
ity to wrongly stop for futility should of course be small.
Thus, we may choose myrong = 0.05. With these param-
eter settings, the optimal futility boundary is given by
gopt = 0.22.

It is also common to anticipate a power of 0.80. There-
fore, as a reference design, we will also calculate the
optimal futility boundary for the above setting when the
global maximal sample size of the group sequential design
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is only N = 140, which results in a power of 0.80 with-
out stopping for futility. In this case, the optimal futility
boundary is given by ag,opt = 0.33.

The two admissible parameters, power loss Powjs
and the probability of wrongly stopping for futility
Twrong, determine jointly the optimal futility boundary
ap,pt- Therefore, agopt can be displayed as a function
of these two parameters as illustrated in Fig. 1, which
allows to investigate graphically how the optimal futility
boundary changes when the admissible parameters are
varied.

From Fig. 1 it can nicely be seen that the optimal futility
boundary also depends on the sample size, where a larger
sample size results in a smaller futility boundary. It can be
seen that for N = 140, the optimal futility boundary is
mainly determined by the parameter 7yong, whereas for
N = 188 the influence of Powyegs grows. In order to quan-
titatively assess the impact of variations of the admissible
parameter settings, Table 1 shows the resulting optimal
futility boundaries for selected parameter values of Powjss
and Tyrong for both sample size settings N = 188 and 140.

Column 1 displays the underlying sample size. Columns
2 and 3 show the specification of the admissible condi-
tion parameters Powjsss and 7Tyrong. The resulting optimal
futility boundary is displayed in Column 4. Columns 5
to 8 show the performance of the design by various per-
formance measures such as the actually achieved power
including stopping for futility (Column 5), the probabil-
ity of wrongly stopping for futility under the anticipated
relevant effect A (Column 6), as well as the probability of
correctly stopping for futility under a small non-relevant
effect, which is half the size of the anticipated effect
and under the null hypothesis with no effect (Columns 7
and 8).

It can be seen from Table 1 that a very low value of
Twrong = 0.01 results in high optimal futility boundaries,
which may be close to the often arbitrarily chosen value
of @g = 0.5 (Row 1) or even larger (Row 8). However,
the probability of correctly stopping for futility is relatively
low in these scenarios.

Looking at the parameter settings where the resulting
probability of correctly stopping for futility under either
the null hypothesis or half of the relevant treatment effect
is at least above 20%, it can be deduced that a slightly
larger value of, e.g. Twrong = 0.05, is a better choice.

The admissible power loss Pow,s is generally often
not exhausted, especially for smaller values of yyong. For
example, a change in the parameter Powjoss does not have
an impact on the optimal futility boundary when 7y, ong is
fixed to either 0.01 or 0.05 for N = 140.

Note that a conventional choice of the futility boundary
is ap = 0.5. Looking at Table 1 it can be seen that for the
favorable settings, where the probability of correctly stop-
ping for futility is not too small and lays above 20%, the
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optimal futility boundaries are considerably smaller than
the conventional choice of ¢y = 0.5. For N = 188 the
optimal futility boundaries range between agopt = 0.13
and agept = 0.46, for N = 140 between ag,opt = 0.21 and
@gopt = 0.59.

Discussion

Although efficacy boundaries in group sequential designs
are widely discussed in the literature, the choice of futility
boundaries gains much less attention in clinical appli-
cations. A naive choice choice of a futility boundary of
ag = 0.5, where an interim p-value of p; > 0.5 suggests an
early stopping for futility, means that at interim, as soon as
the treatment effect points into the adverse direction, the
trial is stopped. Although this is intuitive, the implications
of this futility boundary choice on the design performance
are not always investigated. However, the choice of the
futility boundary naturally influences the power of the
study design. Moreover, a large futility boundary implies
that the probability to stop the study, when indeed there
is no or only a non-relevant effect (correct stopping for
futility), can be small. In contrast, a too low futility bound-
ary can imply that the probability of wrongly stopping
for futility, when there is a relevant treatment effect, is
considered as too large.

Some authors have proposed adaptive design strate-
gies to optimize design parameters, like the value of the
futility boundary and the number and timing of interim
looks [11, 13, 14, 16, 17]. Thereby, different concept were
proposed, e.g. optimization problems with constraints
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[14, 16] or maximization of utility functions [17]. A com-
parison between these different approaches is still lacking.
The optimality criteria initially proposed by Schiiler et al.
[18] allow to define a relatively simple concept of “opti-
mal” futility boundaries, which was originally proposed
in the context of (composite) time-to-event endpoints, by
balancing the performance characteristics of global power
loss and the probability of correctly and wrongly stopping
for futility. The task of this work was to adapt this concept
to the more general case of a group sequential design with
a continuous endpoint. We showed that with the concept
of optimal futility boundaries, it is possible to quantify
the performance characteristics and the implications of
a futility boundary already at the planning stage. By a
clinical trial example, we demonstrated that arbitrarily
choosing @p = 0.5 can lead to very unfavorable perfor-
mance characteristics in some situations. However, there
are also trial settings, where the choice of ¢y = 0.5 is close
to or even smaller than the optimal one. This highlights
the necessity to investigate the implications of different
futility stopping boundaries already at the planning stage.

The concept of optimal futility boundaries fits the reg-
ulatory guidance documents provided by the U.S. Food
and Drug Administration [26] and European Medicines
Agency [27] for confirmatory trials. If a trial sponsor
aims at applying our method in a confirmatory trial,
the power loss and probability of wrongly and correctly
stopping for futility can be predefined as two additional
design parameters in the clinical trial protocol. Simula-
tions are not required as the operating characteristics

Ogopt = 0.33

0\,

Fig. 1 The “optimal” futility boundary egqp as a function of the admissible parameters Powjgss and yyrong for N = 140 (blue dots) and n = 188 (red
squares). The black symbols highlight the “optimal” futility boundaries for Powss = 0.05 and ryrong = 0.05
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Table 1 Performance characteristics for the group sequential design with “optimal” futility boundaries based on different admissible
condition parameters for N = 182 and N = 140. The last lines in the two sample size settings show the performance characteristics for

the arbitrary choice of g = 05

Sample Admissible condition “Optimal” futility Actual

Probability of wrongly Probability of correctly

size parameters boundary power stopping for futility stopping for futility

n PoWioss  Twrong oo,0pt under A = 0.5 Pa.=05 (p1 > o) PAiue=025 (P1 > @0}  Pa.=00 (P1 > o)

188 0.01 0.01 046 0.90 001 0.13 0.54
0.05 0.01 046 0.90 001 0.13 0.54
0.01 0.05 0.29 0.89 003 0.26 0.71
0.05 0.05 022 0.89 0.05 033 0.78
0.01 0.10 029 0.89 003 0.26 0.71
0.05 0.10 0.13 0.85 0.10 0.47 0.87
0.0013 0008 050 090 001 0.1 0.50

140 0.01 001 059 0.80 001 0.10 041
0.05 0.01 059 0.80 001 0.10 041
0.01 0.05 033 0.79 005 0.27 0.67
0.05 0.05 033 0.79 005 0.27 0.67
0.01 0.10 0.32 0.79 0.05 0.28 0.68
0.05 0.10 021 077 Q.10 041 0.79
0.0013 0018 0.50 0.80 002 0.15 0.50

can be derived analytically for continuous endpoints. An
R-code providing the analytical solution is provided as
online supplementary material (see Additional File 1).
Thus, the design modifications are easily calculated
and communicated which is a requirement of the FDA
guidance [26].

A possible limitation of the presented futility concept
is that the choice of the admissible condition parame-
ters, which limits the power loss and controls the probabi-
lity of wrongly stopping for efficacy, is to a certain extend
arbitrary. We therefore recommend to calculate the opti-
mal futility boundaries for a range of plausible admissible
condition parameters and to investigate the performance
characteristics. In particular, the probability of correctly
stopping for futility should be reasonably high (above 20%
asarule of thumb). This approach can lead to a reasonable
choice of the futility boundary that provides a fair balance
between the different performance characteristics.

In this work, we concentrated on a two-stage group
sequential design with a continuous endpoint with local
significance levels adjusted according to Pocock [1]. The
corresponding R-source code (see Additional File 1) can
be easily adapted to use other alpha spending functions
and other p-value combination tests. Moreover, the con-
cept can equivalently be adopted to binary endpoints,
which will be the task of future work.

An attractive argument for the presented approach lays
in the simplicity of the key idea. In particular within inves-
tigator initiated trials, there often exist not theoretically
founded recommendations for choosing futility bounds.

One main aim of this article is thus to encourage the
theoretical justification of futility boundaries in practical
applications. There are different ways to do so of which
our approach is only one option.

Conclusions

While other trial design parameters and operational char-
acteristics are routinely investigated in the planning stage
of group sequential designs, futility boundaries should not
be neglected. The concept of an “optimal” futility bound-
ary method as introduced in here allows to control the
power loss and the probability of wrongly stopping for
futility, while maximizing the probability of correctly stop-
ping for futility. We recommend to investigate futility
boundaries following our approach over a range of param-
eter settings and to carefully compare the resulting futility
boundaries to the arbitrary choice of op = 0.5 when
planning a trial with a group sequential design.
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