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Summary
In this thesis we have studied balanced model reduction techniques for linear con-
trol systems, specifically balanced truncation and singular perturbation approxi-
mation. A special feature of these methods, as compared to closely related rational
approximation techniques for linear systems, is that they allow for an a priori L2

and (frequency domain) H∞ bounds of the approximation error. These methods
have been successfully applied for system with homogeneous initial conditions but
only little attention has been paid to systems with inhomogeneous initial condi-
tions or feedback systems.
For open-loop control proplems, we have derived an L2 error bound for bal-
anced truncation and singular perturbation approximation for system with non-
homogeneous initial condition, extending research work by Antoulas etal. The
theoretical results have been validated numerically with extensive comparison be-
tween different systems and balanced truncation and singular perturbation model
reduction.
For closed-loop, one of the most important methods in control problems called
linear quadratic regulator (LQR) has been introduced. This is used to find an
optimal control that minimizes the quadratic cost function. In order to do that
we have used formal asymptotics for the Pontryagin maximum principle (PMP)
and the underlying algebraic Riccati equation. The outcome of this section are
case description under which balanced truncation and the singular perturbation
approximation give good closed-loop performance. The formal calculations are
validated by numerical experiments, illustrating that the reduced-order can be
used to approximate the optimal control of the original system.
Finally, we studied two different test cases to demonstrate the validity of the the-
oritical results.
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Zusammenfassung
Diese Dissertation behandelt balancierte Modellreduktionsverfahren für lineare Differen-
tialgleichungen, speziell das balancierte Abschneiden (”balanced truncation”) sowie die
Approximation im Rahmen der Theorie singulär gestörter Systeme (”singular perturba-
tion approximation”). Balancierte Modellreduktionsverfahren zeichnen sich gegenüber
vergleichbaren rationalen Approximationsverfahren dadurch aus, dass sie a priori Fehler-
schranken im L2-Sinne sowie im H∞ (Frequenzraum) für Systeme mit homogenen An-
fangsbedingungen haben Allerdings gibt es bislang kaun Untersuchungen zu Systemen
mit inhomogenen Anfangsbedingungen oder Feedback-Steuerung.

Im ersten Teil dieser Arbeit wurden ausgehend von Resultaten von Antoulas et al. L2-
Fehlerschranken für lineare gesteuerte Systeme (”open loop control”) mit inhomogenen
Anfangswerten hergeleitet und für verschiedene Approximationen (”truncation”, ”sin-
gular perturbation approximation”) anhand numerischer Beispiele in Bezug auf den
tatsächlichen Approximationsfehler miteinander verglichen.

Im zweiten Teil der Arbeit wurde untersucht, inwieweit balancierte Modellreduktionsver-
fahren im Zusammenhang mit linearen Regelungsproblemen (”closed loop control”)
eingesetzt werden können. Dazu wurden reduzierte Modelle des linear quadratischen
Reglers (LQ-Reglers) mit Hilfe formaler asymptotischer Methoden und dem Pontrya-
gin’schen Maximumsprinzip hergeleitet. Als ein zentrales Resultat dieses Teils der Arbeit
wurden verschiedene Parameterregime für das balancierte Ausgangsmodell identifiziert,
in denen die formale Asymptotik für den LQ-Regler mit den Riccati-Gleichungen für
die reduzierten Modelle aus dem ersten Teil der Arbeit übereinstimmt. Die formalen
Argumente wurden mit numerischen Experimenten untermauert und zeigen, dass die
reduzierten Modelle sehr gute Approximationen der optimalen Steuerung des vollen
Systems liefern können.

Sämtliche theoretischen Resultate in der Arbeit wurden durch geeigntete numerische
Testbeispiele validiert.
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Chapter 1

Introduction

Many physical, mechanical and artificial processes can be described by dynami-
cal systems, which can be used for simulation or control. The modeling of many
physical, chemical or biological phenomena resulting from discretized partial dif-
ferential equations lead to the well-known representation of a linear time-invariant
(LTI) system

ẋ= Ax+Bu

y = Cx+Du

x(t0) = x0

where A ∈ <n×n, B ∈ <n×m, C ∈ <p×n and Dp×m are constant matrices.
The order n of the system ranges from a few tens to several hundreds as in control
problems for large flexible space structures. A common feature of the model used
is that it is high-dimensional and displays a variety of time scales. If the time
scales in the system are well separated, it is possible to eliminate the fast degrees
of freedom and to derive low-ordered reduced models, using averaging and homog-
enization techniques. Homogenization of linear control systems has been widely
studied by various authors [1, 4, 14, 26].
Linear systems have been under investigation for quite long time due to their wide
range of applications in physics, mathematics and engineering. But the subject is
such a fundamental and deep one that there is no doubt that linear systems will
continue to be a main focus of study for long time to come.
Finite dimensional linear systems have been extensively studied since the early
1930s. The frequency-domain techniques that were commonly used often did not
exploit the underlying finite dimensionality of the system involved. Moreover, al-
most all this work was for single-input, single-output systems and did not seem
to extend satisfactorily to the multi-input, multi-output systems that become in-
creasingly important in aerospace, process control and econometric applications
in the late 1950s. This led to a special interest, sparked by the work of Bellman
and Kalman in the state-space description of linear systems. This approach has
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Introduction 2

led to a more detailed examinations of the structure of finite-dimensional linear
systems or linear dynamical systems and to questions of redundancy, minimality,
controllability, observability, etc. For more details see [5, 29].
For linear systems, model order reduction [3] provides a rational basis for various
approximation techniques that include easily computable error bounds [2, 16, 48].
The general idea of balanced model reduction is to restrict the system to the
subspace of easily controllable and observable states which can be determined by
the Hankel singular values associated with the system. Since many problems of
dynamics in physics and engineering are modelled in terms of partial differential
equations, the state space formula for such model requires infinite dimensionality.
Design control for such state space is also of infinite dimension. For the purpose
of computation, this is not practical. Hence it is important to find a low order
controller for the infinite dimensional systems. Model reduction is one of the most
important methods to obtain low order controller.
Related work:
A number of methods have been presented in the literature to reduce order of in-
finite dimensional linear time-invariant systems such as balanced truncation [13],
Hankel norm approximation [42] and singular perturbation approximation [32].
All these methods give the stable reduced systems and guarantee the upper bound
of the error reduction.
Although balanced truncation and singular perturbation approximation methods
give the same of the upper bound of error reduction in the case when the dynam-
ical system is homogeneous, but the characteristics of both methods are contrary
to each other [27].
It has been shown that the reduced systems by balanced truncation have a smaller
error at high frequencies, and tend to be larger at low frequencies. Furthermore,
the reduced systems through the singular perturbation approximation method be-
have otherwise, i.e. the error goes to zero at low frequencies and tend to be large
at high frequencies.
The balanced truncation and Hankel norm approximation techniques have been
generalized to infinite dimensional systems [8, 38]. Curtain and Glover [8] gener-
alized the balanced truncation techniques to infinite-dimensional systems and the
upper bound of the error reduction can be found in [17].
In [9], it has been shown that the reduced systems through balanced truncation
method in infinite dimensional systems preserve the behavior of the original sys-
tem in infinite frequency. More often this condition is not desirable in applica-
tions. Therefore, it is necessary to improve the singular perturbation approxima-
tion method so that it can be applied to infinite dimensional systems.
Many of the properties of the singular perturbation approximation method can be
connected through balanced reciprocal system as shown in [32].
For finite time-horizon optimal problems, among the most actively investigated
singularly perturbed optimal control problems is the linear quadratic regulator
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problems. Most of these approaches are based on the singularly perturbed differ-
ential Riccati equation. An alternative approach via boundary value problems is
presented in [33]. Its relationship with the Riccati aproach is analyzed in [34].
Contribution of this thesis and outcome:
For open-loop control proplems, we have derived an L2 error bound for bal-
anced truncation and singular perturbation approximation for system with non-
homogeneous initial condition, extending recent work by Antoulas etal. The theo-
retical results have been validated numerically with extensive comparison between
different systems and balanced truncation and singular perturbation model reduc-
tion.
For closed-loop, one of the most important methods in control problems called
linear quadratic regulator (LQR) has been introduced. This is used to find an
optimal control that minimizes the quadratic cost function. In order to do that
we have used formal asymptotics for the Pontryagin maximum principle (PMP)
and the underlying algebraic Riccati equation. The outcome of this section are
case description under which balanced truncation and the singular perturbation
approximation give good closed-loop performance. The formal calculations are
validated by numerical experiments, illustrating that the reduced-order can be
used to approximate the optimal control of the original system.
Finally, we studied two different test cases to demonstrate the validity of the the-
oritical results.
This thesis is organized as follows:
Chapter (2) introduces the notions of state equations for the dynamical system,
stability, controllability and observability matrices and gramians, Lyapunov equa-
tions, and Kalman canonical decomposition.
The question of reducing the homogeneous model of linear time-invarient contin-
uous dynamical system on infinite-time horizon is addressed in Chapter (3). This
involves the energy of controllability and observability, the balancing of linear sys-
tems using balanced truncation and the sinngular perturbation approximation.
Chapter (4) gives a detailed treatment of the non-homogeneous linear dynamical
continuous system and the L2 norm of the error bound between the outputs of the
original and the reduced order model.
In Chapter (5) we present the LQR method for the closed-loop dynamical system.
Feedback optimal control is used to minimize the quadratic cost function. In ad-
dition, an optimal control for the reduced model is obtained using the singular
perturbation regulator and balanced truncation.
In Chapter (6) numerical experiments illustrate the performance of these tech-
niques.



Chapter 2

Preliminaries

In this chapter we discuss some of the theoretical concepts of control systems. We
present the state-space and the output equation for the dynamical system and
their solutions [6]. We introduce the Laplace transform and its properties in this
chapter. We discuss the characterization of a system in terms of its transfer func-
tion and the transition matrix. We introduce the basic concepts of controllability,
observability, and stabilizability, and we clarify issues related to these concepts
from the algebraic and engineering persepctive [48].

2.1 State equations for the dynamical system

To describe a linear dynamical system, we introduce the state space equations
which is a set of first-order linear differential equations defined by:

ẋ= Ax+Bu (2.1)

where
ẋ= dx

dt

denotes the derivative of x with respect to time t.
We call

x(t) = [x1(t),x2(t),x3(t), ......,xn(t)]T ∈ <n

the state vector of the dynamical system.
We denote by

u= u(t) ∈ <m

the input function of the dynamical system.
The initial condition of this dynamical system is denoted by:

x(t0) = x0

4



Preliminaries 5

A and B are constant matrices defining linear mappings and they determin the
system structure [2].
In our study we consider the continuous linear – time invariant system. A time-
invariant system is a system such that A, B, C and D are independent of time.
The representations of A, B, C and D are constant matrices with dimensions
A ∈ <n×n, B ∈ <n×m, C ∈ <p×n and D ∈ <p×m.

2.2 The output equation

A linear state equation gives a releationship between the input variable and the
state variable. Now we are going to introduce the output equation of the sys-
tem which is the system variable of interest. The output equation for the linear
continuous dynamical system is given as:

y = Cx+Du (2.2)

where y is a column vector of the output variables, and represents the response of
the system. C and D are constant matrices such that C :<p×<n and D :<p×<n
describe the dynamical system. C is called the output matrix and it describes the
interaction between the system and the outside world.
Finally, D is a matrix of constant coefficient that describes the weight of the sys-
tem input [2].
The following are linear differential equations with constant coefficients describ-
ing the finite dimensional linear time invariant(FDLTI) dynamical system. The
equations are

ẋ= Ax+Bu (2.3)
and

y = Cx+Du (2.4)
where the system state is x(t)∈<n, and the initial condition of the system is x(t0).
The input of the system is u(t) ∈ <m and the output of the system is y(t) ∈ <p
[48].
We can write the dynamical system described by (2.3) and (2.4) in general form
by using the symbol Σ.

Definition 2.2.1. [2] A linear system in state space description is a quadruple of
linear maps represented as matrices.

Σ =
(
A B
C D

)
(2.5)
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The dimension of the system in (2.5) is the same as the dimension of the associated
state spaces, that is :

Dim(Σ) = n (2.6)
In case where D = 0 or D is irrelevant we denote the system by:

Σ =
(
A B
C

)
(2.7)

In this work we take the case D = 0 .
If D = 0, then we write the linear system in the form

ẋ= Ax+Bu (2.8)

y = Cx (2.9)
where x∈<n, u∈<m, A∈<n×n, B ∈<n×m and C ∈<p×n and the initial condition
is taken as x(t0) = x0
One can write this system (2.8) and (2.9) in compact matrix form as:(

ẋ
y

)
=
(
A B
C 0

)(
x
u

)
(2.10)

where (
A B
C 0

)
is a block matrix.
Definition 2.2.2. Let

Σ =
(
A B
C 0

)
be a linear, continuous dynamical system, then Σ is called a SISO system if it
has single input (m = 1) and single output (p = 1). Otherwise it is called MIMO
system which has a multiple input and multiple output [48].

2.3 Stability of a continuous–time system

In this section we discuss the stability of a Continuous – Time system and introduce
the following definitions and theorems related to the stability of the system.
Definition 2.3.1. [10] A matrix A is called a stable matrix if all the eigenvalues
of A have strictly negative real parts.
Remark 2.3.2. A stable matrix is commonly known as a Hurwitz matrix in
control literature [10, 48].
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Definition 2.3.3. The system

Σ =
(
A B
C 0

)

is called a symptotically stable if <{λi(A)}< 0 and is called stable if <{λi(A)}≤ 0
where <{λ} denotes the real parts of λ, and λ are the eigenvalues of the matrix
A.

2.4 The Laplace transform

Definition 2.4.1. [6, 11] Let f(t) be a real-valued function defined for t≥ 0, then
the Laplace transform of f(t) denoted by F (s) is given by:

L [f(t)] =
∞∫
0
f(t)e−stdt

= F (s)
(2.11)

where s= σ+ iω, σ and ω are real variables [6, 11].

The inverse laplace transform of a function F (s) is the unique function f(t) that
is continuous on [0,∞) and satisfies:

L−1 [F (s)] = f(t) (2.12)

The following theorems and properties are used for computing the Laplace Trans-
form [6][11].

Theorem 2.4.2. (Linearity): If a is a constant or is independent of s and t then

L [af(t)] = aL [f(t)]
= aF (s)

(2.13)

Theorem 2.4.3. (Super-position): If L [f1(t)] =F1(s), and L [f2(t)] =F2(s), then:

L [f1(t) +f2(t)] = L [f1(t)] +L [f2(t)]
= F1(s) +F2(s)

(2.14)

Theorem 2.4.4. (Translation in time): If L [f(t)] = F (s) and a is a positive real
number, then the Laplace transform of the translated function f(t−a) is given as:

L [f(t−a)] = e−asF (s) (2.15)
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Theorem 2.4.5. (Complex differentiation): If L [f(t)] = F (s), then:

L [f(t)] =− d

ds
F (s) (2.16)

Theorem 2.4.6. (Translation in the s domain) If L [f(t)] = F (s) and a is either
real or complex, then

L
[
e−atf(t)

]
= F (s−a) (2.17)

Theorem 2.4.7. (Real differentiation): If L [f(t)] = F (s) and let f ′(t) be the first
derivative of f(t), then

L
[
f ′(t)

]
= sF (s)−f(0) (2.18)

Note that Theorem (2.4.7) can be generalized to the nth derivative and we can
write a general formula to find L

[
f (n)(t)

]
L
[
f (n)(t)

]
= snF (s)− sn−1f(0)− sn−2f ′(0)−·· · · · ·− sf (n−2)(0)−f (n−1)(0)

(2.19)

Theorem 2.4.8. (Real integration): If L [f(t)] = F (s), then its integral given by
the following formula :

L[
t∫

0
f(τ)dτ ] = F (s)

s
(2.20)

Theorem 2.4.9. (Final value): If L [f(t)] = F (s) and lim
t→0

f(t) exists then :

lim
s→0

sF (s) = lim
t→∞

f(t) (2.21)

Theorem 2.4.10. (Initial value) If L [f(t)] = F (s) and lim
s→∞sF (s) exists then:

lim
s→∞sF (s) = lim

t→0
f(t) (2.22)

Now, we come to our final theorem and tool in using the Laplace transform. It
concerns the transform of a convolution of functions. The theorem provides a
link between the notation of convolutions. It is a very important tool and is used
throughout the theory

Theorem 2.4.11. [47](Convolution): We have

L [f(t)?h(t)] = L [f(t)]L [h(t)]
= F (s)H(s)

(2.23)
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where the convolution operator is defined as:

(f ?h)(t) =
t∫

0
f(τ)h(t− τ)dτ

=
t∫

0
f(t− τ)h(τ)dτ

(2.24)

2.5 The derivative and integral of matrix and matrix exponential

In this section we introduce the derivative and integral of a matrix and discuss its
properties and we define the exponential matrix and its representation and give
the rules for its computation [6].

Definition 2.5.1. Let A(t) = [aij(t)] be an n×n matrix where the entries of A(t)
are a function of time t, then :

1. The derivative of A(t) denoted by d
dtA(t) is:

d

dt
A(t) = Ȧ(t)

=
(
d

dt
(aij(t))

)

2. The integral of A(t) is : ∫
A(t)dt=

∫
Ȧ(t)dt

=
(∫

aij(t)dt
)

The differentiation or integration of any matrix can be computed by differentiating
or integrating each element of the matrix. We have the following properties that
are dependes on this definition and we can assume them as rules.
Let α and β be two constants and A and B two matrices, then :

• d
dt(αA) = α d

dtA= αȦ

• d
dt(αA+βB) = α d

dtA+β d
dtB = αȦ+βḂ

•
b∫
a
αAdt= α

∫ b
a Adt, where a and b are real numbers.
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•
b∫
a

(αA+βB)dt= α
∫ b
a Adt+β

∫ b
a Bdt

• d
dt(AB) = A d

dtB+B d
dtA= AḂ+ ȦB

• A0 = I

• d
dtA

n 6= nAn−1 dA
dt

Definition 2.5.2. Given a square matrix A ∈ <n×n and t ∈ <. Then the matrix
exponential of A is denoted by eAt and is a square matrix of the same order as A
defined by :

eAt = I+At+ A2t2

2 + A3t3

6 + . . . (2.25)

For any square matrix, we can find the matrix exponential by using Cayley-
Hamilton Theorem.
If A and B are two matrices and α and β are two constants, then the following
rules hold for the matrix exponential.

• eA0 = I

• e−Aα = [eAα]−1

• eA(α+β) = eAαeAβ

• e(A+B)α = eAαeBβ, only if AB =BA

• d
dt(e

tA) = AetA = eAtA

•
α∫
0
eAαdα = A−1[eAα− I] = [eAα− I]A−1

2.6 The state transition matrix

Definition 2.6.1. The state transition matrix of a dynamical system is a matrix
function denoted by φ(t, t1) and a acts as a transformation from one state to
another [11, 47, 48]. We define it by:

φ(t, t1) = eA(t−t1) (2.26)

where A is a matrix
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Properties of the state transition matrix Here we give a list of properties
of the state transition matrix. The proofs of these facts are standard and can be
found in many sources including [11].

• φ(t2− t1)φ(t1− t0) = φ(t2− t0), for any t0, t1, t2

• φ(t)φ(t)φ(t) · · · · · ·φ(t) = φq(t) = φ(qt), where q is a positive integer

• φ−1(t) = φ(−t)

• φ(0) = I, a unity matrix

• φ(t) is non-singlar for all finite values of t.

2.7 The transfer–function matrix of the dynamical system

The concept of a transfer function has an important use in the linear dynamical
system, and it depends on the input condition [48][11][47].
Let

Σ =
(
A B
C

)
be a linear dynamical system, if we use the properties of the Laplace transform
for the state and output equations (2.8) and (2.9), we have

L[ẋ] = L[Ax] +L[Bu]
sX(s)−x(0) = AX(s) +BU(s)

X(s) = (sI−A)−1BU(s) + (sI−A)−1x(0)
(2.27)

and

L[y] = L[Cx]
Y (s) = CX(s)

(2.28)

The matrix (sI−A)−1 is called the transition matrix or function matrix. Inserting
equation (2.27) into equation (2.28) we obtain

Y (s) = C(sI−A)−1BU(s) +C(sI−A)−1x(0) (2.29)

In case the initial condition is zero, i.e.,x(0) = 0, equation (2.29) becomes:

Y (s) = C(sI−A)−1BU(s) (2.30)
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Definition 2.7.1. [2, 48] The transfer matrix or a function matrix G(s) from u
to y with zero initial condition is defined by:

Y (s) =G(s)U(s) (2.31)
Therefore, we can define G(s) as:

G(s) = Y (s)
U(s) (2.32)

Moreover, if A is a stable matrix then the transfer function takes the form:

G(s) = C(sI−A)−1B (2.33)

Alternatively, the transfer matrix G(s) in equation (2.32) can be written as:(
A B
C

)
= Y (s)
U(s) (2.34)

2.8 Solution of the state and output space equations

To obtain a solution for the state space equation of the linear dynamical continuous
system in equation (2.8), we consider the following steps:
multiply both sides of equation (2.8) by eAt giving:

e−Atẋ= e−AtAx+ eAtBu

e−Atẋ− e−AtAx= e−AtBu

d

dt
[e−Atx(t)] = e−AtBu

e−Atx(t)− e−At0x(t0) =
t∫

t0

e−AtBu(τ)dτ

e−Atx(t)− e−At0x0 =
t∫

t0

e−AtBu(τ)dτ

x(t) = eA(t−t0)x0 +
t∫

t0

eA(t−τ)Bu(τ)dτ, ∀t > t0

(2.35)

This equation describes the change of state with respect to the input vector u(t)
and the initial condition x(t0).
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From the solution of the state equation x(t) and since y = Cx(t), the solution of
the output equation of the system is:

y(t) = CeA(t−t0)x0 +C

t∫
t0

eA(t−τ)Bu(τ)dτ (2.36)

In case where the initial time t0 = 0, the solution of the dynamical system becomes:

x(t) = eAtx0 +
t∫

0
eA(t−τ)Bu(τ)dτ (2.37)

y(t) = CeAtx0 +C

t∫
0
eA(t−τ)Bu(τ)dτ (2.38)

Now, consider the linear dynamical system describe in equations (2.3)(2.4), it
follows that the solution of the output equation with D 6= 0 is given as:

y(t) = CeAtx0 +C

t∫
0
eA(t−τ)Bu(τ)dτ +Du(t) (2.39)

We call equation (2.39) the convolution equation and the general form of the
solution of the system can be represented by this equation. The input and the
output of the dynamical system is jointly linear in booth the initial condition and
the state [2].
The system time responses is determined by the state x(t), the output y(t), the
control input u(t) and the initial condition x0 for t≥ 0.
For zero inout control and from equation (2.39), we obtain the response of the
system as:

y(t) = CeAtx0 (2.40)
For zero initial condition, the forced response of the dynamical system determin
by the following equation:

y(t) = C

t∫
0
eA(t−τ)Bu(τ)dτ +Du(t) (2.41)

Finally, we have the following case known as the impulse response and in this case
we set x0 = 0 and define the input control as:

u(t) = δ(t) =
0 if t 6= 0
∞ if t= 0
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where δ(t) is the unit impulse or the Dirac delta function satisfy the diracc distri-
bution: ∞∫

−∞
f(t)δ(t− τ)dt= f(τ)

and f is a continuous function at t= τ .
Now, the impulse response is given as:

y(t) =
t∫

0

(
CeA(t−τ)B+Dδ(t− τ)

)
u(τ)dτ (2.42)

The impulse response matrix of the dynamical system is defined as:

g(t) = CeAtB+Dδ(t)

The relationship between the input and the output with zero initial condition can
be described by the convolution equation [10, 48]

y(t) = (g ?u)(t) =
∞∫
−∞

g(t− τ)u(τ)dτ

=
t∫

−∞
g(t− τ)u(τ)dτ

(2.43)

2.9 Lyapunov equations

In this section we introduce a set of important equations in control theory called
the Lyapunov equations. They defined as follows:

Definition 2.9.1. [2, 10] Let M,MT ∈ <n×n, The matrix equation

AX+XAT =−M (2.44)

is called the Lyapunov Equations.

Theorem 2.9.2. [2, 10](Lyapunov Stability Theorem)[see:F2,P205] The system

Σ =
(
A B
C

)
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is a sympotically stable if and only if for any symmetric positive definite matrix
M , there exists a unique symmetric positive definite matrix X such that

AX+XAT =−M (2.45)

A full proof can be found in many sources and we refer the interested reader to
[2, 10] for the detail.

We can write the solution of these equations in terms of an integral.
Consider the system

Σ =
(
A B
C

)
where A is assumed to be stable and M is symmetric, positive definite, or semi
definite, then :

1. The equation
AX+XAT =−M

has a unique solution X such that:

X =
∞∫
0
eAtMeA

T tdt (2.46)

More detail can be found in [2] that explain the steps of finding the solution
X.

2.10 Controllability and observability

In this section we introduce and discuss the concepts of Controllability and Observ-
ability, which are both fundamental in the study of continuous linear dynamical
system.

Remark 2.10.1. The concepts of Controllability and Reachability are equivalent
for continuous time systems [2][48].

We start by the following definition of the Controllability

Definition 2.10.2. [47, 48] The dynamical system

Σ =
(
A B
C

)
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or the pair (A,B) is said to be controllable if, for any initial state x(0) = x0, t1 > 0
and final state x1 there exists a (piecewise continuous) input u(·) such that the
solution of equation (2.1) satisfies x(t1) = x1.
Otherwise the system or the pair (A,B) is said to be uncontrollable .

Definition 2.10.3. [2, 48] Given the dynamical system

Σ =
(
A B
C

)

then the controllability matrix of the system is defined by

C(A,B) =
(
B AB A2B · · · · · ·An−1B

)
(2.47)

where n is a positive integer.

Definition 2.10.4. [2, 48] The dynamical system

Σ =
(
A B
C

)

or the pair (C,A) is said to be observable if , for any t1 > 0, the initial state can
be determined from the time history of the input u(t) and the output y(t) in the
interval [0, t1] .
Otherwise the system , or (C,A), is said to be unobservable.

Definition 2.10.5. [2, 48] The observability matrix of the dynamical system

Σ =
(
A B
C

)

is defined as:

O(C,A) =



C
CA
CA2

...

...
CAn−1


(2.48)

where n is a positive integer.

We introduce two important matrices for the linear dynamical system the control-
lability and the observability Gramians. They are used in the Balance realization
and model reduction method [2][2, 47]
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Let
Σ =

(
A B
C

)
be a continuous –time linear system and assume that Σ is stable. We define the
controllability and obsorvabelly gramians denoted by Wc and Wo respectively as
follows

Definition 2.10.6. [2, 10] Let A be a stable matrix , then the matrix

Wc =
∞∫
0
eAtBBT eA

T tdt (2.49)

is called the controllability gramian

Definition 2.10.7. [2, 10] Let A be a stable matrix , then the matrix

Wo =
∞∫
0
eA

T tCTCeAtdt (2.50)

is called the Observability Gramian

The two matrices Wc and Wo are the solution of the Lyapunov eguation, so we
have:

AWc+WcA
T +BBT = 0 (2.51)

WoA+ATWo+CTC = 0 (2.52)

Proposition 2.10.8. [10] Let

Σ =
(
A B
C

)

be a stable, continuous-time system and let Wc, Wo be the controllability and
observability gramians of Σ, thenWc andWo satisfy the continuous time Lyapunov
equations:

AWc+WcA
T +BBT = 0 (2.53)

WoA+ATWo+CTC = 0 (2.54)
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Proof. Since Σ is stable, then

AWc+WcA
T =

∞∫
0

(
AeAτBBT eA

T τ + eAτBBT eA
T τAT

)
dτ

=
∞∫
0

d

dτ

(
eAτBBT eA

T τ
)
dτ

= 0−BBT

=−BBT

AWc+WcA
T +BBT = 0

The second equation can be proved in the same way as the first one.

Definition 2.10.9. [2] A Hermition matrix X =X∗ is called positive semi-definite
( or positive definite) if its eigenvalues are positive.

The controllability gramians have the following property that is holds for for
continuous-time dynamical system.

Wc(t) =W T
c (t)≥ 0, ∀t > 0 (2.55)

Now, we introduce the following theorems to explain the relation between the con-
trollability, obsorvability of the system and the solution of the Lyapunov equation
.

Theorem 2.10.10. [2, 48] The system

Σ =
(
A B
C

)

or the pair (A.B) is controllable if and only if Wc is positive definite for any t > 0
(Wc is non-singular).

Proof. (⇐) assume Wc(t)> 0 for some t > 0 and define the input

u(τ) =−BT eA
T (t1−τ)W−1

c (t1)(eAt1x−x1) (2.56)

the value x(t1) from the solution of x(t) is

x(t1) = eAt1x0 +
t1∫

0
eA(t1−τ)Bu(τ)dτ
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If we substitute the value of u(τ) in the above equation, we have

x(t1) = eAt1x0 + (
t1∫

0
eA(t1−τ)BBT eA

T (t1−τ)dτ)W−1
c (t1)(eAt1x0−x1)

= eAt1x0−Wc(t1)W−1
c (t1)(eAt1x0−x1)

= eAt1x0− eAt1x0 +x1

= x1

Since x1 is arbitrary, (A,B) is controllable.
(⇒) We use the proof by contradiction
assume that (A,B) is controllable. Wc is singular for some t > 0
since

eAtBBT eA
T t ≥ 0, ∀t

and this mean there exists a vector

v 6= 0,v ∈ <n

such that
vT eAtB = 0

in the range 0≤ t≤ t1
Now, assume that x(t1) = x1 = 0, this mean

x(t1) = eAt1x0 +
t1∫

0
eA(t1−τ)Bu(τ)dτ

= 0

and if we multiply the above equation by vT , we obtain

vT eAt1x0 = 0

Finally, multiplying by eAt1 , we get

x0 = eAt1v

If we choose the initial state to be x0 = eAt1v, then the value of v = 0 and this is
a contradiction since v 6= 0 by assumption.
So the matrix Wc is nonsingular for any t > 0.
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Theorem 2.10.11. [2, 48] The system pair (A,B) is controllable if and only if
the controllability matrix

C(A,B) =
(
B AB A2B · · · · · ·An−1B

)
has full row rank (i.e., rank(C(A,B)) = n).

Proof. If the system is controllable, then we have Wc(t)> 0, for all t > 0 and is a
non-singular matrix.
Since C(A,B) has no full row rank, this means there exists a nonzero vector,
k ∈ <n such that

kTC(A,B) = 0
which implise that

kTAsB = 0, s≤ 0
and for the case 0≤ s≤ n−1, this is obvious.
For the case s≥ n By the Cayley– Hamilton theorem, it follow that

As = p(A)

where p(A) is a polynomial in A of degree n−1.
From that, we get

kTAsB = kT p(A)B = 0, ∀s≥ n
and this means that

kTAsB = 0, t≥ 0
Now, we have

t∫
0
kT eAτBBT eA

T τkdτ = 0, t > 0

which is equivalent to
kTWc(t)k = 0

This is a contradiction, since Wc(t)> 0
Thus C(A,B) has a full row rank.
For the converse, assume C(A,B) has a full row rank and Wc(t) is not positive for
some t1 > 0.
Then, there exists a vector k 6= 0,k ∈ <n such that

t1∫
0
kT eAτBBT eA

T τkdτ =
t1∫

0
‖BT eA

T τk‖22dτ

= 0
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We obtain
BT eA

T tk = 0, t > 0
If we transposing this equation, we get

kT eAtB = 0

If we differentiating the last equation (n−1) times with respect to t and evaluate
it at t= 0, giving

kTB = kTAB = . . . . . .= kTAn−1B = 0

and this written as

kT
(
B AB A2B · · · · · ·An−1B

)
= 0

and this mean C(A,B) has no full row rank.

Corollary 2.10.12. [2, 48] The system

Σ =
(
A B
C

)

is controllable if and only if the controllability matrix C(A,B) has full row rank.

Theorem 2.10.13. (Controllability Conditions) The following statements are
equivalent .

1. The pair (A,B), A ∈ <n×n, B ∈ <n×m is controllable .

2. The rank of the controllability matrix is full i.e., rank(C(A,B)) = n

3. The controllability gramian is positive definite Wc(t)> 0, for some t > 0

For more details see [2, 48]

Theorem 2.10.14. The pair (C,A) is observable if and only if the matrix

Wo =
∞∫
0
eA

T tCTCeAtdt

is positive definite for any t > 0

For more details [48]
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Theorem 2.10.15. [2] Observabitility Conditions The following statements are
equivalent .

1. The pair (C,A), A ∈ <n×n, C ∈ <p×n is observable .

2. The observability gramian is positive definite Wo for some t > 0

3. The rank of the observability matrix is full i.e., rank(O(C,A)) = n.

2.11 Kalman canonical decomposition

In this section, we look in to how we can change the coordinate system of a dy-
namical system to suit our needs. This is a powerful trick, in particular when the
dynamical system is not completely controllable and or not completely observ-
able [48]. According to the physical dynamical system we use different coordinate
systems to make the analysis and synthesis of the system much easier. The key
properties of a dynamical system are unchanged by this change of coordinates so
we can still analyse it effectively [48].
In Kalman canonical decomposition, we choose a non-singular transformation to
balance the system and determine the states which are not completely controllable
and or not completely observable. These states have less effect on the dynamical
system, so we can delete them.
In the next chapter, we introduce a model order reduction techniques to deter-
mine the states that have no effect on the dynamical system. This can be done
by determining the so called Hankel singular values (HSVs) from the balancing
Gramians of the system. The states corresponding to the smaller Hankel singular
values have less effect to the dynamical system hence we can truncate them.
To convert the original system defined in equations (2.8) and (2.9) we define a
non-singular transformation matrix T ∈ <n×n and define z as:

z = Tx (2.57)

If we multiply equation (2.57) by T−1, we get:

x= T−1z (2.58)
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and if we use the rule of differentiation for the matrix defined by equation (2.57)
then we find the value of ż as follwos

ż = dz

dt

= d

dt
(Tx)

= T ẋ

Now, the value of ż is defined by:

ż = T ẋ (2.59)

and thus equation (2.59) can be written in terms of ż in the form:

ẋ= T−1ż (2.60)

Now, for a given dynamical system describe by equations (2.8) and (2.9) if we
substitute equation (2.58) and (2.60) in the system, we get

T−1ż = AT−1z+Bu (2.61)

and
y = CT−1z (2.62)

Equations (2.61) and (2.62) can then be written in a new form as:

ż = TAT−1z+TBu (2.63)

and
y = CT−1z (2.64)

If we define
Ā= TAT−1, B̄ = TB, C̄ = CT−1

and define the initial condition to be

z(t0) = T−1z0

the system described by the equations (2.63) and (2.64), becomes:

ż = Āz+ B̄u (2.65)

y = C̄z (2.66)

Remark 2.11.1. The two systems described in equations (2.8) (2.9) and (2.65)
(2.66) are the same for any invartable matrix T [48].
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To define the transfer fuction for the new system (2.65) and (2.66), we let

Ḡz(s)

be the transfer function of the system, that is :

Ḡz(s) = C̄
(
sI− Ā

)−1
B̄ (2.67)

Since
G(s) = C (sI−A)−1B

is the transfer function of the original system , we can show that the two transfer
functions are equal by the following steps:

Ḡz(s) = C̄
[
sI− Ā

]−1
B̄

= CT−1
[
sI−TAT−1

]−1
TB

= CT−1T [sI−A]−1T−1TB

= C [sI−A]−1B

=G(s)

For the original systems

Σ =
(
A B
C

)
= C [sI−A]−1B

after the transformation, the system becomes:(
Ā B̄

C̄

)
=
(
TAT−1 TB
CT−1

)
(2.68)

The controllability and observability matrices for the system described in equation
(2.68) is given by:

C̄(Ā, B̄) = TC(A,B) (2.69)
Ō(C̄, Ā) =O(A,B)T−1 (2.70)

where C(A,B) and O(C,A), is the controllability and observability matrices of the
original system. We introduce now the following theorem which is related to the
controllability and observability matrices after using the invertable transformation.

Theorem 2.11.2. [2, 48] The controllability and observability matrices are in-
variant under similarity transformation.

Using the fact in Theorm (2.11.2), we can introduce the following theorem.
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Theorem 2.11.3. [2, 48] If the controllability matrix C(A,B) has rank m1 < n,
then there exists a similarity transformation T and

x̄=
(
x̄c
x̄c̄

)
= Tx

such that: ( ˙̄xc
˙̄xc̄

)
=
(
Āc Ā12
0 Āc̄

)(
x̄c
x̄c̄

)(
B̄c
0

)
u (2.71)

and
y =

(
C̄c C̄c̄

)( x̄c
x̄c̄

)
(2.72)

where Āc ∈ Cm1×m1 and (Āc, B̄c) are controllable.

For any one who interested in the proof see [48].
According to Theorem (2.11.3), the transfer function of the system described by
equations (2.71) (2.72) is given by:

G(s) = C(sI−A)−1B

= C̄c(sI− Āc)−1B̄c
(2.73)

Theorem 2.11.4. [48] If the observability matrix O(A,C) has rank m2 < n, then
there exists a similarity transformation T and

x̄=
(
x̄o
x̄ō

)
= Tx

such that: ( ˙̄xo
˙̄xō

)
=
(

Āo 0
Ā21 Āō

)(
x̄o
x̄ō

)(
B̄o
B̄ō

)
u (2.74)

or equivalently (
TAT−1 TB
CT−1

)
=

 Āo 0 B̄o
Ā21 Āō B̄ō
C̄o 0

 (2.75)

where Ā0 ∈ Cm2×m2 and (C̄o, Āo) are observabile.

For the proof see [48].
The transfer function of the system defined by equation (2.74) or (2.75), can be
written as:

G(s) = C(sI−A)−1B

= C̄o(sI− Āo)−1B̄o
(2.76)
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The two theorems (2.11.3) and (2.11.5) can be combined in one theorem to give
the Kalman Canonical Decomposition.

Theorem 2.11.5. [48] Let a linear time invariant dynamical system be described
by equations (2.8) (2.9), then there exists a nonsingular coordinate transformation

x̄= Tx

such that
˙̄xco
˙̄xcō
˙̄xc̄o
˙̄xc̄ō

=


Āco 0 Ā13 0
Ā21 Ācō Ā23 Ā24
0 0 Āc̄o 0
0 0 Ā43 Āc̄ō



x̄co
x̄cō
x̄c̄o
x̄c̄ō

+


B̄co
B̄cō
0
0

u (2.77)

y =
(
C̄co 0 C̄c̄o 0

)
x̄co
x̄cō
x̄c̄o
x̄c̄ō

 (2.78)

or equivalently

(
TAT−1 TB
CT−1

)
=


Āco 0 Ā13 0
Ā21 Ācō Ā23 Ā24
0 0 Āc̄o 0
0 0 Ā43 Āc̄ō
C̄co 0 C̄c̄o 0



B̄co
B̄cō
0
0

 (2.79)

We mean by x̄co that the state is controllable and observable, by x̄cō that the
state is controllable but unobservable, by x̄c̄o that the stat is uncontrollable and
observable, by x̄c̄ō that the stat is uncontrollable and unobservable [48].
The transfer function of the system described by equation (2.79) is given by:

G(s) = C(sI−A)−1B

= C̄co(sI− Āco)−1B̄co
(2.80)

We see from equation (2.80) that the transfer function of the dynamical system
unchanged and is equal to the transfer function of the controllable and observable
parts, that is: (

A B
C

)
=
(
Āco B̄co
C̄co

)
(2.81)
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For a simple system, consider the state space response given by equation (2.77).
The solutions of the state space equation


˙̄xco
˙̄xcō
˙̄xc̄o
˙̄xc̄ō

=


Āco 0 Ā13 0
Ā21 Ācō Ā23 Ā24
0 0 Āc̄o 0
0 0 Ā43 Āc̄ō



x̄co
x̄cō
x̄c̄o
x̄c̄ō

+


B̄co
B̄cō
0
0

u

are written as:

x̄co(t) = eĀcotx̄co(0) +
t∫

0
eĀco(t−τ)B̄cou(τ)dτ (2.82)

x̄cō(t) = eĀcōtx̄cō(0) +
t∫

0
eĀcō(t−τ)B̄cōu(τ)dτ (2.83)

x̄c̄o(t) = eĀc̄otx̄c̄o(0) (2.84)

x̄c̄ō(t) = eĀc̄ōtx̄c̄ō(0) (2.85)
The solution of the output equation

y =
(
C̄co 0 C̄c̄o 0

)
x̄co
x̄cō
x̄c̄o
x̄c̄ō


is given as:

y(t) = C̄cox̄co+ C̄c̄ox̄c̄o (2.86)
We see from the equation (2.82) to (2.86) that the input u has no effect in the
states x̄c̄o and x̄c̄ō. The states x̄c̄ō and x̄cō don’t appear in the output equation
(2.86). We explain in the following Remark the internal behaviors of the state
response and the input and the output of the dynamical system according to the
initial condition.

Remark 2.11.6. The internal behaviors of the two transfer functions are very
different. The input and the output they are the same for zero initial condition,
but they have very different behaviors with nonzero initial conditions [48].

To explain the idea of this remark, we compute the solution of the output equation
(2.86) with non-zero initial condition.
If we set the initial condition equal to zero (.i.e.,x(0) = 0), then the output equation
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(2.86) can be written in different form as:

y(t) =
t∫

0
C̄coe

Āco(t−τ)B̄cou(τ)dτ (2.87)

If we refer to equation (2.81), then we have the following output equation:

y(t) =
t∫

0
CeA(t−τ)Bu(τ)dτ (2.88)

We see the output equation (2.86) is the same as the output equation (2.88)
with zero initial condition, but they have different outputs with non-zero initial
condition.



Chapter 3

Model Order Reduction of Linear Time-Invariant
Continuous Homogeneous Dynamical System on

Infinite-Time Horizon

3.1 State space realization for transfer function

In this section, we introduce the realization for a general dynamical system with
a transfer function G(s).
Let G(s) be a proper (real rational) transfer function, then the state space model
(A,B,C) given by

G(s) =
(
A B
C

)
is a realization of G(s).

Definition 3.1.1. A state space realization (A,B,C) of G(s) is said to be a
minimal realization of G(s) if A has a smallest possible dimension .

Now, we have the following characterization of the minimal realization [48]

Theorem 3.1.2. A state space realization (A,B,C) of G(s) is minimal if and only
if (A,B) is controllable and (C,A) is observable.

Also, we have the following property of the minimal realization [48]

Theorem 3.1.3. Let (A1,B1,C1) and (A2,B2,C2) be two minimal realization
of a real rational transfer function G(s). Moreover, suppose that C1,C2,O1 and
O2 are the corresponding controllability and observability matrices, respectively.
Then there exists a unique non-singular matrix T such that

A2 = TA1T
−1, B2 = TB1, C2 = C1T

−1

29
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Furthermore, T is given by

T = (OT2 O2)−1O2O1 orT−1 = C1C
T
2 (C2C

T
2 )−1

The balanced realization method is a numerically reliable method to eliminate the
states that are uncontrollable and/or unobservable.

3.2 The amount of energy for controlling or an observing state

In this section we discuss one of the most important properties of a dynamical
system which is used to classify the state of the system a according to the degree
of controllability or the observability [2].
Consider the linear system

ẋ= Ax+Bu

y = Cx

x(0) = x0

and assume it is stable, controllable and observable.
We define the controllability and observability function at x0 [7, 40] as follows:
Definition 3.2.1. The controllability function is defined as

Lc(x0) = min
u∈L2(−∞,0)

x(−∞)=0,x(0)=x0

1
2

0∫
−∞
‖u(t)‖2dt (3.1)

Definition 3.2.2. The observability function is defined as

Lo(x0) = 1
2

∞∫
0
‖y(t)‖2dt, x(0) = x0, u(t) = 0, 0≤ t <∞ (3.2)

The value of Lc(x0) is the minimum amount of control energy required to reach
the state x0.
The value of Lo(x0) is the amount of output energy generated by the state x0.
To determine the degree of controllability and observability of a linear dynamical
system, we introduce the following theorem :
Theorem 3.2.3. [40] Let

Wc =
∞∫
0
eAtBBT eA

T tdt
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and

Wo =
∞∫
0
eATtCTCeAtdt

be the controllability and obesrvablity gramian respectively, where Wc, Wo are the
unique positive-definite solutions of the Lyapunov equations

AWc+WcA
T =−BBT

ATWo+WoA=−CTC
then Lc(x0) and Lo(x0) that described in equations (3.1), (3.2) can be written in
terms of Wc, Wo to get:

Lc(x0) = 1
2x

T
0 W

−1
c x0

Lo(x0) = 1
2x

T
0 Wox0

From theorem (3.2.3), the smallest amount of energy that is needed to steer the
system from zero to the given state x0 is given by Lc(x0) and the amount of energy
with initial condition x0 that is obtained from the output of the system is denoted
by Lo(x0)[2].

3.3 Balancing for linear system

In this section we introduce one of the most importants methods used to obtain
a reduce order model from the original dynamical system. This is called the
Balanced Truncation method [18, 36].
Consider the linear-time invariant continuous system written as:

ẋ= Ax+Bu

y = Cx

x(0) = x0

(3.3)

The concept of the Balanced Truncation method depends on the controllability and
observablity gramians matrices Wc and Wo [39] which are the symmetric positive
semi definite solution of the Lyapunov equations [see proposition (2.10.8)].

AWc+WcA
T +BBT = 0

ATWo+WoA+CTC = 0
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To obtain a reduced order model, we first balance the system then delete the states
that are difficult to control( need large a mount of control energy) and difficult to
observe ( yield small amount of energy), these states are not important so they
could not effect on the transfer function [18, 30, 39].
First, we introduce, in the following definition, the so called The Hankel Singular
Values (HSVs) of the dynamical system.

Definition 3.3.1. [2, 18, 48] Let Σ =
(
A B
C

)
be controllable, observable and

stable continuous-time system of dimension n, The Hankel Singular Values (HSVs)

σ1 ≥ σ2 ≥ ·· · · · · ≥ σn ≥ 0

of Σ are the square roots of the eigenvalues of the product of WcWo and given by:

σi (Σ) =
√
λi (WcWo)

The diagonal matrix of The Hankel Singular Values (HSVs) is denoted by:

Σ =
(

Σ1 0
0 Σ2

)
(3.4)

where σ1 ≥ σ2 ≥ ·· · · · · ≥ σn > 0

Definition 3.3.2. [2, 35] The controllable, observable and stable system

Σ =
(
A B
C

)

is balanced if
Wc =Wo = Σ = diag (σ1 ≥ σ2 ≥ ·· · · · · ≥ σn)

The following theorem describes the method of balancing used to find a coordinate
transformation S such that:

x̄= S−1x (3.5)
in which the controllability, observability gramians become diagonal and equal
[7, 18, 40].

Theorem 3.3.3. There exists a state space transformation x̄= S−1x for the sys-
tem

ẋ= Ax+Bu

y = Cx
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such that the transformed system

˙̄x= Āx̄+ B̄u

ȳ = C̄x̄
(3.6)

is in balanced form and Ā= SAS−1, B̄ = SB and C̄ = CS−1

If we let Ḡ be the transfer function of the transformed system (3.6), then:

Ḡ=
(
Ā B̄

C̄

)
=
(
SAS−1 SB
CS−1

)
(3.7)

Letting W̄c, W̄o be the controllability and observability gramians of the balance
system (3.6) we have that:

W̄c = S−1WcS
−T (3.8)

and
W̄o = STWoS (3.9)

and since the two gramians are equal, then:

W̄c = W̄o = Σ =
(

Σ1 0
0 Σ2

)
(3.10)

where σ1 ≥ σ2 ≥ ·· · · · · ≥ σn.
The controllability and obsevability gramians in equation (3.10) satisfies the two
Lyapunov equations:

ĀΣ + ΣĀT + B̄B̄T = 0
ĀTΣ + ΣĀ+ C̄T C̄ = 0

For more detail, see equations (3.8) (3.9).
Since the two gramians Wc and Wo are posistive definite (or semi-definite), then
we can decompose them according to:

Wc = UUT

Wo = LLT
(3.11)

If we do a singular value decomposition of the matrix LTU , we get:

LTU =XΣY T =
(
X1 X2

)( Σ1 0
0 Σ2

)(
Y T1
Y T2

)
(3.12)

such that
Σ1 = σ1 ≥ σ2 ≥ ·· · · · · ≥ σr
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and
Σ2 = σr+1 ≥ σ2 ≥ ·· · · · · ≥ σn

The other matrices satisfy

XT
1 X1 = Y T1 Y1 = Ir×r

and
XT

2 X2 = Y T2 Y2 = Il×l

with l = n− r [18].
We have the following Lemma that indicates the balancing transformation S and
its inverse in terms of the singular value decomposition

Lemma 3.3.4. [2](Balancing transformation) Given the controllable, observable

and stable system
(
A B
C

)
and the corresponding gramians Wc and Wo, a (prin-

cipal axis) balancing transformation is given as:

S = UY Σ
−1
2

S−1 = Σ
−1
2 XTLT

(3.13)

Definition 3.3.5. The controllability and observability functions of the trans-
formed system (3.6) are defined as :

L̄c(x̄0) = 1
2 x̄

T
0 Σ−1 x̄0 (3.14)

and
L̄o(x̄0) = 1

2 x̄
T
0 Σ x̄0 (3.15)

Now, if σi� σi+1 for i= 1,2, · · · · · · ,n, then the amount of control energy to reach
the state x̄ is large for small values of σi, and the output energy at x̄ is small for
large values of σi.
Hence, to reduce the number of states components of the system, we delete the
state components xj+1 to xn for which σi� σi+1 [39, 40, 48].
For the case when

G=
(
A B
C

)
is a minimal realization , we can use the following procedure to obtain balance
realization [48].

1. Compute Wc and Wo for the system.
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2. Find a matrix U such that Wc = UTR.

3. Diagonalize UTWoU to get

Wc =RTWoR

= LΣ2LT

4. Let
S−1 = UTLΣ−

1
2

then

S−1 = UTLΣ−
1
2SWcS

T

= S−TWoS
−1

= Σ

and (
SAS−1 SB
CS−1

)
is balanced.

3.4 Error bounds using balance truncation

Consider the linear time-invariant continuous system represented by the following
state-space equation:

ẋ= Ax+Bu

y = Cx

x(0) = x0

(3.16)

where x(t) ∈ <n is the state vector, u(t) ∈ <m is the input control and y(t) ∈ <p
is the output of the system.
Let

G(s) = C(sI−A)−1B

be the transfer function of this system.
The system (3.16) is assumed to be asymptotically stable and G(s) a minimal
realization.

Assumptions 3.4.1. We assume that a system is asymptotically stable and the
pair (A,B) is controllable and (A,C) is observable [41].



Model Order Reduction of Linear Time-Invariant Continuous Homogeneous
Dynamical System on Infinite-Time Horizon 36

Since this system is controllable and observable, then the controllabilit and ob-
servability gramians Wc, Wo are positive semi-definite and satisfy the Lyapunov
equatons

AWc+WcA
T +BBT = 0

WoA+ATWo+CTC = 0

If we refer to theorem (3.3.3), we get the following balanced system

˙̄x= Āx̄+ B̄u

ȳ = C̄x̄
(3.17)

where Ā= SAS−1, B̄ = SB and C̄ = CS−1.
Let us partition the balance system (A,B,C) as

A=
(
A11 A12
A21 A22

)
, B =

(
B1
B2

)
and C =

(
C1 C2

)
The block matrices A11, Σ1 of order r×r respectively and A22 of order n−r×n−r
and the other block matrices have order satisfing the original system.
Assuming that σr > σr+1, then the reduced order model obtained by the Balance
Truncation method (BT) is represented by the following equation:

ẋr = A11xr +B1u

yr = C1xr
(3.18)

and the transfer function of this reduced system is defined as:

Gr(s) = C1(sI−A11)−1B1 (3.19)

the subsystems (A11,B1,C1) is a good approximation of the balanced system
(A,B,C).
We have the following lemmas that characterizes the properties of these subsys-
tems [48][2, 28].

Lemma 3.4.2. The subsystems (Aii,Bi,Ci), i= 1,2 are internally balanced with
gramian Σi, i= 1,2

Lemma 3.4.3. The matrices Aii, i= 1,2 are asymptotically stable, i.e.

Re(λj{Aii}< 0), i= 1,2,∀j

if Σ1 and Σ2 have no diagonal entries in common. Further, the subsystem
(Aii,Bi,Ci) is controllable and observable.
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Finally, from the Lemmas (3.4.2) (3.4.3), we now introduce a very important result
in control theory.
We explore the H∞ norm of the transfer function of the model and compare
the difference with the norm of the transfer function of our reduced order model
obtained by balance truncation.
The H∞ norm can be define as:

‖G(jω)‖∞= sup
ω∈<

σ{G(jω)} (3.20)

If we let G(s) be the transfer function of the balanced system (A,B,C) and Gr(s)
be the transfer function of the reduced system (A11,B1,C1) then the upper bound
for the approximation error is given in the following lemma [28, 41].
The balanced truncation has an important and useful property that has a priori
a bounded error [2, 18].

Lemma 3.4.4. We have that

‖G−Gr‖∞≤ 2(σr+1 +σr+2 + · · · · · ·+σn) (3.21)

where σr+1 is the first deleted (HSV) of G(s).

3.5 The reciprocal system of a linear dynamical system

In this section we discuss some properties and some results related to the reciprocal
system of the balanced realization for the infinite dimensional systems [37].
Let the linear continuous dynamical system represented by the equation

ẋ= Ax+Bu

y = Cx+Du

If the system (A,B,C,D) is balanced with gramian Σ, then we have

AΣ + ΣAT +BBT = 0
ATΣ + ΣA+CTC = 0

We let G(s) to be the transfer fuction of the balanced system (A,B,C,D),then

G(s) = C(sI−A)−1B+D
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the reciprocal system of the balanced system (A,B,C,D) is denoted by (Â, B̂, Ĉ, D̂)
and defined as [9, 37, 39]:

Â= A−1

B̂ = A−1B

Ĉ =−CA−1

D̂ =D−CA−1B

(3.22)

Remark 3.5.1. If we compute the value of G(0), we have that:

G(0) =−CA−1B+D = D̂

Remark 3.5.2. Let a matrix A is given as:

A=
(
A11 A12
A21 A22

)

the inverse of A is:

A−1 =
(

(A11−A12A
−1
22 A21)−1 −A−1

11 A12(A22−A21A
−1
11 A12)−1

−A−1
22 A21(A11−A12A

−1
22 A21)−1 (A22−A21A

−1
11 A12)−1

)

we also have

A−1 =
(

(A11−A12A
−1
22 A21)−1 −(A22−A21A

−1
11 A12)−1A12A

−1
11

−(A11−A12A
−1
22 A21)−1A21A

−1
11 (A22−A21A

−1
11 A12)−1

)

Let Ĝ be the transfer fucnction of thr reciprocal system (Â, B̂, Ĉ, D̂), then:

Ĝ(s) = Ĉ(sI− Â)−1B̂+ D̂ (3.23)
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the relation between the two transfer functions G and Ĝ is given as:

G(S) = C(sI−A)−1B+D

= C(sI−A)−1AA−1B+D

= C
I

s
(A−1− I

s
)−1A−1B+D

=−C(I
s
−A−1 +A−1)(I

s
−A−1)−1A−1B+D

=−CA−1B−CA−1(I
s
−A−1)−1A−1B+D

=−CA−1(I
s
−A−1)−1A−1B+D−CA−1B

= Ĉ(I
s
− Â)−1B̂+ D̂

= Ĝ(1
s

)

(3.24)

The following Lemma shows us the balanced realization of the reciprocal system
[28, 37]

Lemma 3.5.3. Let the system (A,B,C,D) be the minimal and balanced real-
ization with gramian Σ of a linear, time-ivariant and stable system, then the
reciprocal system (Â, B̂, Ĉ, D̂) is also balanced with the same gramain Σ.

Proof. We know that Σ satisfies the Lypunove equations

AΣ + ΣAT +BBT = 0
ATΣ + ΣA+CTC = 0

Thus multiplying the first equation from the right by A−1 and from the left by
A−T we get

A−1(AΣ)A−T +A−1(ΣAT )A−T +A−1(BBT )A−T = 0
ΣA−T +A−1Σ + (A−1B)(A−1B)T = 0

Substituting the values in equation (3.22), we have that

ÂΣ + ΣÂT + B̂B̂T = 0
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The second Lyapunov equation multiplyed by A−T from the right and by A−1

from the left, gives us

A−T (ATΣ)A−1 +A−T (ΣA)A−1 +A−T (CTC)A−1 = 0
ΣA−1 +A−TΣ + (CA−1)T (CA−1) = 0

In the same way from equation (3.22), we have

ÂTΣ + ΣÂ+ ĈT Ĉ = 0

This means that the reciprocal system (Â, B̂, Ĉ, D̂) is balanced with the same
gramian Σ.

The reciprocal system (Â, B̂, Ĉ, D̂) and the gramian Σ are partitioned as

Â=
(
Â11 Â12
Â21 Â22

)
, B̂ =

(
B̂1
B̂2

)
, Ĉ =

(
Ĉ1 Ĉ2

)
, Σ =

(
Σ1 0
0 Σ2

)
(3.25)

then if we refer to lemmas (3.4.2) (3.4.3), we have the following [28]:

Lemma 3.5.4. Let the hypothesis of Lemma (3.5.3) hold and let the reciprocal
system (Â, B̂, Ĉ, D̂) be partitioned as in equation (3.25). Then the subsystems
(Âii, B̂i, Ĉi, D̂), i= 1,2 are also internally balanced with gramian Σi, for i= 1,2

Lemma 3.5.5. Let the hypothesis of Lemma (3.5.4) hold. Then the subsystem
matrices Âii, i = 1,2 are asymptotically stable if Σ1 and Σ2 have no common
diagonal element. Further, the subsystem (Âii, B̂i, Ĉi, D̂), i = 1,2 is controllable
and observable.

In order to apply balance truncation to the reciprocal system (Â, B̂, Ĉ, D̂) we
assume that the Hankel singular values σj for j = 1,2, · · · · · · , r are distinct and
such that σ1 > σ2 > · · · · · · > σn > 0 to have Σ1 > 0, Then we have the following
r× r reduced system (Â11, B̂1, Ĉ1, D̂) with state space equation:

˙̂x= Â11x̂+ B̂1u

ŷ = Ĉ1x̂+ D̂u
(3.26)
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The values of Â11, B̂1, Ĉ1 and D̂ can be computed from equation (3.22) and
remark (3.5.2), and they defined as:

Â11 = (A11−A12A
−1
22 A21)−1

B̂1 = (A11−A12A
−1
22 A21)−1(B1−A12A

−1
22 B2)

Ĉ1 = (C1−C2A
−1
22 A21)(A11−A12A

−1
22 A21)−1

D̂ =D−CA−1B

(3.27)

The transfer function for the reduced system (3.26) is denoted by Ĝr and defined
as:

Ĝr(s) = Ĉ1(sI− Â11)−1B̂1 + D̂ (3.28)
We want, now, to find the H∞ norm for the reduced reciprocal system.
The error bound according to Lemma (3.4.4) is represented in the following
Lemma:

Lemma 3.5.6. We have

‖Ĝ− Ĝr‖∞≤ 2
n∑

i=r+1
σi (3.29)

The proof of this Lemma can be found in [28].

3.6 Model reduction using singular perturbation approximation

In sections (3.3) and (3.4), we introduced a balanced truncation method to reduce
the dimension of the original system and obtained an error bound.
In section (3.5) we introduced the properties of the reciprocal system and extend
the error bound in section (3.4) to the reduced reciprocal system.
In this section we introduce another method to reduce the original system which
is called the singular perturbation approximation method (SPAM).
The two methods give us the same error bounds. For the balanced truncation
method the error is small at high frequencies and large at low frequencies, but for
the singular perturbation approximation we have large error at high frequencies
and small error at low frequencies.
Our goal is to find the error bound for the reduced order model using the singular
perturbation approximation.
To obtain this error bound, we discuss the relationship between the reduced model
of the reciprocal system and the reduced model when we use the singular pertur-
bation method.
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Consider the linear continuous sytem described by the equation

ẋ= Ax+Bu

y = Cx
(3.30)

We start from the balanced representation of the linear continuous system to derive
a version of equation (3.30) with reduced dimension.
The controllability and observability gramians Wc and Wo respectively are positive
semi-definite and can be decomposed as in equation (3.11).
The balanced gramain Σ is partitioned in the following form (see section (3.3))

Σ =
(

Σ1 0
0 Σ2

)

The two partitions
Σ1 = diag(σ1,σ2, · · · · · · ,σr)

and
Σ2 = diag(σr+1,σr+2, · · · · · · ,σn)

show us the important singular values that we are interested in and the unimpor-
tant ones which we want to delete [35, 39].
Also we introduce, as in section (3.3), the balance transformation S that satisfies
the equations

S = UY Σ
−1
2

S−1 = Σ
−1
2 XTLT

Now, if we suppose σr+1 << σr and we know that the Hankel singular values
(HSVs) (see section (3.3)) are coordinate invariant, then a reduced dimension
system with small parameters can be obtained since σr+1 > σr+2 > · · · · · ·> σn > 0
[18].
To see where the small parameter Σ2 enter the equation, we replace Σ2 by εΣ2 or
in other words the small HSVs are scaled uniformly according to the equation

(σr+1,σr+2, · · · · · · ,σn) 7 −→ ε(σr+1,σr+2, · · · · · · ,σn), ε > 0

We use the balance transformation S(ε) to change the coordinate such that

x 7 −→ S(ε)x
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If we let S−1(ε) = T (ε), then the balanced matrices are partitioned in the following
form [18]:

S(ε) =
 S11

1√
ε
S12

S21
1√
ε
S22

 (3.31)

and the inverse
T (ε) =

(
T11 T12
1√
ε
T21

1√
ε
T22

)
(3.32)

If we use the balance transformation described in equations (3.31) (3.32), then a
new balance coefficient is obtained and written as:

Ã(ε) = T (ε)AS(ε)

=
(

T11 T12
1√
ε
T21

1√
ε
T22

)(
A11 A12
A21 A22

) S11
1√
ε
S12

S21
1√
ε
S22


=
 Ã11

1√
ε
Ã12

1√
ε
Ã21

1
ε Ã22


(3.33)

B̃(ε) = T (ε)B

=
(

T11 T12
1√
ε
T21

1√
ε
T22

)(
B1
B2

)

=
(

B̃1
1√
ε
B̃2

) (3.34)

and

C̃(ε) = CS(ε)

=
(
C1 C2

) S11
1√
ε
S12

S21
1√
ε
S22


=
(
C̃1

1√
ε
C̃2

) (3.35)

If we set ε = 1 in equation (3.33), then the value of Ã = T (1)AS(1) is simply the
balance matrix A.
We can rewrite the balancing transformations in the following form

S(ε) = S(1)χ(ε)

and
T (ε) = χ(ε)T (1)
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where
χ(ε) =

(
I 0
0 1√

ε
I

)
In the next steps we omit the tilde from the balanced matrices, in order to have
the following matrices:

A=
 A11

1√
ε
A12

1√
ε
A21

1
εA22

 , B =
(

B1
1√
ε
B2

)
, C =

(
C1

1√
ε
C2

)

Let us define the new variable q = (q1, q2) which can be balanced using the balance
transformation T (ε) and we write q in the balance form as:

q = T (ε)x

Now, the linear dynamical system in equation (3.30) is converted to the singular
perturbation system that is described in the following equation:

(
q̇1
q̇2

)
=
 A11

1√
ε
A12

1√
ε
A21

1
εA22

( q1
q2

)
+
(

B1
1√
ε
B2

)
u

y =
(
C1

1√
ε
C2

)( q1
q2

) (3.36)

Equation (3.36) can be written in another form:

q̇1 = A11q1 + 1√
ε
A12q2 +B1u

q̇2 = 1√
ε
A21q1 + 1

ε
A22q2 + 1√

ε
B2u

y = C1q1 + 1√
ε
C2q2

(3.37)

the variable q2 is scaled as
q2 7 −→

√
εq2

then equation (3.37) becomes:

q̇1 = A11q1 +A12q2 +B1u

εq̇2 = A21q1 +A22q2 +B2u

y = C1q1 +C2q2

(3.38)
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This system can be written in matrix form as:(
q̇1
q̇2

)
=
(

A11 A12
1
εA21

1
εA22

)(
q1
q2

)
+
(

B1
1
εB2

)
u

y =
(
C1 C2

)( q1
q2

) (3.39)

where the block matrices A11,A12, . . . are in balance form and ε is a small positive
scalar that represent all small parameters to be neglected [18, 23].
To reduce the dimension of the original system and obtain a reduced order model,
we set the singular perturbation ε= 0.
The linear dynamical system has a multi-time behavior caused by the singular
perturbation and this yeilds the slow and fast variable of the system. The quasi-
steady-state for both slow and fast variables are found with more details in [23].
Now, to apply the singular perturbation approximation and obtain a reduced order
model, we introduce the following two assumptions [23]:

Assumptions 3.6.1. The block matrix A22 is invertible and stable. i.e,

<{λ(A22)}< 0

Assumptions 3.6.2. The following equation has a distinct root when we set ε= 0.

εq̇2 = A21q1 +A22q2 +B2u (3.40)

In our dynamical system described by equation (3.38), the slow variable (or dy-
namic) is q1 and the fast variable (or dynamic) is q2.
According to the two assumptions (3.6.1),(3.6.2) and from equation (3.38), if we
set ε= 0, then the root of equation (3.40) denoted by q̄2 is given as:

q̄2 =−A−1
22 A21x̄−A−1

22 B2u (3.41)

If we substitute the value of q̄2 in the first part of equation (3.38), we obtain the
reduced order model represented by the following state-space equation:

˙̄q1 = Āq̄1 + B̄u

ȳ = C̄q̄1 + D̄u

q̄1(0) = q1(0)
(3.42)
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where

Ā= A11−A12A
−1
22 A21

B̄ =B1−A12A
−1
22 B2

C̄ = C1−C2A
−1
22 A21

D̄ =−C2A
−1
22 B2

(3.43)

Let Ḡ be the transfer function of the reduced order model in equation (3.42), then:

Ḡ(s) = C̄(sI− Ā)−1B̄+ D̄ (3.44)

From the definition of the reduced reciprocal system (3.26) and the two equations
(3.27) and (3.43), we obtain the following:

Â11 = (A11−A12A
−1
22 A21)−1

= (Ā)−1

B̂1 = (A11−A12A
−1
22 A21)−1(B1−A12A

−1
22 B2)

= (Ā)−1B̄

Ĉ1 = (C1−C2A
−1
22 A21)(A11−A12A

−1
22 A21)−1

=−C̄(Ā)−1

D̂ = D̄− C̄(Ā)−1B̄

(3.45)
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In virtue of equation (3.45), we have the following relationship between the two
transfer functions Ḡ(s) and Ĝr(s) and written as:

Ḡ(s) = C̄
(
sI− Ā

)−1
B̄+ D̄

= C̄
(1
s

)(
I− 1

s
Ā
)−1

B̄+ D̄

= C̄
(1
s

)(
(Ā)−1Ā− 1

s
Ā
)−1

B̄+ D̄

= C̄
(1
s

)(
(Ā)−1− I

s

)−1
(Ā)−1B̄+ D̄

=−C̄
(
I

s
− (Ā)−1 + Ā

)(
I

s
− (Ā)−1

)−1
(Ā)−1B̄+ D̄

=−C̄(Ā)−1B̄− C̄
(
I

s
− (Ā)−1

)−1
(Ā)−1B̄+ D̄

=−C̄(Ā)−1
(
I

s
− (Ā)−1

)−1
(Ā)−1B̄+ D̄− C̄(Ā)−1B̄

= Ĉ1

(
I

s
− Â11

)−1
B̂1 + D̂

= Ĝr(
1
s

)

(3.46)

Since the full system (A,B,C,D) is balanced and asymptotically stable and we

have the balanced gramian Σ =
(

Σ1 0
0 Σ2

)
, we introduce the following theorem

for balancing of the reduced system (Ā, B̄, C̄, D̄).

Theorem 3.6.3. [37] The reduced order model (Ā, B̄, C̄, D̄) by singular pertur-
bation approximation is balanced with Σ1 and asymptotically stable.

Proof. We know from lemma (3.5.4) that the reduced system (Â11, B̂1, Ĉ1, D̂) is
balanced with Σ1 which satisfy the Lypunove equations

Â11Σ1 + Σ1Â
T
11 + B̂1B̂

T
1 = 0

ÂT11Σ1 + Σ1Â11 + ĈT1 Ĉ1 = 0

we multiply the first equation from the right by Â−1
11 and from the left by Â−T11 to

get

Â−1
11 (Â11Σ1)Â−T11 + Â−1

11 (Σ1Â
T
11)Â−T11 +A−1(B̂1B̂

T
1 )A−T = 0

Σ1Â
−T
11 + Â−1

11 Σ1 + (Â−1
11 B̂1)(Â−1

11 B̂1)T = 0
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substitute these values into equation (3.44) we obtain

ĀΣ1 + Σ1Ā
T + B̄B̄T = 0

If the second Lyapunov equation is multiplyed by Â−T11 from the right and by Â−1
11

from the left, then we get

Â−T11 (ÂT11Σ1)Â−1
11 + Â−T11 (Σ1Â11)Â−1

11 + Â−T11 (ĈT1 Ĉ1)Â−1
11 = 0

Σ1Â
−1
11 + Â−T11 Σ1 + (Ĉ1Â

−1
11 )T (Ĉ1Â

−1
11 ) = 0

In the same way from equation (3.44), we have

ĀTΣ1 + Σ1Ā+ C̄T C̄ = 0

Finally, our reduced system (Ā, B̄, C̄, D̄) is balanced with gramian Σ1.
Since Â11 is stable .i.e., <{λ(Â11)}< 0, where λ is an eigenvalue of Â11, then the
corresponding eigenvalue of Ā is 1

λ so we have <{λi(Â11)} < 0 which mean the
reduced system (Ā, B̄, C̄, D̄) is asymptotically stable

If the hypothesis of Theorem (3.6.3) holds true, then there is an error bound
avialable for the singular perturbation approximation (Ā, B̄, C̄, D̄) of the stable
and balanced system (A,B,C,D).
In the form of the H∞ norm, the error bound is given as [28]:

‖G− Ḡr‖∞≤ 2
n∑

r=i+1
σi (3.47)

Proof. From Equations (3.24),(3.46) and Lemma (3.5.6), we have

‖G(s)− Ḡ(s)‖∞ = ‖G(s)− Ĝ(1
s

) + Ĝ(1
s

)− Ĝr(
1
s

) + Ĝr(
1
s

)− Ḡ(s)‖∞

≤ ‖G(s)− Ĝ(1
s

)‖∞+‖Ĝ(1
s

)− Ĝr(
1
s

)‖∞+‖Ĝr(
1
s

)− Ḡ(s)‖∞

≤ ‖Ĝ(1
s

)− Ĝr(
1
s

)‖∞

≤ 2
n∑

i=r+1
σi



Chapter 4

Model Order Reduction of Linear Time-Invariant
Continuous Non-Homogeneous Dynamical System on

Infinite-Time Horizon

In this chapter we discuss a non-homogeneous linear dynamical continuous system
and find the error bound between the input and the output of this system. We
use the balance truncation model reduction to find the reduced order model of the
full system and find the L2 norm of the error bound.
We extend the approach and introduce the error bound for the reduced reciprocal
system of the full system and use the result found for the reduced model by singular
perturbation approximation method [20].

4.1 An error bound for non-homogeneous system using balance trun-
cation model reduction (BTMR)

In this section we introduce the error bound between the output of the original
and reduced system using the balanced truncation method.

Consider the following linear time-invariant continuous dynamical system
(
A B
C

)
with state-space equation:

ẋ= Ax+Bu

y = Cx

x(t0) = x0

(4.1)

where A ∈ <n×n, B ∈ <m×n, C ∈ <p×n.
The state x and the output y are defined on the domains

x : (t0,∞)−→<n

49
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and
y : (t0,∞)−→<p

The input function u maps from (t0,∞)−→<m.
To reduce the full system described by equation (4.1), we choose r < n and con-
struct the two matrices W,V ∈<n×r such that W TV = Ir and the reduced system(
Ā B̄

C̄

)
obtained is written as :

˙̄x= Āx̄+ B̄u

ȳ = C̄x̄
(4.2)

where Ā=W TAV, B̄ =W TB, C̄ = CV .
The initial condition of the reduced system is

x̄(t0) =W Tx(t0)

We denote by ȳ ∈ L2(t0,∞), the output of the reduced system [20].
If we apply the balanced truncation method with zero initial condition and for
any u ∈ L2(t0,∞), then the error between the output of the original and reduced
system is given as:

‖y− ȳ‖L2(t0,∞)≤ 2
n∑

i=r+1
σi‖u‖L2(t0,∞) (4.3)

where σ1≥ σ2≥ ·· · ≥ σn≥ 0 are the Hankel singular values(HSVs) (for more details
see lemma (3.4.4).
If we choose an initial condition that is different from zero then equation (4.3)
does not apply.
As a resort, we introduce an approach called X0-Balanced Truncation that can be
used to derive an estimate for the norm of the output error.
The idea of this approach depends on a matrix X0 ∈<n×n0 and assuming that the
non-zero initial condition x(t0) = x0 satisfy the following property:

x0 ∈ ImX0

or in other words x0 belongs to a subspace that is spanned by the columns of X0.
Now, we want to extend the original system in equation (4.1) by replacing the old
input B with new one given by:

Be = [B X0] ∈ <n×(m+n0) (4.4)
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The initial condition x0 can be approximated by choosing a suitable L2 input
function X0u0(t) written as:

x0 =X0u0(t) (4.5)
If we use the new input in equation (4.4) and the approximation of the non-zero
initial condition in equation (4.5), then the extended system of the original system
is written as:

ẋ= Ax+
(
B X0

)( u(t)
u0(t)

)
y = Cx

(4.6)

If we apply the balance truncation method to the system in equation (4.6), the
reduced order model of size r× r is giving by:

˙̄x= Āx̄+
(
B̄ X̄0

)( u(t)
u0(t)

)
ȳ = C̄x̄

(4.7)

where Ā=W TAV, B̄ =W TB, C̄ =CV and the initial condition of this reduced
system is X̄0 =W TX0.
We let

σ1 ≥ σ2 ≥ ·· · ≥ σr > σr+1 ≥ ·· ·σn ≥ 0
be the Hankel singular values of the system (4.6) and

γ = σr+1 + · · ·+σn

Now, the error bound that can be obtained between the outputs of the two systems
in equation (4.6) and (4.7) using the balanced truncation is given as:

‖y− ȳ‖L2(t0,∞)≤ 2γ
(
‖u‖L2(t0,∞)+‖u0‖L2(t0,∞)

)
(4.8)

The technique used to construct a reduced order model (4.2) from the orginal
system (4.2) by applying the two projection W,V ∈<n×r resulted by applying the
balanced truncation to system (4.6), is known as X0-Balanced Truncation [20].
Our goal now is to use the X0-Balanced Truncation and derive an estimate to
the L2 norm between the output of the original system (4.1) and the reduced
order model (4.2). In the absence of auxiliary input function u0 ∈ L2(t0,∞) and
since the outputs of the original system and the extended system (4.1) and (4.6)
respectively together with their reduced model (4.2) and (4.7) are equivalent, then
the error bound obtained in equation (4.8) cannot be applied directly to get an
error bound for the X0-Balanced Truncation.
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The following theorem contains the main result to find the error bound using the
idea of the X0-Balanced Truncation [20].

Theorem 4.1.1. Let W,V ∈<n×r be the projection matrices and σ1 ≥ σ2 ≥ ·· · ≥
σr > σr+1 ≥ ·· · ≥ σn ≥ 0 be the Hankel singular values, generated by applying bal-
ance truncation to (4.6). Let γ = σr+1 + · · ·+σn. Moreover, let Σ̄ = diag(σ1, · · · ,σr)
be the observability (or, equivalently, observability) Gramian of the reduced system
(4.7) and let Q= LTL,L ∈ <n×n, be a factorization of the observability Gramian
Q of the extended system (4.6). If x(t0) = X0z0, then for all u ∈ L2(t0,∞) the
error bound between the output y ∈ L2(t0,∞) of the full order model (4.1) and
the output ȳ ∈ L2(t0,∞) of the reduced order model (4.2) satisfy

‖y− ȳ‖L2(t0,∞)≤ 2γ‖u‖L2(t0,∞)+3.2
−1
2

(
‖LAX0‖2+‖Σ̄

1
2 ĀX̄0‖2

) 1
3
γ

2
3‖z0‖2 (4.9)

The proof of this theorem can be carried out by assuming that t0 = 0, then by
adding extra terms and regularization input function u0 for the two cases x0 = 0
and u= 0. To estimate each term we use the result found in (4.8) and finally the
Taylor expansion.
For more details see [20].
If the extended system is balanceed, we introduce the following Corollary that
includes the priori error bound [20]

Corollary 4.1.2. Let X0 ∈<n×n0 be given and assume that the extended system
(4.6) is balanced, Furthermore, let σ1 ≥ σ2 ≥ ·· · ≥ σr > σr+1 ≥ ·· · ≥ σn ≥ 0 be
the Hankel singular values corresponding to (4.6), let Σ = diag(σ1, · · · ,σr) be its
Gramian, and set γ = σr+1 + · · ·+σn. If (4.2) is an rth order system obtained by
X0-Balanced Truncation, then for all u ∈ L2(t0,∞)

‖y− ȳ‖L2(t0,∞)≤ 2γ‖u‖L2(t0,∞)+3(‖Σ
1
2A‖2)

1
3‖X0‖2)

1
3γ

2
3‖z0‖2 (4.10)

Proof. The proof of this corollary depends on the extended system and the fact
that W = V = In×r. The matrix In×r consists of the first r columns of the identity
matrix. The Gramian is given as Q = Σ or we can write L = Σ 1

2 . The following
inequality holds

‖Σ̄
1
2 ĀX̄0‖2≤ ‖Σ̄

1
2 Ā‖2‖X̄0‖2≤ ‖Σ

1
2A‖2‖X0‖2

‖Σ
1
2AX0‖2≤ ‖Σ

1
2A‖2‖X0‖2

By substituting these estimates into equation (4.9), we obtain the error bound

‖y− ȳ‖L2(t0,∞)≤ 2γ‖u‖L2(t0,∞)+3(‖Σ
1
2A‖2)

1
3‖X0‖2)

1
3γ

2
3‖z0‖2
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4.2 New error bound for non-homogeneous system using the balance
truncation model reduction (BTMR)

In section (4.1), we introduce an aproach called the X0-Balanced Truncation and
define a suitable L2 input function. By this approach, we estimate the norm of
the output error given in equation (4.9) and (4.10).
In this section, we want to use the idea of the X0-Balanced Truncation and extend
the original system using new input and non-zero initial condition. To obtain an
error bound between the outputs of the original and its reduced system, we define
the Driac delta function δ0(t) /∈L2 in the extended system. The balance truncation
method is applied to both original and extend reduced systems to obtain the error
bound between their outputs.

Consider the initial value problem of linear continuous system
(
A B
C

)
of the

form:

ẋ= Ax+Bu

y = Cx

x(t0) = x0

(4.11)

where A ∈ <n×n, B ∈ <n×m and C ∈ <p×n.
u ∈ L2(t0,∞)−→<m is the input control, x ∈ L2(t0,∞)−→<n is the state vector
and y ∈ L2(t0,∞)−→<p is the output.
Assumptions 4.2.1. Throughout this section, the system described by equations
(4.11) is Controllable, Observable and Asymptotically Stable

To reduce the system in equations (4.11) using the balance truncation model re-
duction, we choose a non-singular matrix T ∈ <n×n such that the reduced order

system
(
Ā B̄

C̄

)
is asymptoticcaly stable and written as:

˙̄x= Āx̄+ B̄u

ȳ = C̄x̄
(4.12)

where
Ā= TAT−1, B̄ = TB, C̄ = CT−1

and the initial condition of the reduced system is

x̄(t0) = T−1x(t0)
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To obtain the error bound between the output of the original system (4.11) and
its reduced system (4.12) with a non-zero initial condition, we extend the original
system (4.11) to get the following extended system

Σe =
(
A B X0
C

)

and the state-space equation of this system with zero initial condition can be
written as:

ẋe = Axe+
(
B X0

)( u
δ0

)
ye = Cxe

(4.13)

Here A,B and C are defined the same as in (4.11) and the state vector is denoted
by xe , the output of the system is ye.
We define X0 as:

X0 = x(t0)
The Dirac delta function δ0 is defined in chapter (2) section (2.9) and satisfies the
dirac distribution:

δ0(t) = lim
ε→0

δε(t)

in the sense of the distribution .i.e.

lim
ε→0

∞∫
−∞

ϕ(t)δε(t)dt= ϕ(0), ∀ϕ ∈ <

If we apply the balance truncation method and the balanced transformation T to
the system in equations (4.13) we get the following reduced system(

Ā B̄ X̄0
C̄

)

with state-space equation:

˙̄xe = Āx̄e+
(
B̄ X̄0

)( u
δ0

)
ȳe = C̄x̄e

(4.14)

Here Ā, B̄ and C̄ are the same as in equation (4.12) and the initial condition of
this reduced system is

X̄0 = T−1x(t0)
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The standard balanced truncation does not work here since the driac delta func-
tion δ0(t) /∈ L2.
To derive the error bound between the output of the original system and its re-
duced system, we start by computing the solution xe(t) of the extended system in
equation (4.13) to obtain:

xe(t) =
t∫

t0

eA(t−τ)
(
B X0

)( u
δ0

)
dτ

=
t∫

t0

eA(t−τ)Bu(τ)dτ +
t∫

t0

eA(t−τ)X0δ0(τ)dτ

=
t∫

t0

eA(t−τ)Bu(τ)dτ + eAtX0

= eAtX0 +
t∫

t0

eA(t−τ)Bu(τ)dτ

= x(t)

(4.15)

We see that the solutions of the original system (4.11) and the extended system
(4.13) are the same, hence the output for the two previous systems must be the
same, that is:

ye(t) = y(t) = C

eAtX0 +
t∫

t0

eA(t−τ)Bu(τ)dτ

 (4.16)
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Also we can compute the solution of the reduced system (4.14) which can be
written as:

x̄e(t) =
t∫

t0

eĀ(t−τ)
(
B̄ X̄0

)( u
δ0

)
dτ

=
t∫

t0

eĀ(t−τ)B̄u(τ)dτ +
t∫

t0

eĀ(t−τ)X̄0δ0(τ)dτ

=
t∫

t0

eĀ(t−τ)B̄u(τ)dτ + eĀtX̄0

= eĀtX̄0 +
t∫

t0

eĀ(t−τ)B̄u(τ)dτ

= x̄(t)

(4.17)

Since the solutions of the two reduced systems (4.12) and (4.14) are equal, hence
the outputs of the two reduced systems must equal, so we get:

ȳe(t) = ȳ(t) = C̄

eĀtX̄0 +
t∫

t0

eĀ(t−τ)B̄u(τ)dτ

 (4.18)

We introduce now the controllability and the observability Gramians of the original
system (4.11) and the extended system (4.13) and see how can they be related to
each other.
Let Wc be the controllability Gramian of the full system in equation (4.11) and
Wce be the controllability Gramian of the extended system (4.13), then:

Wce =
∞∫
t0

eAt
(
B X0

)(
B X0

)T
eA

T tdt

=
∞∫
t0

eAt
(
BBT +X0XT

0
)
eA

T tdt

=
∞∫
t0

eAtBBT eA
T tdt+

∞∫
t0

eAtX0X
T
0 e

AT tdt

=Wc+
∞∫
t0

eAtX0X
T
0 e

AT tdt

(4.19)

So we see that the two controllability matrices are not equal, but the observability
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matrices are equal.
That is, if we let Wo be the observability Gramian of the full system and Woe be
the observability Gramian of the extended system, we have that:

Woe =
∞∫
t0

eA
T tCTCeAtdt=Wo (4.20)

As before we let
Σ =

(
Σ1 0
0 Σ2

)
where

Σ1 = diag(σ1, · · · ,σr)
Σ2 = diag(σr+1, · · · ,σn), r < n

and σ1 ≥ σ2 ≥ ·· · ≥ σn ≥ 0 are the Hankel singular values.
Since Woe =Wo then by using the balance transformation T , we have the following
equation:

T TWoT = T TWoeT = Σ = diag(σ1, · · · ,σn) (4.21)
To derive the error bound between the output of the original and extended systems,
we factorize the observability Gramian of the extended (-or original-) system as

Woe =Wo = LTL, for L ∈ <n×n

and let
Σ1 = diag(σ1, · · · ,σr)

be the observability Gramian of the reduced system in equation (4.14).
The following theorem contains the new error bound obtained between the outputs
of the original and its reduced system.

Theorem 4.2.2. Let T ∈ <n×n be a non-singular transformation matrix and let
σ1≥ σ2≥ ·· · ≥ σn≥ 0 be the Hankel singular values of the extended system (4.13).
Then for all u∈L2(t0,∞) the error bound between y ∈L2(t0,∞) and ȳ ∈L2(t0,∞)
is:

‖y− ȳ‖L2(t0,∞)≤ ‖LX0‖22+‖
√

Σ1X̄0‖22+2
n∑

i=r+1
σi‖u‖L2(t0,∞) (4.22)
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Proof. To obtain our error bound, we assume that the time t0 = 0 and study the
two cases x0 = 0 and u= 0. We have that

‖y− ȳ‖L2(0,∞) = ‖ye− ȳe‖L2(0,∞)

= ‖
t∫

0
CeA(t−τ)

(
B X0

)( u
δ0

)
dτ −

t∫
0
C̄eĀ(t−τ)

(
B̄ X̄0

)( u
δ0

)
dτ‖

= ‖CeAtX0 +C

t∫
0
eA(t−τ)Bu(τ)dτ − C̄eĀ(tX̄0− C̄

t∫
0
eĀ(t−τ)B̄u(τ)dτ‖

= ‖CeAtX0− C̄eĀtX̄0 +C

t∫
0
eA(t−τ)Bu(τ)dτ − C̄

t∫
0
eĀ(t−τ)B̄u(τ)dτ‖

≤ ‖CeAtX0− C̄eĀtX̄0‖+‖C
t∫

0
eA(t−τ)Bu(τ)dτ − C̄

t∫
0
eĀ(t−τ)B̄u(τ)dτ‖

(4.23)

For the case x0 = 0, we have the error bound

‖C
t∫

0
eA(t−τ)Bu(τ)dτ − C̄

t∫
0
eĀ(t−τ)B̄u(τ)dτ‖≤ 2

n∑
i=r+1

σi‖u‖L2(0,∞)

For the case u= 0, we have

‖CeAtX0− C̄eĀtX̄0‖≤ ‖CeAtX0‖+‖C̄eĀtX̄0‖

and since Wo has the factorization as

LTL=
∞∫
0
eA

T tCTCeAtdt

then the estimate for the first term ‖CeAtX0‖L2(0,∞) gives

‖CeAtX0‖L2(0,∞) =XT
0

∞∫
t0

eA
T tCTCeAtdt

X0

= ‖XT
0 L

TLX0‖
= ‖(LX0)T (LX0)‖
= ‖(LX0)T‖‖LX0‖
= ‖LX0‖22
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Likewise, the second part ‖C̄eĀ(tX̄0‖ gives the bound

‖C̄eĀ(tX̄0‖L2(0,∞)= ‖
√

Σ1X̄0‖22

If we substitute these values into equation (4.23), we get our error bound

‖y− ȳ‖L2(t0,∞)≤ ‖LX0‖22+‖
√

Σ1X̄0‖22+2
n∑

i=r+1
σi‖u‖L2(t0,∞)

In case where the extended system is balanced, we have the following Corollary.

Corollary 4.2.3. Let the extended system(
A B X0
C

)

be balanced such that

Woe =Wo = Σ = diag(σ1, · · · ,σn)

is the observability Gramian and σ1 ≥ σ2 ≥ ·· · ≥ σn ≥ 0 are the Hankel singular
values of the extended system. If(

Ā B̄ X̄0
C̄

)

is the rth order reduced system obtained by balance truncation, then the error
bound between the outputs of the original and its reduced system is:

‖y− ȳ‖L2(t0,∞)≤ ‖
√

Σ‖22‖X0‖22+2
n∑

i=r+1
σi‖u‖L2(t0,∞) (4.24)

for all u ∈ L2(t0,∞)

Proof. Since the system
(
A B X0
C

)
is balanced for a given balance transfor-

mation T ∈ <n×n and the observability Gramian

Woe = Σ = diag(σ1, · · · ,σn)
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can be factorized as Woe = LTL, we obtain L=
√

Σ
We know that

‖
√

Σ1X̄0‖22≤ ‖
√

Σ1‖22‖X̄0‖22
and

‖
√

ΣX0‖22≤ ‖
√

Σ‖22‖X0‖22
since ‖

√
Σ1‖22≤ ‖

√
Σ‖22‖ and ‖X̄0‖22≤ ‖X0‖22

then we observe that
‖
√

Σ1X̄0‖22≤ ‖
√

Σ‖22‖X0‖22
If we substitute these values into equation (4.22) we obtain the error bound

‖y− ȳ‖L2(t0,∞)≤ ‖
√

Σ‖22‖X0‖22+2
n∑

i=r+1
σi‖u‖L2(t0,∞)

Finally, we see the error bound obtained in [20] can be approximated by adding an
extra input of the initial condition. This new input can be regularized by choosing
a suitable L2 input function.
As the error bound which we have does not depend on the regularization param-
eters, we can interpolate the non-zero initial condition as an extra input and we
choose the Driac delta fuction δ0 /∈ L2 to estimate the error bound by applying
the triangle inequality and the two separated terms.

4.3 The reciprocal system of a linear continuous dynamical system

In this section we introduce the reciprocal system of the original (full) system
and discuss some properties of this system. We want to find an error bound for
the reduced reciprocal system by refering to the theorem and corollary that we
deduced in Section (4.2).
Consider the linear continuous dynamical system with non-zero initial condition
defined as:

ẋ= Ax+Bu

y = Cx

x(0) = x0

(4.25)

where A ∈ <n×n, B ∈ <m×n, C ∈ <p×n are constant matrices.
The state x is defined as x : (t0,∞) −→ <n while the output y is defined on the
form y : (t0,∞)−→<p.
The control input function u is given as u : (t0,∞)−→<m.
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If we let Wc and Wo be the controllability and observability Gramians for the
system in equations (4.25) that are defined in the same way as in definitions
(2.10.6) (2.10.7), section (2.10) and satisfy the Lyapunov equations

AWc+WcA
T +BBT = 0

ATWo+WoA+CTC = 0

We start by defining the reciprocal system denoted by
(
Â B̂

Ĉ D̂

)
of the linear

continuous dynamical system
(
A B
C

)
described in equations (4.25). The ma-

trices
Â, B̂, Ĉ and D̂

have the same definition as equations (3.22) in section (3.5).
The initial condition for this reciprocal system is defined as:

x̂(t0) = A−1x(t0) (4.26)

The full system
(
A B
C

)
is balanced with Gramian

Σ =
(

Σ1 0
0 Σ2

)

where
Σ1 = diag(σ1, · · · ,σr)

Σ2 = diag(σr+1, · · · ,σn)
and σ1 ≥ σ2 ≥ ·· · ≥ σn ≥ 0, r < n are the Hankel singular values.
From lemma (3.5.3) in section (3.5), we deduced that the reciprocal system is
balanced with the same Gramain Σ.
The reciprocal system can be partitioned in the same way as equation (3.25) in
section (3.5).

The reduced reciprocal system
(
Â11 B̂1
Ĉ1 D̂

)
of order r × r is balanced with

Gramian Σ1 and asymptotically stable (see Lemmas (3.5.4) (3.5.5) from section
(3.5)).
The state space and output equations for the reciprocal system can be written as:

˙̂x= Âx̂+ B̂u

ŷ = Ĉx̂+ D̂u
(4.27)



Model Order Reduction of Linear Time-Invariant Continuous Non-Homogeneous
Dynamical System on Infinite-Time Horizon 62

where
Â= A−1, B̂ = A−1B, Ĉ = CA−1, D̂ =D−CA−1B

and the initial condition of this system is given as

x̂(t0) = A−1x(t0)

Also we can write the state and output equations for the reduced reciprocal system(
Â11 B̂1
Ĉ1 D̂

)
in the form:

˙̂x1 = Â11x̂1 + B̂1u

ŷ1 = Ĉ1x̂1 + D̂u
(4.28)

where

Â11 =
(
A11−A12A

−1
22 A21

)−1

B̂1 =
(
A11−A12A

−1
22 A21

)−1 (
B1−A12A

−1
22 B2

)
Ĉ1 =

(
C1−C2A

−1
22 A21

)(
A11−A12A

−1
22 A21

)−1

and if the initial condition of the full system is given as

x(t0) =
(
x1(t0)
x2(t0)

)

then the initial condition of the reduced reciprocal system is defined as

x̂1(t0) =
(
A11−A12A

−1
22 A21

)−1 (
x1(t0)−A12A

−1
22 x2(t0)

)
(4.29)

The observability Gramian Wo can be factorized as

Wo = LTL, L ∈ <n×n

We now introduce the following Theorem which contains the error bound between
the outputs of the reciprocal and its reduced systems.

Theorem 4.3.1. Given the full system
(
A B
C

)
, with non-zero initial condtion

x(t0). Let the observability Gramian Wo be factorized as

Wo = LTL, L ∈ <n×n
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In addition, let

Σ =
(

Σ1 0
0 Σ2

)
and

Σ1 = diag(σ1, · · · ,σr)
Σ2 = diag(σr+1, · · · ,σn)

where r < n and σ1 ≥ σ2 ≥ ·· · ≥ σn ≥ 0 are the Hankel singular values.
If the non-zero initial conditions of the reciprocal and its reduced system is defined
in equations (4.26) (4.29) respectively, then for all u ∈ L2(t0,∞), the error bound
between the output ŷ of the reciprocal system and the output ŷ1 of its reduced
system is given as:

‖ŷ− ŷ1‖L2(t0,∞) ≤ ‖LÂx(t0)‖22+‖
√

Σ1Â11
(
x1(t0)−A12A

−1
22 x2(t0)

)
‖22

+ 2
n∑

i=r+1
σi‖u‖L2(t0,∞)

(4.30)

Proof. We apply the result in theorem (4.2.2) to the reciprocal and reduced recip-
rocal systems with non-zero initial condition and use the factorization of Wo to
get the error bound and the proof is concluded.

Corollary 4.3.2. If the reciprocal system
(
Â B̂

Ĉ D̂

)
is balanced, then the reduced

reciprocal system (
Â11 B̂1
Ĉ1 D̂

)
is balanced with Σ1, and the error bound between the outputs ŷ and ŷ1 is:

‖ŷ− ŷ1‖L2(t0,∞)≤ ‖
√

Σ‖22‖Âx(t0)‖22+2
n∑

i=r+1
σi‖u‖L2(t0,∞) (4.31)

for all u ∈ L2(t0,∞)

Proof. By refering to corollary (4.2.3) and using the initial condition x̂(t0) = Âx(t0)
for the reciprocal system and the initial condition in equation (4.29) for the reduced
reciprocal system and the fact that the observability Gramian can be factorized
as Wo = LTL, L ∈ <n×n and L=

√
Σ, we obtain the error bound.
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4.4 Error bound of a non-homogeneous linear control system using the
singular perturbation approximation method (SPA)

In this section we introduce an approch to find the error bound between the
outputs of the original and the reduced systems with non-zero initial condition
using the method of singular perturbation approximation (SPA).
To obtain such an error bound, we use the approach for the reciprocal system and
extend it using the singular perturbatin approximaation.
Consider the Linear Dynamical System written in the form:(

ẋ
εż

)
=
(
A11 A12
A21 A22

)(
x
z

)
+
(
B1
B2

)
u (4.32)

Here, once again A∈<n×n, B ∈<n×m, C ∈<p×n and x(t0) =
(
x0
z0

)
is the initial

condition.
The scalar ε represents all the small parameters to be neglected.
The output equation of this system is:

y =
(
C1 C2

)( x
z

)
(4.33)

If we use the singular perturbation technique to reduce the system (4.32), we
choose r < n such that the reduced system is given as:

˙̄x= Āx̄+ B̄u

ȳ = C̄x̄+ D̄u
(4.34)

and

Ā=A11−A12A
−1
22 A21, B̄ =B1−A−1

22 B2, C̄ =C1−C2A
−1
22 A21, D̄=−C2A

−1
22 B2

We assume that the block matrix A22 is bounded, invertable and stable matrix.
The relationship between the coefficient matrices of the reduced reciprocal system
(4.28) and the reduced system (4.34) obtained by the singular perturbation ap-
proximation are given in equation (3.45).
From theorem (3.6.3), the reduced system (4.34) is balanced with Σ1 and asymp-
totically stable.
We are now ready to introduce our main result to find the error bound between
the output y of the original system and the output ȳ of the reduced system using
the singular perturbation approximation.

Let G be the transfer function of the original system
(
A B
C

)
and Ĝ be the
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transfer function of the reciprocal system
(
Â B̂

Ĉ Ĉ

)
, then for zero-initial condi-

tion we have proved for the reduced system in section (3.5) equation (3.24) that

G(s) = Ĝ(1
s

)

If we let Ḡ be the transfer function of the reduced system
(
Ā B̄

C̄

)
and Ĝr be

the transfer function of the reduced reciprocal system
(
Â11 B̂1
Ĉ1

)
, then from

section (3.6) equation (3.44) we have:

Ḡ(s) = Ĝr(1
s

)

Now, for the non-zero initial condition x(t0), we have the following corollary for
the transfer function Gx(t0) of the original system and the transfer function Ĝx(t0)
of the reciprocal systems.

Corollary 4.4.1. If the initial condition x(t0) is non-zero, then the relationship
between the transfer functionGx(t0) of the original system and the transfer function
Ĝx(t0) of the reciprocal systems is given as:

Gx(t0)(s) = Ĝx(t0)(
1
s

) (4.35)

Proof. The transfer function of the original system with non-zero initial condition
has the form

Gx(t0)(s) =Gx(t0)(s) + qx(t0)(s) (4.36)
When x(t0) = 0, we have:

G(s) = C (sI−A)−1B

= CA−1
(
sI−A−1

)−1
A−1B

= Ĝ(1
s

)
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and for the value of qx(t0)(s), we have:

qx(t0)(s) = C (sI−A)−1x(t0)

= CA−1
(
sI−A−1

)−1
A−1x(t0)

= q̂x̂(t0)(
1
s

)

If we substitute these values into equation (4.36), we get:

Gx(t0)(s) = Ĝ(1
s

)U(s) + q̂x̂(t0)(
1
s

)

= Ĝx̂(t0)(
1
s

)

For the reduced system with non-zero initial condition, let Ḡx(t0)(s) be the transfer

function of the reduced system
(
Ā B̄

C̄

)
and Ĝrx(t0)(

1
s) be the transfer function of

the reduced reciprocal system
(
Â11 B̂1
Ĉ1

)
, then we have the following corollary

that includes the relationship between these transfer functions

Corollary 4.4.2. The two transfer functions Ḡx(t0)(s) and Ĝrx(t0)(
1
s) for the re-

duced systems described in equations (4.34) (4.28) with non-zero initial condition
satisfy the following result:

Ḡx(t0)(s) = Ĝrx̂(t0)(
1
s

) (4.37)

Proof. The transfer function of the reduced system with non-zero initial condition
is:

Ḡx(t0)(s) = Ḡ(s) + q̄x̄(t0)(s) (4.38)
In the case when the initial condition is zero, we have:

Ḡ(s) = C̄
(
sI− Ā

)−1
B̄

= Ĉ1Â
−1
1
(
sI− Â−1

1
)−1

Â−1
1 B̂1

= Ĝr(1
s

)
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We can then write the value of q̄x̄(t0)(s) as follows:

q̄x̄(t0)(s) = C̄
(
sI− Ā

)−1
x̄(t0)

= Ĉ1Â
−1
1
(
sI− Â−1

1
)−1

Â−1
1 x0

= q̂rx̂(t0)(
1
s

)

Substituting these values into equation (4.38), we get the result:

Ḡx(t0)(s) = Ĝr(1
s

) + q̂rx̂(t0)(
1
s

)

= Ĝrx̂(t0)(
1
s

)

To find the error bound between the output of the original and the reduced order
model by applying the singular perturbation approximation technique, we intro-
duce the following Theorem:

Theorem 4.4.3. Let G be the transfer function of the original system and Ḡ
be the transfer function of the reduced system using the singular perturbation
approximation, then we have the following error bound between the output y of
the full system and ȳ of the reduced system:

|y− ȳ‖L2(t0,∞) ≤ ‖LA−1x(t0)‖22+‖
√

Σ1(Ā)−1
(
x1(t0)−A12A

−1
22 x2(t0)

)
‖22

+ 2
n∑

i=r+1
σi‖u‖L2(t0,∞)

(4.39)

where u ∈ L2(t0,∞)

Proof. Observe that

‖G− Ḡ‖L2(t0,∞) ≤ ‖G− Ĝ‖L2(t0,∞)+‖Ĝ− Ĝr‖L2(t0,∞)+‖Ĝr− Ḡ‖L2(t0,∞)

≤ ‖Ĝ− Ĝr‖L2(t0,∞)
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but from section (4.3), we know that the error bound is given as:

‖Ĝ− Ĝr‖L2(t0,∞) =
‖ŷ− ŷr‖L2(t0,∞)
‖u‖L2(t0,∞)

≤ ‖LÂx(t0)‖22+‖
√

Σ1Â11
(
x1(t0)−A12A

−1
22 x2(t0)

)
‖22+2

n∑
i=r+1

σi

Then we have:

‖G− Ḡ‖L2(t0,∞) ≤ ‖LA−1x(t0)‖22+‖
√

Σ1(Ā)−1
(
x1(t0)−A12A

−1
22 x2(t0)

)
‖22

+ 2
n∑

i=r+1
σi

‖y− ȳ‖L2(t0,∞) ≤ ‖LA−1x(t0)‖22+‖
√

Σ1(Ā)−1
(
x1(t0)−A12A

−1
22 x2(t0)

)
‖22

+ 2
n∑

i=r+1
σi‖u‖L2(t0,∞)

In the case when the full system is balanced , we have the following Corollary to
obtain the error bound between the outputs of the original and its reduced order
system.

Corollary 4.4.4. If the system
(
A B
C

)
is balanced with

Σ =
(

Σ1 0
0 Σ2

)

where
Σ1 = diag(σ1, · · · ,σr)

Σ2 = diag(σr+1, · · · ,σn)
σ1 ≥ σ1 ≥ ·· · ≥ σn) > 0 are the Hankel singular values, and reduced system(
Ā B̄

C̄

)
is balanced with Σ1, then the error bound between the outputs y of

the original system and ȳ of thr reduced order system is:

‖y− ȳ‖L2(t0,∞)≤ ‖
√

Σ‖22‖A−1‖22‖x(t0)‖22+2
n∑

i=r+1
σi‖u‖L2(t0,∞) (4.40)

for all u ∈ L2(t0,∞)
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Proof. By refering to section (4.3) and using the idea of proof (4.3.2), we can prove
the corollary.



Chapter 5

Optimal Control

In this chapter we introduce one of the most important methods in control prob-
lems that is The Linear Quadratic Regulator(LQR). We are interested in the case
of the linear quadratic regulator with constrained states and inputs [19]. For
closed-loop, we want to use the LQR to find an optimal control that minimizes the
objective function which called “the quadratic cost function” with respect to the
constraints on the states and the control input. In order to do that we have used
formal asymptotes for the Pontryagin maximum principle (PMP) and we introduce
an approach using the so called The Hamiltonian Function and the underlying al-
gebraic Riccati equation. The outcome of this chapter are case description under
which balanced truncation and the singular perturbation approximation give good
closed-loop performance.

5.1 Linear quadratic regulator optimal control (LQR)

We start by considering the following continuous linear dynamical system defined
as:

ẋ= Ax+Bu

y = Cx

x(0) = x0

(5.1)

where A,B and C are a constant matrices defined in chapter(2) section (2.1), and
x, u are the state and the input of the system respictively and x(0) represents the
initial condition .
We assume that the linear system described by equation (5.1) is controllable and
observable.
The quadratic cost function J is defined by the following equation :

J = 1
2

∫ ∞
0

(yT y+uTRu)dt (5.2)

70
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or, equivalently
J = 1

2

∫ ∞
0

(xTQx+uTRu)dt (5.3)

where Q=CTC ≥ 0 is a positive semi definite matrix representing the cost penalty
of the states and R> 0 is a positive definite matrix that represents the cost penalty
of the input.
We want to find an optimal control u that minimizes the quadratic cost function
J subject to the constraint

ẋ= Ax+Bu

The optimal control can be denoted by u∗ such that:

J(u∗)≤ J(u), ∀u ∈ L2

and the constraint equation ẋ= Ax+Bu has a solution.
If we substitute the value of u∗ in the coanstraint equation, we have that:

ẋ= Ax+Bu∗

and the optimal solution of this equation is denoted by x∗.
Now, we introduce an approach that depends on the Hamiltonian function defined
in the following form:

H = 1
2
(
xTQx+uTRu

)
+λT (Ax+Bu) (5.4)

where λ ∈ <n is called the costate variable.
The following theorem describes the way in which we can find the optimal control
that minimizes the quadratic cost function J in equation (5.2) and (5.3).
Theorem 5.1.1. [21, 31](Maximum Principle) If x∗,u∗ is optimal ( or a solution
of the LQR), then there exists a solution λ∗ ∈ <n such that:

ẋ= ∂H

∂λ
(5.5)

λ̇=−∂H
∂x

(5.6)

and the minimality condition of the Hamiltonian

H(x∗,u∗,λ∗)≤H(x∗,u,λ∗)

holds for all u ∈ <m

For more etails on the proof (see [21, 31]).
If H is a differentiable function, then to minimize H with respect to u we can find
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our optimal control input.
The following condition must be true to find such u that is:

∂H

∂u
= 0 (5.7)

if we solve equation (5.7), we obtain the following control:

u=−R−1BTλ (5.8)

From (5.1.1) and (5.8), we have the following canonical differential equations that
form a linear system (or Hamiltonian system) written as:

ẋ= ∂H

∂λ

= Ax−BR−1BTλ, x(0) = x0

λ̇=−∂H
∂x

=−Qx−ATλ

(5.9)

Since the terminal cost is not defined, then there is no constraint on the final value
of λ.
This is a coupled system, linear in x and λ, of order 2n×2n.
These control equations can be written in matrix form as:(

ẋ

λ̇

)
=
(

A −BR−1BT

−Q −AT

)(
x
λ

)
(5.10)

It is not easy to solve the system described in equation (5.10), so we guess the
solution of this system or the relation between x and λ in the form:

λ= Px (5.11)

where P ∈ <n×n.
We introduce now an important differential equation in the linear quadratic reg-
ulator problem that is called Matrix Riccati Equation (MRE) and to derive this
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equation, we start from equation (5.11) and use (5.9) in the following way:

λ= Px

λ̇= Ṗ x+PẊ

−Qx−ATλ= Ṗ x+P (Ax−BR−1BTλ)
−Qx−ATPx= Ṗ x+PAx−PBR−1BTPx

Ṗx+PAx+ATPx−PBR−1BTPx+Qx= 0

From the final step, we obtain the MRE written as:

Ṗ =−PA−ATP +PBR−1BTP −Q (5.12)

Since we have an infinite time horizon, there is no information about the terminal
cost and hence λ has no constraint. In this case the steady state solution P of a
so called Algebraic Riccati Equation (ARE) can be used instead of P (t) [31].
In case when the time approaches infinty, we have:

lim
t−→∞

Ṗ = 0

By using the limit above, we get another differential equation called Algebraic
Riccati Equation (ARE), written as:

PA+ATP −PBR−1BTP +Q= 0 (5.13)

where P is the unique positive-definite solution.
We want now to find a state feedback control u that can be used to move any
state x to the origin, so we let the system evolve in a closed-loop [15, 31].
If we find the solution P of the ARE (5.13), then the optimal control u that can
be used to minimize the quadratic cost function J is written as:

u=−R−1BTPx (5.14)

By substituting equation (5.14) into the original system described by equation
(5.1), we get the following equation:

ẋ= (A−R−1BTP )x (5.15)

Since the matrix A−BK is stable, we have closed-loop poles formed by the eigen-
values of this matrix [15].
If we solve equation (5.15) and find the optimal solution x, then we can find our
optimal control u that can be used to find a minimum value of the quadratic cost
function J described in equation (5.2) (5.3).
We can summarized the LQR method as follows:
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1. We start with the linear dynamical system:

ẋ= Ax+Bu

y = Cx

x(0) = x0

2. We assume that this system is controllable.

3. We define the quadratic cost function as:

J = 1
2

∫ ∞
0

(xTQx+uTRu)dt

4. We choose Q=QT ≥ 0 such that Q= CTC and R =RT > 0

5. We find the constant solution P of the ARE :

PA+ATP −PBR−1BTP +Q= 0

6. We find the optimal control u such that:

u=−R−1BTPx

7. We write the original system in the form:

ẋ= (A−R−1BTP )x

5.2 Optimal control for reduced order model of different types

5.2.1 Singular perturbation requlator problem of type(1)

In this section we introduce the linear quadratic regulator problem for the reduced
order model of a dynamical system [22].
Our goal is to find an optimal control for the reduced system using the singular
perturbation a pproximation.
Consider the linear time-invariant dynamical system defined as:(

ẋ
ż

)
=
(

A11 A12
1
εA21

1
εA22

)(
x
z

)
+
(

B1
1
εB2

)
u

y =
(
C1 C2

)( x
z

) (5.16)



Optimal Control 75

This system can be written in another form as :

ẋ = A11x+A12z+B1u
εż = A21x+A22z+B2u

(5.17)

From section (5.1), we see that this system can be optimized according to the
following quadratic cost function:

J = 1
2

∫ ∞
0

(yT y+uTRu)dt (5.18)

or
J = 1

2

∫ ∞
0

(xTQx+uTRu)dt (5.19)

where Q= CTC ≥ 0 and R > 0.
The optimal control u is defined as:

u=−R−1
(
BT

1
1
εB

T
2
)
P

(
x
z

)
(5.20)

where P is the solution of the Algebraic Riccati Equation (ARE):

PA+ATP −PBR−1BTP +Q= 0 (5.21)

The goal now is to solve the ARE and set ε= 0 to obtain a reduced equation for
the ARE.
If we substitute the matrices A,B,C and Q in equation (5.21), then we have the
following new form of ARE :

(5.22)P

(
A11 A12
1
εA21

1
εA22

)
+
(
AT11

1
εA

T
21

AT12
1
εA

T
22

)
P

− P
(

B1
1
εB2

)
R−1

(
BT

1
1
εB

T
2
)
P +

(
CT1
CT2

)(
C1 C2

)
= 0

A solution of equation (5.22) can be choosen as:

P =
(

P11 εP12
εP T12 εP22

)
(5.23)
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so we can avoid the unboundness when we set ε−→ 0 [22].
Substituting equation (5.23) into equation (5.22), we get :

(5.24)

(
P11 εP12
εP T12 εP22

)(
A11 A12
1
εA21

1
εA22

)
+
(
AT11

1
εA

T
21

AT12
1
εA

T
22

)(
P11 εP12
εP T12 εP22

)

−
(

P11 εP12
εP T12 εP22

)(
B1
1
εB2

)
R−1

(
BT

1
1
εB

T
2
)( P11 εP12

εP T12 εP22

)

+
(
CT1
CT2

)(
C1 C2

)
= 0

From equation (5.24), we get the following (n+m)× (n+m) equations:

0 = P11A11 +P12A21 +AT11P11 +AT21P
T
12− (P11B1 +P12B2)R−1(BT

1 P11 +BT
2 P

T
12)

+CT1 C1 (5.25)

0 = P11A12 +P12A22 + εAT11P12 +AT21P22− (P11B1 +P12B2)R−1(εBT
1 P12 +BT

2 P22)
+CT1 C2 (5.26)

0 = εP T12A11 +P22A21 +AT12P11 +AT22P
T
12− (εP T12B1 +P22B2)R−1BT

1 P11 +BT
2 P

T
12)

+CT2 C1 (5.27)

0 = εP T12A12 +P22A22 + εAT12P12 +AT22P22− (εP T12B1 +P22B2)R−1εBT
1 P12 +BT

2 P22)
+CT2 C2 (5.28)

When we set ε= 0 in equations (5.25)-(5.28) we obtain the following m×m reduced
equation for P̄22 and written as:

P̄22A22 +AT22P̄22− P̄22WP̄22 +CT2 C2 = 0 (5.29)

where W =B2R−1BT
2 .

Another n×n equation for P̄11 is obtained when we express P̄12 in terms of P̄11
and P̄22 and this equation takes the form:

P̄11Â+ ÂT P̄ T11− P̄11B̂R
−1B̂T P̄11 + ĈT Ĉ = 0 (5.30)

where Â,B̂ and Ĉ are defined in [25]. If (Â, B̂) is controllable pair and (Â, Ĉ) is
observable pair, then applying the implicit function theorem to equation (5.22)
with equation (5.23) [22, 23], we have:

Pij = P̄ij +O(ε), i, j = 1,2 (5.31)
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If we use P̄ij instead of Pij in equation (5.31), then the feedback control in equation
(5.20) becomes:

u=−R−1
(
BT

1
1
εB

T
2
)( P̄11 εP̄12

εP̄ T12 εP̄22

)(
x
z

)
=−R−1(BT

1 P̄11 +BT
2 P̄12)x−R−1(εBT

1 P̄12 +BT
2 P̄22)z

(5.32)

From equation (5.32), the original system described by equation (5.16) becomes:

ẋ=
(
A11−B1R

−1(BT
1 P̄11 +BT

2 P̄12)
)
x+

(
A12−B1R

−1(εBT
1 P̄12 +BT

2 P̄22)
)
z

εż =
(
A21−B2R

−1(BT
1 P̄11 +BT

2 P̄12)
)
x+

(
A22−B2R

−1(εBT
1 P̄12 +BT

2 P̄22)
)
z

(5.33)

If this system is asymptotically stable then from equation (5.31), we have a solution
x(t) and z(t) with O(ε) of the optimal solution [24]. If we assume that A22 is stable,
then we can apply this assumption to the feedback system in equation (5.33).
If we reduce the full system in equation (5.17) using the singular approximation
approximation, we obtain the following reduced order model:

ẋr = Arxr +Brur

yr = Crxr +Drur
(5.34)

where

Ar = A11−A12A
−1
22 A21

Br =B1−A12A
−1
22 B2

Cr = C1−C2A
−1
22 A21

Dr =−C2A
−1
22 B2

We define the cost quadratic function of this reduced order system as:

Jr = 1
2

∫ ∞
0

(yTr yr +uTr Rrur)dt (5.35)

or, equivalently

Jr = 1
2

∫ ∞
0

(xTr Qrxr + 2xTr CrDrur +uTr Rrur)dt (5.36)

where Qr = CTr Cr and Rr =R+DT
r Dr.

The optimal control for this reduced system defined as:

ur =−R−1
r BT

r Prxr (5.37)
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where Pr is the constant solution of the following Algebraic Riccati Equation for
the reduced system described by equations (5.34) given as:

(5.38)Pr(Ar −BrR−1
r DT

r Cr) + (Ar −BrR−1
r DT

r Cr)TPr − PrBrR−1
r BT

r Pr

+ CTr (I +DrRrD
T
r )−1Cr = 0

We introduce now the following theorem that describes the relationship between
the reduced Riccati Equation system (5.29)(5.30) for the full system (5.17) after
putting ε= 0 and the Riccati Equation (5.39) for the reduced system in equation
(5.34) when we set ε= 0
Theorem 5.2.1. If equation (5.31) holds and A−1

22 exists, then the solution Pr of
equation (5.39) is identical to the solution P̄11 of equation (5.30)

For more details, see [23, 24].
According to theorem (5.2.1) and if we substitute the feedback optimal control
ur described by equation (5.37) into the reduced system equation (5.34), then we
obtain the following system:

ẋr = (Ar−BrR−1BT
r Pr)xr (5.39)

where (Ar−BrR−1BT
r Pr) is stable and the pair (Ar,Br) controllable.

If we find the optimal solution xr (5.39) and substitute the value into equation
(5.37), then we find the optimal control for the reduced order model.

5.2.2 Singular perturbation requlator problem of type(2)

In this subsection, we introduce a linear dynamical continuous system with input
matrix B that does not depends on ε. We want to find the optimal control for
this dynamical system and then use the singular perturbation approximation to
reduce this system and find the optimal control for the reduced order model.
Let us consider the following linear dynamical continuous system defined as:(

ẋ
ż

)
=
(
A11 A12
A21
ε

A22
ε

)(
x
z

)
+
(
B1
B2

)
u

y =
(
C1 C2

)( x
z

) (5.40)

Another representation of the above system could be written as:

ẋ= A11x+A12z+B1u

εż = A21x+A22z+ εB2u
(5.41)
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If we assume that A22 is stable and A−1
22 exists, then we set ε = 0 to obtain the

following equation:
z̄ = A−1

22 A21x̄ (5.42)
When we substitute equation (5.42) into equation (5.41), we get the following
reduced order model:

˙̄x= Āx̄+ B̄ū

ȳ = C̄x̄
(5.43)

where

Ā= A11−A12A
−1
22 A21

B̄ =B1

C̄ = C1−C2A
−1
22 A21

Our goal now is to find the optimal control for the system in equation (5.40) that
minimizes the quadratic cost function J defined by the following equations:

J = 1
2

∫ ∞
0

(yT y+uTRu)dt (5.44)

or equivalently
J = 1

2

∫ ∞
0

(xTQx+uTRu)dt (5.45)

where Q= CTC ≥ 0 and R > 0.
The feedback optimal control u for the original system is defined as:

u=−R−1
(
BT

1 BT
2
)
P

(
x
z

)
(5.46)

where P is the solution of the Algebraic Differential Equation defined below:

(5.47)P

(
A11 A12
1
εA21

1
εA22

)
+
(
AT11

1
εA

T
21

AT12
1
εA

T
22

)
P

− P
(
B1
B2

)
R−1

(
BT

1 BT
2
)
P +

(
CT1
CT2

)(
C1 C2

)
= 0

We choose the solution of equation (5.47) as:

P =
(

P11 εP12
εP T12 εP22

)
(5.48)



Optimal Control 80

to avoid the unboundness for ε= 0.
Equation (5.48) together with equation (5.47) give the following equation:

(5.49)

(
P11 εP12
εP T12 εP22

)(
A11 A12
1
εA21

1
εA22

)
+
(
AT11

1
εA

T
21

AT12
1
εA

T
22

)(
P11 εP12
εP T12 εP22

)

−
(

P11 εP12
εP T12 εP22

)(
B1
1
εB2

)
R−1

(
BT

1
1
εB

T
2
)( P11 εP12

εP T12 εP22

)

+
(
CT1
CT2

)(
C1 C2

)
= 0

Form equation (5.49), we obtain the following set of equations:

0 = P11A11 +P12A21 +AT11P11 +AT21P
T
12− (P11B1 + εP12B2)R−1(BT

1 P11 + εBT
2 P

T
12)

+CT1 C1 (5.50)

0 = P11A12 +P12A22 + εAT11P12 +AT21P22− (P11B1 + εP12B2)R−1(εBT
1 P12 + εBT

2 P22)
+CT1 C2 (5.51)

0 = εP T12A11 +P22A21 +AT12P11 +AT22P
T
12− (εP T12B1 + εP22B2)R−1εBT

1 P11 + εBT
2 P

T
12)

+CT2 C1 (5.52)

0 = εP T12A12 +P22A22 + εAT12P12 +AT22P22− (εP T12B1 + εP22B2)R−1εBT
1 P12 + εBT

2 P22)
+CT2 C2 (5.53)

When we set ε = 0 in equations (5.50)-(5.53) we obtain the following reduced
Riccati equations:

P̄11A11 + P̄12A21 +AT11P̄
T
11 +AT21P̄

T
12− P̄11B1R

−1BT
1 P̄11 +CT1 C1 = 0 (5.54)

P̄11A12 + P̄12A22 +AT21P̄22 +CT1 C2 = 0 (5.55)
P̄22A21 +AT12P̄11 +AT22P̄

T
12 +CT2 C1 = 0 (5.56)

P̄22A22 +AT22P̄22 +CT2 C2 = 0 (5.57)
We write P̄12 and P̄ T12 in equations (5.55),(5.56) in terms of P̄11 and P̄22 as follows:

P̄12 =−(P̄11A12 +AT21P̄22 +CT1 C2)A−1
22 (5.58)

P̄ T12 =−(AT22)−1(P̄22A21 +AT12P̄11 +CT2 C1) (5.59)
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Equation (5.57) can be expressed in different form as:

AT21(AT22)−1P̄22A21 +AT21P̄22A
−1
22 A21 =−AT21(AT22)−1CT2 C2A

−1
22 A21 (5.60)

Substituting equations (5.58) and (5.59) into equation (5.54) and using equation
(5.60) we obtain:

P̄11Â+ ÂT P̄11− P̄11B̂R
−1B̂T P̄11 + ĈT Ĉ = 0 (5.61)

where

Â= A11−A12A
−1
22 A21

B̂ =B1

Ĉ = C1−C2A
−1
22 A21

(5.62)

If we assume the pair (Â, B̂) is controllable, then the values of Pij and P̄ij , i, j =
1,2 satisfy equation (5.31).
The feedback optimal control defined in equation (5.46) along with the result in
equation (5.31) can be written as:

u=−R−1
(
BT

1 BT
2
)( P̄11 εP̄12

εP̄ T12 εP̄22

)(
x
z

)
=−R−1(BT

1 P̄11 + εBT
2 P̄12)x−R−1(εBT

1 P̄12 + εBT
2 P̄22)z

(5.63)

We can use the result found in equation (5.63) to write a new representation of
the original system described by equation (5.41) as:

ẋ=
(
A11−B1R

−1(BT
1 P̄11 + εBT

2 P̄12)
)
x+

(
A12−B1R

−1(εBT
1 P̄12 + εBT

2 P̄22)
)
z

εż =
(
A21− εB2R

−1(BT
1 P̄11 + εBT

2 P̄12)
)
x+

(
A22− εB2R

−1(εBT
1 P̄12 + εBT

2 P̄22
)
z

(5.64)

If the system in equation (5.64) is asymptotically stable and if equation (5.31))
holds, then we can compute the solution x(t) and z(t) within the O(ε) of the
optimal control.
The next step now is to find a feedback optimal control for the reduced system
defined in equation (5.43) that can be used to minimizes the quadratic cost function
J̄ defined as:

J̄ = 1
2

∫ ∞
0

(ȳT ȳ+ ūT R̄ū)dt (5.65)

or equivalently
J̄ = 1

2

∫ ∞
0

(x̄T Q̄x̄+ ūT R̄ū)dt (5.66)
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where Q̄= C̄T Q̄≥ 0 and R̄ =R > 0.
We define the optimal control for the reduced system (5.43) as:

ū=−R̄−1B̄T P̄ x̄ (5.67)

where P̄ is the solution of the following Algebraic Riccati Equation for the reduced
system in equation (5.43), defined as:

P̄ Ā+ ĀT P̄ − P̄ B̄R̄−1B̄T P̄ + C̄T C̄ = 0 (5.68)

Since A22 is stable and A−1
22 is exists, then the solution of equation (5.68) is the

same as the solution of equation (5.61), thus we have:

P̄ = P̄11 (5.69)

By usig the feedback optimal control in equation (5.67) and the solution P̄ in
equation (5.68), then we obtain the following reduced system derived from the
reduced system in equation (5.43) that has the form:

˙̄x=
(
Ā− B̄R̄−1B̄T P̄

)
x̄

ȳ = C̄x̄
(5.70)

where

Ā= A11−A12A
−1
22 A21

B̄ =B1

C̄ = C1−C2A
−1
22 A21

We assume that the matrix Ā− B̄R̄−1B̄T P̄ is stable and the pairs (Ā, B̄) , (Ā, C̄)
are controllable and observable respectively.
By solving the reduced system in equation (5.70), the solution x̄(t) is used to
find the feedback control ū which is important to find the minimum value of the
quadratic cost function J̄ .

5.2.3 Singular perturbation requlator problem of type(3)

In section (5.2), we applied the singular perturbation linear quadratic regulator to
find an optimal control for the reduced system.
In this section we introduce an approach to find the optimal control of the reduced
system using the Balance Truncation optimal control.
Consider the full linear time-invariant dynamical system defined by the following
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form: (
ẋ
ż

)
=
(
A11 A12
A21

1
εA22

)(
x
z

)
+
(
B1
B2

)
u

y =
(
C1 C2

)( x
z

) (5.71)

We can rewrite the original system in equation (5.71) in another form as :

ẋ= A11x+A12z+B1u

εż = εA21x+A22z+ εB2u
(5.72)

If we apply the balanced truncation method to reduce the original system described
by equation (5.72), we get the following reduced system form:

ẋr = A11xr +B1ur

yr = C1xr
(5.73)

Moreover, we can apply the singular perturbation approximation method to reduce
the original system in equation (5.72) to obtain the reduced system:

˙̄x= A11x̄+B1ū

ȳ = C1x̄
(5.74)

From equations (5.73) and (5.74), we see the the two reduced systems have the
same state space equation and this means that to find an optimal control for the
reduced system in equation (5.73) using the balanced truncation method, we can
use the singular perturbation method described in section (5.2).
We start by defining the quadratic cost function J for the original system (5.71)
as:

J = 1
2

∫ ∞
0

(yT y+uTRu)dt (5.75)

or equivalently
J = 1

2

∫ ∞
0

(xTQx+uTRu)dt (5.76)

where Q= CTC ≥ 0 and R > 0.
Our optimal control u for the original system is defined as :

u=−R−1
(
BT

1 BT
2
)
P

(
x
z

)
(5.77)
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The matrix P is the solution of the follwoing Algebraic Riccati Equation:

PA+ATP −PBR−1BTP +Q= 0 (5.78)

The next step now is to find a reduced Riccati equation for the full Riccati equation
(5.78) when ε= 0.
To avoid the unboundness when ε= 0, we choose the solution P in the form:

P =
(

P11 εP12
εP T12 εP22

)
(5.79)

By substituting equation (5.79) into equation (5.78), we get:

(5.80)

(
P11 εP12
εP T12 εP22

)(
A11 A12
A21

1
εA22

)
+
(
AT11 AT21
AT12

1
εA

T
22

)(
P11 εP12
εP T12 εP22

)

−
(

P11 εP12
εP T12 εP22

)(
B1
B2

)
R−1

(
BT

1 BT
2
)( P11 εP12

εP T12 εP22

)

+
(
CT1
CT2

)(
C1 C2

)
= 0

After solving equation (5.80), we obtain the following equations:

0 = P11A11 + εP12A21 +AT11P11 + εAT21P
T
12− (P11B1 + εP12B2)R−1(BT

1 P11 + εBT
2 P

T
12)

+CT1 C1 (5.81)

0 = P11A12 +P12A22 + εAT11P12 + εAT21P22− (P11B1 + εP12B2)R−1(εBT
1 P12 + εBT

2 P22)
+CT1 C2 (5.82)

0 = εP T12A11 + εP22A21 +AT12P11 +AT22P
T
12− (εP T12B1 + εP22B2)R−1BT

1 P11 + εBT
2 P

T
12)

+CT2 C1 (5.83)

0 = εP T12A12 +P22A22 + εAT12P12 +AT22P22− (εP T12B1 + εP22B2)R−1εBT
1 P12 + εBT

2 P22)
+CT2 C2 (5.84)

Now, if we set ε = 0 in equations (5.81)-(5.84), we obtain the following reduced
system Riccati Equations :

P̄11A11 +AT11P̄
T
11− P̄11B1R

−1BT
1 P̄11 +CT1 C1 = 0 (5.85)

P̄11A12 + P̄12A22 +CT1 C2 = 0 (5.86)
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AT21P̄11 +AT22P̄12 +CT2 C1 = 0 (5.87)
P̄22A22 +AT22P̄22 +CT2 C2 = 0 (5.88)

Assumptions 5.2.2. The pair (A11,B1) is controllable and P̄11 is a unique posi-
tive semidefinite solution of equation (5.85) such that:

A11−B1R
−1BT

1 P̄11

is stable.

According to equation (5.31) in section (5.2.1), we can use P̄ij instead of Pij to
rewrite the feedback control in equation (5.77) as:

u=−R−1
(
BT

1 BT
2
)( P̄11 εP̄12

εP̄ T12 εP̄22

)(
x
z

)
=−R−1(BT

1 P̄11 + εBT
2 P̄12)x−R−1(εBT

1 P̄12 + εBT
2 P̄22)z

(5.89)

Using equation (5.89), we obtain a new form of the original system described by
equation (5.72) such that:

ẋ=
(
A11−B1R

−1(BT
1 P̄11 + εBT

2 P̄12)
)
x+

(
A12−B1R

−1(εBT
1 P̄12 + εBT

2 P̄22)
)
z

εż =
(
εA21− εB2R

−1(BT
1 P̄11 + εBT

2 P̄12)
)
x+

(
A22− εB2R

−1(εBT
1 P̄12 + εBT

2 P̄22)
)
z

(5.90)

If the above system is asymptotically stable and equation (5.31) holds, then we
have a solution x(t) and z(t) for this system with O(ε) of the optimal solution [24].
We are going now to define the quadratic cost function for the reduced order model
system described in equation (5.74) or (5.74).
Let J̄ be the quadratic cost function of the reduced system in equation (5.73) or
(5.74) defined as:

J̄ = 1
2

∫ ∞
0

(ȳT ȳ+ ūT R̄ū)dt (5.91)

or, equivalently
J̄ = 1

2

∫ ∞
0

(x̄T Q̄x̄+ ūT R̄ū)dt (5.92)

where Q̄= C̄T C̄ ≥ 0 and R̄ =R > 0.
The optimal feedback control for the reduced order model is defined as:

ū=−R̄−1B̄T P̄ x̄ (5.93)
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where P̄ is the solution of the Algebraic Riccati Equation for the reduced order
model and given as:

P̄A1 +AT1 P̄ − P̄B1R̄
−1BT

1 P̄ +CT1 C1 = 0 (5.94)

From theorem (5.2.1) in section (5.2.1), we see that the two solutions P̄11 and P̄
are both identical.
Hence we conclude that P̄11 is the reduced Riccati Equation (5.85) and it is the
same as P̄ which is the solution of the reduced system.
By substituting the feedback control equation (5.93) into the reducd system (5.73),
we get:

˙̄x= (A11−B1R
−1BT

1 P̄ )xr (5.95)
where we have assumed that the matrix (A11− B̄R−1BT

1 P̄ ) is stable.
If we solve equation (5.95) of the reduced system, then we can use the solution
x(t) to find the optiaml control. This optimal control can be used to find the
optimality of J̄ .



Chapter 6

Numerical Examples

In this chapter the construction of a low order model via balanced truncation and
singular perturbation approximation for the mass spring damping and CD-player
systems is demonstrated.

6.1 Mass-spring damping system

In this section we introduce a numerical example describing the behavior of the
dynamical system.
As an application from the engeneering system, we take a mass-spring damping
system.
For simplicity we start with three mass-spring damping and apply Newton’s Second
Law of motion to this masses.
Suppose that m1,m2 and m3 are the masses described in figure (6.1)

Figure 6.1: Three Mass-Spring Damping

where x1,x2 and x3 are the positions of the masses m1,m2 and m3 respectively and
k1,k2,k3 and d1,d2,d3 are constants that represent the stiffness and the damping
of the springs with u is the force acting on the mass m3 .
For the mass m1 in figure (6.2)

Applying Newton’s Second Law we get the following differential equation:

m1ẍ1 +d1ẋ1 +k1x1 +d2(ẋ2− ẋ1) +k2(x2−x1) = 0
m1ẍ1 + (d1 +d2)ẋ1 +d2ẋ2 + (k1 +k2)x1−k2x2) = 0 (6.1)

87
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Figure 6.2: Mass1

Similarly for the mass m2 in figure (6.3), we obtain:

m2ẍ2 +d2(ẋ2− ẋ1) +k2(x2−x1) +d3(ẋ3− ẋ2) +k3(x3−x2) = 0
m2ẍ2−d2ẋ1 + (d2 +d3)ẋ2−d3ẋ3−k2x1 + (k2 +k3)x2−k3x3) = 0 (6.2)

Figure 6.3: Mass2

Finally, the differential equation for the mass m3 in figure (6.4) is:

m3ẍ3 +d3(ẋ3− ẋ2) +k3(x3−x2) = u
m3ẍ3−d3ẋ2 +d3ẋ3−k3x2 +k3x3 = u

(6.3)

Figure 6.4: Mass3
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The set of the differential equations in (6.1),(6.2) and (6.3) can be written in
matrix form as:

(6.4)

m1 0 0
0 m2 0
0 0 m3


 ẍ1
ẍ2
ẍ3

+

d1 + d2 −d2 0
−d2 d2 + d3 −d3

0 −d3 d3


 ẋ1
ẋ2
ẋ3


+

k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3


 x1
x2
x3

 =

 0
0
1

u

and the differential equation that represents this system has the form:

Mẍ+Dẋ+Kx= Lu (6.5)

where M is the mass matrix, D is the damping matrix and K is the stiffnes matrix.
and

L=

 0
0
1


is an 3×1 colmun vector.
To find the state space equation for the previous linear continuous dynamical
system we let:

ẋ= z

and
ẍ= ż

if we assume that M−1 exists, then by substituting the above equations into equa-
tion (6.5), we get the following system:

ẋ= z

ż =−M−1Kx−M−1Dz+M−1Lu
(6.6)

and in matrix form we have:(
ẋ
ż

)
=
(

0 I
−M−1K −M−1D

)(
x
z

)
+
(

0
−M−1L

)
u (6.7)

Let A =
(

0 I
−M−1K −M−1D

)
be of size (6× 6) and B =

(
0

−M−1L

)
of size

(6×1), then the state space equation for this system is :

Ẋ = AX+Bu (6.8)
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where X =
(
x
z

)
is the state vector of the linear dynamical system of size (6×1).

Now, we are going to find the state space representation for any n mass-spring
damping continuous system described in figure (6.5).
Using similar approach, we can derive the state space equation for n masses and
apply Newton’s Second Law on the mass mi to obtain the following differential
equation:

miẍi−diẋi−1 + (di+di+1)ẋi−di+1ẋi+1−kixi−1
+ki+1(xi+1−xi) = bu

(6.9)

where i= 1,2,3, . . . ,n
The value of b is zero when i 6= n and one when i = n, but x0 = 0 for i = 1 and
xn+1 = kn+1 = dn+1 = 0 for i= n.
The matrix representation for the differential equation described by equation (6.9)
can be expressed as:

Mẍ+Dẋ+Kx= Lu (6.10)
where

M =



m1 0 0 . . . . . . 0
0 m2 0 . . . . . . 0
0 0 . . . 0 . . . 0
... ... 0 mi . . . 0
... ... ... ... . . .

...
0 0 0 0 . . . mn


n×n

is called the mass matrix of the system.

D =



d1 +d2 −d2 0 . . . . . . 0
−d2 d2 +d3 −d3 0 . . . 0

0 −d3 d3 +d4
. . . . . . 0

0 0 . . . . . . . . . 0
... ... ... . . . . . . −dn
0 0 0 . . . −dn dn


n×n

is called the damping matrix and

K =



k1 +k2 −k2 0 . . . . . . 0
−k2 k2 +k3 −k3 0 . . . 0

0 −k3 k3 +k4
. . . . . . 0

0 0 . . . . . . . . . 0
... ... ... . . . . . . −kn
0 0 0 . . . −kn kn


n×n
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is called the stiffnes matrix. Finally, the vector

Figure 6.5: Multi Mass-Spring Damping

L=



0
0
...
...
1


n×1

representing the number of controllers that act on masses.
To find the state space equation to the linear continuous system, we let:

ẋ= z

and
ẍ= ż

by substituting these equations into equation (6.10), we have the following system
of differential equations:

ẋ= z

ż =−M−1Kx−M−1Dz+M−1Lu
(6.11)

and in matrix form, we have:(
ẋ
ż

)
=
(

0 I
−M−1K −M−1D

)(
x
z

)
+
(

0
−M−1L

)
u (6.12)

if we let
A=

(
0 I

−M−1K −M−1D

)
of size (2n×2n)
and

B =
(

0
−M−1L

)
of size (2n×1), then the state space equation for this system is :

Ẋ = AX+Bu (6.13)
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where X =
(
x
z

)
is the state vector of size (2n×1).

The following step is to find the H∞ and L2 bounds of the approximation error
for the open-loop dynamical system. The numerical results are shown in section
(6.3)

6.2 CD-player

In this section we introduce the CD-player as an application to a compact disc
mechanism. The CD-player control task is to achieve track following, which ba-
sically amounts to pointing the laser spot to the track of pits on the CD that is
rotating [43]. Figure (6.6) shows the mechanism treated here which consists of a
swing arm on which a lens is mounted by means of two horizontal leaf spring. The
rotation of the arm in the horizontal plane enables reading of the spiral-shaped
disc track, and the suspended lens is used to focus the spot on the disc.

Figure 6.6: Schematic view of a rotating arm compact disc mechanism

We have two facts according to the disc, the first fact is that the disc is not per-
fectly flat and the second fact is the disc has irregularities in the spiral of pits on
it. From these two facts, a feedback system is needed.
Our goal is to find a low-cost controller which makes the servo-system faster and
less sensitive to external shocks [12, 44].
A detailed model is needed to describe the vibrational behaviour of the electro-
mechanical system over a large frequency range in order to anticipate the interac-
tion with a controller of possible high bandwidth [45].
The CD-player finite element model was built to describe the dynamics between
the lens actuator and radial arm position of a portable compact disc player dis-
cussed in [46].
This model contains 60 vibration modes (n=120), and has two inputs (actuation
of arm and of focus lens), and two outputs (tracking error and focus error) [45].
See section (6.3) for numerical results.
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6.3 Numerical results

In this section we include all results obtained by the two approaches, namely;
the balanced truncation (BT) and the singular perturbation approximation (SPA)
techniques to determine the order of the reduced models.
Open-Loop System:
We start by computing the Hankel singular values of the two dynamical systems
illustrated in sections (6.1) and (6.2). Figures (6.7a) and (6.7b) represent the Han-
kel singular values (HSVs) for the mass-spring damping and the CD-player system
of size Ns = 10 and Nc = 120 respectively.

For testing purposes, we apply the balanced truncation method for the two

(a) HSVs of the mass-spring damping (b) HSVs of the CD-player

Figure 6.7: HSVs of the mass-spring damping and CD-player system

examples with zero-initial condition and compute the H∞ bound of the approxi-
mation error described in section (3.4) equation (3.21). The size of the mass-spring
damping system is taken to be Ns = 10 and the size of the reduced model is rs = 2.
Figure (6.8) shows the maximum singular value decomposition (MSVD) σmax of
(G−Gr), where G is the transfer function of the original system and Gr is the
transfer function of the reduced order model, and the error bound is 2

10∑
i=3

σi. Table

(6.1) contains the values of ‖G−Gr‖∞ and 2
10∑

i=r+1
σi computed for Ns = 10 and

various values of rs by applying the balanced truncation and singular perturbation
approximation to the mass-spring damping system. To find an error bound for the
CD-player, we take the size of the system to be Nc = 120 and for the reduced model
is rc = 14. By applying the balanced truncation, the maximum singular value de-
composition of (G−Gr) and the error bound 2

120∑
i=9

σi are showen in figure (6.9).
For the singular perturbation approximation method, the two figures (6.10a) and
(6.10b) describe the maximum singular value decomposition of (G−Gr) and the
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Figure 6.8: The MSVD and the error bound for the mass-spring damping for
balanced truncation

Table 6.1: The H∞ norm of (G−Gr) and the error bound.

rs ‖G−Gr‖∞ by BT ‖G−Gr‖∞ by SPA 2
10∑

i=r+1
σi

2 0.2368 0.2147 0.7025
4 0.0343 0.0374 0.0873
6 0.0026 0.0023 0.0061
8 3.1691×10−4 2.6374×10−4 6.7187×10−4

10 3.0066×10−5 2.5247×10−5 6.4759×10−5

error bounds 2
10∑
i=3

σi and 2
120∑
i=15

σi for the mass-spring damping and the CD-player
systems respectively. Table (6.2) contains the values of ‖G−Gr‖∞ and the error
bound 2

120∑
i=r+1

σi computed for Nc = 120 and various of rc by using the balanced
truncation and singular perturbation approximation techniques to the CD-player
system.

We see clearly that both the balanced truncation and singular approximation
methods give the same error bound in terms of the Hankel singular values. Further-
more, the balanced truncation method yields a reduced order model with smaller
error at high frequencies and gives a larger error at low frequencies. Whereas, the
singular perturbation approximation produces a reduced order model with an error
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Figure 6.9: The MSVD and the error bound for the CD-player for balanced
truncation

(a) The MSVD and the error bound for the
mass-spring damping for SPA

(b) The MSVD and the error bound for the
CD-player for SPA

Figure 6.10: The H∞norm of (G−Gr) and the error bound

tends to zero at low frequencies but the error becomes larger at high frequencies.
Next, we want to compute the L2 bound of the approximation error between the
output y of the original system and the output yr of the reduced system with
non-zero initial condition. By applying the balanced truncation and singular per-
turbation approximation of the reduced order model, we have the formulas for the
error bound (see section (4.1) equation (4.10)) and we denote it by Errorantb, the
error bound (see section (4.2) equation (4.22)) denoted by Errormeb and the error
bound (see section (4.4) equation (4.39)) denoted by Errorspa.
Figures (6.11) and (6.12) contain the output y of the original system, the output
yr of the reduced model and the difference y− yr. For the mass spring damping,
let Ns = 10, rs = 2 and for the CD-player Nc = 120 and rc = 14.
The L2 norm of (y−yr) can be computed for different rs . Table (6.3) and (6.4)

contain the values of ‖y−yr‖L2 and the error bounds for the mass-spring damping
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Table 6.2: The H∞ norm of (G−Gr) and the error bound.

rc ‖G−Gr‖∞ by BT ‖G−Gr‖∞ by SPA 2
120∑

i=r+1
σi

2 976.9395 1.1726×10+3 8.8112×10+3

4 472.2863 564.2177 2.1307×10+3

6 269.9229 266.4908 658.1466
8 22.2140 21.9202 117.6033
10 10.5536 10.9294 63.0871
12 3.1911 3.3050 30.4559
14 3.3078 3.3658 15.9412
16 1.4026 1.7800 10.3588

Figure 6.11: The outputs of the mass-spring damping for BT

and the CD-player systems.
We have the following table (6.4) that contains the ‖y−yr‖L2 norm and the error

bounds for the CD-player system.
By applying the singular perturbation approximation technique to the two dy-

namical systems, we obtain the same plots in (6.11) and (6.12). From table (6.3)
and (6.4), we see clearly that the balanced truncation and singular perturbation
approximation methods give the same error bounds of the ‖y−yr‖L2 norm
Closed-Loop System:
To find an optimal control U1 for the original system and Ur for the reduced order
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Figure 6.12: The outputs of the CD-player for BT

Table 6.3: The L2 norm of y− yr and the error bounds of the mass-spring
damping.

rs ‖y−yr‖L2 BT ‖y−yr‖L2 SPA Errorantb Errormeb Errorspa
2 5.1168×10−6 1.4448×10−7 0.7860 0.7844 0.7845
4 8.4209×10−9 1.3092×10−10 0.0979 0.0975 0.0975
6 8.6789×10−11 7.8119×10−11 0.0069 0.0068 0.0068
8 5.2488×10−11 2.3580×10−13 7.6560×10−4 7.5046×10−4 7.5161×10−4

10 2.0546×10−13 6.2379×10−15 7.5386×10−5 7.2544×10−5 7.3692×10−5

system, we apply the balanced truncation and the singular perturbation approx-
imation methods to the mass damping system example. The size of the system
is Ns = 10 and the size of the reduced model is rs = 2. The optimal control is
computed by using the results in sections (5.2) and (5.2.3). The solution of the
Riccati equation P of the full system is computed and used to find the value of
U1. We apply the approaches in sections (5.2) and (5.2.3) to find the solution of
the Riccati equation Pr of the reduced system. Since the first block P11 of P is
equal to the value of Pr, so we can extended P using Pr as the first block and the
rest blocks are zero to obtain a new solution of the Riccati equation denoted by
P̃11.
Another optimal control for the full system U2 is found using the value of P̃11, and
hence we compute the ‖U1−U2‖L2 norm. Figure (6.13) represent the plots of the



Numerical examples 98

Table 6.4: The L2 norm of y−yr and the error bounds of the CD-player.

rc ‖y−yr‖L2 BT ‖y−yr‖L2 SPA Errorantb Errormeb Errorspa
2 1.9758×10−7 530.9562 1.4274×10+4 1.3932×10+4 1.3932×10+4

4 4.7835×10−8 13.6649 3.5043×10+3 3.3690×10+3 3.3690×10+4

6 3.7973×10−8 13.6595 1.1025×10+3 1.0407×10+3 1.0406×10+3

8 1.1489×10−8 1.0136×10−4 205.5871 186.0009 185.9503
10 1.0735×10−8 2.6581×10−4 112.7179 99.8032 99.7527
22 6.7444×10−9 1.4723×10−6 6.7908 5.2021 5.1515
30 1.8227×10−9 4.9888×10−8 2.0099 1.3307 1.2801

two optimal controls U1,U2 and (U1−U2) using the balanced truncation and the
singular approximation perturbation.

Finally, Table (6.5) contains the values of ‖U1−U2‖L2 and ‖P11− P̃11‖L2 by

Figure 6.13: The optimal controls of the mass-spring damping

applying the balanced truncation and singular perturbation approximation to the
mass-spring damping.
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Table 6.5: The L2 norm of (U1−U2) and (P11− P̃11) of the mass-spring.

rs ‖U1−U2‖L2 BT ‖P11− P̃11‖L2 ‖U1−U2‖L2 SPA ‖P11− P̃11‖L2
2 4.0511×10−21 0.0159 4.2643 ×10−21 0.0193
4 3.1877×10−23 0.0049 3.4627×10−12 0.0035
6 2.7572×10−25 6.4136×10−4 3.1813×10−25 2.1445×10−4

8 2.2720×10−28 6.9710×10−4 7.0385×10−27 3.8847×10−5

10 4.0902×10−28 1.1015×10−4 1.1291×10−29 6.8224×10−6

6.4 Conclusion

In this thesis we have studied balanced model reduction techniques for linear con-
trol systems, specifically balanced truncation and singular perturbation approxi-
mation. These methods have been successfully applied for system with homoge-
neous initial conditions but only little attention has been paid to systems with
inhomogeneous initial conditions or feedback systems.
For open-loop control problems, we have derived an L2 error bound for bal-
anced truncation and singular perturbation approximation for system with non-
homogeneous initial condition. The theoretical results have been validated numeri-
cally with extensive comparison between different systems and balanced truncation
and singular perturbation model reduction.
For closed-loop, one of the most important methods in control problems called
linear quadratic regulator (LQR) has been introduced. This is used to find an op-
timal control that minimizes the quadratic cost function. The formal calculations
are validated by numerical experiments, illustrating that the reduced-order can be
used to approximate the optimal control of the original system.
Finally, our suggestion for future work is to apply the balanced truncation and
singular perturbation approximation methods to the linear dynamical systems
with finite-time horizon and derive an error bound for stable systems. The two
methods can be applied to obtain optimal control to the reduced order model for
the infinite time-horizon. Moreover, another suggestion will be to derive an error
bound and optimal control to the unstable linear dynamical system with finite
or infinite time-horizon using the balanced truncation and singular perturbation
approximation methods.
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