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2 Abstract

Group sequential design and adaptive design are flexible designs that are

frequently applied in clinical trials. Unlike fixed designs, flexible designs allow for

statistical inferences on trial endpoints prior to complete data collection. Such early

inferences on a trial may lead to different decisions regarding trial continuation after

the interim analyses. If the treatment effect can already be shown, the trial may be

stopped early for efficacy. On the contrary, if the interim inference indicates a small

treatment effect, the trial may be stopped early for futility. Various options for

efficacy and futility stopping boundaries have been proposed in the statistical

literature. However, futility boundaries are often chosen without the thorough

planning of operational characteristics and evaluation of design performance. In

this research work, performance criteria in flexible designs with early futility stops

are evaluated. Moreover, previous work from Schüler [28] is further developed to

select the so-called ”optimal futility boundaries” [17]. The optimization approach is

developed for trials with continuous or binary endpoints. Application examples of

real clinical trials demonstrate the advantages of the new optimal approach and

have evaluated the performance criteria in various flexible designs. The results

indicate that the optimal futility stopping boundaries simultaneously minimize the

probability of wrongly stopping for futility and power loss. Additionally, boundaries

from the optimal approach improve the probability of correctly stopping for futility

early. In conclusion, it is recommended to investigate and optimize futility

boundaries thoroughly at the planning stage of a clinical trial to achieve greater

design efficiency.
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3 Zusammenfassung

Gruppensequenzielles Design und adaptives Design sind flexible Designs, die

häufig in klinischen Studien angewendet werden. Anders als bei festen Designs,

ermöglichen flexible Designs vor der vollständigen Datenerfassung statistische

Inferenzen auf Studienendpunkte zu ziehen. Eine solche frühe Inferenz kann zum

Zeitpunkt der Zwischenanalysen zu unterschiedlichen Entscheidungen über die

Fortsetzung der Studie führen. Bei validiertem Behandlungseffekt kann die Studie

wegen Wirksamkeit vorzeitig abgeschlossen werden. Im Gegenteil kann die Studie

vorzeitig wegen Aussichtslosigkeit abgebrochen werden, wenn die vorläufige

Schlussfolgerung auf einen geringen Behandlungseffekt hinweist. In der

statistischen Literatur finden sich bereits diverse Optionen für das Stoppen

aufgrund der Wirksamkeit und Aussichtslosigkeit. Die Wahl der Grenzen für das

Stoppen aufgrund der Aussichtslosigkeit erfolgt allerdings oft ohne gründliche

Planung der operativen Eigenschaften und Evaluation der Güte von Designs. In

dieser Forschungsarbeit werden Leistungskriterien in flexiblen Designs mit frühem

Stoppen aufgrund der Aussichtslosigkeit evaluiert und frühere Arbeiten von Schüler

[28] weiterentwickelt, um sogenannte ”optimale Grenzen für das Stoppen aufgrund

der Aussichtslosigkeit” [17] auszuwählen. Der Optimierungsansatz wurde für

Studien mit kontinuierlichen oder binären Endpunkten entwickelt. Echte klinische

Studien werden als Anwendungsbeispiele verwendet, um die Vorteile des neuen

optimalen Ansatzes zu demonstrieren und die Leistungskriterien in verschiedenen

flexiblen Designs zu bewerten. Die Ergebnisse zeigen, dass die optimalen

Grenzen für das Stoppen aus Aussichtslosigkeit sowohl die Wahrscheinlichkeit

eines falschen Stoppens aus Aussichtslosigkeit als auch den Verlust der

Trennschärfe gleichzeitig minimieren. Zusätzlich verbessert der optimale Ansatz

die Wahrscheinlichkeit, frühzeitig korrekt wegen Aussichtslosigkeit aufzuhören.

Schließlich wird empfohlen, die Grenzen in der Planungsphase einer klinischen

Studie gründlich zu untersuchen und zu optimieren, um eine höhere

Designeffizienz zu erreichen.
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4 Synopsis

4.1 Introduction

Designing a clinical trial that balances resources and scientific impact can be

challenging. There are constant changes due to new research from scientific

communities and new guidelines from regulatory agencies. Critical attention should

be given to the protection of the rights, safety, and well-being of trial participants.

When attempting to reduce the time and financial resources required for research,

clinical trials based on traditional fixed designs are less favorable. For example,

major adjustments to an ongoing trial require a trial protocol amendment. On the

contrary, trials with flexible designs allow prospectively planned modifications

based on accumulated data without changing the protocol.

Although contributing to only 2.6% of the trials on PubMed, phase II and III trials

planned with flexible designs are more likely to be completed than those with fixed

designs [32]. Such flexible designs allow for trial modification, including early trial

termination for efficacy and futility or the adaptation of sample size. The application

of early stopping can reduce the cost and patient risk if a trial may already achieve

the research objectives at the interim analysis or terminate early for futility.

A multiple testing problem is caused by such prospectively planned interim

analyses and trial modifications. Initial methods for controlling type-I error via

alpha-spending methods were developed exclusively for group sequential designs

by Pocock [23] and O’Brien and Fleming [20]. The key ideas of the alpha-spending

method were later extended to diverse flexible applications in terms of the timing

and actual information acquired up to the interim analysis [4, 13, 33]. For adaptive

designs with sample size re-estimation, the Fisher’s method [1] and inverse normal

method [15] are commonly used to control overall type-I error by combining the

data from each stage.

Although there is an increasing interest in flexible designs, in practice, common

applications often only contain the option of early stopping for efficacy. Notably, the

method of an early stop for futility is less commonly researched. Between the two

purposes of early trial termination at an interim stage, efficacy is considered a
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positive event because it leads to the successful conclusion of treatment benefits.

On the contrary, terminating a trial due to futility is a difficult decision to make. The

trial sponsors and investigators must accept such an early stop as a sunk cost of

their spent resources. Moreover, a futility stop decreases the possibility of positive

secondary findings from a negatively terminated trial [27]. Despite the negative

consequences, early stopping for futility is an important trial design feature used to

safeguard resources and ethics. Additionally, incorrectly stopping for futility is also

a waste of resources and puts patients at risk without scientific impact. A proper

boundary for futility stopping should increase the efficiency of a trial design.

Therefore, the current research on futility stopping boundaries can be observed in

both large phase III trials and small non-controlled phase II trials [30], while the

futility boundaries are often different from the efficacy boundaries by being

non-binding. For binding futility boundaries, once the result from the interim

analysis crosses the boundary, stopping the trial for futility becomes mandatory.

When combined with an early stopping for efficacy, the binding futility boundaries

may also contribute to the choice of efficacy boundaries if desired, so that the

efficacy boundaries can fully exhaust the global significance level [2]. While the

non-binding futility boundaries do not have the same features as the binding

boundaries, they offer more flexibility. The non-binding boundaries are treated as

an optional recommendation, while the decision to stop for futility is weighted

alongside other factors (e.g., the secondary analysis and external information).

Typically, a data monitoring committee is established to independently evaluate the

safety data. This type of committee may also independently evaluate the interim

analysis of efficacy data and check the crossing of a futility stopping boundary.

Since a data monitoring committee only makes recommendations based on the

boundaries, with the trial sponsor takes the final decision, non-binding boundaries

are better suited for this process. Therefore, the non-binding type plays a more

important role in clinical research practices and deserves greater attention for

methodology development.

Methodologies for futility stopping rules were proposed in the literature decades

ago. The first group of methods is beta-spending functions, which is classified as
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a frequentist approach. Beta-spending functions are similar to the alpha-spending

functions initially designed for early stopping for efficacy in group sequential designs,

except they control for type-II error at β and the stopping boundaries are expressed

in probabilities [4, 3, 21, 25]. The second type of approaches is called stochastic

curtailment [14, 12]. In these approaches, the boundaries are prospectively chosen

based on conditional power (CP), which is defined as the probability of rejecting the

null hypothesis at the final analysis based on the observed interim data and certain

treatment effect assumptions. Apart from frequentist approaches, there is also a

similar Bayesian approach based on predictive power [26, 16, 9].

The performance and operational characteristics of trial designs are further

evaluated after the inclusion of futility stopping boundaries at the interim analysis.

Some examples of operational characteristics can include the maximum and

expected sample size due to time and financial limitation [8, 22]. The boundaries

are optimized based on a combination of operational characteristics of

investigators’ preferences. For example, an investigator might be interested in the

actual benefit of stopping a trial early if there is no treatment effect. Alternatively,

the overall probability of success for a trial or the expected sample size could be

the main focus. However, it remains unclear how these different criteria can be

weighted against each other. Liu et al. [19] proposed a performance score of trial

designs based on the combination of final sample size and power for adaptive

designs. However, the criterion of sample size may not be applicable to all designs

and is not specific to early stopping for futility. Different from a single performance

score, several performance criteria, including the probability of wrongly stopping,

power loss, and probability of correctly stopping, are jointly considered in my

project. These criteria are chosen to cover performance at both interim stages

locally (namely the probabilities of wrongly and correctly stopping) and the power

loss due to futility at global level. Notably, these criteria can easily be understood

and communicated between statisticians and physicians. Schüler [28] proposed

futility stopping boundaries optimized by such characteristics in a special two-stage

group sequential design where the type of primary endpoints is time-to-event and

the boundaries are restricted in the scale of probabilities. The approach from
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Schüler is extended in this project to continuous endpoints [17] and binary

endpoints. Additionally, this project investigates the performance based on various

scales of futility boundaries and for several group sequential and adaptive designs.

My research aims to quantify the performance criteria in group sequential and

adaptive designs with futility stopping boundaries. Individual criteria can be

customized to emphasize different aspects of trial performance. Subsequently,

another aim of the project is to provide an algorithm for futility stopping boundary

optimization for various designs and endpoint types. Under the framework, open

and proactive dialogue is encouraged between statisticians and clinicians in the

initial trial design phase so that different designs with optimal futility boundaries can

be prospectively compared to achieve maximum trial efficiency.

The dissertation first defines the performance criteria and optimization algorithm

in the Methods section. The Methods section is further divided into two parts for

continuous data and binary data, respectively. For each type of endpoint, several

methods are developed to cover different flexible designs, including a design for

non-controlled trials with binary data. Next, the algorithm is applied to hypothetical

settings and real clinical trials, as presented in the Results section. The benefits of

the optimal approach are also demonstrated. Finally, the conclusions of my research

are given in the Discussion section.
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4.2 Methods

Continuous data

Consider a randomized controlled trial that compares two treatment groups. T

denotes the treatment group and C denotes the control group.

For normally distributed continuous data, the observations are denoted as

XT
i ∼ N (µT , σ2), i = 1 . . . nT and XC

i ∼ N (µC , σ2), i = 1 . . . nC (1)

As is often the case in practice, the allocation of two groups is balanced so that

nT = nC = n. Additionally, a known common standard deviation σ is often assumed

in practice. The trial hypothesis can be written as

H0 : µ
T − µC ≤ 0 versus H1 : µ

T − µC > 0 (2)

The direction of the aforementioned hypothesis indicates an effective treatment

group compared to the control group if the endpoint of interest has a higher numeric

value. The hypothesis is constructed for superiority testing. If the objective of a trial

is to establish non-inferiority, 0 should be replaced by a non-inferiority margin.

Assuming a large enough sample size n, a Z-test based on normal distribution

can be used for hypothesis testing. The test statistic Z with n and sample meansXT

and XC can be expressed as

Z =
XT −XC

σ
√

1
nT + 1

nC

=
XT −XC

σ
∗
√

n

2
(3)

If σ is unknown, it can be estimated by the pooled sample standard deviation

Spooled =

√
ST 2+SC2

2
based on the observed data. It is shown that the estimation has

a minimal impact on the overall α [24].

After trial completion, the hypothesisH0 shall be rejected and a treatment benefit

is demonstrated if Z ≥ z1−α. The one-sided significance level α and the power Pow

can be formulated in terms of probabilities as

α = PH0(Z ≥ z1−α) and Pow = 1− β = PH1(Z ≥ z1−α) (4)
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The sample size n is determined for a pre-specified level of α and Pow (e.g.,

α = 0.025 and Pow = 0.8) with an assumed standardized treatment effect of θ
σ
> 0.

n =
2(z1−α + z1−β)

2

( θ
σ
)2

(5)

Compared to the standard one-stage fixed design, group sequential designs

offer more flexibility by allowing multiple stages with interim analyses before the

final analysis. Different from the fixed design, test statistics from a multi-stage

design are based on the data from each stage only or all data cumulatively

collected until the final analysis. In this work, the number of stages j is set to 2 for

illustration. Let XT
j and XC

j denote the sample means observed at the stage

j = 1, 2 for the treatment and control groups, based on the data exclusively

collected during the stage j. Given a balanced design nT
j = nC

j = nj, the stage j

test statistics from (3) can similarly be expressed as

Zj =
XT

j −XC
j

σ
∗
√

nj

2
(6)

For the final stage test statistics, XT
1+2 andXC

1+2 denote the sample means based

on all data cumulatively collected at the final stage. The test statistic extends the

function (3) to

Z1+2 =
XT

1+2 −XC
1+2

σ
∗
√

n

2

=
2∑

j=1

XT
j −XC

j

σ
∗

√√√√ 2∑
j=1

nj

2

=

∑2
j=1

√
njZj√∑2

j=1 nj

(7)

Therefore, Z1+2 can be expressed as a combination of the stage-wise test

statistics Zj. Consequently, the covariance between the final stage and the first

stage is fully specified by the information acquired in terms of the sample size nj

and n so that

Cov(Z1, Z1+2) =

√
n1

n
(8)
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Stopping for futility

Considering a two-stage trial allowing an early stop for futility, a futility stopping

boundary αf is defined as when

Z1 ≤ z1−αf
(9)

and the trial may be stopped early for futility.

There are two types of αf : binding and non-binding. If a futility boundary is

binding, the efficacy boundary α of the final stage in (4) may be adjusted by

incorporating the futility boundary αf from the first stage to improve efficiency if

desired. However, if data monitoring committees and trial sponsors do not strictly

follow the binding rules, the type-I error is inflated above the predefined α. On the

contrary, a non-binding futility stopping boundary only works as a guiding signal so

that the decision to stop a trial early due to futility can be made based on the interim

result and other information. For example, other secondary endpoints from the trial

may suggest a medical and scientific benefit to continuing the trial to the end, even

after a non-binding futility boundary is crossed. Even reviewers at the U.S. Food

and Drug Administration suggest that trial investigators consider the non-binding

type [18]. Therefore, in this work, non-binding futility boundaries are constructed

independently, after the sample size being determined. Two-stage designs only

allowing early stopping for non-binding futility do not inflate type-I error, but rather

reduce it. However, the performance evaluation of a design can only be performed

if futility stopping boundaries are considered mandatory. The same critical value

z1−α of the fixed design remains valid and the final stage test statistics reject H0 if

Z1+2 ≥ z1−α. The protection of type-I error is feasible because

PH0(Z1 > z1−αf
∩ Z1+2 ≥ z1−α) < α.

However, the type-II error can be inflated above β due to the additional stop for

futility and the power loss Powloss. Moreover, a futility stop can affect several other

trial operational characteristics (e.g., the probability of wrongly stopping for futility

πwrong). The trial statistician is responsible for making the clinicians aware of such

impacts before calculating the sample size and defining the stopping boundaries in

the trial protocol. A futility boundary that is not optimally chosen can lead to undesired
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trial performance.

In my publication [17], various criteria to optimize operational characteristics

were analyzed as an extension of Schüler’s work [28]. One of the key criteria

focuses on the prevention of mistakenly terminate a trial for futility. Many

investigators are particularly concerned about wrongly stopping for futility and

thereby leading to an unsuccessful trial. An evaluation of the other secondary

endpoints (apart from the primary endpoint) is also affected by premature

termination because trials are generally not powered for their secondary endpoints

even with complete data collection. However, a small αf = 0.10 makes a correct

stop for futility more difficult, especially for a small treatment effect. On the other

hand, a generous boundary αf = 0.80 greatly inflates the probability of wrongly

stopping for futility and decreases the overall power. Multiple futility boundaries

satisfy the conditions for both losses of power and the probability of wrongly

stopping for futility. Therefore, other operational characteristics (e.g., the expected

sample size) are proposed to derive the optimal futility boundaries among all

possible boundaries in the previous research [31]. In the optimal approach, the

probability of correctly stopping is chosen as the third performance criteria for

optimization. It is motivated by the main objective of futility assessment to correctly

save resources when the true treatment effect is not clinically beneficial.

To quantify performance based on the futility stopping boundary, the performance

metrics should first be characterized. In an extension of Schüler’s work [28], where

both early stops for efficacy and futility were allowed at the interim analysis, the first

design in my research only considers an early stop for futility. The first two conditions

based on the concepts of πwrong and Powloss are characterized as

Condition 1

πwrong ≥ PH1(Z1 ≤ z1−αf
) (10)

Condition 2

Powloss ≥ 1− β − PH1(Z1 > z1−αf
∩ Z1+2 ≥ z1−α) (11)

As previously discussed, many αf fulfill both conditions, while the probability of

correctly stopping for futility is included in the next step for optimization. Any
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smaller treatment effect θ1 ∈ [0, θ) can be chosen for evaluation. Some

investigators may wish to set a minimum level of probability of correctly stopping for

futility as a safety net against the continuation of trials involving an ineffective

treatment. More generally, the investigators can simply rely on the achievable

maximum probability of correctly stopping. Thus, condition 3 for the optimization is

characterized as the probability.

Condition 3

πcorrect,θ1 ≥ PHθ1
(Z1 ≤ z1−αf

) (12)

Let Aπwrong ,Powloss
be the set of all αf that fulfill conditions 1 and 2. αf,opt denotes

the optimal element from the set and constraint of condition 3. The optimal futility

boundary αf,opt is found when

αf,opt = max
αf∈Aπwrong,Powloss

πcorrect,θ1 (13)

In my publication [17], the conditions are specified for continuous endpoints to

search for the optimal boundary αf,opt based on all three conditions iteratively. In first

step, the functions (10) and (11) are transcribed into the standard normal cumulative

distribution Φ and the multivariate normal cumulative distribution MVµ,Σ as

Condition 1

πwrong ≥ Φ(z1−αf
− θ

σ

√
n1

2
) (14)

Condition 2

Powloss ≥ MVµ,Σ(z1−αf
, z1−α)− β (15)

The mean µ and standard deviation Σ matrices of the multivariate normal

cumulative distribution are

µ = ( θ
σ

√
n1

2
, θ
σ

√
n
2
) (16)

Σ =

√
n1

n
1

1
√

n1

n

 (17)
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The iterative search finds the boundary αf,opt by increasing or decreasing αf so

that conditions 1 and 2 are both fulfilled. The search stops at the smallest αf,opt that

gives the largest to condition 3 or any pre-specified desired level of πcorrect,θ1. This

concludes the core of the optimal approach in this research, starting with a simple

two-stage design with a stop for futility only.

In the trial planning phase, both πwrong and Powloss should be predefined with

a maximum limit deemed acceptable by the investigators. The higher probability

of correctly stopping πcorrect,θ1 corresponds to smaller αf because it is more difficult

to cross a smaller boundary for futility. Therefore, the αf,opt is optimized according

to condition 3 in (12) by finding the minimum in the set APowloss,πwrong . It is in the

interest of the trial investigators to know the probability of correctly stopping during

the planning at least. They may also opt to set a minimum acceptable value for

πcorrect,θ1 . For example, if conditions 1 and 2 are planned as overly optimistic, the

desired condition 3 πcorrect,θ1 ≥ 0.6 might yield an αf,opt that is not necessarily the

minimum of the set. On the other hand, if πcorrect,θ1 is too small, the addition of futility

stopping to the trial does not provide any benefit and complicates the trial operation.

The optimal futility boundaries αf,opt are probabilities, as presented in the

publication [17]. However, there are other popular scales for futility boundaries. In

my research, the optimal approach is further extended to show that the method can

still be applied if other scales are chosen by the investigators. Since αf,opt is

derived based on Z-score, z1−αf,opt
is an obvious alternative scale. Another

commonly applied boundary is based on CP, which is defined as the probability of

rejecting H0 at the final analysis given the observed interim data [10]. The main

advantage of CP over αf,opt or z1−αf,opt
scale is the intuitive interpretation of the

futility boundary for decisions at the interim stage since αf,opt and z1−αf,opt
are more

abstract concepts for clinicians. Assuming normality and future data after the

interim stage to follow the initial standardized treatment effect θ
σ
, the CP is derived

as

CP = Φ{
−z1−α + z1−αf,opt

√
n1

n
+ θ

σ

√
n
2
(1− n1

n
)√

1− n1

n

} (18)

Notably, different treatment effect assumptions could be made for (18). For
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example, instead of using θ directly, observed data at the interim analysis can be

incorporated to estimate θ for future data. Also, σ alone or both θ and σ can be

updated given the observed data. The differences in CP caused by the

assumptions are not discussed further in this work because my research focuses

on the benefits of the optimal approach and shows that the method remains viable

regardless of the chosen scale. Since the test statistics Z1 can be found in the

functions of αf,opt and CP scales (9, 18) and directly compared with z1−αf,opt
, the

scales are interchangeable.

Stopping for futility and efficacy

If a two-stage design allows an early stop for efficacy, the rejection of H0 can occur

at either stage 1 if Z1 ≥ z1−α1 or the final stage if Z1+2 ≥ z1−α1+2 . Instead of only a

single boundary α for efficacy at the final stage, there are two efficacy boundaries α1

and α1+2 with data cumulative collected at stage 1 and the final stage, respectively.

The type-I error should be controlled while considering both stages as follows

PH0(Z1 ≥ z1−α1 ∪ (Z1 < z1−α1 ∩ Z1+2 ≥ z1−α1+2)) = α (19)

To derive α1 and α1+2 from (19), the alpha-spending function method is often

applied, with several variations. A function with constant local levels for each

interim stage was proposed by Pocock [23]. Another popular function from

O’Brien-Fleming [20] tends to spend less local significance at early stages and

more at the later stages. Other functions are also available in the literature. For

example, Lan and DeMets proposed for more flexibility in the timing of the interim

stages [13]. Since methods of efficacy boundaries are not the focus of this

research, Pocock’s boundaries (where α1 = α1+2) are selected for simplicity.

The method developed in this section allows an early stop for either futility or

efficacy. Similar to the design with futility only in the previous section, the type-I

error is still controlled after the inclusion of αf to (19) so that

PH0(Z1 ≥ z1−α1 ∪ (z1−αf
< Z1 < z1−α1 ∩ Z1+2 ≥ z1−α1+2)) < α (20)

A similar trial design was assumed in the previous work by Schüler for time-to-

event endpoints [28] and this is extended to continuous endpoints in the publication
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presented in this dissertation [17]. In my work, the three conditions for the optimal

approach of (10), (11) and (12) are further expanded to incorporate the boundaries α1

and α1+2 instead of α alone. Since condition 1 in (10) and 3 in (11) are only affected

by αf , they remain valid regardless of the addition of an early stop for efficacy. Only

condition 2 in (15), as a global criterion, should be adjusted to reflect both stages so

that

Condition 2

1− Φ(z1−α1 −
θ

σ

√
n1

2
) +MVµ,Σ(z1−α1 , z1−α1+2)

−MVµ,Σ(z1−αf
, z1−α1+2) ≥ 1− β − Powloss

(21)

Stopping for futility and sample size re-estimation

Apart from early termination, other trial features may be altered during the trial

under an adaptive design (e.g. sample size re-estimation). The optimal approach

from my work not only applies to group sequential designs but also adaptive

designs with sample size re-estimation. An adequate sample size is vital to

increase the power of the final analysis after the interim analysis, and there are two

major categories for methods of sample size adaptation. The first type of method

relies on non-comparative results. However, the sample size can also be

calculated based on comparative data (e.g., using the observed θ or σ directly or by

a certain CP [11]), which is also used by the optimal approach for trials with two

groups. The optimal approach further improves the performance of the adaptive

design, which is evaluated based on the same three conditions. Since the focus of

this work is the futility stopping boundaries, the method focuses on a trial design

that combines sample size re-estimation and an early stop for futility, without any

early stops for efficacy.

To illustrate the benefit of the optimal approach of futility boundaries in adaptive

designs, a sample size of the stage 2 n2 is recalculated based on the observed interim

θ̂ in this work. In a two-stage design, the recalculated incremental sample size n∗
2

after the interim analysis is associated with 2(σ
θ̂
)2(z1−α + z1−β)

2 − n1. Combined with

αf,opt from the optimal approach for early futility stopping, the rule for adaptation is
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n∗
2 =

0 if Z1 ≤ z1−αf,opt

2(σ
θ̂
)2(z1−α + z1−β)

2 − n1 if Z1 > z1−αf,opt

(22)

If the optimal boundary αf,opt is crossed, the recruitment may completely stop at

the interim stage so that n∗
2 = 0. Otherwise, it continues with an adapted sample size.

Moreover, to avoid recruiting too many patients beyond the capacity of investigators,

the pre-specified maximum is set to be n∗
2 ≤ 2n2.

To derive the αf,opt in an adaptive design, the same three conditions are applied.

Conditions 1 and 3 are based solely on the information and assumptions up to the

interim analysis and remain unchanged. Due to the change in sample size, the

function (7) based on the fixed n is no longer valid for Z1+2. For this purpose, the

inverse normal approach [15] is used in this work to combine stage-wise test statistics

Zj. The overall Z1+2 and covariance from (7) and (8) as part of the Powloss can be

explicitly expressed with weights w1 and w2 as

Z1+2 =
w1Z1 + w2Z2√

w2
1 + w2

2

(23)

Cov(Z1, Z1+2) =
w1√

w2
1 + w2

2

(24)

In an adaptive design, the weights are defined a priori. One intuitive choice of wj

is made according to the initially planned sample size at the interim and final stages

[11].

Lastly, since the sample size of stage 2 can now vary, based on the result of

stage 1, an additional iterative step for each n∗
2 over the range of possible Z1 is

implemented as part of the Powloss from condition 2 to search for the optimal αf,opt.

Binary data

Binary response variables can also be the primary endpoint of a trial (e.g., whether

a patient is a responder (yes or no) to the treatment within 1 month). The research

demonstrated in this section characterizes the optimal approach for the design with

two variations. The first part of the methods is dedicated to a typical controlled trial
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similar to the continuous data section. The second part illustrates the optimal

approach for a non-controlled one-group trial, which is often applied in phase II with

limited finical resources.

Two groups with stopping for futility

If the comparison between the two groups T and C are based on response data,

the same notations can be adopted as described for the continuous data from the

previous sections. Assuming that the responses follow a Bernoulli distribution, the

observed responses are denoted as

XT
i ∼ Bernoulli(pT ), i = 1 . . . nT and XC

i ∼ Bernoulli(pC), i = 1 . . . nC (25)

with pT and pC representing the proportion of population responses expected in the

balanced treatment and control groups, respectively.

The hypothesis in the form of risk difference between the two groups is

H0 : p
T − pC ≤ 0 versus H1 : p

T − pC > 0 (26)

The main difference compared to the continuous variable is that response

proportions are found in both the treatment effect in form of risk difference pT − pC

and the standard deviation σ. In this work, the standard deviation is chosen based

on pooled variance p̄(1− p̄) with p̄ = nT pT+nCpC

nT+nC = pT+pC

2
.

The test statistic Z for the observed p̂T and p̂C can be simplified as

Z =
p̂T − p̂C

σ̂
√

1
nT + 1

nC

=
p̂T − p̂C

σ̂
∗
√

n

2
, where σ̂ =

√̂̄p(1− ̂̄p) and ̂̄p =
p̂T + p̂C

2 (27)

Trials that intend to compare two groups are more often found in phase III. Phase

III trials typically recruit a large number of patients. Therefore, the test statistics can

be based on normal approximation. Similar to the continuous data with the normality

assumption, H0 is rejected if Z ≥ z1−α for a fixed design, while the probabilities

associated with α and Pow can be expressed in the same fashion as in (4). The

balanced sample size nT = nC = n is derived as
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n =
2(z1−α + z1−β)

2p̄(1− p̄)

(pT − pC)2
(28)

For a two-stage design, function (27) should be extended to include stage j = 1, 2

and observed proportions p̂Tj and p̂Cj . Test statistics Zj for each stage and Z1+2 for

the final stage with all data are expressed as

Zj =
p̂Tj − p̂Cj

σ̂j

∗
√

nj

2
, where σ̂j =

√̂̄pj(1− ̂̄pj) and ̂̄pj = p̂Tj + p̂Cj
2

(29)

Z1+2 =
p̂T1+2 − p̂C1+2

σ̂1+2

∗
√

n

2
, where σ̂1+2 =

√̂̄p1+2(1− ̂̄p1+2) and

̂̄p1+2 =
p̂T1+2 + p̂C1+2

2

(30)

It is shown that Cov(Z1, Z1+2) =
√

n1

n
of equation (8) holds approximately if pT − pC

is small [10].

The non-binding futility stopping boundary αf is defined as per (9). Thus, the trial

may stop early for futility if interim analysis Z1 ≤ z1−αf
. The performance criteria

and optimization process remain the same. However, the three conditions require

adaptation for binary variables to accommodate that both the treatment effect and

standard deviation contain pT and pC . The iterative search for the optimal approach

should be characterized with some minor adjustment to functions (14) and (15) as

follows

Condition 1

πwrong ≥ Φ(z1−αf
− p̂T1 − p̂C1√̂̄p1(1− ̂̄p1)

√
n1

2
) (31)

Condition 2

Powloss ≥ MVµ,Σ(z1−αf
, z1−α)− β (32)

The mean µ and standard deviation Σ matrices of the multivariate normal

cumulative distribution are
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µ = ( pT−pC√
p̄(1−p̄)

√
n1

2
, pT−pC√

p̄(1−p̄)

√
n
2
) (33)

Σ =

√
n1

n
1

1
√

n1

n

 (34)

The search finds the boundary αf,opt in the exact same manner as the method

for continuous data, given a smaller proportion of responders in the treatment group

pT1 ∈ [pC , pT ) and πcorrect,pT1 for condition 3.

Regarding other scales of futility boundaries, Z-score is still z1−αf,opt
and the CP

function (18) requires only replacing θ and σ with the mean and standard deviation

based on an approximation [6], as follows

CP = Φ{
−z1−α + z1−αf,opt

√
n1

n
+ pT−pC√

p̄(1−p̄)

√
n
2
(1− n1

n
)√

1− n1

n

} (35)

One group with stopping for futility

Different than the approach for the two-group trials, the method for one-group trials

is typically applied in phase II with a limited total number of patients. The normal

approximation utilized for sample size and test statistics is no longer appropriate for

a small n. The exact method should be considered and the optimal approach in this

research is formulated accordingly.

Without the control group, the hypothesis for the response variable XT
i ,

formulated with pre-specified null and alternative response proportions p0 and pa, is

H0 : p ≤ p0 versus H1 : p ≥ pa (36)

where p =
∑n

i=1 X
T
i

n
.

Let r denotes the number of responders r = p ∗ n. r follows a binomial

distribution with probability function b(r, n, p), namely Pi=r = (n
i
)pi(1 − p)n−i.

Additionally, B(r, n, p) =
∑r

i=1(
n
i
)pi(1 − p)n−i denotes the cumulative binomial

distribution. Test statistics are also based on the exact binomial test and depend on

the exact ratio of r and n, which is evaluated for the decision to reject H0.

Therefore, unlike the methods designed for two-group comparison, the probabilities
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for testing are directly computed and compared to the decision boundaries α. H0

shall be rejected whenever 1 − B(r̂, n, p0) ≤ α (i.e., if r̂ or more responses are

observed).

Given predefined α and β, the sample size for a fixed design with only one stage

is determined by finding the exact n together with r under

α ≥ 1−B(r, n, p0) and Pow = 1− β ≤ 1−B(r, n, pa) (37)

For a two-stage design with stage j = 1, 2, the hypothesis testing is extended

to the stage 1 observed r̂1 and stage 2 observed r̂1+2 based on all data. If 1 −

B(r̂1, n1, p0) ≥ αf then the trial may stop early for futility at the interim analysis.

For the final stage, the testing problem relies on the probability conditional on not-

terminated stage 1 after at least r1 = B−1(1−αf , n1, p0) is observed. The probability

of rejecting H0 is quantified as

1− [B(r1, n1, p0) +

min(n1,r̂)∑
i=r1+1

b(i, n1, p0)B(r̂ − i, n2, p0)] ≤ α (38)

In fact, with the parameters p0, pa, α, and β (or Pow) as design parameters, the

optimal approach is similar to Simon’s two-stage designs [30]. Nevertheless,

Simon’s designs adjust not only r1 and n1 but also r and n at the final stage.

Moreover, they allow any n1 < n, which often leads to an extreme proportion of the

n being distributed to n1 for stage 1. Therefore, the optimal approach here sets an

additional constraint on n1 ≤ ωn. 0 < ω < 1 represents the desired stage 1 sample

size proportion and improves the balance between the stage 1 and stage 2 sample

sizes when compared to Simon’s designs. The most important benefit of the

optimal approach over Simon’s designs is the flexibility offered by non-binding

futility stopping boundaries. If the trial is not stopped accordingly under Simon’s

designs, the type-I error is inflated. Following the general method of the optimal

approach, the three conditions should be characterized first in relation to the first

stage of early stopping for futility

Condition 1

πwrong ≥ B(r1, n1, pa) (39)
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Condition 2

Powloss ≥ 1− β − [B(r1, n1, pa) +

min(n1,r̂)∑
i=r1+1

b(i, n1, pa)B(r̂ − i, n2, pa))] (40)

Similar to the two-group situations, many αf with their corresponding r1 fulfill both

conditions. Moreover, Simon showed that there aremany possible combinations due

to r1 and n1 being allowed to vary. The probability of correctly stopping for futility is

also a crucial criterion for optimization in the optimal approach and is labeled as

”PET0” in Simon’s designs for performance evaluation under H0. Thus, πcorrect,p0

from (12) is characterized with the cumulative binomial distribution as

Condition 3

πcorrect,p0 ≥ B(r1, n1, p0) (41)

The optimal αf,opt remains as in (13) by solving the iterative search. Since

typical Simon’s designs define the decisions for hypothesis testing based on the

corresponding r1, n1, r, and n only, the optimal approach for one-group design also

provides αf,opt and the set of optimal r1, n1, r, and n for the trial investigators. Other

scales of futility boundaries are not investigated further since the main benefit of

CP (i.e., for easier interpretation than αf ) is already fulfilled by the exact numbers

of responses and the sample size, while the Z-score is not applicable.
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4.3 Results

In this section, the optimal approach is first demonstrated by various operational

characteristic combinations and an evaluation of futility stopping boundaries for

both continuous and binary endpoints. Furthermore, combined with either efficacy

or sample size re-estimation, applications on real clinical trials are presented to

demonstrate the benefit of the optimal approach.

Considering a clinical trial with a continuous endpoint, an interim analysis allowing

for early termination due to futility is planned to occur after 50% of the total patients

enrolled. Given α = 0.025 and Pow = 1− β = 0.9, the futility boundaries αf derived

according to the optimal approach are displayed in Table 1.

Table 1: Implementation of a two-stage design with futility stopping only on

continuous endpoints, with n1 = 0.5n, α = 0.025, and β = 0.1. The optimal approach

is evaluated for the operational characteristics.

Optimal conditions Optimal boundary Other scales Achieved operational characteristics

πwrong Powloss πcorrect,θ1=0.5θ αf,opt z1−αf,opt
CP global Pow πwrong πcorrect,θ1=0

0.01 0.01 0.12 0.51 -0.03 0.30 0.90 0.01 0.49

0.03 0.01 0.23 0.34 0.41 0.47 0.89 0.03 0.66

0.05 0.01 0.23 0.34 0.41 0.47 0.89 0.03 0.66

0.10 0.01 0.23 0.34 0.41 0.47 0.89 0.03 0.66

0.01 0.03 0.12 0.51 -0.03 0.30 0.90 0.01 0.49

0.03 0.03 0.23 0.34 0.41 0.47 0.89 0.03 0.66

0.05 0.03 0.31 0.26 0.64 0.57 0.88 0.05 0.74

0.10 0.03 0.36 0.22 0.77 0.62 0.87 0.07 0.78

0.01 0.05 0.12 0.51 -0.03 0.30 0.90 0.01 0.49

0.03 0.05 0.23 0.34 0.41 0.47 0.89 0.03 0.66

0.05 0.05 0.31 0.26 0.64 0.57 0.88 0.05 0.74

0.10 0.05 0.44 0.16 0.99 0.69 0.85 0.10 0.84

The first two columns describe the maximum values of conditions 1 and 2,

which are allowed and prospectively planned for the trial protocol. The third column

displays condition 3, which is searched for the maximum value according to (13). In

Table 1, half of the original treatment effect is deemed not clinically beneficial.

Thus, the probability of correctly stopping in condition 3 is calculated for such

underlying treatment effect θ1 = 0.5θ. Although it may seem reasonable to aim for a
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higher πcorrect > 0.60, the combination of the highest Powloss = 0.05 and

πwrong = 0.10 only achieves the correct stopping of 44% of the trials if repeated

many times.

The fourth column is the most important one, which gives the optimal futility

stopping boundary αf,opt for the stopping decision at the interim analysis. The last

three columns show the operational characteristics achieved as a performance

evaluation. The actual probability of wrongly stopping under θ can only reach a

value up to the maximum allowed πwrong in the first column. The actual global

power is reduced due to the inclusion of a futility stop and limited by condition 2,

maximum allowed Powloss. If there is truly no treatment benefit, the probability of

early stopping is listed in the last column. Other quantities of performance could be

added to the group of achieved operational characteristics. For example,

probabilities of correctly stopping assuming another θ1, not among those listed in

the Table 1 (0, θ or 0.5θ), may be further investigated. These are all relevant

assessments for the investigators during the planning phase due to the uncertainty

associated with the true treatment effect.

The maximum values of conditions 1 and 2 are bounded by small values of

πwrong ≤ 0.01 and Powloss ≤ 0.01 in the first row. The achieved optimal αf = 0.51

guarantees a global power rounded up to 0.90, with nearly no loss compared to the

planned power. The actual πwrong fully exhausts the maximum allowed value.

However, it has only a small probability of 0.12, which allows a correct early futility

stop for condition 3. Despite αf = 0.51 being optimal and safeguarding the trial, it is

questionable whether such interim analysis is necessary when compared to a

traditional fixed design. By allowing a higher maximum πwrong, the actual Powloss

quickly reaches the maximum allowed 0.01 set by condition 2 in both rows 2 and 3.

The benefit of 11% increase in chance to correctly stop given half of θ is gained,

only at a minimal cost of actual Powloss = 0.01 and πwrong = 0.03. A more extreme

case can be observed in the last row. Having an optimal αf = 0.16 fully utilizes the

allowed risks, with the actual πwrong and Powloss being the same as the maximum

allowed values for conditions 1 and 2. Condition 3 achieved a high probability of

0.44 to correctly end the trial early because smaller boundaries αf allow easier
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crossing over of the boundary if the treatment effect is not large. However, the

investigators should consider whether the trade-off between higher πwrong and

Powloss is truly desired. For example, rows 3 and 7 have the same values of

condition 1 yet different values of condition 2. Moreover, they give distinct futility

boundaries. πwrong plays a more restrictive role in the choice of futility boundary

when compared to Powloss at the same magnitude. Since the actual πwrong = 0.05 in

rows 7 and 11 reach the allowed value of condition 1, the choice of maximum

Powloss does not make any difference on the choice of the optimal boundary.

Lastly, the corresponding Z-score and CP for αf,opt = 0.26 are 0.64 and 0.57 in the

second last row. Some can argue that the Z-score is much greater than 0 and the

CP indicates an already good power for success at the final stage. The optimal

approach for the performance evaluation indicates that no matter what scales the

futility boundaries have, the conditions should be pre-selected and boundaries

should not be chosen arbitrarily.

Table 2: Implementation of a two-stage design with futility stopping only on

continuous endpoints, with n1 = 0.5n, α = 0.025, and β = 0.2. The optimal approach

is evaluated for the operational characteristics.

Optimal conditions Optimal boundary Other scales Achieved operational characteristics

πwrong Powloss πcorrect,θ1=0.5θ αf,opt z1−αf,opt
CP global Pow πwrong πcorrect,θ1=0

0.01 0.01 0.09 0.63 -0.33 0.13 0.80 0.01 0.37

0.03 0.01 0.19 0.46 0.10 0.25 0.80 0.03 0.54

0.05 0.01 0.25 0.37 0.33 0.32 0.79 0.05 0.63

0.10 0.01 0.25 0.37 0.33 0.32 0.79 0.05 0.63

0.01 0.03 0.09 0.63 -0.33 0.13 0.80 0.01 0.37

0.03 0.03 0.19 0.46 0.10 0.25 0.80 0.03 0.54

0.05 0.03 0.25 0.37 0.33 0.32 0.79 0.05 0.63

0.10 0.03 0.38 0.24 0.71 0.46 0.77 0.10 0.76

0.01 0.05 0.09 0.63 -0.33 0.13 0.80 0.01 0.37

0.03 0.05 0.19 0.46 0.10 0.25 0.80 0.03 0.54

0.05 0.05 0.26 0.37 0.33 0.32 0.79 0.05 0.63

0.10 0.05 0.39 0.24 0.71 0.47 0.77 0.10 0.76

In Table 2, β is set to 0.2. Notably, same trend is observed as in Table 1.

Furthermore, the choice of futility boundary is even more constrained by

πwrong ≤ 0.05 and less sensitive to the condition 1 Powloss when compared to a trial
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with a smaller β.

The timing of a futility stopping boundary could also play a role in the choice of

αf,opt, as shown in Figure 1. The optimal approach takes the timing of the first stage

based on the fraction of patients n1

n
as a pre-specified design parameter because

they are often decided for the convenience of trial management and conduct.

Nevertheless, the timing would still have an impact on the boundary itself. If more

patients with available data can already be included in the first stage, the variability

of the interim analysis is decreased. Additionally, it means that fewer patients per

n2 need to be recruited for the second stage. Moreover, the results of the final

stage tend to be more consistent with the treatment effect observed in the first

stage. With fixed conditions πwrong and Powloss and achieving the most favorable

πcorrect,θ1=0, the αf,opt becomes stricter with more n1 acquired.
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Figure 1: Impact of the timing of the first stage on αf,opt, given maximum Powloss =

0.05.

Similar to Table 1 and 2, Table 3 presents the operational characteristics of

trials for a binary endpoint with an optimal futility stopping boundary. The trade-off

between the three conditions resembles the result from Table 1, which are also
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Table 3: Implementation of a two-stage design with futility stopping only on binary

endpoints, with n1 = 0.5n, α = 0.025, and β = 0.1. Assuming pT = 0.6 and pC = 0.4.

Optimal conditions Optimal boundary Other scales Achieved operational characteristics

πwrong Powloss πcorrect,pT,1=0.55 αf,opt z1−αf,opt
CP global Pow πwrong πcorrect,pT,1=0.4

0.01 0.01 0.04 0.51 -0.03 0.30 0.90 0.01 0.49

0.03 0.01 0.09 0.34 0.41 0.47 0.89 0.03 0.66

0.05 0.01 0.09 0.34 0.41 0.47 0.89 0.03 0.66

0.10 0.01 0.09 0.34 0.41 0.47 0.89 0.03 0.66

0.01 0.03 0.04 0.51 -0.03 0.30 0.90 0.01 0.49

0.03 0.03 0.10 0.34 0.41 0.47 0.89 0.03 0.66

0.05 0.03 0.14 0.26 0.64 0.57 0.88 0.05 0.74

0.10 0.03 0.17 0.22 0.77 0.62 0.87 0.07 0.78

0.01 0.05 0.04 0.51 -0.03 0.30 0.90 0.01 0.49

0.03 0.05 0.10 0.34 0.41 0.47 0.89 0.03 0.66

0.05 0.05 0.14 0.26 0.64 0.57 0.88 0.05 0.74

0.10 0.05 0.23 0.16 0.99 0.69 0.85 0.10 0.84

based on a scenario with α = 0.025 and β = 0.1. The minimum probability of

correctly stopping is relatively low because it is based on a small 5% decrease in

pT .

Lastly, to demonstrate the benefit of the optimal approach for binary endpoints

with only one group, Tables 4 and 5 are created. Simon’s designs have two

variations: minimax and optimal designs. Both variations do not optimize for πwrong

and Powloss as performed in the optimal approach. Instead, they optimize for the

maximum and expected sample size. Additionally, as explained in the Methods

section, Simon’s designs require binding futility boundaries, which also adjust the

total sample size n and number of responses r to fully spend α and β. On the other

hand, the optimal approach cannot optimize the choices of n and r and is only able

to derive n1 and r1 from the boundary αf,opt. This difference is shown in Tables 4

and 5, where n and r from Simon’s minimax design are smaller than the fixed n and

r in the optimal approach designs, ignoring the rounding of values. To highlight the

advantage of the optimal approach, non-optimal αf from Simon’s designs are also

displayed in Table 4. Furthermore, due to the exact nature of the binomial test, it is

not always possible to control type-I and type-II errors exactly at the maximum

levels of α and β. Therefore, Powloss can even become negative. The advantage of
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the optimal approach is identified for condition 2 with Powloss, which allows type-II

error to be slightly higher than the predefined β instead of an increase of n as

compensation to losses of power. Consequently, with minimal loss, some of the

unused β could also be spent by setting Powloss ≤ 0.01. Regarding condition 1, let

πwrong ≤ 0.10 since it is in the range seen in Simon’s designs. Condition 3 πcorrect,p0

does not have a pre-specified desired level and is thus used for finding the

maximum value. An additional operational characteristic EN0, the expected sample

size assuming p0, is a basic part of Simon’s designs and included in the tables.

Depending on p0 and pa, the designs using the optimal approach generally do not

greatly increase EN0, but have either better control over πwrong and Powloss or even

higher πcorrect,p0.

Table 4: Comparison of optimal approach designs and Simon’s optimal andminimax

designs, given α = 0.1, β = 0.1, πwrong = 0.10 and Powloss = 0.01.

Design p0 pa r1 n1 r n αf πwrong Powloss πcorrect,p0 α β EN0

Simon’s optimal 0.5 0.65 18 35 47 84 0.37 0.0682 -0.0004 0.6321 0.0952 0.0996 53.0

Simon’s minimax 0.5 0.65 19 40 41 72 0.56 0.0173 -0.0001 0.4373 0.0956 0.0999 58.0

Optimal approach ω = 1
2

0.5 0.65 13 29 41 72 0.64* 0.0206 0.0041 0.3555 0.0944 0.1041 56.7

Optimal approach ω = 2
3

0.5 0.65 22 44 41 72 0.44* 0.0289 0.0029 0.5598 0.0942 0.1029 56.3

Simon’s optimal 0.7 0.85 14 20 45 59 0.42 0.0673 -0.0010 0.5836 0.0954 0.0990 36.2

Simon’s minimax 0.7 0.85 15 22 40 52 0.49 0.0368 -0.0029 0.5058 0.0980 0.0971 36.8

Optimal approach ω = 1
2

0.7 0.85 8 13 41 53 0.65* 0.0342 0.0098 0.3457 0.0853 0.1098 39.2

Optimal approach ω = 2
3

0.7 0.85 25 34 41 53 0.26* 0.0587 0.0093 0.7323 0.0825 0.1093 39.1

*αf,opt

In row 3 of Table 5, where ω = 1
2
, it is noticeable that no feasible design based

on the optimal approach is available. Since the optimal approach has similar r and

n to Simon’s minimax, it is obvious that in this case, when the proportion n1

n
reaches

as high as 66
68

= 97%, it is difficult to constrain ω below 50%. Even with 67%, the

conditions πwrong, Powloss, and πcorrect,p0 are comparable to Simon’s designs, while

EN0 = 51.6 is far below Simon’s minimax design EN0 = 66.1. Similar settings are

displayed in the second block. The optimal approach allows the boundary αf,opt and

the corresponding r1 and n1 vary, especially with a small αf,opt = 0.21 design, while

maintaining the EN0 around 34.4 as per Simon’s minimax design.
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Table 5: Comparison of optimal approach designs and Simon’s optimal andminimax

designs, given α = 0.05, β = 0.2, πwrong = 0.10 and Powloss = 0.01.

Design p0 pa r1 n1 r n αf πwrong Powloss πcorrect,p0 α β EN0

Simon’s optimal 0.5 0.65 15 28 48 83 0.29 0.1428 -0.0015 0.7142 0.0470 0.1985 43.7

Simon’s minimax 0.5 0.65 39 66 40 68 0.05 0.1893 -0.0013 0.9456 0.0488 0.1987 66.1

Optimal approach ω = 1
2

0.5 0.65 not feasible

Optimal approach ω = 2
3

0.5 0.65 24 45 41 69 0.28* 0.0708 0.0073 0.7243 0.0439 0.2073 51.6

Simon’s optimal 0.7 0.85 14 19 46 59 0.28 0.1444 -0.0067 0.7178 0.0494 0.1933 30.3

Simon’s minimax 0.7 0.85 16 23 39 49 0.44 0.0463 -0.0008 0.5601 0.0466 0.1992 34.4

Optimal approach ω = 1
2

0.7 0.85 17 24 39 49 0.49* 0.0572 0.0020 0.6114 0.0461 0.2020 33.7

Optimal approach ω = 2
3

0.7 0.85 24 32 39 49 0.21* 0.0958 0.0065 0.7882 0.0451 0.2065 35.6

*αf,opt

Real trial application 1

The first application of the optimal approach on a real clinical trial allow both the

futility and efficacy stopping. The ChroPac Trial [5] was a randomized controlled

trial with an interim analysis. The objective was to investigate the efficacy of an

intervention surgical procedure compared to a standard surgical procedure treating

patients with chronic pancreatitis. The efficacy endpoint, tested for superiority, is

the quality of life score from the EORTC QLQ-C30 questionnaire. The total scores

of EORTC QLQ-C30 are between 0 and 100. Higher total scores indicate a high

level of functioning and quality of life. Although it is a scoring system, the actual

calculation is generally performed through a linear transformation. Thus, the data

should be treated as a continuous endpoint. During the planning of the ChroPac

Trial, the standardized treatment effect θ
σ
was assumed to be 0.5 and the hypothesis

of treatment efficacy was tested at one-sided with an α = 0.025. In the original

trial, a fixed design was also planned for β = 0.1, which set a total sample size of 86

patients for the single final analysis. To illustrate the optimal choice of futility stopping

boundaries together with the option to stop early for efficacy, a two-stage design is

chosen with 50% of patients enrolled for the interim analysis. Global powers of both

0.9 and 0.8 are commonly applied in clinical research and their corresponding β = 0.1

and 0.2 are presented in this application. Since the futility stopping boundaries of

the optimal approach are non-binding, they are derived after the efficacy stopping

boundaries are chosen first. When applying Pocock’s alpha-spending function to
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the overall α = 0.025, the local significance levels are α1 = α1+2 = 0.0147 at the

interim and final analysis for efficacy. Figure 2 shows the set APowloss,πwrong in the

two situations. Reasonable conditions of Powloss <= 0.05, πwrong <= 0.05, and

πcorrect,θ1=0.5θ >= 0.30 are predefined. The boundaries αf,opt are found at 0.33 and

0.22. Both values of αf,opt show good performance if the true effect size is only half

of the initially assumed effect. It is shown that β affects the overall potential choices

of αf , with higher αf at lower β, thereby making an early futility stop and type-II error

less likely.

Additionally, both optimal αf,opt are much lower than an arbitrary futility stopping

boundary of 0.50 and, equivalently, a CP of 0.31. Although αf = 0.50 still protects

both Powloss = 0.0013 and πwrong = 0.018, allowing early termination due to futility at

the interim stage would be rather unnecessary since the probability of a correct to

early stop is only 0.15.

Figure 2: ChroPac Trial application with β = 0.1 and 0.2. The figure was originally

created for the publication [17].
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Real trial application 2

In the second trial application, a showcase of the optimal approach is created for an

adaptive design with sample size re-estimation at the interim stage. The sample size

is recalculated based on the scheme of (22). The PDY6797 trial was a randomized

placebo-controlled trial that aimed to test the efficacy of a new treatment on patients

with type 2 diabetes [29]. The change in plasma glucose area under the curve from

baseline was chosen as the primary efficacy endpoint. This endpoint is often used in

linear models without log-transformation due to its approximately normal distribution.

Furthermore, values of change from baseline might be negative. The initial sample

size per group n = 11 is derived based on (22), assuming a β = 0.1 and one-sided

α = 0.025 with an expected treatment effect of θ = 300 and standard deviation of

σ = 250. Table 6 shows that adding an option for futility reduces the expected sample

size navg and the smallest navg is achieved when the optimal approach is applied.

Between the two designs with an arbitrarily chosen αf = 0.50 and the optimal αf,opt

futility boundaries, the optimal approach controls the three conditions and achieves

a desired higher probability of correctly stopping with the pre-specified cost of power

loss and probability of wrongly stopping.

Table 6: Comparison of different designs at α = 0.025 and β = 0.1. For the optimal

approach, the operational characteristics are predefined as Powloss ≤ 0.05, πwrong ≤

0.10 and πcorrect,θ1=0.5θ ≥ 0.30.

Design nmax navg global Pow πwrong πcorrect,θ1=0.5θ πcorrect,θ1=0

Adaptive only 33 15.0 0.91 - - -

Adaptive + futility with αf = 0.50 33 11.6 0.90 0.02 0.15 0.50

Adaptive + futility with αf,opt = 0.27 33 10.0 0.86 0.08 0.35 0.73
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4.4 Discussion

The choice of futility boundaries in flexible designs affects various operational

characteristics. Conveniently choosing a futility boundary is not equivalent to

having a numerically optimal boundary. Even with a relatively small treatment

effect that favors the null hypothesis, an early stopping for futility is not guaranteed.

Any futility boundary has an impact on the overall power loss and probability of

correctly and wrongly stopping under various treatment effect assumptions. Thus,

the optimization should not be overlooked.

Previous research has proposed optimization strategies for different designs,

including futility stopping boundaries in either group sequential or adaptive designs

[8, 7, 22, 30]. A focus on futility stopping optimization alone is carefully investigated

in my research. The optimal approach proposed by Schüler on time-to-event

endpoints in a two-stage group sequential design [28] is further developed to

continuous [17] and binary endpoints in both group sequential and adaptive

designs. In the optimal approach, three operational characteristics are jointly

evaluated and optimized to derive the appropriate futility boundary. With the

optimal approach, trial investigators can fully specify the trade-offs between the

desired operational characteristics to increase performance efficiency. For one

trial, a 5% probability of wrongly stopping for futility might already be unacceptable

due to the importance of the newly developed treatment since the investigators

would favor a continuation to the end of the trial whenever possible. Whereas for

another trial, a high power loss may not favorable because the trial sponsors have

only one chance to run the trial for their innovative treatment and hope for a good

chance of success. Also, if the new treatment started with a less promising outlook,

a predefined high probability of correctly stopping should be seen as more

important than the other characteristics. Thus, the optimal choice of a futility

stopping boundary reflects the cautiousness or aggression of the research

objectives of trial investigators.

One of the operational characteristics presented in this work is the power loss,

which cannot be avoided with non-binding futility boundaries. Some methods of

futility stopping design suggest increasing the total sample size to compensate for
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such losses of power. In comparison, the optimal approach only plans to simply

accept a power loss since the power loss comes from the probability of the trial

actually being stopped early. An increase in the initial sample size planning

automatically treats the futility stopping boundaries as binding, as shown in Simon’s

designs. This method is quite restrictive if investigators would utilize early futility

stopping boundaries merely as a suggestion. Nevertheless, the other performance

scores can be evaluated in future research. Real-world situations can be

investigated in future work to account for the extra data collected due to

overrunning, to apply to other types of adaptation other than the sample size, and

to optimize αf , n1 and n simultaneously. Additionally, the optimization assumes a

balanced allocation between treatment groups, which is not always the case in real

trials.

This research aims to create a quantified approach for optimizing futility

stopping boundaries based on the evaluation of performance criteria. The criteria

are straightforward and can be communicated among trial investigators. With

engaging communication and a greater understanding of the operational

characteristics, optimal futility stopping boundaries should be applied more often to

further increase trial efficiency and drive innovative clinical research.
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